Dynamic corrosion risk-based integrity assessment of marine and offshore systems

Adumene, Sidum (2021) Dynamic corrosion risk-based integrity assessment of marine and offshore systems. Doctoral (PhD) thesis, Memorial University of Newfoundland.

[img] [English] PDF - Accepted Version
Available under License - The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

Download (3MB)


Corrosion poses a serious integrity threat to marine and offshore systems. This critical issue leads to high rate of offshore systems degradation, failure, and associated risks. The microbiologically influenced corrosion (microbial corrosion), which is a type of corrosion mechanism, presents inherent complexity due to interactions among influential factors and the bacteria. The stochastic nature of the vital operating parameters and the unstable microbial metabolism affect the prediction of microbial corrosion induced failure and the systems’ integrity management strategy. The unstable and dynamic characteristics of the corrosion induced risk factors need to be captured for a robust integrity management strategy for corroding marine and offshore systems. This thesis proposes dynamic methodology for risk-based integrity assessment of microbially influenced corroding marine and offshore systems. Firstly, a novel probabilistic network based structure is presented to capture the non-linear interactions among the monitoring operating parameters and the bacteria (e.g., sulfate-reducing bacteria) for the microbial corrosion rate predictions. A Markovian stochastic formulation is developed for the corroding offshore system failure probability prediction using the degradation rate as the transition intensity. The analysis results show that the non-linear interactions among the microbial corrosion influential parameters increase the corrosion rate and decrease the corroding system's failure time. Secondly, a dynamic model is introduced to evaluate the offshore system's operational safety under microbial corrosion induced multiple defect interactions. An effective Bayesian network - Markovian mixture structure is integrated with the Monte Carlo algorithm to forecast the effects of defects interactions and the corrosion response parameters’ variability on offshore system survivability under multispecies biofilm architecture. The results reveal the impact of defects interaction on the system's survivability profile under different operational scenarios and suggest the critical intervention time based on the corrosivity index to prevent total failure of the offshore system. Finally, a probabilistic investigation is carried out to determine the parametric interdependencies' effects on the corroding system reliability using a Copula-based Monte Carlo algorithm. The model simultaneously captures the failure modes and the non-linear correlation effects on the offshore system reliability under multispecies biofilm structure. The research outputs suggest a realistic reliability-based integrity management strategy that is consistent with industry best practices. Furthermore, a dynamic risk-based assessment framework is developed considering the evolving characteristics of the influential microbial corrosion factors. A novel dynamic Bayesian network structure is developed to capture the corrosion's evolving stochastic process and the importance of input parameters based on their temporal interrelationship. The associated loss scenarios due to microbial corrosion induced failures are modeled using a loss aggregation technique. A subsea pipeline is used to demonstrate the model performance. The proposed integrated model provides a risk-based prognostic tool to aid engineers and integrity managers for making effective safety and risk strategies. This work explores the microbial corrosion induced failure mechanisms and develops dynamic risk-based tools under different operational scenarios for systems’ integrity management in the marine and offshore oil and gas industries.

Item Type: Thesis (Doctoral (PhD))
URI: http://research.library.mun.ca/id/eprint/15193
Item ID: 15193
Additional Information: Includes bibliographical references.
Keywords: dynamic corrosion risk, integrity assessment, microbiologically influenced corrosion, offshore systems, system reliability
Department(s): Engineering and Applied Science, Faculty of
Date: October 2021
Date Type: Submission
Digital Object Identifier (DOI): https://doi.org/10.48336/XNP7-WC37
Library of Congress Subject Heading: Microbiologically influenced corrosion; Offshore structures--Risk assessment; System safety.

Actions (login required)

View Item View Item


Downloads per month over the past year

View more statistics