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ABSTRACT 

 

Corrosion poses a serious integrity threat to marine and offshore systems. This critical issue leads 

to high rate of offshore systems degradation, failure, and associated risks. The microbiologically 

influenced corrosion (microbial corrosion), which is a type of corrosion mechanism, presents 

inherent complexity due to interactions among influential factors and the bacteria. The stochastic 

nature of the vital operating parameters and the unstable microbial metabolism affect the prediction 

of microbial corrosion induced failure and the systems’ integrity management strategy. The 

unstable and dynamic characteristics of the corrosion induced risk factors need to be captured for 

a robust integrity management strategy for corroding marine and offshore systems. 

This thesis proposes dynamic methodology for risk-based integrity assessment of microbially 

influenced corroding marine and offshore systems. Firstly, a novel probabilistic network based 

structure is presented to capture the non-linear interactions among the monitoring operating 

parameters and the bacteria (e.g., sulfate-reducing bacteria) for the microbial corrosion rate 

predictions. A Markovian stochastic formulation is developed for the corroding offshore system 

failure probability prediction using the degradation rate as the transition intensity. The analysis 

results show that the non-linear interactions among the microbial corrosion influential parameters 

increase the corrosion rate and decrease the corroding system's failure time. Secondly, a dynamic 

model is introduced to evaluate the offshore system's operational safety under microbial corrosion 

induced multiple defect interactions. An effective Bayesian network - Markovian mixture structure 

is integrated with the Monte Carlo algorithm to forecast the effects of defects interactions and the 

corrosion response parameters’ variability on offshore system survivability under multispecies 

biofilm architecture. The results reveal the impact of defects interaction on the system's 
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survivability profile under different operational scenarios and suggest the critical intervention time 

based on the corrosivity index to prevent total failure of the offshore system. 

Finally, a probabilistic investigation is carried out to determine the parametric interdependencies' 

effects on the corroding system reliability using a Copula-based Monte Carlo algorithm. The 

model simultaneously captures the failure modes and the non-linear correlation effects on the 

offshore system reliability under multispecies biofilm structure. The research outputs suggest a 

realistic reliability-based integrity management strategy that is consistent with industry best 

practices. Furthermore, a dynamic risk-based assessment framework is developed considering the 

evolving characteristics of the influential microbial corrosion factors. A novel dynamic Bayesian 

network structure is developed to capture the corrosion's evolving stochastic process and the 

importance of input parameters based on their temporal interrelationship. The associated loss 

scenarios due to microbial corrosion induced failures are modeled using a loss aggregation 

technique. A subsea pipeline is used to demonstrate the model performance. The proposed 

integrated model provides a risk-based prognostic tool to aid engineers and integrity managers for 

making effective safety and risk strategies. This work explores the microbial corrosion induced 

failure mechanisms and develops dynamic risk-based tools under different operational scenarios 

for systems’ integrity management in the marine and offshore oil and gas industries.  
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Chapter 1 

Introduction 

 

1.1. Background 

 

Marine and offshore systems are vital infrastructures that face corrosion-related damages in the 

ocean environments. They are exposed to harsh operating and environmental conditions. The 

harshness of the working environments is due to external, operational, and environmental factors. 

These factors may include but are not limited to biofouling, carbon dioxide concentration, pH, 

pollutants, temperature, pressure, water velocity, carbonate solubility, salinity, 

concentration/amount of suspended solids, and bacteria. These external factors result in corrosion 

induced deterioration of the marine and offshore systems, raising safety and integrity concerns. 

The interactions between these parameters and their non-linear effects support the stochastic 

degradation of the corresponding systems such as oil and gas transportation systems (e.g., 

pipeline). The water-in-oil phase provides a stimulating environment when in contact with the 

offshore system's internal surface; it leads to CO2 dissolution and microbial growth. The 

interactions among these factors with microorganisms initiate microbiologically influenced 

corrosion (MIC) [1].  

 

 

Generally, corrosion, including MIC, poses integrity challenges to marine and offshore oil and gas 

operations. MIC is a stochastic degradation process of engineering systems that is instigated by 

the presence and metabolic process of microorganisms such as fungi and bacteria [2]. Their 

formation and metabolic activities produce corrosive substances that alter the corrosion 
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mechanisms and complicate the offshore systems' failure characteristics. The formation process of 

the MIC is enhanced by the bio-chemical nutrients and external environmental factors.  

Moreover, the microorganisms play a substantial role in the deterioration of the marine and 

offshore oil and gas systems such as pipeline corrosion [3,4], ship hull fouling and cargo tank 

leakage [5,6], and reservoir souring [2,7]. Recent research has shown that MIC contributes to over 

20% of corrosion-related failures globally, with associated devastating consequences [8]. The 

complexity of the microbial metabolism and growth process poses difficulty in understanding their 

characteristics in the corrosion mechanism. Their instability and the co-existence of the 

multispecies microbes in a biofilm architecture have contributed to several catastrophic failures in 

onshore, marine, and offshore systems [2–4,9]. In particular, the failure of the transit line at 

Prudhoe Bay [10] and the rupture failure of a high-pressure natural gas transporting pipeline near 

Carlsbad, New Mexico [11], are attributed to microbial corrosion. The Prudhoe accident resulted 

in a failure cost consequence of over $8billion, while the gas transporting line failure claimed 

twelve lives with associated cost consequences and loss of reputation. This implies the need for 

continuous research to understand, reliably diagnose, and accurately predict MIC induced failure 

characteristics and consequences. A proper knowledge of the MIC induced failure phenomenon 

will aid in the development of a robust risk-based integrity management tool for corroding marine 

and offshore systems.  

 

To better understand the devastating potency of the MIC, several models have been proposed, 

including mechanistic models, qualitative risk-based MIC models, experimental models, and 

probabilistic models [12–16]. Despite the attempt to model the MIC potential and engineering 

systems' susceptibility, the failure induced characteristics and associated integrity risks are still not 

fully explored. The impacts of the dependencies between the monitoring corrosion influencing 
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factors, environmental factors, materials composition, and the microbial activities on the offshore 

system failure characteristics (failure probability, survivability, and failure time) have not been 

thoroughly studied. There are limited quantitative risk modeling tools that can capture the complex 

interactions among failure key factors and the corresponding consequences under MIC. 

 

The existing models are inadequate to capture the non-linear interaction effects of the physio-

chemical parameters on the MIC rate and the failure probability prediction simultaneously. The 

bacteria's co-existence effects on the marine and offshore systems failure characteristics have not 

been taken into account in the susceptibility models. There are a limited number of dynamic 

quantitative models to assess the impact of microbial induced multi-failure modes’ dependencies 

on the remaining strength of corroding offshore systems.  The multispecies biofilm effects on the 

strength loss and survival likelihood of the corroding offshore systems need to be addressed 

appropriately. There is a need to better explore the stochastic and dynamic nature of microbial 

corrosion induced failures of marine and offshore systems for a risk-based integrity management. 

 

1.2. Motivation and objectives 

 

Microbial corrosion creates severe integrity risks in the marine and offshore oil and gas industries. 

This is highlighted in its contribution to the overall failure due to corrosion and the associated 

consequences [8,17,18]. MIC is enhanced under a multispecies biofilm, in which the bacteria 

mutualistic relationship serves as a source of energy among the bacteria types. The biofilm is a 

complex structure formed by fusing the extracellular polymeric substances and the bacteria cells. 

Such a complex mutualistic microbial community presents a dynamic and diverse failure 

influencing potentials to marine and offshore systems. Thus, the mechanistic approach is 

inadequate to capture the complex non-linearity in the MIC mechanism modeling. 
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Moreover, the bacteria metabolic process and their degradation pathway are enhanced by the 

available nutrients and monitoring operating (physio-chemical) parameters. For instance, the 

physio-chemical parameters play a vital role in the microbes' survivability and growth. The 

interplay among the multiphase fluids in the oil and gas production/transportation systems can 

create a sustainable mode for bacteria growth when in contact with the system wall. This exposure 

leads to an interactive tendency among the corrosion dominant parameters and bacteria for the 

MIC formation, considerably affecting total system failures. There is no comprehensive 

knowledge of the interaction effects among these factors on the propagation of the MIC upon 

initiation.  The time of the system's complete collapse in terms of the system’s failure rate, failure 

likelihood, future pits distribution, and survivability needs to be explored in a systematic manner.  

 

The material response to the dynamic interactions among the influential corrosion factors in terms 

of the failure rates and the associated consequences has not been fully understood. There are a few 

dynamic quantitative risk-based frameworks that characterize the MIC induced failure modes 

considering complex interaction among corrosion key factors and multispecies biofilm. Hence, a 

better understanding of these complex interactions among the corrosion influencing parameters 

and the bacteria and their impacts on the failure characteristics is essential to develop a proper 

dynamic corrosion risk-based integrity assessment tool for the corroding marine and offshore 

systems. 

 

This research is aimed at developing a dynamic risk-based integrity assessment tool for marine 

and offshore systems affected by MIC. The model captures the complex, non-linear and unstable 

dependencies among the various corrosion vital factors (pH, temperature, water cut, fluid velocity, 
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CO2 partial pressure) and the bacteria for the marine and offshore systems failure analysis. The 

research goal is achieved through the following objectives. Each of these research objectives are 

translated into a research task presented in Figure 1.1. 

i. To develop a novel probabilistic model for system failure characteristics analysis by 

predicting the MIC rate, failure probability, and future pit depths distribution.  

ii. To model the system survivability (safety) considering the non-linear dependencies among 

corrosion influential factors and multiple defects interaction under a complex multispecies 

biofilm.  

iii. To introduce a dynamic model for system reliability analysis considering multi-failures 

modes dependencies under complex multispecies microbial biofilms. 

iv. To develop an integrity assessment model considering material and parametric uncertainty. 

v. To develop a dynamic risk model capable of analyzing the microbial corrosion risk under 

multiple failure mechanisms and complex multispecies biofilms. 
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Figure 1.1. Research objectives 

1.3. Scope and limitations 

 

This study is developed specifically for marine and offshore oil and gas operations. The research 

focuses mainly on dynamic risk-based integrity assessment of marine and offshore systems 

suffering microbiologically influenced corrosion. Microbiologically influenced corrosion is a 

complex degradation process in offshore operations. It poses critical challenges in its prediction 

and management because of its stochastic nature. To analyze the safety and reliability of these 

critical offshore systems suffering MIC, we need robust and dynamic models to capture the 

associated complexity, stochasticity, and uncertainties. There are several uncertainties with the 

formation, key corrosion influential parameters’ data processing, and deteriorating mechanisms 
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Model under Microstructural 

Variability



7 
 

due to sparse data availability that may introduce subjectivity in the proposed models. The current 

study is not an attempt to address all research gaps associated with dynamic risk-based integrity 

assessment of marine and offshore systems suffering MIC but an attempt to address some of the 

research gaps related to offshore operations considering microbial corrosion. 

1.4. Contributions and novelty 

 

This doctoral research's main contributions and novelties are in the area of dynamic risk-based 

integrity assessment of marine and offshore systems suffering microbiologically influenced 

corrosion. The highlights of the contributions are listed below: 

• A novel probabilistic failure model is introduced to assess the corrosion rate, failure 

probability, and critical failure time of offshore pipelines suffering MIC.  This work 

proposes the integration of the Bayesian network with the Markovian stochastic process 

to captures the non-linear interactions among the MIC influential factors for probability 

of failure prediction. This will serve as a useful tool to facilitate integrity risk assessment 

and management of corroding offshore systems. This contribution is presented in chapter 

3. 

• An innovative and dynamic operational safety model is proposed. The model is used to 

assess the effects of the multiple MIC defects interaction and multispecies biofilms 

characteristics on offshore systems' safety. This novel approach provides a useful 

operational monitoring tool for MIC management and ensuring safety in offshore 

operations. This contribution is presented in chapter 4. 

• A new reliability model is introduced to consider the complex non-linear interactions 

among corrosion influencing parameters and multiple failure modes’ interdependencies. 
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This work focuses on the hybridization of the Bayesian network with a Copula-based 

Monte Carlo algorithm for offshore system reliability prediction. This model effectively 

captures the unstable dependencies among the physio-chemical parameters and the 

multi-failure modes impacts on the system reliability under multispecies microbial 

biofilms. This contribution is presented in chapter 5. 

• An innovative integrity model is suggested to assess failure behavior of different offshore 

steel pipelines. The model accounts for the microstructural and parametric variability of 

the steel for failure probability prediction in a mixed corrosive environment. This 

probabilistic approach is effective for material selection and risk-based integrity 

management strategy under uncertainty. This contribution is presented in chapter 6. 

• An innovative and dynamic risk assessment model is proposed. The model captures the 

link between MIC induced failures and potential consequences. The dynamic Bayesian 

network is integrated with the loss function technique to model the evolving stochastic 

process by capturing the temporal interactions among the random corrosion parameters for 

failure probability and the associated economic loss prediction. This novel approach 

provides a risk-based prognostic tool for marine and offshore systems suffering from MIC.  

This promising contribution is presented in chapter 7. 

 

1.5. Co-authorship statement 

 

The contributions of Sidum Adumene, Dr. Faisal Khan, Dr. Sohrab Zendehboudi, Dr. Sunday 

Adedigba, and Dr. Hodjat Shiri towards the research work and the thesis [the structure as outlined 

in Figure 1.2] are discussed here.  
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Sidum Adumene: Conceptualization and idea formulation, development of methodology, 

corrosion risk model development, performing data analysis, and model testing; writing original 

draft of the manuscript along with all supporting documents for submission to journals; Reviewing 

and editing the manuscripts based on feedback from co-authors and journal reviewers. 

Faisal Khan: Idea formulation of research, development of the methodology, development of 

corrosion and risk model algorithm, guidance in data analysis, and re-organizing and review of the 

manuscripts and thesis. 

Sohrab Zendehboudi: Idea formulation of research, guidance in data analysis, and re-organizing 

and review of the manuscripts and thesis.  

Sunday Adedigba: Guidance in development of BN model, and reviewing the manuscripts. 

Hodjat Shiri: Guidance in data analysis, and re-organizing and review of the manuscripts and 

thesis. 

1.6. Organization of the Thesis 

This thesis is written in a manuscript-based format. The overall outcomes of this thesis are 

represented in five peer-reviewed journal chapters. Figure 1.2 shows the organizational structure 

of this thesis. Chapter 1, 2, and 5 are the introduction, literature review, and conclusions, 

respectively. Chapters 3 to 7 of this thesis are developed based on the chapter submissions to peer-

reviewed journals. 
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Figure 1.2. Structure of the Ph.D. thesis and related publications 
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Chapter 2 covers a systematic literature review relevant to the research. This includes MIC 

susceptibility analysis and risk analysis due to MIC induced failures of offshore systems. 

Chapter 3 introduces an innovative and dynamic probabilistic model to assess the failure 

characteristics of subsea pipelines under MIC. This chapter is published in Ocean Engineering 

2020; 218: 108082. 

Chapter 4 includes an operational safety analysis based on an integrated BN-Markov mixture 

technique with the Monte Carlo algorithm. This chapter is published in Computers and Chemical 

Engineering 2020; 138: 106819. 

Chapter 5 presents an integrated reliability analysis approach considering microbial induced 

multiple failure modes and their interdependencies. This chapter is submitted to Reliability 

Engineering and System Safety 2021; 215: 107862. 

Chapter 6 presents a probabilistic approach for the integrity assessment of corroding offshore 

pipelines. The approach integrates the semi-empirical susceptibility models with the Monte Carlo 

algorithm for failure behavior prediction in a mixed corrosive environment.  This chapter is 

submitted to the Journal of Pipeline Science and Engineering. 

Chapter 7 presents an innovative and dynamic risk assessment approach for MIC induced failures 

using an integrated dynamic Bayesian network and loss function technique. This chapter is 

published in Reliability Engineering and System Safety 2021; 207: 107388. 
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Chapter 2 

Literature Review 

 

2.1. Microbiologically influenced corrosion 

 

Microbiologically influenced corrosion or microbial corrosion (MIC) is a stochastic degradation 

process that is influenced and instigated by the microorganisms such as microalgae, fungi, and 

bacteria. They alter the corrosion mechanisms in various processes by a complex biofilm structure 

that is attached to the surface of the systems [1]. The microbes' participation in the corrosion 

process influences the deterioration process through an electrochemical shifting in the corrosion 

mechanisms [2,3]. The microorganism degree of influence is dependent on the available nutrient 

and the complex interactions among the physio-chemical parameters. These parameters sustain the 

growth and metabolic process of the bacteria. According to the literature, such interactions could 

displace the corrosion potential and render the engineering systems susceptible to localized 

corrosion or pitting [4]. Also, the metabolite from the microorganism interacts with the material 

structure and environment to form Fe2S, resulting in hydrogen and sulfide induced crack related 

degradation of the system [5,6]. 

 

The preferential mode of survival of the bacteria, even in the most aggressive environment, is 

sustained by the biofilm architecture that is produced by the bacteria cells in an extracellular 

polymeric substance (EPS) matrix for protection [7]. The biofilm houses mixed bacteria 

communities with different deteriorating potentials. For instance, the sulfate-reducing bacteria 

(SRB), iron-oxidizing bacteria (IOB), manganese-oxidizing bacteria (MOB), sulfur-oxidizing 

bacteria (SOB), iron reducing bacteria (IRB), and acid-producing bacteria (APB) co-exist with the 

exopolymers in a biofilm. The IOB have been identified as acidophilic/aerobic group of 
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microorganisms that enhance corrosion of steel. They are metal-depositing bacteria that oxidize 

soluble ferrous (Fe2+) to ferric (Fe3+) as energy source. Such oxides promote cathodic reduction 

leading to corrosion. However, for the current study, consideration is given to understand the 

failure characteristics of offshore systems subjected to long term corrosive (SRB, IRB, APB) 

environment. This mutualistic consortium actively alters and complicates the electrochemical 

process, resulting in a severe degradation rate. The offshore system under the mixed microbial 

biofilm may experience complex and unpredictable failure mechanisms in long-term exposure. A 

better knowledge of the failure propagation mechanisms through a robust risk-based prediction of 

microbial corrosion induced failure is essential. 

 

 2.2. Microbial corrosion propagation/susceptibility analysis 

 

The microorganism metabolism is dependent on the availability of nutrients, such as energy 

source, carbon source, and water for propagation [1]. The heterogeneous material surfaces in the 

presence of water and carbon sources enhance the formation and propagation of microbial 

corrosion on offshore systems. The microbial corrosion propagation rate is further influenced by 

several other factors, including physio-chemical parameters, environmental factors, material 

microstructural composition, and biofilm characteristics. 

 

Several researchers have studied the microbial corrosion propagation characteristics and proposed 

models to predict the propagation/susceptibility rate [8–16]. For instance, Gu et al. [9] proposed a 

MIC susceptibility model based on biocatalytic cathodic sulphate reduction theory (BCSR). Their 

model considered the effect of the charge transfer resistance and mass movement of the sessile 

SRB at the biofilm-metal surface interface for estimation of pitting corrosion rate. The concept 
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was based on the Butler Volmer and the mass balance equations. In their phenomenological model, 

Melchers and Wells [16] introduced a two-phase approach for MIC susceptibility modeling. The 

first phase captures the transition corrosion behavior, while the second (anaerobic) phase explores 

the long-term corrosion loss due to the SRB in the marine environment. The authors adopted the 

Fickian diffusion model to evaluate the SRB depleting activities based on a uniform diffusion 

process on the metal surface. The MIC rate was proportional to the nutrient flux based on the 

Fickian diffusion criteria. 

 

Haile et al. [17] proposed a mechanistic model to incorporate the SRB concentration, SRB growth, 

and biofilm thickness and density to predict the microbial corrosion propagation rate and the 

biomass detachment rate. The model applied the Monod kinetics framework to obtain an equation 

for the pitting corrosion rate prediction. The characterized MIC rate is defined as the ratio of the 

corrosion rate of the iron to the rate of the sulphate depletion based on the SRB characteristics and 

the Monod half velocity coefficient. The researchers concluded that the interactions among the 

aforementioned parameters affect the corroding system's degradation and failure. Xu et al. [15] 

applied the anodic current density-based oxidation model for a mechanistic prediction of the MIC 

susceptibility rate of iron in a bacteria-infested environment. They forecasted the corrosion rate 

based on the cathodic SRB reduction and the proton reduction by the APB formulation. It was 

found that the MIC susceptibility (pitting) rate decreases as the time of exposure increases due to 

the increase in the microbial biofilm thickness and temperature effect.  The models captures the 

impacts of the inferential parameters on the susceptibility rate of the corroding system. 

Nevertheless, they are deterministically structured and are not able to capture the dynamic non-

linear interaction of the corrosion parameters influencing the MIC rate. Also, the stochastic natures 



17 
 

of the MIC and the instability and variability of the various physio-chemical parameters require a 

dynamic quantitative model.  

  

Pots et al. [13] proposed a quantitative predictive model for MIC susceptibility analysis based on 

the water chemistry and the pipeline operating parameters to improve the De Waard-Milliams 

corrosion model. The researchers identified water presence, fluid flow, water wetting, pH, salinity, 

and temperature as the critical influencing parameters for MIC susceptibility in the presence of 

microbial activities. However, due to the MIC formation's stochastic nature, the predicted 

corrosion rate by the proposed model is not adequate enough. It was observed that the predictive 

model is limited due to the complex interactions among the biotic and the abiotic MIC influencing 

factors. Recently, Taleb-berrouane et al. [18] proposed a probabilistic approach for MIC 

susceptibility modeling. The method was intended to capture the complex interaction among the 

multivariate MIC influential factors for susceptibility analysis. They used a network-based Object-

Oriented Bayesian Network to capture the multidimensional interactions among sixty MIC 

influencing parameters. Although the model explores the interdependencies among the corrosion 

vital factors to establish their degree of influence on the MIC susceptibility, it is limited to 

quantitatively predict the MIC propagation/susceptibility rate for the suffering engineering 

systems. 

 

 2.3. Microbial corrosion induced failure characteristics  

 

Microbial corrosion induced failures pose severe/devastating issues in the marine and offshore oil 

and gas operations. Several systems that suffered MIC have resulted in catastrophic failures 

(pipeline and cargo tank leakage) [19,20]. Limited knowledge and literature on the system failure 
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characteristics (i.e., likely failure probability and failure time) upon MIC formation are available 

in the open sources. Moreover, the stochastic and unstable nature of the MIC formation and 

propagation complicate the failure probability prediction. The characterized multidimensional 

influencing parameters also play a role in the MIC induced failure prediction complexity. The 

failure characteristic of a system suffering MIC is a function of the degradation rate, failure 

probability, and the complex interactions among the influential parameters. 

 

In recent years, researchers have proposed experimental and analytical models for system failure 

analysis under MIC [11,21–24]. For example, Liu & Cheng [11] investigated the failure 

characteristics of X52 pipeline steel in a thin simulated soil solution layer in the presence of 

microbial activities, subjected to diverse gassing conditions. This study explored the impact of the 

corrosion influencing parameters on the corrosion rate under microbial corrosion. The failure 

tendency was confirmed by the weight loss and polarization curve measurement for different days 

of exposure. Similarly, Al-jaroudi et al. [22] experimentally studied a crude oil pipeline that failed 

in the 3rd year of operation due to MIC. Samples from the pipeline and the pipe surface were 

analyzed, and the results showed a high presence of SRB, Iron oxide (Fe2O4 and FeO(OH)), high 

corrosivity of the water, and presence of H2S. It was observed that the combined effects of the 

bacteria and the physio-chemical parameters increase the corrosion rate to about 2.5 mm/year, 

which leads to the premature leak failure of the pipeline. 

 

Melchers [21] investigated the failure characteristics of marine systems exposed to the prolonged 

bacteria-infested environment. The author proposed an extreme value probabilistic model for the 

estimation of the maximum pit depth distribution over time. The researcher concluded that the 



19 
 

system failure exhibits non-linear characteristics for long term exposure to microbial activities. 

Although, the model reasonably predicts the external pitting corrosion propagation, the integration 

of the physio-chemical parameters and the microbial activities for failure probability and 

prediction of critical failure year upon the formation of MIC was not investigated. Moreover, the 

reviewed models are mostly post failure-based and are limited to dynamically capture the effects 

of the unstable corrosion influential parameters on the failure probability of internally corroding 

marine and offshore systems. 

 

 2.4. Microbial corrosion risk assessment 

 

Microbial corrosion is characterized by the degradation of engineering systems instigated by the 

microorganisms. The deterioration of the systems results in failure with associated consequences, 

which describe the risk induced by MIC.  Risk is measured in terms of human injury, 

environmental damage, or economic loss as a function of the failure probability and the 

consequence of failure [25]. Dynamic risk assessment employs a method capable of updating the 

estimated risks with respect to the system's deteriorating state changes in terms of performance, 

safety, and maintenance activities [26]. Dynamic risk-based integrity assessment of systems 

suffering MIC utilizes the understanding of the stochastic behavior and unstable failure 

characteristics and propagation for integrity management strategy in offshore operations. This 

captures the dynamics of the probability of failure and the associated consequences of failure. 

Risk-based models, particularly for MIC induced failures, are rarely found in open sources. For 

integrity management, a comprehensive understanding of the risk level associated with systems 

suffering MIC is needed for critical decision-making. This will provide a well-informed guideline 

for both design and operational risk reduction strategies in offshore operations.  
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A few models for MIC risk analysis are presented in the literature [24,27–30]. For instance, 

Maxwell & Campbell [28] proposed a risk-based mitigation model for predicting biocide 

performance and MIC monitoring in field operations. They adopted the Monod kinetics framework 

to model the biofilm development under inhibitor application and integrate it into the Pots et al. 

[13] model. The researchers scaled the MIC risk level based on the amount of Sulphide production 

in the microbial biofilm. The model only gives a diagnostic risk-based monitoring capacity via key 

performance indicators without quantitatively predicting the risk of MIC induced system failure 

under diverse operational scenarios. Sørensen et al. [27] developed a semi-quantitative MIC risk 

assessment model based on the sulfate-reducing prokaryotes (SRP) and the methanogens (MET) 

counts.  The model includes the sulfate reduction rate and CO2 reduction rate to formulate an 

Integrated MIC risk factor (IMRF) for the estimation of the MIC initiation time and the potential 

pit generation rate (PPGR) under biofilm. The model can quantify the risk in term of the microbial 

counts and the pit generation rate for long term exposure by an integrated molecular 

microbiological methods. The proposed approach is inadequate to capture the dynamic interactions 

among corrosion vital factors for MIC risk modelling. 

 

Furthermore, Skovhus et al. [30] proposed a quantitative model for estimation of the probability 

of failure (PoF) for an offshore facility under MIC. They introduced screening assessment criteria 

for credible threat likelihood prediction on the system integrity upon inspection. The chosen 

criteria ranked the PoF by integrating the settlement potential, oxygen ingress, rate of metal 

dissolution, availability, and MIC mitigation effectiveness. However, the proposed approach 

captures the screening parameters' effects to establish the PoF indicators/levels (very high, high, 

medium, low, and very low). The risk indicators were qualitatively structured and represented by 
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a logic diagram with a characterized path number. The model did not capture the effect of non-

linear interactions among MIC influential factors for quantitative risk prediction.  

2.5. Current state of knowledge and gaps 

 

The reviewed literature reveals the state of knowledge for MIC risk assessment. Risk-based 

integrity assessment due to MIC induced failure requires a better understanding of the stochastic 

behavior exhibited by the MIC and its influential parameters. The stochastic effects complicate the 

likely consequences of failure prediction. For a robust risk-based integrity assessment, a dynamic 

model formulation is needed. The dynamic framework will capture the time-dependent behavior 

of the MIC and its influential parameters to predict the complex failure mechanisms, the likelihood 

of failure, and its consequences. 

A comprehensive review of the existing MIC susceptibility, failure, and risk-based models reveals 

the following weaknesses: 

i. The models are not dynamically structured to estimate the MIC rate, considering the non-

linear interactions among corrosion influencing parameters. 

ii. The models could not predict the failure probability and the future pit depth distribution 

given the monitoring operating parameters and the bacteria characteristics 

iii. The models do not consider the effect of the mutualistic co-existence of the bacteria under 

the  multispecies biofilm architecture on the remaining strength and survivability of the 

corroding systems 

iv. The models are limited to predict the impact of microbiologically influenced multiple 

defects interaction on the strength loss and safe operating pressure of corroding systems 
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v. The models could not explore the dynamic effects of random corrosion parameters and 

multiple failure modes’ interdependencies on the marine and offshore systems’ safety and 

reliability during operation. 

vi. There are no microbial corrosion cost models for offshore systems considering multi-

failure mechanisms under multispecies biofilm structure 

vii. There are inadequate dynamic quantitative risk-based models to explore the effect of the 

time-dependent corrosion vital parameters on the failure likelihood and their consequences 

for risk profiling under multiple failure modes and multispecies biofilms. 
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Chapter 3 

An integrated dynamic failure assessment model for offshore components under 

microbiologically influenced corrosion 
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Abstract 

The microbiologically influenced corrosion (MIC) is a serious issue that should be considered for 

effective risk-based integrity management of offshore systems under MIC. This chapter presents 

a proper methodology by using a hybrid Bayesian network (BN) and Markov process to predict 

the MIC rate, failure probability, and critical failure year of an internally corroded subsea pipeline. 

The BN model is developed to probabilistically obtain the MIC rate, considering the dynamic non-

linearity and interdependency among vital input factors. The effects of the nonlinear interactions 

of various prominent factors are evaluated, and their degree of influence is explored. The Markov 

process is employed to predict the failure probability, critical failure year, and the time evolution 
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MIC pit depth distribution using the predicted MIC rate as a transition intensity.  The developed 

model is adaptive and captures the evolving impact of microbiologically influenced corrosion. The 

proposed integrated methodology is tested on a case study, and the most critical parameters that 

influence the MIC rate and system failure are identified. The proposed approach would provide an 

early warning guide for a timely intervention to prevent total failure of corroded subsea pipelines 

and associated consequences. 

Keywords: Failure assessment; Bayesian network; Markov process; Pipeline failure probability; 

Pit depth; Microbiologically influenced corrosion 

 

3.1. Introduction  

 

Corrosion plays a critical role in the failure of infrastructures in the oil and gas industry. Several 

catastrophic steel failure events in marine and offshore environments have been attributed to 

undesirable corrosion phenomenon [1]. The complexity of the corrosion mechanisms in the 

petroleum industry depends on numerous operational, environmental, and material related factors 

[2–4]. These factors may include biofouling, presence of carbon dioxide, pH, pollutants, 

temperature, pressure, water velocity, carbonate solubility, salinity, amount of suspended solids, 

presence of bacteria, material composition, and surface roughness. In petroleum production 

processes, oil, gas, and water exist under various flow regimes and process conditions; due to the 

ionic nature of oil and gas, the emulsion is formed at a low concentration of water. The emulsions 

may exist in the form of either water-in-oil or oil-in-water [5,6]. The oil-in-water emulsions, 

having contact with the pipe wall, provide a stimulating environment that may favor microbial 

growth and carbonic acid formation due to CO2 dissolution [5,7]. The resulting carbonic acid may 
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initiate different types of internal corrosion, and the bacteria enhance their growth, especially in 

carbon steel pipelines [8].  

Several corrosion induced failures occur in vertical and/or deviated subsea oil pipelines as a result 

of water hang-up, which provides a stimulating environment that activates corrosion influencing 

factors such as bacteria, dissolved salts, and volatile fatty acids [9]. The water hang-up builds 

sufficient pressure that causes periodic spasms of slugging [10].  At high slug formation 

frequencies of 50-90 per minute, the corrosion rate may linearly increase with slug frequency [11]. 

The slug frequency depends on the inclination of the pipeline, and the corrosion rate increases by 

50% when the slug frequency is doubled [11].  In addition, steel composition and microstructural 

configuration, as well as the micro-organisms in the area of corrosion initiation, play vital roles in 

the corrosion growth rate. This is shown in the high rate of material degradation in the dynamic 

and bacteria-infested environment [12]. According to the literature, the failure of the marine and 

offshore oil and gas infrastructures due to corrosion defects significantly depends on the depth of 

the defect and the corrosion growth rate. Therefore, a proper understanding of corrosive 

environmental dynamics and the material response is crucial in failure prediction and corrosion 

management in the oil and gas industry. Moreover, the associated dynamics in corrosion 

mechanisms under the microbial influence need to be adequately understood to predict and also 

inhibit the risks of failure of critical infrastructures in the marine and offshore industry.  

Microbiologically influenced corrosion (MIC) describes the degradation process of various 

systems instigated by the presence and metabolic activities of micro-organisms such as bacteria 

and fungi [13]. The formation of metabolites (organic and inorganic acids) by the bacteria 

influences the electrochemical mechanisms and complicates the corrosion process.  Previous 

research studies have shown that microbiologically influenced internal corrosion contributes to 
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several onshore and offshore systems' failure with catastrophic consequences [14–16]. The 

microbial growth is promoted by the availability of the supporting nutrients in the environment. 

These nutrients synergize with the metallic surface and abiotic corrosion product to provide a 

sustainable growing environment for the bacteria.  

Heterogeneous material surfaces in the presence of water accelerate the formation of bacteria 

colonies called biofilms. The fused microbial cells and extracellular polymeric substances (EPS) 

form the biofilm, which provides a favorable mode of subsistence for the microorganisms, even in 

a hostile environment. The biofilm also promotes a more sustainable environment that enhances 

reproduction and growth of metabolisms, greatly influencing the corrosion mechanisms [13,17]. 

The polymeric substances within the multispecies bacteria colony produce a mixed complex array 

of dynamic corrosive microenvironments that boost the steel material deterioration. This 

complexity poses difficulty in the understanding of the microbial process and addressing the 

subsequent challenges [17]. 

The marine and offshore infrastructures under the microbial biofilm complexity continue to 

experience severe degradation, especially in micro-organism communities where the sulphate-

reducing bacteria, iron-oxidizing bacteria, manganese-oxidizing, sulphate-oxidizing bacteria, 

acid-producing bacteria, and the exopolymers coexist in the same colony or biofilm [13].  This 

synergistic consortium alters the electrochemical processes, resulting in microbiologically 

influenced localized pitting corrosion that reduces the integrity of the structure. The byproduct of 

the bacteria metabolism cracks the corrosion protection layer, thereby exposes the steel material 

to severe degradation [3]. The loss of structural integrity occurs when the structure becomes 

susceptible owing to the breakdown of the thin passive oxide film that resists corrosion. The 

breakdown is due to the formation of organic and inorganic deposits on the structure surfaces that 
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compromise the stability of the oxide film [13]. Further growth of the micro-organisms sustains 

the growth of pit formation and pit density across the length of the pipeline, resulting in MIC 

induced failures of offshore, shipping, and process systems,  for example, pipeline leakages and 

ruptures, ballast tank, and cargo tank leakages [1,13,14]. These MIC induced failures lead to direct 

and indirect consequences with associated economic losses/risks.  

To model the MIC potential and its propagation,  several researchers have proposed mechanistic 

models [12]. For instance, Gu et al. [18] proposed a bioenergetic-based theory to describe the 

thermodynamic mechanism for Type I MIC formation by sulphate-reducing bacteria (SRB). The 

Type 1 MIC formation occurs due to the process of microbes' respiration on exogenous oxidants. 

This process involves an extracellular electron transfer by the sulphate or nitrate ions into the 

microbial cytoplasm. This is mostly involved in electrogenic biofilms' formation. The authors 

emphasized the possibility of alteration in the electrochemical corrosion mechanisms during this 

phenomenon. They argued that the process of thermodynamic equilibrium-based potential analysis 

only determines the potential of MIC formation but does not alter the rate of corrosion wastage.  

They also concluded that an integrated mechanistic model through involvement of microbial 

growth kinetics, mass transfer, and various chemical, biochemical, and electrochemical reactions 

would provide a more reliable tool for prediction of MIC potential. 

Sørensen et al. [19] proposed a risk-based MIC model for the worst-case pitting corrosion rate and 

risk factors based on sulphate reducing archasa (SRA), sulphate reducing bacteria (SRB) and 

methanogens (MET). The authors showed that in the combined colony of the bacteria, the rate of 

wastage increases; they suggested a proactive plan for the potentially high pit generation rate due 

to the exponential growth of microbial cells. Al-Darbi et al. [20] developed a mathematically 

and/or numerically based polarization model. They described the cathodic SRB mediated 
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polarization as it affects the corrosion rate overtime at different pit depth increments. The 

developed anaerobic model in the SRB environment was based on cathodic depolarization, which 

describes the corrosion rate dependency on the consumption rate of sulphate by the SRB and the 

change in pit depth. More details on the mechanistic models for MIC potential and rate prediction 

and their limitations are presented in [12]. Generally, these models are not dynamically structured 

to reflect the complexity and nonlinear interdependency among MIC influencing factors for real-

time application and failure probability prediction. 

In recent years, advanced models/approaches that better predict the microbial potential based on 

the screening and operating parameters, and their influence on corrosion wastage of oil and gas 

infrastructures have been introduced. These include experimental, regression, quantitative, and 

probabilistic tools [21–25]. Papavinasam et al. [6] experimentally analyzed effects of physical 

pipeline parameters and fluid characteristics on internal pitting corrosion. The researchers 

identified the pipe diameter, thickness, inclination angle, production rate, CO2 partial pressure, and 

concentration of bicarbonates, sulphate, H2S, and chloride as pit corrosion contributing factors. 

Pots et al. [26] proposed a quantitative methodology to assess critical parameters contributing to 

the corrosion rate in a microbial infested environment. Six factors, such as water presence, pH, 

salinity, water wetting, dissolved solids, and temperature exhibited the key roles. However, the 

complex nature of the interactions of the biotic and abiotic parameters poses a challenge in the 

application of this model. Further models that correlate the operating parameters, metallurgical 

properties, pit formation, and its propagation over time are found in the open sources [27–29].  

The stochastic nature of MIC pit formation and growth requires dynamic models, such as the 

Markov, Poisson, Petri nets, and Bayesian network approaches for pit depth distribution 

prediction. For example, Hong [30] used the combined inhomogeneous Poisson and Markov 
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strategies to model pit generation and its depth growth. It was found that the point of surface 

wetting and coating breakdown play key roles in pit generation; the Kolmogorov forward equation 

through a time transformation condensation method was used. Similarly, other researchers [31–

33] proposed a nonhomogeneous and continuous-time linear growth pure birth Markov procedure 

for pit depth distribution. They made efforts to predict pit growth characteristics and the corroded 

pipeline failure time under the influence of the pipeline's operating parameters.   

Although the probabilistic models provide a better representation of the randomness in corrosion 

pit nucleation and growth, compared to deterministic tools [34–38],  the reviewed probabilistic 

models do not consider the microbial influence on corrosion rate and failure probability. Some of 

them are also empirically formulated with multiple inspection data fitted for a comparative 

framework that have limitations due to sparse data availability and an associated high degree of 

uncertainties.  

Generally, MIC significantly contributes to the failures of offshore systems, and the associated 

risks. Pipeline deterioration progressively increases the risk of failure over time. The safety of a 

pipeline is dependent on the management of the remaining useful life and the reliability estimation, 

which determine the intervention measures over time [29,39–41]. These can only be forecasted if 

the failure probability of the defective pipeline is known. The recent improvements in inspection 

techniques such as acoustic emission, guided waves ultrasonic testing (GWUT), visual imaging 

and photography, autonomous underwater vehicles (AUVs), remotely operating vehicles (ROVs), 

and marine inspection robotic assistant (MIRA) systems have enhanced the capacity for 

marine/offshore assets integrity assessment for failure-based prediction [42–45]. 

Despite considerable attempts to understand, predict, and manage MIC in the oil and gas industry, 

one critical aspect of offshore systems integrity management under MIC that remains unsolved is 
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how to dynamically predict the MIC rate, failure probability, and future MIC pit depth distribution 

of a corroding offshore system from single inspection data and by monitoring operating 

parameters. The existing models are not adequate for the precise prediction of the corrosion rate 

and failure probability in a dynamic and complex microbial infested environment. There are a 

limited number of dynamic quantitative models to evaluate the MIC rate and failure probability, 

considering dynamic nonlinear interdependency among contributory factors.  

The main objective of this research is to develop an integrated BN-Markov process model for 

predicting the MIC rate, failure probability, and future pit depth distribution under 

microbiologically influenced internal corrosion and its effects on offshore system structural 

integrity. The MIC influential factors are represented using BN to capture their dynamics, 

nonlinear dependency, and interdependency. The system failure characteristics based on the 

critical pit depth state and the future MIC pit depth distribution are estimated using a Markovian 

process for an offshore system. 

The remaining of the chapter is structured as follows: Section 3.2 presents the failure assessment 

due to MIC. Section 3.3 briefly describes the proposed research methodology. Section 3.4 includes 

and illustrates the application of the methodology using a case study. Section 3.5 provides the 

research results and discussion, and Section 3.6 highlights the most important findings of this 

study. 

 

 3.2. Failure assessment due to microbiologically influenced corrosion 

 

Several probabilistic approaches have demonstrated high potential for assessing the failure of 

offshore systems with corrosion defects, especially pitting corrosion [31–33]. The integrated BN-
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Markov process provides a better multi-dimensional dependency modeling capability for the 

prediction of the MIC rate and corroding offshore systems failure probability [32]. The main 

elements of the integrated model are briefly illustrated in the following subsections.  

3.2.1 Bayesian network  

 

Several modeling (and deterministic) methodologies have shown limitations for modeling of 

complex and dynamic dependencies among the contributory parameters [46–51]. The application 

of a Bayesian network (BN) tool for probability modeling can capture the interaction of the 

multivariate influential factors and their dynamic dependency nature and predict their nonlinear 

relationships [24,52,53]. The BN is a strong approach for complex system modeling, especially in 

stochastically formulated scenarios where deterministic or mathematical models have shown 

limited applications; in fact, BN provides a better dependency framework for both multi-state and 

multi-dimensional configurations [54,55]. Some of the recent studies focusing on the use of BN 

for MIC potential prediction can be found in the literature [24,56,57]. 

The BN technique is a probabilistic inference tool for reasoning and prediction under uncertainties 

[4,58]. It is represented by a specific graphical model called a directed acyclic graph, which 

demonstrates the logical relationship between random variables in terms of their conditional 

probabilities. The nodes are characterized by directed arcs that depict causal conditional 

dependencies among parent and child nodes, and an assigned conditional probability table is used 

to model the dependencies among the nodes [53,59]. Using BN modeling, the process of 

dependency representation can be vertically and horizontally framed. The former describes where 

the intermediate nodes depend on the root cause nodes, while the latter describes the dependency 

of root cause nodes on each other [24]. This configuration exhibits both the qualitative and 

quantitative capability of BN. For a random set of operating variables U = {𝑋1, …… . , Xn}, the 
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chain rule and joint probability distribution P(U) based on conditional independence is 

mathematically represented by the following Eqs. [60]: 

𝑃(𝑈) =∏𝑃(𝑋𝑖|𝑃𝑥(𝑋𝑖))

𝑛

𝑖=1

                                                                                                                      (3.1) 

where 𝑃𝑥(𝑋𝑖) introduces the parent of variable 𝑋𝑖 and P(U) refers to the joint probability 

distribution of the variables. The probability of 𝑋𝑖 is calculated as follows: 

𝑃(𝑋𝑖) = ∑ 𝑃(𝑈)

𝑈\𝑋𝑖

                                                                                                                                   (3.2) 

where the summation is taken over all the variables except 𝑋𝑖. 

The BN updates the prior probability of events upon the availability of new information (called 

evidence E) using Bayes' theorem to produce the consequence probability (called posterior). Eq. 

(3.3) is used to estimate the posterior probability. Also, in BN, canonical probabilistic models are 

utilized to signify the canonical interactions between nodes and provide techniques for statistical 

dependencies and nonlinear modeling [59].  

𝑃(𝑈|𝐸) =
𝑃(𝑈, 𝐸)

𝑃(𝐸)
=

𝑃(𝑈, 𝐸)

∑ 𝑃(𝑈, 𝐸)𝑈
                                                                                                       (3.3) 

In the recent research works [24,56,61], the BN model technique has exhibited good potential for 

MIC susceptibility and defect growth prediction in the dynamic marine environment. Hence, the 

current work builds on the technique practicality to determine the MIC rate, considering the 

dynamics of the monitoring operating parameters and the environmental factors.   
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3.2.2 Markov chain approach 

 

The Markov chain tool stochastically uses random variables to model the probability of future 

events on the basis of the present events in sequence. The Markov model assumes a memoryless 

principle, where, given the likelihood of the present event, the probability of the future event is 

independent of the past event but relies on the present [62]. For a Markov chain of 𝑁 states 

designated by  1, 2…… ,𝑁, the random variable 𝑋𝑁  represents the state of the process at any 

specified time-step. The indexed sequence of the random variables, {𝑋0, 𝑋1, 𝑋2,⋯⋯ }, is observed 

at different time-steps over the system life cycle. If this sequence {𝑋0, 𝑋1, 𝑋2, ⋯⋯ } satisfies the 

Markov property, its mathematical formulation gives the following expression [63]: 

ℙ(𝑋𝑡+1 = 𝑠|𝑋𝑡 = 𝑠𝑡, 𝑋𝑡−1 = 𝑠𝑡−1,⋯⋯ , 𝑋0 = 𝑠0) = ℙ(𝑋𝑡+1 = 𝑠|𝑋𝑡 = 𝑠𝑡)                              (3.4) 

for all 𝑡 = 1, 2, 3, ……… . and for all states 𝑠0, 𝑠1, ⋯⋯ 𝑠𝑡, 𝑠.  

The Markov chain is formulated, given the system states and the transitions between different 

states. The transition intensity/rate (𝜇𝑖𝑗) and the transition probability(𝑃𝑖𝑗), characterize the 

Markov approach. These transition probabilities are estimated by a set of Kolmogorov's forward 

equation (KFE), and for the multi-state Markov process, the Laplace -Stieltjes transform and its 

inverse are used to estimate the states' transition probabilities [64]. The generated transition 

probability matrix is represented by a vector notation as 𝑃𝑖𝑗, where (𝑖, 𝑗) represents the conditional 

probability that the system will next be in state 𝑗, given that it is now in state 𝑖. The state-dependent 

transition probability from state 𝑖 to state  𝑗 provides 𝑃𝑖𝑗 = ℙ(𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖). Therefore, for t-

step transition probabilities, (𝑃𝑡)𝑖𝑗 = ℙ(𝑋𝑡 = 𝑗|𝑋0 = 𝑖) = ℙ(𝑋𝑛+𝑡 = 𝑗|𝑋𝑛 = 𝑖) for any 𝑛.  

Several researchers have demonstrated the practicality of Markovian models in various 

engineering applications [65–67]. This work builds on its usefulness, by adopting the technique, 
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and integrates it with the partition theorem for probability distribution prediction of the states in 

any given t-step transition. The probability function is mathematically expressed by Eq. (3.5). 

Therefore, the row vector (𝜋𝑇𝑃𝑡), as shown below, gives the probability distribution of 𝑋𝑡; 

for all (𝑡 = 1,2,3 …… . ). In this work, the Markov model is treated to have a finite number of 

states, as 𝑁 designates.  

ℙ(𝑋𝑡 = 𝑗) =∑ℙ(𝑋𝑡 = 𝑗|𝑋𝑡−1 = 𝑖)ℙ(𝑋𝑡−1 = 𝑖)

𝑁

𝑖=1

=∑(𝑃𝑡)𝑖𝑗𝜋𝑖

𝑁

𝑖=1

= (𝜋𝑇𝑃𝑡)𝑗                            (3.5) 

 

3.3. BN-Markov method for MIC rate and failure assessment 

  

This section presents the developmental stages of an integrated BN-Markov methodology for 

prediction of MIC rate, failure probability, and future pit wastage propagation of a corroding 

offshore system under the microbial influence, as shown in Fig. 1. The modeling approach begins 

with assessing the contributory factors to microbial growth and their probabilities, microbial 

counts, and sets of inspection data, followed by the use of the BN model to forecast the MIC rate 

and then integrate it into the Markov approach to estimate the failure probability. The following 

subsections describe the hybridized modeling strategy. 
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Figure 3.1.  Flowchart of the proposed methodology 

 

3.3.1 Collection of relevant information and data 

 

Information regarding the offshore system is collected by inspection, measurements, and fluid 

analysis (see Fig. 3.1). This information/data may include but not limited to, the operating 

characteristics and parameters (e.g., temperature, salinity, pH, velocity, exposure time, alloy 
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composition, sulphate ions, chloride ions, CO2 partial pressure, water cut), microbial count, 

mechanical properties, design characteristics, extent of corrosion flaws, and their geometry.  

3.3.2 Estimation of MIC rate using Bayesian network 

  

According to several research studies [6,26,29,33,68], there are different degrees of correlations 

among the monitoring operating parameters (e. g. , CO2 partial pressure, bicarbonates 

concentration, sulphate concentration, H2S content, chloride concentration, water cut, pH, salinity, 

temperature) with the corrosion rate and the maximum defect depth. In particular, Ossai et al. [29] 

used the regression model to analyze the linear dependencies among the operating parameters and 

defect growth. Although the approach is able to determine the corrosion rate under the prevailing 

environmental conditions, it is limited to analyze the non-linearity and dynamic interdependencies 

among the operating parameters and their effects on the microbial corrosion defect rate. For 

complex relationships between the operating parameters (corrosion influencing parameters) and 

the microbial corrosion defect rate, BN provides a reliable modeling capacity. It captures the multi-

dimensional interactions and influences of the operating parameters and the SRB on the microbial 

corrosion rate simultaneously at any given operating condition. BN also offers a practical 

probabilistic network-based model for prediction of MIC defect rate where a single set of 

inspection data is available with a historical data log for the monitoring operating variables, 

environmental factors, and micro-organisms [58].  

To implement the BN model (see Fig. 3.1), the probabilities of the MIC influencing factors are 

estimated (prior probabilities) from the available monitoring operating parameters and 

environmental factors' data set/information by data partitioning. The operating parameters, 

metallurgical parameters, and environmental factors are used as the input parameters to simulate 

the process based on their prior estimated probabilities. The cause-consequences relationships are 
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then modeled using the BN framework. The conditional probabilities define the dependency 

among the corrosion influencing parameters. The conditional probabilities for the intermediate 

(SRB) node and the child (MIC rate) node are created by exploring the dynamic relationships 

among different microbial corrosion influencing factors in long-term exposure. Also, a part of the 

information is derived from theoretical and experimental corrosion model proposed by the 

researchers [6,69] and available field data. By inputting the prior probabilities of these MIC vital 

factors and the conditional probabilities, the MIC rate is predicted. For this research, some of the 

BN nodes are categorized into high, moderate, and low states, depending on the range of the 

available operational data. In contrast, others are expressed in two states: "Present" and "Absent" 

or "Yes" and "No", which describe a state of the positive assertion of a cause of a specific variable 

and their interacting effect on the MIC rate.   

It is important to note that upon the availability of new information/data, the model is dynamically 

updated, and the evidence can be set on the various MIC rate categories to predict the posterior 

probabilities of the contributory factors for different scenarios. All the BNs in this work are 

simulated in the GeNIeTM software environment.  

3.3.3 MIC pit states and pipe wall discretization 

 

The pipeline wall thickness is discretized into MIC pit states, as shown in Fig. 3.2. The discretized 

states, given by 𝑖 = 1,2………𝑁, represent the different degrees of corrosion wastage on the 

internal surface of the offshore pipeline. The initial state and subsequent states are bounded by a 

given interval to define different MIC pit depths of the pipeline. The critical depth, 𝑁, is the 

corrosion penetration depth of the pipe wall that results in total failure over time (i.e., over 80% 

corrosion wastage). The continuous growth of the MIC pit is depth and time-dependent; the greater 

the depth of the pit, the higher the corrosion rate with time.  
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Figure 3.2. Discretization of a corroded pipe wall thickness 

 

3.3.4 Estimation of MIC pit depth states transition probabilities 

  

Given the present pit depth state (𝐺𝑛) at time 𝑛, the pipeline future pit depth state after time 𝑛 can 

be described by {𝐺𝑛+1, 𝐺𝑛+2, ………… }, while the past state is {𝐺0, …… . . 𝐺𝑛−1}. If the value 𝐺𝑛 =

𝑖 is known, the future pit depth evolution of the chain can be predicted, which depends only on 𝑖; 

it is stochastically independent of the past values or states {𝐺𝑛−1…… ., 𝐺0}. Therefore, given the 

present state of the MIC pit depth with characterized MIC rate (𝜇𝑖𝑗) across the state over time, the 

transition probability function of the MIC pit depth states, as shown in Fig. 3.1, can be defined by 

the Kolmogorov forward equations, as follows: 

{
 
 
 
 

 
 
 
 
𝑑𝑃𝐺11(𝑡)

𝑑𝑡
= −𝜇12(𝑡)𝑃𝐺11(𝑡)                          

𝑑𝑃𝐺12(𝑡)

𝑑𝑡
= 𝜇12(𝑡)𝑃𝐺11(𝑡) − 𝜇23(𝑡)𝑃𝐺12(𝑡)

𝑑𝑃𝐺13(𝑡)

𝑑𝑡
= 𝜇23(𝑡)𝑃𝐺12(𝑡) − 𝜇34(𝑡)𝑃𝐺13(𝑡)

⋮     =               ⋮               ⋯            ⋮    
𝑑𝑃𝐺𝑁(𝑡)

𝑑𝑡
= 𝜇𝑁(𝑡)𝑃𝐺𝑁(𝑡)                                    

                                                                            (3.6) 
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where 𝐺1, …………… . 𝐺𝑁 introduce the MIC pit depth states; 𝑃𝐺11(𝑡),…………… . 𝑃𝐺𝑁(𝑡) are the 

probabilities of the pits in the state 𝐺𝑖𝑗 (𝑖, 𝑗 = 1,2, ………… . . , 𝑁), with the sum of the pit depth 

state transition probability function equal to one, as presented below: 

∑𝑃𝐺
𝑖 (𝑡) = 𝑃𝐺11

𝑁

𝑖=1

(𝑡) + 𝑃𝐺12(𝑡) + ……… . . 𝑃𝐺𝑁(𝑡) = 1                                                                 (3.7) 

For a pit depth in state 1 after inspection, the prior distribution gives 𝑃𝐺11(𝑡) = 1. The prior 

distribution serves as the initial condition for future pit depth propagation prediction over time. 

Applying the multi-state element approach, Eq. (3.6) is solved for the transition probability across 

the states using the Laplace-Stieljes transformation and its corresponding inverse transform [64]. 

The resulting state transition probability matrix and generator matrix are written below: 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑃 = {𝑝𝑖𝑗} = ‖
‖

𝑃𝐺11 𝑃𝐺12 𝑃𝐺13 ⋯ ⋯
𝑃𝐺21 𝑃𝐺22 𝑃𝐺23 ⋯ ⋯
⋮ ⋮ ⋮ ⋮ ⋮

𝑃𝐺𝑁1 𝑃𝐺𝑁2 𝑃𝐺𝑁3 ⋯ ⋯
⋮ ⋮ ⋮ ⋮ ⋮

‖
‖                                              (3.8) 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 = 𝑄 = ‖
‖

−𝜇12(𝑡) 𝜇12(𝑡) 0 0 ⋯
0 −𝜇23(𝑡) 𝜇23(𝑡) 0 ⋯
0 0 −𝜇34(𝑡) 𝜇34(𝑡) ⋯
⋮ ⋮ ⋮ ⋮ ⋯
⋮ ⋮ ⋮ ⋮ ⋱

‖
‖                             (39)                            

The element in the 𝑖𝑡ℎrow and 𝑗𝑡ℎcolumn, 𝑝𝑖𝑗, indicates the probability when going from pit depth 

state 𝑖 to pit depth state 𝑗 in one step. This is referred to as one-step pit depth transition probability, 

while the square transition matrix 𝑃 = (𝑃𝑖𝑗), 𝑖𝑗 ∈ 𝑆 is called the one-step pit depth transition 

matrix.  
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3.3.5 Prediction of pit depth distribution and failure probability 

  

Having the MIC rate (as evaluated in subsection 3.2) and the MIC state transition probability (see 

subsection 3.4), the pit depth state failure probability is predicted for the critical pit depth using 

the Markovian procedure. This is achieved through a probabilistic formulation using Eq. (3.5). The 

time-dependent failure probability is then evaluated over the life cycle of the offshore pipeline.  

The failure profile of the system is drawn to estimate the likelihood of exceeding the target 

(threshold) probability, based on the annual target probability safety class for offshore pipelines 

[70]. The time of occurrence is also estimated from the failure probability profile for the different 

defect depths and geometries. Therefore, given the evaluated corrosion rate, the time-dependent 

linear corrosion growth models presented by [71,72] are adopted for the future pit depth prediction 

in the research analysis 

The decision-making process in offshore system health management is often limited by inadequate 

knowledge of the operating parameters and the stochastic degradation due to environmental 

factors. Also, limited data and restricted access to the offshore systems/platform could impair 

accurate information for decision making. Hence, based on the predicted failure likelihood and 

future state of the asset, critical decision making against total failure can be inferred by operators 

and integrity managers.  

The outcomes of the nonlinear parametric interactions between the monitoring operating variables 

using BN provide reliable predictions of MIC rate at various prevailing environmental conditions. 

The likely failure probability and critical failure year are predicted based on the evaluated 

corrosion rate. The proposed methodology presents a new application of the BN-Markovian 

methodology in MIC analysis. The proposed approach offers an efficient operational decision-

making strategy under MIC. 
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The illustrative computational example for the hybrid connectionist methodology is shown in the 

supplementary material (see page 253). 

 

3.4. Application of methodology: case study  

 

The proposed methodology is demonstrated with a case study using inspection data and operating 

parameters [14]. Based on the established cause-effect interaction among monitoring operating 

parameters and the MIC defect rate, the limited available data is used as the mean value for the 

analysis. It is further used to simulate data set for a period of 5 years.  Cases of offshore subsea 

pipeline failure due to corrosion defects have been reported in the literature [14,73,74].  Three 

segments of an offshore subsea oil pipeline with different internal MIC pit depths taken from the 

available data/information are used to assess the methodology. The pipeline segments pit depths 

for the case study are shown in Table 3.1. For this analysis, the offshore subsea pipeline defect is 

microbiologically influenced, and the initial single corrosion pit depth is used for the case study. 

The wall thickness is discretized into four pit depth states to reduce the mathematical complexity 

(and computational costs) associated with complex multi-state systems. The MIC pits are assumed 

stable, and there is a sustainable growth over the period under consideration.  

Predicting the time-dependent failure likelihood of microbiologically influenced corroded offshore 

pipeline is paramount in safety and integrity management in the oil and gas industry. As the 

corrosion defect grows in an in-service pipeline, the pipeline gradually loses its strength and is 

prone to failure at any time when the residual strength is equal to or less than the operating pressure 

of the pipeline. Due to the stochastic nature of MIC pit formation and its propagation, the MIC 

rate is probabilistically predicted; it is used as the transition intensity for the failure probability 

estimation in this study. 



45 
 

 

Table 3.1. MIC pits geometry for the pipeline segments 

  

 Segment 1 pit  Segment 2 pit Segment 3 pit 

  

Length 

(mm) 

Depth 

(mm) 

Length 

(mm) 

Depth 

(mm) 

Length 

(mm) 

Depth 

(mm) 

Max. 85 0.3300 110 1.7110 135  3.3261 

        

 

Assuming at the time of inspection (5.1 years), the operating conditions and the measured 

parameters are the same for the three segments. The monitoring operating parameters are then 

partitioned into set bounds (high, moderate, and low) to estimate the parameters' prior probabilities 

based on the data counts within the range, as shown in Table 3.2, for characterization of the 

prevalent operating environmental conditions. The estimated prior probability and the conditional 

probabilities are used as the probabilistic input data for the BN model. For the conditional 

probabilities, additional information from the theoretical and experimental corrosion model 

proposed by the previous works [6,69] is obtained. In the case of incomplete information, data 

from subject matter experts and literature [24,56] is used for the analysis.  

The mechanical properties of the API 5L pipeline are listed in Table 3.3. All parameters (see Tables 

3.2 and 3.3) are required to predict the critical MIC pit depth probability of failure, critical year of 

failure, and the time evolution pit depth distribution of the offshore subsea pipeline. Furthermore, 

the following assumptions are made in this hybrid modeling: 

a) The data bounds, as reported in Table 3.2, represent  the prevailing environmental 

conditions for the period under consideration. 
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b) The future defect growth is predicted based on the MIC defect rate; it is constant for the 

period under study.  

c) The Markovian method is established based on the assumption that the asset is at an initial 

state with no defects at the commencement of the offshore operation.  

d) The MIC defect growth is assumed to linearly propagate.  

e) The different pipe segments are subjected to the same environmental conditions.  

The computational procedure is found in the supplementary material (see page 253). 

 
 

 

Table 3.2. Monitoring operating parameters, environmental parameters, and their probabilities for the analysis. 

  

Variables (Node) Range State /Probability Variables (Node) Range State/Probability 

       

pH 2.21 ~ 8.85 Acidic ~ 0.4401 Water cut 1~ 9% High ~ 0.6002 

  Neutral ~ 0.3125   Moderate ~ 0.3265 

  Basic ~0.2474   Low ~ 0.0733 

      

Temp (oC) 21 ~ 85 High ~ 0.3333 Salinity  Present ~ 0.67 

  Moderate ~ 0.5191   Absent ~ 0.33 

  Low ~ 0.1474    

   Chlorine (mg/l) 66 ~ 8000 High ~ 0.6033 

Flow rate(m/s) 0.04 ~ 2.05  High ~ 0.0132   Moderate ~ 0.3037 

  Moderate ~ 0.3312   Low ~ 0.0930 

  Low ~ 0.6556    

   

Sulfate ion 

(mg/l) 2 ~ 80 High ~ 0.5938 

CO2 partial pressure (MPa) 0.01 ~ 0.61 High ~ 0.6932   Moderate ~ 0.3118 

  Moderate ~ 0.2955   Low ~ 0.0943 

  Low ~ 0.0114    

      

Steel composition Present > 0.5% = 0.612 Exposure period  Max. > 3.5yrs ~ 0.6512 

 Absent < 0.5% = 0.388   Mean 2.5-3.5yrs ~0.2912 

 SRB (cfu/ml)         < 104 

                               104 ~ 105 

>105                          

Low 

Moderate 

High     

Min < 2.5yrs ~ 0.0576 
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Table 3.3. Mechanical properties of the pipeline. 

  

Wall 

Thickness 

Inside 

Diameter 

Drift 

Diameter 

Collapse 

Resistance 

Internal 

Yield 

Pressure 

6.45mm 41mm 38.5mm 65.5Mpa 73.6MPa 

 

3.5. Results and discussion 

 

The primary objective of developing the integrated BN-Markov model is to precisely predict the 

MIC rate from a single set of inspection data and the operational parameters. The MIC rate is used 

as the transition intensity for determination of the probability of failure and the critical failure year 

of an internally corroded subsea pipeline. To model the MIC rate, the BN is built, connecting the 

intermediate and basic events by arcs, designating the dependency and interdependency among the 

contributory factors. The vital parameters and their probabilities are given in Table 3.2 (see Section 

3.4). They serve as the input parameters and are used to simulate the BN model. The BN is 

constructed based on a cause-consequences relationship among the operating parameters, 

environmental factors, material properties, and the MIC rate. The parametric learning of the 

developed BN uses the prior probabilities and conditional probabilities for the monitoring of 

operating parameters (as the input data) to predict the MIC rate. Fig. 3.3 demonstrates the 

developed BN model, which dynamically predicts the MIC rate given the prior probabilities of the 

monitoring operating parameters, environmental factors, and metallurgical properties. It is found 

that temperature, water cut, flow velocity, and pH are of importance in the microbial growth and 

the MIC rate simultaneously.  
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Figure 3.3. Parametric learning of the BN for MIC rate prediction based on the prior probabilities 

                  of corrosion influencing factors. 

 

The predicted MIC rates from the parametric simulation of the BN model for the corroding 

offshore subsea oil pipeline under the prevailing conditions are obtained to be 0.0779mm/year, 

0.1423mm/year, 0. 3672mm/year, and 0.4125mm/year, respectively for the low, moderate, high, 

and severe corrosion categories. The results explore the parameters' interactions; this is in 

agreement with the findings and data of [33,75].  Furthermore, a sensitivity analysis is performed 

on the BN model to identify the degree of influence of each operating parameter on the MIC rate. 

It follows that within the temperature range 21℃ − 45℃, the MIC rate increases by 4.2%. The 

BN model analysis shows that temperature is a key factor contributing to the SRB metabolism and 
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the rate of defect growth under MIC. Further confirmation on the effects of temperature on 

microbial corrosion in the marine environment is obtained based on the previous studies 

[56,68,76]. The effect of seawater salinity on the MIC phenomenon(and rate) is crucial especially 

in seawater environments. According to the sensitivity analysis, the salinity exhibits a moderate 

support for SRB sustenance for the case study, with an increase in the MIC rate of 1.7%. However, 

the degree of influence is mainly site-specific.  

The effect of alloy composition is premised on its susceptibility due to the breakdown of the 

passive protective film. At this point, the MIC of identifiable depth is formed. Evaluating the effect 

of the alloy composition, an increase of 1.9% in the MIC rate is noticed. The sensitivity analysis 

of the pH based on an overly acidic state indicates that the MIC rate increases by 1.7%. This 

confirms the important role of the water phase of the multiphase flow systems in the carbonic acid 

formation and buffering of pH in oil and gas production processes. According to the BN modeling 

results, pH, which is a dependent variable, is positively correlated with temperature and CO2 partial 

pressure. The combined characteristic effects of these parameters promote a high rate of system 

degradation in a microbial infested environment. 

Flowing velocity exhibits different distribution for both internal and external microbial corrosion 

in the marine environment. The low fluid velocity supports the formation and sustainability of 

complex microbial biofilms on the internal surface of the pipeline. Hence, it is crucial to 

dynamically analyze the effect of flow velocity on the SRB metabolism and the corrosion rate. For 

low fluid speed and high water cut, it is observed that the MIC rate increases by 2.7% and 1.6%, 

respectively. This reflects the significant effect of these operating parameters on the MIC rate of 

the corroded subsea oil pipeline. The systematic analysis of the impacts of sulphate ion 

concentration, chloride concentration, and the CO2 partial pressure reveals their relative 
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contribution to the MIC rate. It is found that the MIC rate increases by 2.4%, 2.7%, and 1.6% 

respectively, due to the sulphate ion concentration, chloride ion concentration, and CO2 partial 

pressure effects. At this condition, inorganic acid is formed and can be further metabolized by 

oxidation to form SO4
2−, which creates sustainable nutrient sources for SRB growth and promotes 

a severe MIC rate. Upon an increase in the exposure time and the SRB counts, the MIC rate 

increases by 2.1% and 10.1%, respectively, which is in agreement with the findings of [77].  Based 

on the parametric sensitivity analysis, the SRB count exhibits a severe effect on the MIC rate, 

compared to other parameters under the same operating conditions. Hence, the SRB significantly 

affects the MIC rate and future MIC pit depth distribution for the subsea pipeline. Table 3.4 reports 

a summary of the percentage effects of the operating parameters on the MIC rate. This phase of 

the study provides an initial validation of the model. Fig. 3.4 further highlights the impacts of the 

operating parameters on the SRB enhancement.  

Table 3.4. Percentage effect of operating and environmental parameters on the 

                    predicted MIC rate. 

  

Operating Parameters                                   Effects on MIC Rate (%) 

Temperature                                 4.2 

Salinity                                 1.7 

Alloy composition                                1.9 

Fluid velocity                                 2.7 

pH                                 1.7 

Water cut                                1.6 

Sulphate ion                                2.4 

Chloride ion                                2.7 

CO2 partial pressure                                 1.6 

Exposure time                                2.1 

SRB counts                               10.1 
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Figure 3.4. Monitoring operating parameters' likelihood of SRB enhancement 

More analysis of the contributory factors' lower and upper bound probability effects on the MIC 

rate is performed. By setting evidence on the bounds of the influential factors, new sets of MIC 

rates are predicted, as shown in Fig. 3.5 and Fig. 3.6.  It is noticed that the MIC rate is increased 

by 40.4% for the severe corrosion category with evidence on the upper bound probability, 

compared with the parametric learning result. This confirms the dynamics of the contributory 

parameters on the MIC rate; the BN framework also shows the capacity to model the dynamic 

nonlinear dependencies among the key factors. The summary of the results for the different 

scenarios is given in Table 3.5. A comparative analysis of the lower and upper bounds MIC rates 

shows an increase of 11.33% and 53.2% for the high and severe corrosion category, respectively. 

This increase in the MIC rate will promote a rapid failure in offshore systems where water hang-

up and slug formation pose critical challenges. It is important to avoid such a sudden system failure 

through development of a useful and reliable predictive strategy.  
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Figure 3.5. Implementation of the BN model for MIC rate prediction with evidence on 

lower bound probabilities of the corrosion contributory factors 

 

Table 3.5. Categorization of MIC rate for subsea pipeline. 

  

  Maximum Predicted MIC Rate (mm/year) 

Pitting Category  Lower Bound Normal Upper Bound 

Low 0.1603 0.0779 0.0409 

Moderate 0.1812 0.1423 0.0678 

High 0.2806 0.3672 0.3124 

Severe 0.3779 0.4125 0.5789 
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Figure 3.6. Implementation of the BN model for MIC rate prediction with evidence on 

the upper bound probabilities of corrosion contributory factors 

 

The estimated upper bound MIC rate is integrated into the Markovian stochastic procedure to 

evaluate the MIC pit depth state transition probabilities. The formulated transition probability 

function and the defined prior pit depth state distribution are then used to determine the failure 

probability for the three corroded subsea pipeline segments. At the point of inspection, the 

corrosion defect for pipe segment 1 is at pit depth state 1, segment 2 at pit depth state 2, and 

segment 3 at pit depth state 3 based on the pipeline's wall thickness discretization. The results of 



54 
 

the analysis are presented in Fig. 3.7 for the three segments of the subsea pipeline with different 

MIC pit depths. 

 

 

 

 

 

 

 

 

 

Figure 3.7. Time evolution failure probability of microbiologically influenced 

          corroded subsea pipeline segments 

 

It is found that the time evolution failure probability for the three segments is progressively 

increased, with a higher magnitude for the third pipeline segment. It is concluded that under the 

same operating and environmental conditions, components with greater corrosion depth (segment 

3) will experience an early failure, compared to the two other components. This finding is in 

agreement with the previous studies [33,78]; it implies that the critical failure year and risk increase 

for a severely corroded offshore pipeline. The predicted failure probability for the three segments 

and the mean first passage time (critical failure year) are provided in Table 3.6. These parameters 
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are estimated from the failure probability profile of the critical pit depth state exceeding 80% of 

the pipe wall thickness (as shown in Fig. 3.7) based on the normal safety class annual target 

probability of failure for corroded offshore pipelines [70].  

The results exhibit the time-dependent effect of microorganisms on the degradation process of 

offshore pipelines. The stochastic natures of the operating parameters affect the residual strength 

of the corroding subsea pipeline. It follows that as the MIC rate increases, the residual strength 

continues to decline, limiting the structural resistance to the internal pressure loading. Most 

importantly, the residual strength is exponentially reduced when the microbial biofilm results in a 

sustainable growth and a protective environment.  The biofilm lowers the effect of corrosion 

inhibitors (biocides) and continues to influence the development of the MIC pit at multiple growth 

rates. A sudden failure is inevitable under this condition in the absence of a proactive monitoring 

framework and model for failure probability prediction. 

 

Table 3.6. Failure probability for offshore subsea pipeline using the predicted upper bound 

                    MIC   rate. 

  

Subsea Pipeline Segment                  Critical Failure Probability               Critical Failure Year  

   

Segment 1              1.059E-04                       18 

Segment 2              1.013E-04                       14 

Segment 3              1.085E-04                       11 

 

The impacts of MIC rate on failure probability and critical failure time are illustrated in Fig. 3.8 

and Table 3.7. According to the results if the MIC rate is increased, the failure probability increases 

while the critical failure year decreases.  Thus, an early failure of the pipeline is anticipated by 

increasing the MIC rate. A comparative analysis of Fig. 3.7 and Fig. 3.8 reveals a backward shift 
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in the critical failure year, which reflects the dynamics of the MIC rate on the system failure time 

and probability. 

 

 

Figure 3.8. Time evolution failure probability of corroded subsea pipeline segment 

       when the MIC rate is tripled 

 

Table 3.7. Predicted failure probability for the subsea pipeline when the upper bound MIC 

                      rate is tripled. 

  
Subsea Pipeline Segment  Critical Failure Probability   Critical Failure Year  

   

Segment 1 1.08E-04 13 

Segment 2 1.05E-04 11 

Segment 3 1.15E-04 8 
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Figs. 3.9-3.11 present the time evolution MIC pit depth distribution for the three pipeline segments. 

The extreme upper bound MIC rate is tripled to reflect the dynamics of the MIC rate increase on 

pit depth distribution over time. It is found that the future pit depth distribution is significantly 

increased with an increase in depth and growth rate; this is in agreement with the previous research 

works [31–33].  However, for the first pipeline segment, the low corrosion category shows less 

significant growth over the pipeline's life cycle. This might be due to a low MIC rate and less 

influence from the contributory factors. A gradual or limited growth may be experienced at a 

specific corrosion rate lower than the low corrosion category threshold. The predicted time 

evolution pit depth distribution provides a guide on the likelihood of how microorganisms enhance 

the pit corrosion wastage in offshore pipelines. It is important to note that due to the complexity 

of microbial behaviors and colony formation, the MIC rate may exponentially increase and result 

in a sudden failure of the system.  

 

Figure 3.9. Future MIC pit depth distribution of corroded subsea pipeline segment 1 

     at tripled MIC rate 
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Figure 3.10. Future MIC pit depth distribution of corroded subsea pipeline segment 2 

      at tripled MIC rate 

 

 

Figure 3.11. Future MIC pit depth distribution of corroded subsea pipeline segment 3 

      at tripled MIC rate 
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Fig. 3.12 displays the time evolution probabilities for the first and second corroded pipeline 

segments pit depth states 1 and 2, respectively. This is important to show the point of lower bound 

intersection between the two states' probabilities; this indicates the likely threshold for inspection 

or intervention (decision-making) to avoid a total failure. As mentioned earlier, in the 9th year of 

exposure, the pits depth states' probabilities for the first and intermediate states are at the midpoint. 

Based on Fig. 3.7, the predicted critical pit depth failure probability increases and exceeds the 

threshold as the year of exposure increases (e.g., at the 11th year, 14th year, and 18th year for the 

three pipe segments, respectively). The introduced method provides guidelines/tips for timely 

decision making to prevent the total failure of the corroding subsea pipeline. Hence, an optimal, 

cost-effective, and timely intervention plan could be implemented. 

 

Figure 3.12. Time evolution of the first and intermediate states' probabilities for corroded 

    subsea pipeline segments. 
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3.6. Conclusions 

 

The present study demonstrates the application of an integrated BN-Markov methodology for the 

prediction of a time-dependent MIC rate, failure probability, and critical failure year of the 

corroding subsea pipeline. More emphasis is placed on the effects of the operating parameters and 

SRB on the MIC rate; this also covers the effect of MIC rate on the likelihood of failure of the 

pipeline after long-term exposure.  

The developed model is tested using three corroded subsea pipeline segments; the BN 

demonstrates the potential for complex dependency modeling among the MIC rate influencing 

parameters, and quantitatively predicts their values. The degree of influence of the corrosion 

controlling parameters on the MIC rate is explored. The capacity of the BN is also assessed to 

update the MIC rate given a new set of information about the operating conditions of the pipeline. 

According to the parametric sensitivity analysis, temperature, fluid velocity, and SRB, among 

other factors, cause a severe effect on the MIC rate and the failure of the pipeline; this is also 

confirmed by the previous studies. The predicted MIC rate is used in the Markovian approach to 

predict the failure probability and critical failure year for the three segments under the same 

operating conditions, but with different MIC pit depth states. It is concluded that as the corrosion 

pit depth increases, the failure likelihood and risk of failure increase with time, while the critical 

failure time decreases. This is anticipated in aging corroded offshore pipelines. This further 

highlights the reliability and accuracy of the proposed approach. Nevertheless, only the linear 

defect growth corrosion model is considered for the future pit depth distribution. 

Based on the results of the critical pit depth failure probability profile for the three pipeline 

segments, the following decision-making can be inferred: if the corroded pipe segments are 

assumed to be in series, failure of one segment constitutes pipeline failures; an optimal and cost-
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effective 3.5-year inspection or intervention plan can be made. Otherwise, if the failure of all 

segments is required for the system to fail, an individual inspection plan may be required. For this 

case study, a 4-year (e.g., 9th year, 13th year, and 17th year respectively) inspection or intervention 

plan can be implemented for the three corroded pipe segments to protect them from sudden failure 

and its consequences. In addition, improving material composition and pipeline design, practical 

parametric monitoring, and proper application of pigging and high-quality site-specific biocides 

can mitigate sudden failures due to MIC.  

The proposed model presents an effective early warning and monitoring tool upon MIC formation 

on offshore components and for decision making. Nevertheless, the model can be improved in 

future research by considering the time-nonhomogeneous Markovian approach, nonlinear 

corrosion model integration, and multi-failure mechanisms under the multispecies biofilm 

structure. 
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Chapter 4 

Operational safety assessment of offshore pipeline with multiple MIC defects  

 

Preface 
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review. I prepared the first draft of the manuscript and subsequently revised the manuscript based 

on the co-authors’ and peer review feedbacks. Co-author Faisal Khan helped in the concept 

development, design of methodology, reviewing, and revising the manuscript. Co-author Sunday 

Adedigba provided support in implementing the concept and testing the model. The co-authors 

provided fundamental assistance in validating, reviewing, and correcting the model and results of 

the manuscript.  

Abstract 

Microbiologically influenced corrosion (MIC) creates multiple defects.  The interaction of MIC 

defects and their time dependence need to be considered for robust safety assessment of the asset.  

This chapter presents a methodology for the dynamic safety assessment of the assets under the 

influence of MIC. The methodology is built by integrating the Bayesian Network (BN)-Markov 

Mixture (MM) technique with Monte Carlo simulation. The integration of BN and MM provides 

an empirical model to probabilistically predict the effective defect growth rate based on the 

multiple defects’ interaction. A rate-dependent stochastic formulation is also developed for the 

remaining strength and safe operating pressure prediction using the Monte Carlo simulation. The 

proposed methodology dynamically predicts and captures the evolving effect of corrosion defects’ 
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interaction and effective defect growth rate on the remaining strength and survival likelihood of 

an in-service corroding asset. The methodology is tested on an offshore pipeline, and the dynamic 

effects of corrosion influencing parameters and defects’ interaction on the pipeline survivability 

were predicted. Critical safety influencing factors of the pipeline under complex microbial biofilm 

architecture were identified. The proposed methodology provides a parametric-based condition 

monitoring tool for effective management of MIC and ensuring safety in offshore systems. 

Keywords: Residual strength, Bayesian network; Markov mixture, Pipeline, Dynamic safety, 

Defects’ interaction, Microbiologically influenced corrosion, Monte Carlo Simulation 

 

4.1. Introduction  

 

Critical infrastructures in the marine and offshore industry are faced with high rates of degradation 

and failure due to corrosion defects, especially in harsh environments.  The external factors 

enhance complex corrosion mechanisms that are unpredictable and often difficult to manage. 

These external factors include temperature, bacteria, biofouling, pH, nutrients, water velocity, 

carbonate solubility, salinity, suspended solids, material composition, and surface roughness [1]. 

Oil and gas production provides a regime that is corrosion stimulating (most commonly to 

pipelines). This stimulating environmental factor facilitates electrochemical reactions that enhance 

corrosion [2].  The corrosion defect growth is enhanced by bacteria’s metabolic processes and the 

availability of nutrients. The corrosion defect rate depends on the steel composition and 

microstructural configuration, as well as the micro-organisms in the area of corrosion. Therefore, 

bacteria-infected environments promote severe material degradation, especially in the presence of 

sustainable nutrient sources [3,4]. Most importantly, the microorganism metabolism is enhanced 
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in crude oil pipelines where the oil and water phases serve as nutrient support sources to produce 

localized interacting and overlapping defects at the 6 o’clock position of the pipe.  

For safety of the offshore systems in bacteria-infested environments, the system failure 

mechanisms should be properly understood. Failure of offshore systems due to microbiologically 

influenced defects occurs as a result of a dynamic degradation process accelerated by the metabolic 

activities of microorganisms [5]. Micro-organisms exist in the formation of biofilms due to fused 

microbial cells and extracellular polymeric substances (EPS) that provide a favorable mode of 

survival for microorganisms, even in an aggressive environment. The formation of polymers 

within the biofilm produces a heterogeneous complex array of dynamic corrosive 

microenvironments that enhance material deterioration. The colony of different micro-organisms 

further increases this complexity with various corrosion influencing potentials. There exists a 

synergistic community among the bacteria types that aggressively alter the electrochemical process 

of the steel structure, resulting in severe microbiologically influenced corrosion. For details on the 

complexity of multispecies biofilms architecture and its effects on multiple defects’ interaction, 

readers can refer to [6–8]. 

The microbiologically influenced localized pit is formed when the structure becomes susceptible 

due to the breakdown of the thin passive oxide film that resists corrosion, and the defect grows 

across the length of the offshore system. This results in loss of structural integrity and subsequent 

collapse of the system. A better understanding of the propagation of these defects as it affects the 

residual strength and operating pressure is crucial for structural service life analysis and safety 

management of corroding offshore systems. The multiple interacting defects exist in multiple 

colonies on the offshore system internal surface and often overlap to produce a scalloped area of 

MIC damage to the system [9].  As the defects interact, knowledge of their effect on the failure 
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pressure and the strength characteristic of the offshore system is critical in remaining service life 

prediction and management. Hence, the interaction dynamics of the microbiologically influenced 

overlapping and interacting defects need to be investigated for effective time-dependent residual 

strength prediction and remaining useful life management of the corroding offshore system to 

prevent total failure. 

Different approaches have been proposed to evaluate multiple defects’ overlapping and interaction 

effects on the failure characteristic of corroding offshore systems [10–14]. However, the 

complexity associated with interaction among multiple defects, especially for microbiologically 

influenced multiple defects, demands continuous research. For accurate pits’ interaction prediction 

and analysis, a clusterization method is proposed by [13]. The multiple defects are amalgamated 

into single or group defects’ using the clusterization-based criteria. The proposed clusterization 

methodology is able to capture the randomness in the corrosion defects’ parameters.  

Chiodo & Ruggieri [15] used a plastic instability-based technique for failure prediction of a 

corroding offshore system subjected to multiple axial defects’ interaction. They concluded that, 

along with the interaction among defects, defect size, and geometry greatly influenced the failure 

characteristic of a corroding pipeline. In another development, Cerit et al. [16] identified from a 

finite element analysis that the pit-depth-width ratio plays a critical role in the stress concentration 

factor, as well as the failure characteristic of the offshore system with pits’ interaction. Undergoing 

multiple pits’ interaction, the develop stress concentration factor at the corrosion defects follows 

the profile of two overlapped pits [17]. The recent improvement in failure characteristics prediction 

due to defects’ interaction and overlap based on linear and non-linear finite element analysis can 

be found in [10–12]. However, none of the existing approaches have investigated the dynamics of 

microbiologically influenced multiple defects’ interaction and their effect on predicting the 
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survival likelihood of corroding offshore systems. In addition, the dynamics of multispecies 

biofilms’ architecture and microbiologically influenced contributory corrosion factors require 

dynamic-based models to predict the time-dependent defect rate for the merged defect and the 

strength loss over time. 

Recent application of dynamic network-based probabilistic models such as the BN has 

demonstrated a capacity for MIC rate prediction and susceptibility analysis [18–21].  However, 

the existing applications have not considered multiple defects’ interaction rate prediction for 

multispecies biofilms. Also, the dynamic effect of various defects’ interaction on the structural 

strength loss over time and the survival likelihood of the microbiologically influenced corroding 

offshore system have not been investigated.  

Moreover, there have been so far few studies on the complex behavior of microbiologically 

influenced defects’ interaction and overlap effects on the defects’ growth rate, time-variant 

structural strength loss, and safe operating pressure predictions for corroding offshore systems. 

The existing rules that predefined conditions for defects’ interaction modeling have not considered 

the effect of defects’ interaction on the microbial influenced defect growth rate in complex 

multispecies biofilms.  Especially in scenarios where the interacting and overlapping defects are 

growing at different rates. To the best of the authors’ knowledge, there exists no dynamic model 

for multiple defects’ interaction rate prediction given a set of inspection data for an offshore system 

with multispecies biofilms architecture. These knowledge gaps, especially for microbiologically 

influenced corrosion, make the development of an integrated dynamic methodology for the safety 

assessment of in-service corroding offshore systems essential.  

This chapter presents a methodology that integrates the Bayesian Network (BN)-Markov Mixture 

technique (MM) with Monte Carlo simulation and demonstrates its application for the dynamic 
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safety assessment of offshore assets under microbiologically influenced corrosion. The BN is used 

to dynamically predict the MIC rate, based on the monitored operating parameters, and the bacteria 

counts using a non-linear and interdependence network-based structure. The multiple interacting 

defects are clusterized into a single defect, and the history-based effective defect rate is predicted 

using a Markov Mixture technique (MM). A time-dependent stochastic formulation for structural 

strength loss and maximum safe operating pressure is developed using Monte Carlo Simulation 

(MCS). The hybrid methodology captures the complex interaction among the corrosion 

influencing parameters and the bacteria simultaneously and predicts its effects on the safety of the 

corroding assets under complex microbial biofilm architecture.  This methodology provides a safer 

remaining life assessment tool for the management of the corroding asset under MIC. The 

proposed methodology and models are applied to an offshore pipeline.  

The remaining part of the chapter is structured as follows: Section 4.2 presents an overview of 

safety assessment related to MIC defects and their interactions. Section 4.3 presents the proposed 

methodology. Section 4.4 describes the application of the methodology with a case study. Section 

4.5 presents results and discussion, while section 4.6 gives the conclusions. 

 

4.2. Overview of safety assessment related to MIC defects and their interactions 

 

Safety assessment of offshore systems containing microbiologically influenced multiple defects in 

service is crucial for sustainable operations.  Such corroding systems can continue to operate if the 

strength loss over time and if the maximum safe operating pressure is known to meet the reliability 

assessment criteria [22]. These criteria provide a better understanding of how to sustain operation 

based on the defect’s characteristics and configuration, remaining strength, maximum safe 
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operating pressure, and survival likelihood of the offshore system in a corrosive environment. The 

following subsections briefly examine models’ parameters for the safety assessment of in-service 

corroding offshore systems. 

4.2.1 Remaining strength 

  

As microbiologically influenced corrosion depth and density increases, the offshore system 

becomes more susceptible to total collapse due to strength loss and pressure loading. In a 

comprehensive research work of [23], the authors identified that changes in pipe design wall 

thickness due to corrosion and operational pressure dynamics play a critical role in the rate of 

failure and inspection of process systems. Such a reduction in the design wall thickness affects the 

structural performance of the system and poses a critical risk to humans, the economy, and the 

environment if failure occurs. Hence, it becomes imperative to evaluate the strength loss, based on 

the corrosion growth rate and its interactions, on the remaining service life of the defective system.  

The variables that define the strength loss characteristics of a corroding system have associated 

uncertainties [24]. Hence, the strength loss of the corroding system over time can be stochastically 

modeled to capture these uncertainties. Several generic strength loss models, in terms of the burst 

capacity for a single (isolated) defect in corroding systems, such as Modified ASME B31G, 

RSTRENG, SHELL92, PCORRC, DNV model and CSA model are demonstrated by [14,25–30]. 

However, for complex-shaped defects and multiple defects’ interaction and overlap, the DNV 

model is used and can be further enhanced mathematically to stochastically integrate the 

microbiologically influenced multiple defects’ interaction effect based on the interaction rules. 

Further detail is presented in Section 4.3. 
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4.2.2 Corrosion defects’ interaction and maximum operating pressure  

 

The formation of a colony of corrosion defects under multispecies biofilms shows complex failure 

behavior, compared to isolated defects with the same characteristics. This complexity is most 

enhanced due to the interactions between adjacent defects, and the rate of defects growth due to 

multispecies biofilms. As each defect in the colony introduces its disturbances, it creates areas of 

influence within the pipeline structure that affect the stress and strain fields of the system beyond 

the border of the individual defects [31]. These interactions influence the stress field of the pipeline 

under loading by increasing the stress influencing factors at the bottom of the defects as the depth 

increases. As such, the failure pressure of the pipeline due to the colony of defects may be affected 

by the increase in the area of defects’ influence in overlapping defects [31,32]. Fig. 4.1 is used to 

illustrate the interaction among pairs of defects generically. The various interaction rules, as shown 

in Table 4.1, are generically adopted based on the relation: 𝐿𝑖𝑗 ≤ (𝐿𝑖𝑗)𝐿𝑖𝑚 and 𝑊𝑖𝑗 ≤ (𝑊𝑖𝑗)𝐿𝑖𝑚. 

The offshore system with a colony of interacting and overlapping defects is susceptible to sudden 

and progressive failure under unstable or increased internal pressure. Therefore, to actually define 

the critical failure state or safe state of the corroding offshore system, the incorporation of the 

effects of the microbiologically influenced multiple defects’ interactions on the maximum 

operating pressure is crucial. 
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Figure 4.1. Schematic illustration of spacing between interacting defects 

 

Table 4.1. Multiple defects interaction governing rules  

 
 
      

DNV-RP-F101 

code 

  

3WT rule 
  

CW rule 
  

6WT rule 
  

where 𝐿𝑖𝑗 is the maximum longitudinal spacing, 𝑊𝑖𝑗 is the maximum circumferential spacing, 𝐷 

is the pipe diameter, 𝑤𝑡 is the pipe wall thickness,𝐿1 and 𝐿2 are lengths of corrosion defects, and 

𝑤1and 𝑤2 are widths of corrosion defects. 

 

 

𝐿𝑖𝑗 ≤ 2.0√𝐷𝑤𝑡 𝑊𝑖𝑗 ≤ π√𝐷𝑤𝑡 

𝐿𝑖𝑗 ≤ 3𝑤𝑡 𝑊𝑖𝑗 ≤ 3𝑤𝑡 

𝐿𝑖𝑗 ≤ 𝑚𝑖𝑛(𝐿1, 𝐿2) 𝑊𝑖𝑗 ≤ 𝑚𝑖𝑛(𝑤1, 𝑤2) 

𝐿𝑖𝑗 ≤ 6𝑤𝑡 𝑊𝑖𝑗 ≤ 6𝑤𝑡 

Longitudinal limit(𝐿𝑖𝑗)𝐿𝑖𝑚 Circumferential limit(𝑊𝑖𝑗)𝐿𝑖𝑚 Interaction rules 
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4.2.3 Safety assessment due to microbiologically influenced defects’ interaction 

 

Several model approaches have been demonstrated for safety and reliability-based remaining 

service life prediction for corroding systems [14,25–30,33–39]. However, there is little 

consideration of the effects of time-variant defects’ interaction rate and multispecies biofilms’ 

complexity on the strength loss over time. Due to the associated complexity with microbiologically 

influenced multiple defects’ interaction, the integrated BN-Markov mixture model and Monte 

Carlo Simulation provide a better multivariate dependency modeling capability for MIC rate 

prediction under multispecies biofilms, defects’ interaction rate prediction, time-variant strength 

loss prediction and survival likelihood prediction for corroding offshore systems.  

 

4.3. The Proposed Methodology  

 

The proposed hybrid BN-Markov Mixture (MM) and Monte Carlo Simulation methodology is 

shown in Fig. 4.2. It consists of three main steps to capture the dynamic relationship among key 

parameters for safety assessment.  The following subsection gives the details of each of the steps 

in the methodology: 
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Step 1

Define the system material 

characteristics, collect  

inspection data, bacteria 

counts and monitoring 

operational parameters

Develop BN model using 

the estimated prior & 

conditional probabilities of 

the MIC influencing factors 

and estimate the initial 

MIC pits growth rate

Identify overlapping & 

interacting defects based on 

the DNV interaction criteria

 

Define the mixing 

probability and estimate the 

History-based conditional 

probability 

Develop a Markov mixture 

model for the interacting 

defects and predict the 

merged (mixture) defect  

rate

Is new factor 

identified?

Evaluate the time dependent  

remaining strength and 

maximum safe operating 

pressure using MCS

No Yes

Stop

Start

Discretize the system wall 

thickness into multiple pits 

depth states and define the 

prior pits depth probability 

distribution

Step 2

Step 3

Step 1

Develop the survival 

profile for safety-based 

decision making

 

Figure 4.2.  Flowchart of the proposed hybrid methodology 

𝐿𝑖𝑗 ≤ 2.0√𝐷.𝑤𝑡  

 

   

 

𝑊𝑖𝑗 ≤ 𝜋√𝐷.𝑤𝑡  
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4.3.1 Data Collection  

 

The first step of the methodology involves the following: 

i). Define the corrosion, chemical, and mechanical characteristics of the offshore system having 

microbiologically influenced corrosion (MIC). These include but not limited to the corrosion 

defects length, width, depth, orientation, material type, alloy composition, and strength properties. 

ii).  Collect historical data/information on the monitoring operating parameters and environmental 

condition (such as salinity, temperature, velocity, pH, exposure time, alloy composition, sulfate 

ions, chloride ions, CO2 partial pressure, water cut), and the bacteria characteristic (bacteria types, 

counts and the biofilm architecture). The collected operational data are processed into intervals to 

estimate their probabilities for the defined ranges, and the predicted probabilities are used as input 

data for the BN analysis. 

4.3.2 Defects’ interaction examination and corrosion rate prediction 

 

4.3.2.1 Defects’ interaction criteria 

 

 In this step, the available data on the defects’ characteristics are further examined for defect 

interaction categorization. From Fig. 4.1, subsection 4.2.2, the longitudinal and circumferential 

characteristics of the multiple defects are assessed using the following criteria [14]: 

𝐿𝑖𝑗 ≤ 2.0√𝐷. 𝑤𝑡                                                                                                                                        (4.1) 

𝑊𝑖𝑗 ≤ 𝜋√𝐷.𝑤𝑡                                                                                                                                          (4.2) 

where 𝐷 is the outside diameter of the system, and 𝑤𝑡 is the system web thickness. 

If the longitudinal and transverse distances between the defects meet these criteria, there exists 

interaction among the defects. The identified defects that meet the interaction criteria are further 
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clusterized into single or groups of defects based on their depth, length, width, and orientation. 

The clusterized defect can then be characterized using the effective depth, length, and width 

𝐷, 𝐿,𝑊 of the mixture (amalgamated) defect, which consists of interacting defects from number 𝑛 

to 𝑚, based on the criteria as shown in Eqs. (4.3) – (4.5) [13,14].  

𝑙𝑛𝑚 = 𝑙𝑚 + ∑(𝑙𝑖 + 𝑙𝑖𝑖+1), 𝑛,𝑚 = 1,… . . , 𝑁

𝑚−1

𝑖=𝑛

                                                                                   (4.3) 

𝑤𝑛𝑚 = 𝑤𝑚 + ∑ (𝑤𝑖 + 𝑤𝑖𝑖+1), 𝑛,𝑚 = 1,… . . , 𝑁𝑚−1
𝑖=𝑛                                                                          (4.4)                              

𝑑𝑛𝑚 =  
∑ 𝑑𝑖𝑙𝑖
𝑖=𝑚
𝑖=𝑛

𝑙𝑛𝑚
                                                                                                                                     (4.5) 

Furthermore, the offshore system wall thickness is discretized into defect depth states to represent 

the various degrees of corrosion penetration through the pipe wall, and a prior probability 

distribution is defined based on the state of the defects when the offshore system was inspected.   

4.3.2.2 Estimation of microbiologically influenced corrosion rate using Bayesian network  

 

The Bayesian network (BN) is a dynamic network-based probabilistic technique for modeling 

random variables under uncertainty and is able to capture multivariate interactions (dependence) 

among contributory factors of an underlying phenomenon. The complexity in the interaction 

within the bacteria colony, operating parameters, and the offshore system material surface as it 

affects the MIC rate can be represented using BN. For a detailed demonstration of BN and its 

capability to dynamically and quantitatively model complex system interdependency, readers are 

referred to [18,20,21,40–42]. Recent applications of the BN in microbiologically influenced 

corrosion susceptibility prediction have been demonstrated by [19–21]. The BN structure 

conditional probability table for each state of the nodes (variables) is developed based on the parent 
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states. This is derived from the study of the parent-child nodes’ relationship using field data, 

theoretical models, and subject matter expert knowledge. 

The BN configuration can be represented qualitatively and quantitatively. For a given set of 

random operating variables,  𝑈 = {𝑋1, …… . , 𝑋𝑛}, the chain rule and the joint probability 

distribution 𝑃(𝑈) of the variables based on conditional independence can be mathematically 

modeled using Eq. (4.6) [43]. 

𝑃(𝑈) =∏𝑃(𝑋𝑖|𝑃𝑥(𝑋𝑖))

𝑛

𝑖=1

                                                                                                                      (4.6) 

where 𝑃(𝑈) is the joint probability distribution of the variables and  𝑃𝑥(𝑋𝑖) is the parent of variable 

𝑋𝑖. Eq. (4.7) is used to estimate the probability 𝑋𝑖. 

𝑃(𝑋𝑖) = ∑ 𝑃(𝑈)

𝑈\𝑋𝑖

                                                                                                                                   (4.7) 

where the summation is taken for all the variables except 𝑋𝑖. 

Given a new set of information or availability of data on the offshore system operating conditions 

(called evidence), the BN structure updates the prior probability of events using Bayes’ theorem 

to produce the consequence probability (i.e., the posterior). This is illustrated mathematically by 

Eq. (4.8).  

𝑃(𝑈|𝐸) =
𝑃(𝑈, 𝐸)

𝑃(𝐸)
=

𝑃(𝑈, 𝐸)

∑ 𝑃(𝑈, 𝐸)𝑈
                                                                                                        (4.8) 

From the inspection data, bacteria types, their counts, and the operating parameters, a network-

based structure is constructed using BN for the estimation of the MIC rate. From the collected 

monitoring operating parameters, inspection data, bacteria, and their counts, various set bounds 
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are established to estimate the prior probability for the operating parameters and categorize the 

MIC rate into low, moderate, high or severe, where applicable, depending on the degree of 

influence. 

Fig. 4.3 shows a schematic representation of the BN structure as applied in this research to predict 

the individual corrosion defect rate considering the influence of the bacteria colony (sulfur-

reducing bacteria (SRB), acid-producing bacteria (APB), and iron-reducing bacteria (IRB)) and 

the operating parameters. The bacteria influencing factors, such as the operating parameters and 

nutrients, are represented in a cause-consequence relationship (structural learning), as shown in 

the BN structure. Given the prior probabilities, which are estimated from the collected sample data, 

they serve as input probabilities for the MIC influencing factors. These are used for the parametric 

learning of the BN to predict the MIC rate.   

 

Figure 4.3. Schematic of BN structural learning for MIC rate prediction 

        multispecies biofilms                              
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Recent research has shown that within the multispecies biofilms, the complex interaction and 

dynamic behavior of APB and IRB can improve their survival under a wide range of conditions, 

as well as switching from an aerobic to an anaerobic metabolic process in the absence of oxygen 

[8,44,45]. As such, these bacteria can contribute to the degradation of the system, together with 

the SRB, in an anaerobic environment. Their contributory effects are factored into the BN structure 

for the MIC rate prediction, as shown in Fig. 4.3. 

4.3.3 Clusterized defect rate and residual strength prediction 

 

4.3.3.1 Defects’ interaction rate prediction using Markov mixture model  

 

The Markov mixture model is a machine learning and probabilistic approach, built from the 

convolution of different Markov chains, that describes an underlying phenomenon. It is built on 

the finite-state continuous time homogeneous Markovian principle, which states that for an 

observed indexed sequence of the given random variables, {𝑌0, 𝑌1, 𝑌2, ⋯⋯𝑌𝑁} at different time 

steps over the system life cycle, the set of an observed sequence satisfies the Markov property, 

such that: 

ℙ(𝑌𝑡+1 = 𝑠|𝑌𝑡 = 𝑠𝑡, 𝑌𝑡−1 = 𝑠𝑡−1, ⋯⋯ , 𝑌0 = 𝑠0) = ℙ(𝑌𝑡+1 = 𝑠|𝑌𝑡 = 𝑠𝑡)                                  (4.9) 

for all 𝑡 = 1, 2, 3, ……… . . and for all states 𝑠0, 𝑠1, ⋯⋯ 𝑠𝑡, 𝑠.  

For a defined state space of the continuous-time Markov chains that consist of sets of transient 

states 𝐸 = {1,2, …… . , 𝑛}, the states represent the corrosion wastage or penetration through the 

wall thickness of the offshore system. The absorbing state describes the unsafe critical state of the 

system with corrosion, which is characterized based on the safety criteria adopted in the analysis. 

For example, as shown in Fig. 4.4, 𝜇𝑖𝑗 represents the transition intensity from one state to another 
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within the defined state space. Several demonstrations of the applicability of the Markov process 

for corrosion defect rate and depth prediction can be found in [35,46,47]. 

 

 

 

 

 

Figure 4.4. Discretize depth states for two interacting corrosion defects 

 

The mixture of the individual Markov chains, as shown in Fig. 4.4 for the interacting defects, forms 

what is called a Markov mixture model. There are different approaches to the construction of a 

Markov mixture model [48–51].  

A recent demonstration of the application of the Markov mixture model is presented in the work 

of [51], where a tractable model of heterogeneous behavior was constructed for individual health 

states. In the three-state Markov mixture process constructed, the transition intensities were 

conditioned on one’s sickness history. The author applied the Markov mixture model and 

estimated the transition intensities based on the stochastic formulation proposed by [49],  as 

represented by Eqs. (4.10) and (4.11).   

𝜆𝑖𝑗 =
1

𝐸𝑍[𝑃(ℋ𝑡|𝑍)]
𝐸𝑍 [lim

ℎ→0

𝑃(𝑋(𝑡 + ℎ) = 𝑗|𝑋(𝑡) = 𝑖, 𝑍)

ℎ
𝑃(ℋ𝑡|𝑍)]                                        (4.10) 

𝜆𝑖𝑗 =
𝐸𝑍[𝜇

𝑖𝑗𝑍𝑖𝑗𝑃(ℋ𝑡|𝑍)]

𝐸𝑍[𝑃(ℋ𝑡|𝑍)]
                                                                                                                    (4.11) 
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where vector 𝑍 = {𝑍𝑖𝑗 , 𝑖, 𝑗 ∈ {1, 2, ……… . . , 𝑞}, 𝑖 ≠ 𝑗} contains the mixing variables for the 

corresponding transition possibilities and 𝑃(ℋ𝑡|𝑍) is the history-based conditional probability 

density up to time 𝑡, given the mixing variable.  However, in the current research, a four-state 

Markovian mixture process is adopted to reduce the mathematical complexity associated with the 

complex multi-state configuration. 

From the inspection data, the multiple defects that meet the interaction criteria are discretized into 

multi-state corrosion depths based on the pipe wall thickness. These defects form individual multi-

state systems, and their growth process is modeled using the Markov Chain. The multi-state 

process is a stochastic process that is time and space-dependent based on a finite set of random 

variables. The process is characterized by the transition intensity (MIC rate), which describes the 

instantaneous rate of transition from one state to another within the space. The transition intensity 

is a time function and history-based process based on the Markovian assumptions.  

To predict the merged defect rate, a simple discrete mixture of Markov chains with the same state 

space, 𝒮, but distinct transition intensities (MIC rate) is constructed for the interacting defects. This 

is assumed for a scenario where the defects under complex multispecies biofilms have multiple 

growth rates. 

Given a random variable M that represents the Markov chain, then for 𝑚 = 1,2, …… . 𝑛, 𝑃(𝑀 =

𝑚) is a mixing probability associated with the Markov chains with predicted transition intensities 

(MIC rates) of {𝜇𝑚
𝑖𝑗(𝑡); 𝑖, 𝑗 ∈ 𝒮, 𝑖 ≠ 𝑗} from the BN. Therefore, for three interacting defects with a 

four-state Markov process, the transition intensities (MIC rates) yield {𝜇1
𝑖𝑗(𝑡); 𝑖, 𝑗 ∈ {1,2,3,4}, 𝑖 ≠

𝑗}, {𝜇2
𝑖𝑗(𝑡); 𝑖, 𝑗 ∈ {1,2,3,4}, 𝑖 ≠ 𝑗} and {𝜇3

𝑖𝑗(𝑡); 𝑖, 𝑗 ∈ {1,2,3,4}, 𝑖 ≠ 𝑗} respectively. 
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Using Aalen's [48] notation for the Markov mixture model transition intensity from the observable 

defect state, 𝑖, to the future observable defect state, 𝑗, the prediction for the clusterized defect 

growth rate is denoted by 𝜆𝑖𝑗(𝑡|ℋ𝑡) 𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 ∈ {1,2,3,4} 𝑎𝑛𝑑 𝑖 ≠ 𝑗. This yields: 

𝜆𝑖𝑗(𝑡|ℋ𝑡) = 𝜇1
𝑖𝑗
𝑃(𝑚 = 1|ℋ𝑡) + 𝜇2

𝑖𝑗
𝑃(𝑚 = 2|ℋ𝑡) + 𝜇3

𝑖𝑗
𝑃(𝑚 = 3|ℋ𝑡)                    (4.12) 

Eq. (4.12) shows that the transition intensity of the mixture model is dependent on the history of 

the corrosion process, which is based on the contributory factors (operating parameters) and the 

defects’ depth states at the year of inspection through the conditional probabilities on the right-

hand side. 

Generically, for a mixture of 𝑛 4-state Markov chains, we have 

𝜆𝑖𝑗(𝑡|ℋ𝑡
𝑘) =

∑ 𝜇𝑚
𝑖𝑗
𝑃(ℋ𝑡

𝑘|𝑀 = 𝑚)𝑃(𝑀 = 𝑚)𝑛
𝑚=1

∑ 𝑃(ℋ𝑡
𝑘|𝑀 = 𝑚)𝑃(𝑀 = 𝑚)𝑛

𝑚=1

                                                                        (4.13) 

=
1

𝑃(ℋ𝑡)
∑𝜇𝑡

𝑖𝑗

𝑛

𝑚

𝑃(ℋ𝑡
𝑘|𝑀 = 𝑚)𝑃(𝑀 = 𝑚)                                                                (4.14) 

= ∑ 𝜇𝑚
𝑖𝑗

𝑛

𝑚=1

𝑃(𝑀 = 𝑚|ℋ𝑡
𝑘)                                                                                               (4.15) 

where 𝑃(𝑀 = 𝑚) is the mixing probabilities and 𝑃(ℋ𝑡
𝑘|𝑀 = 𝑚) denotes the transition 

probabilities for the defects’ states and is estimated by sets of Kolmogorov stochastic differential 

equations that are solved by Laplace Stieltjes transformation, while 𝑃(𝑀 = 𝑚|ℋ𝑡
𝑘) is a history-

based conditional probability and is estimated using Bayes’ Rule: 

𝑃(𝑀 = 𝑚|ℋ𝑡
𝑘) =

𝑃(ℋ𝑡
𝑘|𝑀 = 𝑚)𝑃(𝑀 = 𝑚)

∑ 𝑃(ℋ𝑡
𝑘|𝑀 = 𝑚)𝑃(𝑀 = 𝑚)𝑛

𝑚=1

                                                                    (4.16) 
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Therefore, the resulting mixture model intensity function 𝜆𝑖𝑗(𝑡|ℋ𝑡
𝑘), which serves as the merged 

(mixture) defect rate, gives a phase-type distribution with a convolution of an exponential 

distribution. The results from the BN in subsection 4.3.2.2 are used as input parameters for the 

mixture model to predict the microbiologically influenced merged defect rate over the life cycle 

of the offshore system. 

4.3.3.2 Remaining strength and operating pressure prediction using Monte Carlo Simulation 

 

The Monte Carlo Simulation (MCS) is of diverse application for failure and safety analysis of 

engineering systems considering randomness. It is a probabilistic numerical method that relies on 

sampling the inherently random variables for engineering application [22,46,52].  Its usefulness in 

safety and reliability predictions is built on its simplicity and accuracy. Several applicable details 

for both stand-alone and hybrid methodologies that showcase the potency of MCS in safety and 

reliability analysis can be found in [53–56]. 

In this step, the output of the mixture model intensity (merged defects’ rate) function serves as an 

input parameter to a time-dependent strength loss formulation. This is simulated using Monte 

Carlo Simulation. In this research, the independent variables that define the strength loss of the 

corroding offshore system are treated as random variables and are assumed to be normally 

uncorrelated.  

To model the remaining strength of the microbiologically influenced corroding offshore system 

with multiple defects’ interaction and overlap in terms of burst capacity, the following 

mathematical formulation based on the work of [14] is adopted. 

𝑃𝑛𝑚 =
2𝜎𝑢𝑤𝑡

(𝐷 − 𝑤𝑡)
[

1 − (𝑑𝑛𝑚 𝑤𝑡⁄ )

1 − (𝑑𝑛𝑚 (𝑄𝑛𝑚𝑤𝑡))⁄
]                                                                                         (4.17) 
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where 𝑑𝑛𝑚 denotes the effective depth of the combined defect from the interacting defects; 𝜎𝑢 is 

the tensile strength; 𝑤𝑡 is the system wall thickness; 𝐷 is the outer diameter. For the time-variant 

prediction of 𝑃𝑛𝑚, that is 𝑃𝑛𝑚(𝑡), the integration of the mixture defect growth rate based on the 

pits’ interaction criteria into the linear corrosion growth model by [57], yields: 

𝑑𝑚𝑎𝑥(𝑇) = 𝑑𝑛𝑚(0) + 𝜆
𝑖𝑗(𝑡|ℋ𝑡

𝑘) ∙ 𝑡                                                                                                  (4.18) 

𝐿𝑒𝑓𝑓(𝑇) = 𝑙𝑛𝑚(0) + 𝜆
𝑖𝑗(𝑡|ℋ𝑡

𝑘) ∙ 𝑡                                                                                                     (4.19) 

where 𝜆𝑖𝑗(𝑡|ℋ𝑡
𝑘) is the time-dependent transition intensity (Mixture defect growth rate) and 𝑙𝑛𝑚 

is the combined length of all adjacent interacting defects. It is assumed that both the axial and 

radial corrosion growth rate, which is substituted for by the merged defect rate, is the same for the 

system's life period. It is important to note that the corrosion defects’ depth and length changes 

over time, based on the associated randomness, which defines the degree of variability (dynamics) 

in the corrosion influencing parameters and the operating condition of the offshore system. 

hence; 

𝑃𝑛𝑚(𝑡) =
2𝜎𝑢𝑤𝑡

(𝐷 − 𝑤𝑡)
[
1 − (

𝑑𝑚𝑎𝑥(𝑇)
𝑤𝑡

)

1 − (
𝑑𝑚𝑎𝑥(𝑇)
𝑄𝑛𝑚𝑤𝑡

)
]                                                                                              (4.20) 

𝑃𝑛𝑚(𝑡) =
2𝜎𝑢𝑤𝑡

(𝐷 − 𝑤𝑡)

[
 
 
 
 1 − (

𝑑𝑛𝑚(0) + 𝜆
𝑖𝑗(𝑡|ℋ𝑡

𝑘 ∙ 𝑡)
𝑤𝑡

)

1 − (
𝑑𝑛𝑚(0) + 𝜆

𝑖𝑗(𝑡|ℋ𝑡
𝑘) ∙ 𝑡

𝑄𝑛𝑚𝑤𝑡
)
]
 
 
 
 

                                                                  (4.21) 

Thus, the remaining strength can be stochastically modeled in terms of the basic random variables 

as the primary contributing factors if their distribution is known. That is 𝑃𝑛𝑚(𝑡) =

𝑓(𝑙𝑛𝑚(0), 𝜎𝑦, 𝑑𝑛𝑚(0), 𝐷, 𝑤𝑡, 𝜆
𝑖𝑗(𝑡|ℋ𝑡

𝑘), 𝑡 ). With a predefined probability distribution for the 
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independent variables, the strength loss with its randomness over time is modeled using the Monte 

Carlo Simulation in the MATLAB environment. 

The maximum safe operating pressure for the corroding offshore system is influenced by the 

acceptable defect depth and the corroded length. For the amalgamated defect (mixture), the 

maximum allowable operating pressure is predicted by the modified expression [14]: 

𝑃𝑀𝑆𝑂𝑃(𝑡) =
2𝑤𝑡𝜎𝑢𝐹

(𝐷 − 𝑤𝑡)
(
1 −

𝑑𝑚𝑎𝑥(𝑇)
𝑤𝑡

1 −
𝑑𝑚𝑎𝑥(𝑇)
𝑤𝑡𝑄𝑛𝑚

)                                                                                           (4.22) 

where 𝑄𝑛𝑚 = length correction factor = √1 + 0.31 (
𝑙𝑒𝑓𝑓(𝑇)

√𝐷𝑤𝑡
)
2

 and 𝐹 is the design factor, which 

is normally 0.72. This gives the time-variant maximum safe operating pressures, considering the 

time-dependent strength loss for the remaining useful life of the system.  

The survival likelihood for the system is then estimated from the combination of the continuous-

time phase-type distribution series model (acyclic Markov) and the strength loss profile over the 

remaining life of the offshore system. The result from the application of the methodology would 

provide safety criteria for determining the remaining useful life, the least critical operating 

pressure, the likely failure year, and the point of safety critical decision making for the in-service 

corroding offshore system. 

The proposed methodology is demonstrated with a simplified example in the supplementary 

material (see page 261). 
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4.4. Application of the proposed methodology 

  

The proposed methodology is applied to an API 5L Grade X42 offshore hydrocarbon transmission 

pipeline with microbiologically influenced corrosion [58].  The pipeline carried co-mingled fluids 

from a large number of offshore sources. Upon inspection, the pipeline contains localized internal 

pits and pits clustered at a different position along the internal surface of the pipeline. The pipeline 

operating data/information based on the inspection and investigation of the operating environment 

is shown in Tables 4.2, 4.3 and 4.4. The offshore pipeline contains multiple defects within the 

multispecies biofilm architecture that are longitudinally and circumferentially oriented and meet 

the defects’ interaction criteria. The interactions between the multispecies biofilms and the material 

composition cause higher levels of variation and thus create a high degree of replication, which 

complicates the defects’ interaction process [8,59]. 

Table 4.2 shows the data ranges for the monitoring operating parameters and the bacteria count 

used in the analysis. These parameters describe the prevailing operating condition of the pipeline 

for the period under consideration. Table 4.3 shows the probabilistic characteristics of the pipeline 

parameters and mechanical properties, while Table 4 shows the characteristic and composition of 

the multispecies biofilm architecture considered in the research analysis. Also, some of the missing 

data/additional parameters used in the analysis were adopted from these referenced works [18,60–

63]. Assume at the time of inspection (i.e., 4.5years) during operation, and among the colony of 

defects, three defects at different pit depth states (defect 1 depth = 5.4mm;  defect 2 depth =

2.8mm;  defect 3 depth = 1.9mm) that meet the interaction criteria are used for the application. 

The proposed methodology is applied to the case study, while the computational procedure of the 

proposed methodology has been demonstrated in the supplementary material (see page 261). 
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Table 4.2. Monitoring operating parameters’ data range and bacteria counts 

 
 
Variables 

(Node) Range 

Variables 

(Node) Range 

    
pH 3.2 ~ 7.86 Water cut 1~ 10% 

    
Temp(degree C) 0 ~ 50 Iron (ppm) 0.01 ~ 120 

    

Flow rate(m/s) 0.01 ~ 1.116  

Sulfate ion 

(ppm) 0.01 ~ 32000 

    

Chlorine (ppm) 0.01~40000 

Exposure 

period Max. > 3.5yrs  

   
Mean 2.5-3.5yrs 

   
Min < 2.5yrs  

APB Low < 1000cfu/ml 
  

 
1000 < Moderate <10000 Organic liquid  90~95% 

 
High> 10000 cfu/ml 

  

  
Salinity Present/Absent 

    
SRB Low < 10000cfu/ml IRB  Low < 1000cfu/ml 

 

10000 < Moderate 

<100000 
 

1000 < Moderate <10000 

  High> 100000 cfu/ml   High> 10000 cfu/ml 
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Table 4.3. API 5L Grade X42 pipe defects and mechanical properties 

 
 

Symbol Variable  Unit Distribution Mean 

Std. 

Dev 

 

  

Internal diameter mm Normal 311.15 0 

    𝑤𝑡 Pipe wall thickness mm Normal 12.7 0.097 

 
 

 

Yield strength  MPa Normal  290 10.23 

 

Mixture pit length mm Normal  98 26 

 Mixture pit width mm Normal 103.4 27.5 
 

Mixture pit depth 
 

mm Normal  5.4 0.37 

  Tensile strength MPa Normal 415 19.23 

 

Table 4.4. Characteristics of the multispecies microbial biofilm architecture 

 
  
Group Survival mode End Product State 

SRB Anaerobic  Active 

APB Aerobic/Anaerobic (Facultative) Organic acids Active 

IRB Aerobic/Anaerobic (Facultative) Soluble ferrous ion  Active 

 

 

4.5. Results and discussion  

 

The main objective of this research chapter is to develop a hybrid dynamic methodology that 

captures and predicts the dependencies’ effect among corrosion influencing parameters on the MIC 

rate, multiple defects’ interaction rate, and the safety of the corroding offshore pipeline. The hybrid 

𝐷𝑜 

𝜎𝑦 

𝑙𝑛𝑚 

𝑑𝑛𝑚 

𝜎𝑢 

H2S, HS−, FeS 

𝑤𝑛𝑚 
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model provides a robust tool for the safety assessment of the offshore system under complex 

multispecies microbial biofilm architecture.  

4.5.1 Modeling the MIC rate under complex biofilm architecture 

 

The collected data/information on the case study, as shown in section 4.4, is used in the analysis. 

First, the impact of the corrosion influencing parameters, bacteria, and their interaction on the MIC 

rate is investigated. For this purpose, the BN structure is used to build the cause-effect relationship 

among the corrosion influencing parameter based on the available data to predict the MIC rate. 

The prior probabilities for the corrosion influencing parameters, as estimated, serve as the input 

probabilities for the parametric learning of the BN structure. The result of the parametric learning 

of the structure, as shown in Fig. 4.5, gives the MIC rate for the individual defects. The result 

shows the degree of influence of various microbiologically corrosion contributory factors based 

on their structural relationship built from the available data. Under the prevailing operating 

conditions of the pipeline, the predicted MIC rate gives 0.1604mm/year, 0.1936mm/year, 

0.3123mm/year, 0.3337mm/year, for the low, moderate, high, and severe corrosion rate category, 

respectively. 

Furthermore, the effect of the multispecies biofilm is investigated through a sensitivity analysis of 

the BN structure, as shown in Fig. 4.6. To do this, evidence is placed on the bacteria nodes, and 

their degrees of influence are predicted. The result indicates a 22.4% and 35.8% increase in the 

high and severe MIC rate, respectively. The result agreed with the findings of [5,7,8], which show 

that for multispecies biofilms, the high rate of survival of the SRB in their intertidal zones increase. 

As such, the SRB interaction with the facultative nature of the APB and IRB, promote their 

degradation ability and cause an increase in the rate of degradation of the offshore systems. 
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Figure 4.5. Predicted MIC rate based on the BN parametric learning using prior probabilities 

These bacteria build a complex structure that protects them from temporary stress or harsh 

environments, therefore sustaining their degradation effect on the offshore system. Also, the mixed 

microbial communities under this multispecies biofilm are unstable with time, which causes a 

decrease in their diversity as the MIC depth increases, and the pH decreases. The decrease in pH 

is a result of the acidic state, which is a by-product of the APB metabolic activities. The produced 

acids’ interaction with the SRB increases the corrosiveness under the biofilm. This also increases 

the corrosion rate under the predefined favorable conditions, as shown. 
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Figure 4.6. BN model for MIC rate with evidence on the bacteria nodes 

 

Further analysis of the effect of the dynamic interactions among the operating parameters, the 

multispecies biofilm, heterogeneous material surfaces, and other nutrients on the MIC rate is 

shown in Fig. 4.7. In this case, the evidence is placed on all the nodes of the BN structure to learn 

their effects on the MIC rate under predefined conditions. The result shows that with favorable 

conditions or with hard evidence, the optimum contributory effects from the influencing 

parameters increase the severe corrosion rate over a hundred percent. This supports the findings 

that under the most favorable operating conditions which promote multispecies biofilms’ 
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formation, the offshore system suffers severe degradation that results in sudden and catastrophic 

failures [64–66]. 

 

Figure 4.7. BN model for MIC rate with evidence on all contributory parameters’ nodes 

 

4.5.2 Modeling the effective defect rate due to multiple defects’ interaction 

 

The defects’ characteristics from the inspection data are assessed based on the interaction criteria. 

Three defects that meet the criteria, as indicated in section 4, are discretized into pit depth states 

and clusterized into a single pit. The three defects are assumed to be growing at different rates, and 

the result from the BN is used based on the [67] corrosion rate categorization. The empirical 
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mixture model is built based on a 4-states Markovian mixture process, using the defects’ historical 

data and the initial predicted MIC rate to predict the rate of the merged defect probabilistically. 

The Markov mixture technique is applied to the three interacting defects to predict their effective 

interaction rate, and the results are shown in Fig. 4.8. Fig. 4.8 shows the increasing trend of the 

time-variant effective defect rate under a sustainable microbial infested offshore environment. 

 

 

Figure 4.8. Time-evolution merged defect rate due to interaction at low, high and  severe MIC  

          rates 

 

    

(𝑎) 𝜆12(𝑡|ℋ𝑡
1)      (b) 𝜆23(𝑡|ℋ𝑡
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As shown in Fig. 4.8, 𝜆12(𝑡|ℋ𝑡
1); 𝜆23(𝑡|ℋ𝑡

2) and 𝜆34(𝑡|ℋ𝑡
3) provide the time-evolution profiles 

for the history-based merged defect rate for the low, high, and severe corrosion rates, and this is 

used for the defect depth and strength loss prediction over the exposure period.  The profile reveals 

that under the favorable condition for multispecies biofilms’ formation without intervention, the 

interaction effects among defects increase the merged defect growth rate sharply until a saturation 

point is reached. At the saturation point, a steady-state defect growth rate is observed, which 

follows an asymptotic limiting function as the exposure time increases. As such, the increase in 

the defects interaction rates causes a corresponding percentage effect in the pipe wall wastage and 

the remaining strength of the pipeline.  The predicted result of the defect interacting rate as shown 

follows a similar trend of corrosion loss as a function of long time exposure to microbial corrosion, 

proposed by [60,68]. The resulting profile also agrees with the numerical findings of [69] based 

on the defect depth profiling, which describes the corrosion defect depth as a function of the defect 

growth rate with complex biofilms. This provides validation for the empirical defects’ mixture 

model.  

4.5.3 Modeling the strength loss (remaining strength) and safe operating pressure 

 

With the purpose of demonstrating the robustness of the proposed hybrid methodology, the effects 

of the MIC rate, effective defect interaction rate, and the corrosion parameters on the time-variant 

strength loss and safe operating pressure of the pipeline are predicted. The MIC rate, effective 

defect rate, and corrosion parameters serve as input data to the time-dependent remaining strength 

formulation. The remaining strength was stochastically modeled by the Monte Carlo numerical 

simulation in the MATLAB environment using Eq. (4.21). The simulation captures the inherent 

randomness and statistical distribution associated with the structural strength influencing 

variables, and the results are shown in Fig. 4.9. The results reveal that as the defects grow in depth 
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and volume, the structure under the complex corrosion attack continues to experience structural 

strength loss. This is as a result of the corrosion damages cumulative effect as the time of exposure 

increases. It further causes a decrease in the burst capacity of the corroding pipeline, thereby 

limiting the resistance of the pipeline to total failure under unstable internal pressure loads. The 

structural degradation, in terms of strength loss under the combined effect of complex multispecies 

biofilm and multiple defects interaction, creates critical safety challenges for in-service corroding 

offshore pipeline management. It is important to note that the results in Fig. 4.9 is the time-variant 

strength loss prediction based on burst capacity formulation for multiple defects’ interaction.   

Considering the basic independent variables, it is noticed that the longitudinally oriented defects’ 

interaction depth plays a critical role in the strength loss as the exposure time increases. This is as 

a result of the high-stress concentration that increases its distributive effect at the bottom of the 

deepest and overlapping pits. As the stress concentration builds up around the bottom of the 

deepest defect, the material strength may be exceeded as a result of the combined effect of the 

complex interactions among bacteria in the multispecies biofilms and the defects’ interactions. 

This may result in sudden system failure. 
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(a) low MIC rate    (b) high MIC rate 

    

 

(c)  Severe MIC rate 

Figure 4.9. Time-evolution strength loss under microbiologically influenced corrosion 

 

Further analysis of the degree of complex defects’ interaction effect on the remaining strength for 

the exposed period at different rate is investigated. With the merged defect rate of  0.085𝑚𝑚/𝑦𝑟, 

isolated defect 1 rate of 0.0541mm/yr and isolated defect 2 rate of 0.0407mm/yr, the remaining 

strengths decreased by 16.4% and 20.1% respectively for the low defects’ interaction rate in 

comparison with that of the isolated (single) defects. Moreover, as the defect depth progressively 

increases with an increase in rate, the rate of strength loss increases by 21.8% and 22.4% for the 

high and severe MIC rates, respectively, as shown in Fig. 4.9(b & c). Consequently, the burst 
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capacity (failure pressure) of the corroding pipeline continues to decrease as the time-variant 

corrosion rate and the exposed period increases due to the complex multispecies biofilms. The 

result of the time-variant strength loss analysis is consistent with the findings of [10,11,70] in 

which they conclude, based on a non-linear finite element analysis of three mid-strength pipe grade 

failure pressure ratios (𝑃𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑 𝑑𝑒𝑓𝑒𝑐𝑡𝑠 𝑃𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑑𝑒𝑓𝑒𝑐𝑡⁄ ), that the burst capacity of corroding 

pipeline decreases significantly with longitudinally oriented defects interactions. Moreover, the 

interaction of the bacteria within the multispecies biofilms as presented in this work further 

promotes a complex defects’ interaction rate with deteriorating effects on the structural stability 

of the corroding offshore pipeline. This provides further validation for the proposed model.  

From the strength loss results, the most critical safety-based decision may be inferred, which is 

primarily based on the time-variant MIC rate, defects’ interaction rate, material characterization, 

and the dynamics of the operating environments. This provides a dynamic predictive methodology 

that could inform the operator of the safe operating conditions for the corroding offshore pipeline 

based on the estimated remaining strength over time and the safe operating pressure. Eq. (4.22) is 

used to stochastically predict the safe operating pressure, based on the merged defect rate profile. 

At each time-variant defect growth rate, the maximum safe operating pressure can be predicted. 

From the predicted time-evolution safe operating pressure over the remaining useful life of the 

corroding pipeline, its mean values, as shown in Fig. 4.10, provide key operational information to 

estimate the likely failure time if the pipeline is assumed to be operated at steady-state pressure 

from the year of inspection. Also, the result provides a time-evolution pressure-based operational 

envelope for safe life operation of the corroding offshore pipeline with defects interaction. 
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Figure 4.10. Time variant safe operating pressure profile for corroding pipeline with 

       multiple defects’ interaction 

 

4.5.4 Develop the survivability profile for safety-based decision making 

 

The predicted results from subsections 4.5.1, 4.5.2, and 4.5.3 are integrated to develop a survival 

curve for a robust safety-based decision making. Fig. 4.11 shows the developed survival curve for 

the offshore pipeline with a proposed minimum survivability likelihood of 0.4, which represents 

over 60% corrosion penetration of the system wall thickness. The survivability likelihood is 

proposed based on the dynamic and unstable mechanism of multispecies microbial biofilms, which 

in most cases result in multiple system failure mechanisms.  

Further analysis shows that if there is no intervention during the exposure period, any slight 

increase in the defect growth rate and interaction rate decreases the remaining life (survival life) 

of the offshore pipeline as well as its safe operation, as shown in Fig. 4.11 (b & c). Assuming 𝑇𝑠 is 

the likely maximum survival time based on the proposed survivability criteria, it can be predicted 

that the surviving time 𝑇𝑠 = 18 years, 12 years, and 9 years respectively, for the offshore 
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pipeline, based on the merged defect growth rate for the three scenarios. This proves that as the 

defects’ growth rate increases, the safe operating life of the corroding offshore pipeline decreases.  

 

 

 

    

        

 

 

(a) initial defects’ growth rate      (b) 50% increase in defects’ growth rate 

 

 

 

 

 

 

 

 

(c) 100% increase in defects’ growth rate       

Figure 4.11. Survival curve of the pipeline with  time considering multiple defects 

         interaction and isolated defects rates. 
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For practical application, 𝑇𝑠 can also represent the time of first intervention or the end of the safe 

operating life for the pipeline with microbiologically influenced corrosion defects’ interaction. The 

available information on 𝑇𝑠 inferred from Fig. 4.11 is of significant practical application for 

pipeline operators and system integrity managers facing microbiologically influenced corrosion in 

the oil and gas industry.  

The model provides a first-hand parametric-based tool that will guide decision making in 

prioritizing the point of intervention, such as repair or replacement of the damaged pipeline. It also 

provides guides to cost-effective, safe operations with an optimum maintenance strategy by 

determining with confidence the time when the pipeline will become unserviceable during 

operation.  

As previously accentuated, it is important to note that beyond 𝑇𝑠, even if the corroding offshore 

pipeline has not totally failed, it will be unsafe to sustain operations based on the recommended 

survivability criteria.  

The result of the current methodology in comparison with the probabilistic and mathematical 

approaches proposed by [19,20,60,68,69] provides a robust application. This is demonstrated by 

its capacity to predict the MIC rate from a set of inspection data, as well as the time-variant strength 

loss and likely survival time of the corroding pipeline. These performance capabilities of the 

current methodology are critical for the integrity management of microbiologically influenced 

corrosion in marine and offshore industries. Furthermore, there is the need to provide a reliable 

pipeline rating based on the predicted survivability criteria as a measure of the pipe-wall 

penetration. Details of the proposed rating are shown in Table 4.5, which gives a reliable calibrated 

survivability criterion for the in-service corroding pipeline with microbiologically influenced 

multiple defects’ interaction. Also, the following critical safety influencing factors are identified, 
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and attention should be given to understand better their dynamics and mechanism for safe life 

condition monitoring of in-service corroding offshore pipelines under microbiologically 

influenced multiple defects. These are: (i) the multispecies biofilms characteristics; (ii) the 

longitudinal and circumferential spacing and interacting rate among defects; (iii) the depth, length, 

and rate of defects under sustainable growth support nutrient sources; (iv) operating parameters’ 

characteristics; and (v) the mechanism of the overlapping defects. 

Table 4.5. Corroding pipeline survivability likelihood as a function of % of pipe-wall  

                    Penetration 

 
 

Survivability 

likelihood (SL) 

Pipe-wall 

penetration     State Action/critical parameters 

 

  

 

over 60% 

 

Critically unsafe 

 

Repair or replacement 

 

  

     over 40% Moderately 

unsafe 

Critical condition monitoring 

of operating parameters, 

corrosion rate & pressure 

stability 

 
 

 

over 20% Marginally 

unsafe 

Operating pressure 

monitoring against instability 

& corrosion rate 

 
 

over 5% Negligibly unsafe Routine parametric 

monitoring 

 

4.6. Conclusions 

  

The present study has demonstrated the application of a hybrid BN-Markov Mixture and Monte 

Carlo simulation methodology for the safety assessment of an offshore pipeline with 

microbiologically influenced corrosion. The methodology reliably and dynamically predicts the 

≤ 0.4 

0.4 − 0.6 

0.6 − 0.8 

0.8 − 0.9 
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MIC rate of an offshore system considering complex interaction among the various corrosion 

influencing parameters. This is shown in the result of the parametric learning of the BN structure 

with and without evidence. The interaction among corrosion defects was captured to dynamically 

predict the effective defects interaction rate under the multispecies biofilm for the exposed period. 

It could be inferred that as the complexity of the interaction increases, the loss in the pipe wall 

thickness increases until a saturation point is reached where the growth rate becomes steady and 

gradually exhibits an asymptotic limiting function characteristic. 

For the strength loss prediction, the model captures the dynamic effects of the MIC rate and the 

variability in the remaining strength influencing parameters. Among these effects, the mutual 

orientation of the defects, depth, spacing, and bacteria interaction play critical roles in the 

remaining strength prediction. It was observed that as the defects’ rate increases, the safe life of 

the corroding pipeline decreases due to the increase in the rate of strength loss with exposure time 

under multiple defects’ interaction.  

The application of the methodology would offer the pipeline integrity managers a dynamic tool 

for effective survivability criteria inference for the offshore pipeline under low, high, and severe 

microbiologically influenced corrosion defect rates. With the information provided from the result 

of the model application on the pipeline and the predicted safe operating time under the predefined 

operating conditions, a safety-based cost-effective decision making can be inferred to aid integrity 

management of the corroding offshore pipeline.  

Though the application of the proposed methodology confirms its usefulness in the safety 

assessment of microbiologically influenced corroding offshore systems, the model is scenario-

based. It is limited to capture the non-linearity in the corrosion growth process, the spatial 

dependencies among corrosion parameters, and the time-nonhomogeneity in the Markovian 
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process. The proposed methodology could be further improved in future research by i) modeling 

dependencies among corrosion parameters and their characteristic effects on the remaining 

strength of the corroding assets. ii) considering the time-nonhomogeneous Markovian process to 

capture the effect of time-variant defects growth, iii) considering non-linear corrosion models and 

complex multi-failure modes’ interaction on the survivability of corroding assets under a 

multispecies microbial biofilm. 
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Chapter 5 

Offshore system safety and reliability considering microbial influenced multiple 

failure modes and their interdependencies 

 

Preface 

A version of this chapter has been published in the Reliability Engineering and System Safety 

2021; 215: 107862. I am the primary author along with the Co-authors, Faisal Khan, Sundady 

Adedigba, and Sohrab Zendehboudi. I developed the conceptual framework for the reliability 

assessment model and carried out the literature review. I prepared the first draft of the manuscript 

and subsequently revised the manuscript based on the co-authors’ feedbacks. Co-author Faisal 

Khan helped in the concept development, design of methodology, reviewing, and revising the 

manuscript. Co-author Sunday Adedigba provided support in implementing the concept and 

testing the model. Co-author Sohrab Zendehboudi provided fundamental assistance in validating, 

reviewing, and correcting the model and results. The co-authors also contributed to the review 

and revision of the manuscript. 

Abstract  

The stochastic nature of microbial corrosion creates spatial interdependencies among random 

corrosion parameters and their failure modes. These interdependencies need to be captured for 

robust offshore system reliability prediction considering complex multispecies biofilms.  

 

This research chapter presents a hybrid methodology for the prediction of system reliability, 

considering multiple failure modes’ interdependencies. The methodology integrates the Bayesian 

Network with Copula-based Monte Carlo (BN-CMC) simulation. The BN captures the dynamic 

interactions among physio-chemical parameters and microbes to predict the corrosion rate of an 

offshore system. The random corrosion parameters dependencies and the failure modes that define 
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the performance functions under microbial corrosion are modeled using CMC. The methodology 

is assessed with an example, and the impact of dynamic interactions of the parameters and their 

failure modes on the system reliability is investigated. The results reveal that the system’s 

probability of failure differs diversely as the degree of dependencies among the random corrosion 

parameters and their failure modes increases. The proposed methodology can predict the failure 

indexes that could aid system integrity management for a sustainable offshore operation 

experiencing microbial corrosion. 

Keywords: Microbial corrosion; Bayesian network; Offshore system reliability; Monte Carlo 

simulation; Failure probability; Parameters interactions 

 

5.1. Introduction 

 

Offshore systems in the marine environment face a high degree of corrosion-related damage due 

to dynamic environmental and operational factors. This poses critical safety and integrity issues, 

especially in remote and harsh offshore environments. These systems, which include offshore 

pipelines and equipment, are essential infrastructures for oil and gas transportation. The offshore 

systems suffer severe degradation due to microbial corrosion induced failure mechanisms in the 

harsh dynamic environment. The diverse and complex microbial corrosion mechanisms create 

unpredictable and correlated failure modes with associated high risks in marine and offshore 

systems. There are several studies in the literature with focus on material composition, coating 

technology, and their response to aggressive microenvironment in marine and offshore systems 

(e.g., pipeline) [1]. However, the long exposure of these systems to a dynamic corrosive microbial 

environment makes them vulnerable to a high deterioration rate, especially in sour oil field 

operations. Therefore, it is important to understand the dynamics of the system environment (in 
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terms of operating conditions) and the material response in terms of the failure mechanisms and 

their interdependencies on the corresponding infrastructure life cycle. Moreover, the influential 

corrosion parameters interact among themselves, and their dependencies affect the morphology of 

the corrosion products [2–4]. These parameters’ interactions complicate the corrosion induced 

failure mechanisms, especially in bacteria-infested environments. 

 

Micro-organisms at the point of corrosion initiation play a crucial role in the dynamics of system 

failure modes. They introduce a complex underlying phenomenon that alters the electrochemical 

configuration and the corrosion induced failure mechanisms in offshore systems. These bacteria 

survive within the complex multispecies biofilm, and the extracellular polymeric substances act as 

primary organic carbon/nutrient sources for the biofilm configuration. The bacteria, such as 

Sulphate Reducing Bacteria (SRB), act as an electron acceptor, which aids the metabolic activities 

to produce H2S and HS− as byproducts [5,6]. These byproducts are aggressive corrosion enhancing 

substances for steel and iron materials. The bacteria colony, especially multispecies biofilms, 

interacts with various key variables/factors involved in corrosion to create complex multiple 

failure mechanisms that are often difficult to manage. It has been shown that the mixed consortium 

of micro-organisms may lead to more severe and unstable microbiological degradation with 

unpredictable characteristics [7]. 

 

An adaptive reliability approach is required to better understand the sustainability and response of 

corroding marine and offshore systems in dynamic bacteria-infested environments. This will help 

in the safety classification with a predefined index for sustainable operation of offshore 

systems/processes. Also, the associated failure mechanisms and their dynamics need to be 



120 
 

investigated considering the complex interactions among the physio-chemical parameters and the 

spatial interrelationships of corrosion parameters. This understanding will help define the limit 

state functions that best describe safe operating envelope of the system when experiencing 

microbial corrosion. The literature indicates that steel pipelines exhibit different failure modes, 

such as fracture, strength failure, leakage, buckling, and plastic collapse, which might be due to 

various levels and types of corrosion defects and applied stress [8–10]. However, there is no 

comprehensive study in the open sources which investigates the offshore pipeline multi-failure 

modes and their random response parameters’ correlation when the multispecies microbial biofilm 

condition is maintained.  

 

Various approaches for reliability prediction of both onshore and offshore systems with corrosion 

defects have been recently introduced [8,11–16]. For instance, Qian et al. [17] applied Monte Carlo 

simulation for failure prediction of a ductile metal pipeline for a single limit state function based 

on operating pressure and burst pressure. The approach captures the influence of the variability in 

the coefficient of variation on the failure probability prediction. However, it is unable to capture 

the physio-chemical parameters and the multiple failure modes’ effects on the system reliability. 

Some research studies employed reliability methods for single failure mode by stochastically 

modeling the random corrosion variables with their characterized randomness [14,18,19]. Teixeira 

et al. [20] applied Monte Carlo simulation and the First-Order Reliability Method (FORM) for 

reliability prediction of the corroded pipeline under internal pressure load. The literature review 

reveals that the dynamic effect of multiple failure modes and the correlation among their random 

response parameters on the overall reliability of microbially influenced corroding systems has not 

been investigated yet. 
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Qin [21] analyzed the reliability of a corroding energy pipeline under three potential failure 

mechanisms, namely small leak, large leak, and rupture. This study introduced a Monte Carlo 

simulation-based methodology to predict the overall system reliability. A recent improvement in 

prediction of system reliability considering multiple failure modes and linear correlation can be 

found in the open sources [9,10]. Recently, Adumene et al. [22] proposed a hybrid model for 

dynamic safety analysis of offshore pipelines when microbially influenced corrosion occurs. The 

dynamic model captures the interaction effects of defects on the survival likelihood of the offshore 

system in the presence of multispecies biofilms. However, the reviewed models are inadequate to 

capture the complex interactions among the physio-chemical parameters and the nonlinear 

interdependencies among random corrosion variables and multiple failure modes simultaneously.  

 

Several researchers have demonstrated the application of the copula function for spatial variability 

and dependencies modeling in complex nonlinear engineering systems and economic risk analysis 

[23–25]. Nevertheless, there is a limited number of research investigations to adequately explore 

the complex failure modes’ and their random response parameters dependencies with focus on 

Microbially Influenced Corrosion (MIC) of offshore systems. This knowledge gap has hindered 

the development of robust and effective reliability prediction and failure prevention strategies for 

offshore operations suffering MIC. To the best of our knowledge, there is no dynamic model to 

consider MIC induced multi-failure modes and parametric dependencies’ effect on the system 

reliability with multispecies biofilm architecture. The interactions among the key parameters of 

microbial corrosion and random corrosion parameters’ dependencies in a multispecies biofilm 

condition have not yet been studied for reliability prediction.  
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The dynamic mixed bacteria communities and their interactions with steel material create complex 

multi-failure mechanisms that are unstable and unpredictable. The complex instability of the 

failure modes due to mixed microbial communities and the physio-chemical parameters’ 

interactions, which affect the system safety and reliability, should be systematically investigated. 

These knowledge gaps necessitate the development of a dynamic model to capture the impact of 

the physio-chemical parameters’ interactions, random response parameters’ interdependencies, 

and their failure modes on offshore system reliability prediction. 

 

This current chapter presents a hybrid connectionist methodology that integrates a Bayesian 

Network with Copula-based Monte Carlo (BN-CMC) simulation; the developed approach is used 

for system reliability prediction, considering multiple failure modes and their response variables 

interdependencies under multispecies microbial biofilms architecture. The BN is built to predict 

the dynamic corrosion rate, where the complex interactions among the physio-chemical 

parameters, bacteria, and environmental factors are considered. The dependencies among random 

corrosion parameters as well as the limit state functions for reliability prediction are evaluated 

using Copula-based Monte Carlo simulation (CMC). The hybrid model provides a practical and 

robust tool for the reliability assessment of corroding assets, considering interrelationships 

between parameters and complex microbial corrosion induced failure mechanisms. The 

application of the proposed hybrid methodology is demonstrated for a pipeline case in the marine 

environment.  
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The remaining part of the chapter is structured as follows: Section 5.2 gives an overview of 

performance functions for MIC induced multi-failure modes. Section 5.3 presents the proposed 

research methodology. Section 5.4 describes the implementation of the methodology through an 

example. Section 5.5 includes results and discussion, and Section 5.6 provides the conclusions. 

 

5.2. Overview of microbial corrosion induced multi-failure modes 

 

Microbial corrosion presents complex characteristics of mixed bacteria communities with different 

degradation potentials. This complexity can be described by the dynamic failure modes and their 

unpredictable nature during operations. To assess the failure state of the offshore assets, limit state 

functions are defined. The limit state functions describe the safe operating region of the offshore 

system with MIC defects. The limit state functions are formulated based on structural reliability 

theory [26]. 

The limit state functions take into account the geometry and morphology of the defects and the 

propagation rate. The morphology of MIC defects in the offshore pipeline is unstable and complex; 

the morphology is best described as localized corrosion (pitting corrosion). The pit cross-section 

may take several appearances in the form of cavernous, parabolic, elliptical, sub-surface, deep, and 

narrow attacks on the material structures [27]. Also, the offshore system is exposed to stress-

related cracks due to the corrosive environment supported by the bacteria and H2S. Comprehensive 

studies on hydrogen-induced and sulfide stress cracks’ related failures and the predisposed crack-

in-corrosion induced failure scenarios can be found in the literature [28–30]. The defects/crack 

growth is a function of the corrosion rate/crack propagation rate, which is dependent on the biofilm 

characteristics, material composition, operating parameters, and applied stresses. These vital 
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corrosion factors affect the failure rate, failure probability, system reliability, and critical failure 

year of the corroding assets.  

 

To predict the material susceptibility and the microbial corrosion rate, several methods have been 

proposed, given the prevailing operating environmental conditions of the offshore assets [31–35]. 

However, due to sparse data availability, uncertainties, dependencies, randomness, and the 

complex nature of MIC influential parameters, a dynamic probabilistic approach (e.g., BN) has 

shown a higher capability for MIC potential modeling [22,36,37]. The BN is a network-based 

probabilistic tool (see Fig. 5.1) that systematically captures the interactions among the key factors 

and the bacteria growth to predict the corrosion defect rates [38,39]. The CMC simulation finds 

the dependencies among the corrosion parameters, the failure modes, and their randomness with 

the associated probability distributions. For the system reliability analysis, multiple limit state 

functions are formulated, as described in Section 5.3.  

 

5.3. Research methodology 

  

The dynamic nature of MIC under complex multispecies biofilm architecture presents complicated 

failure mechanisms with complex dependencies. For this reason, the failure functions are 

formulated to integrate possible failure modes considering various scenarios. Fig. 5.2 depicts the 

proposed methodology for system reliability analysis under MIC induced multi-failure modes. The 

following subsections describe the main steps of the proposed hybrid approach.  

5.3.1 Data collection and probability estimation 

 

Information about the corroding offshore assets is collected in step 1; this includes but is not 

limited to the physio-chemical parameters characteristics, defects characteristics, mechanical 



125 
 

characteristics, microbial characteristics, and their counts. The physio-chemical parameters (or 

MIC influential factors) are formatted by data partitioning into ranges (high, moderate, and low), 

to assess their probabilities, as illustrated in step 2. The obtained probabilistic data based on the 

physio-chemical parameters are used as the input data for the BN analysis. 

5.3.2 Prediction of corrosion rate 

 

The MIC influential factors are represented in a network-based structure using BN to illustrate the 

interrelationships among physio-chemical parameters and their effects on the MIC rate prediction 

(see step 3 in Fig. 5.2). The BN structural learning is built on the previous research works [40–46]. 

It shows that there are dependencies and dynamic nonlinear interactions among the physio-

chemical parameters. For parameter learning of the BN structure, the estimated prior probability 

data from step 2 are used as the input data; the conditional probability table is constructed based 

on available corrosion models and the knowledge/experience of subject matter experts. The 

presence of the bacteria in the complex biofilm community introduces an interdependency among 

the bacteria types. This mutualistic relationship occurs such that the metabolites of some micro-

organisms serve as substrates or energy sources for other bacteria [7]. The mutual complexity of 

multispecies biofilm structures complicates the biocorrosion and its rate prediction. 

 

In this research, one of the objectives is to further understand the dynamic effect of the nonlinear 

interactions among temperature, CO2 partial pressure, pH, H2S partial pressure, salinity, and 

bacteria on the corrosion rate of the offshore pipeline. This is depicted by the directed arc drawn 

among these parameters, as demonstrated in Fig. 5.1. The predictive (or forward) analysis in the 

BN structure describes the probability of occurrence of any node of the network based on the prior 

probabilities of the root nodes and the conditional probability which captures the conditional 
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dependence (nonlinear interactions) of each node. The demonstration of the parameters 

interaction’s effect on the corrosion rate is given in Section 5.5. For more details on the 

development of the MIC based BN structure for parametric and structural learning, readers are 

encouraged to visit these research studies [38,47–50]. 

 

 

Figure 5.1. Schematic of BN structure considering nonlinear interactions among MIC vital  

factors 
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Figure 5.2. Flowchart of the proposed hybrid methodology 
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5.3.3 Limit state functions and random corrosion parameters’ dependencies 

 

In step 4, the inspection data are further assessed to identify defect characteristics and random 

response dependencies. This is necessary to ensure that the performance function represents the 

actual state of the corrosion characteristics based on the available data. Further analysis of the 

defects’ growth is made using the linear corrosion models in step 5. The linear growth model is 

assumed for the corrosion defect growth as expressed by Eqs. (5.1) and (5.2) [18,51,52].  

𝑑(𝑡) = 𝑑0 + 𝑎𝑑 ∙ 𝑡                                                                                                                                    (5.1) 

𝐿(𝑡) = 𝐿0 + 𝑎𝑙 ∙ 𝑡                                                                                                                                      (5.2) 

where 𝑑0 and  𝐿0 symbolize the initial defect depth and length, respectively, and 𝑎𝑑 𝑎𝑛𝑑 𝑎𝑙  refer 

to the radial and axial corrosion rates. Due to the sparse data availability, the MIC rate is predicted 

based on the available single inspection data using BN as discussed in step 3. The predicted MIC 

rate is taken as the radial corrosion rate. Also, a percentage of the radial corrosion rate is used for 

the axial corrosion rate, based on the correlation between the corrosion depth and length. Fig. 5.3 

provides a flowchart for the prediction of multi-failure modes.  
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Figure 5.3. Flowchart to obtain reliability profile using failure function models 

 

5.3.3.1 MIC induced leak failure 

 

The corroded offshore system can be assessed to determine if operations should continue based on 

predefined reliability criteria [20]. The common condition for unsafe pipe operation due to leakage 

is benchmarked at the condition when the pipeline defect depth is more than 80% of the wall 

thickness [53]. In this case, the operation of the pipeline becomes critically unsafe, and 

replacement is recommended. Therefore, for safe operation, a failure function for the corrosion 

induced leak failure is defined by Eq. (5.3): 

𝑔1(𝑤𝑡, 𝑑, 𝑡) = 0.8𝑤𝑡 − 𝑑(𝑡)                                                                                                                  (5.3) 

where 𝑤𝑡 introduces the pipe-wall thickness, and 𝑑(𝑡) stands for the corrosion defect depth at 

the time, 𝑡 
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5.3.3.2 Burst failure 

 

Burst failure is mostly experienced due to clusters of multiple and interacting defects. The 

performance criterion based on the burst capacity is given by Eq. (5.4): 

𝑔2 (𝑟𝑏, 𝑃𝑜 , 𝑡) = 𝑟𝑏(𝑡) − 𝑃𝑜                                                                                                                       (5.4) 

where 𝑟𝑏(𝑡) is the burst capacity, and 𝑃𝑜 stands for the operating pressure. In this research study, 

the pipeline burst capacity is predicted using the FITNET FFS model, as given below [17][54]:  

𝑟𝑏(𝑡) =
2𝜎𝑢𝑤𝑡(

1
2⁄ )

(65 𝜎𝑦⁄ )

𝐷 −𝑤𝑡
[
1 −

𝑑(𝑡)
𝑤𝑡

1 −
𝑑(𝑡)
𝑤𝑡𝑄

]                                                                                             (5.5) 

where 𝑄 is the length correction factor which equals √1 + 0.8
𝐿(𝑡)

√𝐷𝑤𝑡
 ; and  𝐷, 𝜎𝑢, 𝜎𝑦 , 𝑤𝑡, 𝑑(𝑡),

and 𝐿(𝑡) represent the external diameter, ultimate tensile strength, yield stress, wall thickness, 

defect depth, and corrosion defect length of the pipeline, respectively.  

5.3.3.3 Fracture failure (MIC induced crack failure) 

 

Fracture failures occur due to crack formation, which propagates under favorable environmental 

conditions. In sour oilfield production, the bacteria metabolites and their interactions with the 

environment enhance corrosive substances (e.g., H2S), which cause rapid crack-in-corrosion of the 

steel pipe [29,41,55]. This cracking may be sulfide stress and hydrogen-induced cracking, a form 

of Stress Corrosion Cracking (SCC). These are possible scenarios of the bacteria interactions and 

the effect of oilfield production with high hydrogen sulfide concentration [41,56].  

A formulated limit state function for the estimation of crack-in corrosion failure probability 

considering the R6 procedure is given in Eq. (5.6). This method provides an elasto-plastic based 

analysis by an equivalent comparison of the Japp (in the J-terminology) with the material 

toughness, Jmat(∆a)  [57,58]. 
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𝑔3 (𝐽𝑚𝑎𝑡,, 𝐽𝑎𝑝𝑝, 𝑡) = 𝐽𝑚𝑎𝑡(∆𝑎) − 𝐽𝑎𝑝𝑝                                                                                                   (5.6) 

where 𝐽𝑎𝑝𝑝 denotes the applied J and is expressed as a function of the stress intensity factor as 

follows [58]:  

𝐽𝑎𝑝𝑝 =
𝐾2

𝐸
∙ [𝑓(𝐿𝑟)]

−2                                                                                                                              (5.7) 

An empirical model, presented in the literature [59,60], is adopted for the crack-in corrosion (stress 

corrosion cracking) propagation rate and the stress intensity factor for the 𝐽𝑎𝑝𝑝. The model is 

expressed as 𝛽𝜎√𝜋(𝑎𝑓 + ∫ 𝐶(∆𝐾)𝑚𝑑𝑡
𝑡

𝑡𝑓
 . For the empirical model derivation, readers are referred 

to the research studies [59,61]; where 𝑎𝑓 accounts for the defect size at the transition to crack; 𝜎 is 

the stress load;  𝛽 refers to the shape parameter for the crack; ∆𝐾 can be expressed as 𝐾𝑚𝑎𝑥 −

𝐾𝐼𝑆𝐶𝐶, where 𝐾𝑚𝑎𝑥 is the maximum stress intensity factor and 𝐾𝐼𝑆𝐶𝐶 denotes the stress intensity 

factor threshold of the SCC; 𝑚 and 𝐶 are the parameters of crack-in corrosion propagation rate 

model; 𝑡𝑓 is the time of transition for crack propagation; ∆𝑎 introduces the ductile crack extension; 

𝐸 symbolizes the Young’s modulus of the material[62]; and 𝑓(𝐿𝑟) represents the yielding 

correction function and is expressed as (1 − 0.14𝐿𝑟
2)(0.3 + 0.7𝑒𝑥𝑝(−0.65𝐿𝑟

6))[57] for the plastic 

collapse cut-off on the Failure Assessment Diagram (FAD), where 𝐿𝑟 < 𝐿𝑟
𝑚𝑎𝑥 ≡

1

2
(1 +

𝜎𝑢𝑡𝑠

𝜎𝑦𝑠
).  

 The 𝐽𝑚𝑎𝑡 is expressed as a function of the material fracture toughness (𝐾𝑚𝑎𝑡) as follows [57]: 

𝐽𝑚𝑎𝑡(∆𝑎) =
𝐾𝑚𝑎𝑡
2 (∆𝑎)

𝐸′
                                                                                                                            (5.8) 

where 𝐸′ = 𝐸 and 𝐸 (1 − 𝑣2)⁄  stand for the plane stress and plane strain states, respectively; and 

𝜐 is the Poisson ratio. 
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5.3.3.4 Rupture failure 

 

The failure criterion for rupture failure is defined by Eq. (5.9): 

𝑔4(𝑟𝑟𝑝, 𝑃𝑜 , 𝑡) = 𝑟𝑟𝑝(𝑡) − 𝑃𝑜                                                                                                                     (5.9) 

 

The flow stress-dependent failure criterion proposed by Kiefner et al. [63] is given below: 

𝑟𝑟𝑝(𝑡) =
2𝑤𝑡𝜎𝑓

𝑀𝐷
                                                                                                                                       (5.10) 

where  

𝑀 =

{
 
 

 
 
√1 +

0.6275𝐿2

𝐷𝑤𝑡
−
0.003375𝐿4

𝐷2𝑤𝑡2
,  for 

𝐿2

(𝐷𝑤𝑡)
≤ 50

0.032𝐿2

𝐷𝑤𝑡
+ 3.3,                                      for 

𝐿2

(𝐷𝑤𝑡)
> 50       

                                             (5.11) 

in which, 𝑀 symbolizes the folias factor; and 𝜎𝑓 is the flow stress and is defined as 0.9𝜎𝑢. The 

corrosion defect in the axial direction can be expressed as a function of time (see Eq. 5.2). The 

random corrosion parameters are used to model the performance criteria for rupture failure 

stochastically. This is applicable only for the corrosion defects. 

For the microbially influenced corroding offshore pipeline, the failure state (𝑓𝑠) can be 

summarized using the limit state function and intersection (∩) of 𝑔1, 𝑔2, 𝑔3, and 𝑔4, according to 

the following expression [64]: 

 

𝑓𝑠 =

{
 

 
𝑔1 ≤ 0 ∩ 𝑔2 > 0                             leak 
𝑔1 > 0 ∩ 𝑔2 ≤ 0                               burst 

𝑔1 > 0 ∩ 𝑔2 ≤ 0 ∩ 𝑔3 ≤ 0                   fracture 

𝑔1 > 0 ∩ 𝑔2 ≤ 0 ∩ 𝑔3 ≤ 0 ∩ 𝑔4 ≤ 0 rupture 

                                                               (5.12) 
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5.3.4 Corrosion parameters and failure modes’ interdependencies  

 

In step 7, the Copula is adopted to model the dependencies among random corrosion parameters 

and failure modes, considering the dynamic operating conditions of the offshore assets.  

The Copula can capture different characteristic variability among random variables (rvs) [65]. The 

copula function can model the joint probability distribution of rvs with different individual 

marginal probability distribution functions. Sklar [66] used the “copula” concept and provided the 

mathematical background that describes the copula function, linking marginal distributions to a 

joint probability distribution. Sklar’s theorem states that a function F:ℝ𝑑 → [0,1] is the joint 

distribution function of a random vector (𝑋1, …… , 𝑋𝑑) if there is a copula C: [0,1]d → [0,1] and 

univariate distribution function F1, …… . , Fd: ℝ → [0,1] such that 

𝐹(𝑥1, …… , 𝑥𝑑) = 𝐶(𝐹1(𝑥1),…… , 𝐹𝑑(𝑥𝑑)), 𝑥1, …… , 𝑥𝑑 ∈ ℝ                                                        (5.13) 

This is defined for all functions 𝐹1, …… . , 𝐹𝑑 being continuous. 

Copula type selection is based on the goodness-of-fit tests of the data set. However, in the case of 

sparse data availability, Gong and Frangopol [23] demonstrated the application of the 

Archimedean copula family to model the dependence structure among random corrosion 

parameters. In this research, the Archimedean copula family is adopted. It includes the Clayton, 

Gumbel, and Frank with different formulations for copula parameter estimation. The general 

Archimedean copula function is given below [65]: 

 

𝐶𝜑(𝑢1, …… . . , 𝑢𝑑) = 𝜑(𝜑
−1(𝑢1) + 𝜑

−1(𝑢2) + ⋯+ 𝜑
−1(𝑢𝑑))                                                 (5.14) 
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where for a suitable, non-increasing function 𝜑: [0,∞] with 𝜑(0) = 1 and lim
𝑥→∞

𝜑(𝑥) = 0 is the 

Archimedean generator; 𝜑(∙) is the generator function; and 𝜑−1(∙) is its inverse. The single 

argument 𝜃 is used to characterize the Archimedean generator and its inverse function.  

The concordance measure among random variables that defines the copula parameter is called 

Kendall’s tau. It is a non-parametric measure that does not vary with the marginal probability 

distribution of the random variables. For any two random variables 𝑌1 and 𝑌2, the Kendall’s tau 

between them is the difference in the concordance and discordance probability of (𝑌1, 𝑌1
′) and 

(𝑌2, 𝑌2
′), where 𝑌1

′ and 𝑌2
′ are the independent copies of 𝑌1 𝑎𝑛𝑑 𝑌2 respectively. The link between 

the copula function and Kendall’s tau can be expressed by Eq. (5.15). For more details on the 

copula formulation and its applications, interested readers are referred to the referenced literature 

[67,68].  

 

𝜏 = 4∫∫𝐶(𝑦1𝑦2)

1

0

1

0

𝑑𝐶(𝑦1𝑦2) − 1                                                                                                      (5.15) 

where 𝑦1and 𝑦2 are the values of 𝑌1 𝑎𝑛𝑑 𝑌2, respectively. 

Tables 5.1 and 5.2 describe the copula generator and its inverse functions, and the one-to-one 

relation between Kendall’s tau and the argument, respectively [65,67].  
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Table 5.1. Description of the copula generator and its inverse function 

 
 

Copula 

 

Generator  
 

 

Inverse function 
 

 

Argument 
 

Gumbel 

 

 

   

 

Clayton 

 

 

 

 

Frank 

  

 

 

 

Table 5.2. Description of the relationship between Kendall's  

                 tau and the Argument ϴ 

 
 
 

Copula                                                           Kendall's tau 

Gaussian  

 

Gumbel  
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where ρ represents the Pearson’s correlation coefficients. 
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The limit state function response’s parameters are assessed to define their probabilistic 

characteristics and identify dependencies among them. Further analysis is performed through 

considering the random disturbance of the load effect on the performance characteristics of the 

offshore system. The impact of this disturbance on the structural failure shows that the basic 

response parameters may be positively interrelated within the segment of a given offshore pipeline. 

These correlated response parameters may include the corrosion depth, length, axial and radial 

corrosion rate, crack size, stress intensity, wall thickness, pipe diameter, yield strength, and tensile 

strength; they are modeled using copula. 

 

5.3.5 Probability of failure estimation and system reliability prediction 

 

Monte Carlo simulation is a powerful probabilistic tool widely used in engineering and non-

engineering systems analysis. It provides a straightforward failure probability estimation approach 

based on the probabilistic characteristics of the response parameters of the failure functions 

[20,22]. In step 8 shown in Fig. 5.2, the characteristic random variables and their dependencies are 

modeled by the Copula. The results serve as the input parameters to the limit state functions as 

described in subsection 5.3.3, and the various failure probabilities for each mode are predicted. 

Fig. 5.4 shows the MCS flow chart for failure probability prediction for each failure mode. 
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Figure 5.4. Model segment flowchart for failure probability prediction 

 

Further consideration of random corrosion response parameters dependencies and their failure 

modes helps to predict the dynamic effect of correlation and operating parameters on the offshore 

system reliability. For an offshore asset that is considered as a series system, the system reliability 

based on the formulated four modes of failure can be expressed using the probability theory, as 

given below:  

𝑅𝑠𝑦𝑠(𝑡) = 1 − 𝑃 (⋃(𝑔𝑖(𝑋) ≤ 0)

𝑚

𝑖=1

)                                                                                                 (5.16) 
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𝑅𝑠𝑦𝑠(𝑡)

= 1

−  𝑃[𝑔1(𝑤𝑡, 𝑑, 𝑡) ≤ 0 ∪ 𝑔2(𝑟𝑏, 𝑃𝑜 , 𝑡) ≤ 0 ∪ 𝑔3(𝐽𝑚𝑎𝑡 , 𝐽𝑎𝑝𝑝, 𝑡) ≤ 0 ∪ 𝑔4(𝑟𝑟𝑝, 𝑃𝑜 , 𝑡)

≤ 0]                                                                                                                                                         (5.17) 

Therefore, the upper bound system failure probability (considering correlation (dependencies) 

structures among the random corrosion parameters) and the failure modes can be captured under 

the complex multispecies biofilm by the Copula function at any given time 𝑡, as follows [68]: 

𝑃𝑓𝑠𝑦𝑠(𝑡) = 𝑃(𝑔1(𝑋1) ≤ 0, 𝑔2(𝑋2) ≤ 0,…… . . , 𝑔𝑛(𝑋𝑛) ≤ 0)                                                       (5.18) 

𝑃𝑓𝑠𝑦𝑠(𝑡)

=∑𝑃(𝑔𝑖(𝑋) ≤ 0)

𝑛

𝑖=1

+ ∑ 𝑃(𝑔𝑖1(𝑋) ≤ 0, 𝑔𝑖2(𝑋) ≤ 0)

𝑛

1≤𝑖1<𝑖2≤𝑛

+⋯…

+ (−1)𝑘 ∑ 𝑃(𝑔𝑖1(𝑋) ≤ 0, 𝑔𝑖2(𝑋) ≤ 0,……𝑔𝑖𝑘(𝑋) ≤ 0)

𝑛

1≤𝑖1<𝑖2<⋯….<𝑖𝑘<𝑛

+ (−1)𝑛𝑃(𝑔1(𝑋) ≤ 0, 𝑔2(𝑋) ≤ 0,…… . . . , 𝑔𝑛(𝑋)

≤ 0)                                                                                                                                                         (5.19) 

𝑃𝑓𝑠𝑦𝑠(𝑡) =∑𝐹𝑖(𝑡)

𝑛

𝑖=1

+ ∑ 𝐶𝑔𝑖1𝑔𝑖2 (𝐹𝑖1
(𝑡), 𝐹𝑖2(𝑡)) + ⋯…………… . . +

𝑛

1≤𝑖1<𝑖2≤𝑛

  

+(−1)𝑘 ∑ 𝐶𝑔𝑖1𝑔𝑖2……𝑔𝑖𝑘
(𝐹𝑖1(𝑡), 𝐹𝑖2(𝑡), …… . , 𝐹𝑖𝑘(𝑡))

𝑛

1≤𝑖1<𝑖2<⋯<𝑖𝑘≤𝑛

+ (−1)𝑛𝐶𝑔1𝑔2……𝑔𝑛(𝐹1(𝑡), 𝐹2(𝑡),…… , 𝐹𝑛(𝑡))                                                                               (5.20) 

 

where 𝐹𝑖(𝑡) (𝑖 = 1,2… . 𝑛) is the probability of failure for the 𝑖𝑡ℎ failure mode at time 𝑡; 𝐹𝑖(∙) 

represents the probability distribution function of the 𝑖𝑡ℎ failure mode; and 𝐶𝑔1𝑔2……𝑔𝑛   is the 
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Copula function for the joint probability distribution of the limit state functions of 

(𝑔1(𝑥1), 𝑔2(𝑥2),……… , 𝑔𝑛(𝑥𝑛)). 

 

The co-occurrences of the failure modes, as presented by Eq. (5.12), are investigated to establish 

diverse scenarios of the system reliability profile for holistic decision-making in offshore 

operations.  

 

5.4. Methodology implementation 

  

The application of the proposed hybrid connectionist methodology is demonstrated on a 2 km 

crude oil transmission pipeline made of grade X60 steel. The 762 mm outer diameter (DN 750) 

pipeline operates in a sour oil field production with characteristic bacteria in the marine 

environment [69]. To simplify the analysis, it is assumed that the pipeline segment contains 

localized defects on the internal surface based on inline inspection, as shown in Table 5.3.  

 

Table 5.3. Geometry of the corrosion parameters 

 
 

 

Defect I Defect 2 Defect 3 

  Mean Std dev Mean Std dev Mean Std dev 

Depth (mm) 4.24 0.43 2.95 0.38 1.46 0.26 

Length (mm) 95 32 110 42 155 53 

 

The operating and environmental conditions of the pipeline are shown in Tables 5.4 and 5.5. The 

working condition is assumed to be the same for the period under study. The defects exist under 

complex multispecies microbial biofilm architectures. Additional data/information on the 
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corrosion influencing factors and the crack-in-corrosion characteristics can be found in the 

references [38,70–72]. It is assumed that the inspection of the pipeline is carried out in the 4th year 

of the operation.  

 

Table 5.4. Description of the physio-chemical field data and their node states 

 
 

    

 

  
 

 

  
 

  

 

  
 

 

  
 

 

  
 

    

  

Low state 

Min 

 

15 0.02 0.06 0.03 2 88 1 4.6 

Max 

 

35 0.25 1.01 0.26 2600 2200 89 9.8 

Mean 

 

30.1 0.19 0.87 0.17 1201 1944 32 5.2 

  

Moderate state 

Min 

 

18 0.12 0.59 0.14 6 117 10 3.2 

Max 

 

55 0.32 2.03 0.37 3050 2500 95 8.1 

Mean 

 

42 0.22 1.27 0.28 1620 1988 45 4.2 

  

High state 

Min 

 

35 0.19 0.86 0.17 108 205 35 2.2 

Max 

 

65 0.44 3.04 0.52 4300 4600 95 7.6 

Mean   42 0.33 2.04 0.32 1908 2010 58 3.4 

𝜃𝑡: Temperature (℃); 𝑝𝐶𝑂2: CO2 partial pressure (MPa); 𝑉: Fluid flow rate (m/s) 

𝑝𝐻2𝑆: HsS partial pressure (MPa); 𝑝𝐻: pH of the fluid; 𝑆𝑂4: Sulfate ion (mg/l) 

𝐶𝐿: Chloride ion (mg l⁄ );𝑊𝐶: Water cut (%) 

 

 

𝜃𝑡℃ 𝑝𝐶𝑂2(MPa) 𝑉(𝑚/𝑠) 𝑝𝐻2𝑆(MPa) 𝑝𝐻 𝑆𝑂4(mg/l) 𝐶𝐿 (mg/l) 𝑊𝐶(%) 
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Table 5.5. Description of the biofilm characteristics and categorization 

                 of the bacteria node states  

 
 
State SRB (cfu/ml) IRB (cfu/ml) APB (cfu/ml) 

Low 

 

 

  

 

  
Moderate 

  

High 

 

    

 

The pipeline mechanical properties, crack properties, and their probabilistic characteristics are 

shown in Table 5.6 and Table 5.7. Furthermore, the following assumptions are made for the 

proposed methodology application: i) the data bounds, as shown in Tables 5.3-5.7, depict the 

prevailing operating/environmental conditions for the pipeline, ii) the corrosion influencing 

parameters exhibit complex interactions, and the random corrosion parameters show parametric 

dependencies, iii) the defects and crack-in-corrosion are assumed to be stable and growing; they 

are exposed to the same operating conditions,  iv) Kendall 𝜏′𝑠 values of 0.28, 0.53, 0.91 are 

assumed to capture the dependencies among the random response parameters for the research 

analysis, and iv) the crack-in corrosion propagation rate is assumed to follow the empirical model 

proposed by the research study [59]. 

 

 

 

 

≤ 10000 
≤ 1000 ≤ 1000 

10000 − 50000 1000 − 10000 1000 − 10000 

≥ 50000 
≥ 10000 ≥ 10000 
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Table 5.6. Description of the pipe variables and mechanical properties 

 
 
Symbol Variable Unit Distributionc Mean COV 

 

  

Outer diameter mm Normal 762 

 

 

Pipe wall thickness mm Normal 7.92 0.009 

 

Yield strength MPa Normal 461 0.035 

 

Tensile strength 

 

MPa 

 

 

517 0.037 

 

  

Operating pressure MPa 

 

5.7 0.058 

 

  

Radial corrosion rate mm/yr Normal 

 

   0.6 

 

  

 

Axial corrosion rate  mm/yr 

 

Normal 

 

  
   0.4 

a: 𝑎𝑑  value is a mean value estimated from the predicted MIC rate 

b: 𝑎𝑙value is based on the percentage proportionality of 𝑎𝑑 

c: The probability distribution for the random response variables are adopted from the work [17] 

 

 

 

 

 

 

 

 

𝐷 − 

𝑤𝑡 

𝜎𝑦 

𝜎𝑢 

𝑃0 Lognormal 

𝑎𝑑   0.3020a 

Lognormal 

𝑎𝑙 
   6.04b 
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Table 5.7. Description of the crack-in-corrosion characteristics 

 
 

Symbol Variable Unit Distribution Mean COV 

 

  

Initial crack size mm Normal 0.1984 0.202 

 

  

Hoop stress 
MPa Normal 

 

0.051 

 

  

 

Fracture toughness for 

mode I fracture 
 

 

Normal 
 

 

  

Young modulus 

 

 

 

 

  

Defect depth mm Normal 1.46 0.18 

 

  

 

Crack propagation model 

constant  
  

Normal 

 

 

  
 

  

crack shape parameter 

  

 

 

 

  

model parameter for crack 

propagation 

 

Normal 
 

  

0.052 

 

  

stress amplitude MPa Normal 90 0.026 

 

 

 

 

𝑎0 

𝜎 
400 

𝐾𝑚𝑎𝑡 MPa
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⁄  200 − 

𝐶 

− 
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𝜎𝑎 
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𝑑𝑐 
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5.5. Results and discussion 

  

The research objective was to develop a hybrid connectionist methodology that simultaneously 

captures the impacts of physio-chemical parameters’ nonlinear interactions, random corrosion 

parameters interdependencies, and their failure modes on the offshore system reliability in the 

presence of multispecies microbial biofilms.  

  

5.5.1 Impact of physio-chemical parameters’ interactions on the corrosion rate 

 

The dynamic structure that represents the complex interactions among the parameters is built using 

BN. Thus, the dependencies and dynamic interactions among the physio-chemical parameters 

(e.g., temperature, CO2, pH, H2S, and salinity) and their data range effects are captured for the 

prediction of the microbial corrosion rate. The collected data on the physio-chemical parameters 

are processed into probabilistic data for the BN modeling.  Fig. 5.5 shows the results of the 

parameter learning of the BN structure that reveal the dynamic interactions among the physio-

chemical parameters and bacteria and their effects on the corrosion rate. The estimated corrosion 

rate is in agreement with the recommended corrosion rate categorization [73]. 
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Figure 5.5. BN structure for microbial corrosion rate prediction, considering the  

         interrelationship between physio-chemical parameters 

 

Fig. 5.6 demonstrates the cumulative impact of the physio-chemical parameters’ interactions on 

the corrosion defect rate while dealing with multispecies biofilm structure. The impact of the 

interactions among temperature, CO2, H2S, salinity, and SRB on the corrosion rate is assessed by 

placing evidence on their respective nodes (see Fig. 5.6). The results show a 13.4% and 24% 

increase in the corrosion rate for the high and severe corrosion rate categories, respectively. The 

model provides a robust and dynamic tool for corrosion rate prediction by showing the importance 
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level of the operational and environmental parameters. This model can be updated upon the 

availability of a new set of data/information on the operating condition of the pipeline. It is 

important to note that for a sour oil field operation, the H2S and bacteria interactions enhance 

severe degradation rate of the infrastructures. They also participate in the structural crack failure 

as a result of Fe2S formation and hydrogen embrittlement. 

 

 

Figure 5.6. Combined effects of temperature, CO2, H2S, pH, salinity, and SRB interactions   on  

         microbial corrosion rate 
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5.5.2 Performance functions analysis based on microbial corrosion defects characteristics 

 

To analyze the effect of the failure modes on the system reliability, the non-probabilistic data are 

assessed to determine their probability characteristics and distributions. The probabilistic 

properties of the random corrosion variables are used to predict the time-dependent defect growth 

rate for the three defects depth. A total number of 105 Monte Carlo simulation trials in the 

MATLAB environment are used to evaluate the failure characteristics for the offshore pipeline 

and each failure mode for both cases. Fig. 5.7 presents the predicted failure characteristics and 

critical failure year under a prevailing multispecies biofilm condition. 

 

Figure 5.7. System failure probability for multi-failure modes and different 

corrosion defect depths without correlation effect 
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Based on Fig. 5.7, the point of coincidence of the failure profiles for the defect depth provides an 

absolute critical failure year of the offshore system. Consequently, the likely probability of failure 

due to leak, burst, crack, and rupture can be estimated from Figs. 5.8-5.11, respectively. Fig. 5.8 

illustrates the impact of microbial corrosion defect size on the leak failure probability prediction. 

It reveals that at the 12th year of exposure, the likely failure probability due to leakage increases 

by 40.9% and 77.1%, as the defect depth increases from 1.46mm to 2.95mm and 4.24mm, 

respectively. The defect with the maximum defect depth under a severe degradation rate shows the 

highest likelihood of failure due to leakage, resulting in the system failure. 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. Effects of defects depth and rate on the failure probability 

     due to perforation 

 

The performance function due to burst capacity versus time is shown in Fig. 5.9. The burst capacity 

of the offshore pipeline is characterized by its failure pressure under unstable pressure loads during 

operation. The influence of this pressure disturbance on the structural failure shows that as the 
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defect size increases, the system failure pressure reduces due to strength loss over time. In this 

case, the system may experience stochastic failure characteristics at any point along the internal 

surface of the pipeline with multispecies biofilms. According to Fig. 5.9, the analysis of the effect 

of the defect sizes and severe corrosion rate shows a 19.3% and 37.8% increase in the burst failure 

probability for long term exposure. According to the results, the burst failure contributes about 

36.5% to the overall offshore system reliability under microbial corrosion. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Effect of defects depth on the probability of burst failure due to 

microbial corrosion 

 

As the corrosion defects increase in depth, the stress intensity factors increase at the bottom of the 

deepest defect, based on its morphology. In this case, the stress field of the pipeline increases under 

unstable pressure loads. This dynamic pressure disturbance complicates the failure mechanisms, 

mainly due to the stochastic nature of the microbial corrosion. The limit state function results for 
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the rupture and stress corrosion cracking (fracture) induced failures are shown in Figs. 5.10-5.11. 

The output shows that in the 12th year of exposure, the likelihood of rupture failures under an 

unstable stress field increases with an increase in corrosion defect size. A parametric sensitivity 

analysis reveals that the longitudinal defect characteristics and flow stress produce an increasing 

impact on the likelihood of rupture failure caused by a complex multispecies biofilm. Note that 

the dynamic interactions among the bacteria types in the multispecies biofilm constitute a complex 

phenomenon that can dynamically alter the stress effects at any time during operation. This is 

further demonstrated by the crack induced failure prediction in Fig. 5.11. 

 

 

 

 

 

 

 

 

 

 

Figure 5.10. Effect of defects depth on the probability of rupture failure due to 

microbial corrosion 

 

The results in Fig. 5.11 show the effect of stress intensity factors (which is defined by the crack 

size, far-field stress level, geometry, and microstructural stability) on the failure characteristic of 

a cracked offshore pipeline segment. Under microbial corrosion, the interactions among the 
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physio-chemical parameters and the SRB promote an environment that supports the cracking of 

the steel material. This is likely a result of hydrogen embrittlement and sulfide stress cracking. The 

characteristic function for the crack induced failure is probabilistically formulated by Eq. (5.6), 

and the predicted result at the 12th year of exposure gives an upper bound probability of 0.7762. 

To capture the variability and possible lower bound probability of failure, a 10% lower bounds 

error interval profile for crack propagation due to the prevailing complex multispecies biofilm is 

presented.  

 

It is important to note that the rupture and crack modes show a higher degree of influence on the 

overall system’s failure likelihood and the critical failure year. This behavior is due to the 

cumulative effects of the stress intensity parameters, random fluctuation of the internal pressure, 

and the dynamic bacteria interactions when there is a considerable reduction in the pipe wall 

thickness. The percentage contribution of the individual failure modes on the pipeline's overall 

failure profile at the 12th year of exposure is shown in Table 5.8. 
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Figure 5.11. Time evolution probability of failure due to MIC induced cracking 

 

Furthermore, the effects of the physio-chemical parameters on the leak failure probability are 

illustrated in Fig. 5.12. An increase in the corrosion rate is observed due to the interactions among 

the vital parameters and by placing evidence on their upper bound probability state. The corrosion 

rate serves as the input parameter to the leak failure limit state function to forecast the effects of 

the physio-chemical parameters on the leak failure probability (see Fig. 5.12). It is observed that 

at the 12th year of exposure to the microenvironments, the leak failure probability increases by 

23.4%, 13.3%, and 2.6%, respectively. This increase is due to the combined effect of physio-

chemical parameters (CO2, pH, and temperature) interactions and bacteria. This confirms the 

finding presented in the literature [41,42], implying that in a dynamic microbial-chemical 

environment, the dynamic dependencies among physio-chemical parameters increase the 
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corrosion rate and its propagation. Although the degree of influence may be unstable, a parametric 

impact assessment on the system reliability can be inferred by considering multiple scenarios.  

‘  

Figure 5.12. Results of the physio-chemical parameters’ effect on leak failure 

mode caused by microbial corrosion 

 

 

Table 5.8. Critical failure characteristics of an offshore pipeline with microbial corrosion 

                                 induced multi-failure modes 
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5.5.3 Corrosion parameters correlation and failure modes effects on the system reliability 

 

The Copula function is adopted to model the impact of the interdependencies among the random 

corrosion parameters and their failure modes. Its unique advantage helps model the joint 

probability distribution for the response parameters. The system probability of failure for the likely 

failure modes is evaluated by Eq. (5.20) using a Copula-based Monte Carlo simulation in the 

MATLAB environment. For the correlation’s effect modeling, an Archimedean Copula family is 

implemented to predict the copula parameter and Kendall’s tau, which defines the dependence 

measure among the random response parameters. Fig. 5.13 shows the generated sample uniform 

distribution of the parameters for the Archimedean Copula family. The plot is created based on 

1000 samples using the method presented in the reference [67]. The Clayton Copula approach 

shows relatively stable dependencies in the lower tail of the structure, while the Gumbel Copula 

reveals a significant dependence at the upper tail. The Frank Copula shows a symmetric profile 

along the positive correlation axis. In this research, the characterized Kendall’s tau values are used 

as the concordance measure of the parameters, and the Copula is adopted for their joint probability 

distribution function. 
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Figure 5.13. Generated standard uniform samples for Kendall’s 𝜏 values of 0.28, 0.53, 

      and 0.91, respectively 

 

The copula function based on the Kendall’s tau values captures the dependencies among the 

random response parameters for the leak failure probability prediction under the influence of the 

multispecies biofilm. The overall analysis captures the influence of the physio-chemical 

parameters and their nonlinear interdependencies on the leak failure probability for long term 

exposure, as seen in Fig. 5.14. It is found that the leak failure probability decreases by 5.3%, 7.2%, 

and 9.0% for Kendall′s 𝜏 = 0.28, Kendall′s 𝜏 = 0.53, and  Kendall′s 𝜏 = 0.91, respectively, as 

the exposure time increases. This again confirms that as the value of the dependences measure 

(Kendall’s τ) increases among the response random corrosion variables and the physio-chemical 

parameters, there is a corresponding decrease in the leak failure probability with time. Although 
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the decreasing rate is low, the results depict the real case scenario for the corroding offshore 

pipeline that is exposed to a long term microbial infested environment. This is in agreement with 

the findings of previous studies [9,33,74]. This provides initial validation for the model 

application. 

 

Figure 5.14. Effects of corrosion parameters’ dependences on the leak failure probability 

   for the maximum defect size 

 

The proposed model captures the complex interactions among MIC influential factors and the 

random response parameters’ dependencies for the system reliability prediction. According to the 

results, for long term exposure, the system failure probability decreases by 9.82%, 13.70%, and 

19.30% at 𝜏 = 0.28, 𝜏 = 0.53, and 𝜏 = 0.91 respectively (see Fig. 5.15).  The resulting trend 

shows a monotonic effect on the system failure probability as the coefficient of rank correlation 

increases. This finding agrees with the results presented in the literature [9,25]. This further 

validates the applicability of the proposed approach. Based on the dependencies' cumulative 
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impact, the likely critical failure year inferred from the system failure profile (in Fig. 5.15) occurs 

at the 16th year of exposure. Two different indexing scenarios are then employed to predict the 

leak mode's upper bound failure year and the most critical worst-case scenario for the system 

reliability, considering dependencies. The results of the analysis are given in Table 5.9. Since the 

offshore system is treated as a series system, the overall results provide critical information on the 

system reliability necessary for a precise, effective, and proactive integrity management plan to 

minimize unnecessary inspection costs and sudden failure for sustainable operations. It could be 

observed that the results are highly conservative (i.e., overestimated) upon ignoring dependencies, 

compared to the results when interdependencies of the failure modes’ random response parameters 

are captured. The results provide practical and reliable information on the actual state of the 

offshore pipeline and its associated failure characteristics for the period under consideration. 

 

Figure 5.15. Effects of corrosion parameters interdependencies on the system 
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Table 5.9. Critical failure year for leak mode and system failure at different indexes 

 
 

Leak mode (failure time, years) System mode (failure time, years) 

Failure index uncorrelated correlated 

Worst-case 

scenario 

index uncorrelated correlated 

  

τ=0.28 τ=0.53 τ=0.91 

  

τ=0.28 τ=0.53 τ=0.91 

0.3 9.8 11 11.8 12.5 0.9 4.5 5.9 8 9.9 

 

The results obtained at the prevailing operating conditions are used for reliability-based decision 

making, as shown in Fig. 5.16.  A decision-making strategy is provided in Fig. 5.16 by showing 

the likely failure year based on the failure probability and the degree of correlation among the 

random corrosion parameters. Consequently, a reliable inspection and maintenance interval can be 

inferred based on the main operating conditions of the offshore pipeline.  

 

Figure 5.16. Effect of corrosion parameters dependencies on the critical failure year for 

    the offshore pipeline at different failure indexes 
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The current study offers robust dynamic condition assessment criteria based on the associated 

dependencies among random corrosion parameters and failure modes for pipeline reliability under 

MIC. However, the hybrid methodology may have some limitations. The major setback in the BN 

is the associated subjectivity with the prior and posterior probability estimation. The substantial 

influence of the probability distribution of the monitoring operating parameters and the random 

corrosion response variables may introduce further subjectivity in the CMC model analysis. Also, 

the proposed approach does not consider the multiple defects interactions. 

 

5.6. Conclusions 

  

The current research demonstrates the application of a hybrid connectionist methodology, and the 

integration of BN and Copula-based Monte Carlo simulation (BN-CMC), for reliability prediction 

of a corroding offshore pipeline. The methodology captures the effects of dynamic nonlinear 

interactions among the physio-chemical parameters, and the failure modes on the system 

reliability. It is found that the complex interplay among the physio-chemical parameters increases 

the corrosion rate and the likelihood of leak failure when dealing with multispecies biofilms. 

However, due to the instability in the dependencies among the corrosion’s influential parameters, 

the critical failure year due to leak failure increases for long term exposure cases. The reason for 

this behavior might be that for long term exposure, the effect of the physio-chemical parameters 

interactions and the bacteria diversity decreases, and the growth rate of corrosion defects becomes 

steady, exhibiting a limiting factor.  

 

Furthermore, the instability in the physio-chemical parameters’ interactions with the bacteria and 

the failure modes diversely affects the system reliability at different levels of factors’ 
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dependencies. It is concluded that an increase in the offshore pipeline's critical failure year is 

experienced as the value of the Kendall tau increases. This is due to the likely decrease in the upper 

bound failure probability as the exposure time increases under the combined effects of the physio-

chemical parameters’ interactions and random corrosion variables’ dependencies. It is important 

to note that the complex instability in mixed microbial communities and the variability in the 

response parameters of failure modes are the vital factors of critical safety in corroding offshore 

systems. The effects of the complex interactions and instability among the microbial corrosion 

parameters are captured through the failure index analysis for the leak mode and system mode, 

respectively. 

 

The introduced methodology offers a robust and dynamic tool for risk-based inspection and 

maintenance planning to sustain offshore operations experiencing microbial corrosion. Certainly, 

the model could be improved in future research by i) considering multiple defects interactions 

under multi-failure modes’ dependencies and multispecies biofilm architecture, and ii) considering 

the effects of probability distribution types and the changes in the coefficient of variation of the 

random response variables and the operating pressure on the pipeline failure behavior under 

parametric interdependencies. 
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Chapter 6 

Offshore pipeline integrity assessment considering material and parametric 

uncertainty 

 

Preface 

A version of this chapter has been submitted to the Journal of Pipeline Science and Engineering. 

I am the primary author along with the Co-authors, Faisal Khan, Sundady Adedigba, Sohrab 

Zendehboudi, and Hodjat Shiri. I developed the conceptual framework for the integrity assessment 

model and carried out the literature review. I prepared the first draft of the manuscript and 

subsequently revised the manuscript based on the co-authors’ feedbacks. Co-author Faisal Khan 

helped in the concept development, design of methodology, reviewing, and revising the 

manuscript. Co-author Sunday Adedigba provided support in implementing the concept and 

testing the model. Co-author Sohrab Zendehboudi provided fundamental assistance in validating, 

reviewing, and correcting the model and results. Co-author Hodjat Shiri provided support in 

reviewing and correcting the manuscript.  The co-authors also contributed to the review and 

revision of the manuscript. 

Abstract 

This chapter presents a methodology that integrates the semi-empirical corrosion models with 

probabilistic analysis to study steel structural failure behavior considering material and parametric 

uncertainties. The semi-empirical models are used to assess the asset’s susceptibility, system 

degradation rate, and defect growth over time under harsh corrosive environments. The developed 

model is translated into a limit state function in a probabilistic framework to define the asset’s safe 

operating envelope. The probabilistic framework is simulated considering the variation in the 

material properties of steel grades, corrosion response parameters, and different susceptibility 
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models. The variabilities in the ultimate tensile strength, operating pressure, and wall thickness 

exhibit the highest contributions to pipeline failure behavior in a harsh offshore environment. It is 

also observed that the failure probability of the pipeline increases with an increase in the coefficient 

of variation at the lower bound of failure, while it decreases at the upper bound of failure. The 

coefficient of variation for the tensile strength shows a 32.2% (the highest) impact on the limit 

state function performance as the year of exposure progresses. The proposed approach offers a 

systematic framework for an appropriate material selection and risk-based integrity management 

strategy for offshore structures, including pipelines. 

Keywords: Mixed corrosion environment; Offshore steel pipelines; Monte Carlo simulation; 

Failure probability; Uncertainty; Parametric variability 

 

6.1. Introduction 

  

Offshore pipeline failure in the ocean environment is influenced by the environment, material 

chemical composition, and the material microstructural formation. These factors pose different 

potential effects on the susceptibility of the steel structure over time.  They are also crucial factors 

in the pipeline selection process and life cycle prediction/management during operation, especially 

in harsh ocean environments.  Several studies have indicated that material microstructural 

variability of steel structures plays a vital role in their corrosion susceptibility potentials [1–3]. 

Offshore steel structures present complex failure characteristics due to high variability in 

microstructural parameters and their interactions with the harsh environment. A comprehensive 

understanding of the system’s failure behavior is needed for a proactive integrity management 

strategy. The interplay of these influencing factors’ variability on the offshore steel pipelines' 



171 
 

structural behavior under different susceptibility models is critical for system integrity 

management, especially in bacteria-infested offshore environments. 

The material elements and corrosion influential factors present complex interdependent 

characteristics. This dependency could influence the failure behavior of the steel structure. The 

failure complexity is characterized by the difference in the potential of the heterogeneities in the 

material structure. These heterogeneities could result from the atomic to microns scales, including 

defects in the metal crystal structure, non-metallic inclusion, chemical phase structure, elements, 

and/or phase segregation [3,4]. Therefore, it is essential to adequately understand the correlation 

of corrosion with the microstructural/material formation of the system.  

Various studies have focused on the effect of microstructure/material properties on corrosion 

susceptibility of engineering systems [4–12]. For example, Hwang et al. [4] experimentally 

investigated the correlation of microstructure and fracture properties of steel pipelines based on 

the pressed notch drop-weight tear test (DWTT) and Charpy V-notch (CVN) impact test, and the 

authors concluded that change in the alloying elements (such as Mo, C, Cu) and the high-toughness 

steel pipe (API X70) show different crack susceptibility potentials. There is an increase in the 

fracture properties as indicated by the highest upper self-energy (USE). Bastos et al. [10] 

experimentally examined the corrosion susceptibility of UNS32750 steels under three different 

microstructures in harsh environmental conditions. They found that the steel's corrosion 

characteristic strongly correlates with the microstructure, especially under the combined effect of 

very high hydrogen sulphide and chloride concentration. As the steel is exposed to harsh 

environmental conditions under increasing temperature, the pitting resistance is decreased due to 

precipitation.  
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Furthermore, the impact of carbon steel microstructure on the corrosion rate and sulphide stress 

cracking (SSC) susceptibility has been discussed in the literature [3,9,13]. Xue and Cheng [13] 

showed that the material microstructure influences the rate of corrosion of the carbon steel. This 

is evidenced in the localized corrosion susceptibility potentials and the presence of pearlite bands 

in the steel microstructure. The polarization curves and permeation measurement show that the 

high-strength steel pipe with a martensitic microstructure is most susceptible to SSC at all 

temperatures. Sun et al. [6] investigated the impacts of material microstructure and its carbon 

content on steel pipelines' corrosion properties. It was observed that an increase in the carbon 

content decreases the ferrite and increases the cathode/anode area ratio. This results in an increase 

in the corrosion rate from 0.30 to 0.90 mm/year when the carbon content increases from 0.05 to 

0.13 wt%. Katiyar et al. [8] studied the corrosion behavior of coarse, medium, and fine ferrite-

pearlite, martensite, and tempered martensite microstructure reinforced bars. It was concluded that 

the corrosion susceptibility increases based on their material microstructural formation in a high 

pH environment.  

To further understand the variability in the material elements and corrosion response parameters, 

Lee et al. [14] proposed the application of a probabilistic strategy. The authors introduced the 

integration of the homogenization method with Monte Carlo simulation (MCS) to estimate the 

equivalent microstructure and behavior of the fiber and matrix constituents of glass/epoxy 

compositions. The main objective is to capture the variability in the basic microstructural 

elements/properties and to minimize uncertainty. The stochastic analysis shows the effect of 

variability and probability distribution type on the steel's macroscopic mechanical properties. 

Further information/discussion on probabilistic/stochastic models for microstructural analysis can 

be found in the literature [15–19]. 
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The reviewed literature has shown the potential influence of the microstructural/material properties 

on steel pipelines' integrity. However, there is a limited understanding of how the degree of impact 

propagates to the system's failure in a harsh bacteria-infested environment. It is clear from the 

reviewed literature that there are a low number of studies that investigated the effect of 

microstructural element variability on the offshore systems failure characteristic. The offshore 

system microstructural response in a mixed chloride-CO2-H2S-bacteria-infested/corrosive 

environment has not been studied. The effects of microstructural elements' variability on the 

offshore systems' failure need to be further explored. The associated failure dependency on the 

material formation and its corresponding parametric uncertainty in the steel pipe still requires 

further research. Thus, we need to study and understand the offshore pipeline failure behavior 

under different corrosion susceptibility models in a mixed corrosive environment, for risk-based 

integrity management.    

Moreover, the diversity in alloying elements (nickel, chromium, niobium, carbon, and sulfur) 

inclusion in steels of the same grade among different manufacturers presents complexity in 

prediction of their corrosion susceptibility behaviors. The interaction of the material elements and 

the chemical composition in a mixed chloride-CO2-H2S-bacteria-infested (corrosive) environment 

could further complicate the material degradation potential. This will increase the chance of the 

steel pipeline failure. These knowledge gaps necessitate the development of an integrated 

probabilistic approach for a comparative study of the steel grades microstructural and parametric 

uncertainties’ effects on the pipeline’s integrity by considering different corrosion susceptibility 

models. 

The current research presents the integration of semi-empirical models with MCS for a 

comparative analysis of internally corroding offshore systems failure behavior considering 
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different material microstructure (steel grade) and susceptibility models. The semi-empirical 

models capture various corrosion susceptibility response parameters for defect propagation 

prediction for different material structures. The semiempirical models’ outputs are mapped into 

the likely failure modes formulation under a complex and mixed corrosion environment. The 

developed failure state equations are modeled using the Monte Carlo algorithm considering the 

randomness in the essential random variables and the stochastic nature of the microbial corrosion 

phenomenon. The proposed approach is demonstrated on three different steel grade pipelines with 

corrosion defects under different susceptibility models. The model explores: i) the effects of 

heterogeneities’ characteristics and mixed corrosive environment on the failure behavior of the 

steel pipelines, ii) the impact of the susceptibility model on the strength loss over time under a 

mixed corrosive environment, and iii) the variability in the material microstructure and corrosion 

response parameters for failure behavior prediction and integrity management. The proposed 

approach provides a risk-based tool for a well-informed material selection, condition monitoring, 

and treatments/environmental control strategy in corroding systems integrity management. 

6.2. Offshore pipeline corrosion susceptibility analysis 

 

The environmental influential factors’ interaction with the steel pipes' microstructural/material 

formation could enhance their corrosion susceptibility potentials. The literature has shown that the 

corrosion rates of the steel pipes increase in different material microstructures, such as pearlitic 

steel, bainitic steel, spheroidized steel, martensitic steel, and tempered martensitic steel [1]. Robust 

models are required to model the susceptibility potentials and the propagation rate of the corrosion 

defect under a complex microenvironment. Some empirical, phenomenological, probabilistic and 

semi-empirical corrosion susceptibility models have been recently reported in the literature 
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[20,21,30,31,22–29]. An overview of the common susceptibility models for both external and 

internal corrosion is shown in Table 1. 

Table 6.1. Empirical/semi-empirical corrosion susceptibility models for offshore systems 

 

Model Application Source 

Southwell’s linear model;     

𝑑(𝑡) = 0.076𝑑 + 0.038𝑡 

Steel structure  [32] 

Southwell’s bi-linear model;  

𝑑(𝑡) = {
0.09𝑡                   0 ≤ 𝑡 < 1.46𝑦
0.76 + 0.038𝑡 1.46 ≤ 𝑡 < 16𝑦

 

Steel structure [32] 

Melchers-Southwell’s nonlinear model: 

𝑑(𝑡) = 0.84𝑡0.823 

Marine structure [33]  

Melcher’s power law model: 

𝑑(𝑡) = 0.1207𝑡0.6257 

Marine structure [33] 

Melcher’s tri-linear model: 

𝑑(𝑡) = {

0.170𝑡                      0 ≤ 𝑡 < 𝑦
0.152 + 0.0186𝑡 1 ≤ 𝑡 < 8𝑦
−0.364 + 0.083𝑡 8 ≤ 𝑡 < 16𝑦

 

Marine steel 

structure 

[29,33] 

Yamamoto-Ikegami’s nonlinear model: 

𝑑(𝑡) = 𝐶1(𝑡 − 𝑇0 − 𝑇𝑡)
𝐶2 

Ship structure [34] 

Paik’s nonlinear model: 

𝑑(𝑡) = 𝐶1(𝑡 − 𝑡𝑐𝑙)
𝐶2 

Ship structure [35] 

Paik & Kim model: 

𝑑𝐶 =
𝛼

𝛽
(
𝑌𝑒
𝛽
)
𝛼−1

𝑒𝑥𝑝 [−(
𝑌𝑒
𝛽
)
𝛼

] 

𝛼 = 0.0020𝑌𝑒
3 − 0.0994𝑌𝑒

2 + 1.5604𝑌𝑒 − 6.0025 

𝛽 = 0.0004𝑌𝑒
3 − 0.0248𝑌𝑒

2 + 0.4793𝑌𝑒 − 2.3812 

Ship structure [21] 

 

Soares and Garbatov model: 

𝑑(𝑡) = 𝑑∞ [1 − 𝑒
(
𝑡−𝑇𝑐
𝑇𝑡

)
] 

 

 

Ship structure 

 

[36] 
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Mohd & Kee model: 

𝑓𝑐 =
𝛼

𝛽
(
𝑌𝑒
𝛽
)
𝛼−1

𝑒𝑥𝑝 [− (
𝑌𝑒
𝛽
)
𝛼

] 

𝛼 = −0.02287𝑌𝑒
2 + 0.61835𝑌𝑒 − 0.94398 

𝛽 = 0.001347𝑌𝑒
2 + 0.004688𝑌𝑒 + 0.292059 

Subsea/offshore 

structure 

[25] 

Generic linear model: 

𝑑(𝑡) = 𝑑0 + 𝑐𝑑 ∙ 𝑇 

𝐿(𝑡) = 𝐿0 + 𝑐𝑙 ∙ 𝑇 

Pipeline structures [37] 

Ossai model: 

𝐷𝑚𝑎𝑥(𝑡) =

{
 
 

 
 

0.12𝑡0.771 𝑓𝑜𝑟 𝑙𝑜𝑤

0.2687𝑡0.7408 𝑓𝑜𝑟 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒

0.3887𝑡0.7879 𝑓𝑜𝑟 ℎ𝑖𝑔ℎ

0.6508𝑡0.8657 𝑓𝑜𝑟 𝑠𝑒𝑣𝑒𝑟𝑒

0.695𝑡0.7689 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑑𝑎𝑡𝑎

 

Pipeline structures [38] 

 

 

6.3. Methodology 

  

The complex nature of the offshore systems’ operating environment promotes stochastic failure 

characteristics during operation. The failure behavior also depends on the microstructural 

formation and the variability of the steel structure parameters. The interaction of the 

microstructural/material elements and the environmental factors with their variability can be 

modeled using a robust probabilistic framework. The following sections describe the procedure of 

the proposed methodology: 

6.3.1 Collection of relevant information on the offshore structures 

 

Information on the systems under study is collected. The required information includes but is not 

limited to the microstructure composition, mechanical properties, operating/environmental 
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condition/properties, microbial availability/counts, corrosion types, morphology, and corrosion 

flaws characteristics. 

6.3.2 Corrosion susceptibility model assessment 

 

The susceptibility of a steel structure in corrosive environments is complex and difficult to predict. 

This is due to the mixed corrosive elements and their interaction with the steel’s material 

parameters. Several studies for the development of empirical, phenomenological, probabilistic, 

and semi-empirical susceptibility models from different corrosion influential factors’ perspectives 

have been conducted. However, there are a limited number of comprehensive models in the 

literature that can capture all the influential parameters in a mixed corrosion environment. In this 

research, four of these models (i.e., the power law model, Ossai’s model, Mohd and Kee’s model, 

and linear growth model) are adopted to demonstrate their effects on the failure behavior of three 

different steel grade pipeline structures in a mixed corrosive environment.  

It is important to note that for the offshore assets' degradation rate under a mixed corrosive 

environment, the predicted results presented by the references [27,39] are adopted for the research 

analysis. The approach demonstrates the application of a probabilistic network-based structure to 

capture the dynamic and nonlinear interactions among the corrosive elements in a mixed corrosion 

environment. The corrosion rates are used as the input data for the susceptibility model prediction 

in this research. For more detail on the corrosion rate prediction, interested readers are referred to 

our previous works [27,39]. 

6.3.3 Failure assessment model 

 

Corrosion induced failures are complex and stochastic in nature. The failures’ influencing 

variables such as the microstructural elements, corrosion response parameters, and monitoring 
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operating parameters have associated uncertainties. Therefore, the failure prediction over time is 

stochastically structured. Several generic failure (strength loss) models have been introduced for 

system plastic collapse modeling [40–47]. However, the PCORRC model (see Eq. 6.1) is a 

validated model which is mostly suitable and applicable for moderate-to-high toughness pipe 

failure prediction [48].   

PCORRC =

{
  
 

  
 

𝑃𝑏(𝑡) =
2𝑤𝑡𝜎𝑢
𝐷

[
 
 
 
 

1 −
𝑑𝑚𝑎𝑥
𝑤𝑡

(

 
 
1 − 𝑒𝑥𝑝

(

 
−0.157𝐿

√𝐷(𝑤𝑡 − 𝑑𝑚𝑎𝑥)
2 )

 

)

 
 

]
 
 
 
 

𝐿 ≤ 2𝐷 𝑎𝑛𝑑 
𝑑𝑚𝑎𝑥
𝑤𝑡

≤ 0.8

                             (6.1) 

where   𝑃𝑏(𝑡), 𝐷, 𝜎𝑢, 𝑤𝑡, 𝑑𝑚𝑎𝑥 and 𝐿 represent the burst capacity, external diameter, ultimate 

tensile strength, wall thickness, defect depth, and corrosion defect length of the pipeline, 

respectively.  

The PCORRC model is adopted in this research study. The model captures the material mechanical 

and fracture properties. 

6.3.4 Limit state formulation for failure probability prediction 

 

The failure behavior of the moderate-to-high toughness pipe can be forecasted based on the small 

leak modes, large leak modes, and/or crack failure. However, in the current study, we consider the 

leak and burst failure modes while employing multiple corrosion susceptibility models. The limit 

state formulation (LSF) for corroding systems is based on the fitness for service criteria as a 

function of the considerable wall thickness reduction [49]. 

Corrosion induced leak failure. Offshore oil and gas pipelines leaks are a function of the 

considerable wall thickness reduction and pit hole formation. Different criteria to define the safe 
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operating envelope for leak failure mode are available in the open sources [43,45,50]. In this study, 

the limit state formulation for small leak failure mode is based on the DNV criteria [43], as 

presented by Eq. (6.2). 

𝑔1(𝑤𝑡, 𝑑, 𝑡) = 0.8𝑤𝑡 − 𝑑(𝑡)                                                                                                                  (6.2) 

where 𝑤𝑡 refers to the pipe-wall thickness, and 𝑑(𝑡) defines the corrosion defect depth at the 

time, 𝑡. 

Burst failure criteria. For a given limit state function, as shown by Eq (6.3), the failure envelope 

which is described by the probability of failure, can be predicted using Eq. (6.4) . 

𝐺(𝑅, 𝐿, 𝑡) = 𝑅(𝑡) − 𝐿(𝑡)                                                                                                                         (6.3) 

where 𝐿(𝑡) introduces the time-dependent load or load effect and 𝑅(𝑡) describes the structural 

resistance. 

𝑃𝑓(𝑡) = 𝑃[𝐺(𝑅, 𝐿, 𝑡) ≤ 0] = 𝑃[𝐿(𝑡) ≥ 𝑅(𝑡)]                                                                                    (6.4) 

where 𝑃 is the probability of occurrence of an event. 

Different models of burst failure prediction for moderate-to-high toughness steel pipes have been 

introduced as a function of considerable reduction in wall thickness and unstable pressure loads 

[42]. The dynamic pressure loads or stresses could result in system failure at any time. The 

complexity in the microstructural elements’ response in a mixed chloride-CO2-H2S-microbial 

corrosive environment plays an important role in the burst or plastic collapse failure characteristic. 

Eq. (6.5) introduces the limit state function for failure mode based on the burst capacity. 

𝑔2 (𝑃𝑏 , 𝑃𝑜𝑝, 𝑡) = 𝑃𝑏(𝑡) − 𝑃𝑜𝑝                                                                                                                  (6.5) 

where 𝑃𝑏(𝑡) denotes the burst capacity (see Eq. 6.1 ), and 𝑃𝑜𝑝 symbolizes the operating pressure. 
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Uncertainty propagation in the failure prediction. The failure behavior of corroding offshore 

pipelines is a very random phenomenon based on its basic response parameters. Therefore, the 

formulation for failure prediction can be stochastically defined in terms of the basic material and 

corrosion response parameters. These parameters play a key role in the variability and dynamics 

of the material strength loss in a mixed chloride-CO2-H2S-microbial corrosive environment. The 

random response parameters' uncertainty can be propagated using the MCS that generates a vector 

form of the random parameters, as given below [51,52]:  

𝑃𝑏(𝑡) = 𝑓(𝑤𝑡, 𝜎𝑦, 𝜎𝑢𝐶𝑑 , 𝐶𝐿 , 𝐷, 𝐿, 𝑑𝑚𝑎𝑥)                                                                                              (6.6) 

where 𝑤𝑡, 𝜎𝑦 , 𝜎𝑢, 𝑐𝑑, 𝑐𝑙 , 𝐷, 𝐿, and 𝑑𝑚𝑎𝑥 represent the basic random independent variables that 

describe the pipe wall thickness, yield strength, ultimate strength, radial and axial corrosion rate, 

outer pipe diameter, mean initial corrosion length, and depth, respectively. For definite 

probabilistic characteristics of the random variables, 𝑃𝑏(𝑡) can be predicted using MCS. 

The MCS is a probabilistic numerical tool that relies on the sampling inherent variability in random 

variables [27]. It has been broadly used in engineering and economic risk analysis [49,53,54]. The 

associated material structure and corrosion response parameters and their characterized probability 

distribution are captured by the MCS algorithm. Fig. 6.1 shows the MCS algorithm for failure 

probability prediction for the studied steel structures. 



181 
 

Define input variables, their probability properties and 
the number of Monte Carlo steps  N (iterations)

Simulate the LSF for 
each failure mode

LSF <= 0 n= n+1

Calculate the failure 
probability Pf=n/N

Start

Stop

Repeat N times

Yes

No

 

Figure 6.1. An algorithm for failure probability prediction using MCS 

 

The microstructural/material formation and the environmental impact due to chloride, CO2, H2S, 

and microbial interaction could lead to fracture or corrosion induced failure. Crack failure could 

result from hydrogen-induced and sulfide stress cracking (a form of stress corrosion cracking) 

[55]. This is predominant in a sour oil field operation, where hydrogen embrittlement is enhanced 

[56]. The reported interaction presents a problematic corrosion induced failure mechanism, 

especially in a mixed corrosive environment. A sensitivity analysis is carried out to capture the 

effects of the random response parameters on the limit state function performance for the exposed 
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period. It is important to note that the current study does not consider the fracture failure mode and 

the effect of correlation among material/corrosion response parameters. 

The algorithm is demonstrated on three steel grade structures under different corrosion 

susceptibility models. The steel pipelines' failure characteristic is predicted for comparative risk-

based analysis and optimal decision-making to aid terrain specific material selection and corrosion 

management strategy. 

6.4. Case study 

 

The current hybrid methodology is demonstrated on three different steel grade pipelines (API 5L 

X52, API 5L X65, and API 5L X70) under different corrosion susceptibility models [39,42]. The 

steel structures are assumed to operate in a mixed chloride-CO2-H2S-microbial corrosive 

environment with internal corrosion defect depth. In a mixed corrosion environment, CO2 

synergistically interacts with the sulphate reducing bacteria (SRB) and increases the corrosion rate 

of the steel pipeline [57]. The pipeline’s fluid temperature plays a critical role in the subsea 

pipelines' microstructural response to CO2 corrosion, H2S corrosion, and microbial corrosion [58–

60]. The mechanical properties of the pipelines are listed in Table 2. The corrosion geometry, 

defect depth characteristics (mean of 2.2mm; standard deviation of 0.81), and defect length (mean 

of 95mm; standard deviation of 32) are used in the analysis [61].  

Table 6.2. Mechanical and fracture properties for offshore steel pipelines 

 
 

Grade Yield Stress (MPa) 

Ultimate Tensile 

Strength (MPa) 

Charpy Upper-

Shelf Energy (ft-Ib) 

Strain Hardening 

Coefficient (n) 

X52 411 508 32 0.0832 

X65 483 625 122 0.0881 

X70 525 601 70 0.0856 
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Table 6.3 shows the probabilistic properties of the random response variables of the steel structures 

used in this research. The probabilistic characteristics were extracted from the literature [50,61]. 

Table 6.3. Probabilistic properties for random response variables 

 
 

X52 

Parameters D(mm) wt (mm) 
 

  

Mean value 508 12.7 7.8 411 508 

Standard deviation 12.43 1.214 0.231 11.44 15.149 

Distribution Normal Normal Lognormal Normal Lognormal 

      
X65 

Parameters D(mm) wt (mm) 

 

 

  
 

 

Mean value 762 9.92 9.8 483 625 

Standard deviation 14.288 0.713 0.331 16.135 19.129 

Distribution Normal Normal Lognormal Normal Lognormal 

     

 

  

X70 

Parameters D(mm) wt (mm) 
 

  

Mean value 682.4 15.9 10.2 525 601 

Standard deviation 13.87 2.09 0.658 12.6 14 

Distribution Normal Normal Lognormal Normal Lognormal 

Additional data/information on the radial and axial corrosion rate under the mixed corrosive 

environments are found in the literature [27,39]. The corrosion susceptibility models presented in 

the open sources [25,33,37,38] are adopted for the numerical demonstration of the proposed 

approach. Furthermore, the following assumptions are made: i) the pipelines are exposed to mixed 

corrosive environments, as presented in [39], and the predicted corrosion rate is adopted for the 

research analysis, ii) the microstructural and corrosion response variables are treated as mutually 

𝜎𝑦 (MPa) 𝜎𝑢 (MPa) 𝑃𝑜𝑝 (MPa) 

𝜎𝑦 (MPa) 
𝜎𝑢 (MPa) 𝑃𝑜𝑝 (MPa) 

𝜎𝑦 (MPa) 𝜎𝑢 (MPa) 𝑃𝑜𝑝 (MPa) 
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independent, iii) the fracture failure mode and the correlation among key failure influencing factors 

are not considered in the current study, iv) the pipelines are subjected to four different 

susceptibility modeling for the defect propagation prediction over time, v) empirical values are 

assumed for the power law model coefficients (parameters) for the purpose of demonstration, and 

vi) different coefficient of variation (cov) values are assumed for the random structural parameters. 

The proposed computational procedure is applied to the numerical example based on the data, as 

summarized in Tables 6.1-6.3, with additional information from the referenced literature. 

 

6.5. Results and discussion 

 

The current research presents a probabilistic methodology that integrates the empirical corrosion 

susceptibility models with the Monte Carlo algorithm for a comparative failure prediction of steel 

pipelines under mixed corrosive environments. The current study utilizes the results of our 

previous research work that uses a network-based probabilistic formalism to capture the nonlinear 

interactions among the mixed corrosive elements for corrosion rate prediction [39]. The predicted 

corrosion rate is adopted and used as input data for the pipeline susceptibility prediction. Three 

grades of offshore steel pipeline failure profile are predicted under a mixed corrosive environment. 

A 106 number of simulations based on the Monte Carlo algorithm are carried out in the MATLAB 

environment for the failure probability prediction. 

6.5.1 Leak failure behavior of offshore steel pipelines in a mixed corrosive environment 

 

Three steel pipelines (API 5L X52, API 5L X65, and API 5L X70) are subjected to a mixed 

corrosive environment and different susceptibility models to study their failure behavior. The goal 

is to capture the microstructural and parametric interactions’ effects on the failure characteristics 
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of these steel pipelines. To do this, emphasis is placed on the material microstructural elements' 

configuration, based on their impact on the strength and resistivity of the steel structure to 

corrosion and leak failure. The results of the formulated leak limit state function are depicted in 

Fig. 6.2. It is found that for a severe corrosion rate of 0.3776, the steel structures show diverse 

failure profiles across the grades. 

 

Figure 6.2.   Impact of steel grades on leak failure probability in mixed  

     corrosive environments 

 

It can be concluded that, given the predefined mixed corrosive environments, the likely time of 

failure at an upper bound leak failure probability of 0.9741 occurs after 16 years, 26 years, and 32 

years of exposure for the X65, X52, and X70 pipelines, respectively. Further analysis of the 

susceptibility model performance on the leak limit state function is shown in Fig. 6.3. 
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Figure 6.3. Impact of susceptibility models on the leak failure  

           behavior of X52 steel pipeline 

 

As indicated in Fig. 6.3, the failure profile of the X52 pipeline based on the power law model 

follows a similar trend as with the linear corrosion growth model. It further shows that there is a 

considerable divergence in the pipeline failure profile for Ossai’s model and Mohd & Kee's model. 

This indicates the performance state of the semi-empirical models, which depends on the model’s 

assumptions and the prevailing operating conditions of the pipeline. One can conclude that the 

choice of susceptibility model influences the failure profile of the steel structures. Thus, for the 

predefined mixed corrosive environments, the power law model and linear corrosion growth model 

adequately forecast the susceptibility characteristics of the X52 pipeline under leak failure mode. 

 

6.5.2 Impact of corrosion susceptibility models on burst failure characteristics 

 

The flow stress and corrosive elements significantly affect the steel structures' burst capacity in 

the offshore environment as a result of pressure disturbances and bacteria. These disturbances 

could result in the steel pipeline failure from a considerable reduction in the pipe wall thickness. 
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The susceptibility models are defined by the defects’ characteristics and the corrosion rate. The 

susceptibility models' results are integrated into the formulated burst pressure model for the 

pipeline failure probability prediction, as demonstrated in Fig. 6.4.  Fig. 6.4(a) reveals the 

corrosion susceptibility models' effect on the burst failure profile of the API 5L X52 steel pipeline. 

The burst failure probability, based on the power law and linear corrosion growth models, 

increases gradually with exposure time. An intersection is observed at the failure probability of 

0.7433 with a corresponding failure year at the 26th year of exposure. 

Further analysis reveals the inadequacy of Mohd & Kee’s model to capture the 

susceptibility/failure trends of the X52 pipeline under the predefined mixed corrosive operating 

conditions. In Fig. 6.4(b), the intersection of the two models’ result occurs at the 32 year of 

exposure with a corresponding burst failure probability of 0.4766. The Ossai’s and Mohd & Kee’s 

models show an inadequate capacity to capture the X70 steel structure's susceptibility trend under 

the predefined mixed corrosive environments. However, for the X65 steel structures, the four 

susceptibility models' applicability is shown in Fig. 6.4(c).  
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(a)                                                                                (b) 

 

(c) 

Figure 6.4. Impact of susceptibility models on burst failure probability:  

            (a) X52 pipeline, (b) X70 pipeline, and  (c) X65 pipeline 

  

The linear growth and  power law models show some degree of concordance compared to the other 

models. It is observed that the failure profiles based on Ossai’s model and Mohd & Kee’s model 

differ greatly in comparison with that obtained from the power-law and linear corrosion growth 

model. This could be attributed to the model parameters’ characterization, uncertainty, and the 
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environmental variability, which could represent the conservatism, as shown in the failure profile.  

Hence, these models may be highly conservative (i.e., overestimate or underestimate the 

susceptibility rate) for the given operating conditions. However, the results provide key operational 

and technical information that could aid decision-making in the failure assessment models' 

appropriateness and in risk-based integrity management strategy for the corroding steel structures. 

The characterized diversity in the steel grades’ response to the mixed corrosive environments is 

dependent on the microstructural, mechanical, and strength properties, as demonstrated in the 

result analysis. The results agree with the previous research studies [50,61–64]. This provides 

initial validation for the presented approach. 

6.5.3 Effect of uncertainty/variability in the response parameters on the pipeline failure 

  

The burst failure probability of the corroding steel pipeline in a mixed corrosive environment under 

microstructural and parametric uncertainty is depicted in Fig. 6.5. This is evaluated by the 

coefficient of variation (cov) of the random response parameters, which measure the degree of 

relative uncertainty in the mean values and their standard deviation. The characterized burst 

failures are predicted by changing the standard deviation of the random response parameters while 

keeping their mean constant.  

Fig. 6.5(a) shows the impact of the coefficient of variation of the operating pressure (written as 

cov (pop)) on the burst failure probability with time. The result indicates a slight increase in the 

failure probability as the cov (pop) increases below the 50% failure probability. It can be seen that 

at the upper bound failure, the X52 likely failure decreases with an increase in the cov (pop) This 

indicates the likely failure profile of the steel structure, which is domain-specific for any given 

bounds of the pressure disturbance in mixed corrosive environments. The stress distribution and 

the influence of corrosion depth may increase the pipeline stress influencing factors under unstable 
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loading conditions. Hence, the failure domain increases above the 50% failure probability of the 

pipeline. 

 

                                     

 

                  (c)                                                                                 (d) 

Figure 6.5. Effect of parametric variation on burst failure probability of X52 steel pipeline:  

(a) cov  (pop), (b) cov (𝜎𝑢), (c) cov (D), and (d) cov (wt) 
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Fig. 6.5(b) and Fig.6.5(c)  illustrate the effect of cov (𝜎𝑢) and cov (D) on the burst failure 

probability of the X52 pipeline as the time of exposure increases. The failure probability increases 

with increasing cov for both cases, as shown, until 25 years of exposure.  When the failure 

probability exceeds 50%, the burst likely failure year increases with increasing cov. It can be 

concluded that at 26 years of exposure to the mixed corrosive environment, the burst failure 

probability decreases by 12.20%, 16.96%, and 18.85% across the cov in the ultimate tensile 

strength for the X52 pipeline. The result of cov (wt), as shown in Fig. 6.5(d), follows a similar 

trend with that of cov (pop). However, the failure probability based on the cov (wt) values becomes 

more significant at the upper bound of the failure profile.  

Fig. 6.6 shows the influence of the coefficient of variation in the material’s microstructural and 

corrosion parameters on the X65 steel pipeline's burst capacity. According to Fig. 6.6(a), the failure 

likelihood increases with increasing cov (pop) at the lower bound of the failure profile but becomes 

insensitive toward the upper bound of the profile. This can be attributed to the unstable and 

complex characteristics of the corrosion influential factors, such as the H2S, bacteria, and the stress 

factor over time. 
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     (a) (b) 

 

     (c)                                                                              (d) 

Figure 6.6. Effect of parametric variation on burst failure probability of X65 steel pipeline:  

(a) cov (pop),  (b) cov (𝜎𝑢), (c) cov (D), and (d) cov (wt) 
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exposure time. The pipe wall thickness and its variability could influence the leak failure likelihood 

in most cases by accounting for the corrosion allowance in pipeline design safety optimization. 

 

    (a)       (b) 

 

    (c)       (d) 

Figure 6.7. Effect of elapsed time on burst failure probability of X70 steel pipeline:  

      (a) cov (pop), (b) cov (𝜎𝑢), (c) cov (D), and (d) cov (wt) 
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at the upper bound of the failure profile, the cov exhibits less impact on the failure likelihood. The 

same trend is reflected in the cov (wt), as demonstrated in Fig. 6.7(d). As seen in Fig. 6.7(b) and 

Fig. 6.7(c), the failure probability increases with increasing cov. For instance, at 25 years of 

exposure, the burst failure probability increases by 18.9%, 35.8%, and 82.9%, respectively, at the 

lower bound of the failure profile. However, toward the upper failure domain, as illustrated in Fig. 

6.7(c), the failure probability decreases with increasing cov. This is reflected by the burst failure 

probability of 0.8717, 0.7152, 0.6453, and 0.6135, for the cov (𝜎𝑢) of 0.01, 0.02, 0.03, and 0.04, 

respectively. It is important to note that a similar trend is observed in the failure profile due to cov 

(D). Fig. 6.7(d) depicts the cov (wt) effect on the failure probability of the X70 pipeline. The effect 

of cov (wt) follows a similar trend as the failure profile due to cov (pop). At the upper failure 

domain of the failure profile due to cov (wt), the burst failure likelihood decreases by 2.8%, 7.5%, 

and 9.4% as the cov increases over the exposure period. 

Furthermore, a sensitivity analysis to explore the random response parameters’ effect on the 

performance function is conducted (see Fig. 6.8).  Fig. 6.8(a) shows the percentage impact of the 

mean value of the cov results on the limit state function for the X52 steel pipeline. The percentage 

mean value of the cov (𝜎𝑢) represents a 32.2% (the highest) impact on the limit state function 

result at 24 years of exposure. This impact is dominant at the upper bound of the failure domain 

for the given offshore pipeline. At 18 years of exposure, the mean values of the cov (wt) and cov 

(pop) exhibit more significant influence on the limit state function value for the X65 steel pipeline. 

The degree of influence could vary across the steel structures' failure profile, based on the 

corrosivity of the operating environment. Fig. 6.8(c) shows the cov mean values' effect on the limit 

state function performance for the X70 pipeline at the 24th year of exposure. It is observed that at 

the upper bound of the failure probability profile, the cov (D) and cov (𝜎𝑢) show dominant effects. 
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This is reflected in their percentage impact on the overall limit state function performance at 24 

years. The results are in agreement with previous studies [50,65]. This further validates the 

applicability and reliability of the proposed approach. It is important to note that the degree of 

influence of these random variables may stochastically change as the system operating condition 

changes. 

 

   (a)       (b) 

 

 

       (c) 

Figure 6.8. Effect of variation of variables (%) on the limit state function: (a) X52 @ T=24 years, 

                  (b) X65 @ T=18 years, and (c) X70 @ T=24years 
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The results’ analysis shows the degree of influence of the structural parameters on the lower and 

upper bound failure probability of the steel pipelines. It is found that the limit state function 

increases with an increase in the mean value and the cov of the structural response parameters. 

This affects the susceptibility characteristics across the steel grades, with the X65 pipeline showing 

an earlier failure time due to considerable reduction in wall thickness and unstable pressure 

disturbances.   The effects of the wall thickness and the pipeline diameter are clearly reflected in 

the X52 and X70 failure profiles, respectively. Therefore, priority should be given to precise 

determination of the structural response parameters, corrosion defect characteristics, and their 

associated variability for integrity management. 

A risk-based integrity management strategy is recommended based on the results’ analysis, 

considering the effects of the susceptibility models and the microstructural variability. A 4-year 

inspection plan and corrosion control measures (both batch and continuous biocide, and corrosion 

inhibitor application) could enhance the survivability of the X65 pipeline, while for the X52 and 

X70 pipelines, a 5-year and 7-year inspection plan is recommended under continuous subsea well 

fluid treatment and environmental control measures. 

6.6. Conclusions 

 

The current study demonstrates a probabilistic methodology that integrates the corrosion 

susceptibility models with the Monte Carlo algorithm for failure probability prediction of steel 

pipelines. The approach explores the key factors that affect the degradation of steel structures in a 

mixed corrosive environment (chloride-CO2-H2S-bacteria). The microstructural elements and their 

variability effects on the failure profile are predicted. The model demonstrates the capacity to 

capture the diversity in the susceptibility models and the parametric uncertainty for the failure 
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behavior prediction of API 5L X52, API 5L X65, and API 5L X70 in a mixed corrosive 

environment. The following conclusions are drawn from the current study: 

• The presented approach serves as a useful tool to predict the offshore pipelines' failure 

behavior under different susceptibility characteristics. 

• The power-law model and linear corrosion model show good potential in the susceptibility 

modeling of corroding pipelines under the predefined operating conditions. 

• The failure probability increases with increasing cov of the structural and corrosion 

response parameters at the lower bound failure domain. 

• The degree of influence of the structural elements stochastically changes along with the 

steel pipelines' failure profile over time in a mixed corrosive environment. 

• This study offers key operational information that will aid condition monitoring and 

corroding systems’ integrity management strategy under uncertainty. 

The proposed approach is a useful tool for the integrity assessment of corroding offshore steel 

pipelines. However, the model could be improved by considering parametric dependencies/ 

correlation and comparative life cycle cost modeling. 
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Chapter 7 

Dynamic risk analysis of marine and offshore systems suffering microbial induced 

stochastic degradation 
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Abstract 

This research chapter presents a methodology that integrates the dynamic Bayesian network 

(DBN) with a loss aggregation technique for microbial corrosion risk prediction. The DBN 

captures the dynamic interrelationships among microbial corrosion influencing variables to predict 

the rate of system degradation and failure probability. The model captures the dynamic and time-

evolution effect of the degradation propagation on the consequences of failure. The loss 

aggregation technique is used to forecast the expected economic loss associated with the different 

loss scenarios. The proposed methodology is tested on a subsea pipeline to assess risks of failure 
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upon microbial corrosion. The outcomes reveal that the interplay among the vital variables results 

in severe deterioration of the offshore/marine system; thus, it increases the risk in terms of 

economic losses. Three critical loss scenarios are examined as the consequences of microbial 

corrosion induced failure to capture the effect of the soft and hard failures of the safety 

barriers/actions on the expected total economic loss. At the 95% confidence interval, the upper 

and lower bound economic losses (value at risk) increase by 40.3% and 57.5%, respectively. The 

proposed methodology provides a risk-based prognostic tool for offshore and marine systems 

suffering from microbial corrosion. 

Keywords: Microbial corrosion; Dynamic Bayesian network; Offshore systems; Loss aggregation 

technique; Dynamic risk; Expected economic loss 

 

 

7.1. Introduction 

  

Important engineering infrastructures in the ocean environments are prone to a high rate of 

degradation. The degradation of the infrastructures is influenced by biotic and abiotic factors that 

are operational and environmentally dependent. The biotic factors (e.g., bacteria, fungi, and algae) 

play a significant role in the deterioration of the marine and offshore oil and gas systems such as 

ship hull fouling and cargo tank leakage [1,2], pipeline corrosion [3,4], and reservoir souring [5,6]. 

Catastrophic failure and high-risk events are still a challenge in marine and offshore oil and gas 

industries as a result of microbial induced degradation. This is attributed to the uncertain and 

stochastic nature of microbially influenced corrosion (MIC) and its influential operational 

parameters. The complexity in the formation and propagation of the MIC under multispecies 

biofilm architecture complicates its failure induced prediction and the direct and indirect 
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consequences. Limited understanding of the associated stochasticity of MIC induced failure could 

result in making risky and uncertain operational decisions. 

A few models for MIC risk analysis are available in the literature [7–11]. For instance, Maxwell 

and Campbell [9] proposed a risk-based mitigation model for predicting biocide performance and 

MIC monitoring in field operations. They adopted the Monod kinetics framework to model the 

biofilm development under inhibitor application and integrate it into the Pots et al. [12] model. 

The authors scaled the MIC risk level based on the amount of sulfide production in the microbial 

biofilm. The model only offers a diagnostic risk-based monitoring capacity by using key 

performance indicators, without quantitatively predicting the risk of MIC-induced system failure 

under various operational scenarios. Sørensen et al. [8] developed a semi-quantitative MIC risk 

assessment model based on the sulfate-reducing prokaryotes (SRP), and the methanogens (MET) 

counts. The model includes the sulfate reduction rate and CO2 reduction rate to formulate an 

integrated MIC risk factor (IMRF) to estimate the MIC initiation time and the potential pit 

generation rate (PPGR) under biofilm. The model can quantify the risks in terms of the microbial 

counts and the pit generation rate for long-term exposure by integrated molecular microbiological 

methods. The available approaches are mechanistically structured and are inadequate to capture 

the parametric variability and dynamic/non-linear interactions among the key corrosion 

influencing factors for MIC quantitative risk modeling.  

The recent improvement in corrosion risk modeling has been demonstrated by the use of 

probabilistic-based models such as the Markov, fuzzy, Petri nets, Monte Carlo simulation, and 

Bayesian belief network (BBN) models [13–20]. For instance, Zhang et al. [17] proposed a fuzzy-

based model to develop a risk matrix for the failure prediction of subsea connectors. The matrix 

captures the failure occurrence probability and the associated risk factors' impact level by the 
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defuzzification of expert elicitation. The results provide operational safety guidelines/tips under 

uncertainties. To capture the corrosion risk at the design stage of the subsea systems, Hasan et al. 

[14] proposed the integration of Monte Carlo simulation with a finite element model. The 

hybridized probabilistic model captures the corrosion response parameters' uncertainties to assess 

the system’s mechanical integrity under burst capacity.  However, the dependencies among 

corrosion influencing factors and their effect on risk modeling of corroding marine systems are 

not considered. 

 

To explore the dependencies and interdependencies among vital factors of any given phenomenon, 

the Bayesian network (BN) technique has shown great potentials [15,21–24]. This is originated 

from its capability to capture multivariate interactions and dynamic dependence among risk 

influencing factors [25,26]. For instance, Shabarchin and Tesfamariam [15] employed a network-

based probabilistic model (BN) for internal corrosion risk modeling of oil and gas pipelines. The 

authors integrated the multiple corrosion and failure models into a dynamic and flexible structure 

to forecast defects propagation and failure probability. The model could determine the degree of 

influence of the vital failure factors and the pipeline segments' vulnerability likelihood. Kannan et 

al. [27] proposed a systemic-based approach for MIC potential modeling using BN and dynamic 

Bayesian network. This approach combines the heuristic and quantitative states of the key 

parameters for MIC susceptibility prediction. The approach provides a systematic safety 

assessment tool for the oil and gas industry.  

 

Furthermore, for a time evolution probability of failure prediction under stochastic degradation, 

Arzaghi et al. [13] and Yuanjiang et al. [19] applied the dynamic Bayesian network (DBN). The 
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authors demonstrated the DBN application for pitting and corrosion-fatigue damage, and corrosion 

risk of subsea pipelines and subsea wellheads. The results showed the model’s capability to capture 

the temporal dependencies, stochastic growth rate, and failure likelihood of corroding subsea 

systems. The model further integrates the various degrees of influence of the failure-induced 

variables for the failure probability prediction in every time slice structurally. Further applications 

of the BN and DBN for risk, safety, reliability, and resilience modeling are detailed in the literature 

[21,28–31]  

 

The DBN has the capability of capturing the temporal interrelationship among failure-induced 

factors, as demonstrated in the open sources.  However, its application to investigate and predict 

the microbially influenced corrosion induced failures and corresponding consequences has not 

been adequately reported. The multispecies microbial biofilm characteristics and their effects on 

corroding offshore system risk propagation phenomenon have not yet been studied. The associated 

loss scenarios induced by the system failure have not been considered in the literature to predict 

the likely value at risk in terms of economic losses in the investment. There is no adequate 

understanding of the effect of safety barriers’ degree of failure in terms of financial risks on a 

corroding offshore system overall risk profile. The reported knowledge gaps necessitate the 

development of a dynamic and robust model that can capture the varying influencing parameters 

and the biofilm characteristics effects to predict the propagation of microbial corrosion induced 

failure and the corresponding consequences in terms of financial losses at different time periods.  

 

Moreover, the MIC induced failure presents a complex mechanism due to the dynamic and 

facultative nature of the acid-producing bacteria (APB) and iron-reducing bacteria (IRB) under a 
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multispecies biofilm architecture. This unstable tendency in the bacteria colony can present 

multidimensional degradation potentials [32]. The degradation diversity due to the multispecies 

biofilm architecture needs to be captured to predict its impact on the consequences of failure 

likelihood. This is depicted in the proposed DBN model by the SRB, APB, and IRB nodes, based 

on their relative abundance for the risk analysis.  

 

The current research work presents a hybrid methodology that integrates the DBN with a loss 

aggregation technique and demonstrates its novel application for MIC risk prediction, considering 

complex multispecies biofilm architecture. The DBN is structured to incorporate the risk 

influencing factors and capture their dependencies for the offshore system degradation rate. This 

involves the prediction of the failure probability and the likelihood of failure consequences based 

on the health state of the safety barriers/actions. The loss aggregation technique is adopted to 

determine the expected economic losses for the likely loss scenarios induced by microbial 

corrosion. This provides the value at risk in terms of financial losses at the operational phase of 

the offshore infrastructures. The application of the proposed methodology is tested on a subsea 

pipeline suffering microbial corrosion. The integrated dynamic model can capture the MIC's time-

dependent behavior and its influential parameters to forecast the complex degradation 

mechanisms, the likelihood of failure, and the associated loss scenarios in offshore operations. 

The structure of the remaining sections of the chapter is as follows: Section 7.2 gives an overview 

of offshore systems corrosion risk assessment. Section 7.3 presents the proposed methodology. 

Section 7.4 describes the methodology implementation with a case study. Section 7.5 includes the 

results and discussion, and Section 7.6 provides the conclusions. 
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7.2. Overview of corrosion risk assessment of  offshore systems 

 

Microbial corrosion initiation and propagation pose safety and integrity threats to sustainable 

offshore operations, especially in harsh ocean environments. The deterioration of the systems 

causes them to fail with associated consequences, which describe MIC's risk.  Dynamic risk 

assessment employs a method that is capable of updating the estimated risks with respect to the 

deteriorating state of the system changes in terms of performance, safety, and maintenance 

activities [33]. This approach will help operators and integrity managers track changes occurring 

in the system's health state to define decision-making criteria and set a tolerable risk level during 

operations. The following subsection briefly describes the dynamic probabilistic approach for risk 

assessment. 

Dynamic Bayesian networks: The conventional Bayesian network (BN) is a technique that models 

the random variables under uncertainty using a directed acyclic graph structure. This approach has 

been used for both qualitative and quantitative risk-based analysis under uncertainty [33–39]. BN 

captures dependencies among random variables and integrates the concept of conditional 

independence and the chain rule to estimate the joint probability distribution of random variables, 

as given in Eq. (7.1). Bayes' theorem (see Eq. (7.2)) is a governing equation in the BN that 

enhances updating upon the availability of new information, called evidence (𝐸).  

𝑃(𝑈) = 𝑃(𝑌1, 𝑌2, … . . , 𝑌𝑛) =∏𝑃(𝑌𝑖|𝑃𝑦(𝑌𝑖))

𝑛

𝑖=1

                                                                                 (7.1) 

where 𝑃𝑦(𝑌𝑖) is the parent of the random variable 𝑌𝑖 and P(U) refers to the joint probability 

distribution. 
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𝑃(𝑈|𝐸) =
𝑃(𝑈, 𝐸)

𝑃(𝐸)
=

𝑃(𝑈, 𝐸)

∑ 𝑃(𝑈, 𝐸)𝑈
                                                                                                        (7.2) 

The DBN is an extension of the BN for modeling an evolving stochastic process by capturing the 

temporal relationship among random variables nodes [13,21,30,40–42]. The temporal relationship 

among nodes is time-indexed, and the multidimensional probabilistic dependencies among the 

random variables are captured. This proves the merits of DBN over the conventional BN. 

For instance, if ℝ denotes a set of random variables 𝑌1, 𝑌2, … . . , 𝑌𝑛 (i. e. , Y ∈ ℝ), the temporal 

interrelationship across the time elements for a DBN can be expressed by Eq. (7.3).  

𝑃(ℝ𝑡|ℝ𝑡−1) =∏𝑃(ℝ𝑖,𝑡|𝑃𝑎(ℝ𝑖,𝑡))

𝑛

𝑖=1

                                                                                                  (7.3) 

where ℝ𝑖,𝑡 stands for the 𝑖𝑡ℎ node at time 𝑡; 𝑃𝑎(ℝ𝑖,𝑡) is the parent nodes of  ℝ𝑖,𝑡 from the same 

time and previous time elements, and 𝑛 refers to the number of nodes in the network.  

The joint probability distribution for a DBN structure for time, 𝑡 = 1 𝑡𝑜 𝑁, can be expressed by 

Eq. (7.4). For conditional probability table (CPT) estimation in DBN, it is assumed that 𝑌𝑖 is 

represented at time step 𝑗 by a node 𝑛(𝑖,𝑗) ∈ 𝑁 with a finite number of states 𝒮𝑛𝑖: {𝑆1
𝑛𝑖 , ……𝑆𝑀

𝑛𝑖}; 

𝑦𝑗
𝑛𝑖 denotes the probability distribution over these states at time step k, which defines the transition-

probabilities (CPT) between the variable node states at time step 𝑗 and time step 𝑗 + 1. This 

evolutionary process leads to determining the CPT (transition probability distribution) relative to 

the inter-time steps [43]. This implies that the future (𝑗 + 1) is conditionally independent of the 

past, given the present (𝑗). Hence, the CPT 𝑃 (𝑛𝑖,𝑗+1|𝑃𝑎(𝑛𝑖,𝑗+1)) follows the Markovian 

assumption. 
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𝑃(ℝ1:𝑁) =∏∏𝑃(ℝ𝑖,𝑡|𝑃𝑎(ℝ𝑖,𝑡))

𝑛

𝑖=1

𝑁

𝑡=1

                                                                                                  (7.4) 

The DBN application enables forecasting the future degradation state, the failure probability of the 

corroding offshore system, and the associated risks of failure based on an iterative inference 

algorithm. For more details on the DBN learning and inference algorithms, interested readers are 

referred to the work conducted by Murphy [44]. 

 

7.3. Proposed methodology 

  

Microbially influenced corrosion complexity makes the prediction of its failure-induced risk 

challenging. This results from the unstable interplay among the key factors, such as bacteria and 

the operating parameters. An understanding of the metabolic complexity and adaptability of 

bacteria within the multispecies bacteria colony is crucial for the development of a robust risk 

prediction model under MIC. Fig. 7.1 shows the proposed dynamic and robust methodology for 

risk prediction of offshore systems suffering MIC. The following steps describe the procedure of 

model development and its application: 

Step 1: Assess the system's operational data, inspection data, and microbial induced flaws’ 

characteristics. This provides detailed information on the environmental condition and various 

monitoring operating parameters, such as CO2 partial pressure, H2S partial pressure, oxygen, water 

cut, chloride ions, temperature, salinity, velocity, alloy composition, exposure time, pH, sulfate 

ions, bacteria types, counts/relative abundance, and biofilm architecture. For operational data 

collection in the offshore oil and gas industry, sensors and intelligent pigging tools such as the 

magnetic flux leakage (MFL), ultrasound, and probes are mostly used for defects detection, data 

collection, and mapping; on-line condition monitoring for monitoring operating parameters; and 



214 
 

the use of API-RP-38 serial dilution techniques and molecular microbiological methods for 

microorganisms detection/analysis. These tools/methods have been satisfactorily validated for the 

oil and gas industry. 

Step 2: The system’s health is further examined based on the inspection data. The collected 

monitoring operational data are assigned to various intervals to assess their probabilities for high, 

moderate, and low ranges. The data partitioning enhances a better understanding of the bounds of 

the influence of system failure's vital factors. The data partitioning approach for probability 

estimation has been demonstrated in previous research studies [15,45]. 

Step  3: Assess the system state and identify the various consequences of MIC induced failures 

under different operation scenarios. This is built based on the likely failure modes caused by MIC. 

The consideration of the possible failure modes requires the analysis of the outcomes. The 

outcomes in this research are grouped into four (e.g., one safe outcome and three critical 

consequences).  These are safe, C1; small economic loss and environmental pollution, C2; huge 

economic loss and environmental pollution, C3; and catastrophic economic loss and environmental 

pollution, C4. The safe, C1 outcome, as assumed in this research, denotes the operational state 

where intervention upon detection of the defects is successful, such as perfect detection, 

maintenance, and replacement of the corroding segments before failure.  

The consequences of failure-induced financial loss evaluated include production loss/shutdown 

costs, inspection costs, segment repair/replacement costs, environmental impacts, and loss of 

reputation costs. The losses are cost elements of the loss scenarios, which vary based on the 

severity of the scenarios. When a failure occurs, there will be system shutdown and business 

interruption, which may result in loss of market share investment and trust from the negative public 

perception of the organization's safety performance. This will directly and/or indirectly cause 
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additional losses to the organization's reputation. Similarly, other losses can be assessed based on 

the magnitude of the failure events.  For the subsea pipeline, the lower baseline financial loss/cost 

used in this research analysis is extracted from the literature [46–49], with an annual inflation rate 

of 2%. 

Step 4: The system and its failure-induced consequences are further assessed to identify and 

establish safety barriers/actions that could mitigate the corrosion defects propagation (failure 

events). This is expected to represent all critical safety actions that could affect risk aversion from 

design to operation and failure of the system. However, the trade-off between cost and safety also 

plays an essential role in the selection of safety barriers/actions. In this work, the safety actions are 

grouped into four core barriers, namely treatment and environmental control, SB1 (i.e., 

pH/buffering, corrosion inhibition, scale inhibition, biocide application, oxygen scavenging, H2S 

scavenging, dehydration, and pigging); condition monitoring and assessment, SB2 (i.e., 

inspection, corrosion monitoring, defects detection, fluid sampling, and leak detection); 

maintenance action, SB3 (i.e., minor repair, and preventive maintenance); and 

management/emergency action, SB4 (i.e., competent action, emergency intervention 

systems/shutdown, and operational decision making). To capture the dependencies among the 

barriers, the Domino theory principle and the structural dependency, presented by Khakzad et al. 

[50], are adopted in this research analysis. The safety barriers' functionality depends on the 

accurate understanding of the fluid characteristics and the operational instability posed by the key 

influencing factors. Any changes in the production well/fluid characteristics may affect the 

treatment and environmental control procedure. Therefore, an adequate understanding of the 

subsea well sampling and the sample characteristics and analysis accuracy are crucial for an 

effective mitigation plan against MIC. Hence, if dependencies exist among key safety barriers, any 
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error or failure of one safety action affects the others. In such a complex operational scenario, a 

robust and dynamic predictive tool is essential. It is important to note that for this research, we 

assume sequential and functional dependency among the safety barriers/actions, as discussed by 

Khakzad et al. [50].  However, the causal arcs drawn from the MIC induced failure node to the 

safety barriers (see Fig. 7.2) reveal the dependence for those safety barriers/actions whose 

performance/failure depends on the failure and/or the state of failure of the asset. 

Step 5: A consequence-based dynamic network structure is developed to capture the propagating 

event (MIC), the safety barriers/action, and the likely consequences using DBN. The safety 

barrier/actions are categorized into two states (success and failure).  

Step 6: The system wall thickness is discretized into four states to represent different degradation 

profiles (e.g., corrosion depth).  The pipe wall thickness is discretized into four pit depth states 

based on the corrosion penetration percentage. For instance, the four pit depth states are 0-25%, 

25-50%, 50-75% and >75%. The pit depth state >75% represents the critical depth that can lead to 

leak failure. The failure state is formulated based on the critical pit depth (>75%) penetration of 

the system’s wall thickness. This approach was employed by [45]. However, the system can fail 

by rupture under high flow stresses, hydrogen-induced cracking, sulfide stress loads, and pressure 

disturbances at considerable wall thickness deterioration due to MIC. The discretized states, 

defined by the prior probability distribution, are based on the system's health state at operating and 

inspection conditions. This serves as the input data to the dynamic node in step 7 for the failure 

probability prediction. 
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Figure 7.1. Schematic of an integrated dynamic model for microbial corrosion risk prediction 
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Step 7: The probabilistic data are used to develop the hybrid DBN for structurally and parametric 

learning, and to investigate the important factors' effects on the MIC rate and the system failure 

state. The interactions among temperature, CO2 concentration, pH, salinity, and H2S content are 

captured in the structure. Several researchers have shown that the operating conditions/parameters 

significantly affect the bacteria degradation activities and their metabolisms [51–54]. The available 

data range of these influencing parameters enhances the survival of the corrosive multispecies 

biofilm on the offshore system's surface. Under the mixed microbial biofilm architecture, the 

diversity in the degradation potentials and the mutual dependencies among the bacteria pose a 

severe threat to offshore systems' survivability. To capture the governing mechanisms, the 

influencing parameter nodes and bacteria nodes are categorized into high, moderate, and low 

states, while the MIC node is classified into severe, high, moderate, and low, respectively. This 

represents the system's likely degradation rates due to MIC based on the recommended rate 

categorization [55]. The probabilistic data estimated in step 2 and system state prior probability 

distribution from step 6 are used as the input data for the DBN structure to predict the MIC rate 

and the failure probability, as shown in Fig. 7.2. The conditional probability table (CPT) is built 

using corrosion models [12,53,56], expert knowledge, and the state of defects in the offshore 

system.   

Furthermore, the dynamic interplay among the operating parameters (such as CO2, pH, H2S, and 

temperature) and their influence on the bacteria growth, corrosion rate, and failure probability are 

investigated. The hybrid DBN has demonstrated considerable merits for analysis of small and 

incomplete data sets, an explicit treatment of uncertainty, structural and parametric learning in 

evolving time steps, and a combination of multiple knowledge sources [34,54].   
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Step 8: A dynamic risk model is developed by integrating the DBN failure model with the 

consequences-based probabilistic model. In this model, the dynamic node (MIC induced failure 

state) in the DBN framework serves as the initiating event, and the predicted failure probability is 

used as the input data (see Fig. 7.2). To explore the dynamic and stochastic nature of MIC, the time 

evolution effect on the failure probability is propagated to the consequences. Hence, for different 

operational scenarios, the likelihood of the failure outcomes changes the risk prediction.  All the 

DBNs in this work are simulated in the GeNIeTM software environment. 

 

Figure 7.2. Schematic of the hybrid DBN structure for MIC risk prediction 
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Step 9:  A parametric sensitivity analysis is carried out to identify the degree of influence of the 

various monitoring operating parameters and environmental factors' nodes on the failure modes 

and possible consequences. The sensitivity analysis of the hybrid DBN technically helps to identify 

critical input factors that significantly impact the risk propagation upon MIC formation. The DBN 

model is able to capture and propagate the parameters' associated uncertainty. Thus, it enhances 

the prioritization of the additional data needed for system modeling and optimization [15]. 

Different techniques have been proposed in the open sources for sensitivity analysis, which include 

entropy reduction, change ratio, variance of beliefs, and variance reduction [15,57–59]. For this 

research, the percentage change ratio technique is adopted for the sensitivity analysis to identify 

the influential factors under multiple operational scenarios. 

Step 10:  Further analysis is carried out to evaluate the value at risk in terms of economic loss on 

the investment incurred due to failure. The associated loss elements of microbial corrosion induced 

failures include but are not limited to operational loss, business interruption loss, reputational loss, 

asset loss, production loss,  human health loss, and environmental clean-up loss. These loss 

elements are considered in the three critical consequences that represent the loss scenarios of the 

possible failure modes of microbial corrosion (i.e., small leak loss scenario, large leak loss 

scenario, and catastrophic loss scenario). To model these loss scenarios, a loss aggregation 

technique, proposed by [47], is given below: 

𝐸{𝐿𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜1} =
1

𝐽
∑𝐿𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜1

𝑗

𝐽

𝑗=1

                                                                                                           (7.5) 

where 𝐽 is the number of simulation runs. For any given failure (loss) scenario, the expected 

economic loss value, and the variance of the overall economic loss are the sum of the individual 

loss elements’ mean value and variance, respectively. 
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A modified formulation is presented for the stochastic process to capture the probability of 

occurrence of the loss elements/scenarios.  The formulation is used for the evaluation of the total 

economic loss value and variance based on the expectation probability theory, as shown by the 

following equations:  

𝔼[𝐿𝐸] = ∑𝐸[𝐿𝑑]

𝐷

𝑑=1

∙ ℙ(𝐿𝑑)                                                                                                                     (7.6) 

𝑉𝑎𝑟[𝐿𝐸] = ∑𝑉𝑎𝑟

𝐷

𝑑=1

(𝐿𝑑) ∙ ℙ(𝐿𝑑) + 2∑ ∑ 𝐶𝑜𝑣(𝐿𝑑 , 𝐿𝑑′)

𝐷−1

𝑑′<𝑑

𝐷

𝑑=1

                                                         (7.7) 

 

where 𝔼[∙] is the expectation operator; 𝑉𝑎𝑟{𝐿𝑑} symbolizes the variance of each loss element 𝐿𝑑; 

𝐶𝑜𝑣{𝐿𝑑 , 𝐿𝑑′} introduces the covariance between 𝐿𝑑 and 𝐿𝑑′; ℙ(𝐿𝑑) refers to the probability of the 

loss element/scenario (failure) occurrence; 𝐿1……..  𝐿𝑑 are the random variables that represent the 

elements of a given loss (failure) scenario; and 𝑑 = 1,……… . , 𝐷 designates the number of the loss 

scenarios.  This formulation is also applied to estimate the expected economic loss incurred due to 

the safety barriers/actions. The cumulative expected loss for any of the loss scenarios can be 

expressed as follows: 

𝐿𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = ∫𝐸[𝐿𝑖(𝜇𝑡, 𝜎𝑡)]

𝑡

0

∙  ℙ(𝐿𝑖, 𝑡) 𝑑𝑡                                                                                            (7.8) 

where 𝐸[𝐿𝑖(𝜇𝑡, 𝜎𝑡)] represents the unit expected economic loss value for the loss element 𝑖 and 

ℙ(𝐿𝑖, 𝑡) refers to the probability of its occurrence within [0, t]. This approach captures the likely 

cost (expected economic loss value) incurred for the various safety barriers/actions in the year of 

system failure. This technique aggregates the financial loss incurred on the safety barriers with the 

cost of the consequences using a loss aggregation function for decision making.  However, for this 
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research, the 𝐶𝑜𝑣{𝐿𝑑 , 𝐿𝑑′} is assumed to be zero, and multiple economic loss profiles are 

developed to define the various values at risk in terms of financial losses for the different loss 

scenarios. The result provides guidelines for system economic loss management plans and 

operational integrity decision making. 

 

To capture the variability associated with the loss elements, a probability distribution is assumed 

for their prediction. The loss elements are considered to be normally distributed, and the predicted 

expected economic loss distribution is validated using the Kolmogorov-Smirnov and Shapiro-Wilk 

tests of normality, as depicted in Eqs. (7.9)-(7.11), respectively. 

For an empirical distribution function 𝐹𝑛, the 𝑛 number of independent and identical distribution 

events 𝑌𝑖 gives: 

𝐹𝑛(𝑦) =
1

𝑛
∑I[−∞,y](Yi)

𝑛

𝑖=1

                                                                                                                        (7.9) 

where I[−∞,y](𝑌𝑖) is the indicator function, equal to 1 if 𝑌𝑖 ≤ 𝑦, otherwise 0. Hence, the 

Kolmogorov -Smirnov test statistic for a given cumulative distribution function 𝐹(𝑦) is expressed 

below: 

𝐷𝑛 = supy|𝐹𝑛(𝑦) − 𝐹(𝑦)|                                                                                                                    (7.10) 

where supy denotes the supremum of the set of distances. 

The Shapiro-Wilk test statistic is defined as follows: 

𝑊 =
(∑ 𝑎𝑖𝑦(𝑖)

𝑛
𝑖=1 )

2

∑ (𝑦𝑖 − 𝑦̅)
𝑛
𝑖=1

2                                                                                                                                (7.11) 
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where 𝑦𝑖 is the random sample (loss elements cost); 𝑦̅  introduces the sample mean; and 𝑎𝑖 

resembles the coefficient of the expected value of the order statistics. For this research, SPSS 

software is used for the test of normality analysis. 

The integrated model provides a dynamic and robust prognostic tool for new applications in 

microbial corrosion risk prediction. 

 

7.4. Case study 

 

The proposed hybrid connectionist methodology is demonstrated on a 203 km oil transmission 

externally coated pipeline made of grade API 5L X-60 steel. The 762 mm outer diameter pipeline 

operates in a subsea oil field production with characterized bacteria-influenced failure in the 

marine environment [60]. An investigation of the subsea pipeline has revealed that the pipe has 

experienced severe localized defects at the 6 o'clock position of the pipe section. The pipeline is 

buried in a deep trench and influenced by the bacteria on the internal pipe surface, resulting in 

excessive wall thickness reduction and failure of the pipeline. The pipeline has a corrosion 

monitoring/fluid analysis procedure with an oil corrosion inhibitor dose of 4.70 ppm continuously 

applied and in batch quarterly application of biocide. The assessed information on the pipeline’s 

operating/environmental conditions is shown in Table 7.1. The pipeline’s mechanical properties 

include: wall thickness of 17.48mm, out diameter of 762mm, operating pressure of 9.3MPa, design 

pressure of 13.7MPa and pipeline length of 203km. The system operating state is assessed based 

on the historical data of the monitoring corrosion influencing variables and the inspection data (see 

Table 7.1). The monitoring operating variables data are processed through partitioning to estimate 

their prior probability and to train the designed network. More information on data partitioning for 

prior probability estimation can be found in our previous research studies [26,45]. These MIC 
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influencing parameters are integrated into a network structure using the DBN for the system failure 

prediction.   

Table 7.1. Pipeline operating conditions and other important information 

 
 
Parameters (Node) Range Parameters (Node) Range 

    
pH 3.4 ~ 9.89 pCO2 (MPa) 0.01~ 0.19 

    
Temp (oC) 15 ~ 65 Iron (ppm) 0.23 ~ 128 

    
Flow rate: (a)   Oil(BOPD) 194,502  Sulfate ion (ppm) 1 ~ 3410 

                   (b) Water cut (%) 1~7 pH2S (MPa)     0.137 ~ 0.514 

Chlorine (ppm) 1 ~ 4430  Max. > 4.0 yrs  

Flow velocity (m/s)      0.5 ~ 0.89 Exposure period Mean 2.5 - 4.0 yrs 

   
Min < 2.5 yrs  

APB counts Low < 103 cfu/ml Volatile fatty acids Present/Absent 

 
103 < Moderate <104 Organic liquid  90 ~ 92% 

 
High> 104 cfu/ml 

  

  
Salinity Present/Absent 

    
SRB counts Low < 104 cfu/ml IRB counts Low < 103 cfu/ml 

 
104 < Moderate < 105 

 
103 < Moderate < 104 

  High > 105 cfu/ml 
 

  High > 104 cfu/ml 
 

 

 

Additional data/information for the research analysis is adopted from the project database [61] and 

the relevant literature [15,45,52]. More probability data for the safety barriers/actions and essential 

events are adopted from the literature [14,16,62]. The baseline costs for the predefined loss 
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elements and loss scenarios modeling are taken from the literature [47,49,63]. The following 

assumptions are considered for the model application: 

i) The data/information, as shown in Table 7.1, present the prevailing 

operating/environmental conditions of the pipeline.  

ii) The corrosion influencing parameters exhibit complex interactions with the corrosion 

response parameters. 

iii) The internal defects are stable and could result in the failure of the subsea pipeline.  

iv) The system is subjected to two worst-case scenarios: scenario-1 is predicted based on the 

marginal probability of the safety barriers and the consequence likelihood, while scenario-

2 is predicted by placing hard evidence on the safety barriers and the corresponding 

consequence likelihood. 

v) The cost associated with the failure scenarios is expressed in terms of the economic loss 

(value at risk) for the research analysis. 

vi) The loss elements are uncorrelated and normally distributed; this assumption is validated 

using the test of normality analysis.  

 

7.5. Results and discussion 

 

The current research objective is to develop a dynamic probabilistic methodology that 

simultaneously captures the key factors affecting microbial corrosion induced failure and their 

dependencies for:  i) determining the MIC induced degradation of the asset under multispecies 

biofilm architecture using BN, ii) determining the failure probability and the corresponding 

consequences over time with DBN, and iii) determining the cumulative economic loss distribution 

with loss function technique using the Monte Carlo simulation algorithm under different loss 
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scenarios. The DBN captures the interrelationships among the failure factors and their time-

dependent effects. The results of the parametric learning of the DBN structure are presented in Fig. 

7.3. The DBN parameter learning uses the prior probabilities estimated from the influential 

corrosion variables as the input data, with the conditional probability assessed using corrosion 

models and subject expert knowledge. The outcomes of this phase show that the degradation rate 

ranges from 0.18mm/year to 0.317mm/year. This is premised on the available data and their ranges 

of probabilities.  

 

Figure 7.3.  DBN parametric learning for microbial corrosion rate and failure probability 

      prediction, considering dependencies among influencing parameters 
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Fig. 7.4 and Fig. 7.5 illustrate the impact of the dynamic interaction and dependencies among the 

vital corrosion influencing parameters and the bacteria on the system degradation rate under a 

multispecies biofilm.  This is assessed by placing evidence on the multispecies bacteria nodes and 

the upper bound probabilities of the monitoring operating parameters' nodes, respectively. 

According to the results, the severe degradation rate increases for the two cases by 27.5% and 

60.3%, respectively. This implies that as the sessile bacteria (Desulfovibrio, Desulfotomaculum, 

and Clostridium aceticum) counts increase, the system's deterioration severely increases. The 

byproducts of the bacteria metabolism, such as H2S partial pressure and volatile fatty acid, enhance 

the corrosivity of the operating environment and promote severe degradation of the system. The 

results follow a similar trend with the findings of the previous works [45,64].  The dynamic node, 

as shown in Figs. 5.3-5.7, utilizes the prior state probability distribution based on the system’s 

health state, defect depths, and the corrosion rate for the failure probability prediction. The prior 

probability distribution forms the dynamic node's CPT, which evolves over time-steps, based on 

the corrosion rate that serves as the transition intensity. The directed arc linking the variables 

(belonging to the different time-steps) reveals the random variables' temporal dependencies. For 

this analysis, up to 1000 time-steps are simulated for the failure probability prediction by the 

model. 
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Figure 7.4. DBN structure for failure probability prediction with evidence on the bacteria nodes 
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Figure 7.5.  DBN structure for corrosion rate and failure probability prediction with 

    evidence on the key factors nodes' upper bound probabilities 

 
 

Furthermore, the predicted failure probability is mapped into a consequence-based structure for its 

likelihood prediction. A ten slices failure profile is used for the consequences analysis upon the 

formation and propagation of the MIC at the predicted corrosion rates. The likely safety 

barriers/actions are grouped into four and are represented to capture their impacts on the failure 

outcomes upon the formation of MIC. The simulation results based on the two worst-case scenarios 

are shown in Figs. 7.6-7.7.  Scenario-1 presents the case that involves the formation of the MIC 

with its associated failure probability; the prior marginal likelihood of the safety barriers is used 

to determine the consequence likelihood (see Fig. 7.6). For the four consequence scenarios, as 
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depicted in Fig. 7.6, the magnitudes of the probability are equal to 0.526, 0.153, 0.12, and 0.201 

for C1, C2, C3, and C4, respectively. 

 

Figure 7.6. Results of consequence analysis under severe microbial corrosion rate 

 

The analysis of the consequence likelihood for scenario-2 is presented in Fig. 7.7.  In this case, the 

effects of the safety actions are taken into account to predict the consequences likelihood, as 

demonstrated in Fig. 7.7, when hard evidence is placed on the failure state of the safety barriers 

nodes. It shows a 44.6% increase in the probability of catastrophic economic loss and 

environmental pollution, signifying the likely occurrence of rupture failure upon MIC propagation. 

The rupture failure could occur at any time during operation, with considerable wall thickness 

deterioration under unstable pressure loads and stress-induced cracking as a result of H2S presence. 

For the other failure outcomes, a progressive decrease in their occurrence likelihood can occur, 

given the safety barriers' failed state. The presented scenarios reveal the diversity of the state of 
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the failure outcomes as a function of the propagating corrosion degradation rate and its time 

evolution probability and safety barriers/actions. Therefore, it is essential to investigate the 

evolving effects of the safety barriers/actions and their likelihood on the overall failure outcomes 

for real-time risk prediction.  

 

Figure 7.7. Results of consequence analysis under failed safety barriers/actions 

 

 A sensitivity analysis was carried out to establish the degree of influence of the monitoring 

operating parameters on the severe degradation rate and system failure (see Fig. 7.8).  Using the 

modeling outcomes, the degree of influence of the vital factors is determined. It follows that the 

pCO2 and pH2S (partial pressures of CO2 and H2S) nodes have the highest contribution to the MIC 

node's, using the evidence of the severe degradation rate, accounting for 23% and 20%, 

respectively. This finding is in agreement with the previous studies [15,65].  This provides initial 

validation of the hybrid model. The high degree of the pCO2 influence results from the formation 
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of carbonic acid due to the CO2 dissolution in the oil-in-water phase medium.  The carbonic acid 

plays a critical role in internal microbial corrosion and other forms of corrosion by cracking down 

the protective corrosion product [66]. The H2S, which is the byproduct of the SRB's metabolism, 

is an aggressive substance that participates in and enhances the propagation of steel and iron 

materials' corrosion. Moreover, in sour oil field production, system degradation can be 

exponentially increased by H2S presence. The pH and temperature are favorable stimulants for 

microbial growth and metabolism. 

 

Figure 7.8.  Sensitivity analysis of the MIC node due to the influence of various vital 

      influencing parameters on the severe corrosion rate 

 

The normalized percentages’ influence of the pH and temperature on the severe degradation rate, 

as seen in Fig. 7.8, are 17% and 18%, respectively. It is found that the pipe surface is exposed to 

degradation due to the breakdown of protective films when the pH is low (acidic state), which 

supports the findings of [67]. The adaptive nature of microorganisms and their diversity under 
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multispecies biofilm enhances their survival at different temperature ranges. However, the 

normalized percentage influence reveals the significance of temperature on the subsea system's 

degradation rate. The flow velocity of about 0.8 m/s, which is considerably below the minimum 

recommended velocity, provides favorable conditions for possible segregation. This leads to the 

accumulation of water in the subsea pipeline's low laying areas and promotes the bacteria growth 

and metabolism; thus, it increases the pipeline wall degradation rate. Several other factors and their 

degree of influence can be deduced from Fig. 7.8. These key failure factors have combinatory 

impacts on bacteria growth and the system degradation process. The results exhibit a good match 

with the previous research investigations [15,62,68]. The combinatory effect of the influencing 

variables is captured in the DBN structure, and the identified variation due to their degree of 

influence reveals the critical parameters that should be monitored appropriately and controlled at 

every level of mitigation. Therefore, a parametric impact assessment on the system failure could 

be inferred by considering multiple scenarios. 

Upon the formation of MIC, there is a progressive increase in the system failure probability with 

time. This failure or deviation in the system's performance capability is associated with 

consequences that are classified as loss or economic losses on the investment. Furthermore, the 

cost incurred on the safety systems for failure mitigation could be taken into account as economic 

losses when a failure event occurs. 104 simulation runs are conducted using Monte Carlo 

simulation to model the loss aggregation function (see Eq. (7.6)) in the MATLAB environment for 

the expected economic loss prediction. The results for the various loss (failure) scenarios 

(𝐿𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠), with respect to their cumulative occurrence probability, are presented in Figs. 7.9-

7.11. As shown in Figs. 7.9-7.11, for any known likelihood of occurrence of the loss scenarios 
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based on the predefined loss elements, the expected economic loss value (in USD) can be 

estimated. 

 

 

Figure 7.9. Expected economic loss (ELoss) curve for scenario-1 based on the likelihood  

  of the consequences 

 

The induced costs associated with the loss scenarios are stochastically modeled; they are assumed 

to be normally distributed. The results provided in Fig. 7.9 are based on scenario-1 (see Fig.7.6), 

implying that the 95% upper bound confidence intervals for the expected value increase by 22.3%, 

56.33%, and 64.3% for the loss scenarios of C2, C3, and C4, respectively. Fig. 7.10 illustrates the 

effect of total failure of the safety barriers/actions (see Fig. 7.7) on the expected economic loss 

value, which accounts for a 70% increase in the 95% upper bound confidence interval of the 

expected loss value for loss scenario C4.  It is concluded that as the safety actions have failed to 
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mitigate against MIC propagation under unstable pressure disturbances/stress-induced cracking, 

the likelihood of loss scenario C4 increases, as shown in Fig. 7.7. This increase in the probability 

of occurrence leads to an increase in its associated expected economic risk. The predicted results 

give an overview of the expected monetary loss (in USD) incurred based on the probability of 

occurrence of the various loss scenarios. The modeling results can be useful in operational cost 

planning and investment risk management. This provides practical tips for risk-based integrity and 

corrosion cost management. Furthermore, the total expected economic losses (in USD) based on 

the loss scenarios and the failure of the safety barriers are captured at the critical failure year (see 

Fig. 7.11).  As shown in Fig. 7.11, there is an increase in the expected economic loss value across 

the loss scenarios with and without the cost incurred on safety barriers/actions. 

 

Figure 7.10. Expected economic loss (ELoss) curve for scenario-2 based on the  

likelihood of the consequences 
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To validate the assumed probability distribution that captures the variability in the loss elements 

and the expected economic loss value, a normality test is carried out in the SPSS software 

environment; the results are reported in Table 7.2.  EVAR1 and EVAR2 indicate the total expected 

loss value with and without the cost incurred because of the safety barriers, respectively. As shown 

in Table 7.2, the Kolmogorov-Smirnov and Shapiro-Wilk hypotheses are used for the normality 

test. It is found that the Shapiro-Wilk test gives better analysis, compared to the Kolmogorov-

Smirnov test of statistics. Based on the alpha (𝛼) = 5% significance hypothesis, it is confirmed 

that the economic loss elements are normally distributed. 

Table 7.2. Test for normality of the expected economic loss value 

       

  Kolmogorov-Smirnova Shapiro-Wilk 

Expected Loss Statistic df Sig. Statistic df Sig. 

EVAR1 0.060 100 0.200* 0.982 100 0.180 

EVAR2 0.060 100 0.200* 0.987 100 0.446 

*This is a lower bound of the true significance 

a. Lilliefors significance correction 

 

 where df is the degree of freedom and Sig. represents the significance test value. 
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Figure 7.11. Total expected economic loss (E𝐿𝑜𝑠𝑠
𝑇 ) curve for loss scenarios with and without the 

     cost    incurred on the safety barriers/actions at the critical year of failure 

According to Fig. 7.11, the 95% upper bound of expected economic losses, which describe the 

total value at risk due to failure, is US$6.4 million with a variance (𝜎2) of 1.261 × 1012. The 

result analysis provides critical risk-based information that will help to forecast the economic 

losses based on the health state of the offshore system and the safety barriers. It is important to 

note that there is diversity in cost parameter characteristics, which is dependent on the system’s 

operating terrain and the market influencing factors. This varies across the region of operations 

and case studies, which could be reflected in the overall predicted value at risk.  

The current hybridized methodology, in comparison with the mechanistic and probabilistic 

approaches proposed by other researchers [7,8,11,15], offers a robust risk-based application. This 

is validated by its capacity to dynamically capture the vital influencing factors for failure and 

economic loss/risk prediction at different time-slices under multispecies biofilm architecture. 

Therefore, it is essential to integrate all likely losses and their variability as a result of failures and 

safety barriers/actions performance for the overall economic risk analysis. This is exhibited by the 

current model for well-informed risk-based decision making and loss/risk minimization strategies 

during the operation of offshore systems.  

The proposed model provides an effective risk/economic loss monitoring (and predictive tool) for 

system operators and integrity managers. This shows the model’s real-time monitoring capability 

for the system’s health state and failure probability upon MIC formation; this approach can capture 

the value at risk based on the likelihood of the consequences over time. The dynamic model is of 

benefit to the marine and offshore oil and gas industries in assets integrity management and loss 

prevention strategy. 
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7.6. Conclusions  

 

The present research demonstrates the integration and application of the DBN and loss aggregation 

technique for microbial corrosion risk prediction. The methodology explores the vital corrosion 

risk factors and their dependencies to predict the rate of degradation, failure, and consequences of 

failure in terms of economic losses in any time-period/step.  It is observed that among the key 

factors, pCO2 and pH2S show a significant impact on the severe degradation rate and failure of the 

system. The interplay between these influential factors plays a vital combinatory role that enhances 

the bacteria growth and the corrosion rate. Also, their associated instability and the bacteria 

diversity potentials complicate the failure characteristics of the corroding offshore systems.  The 

proposed connectionist model demonstrates the capacity to simultaneously predict MIC induced 

failures and the associated risks during offshore operations. This section summarizes the key 

outcomes of the current research work: 

 

• The developed model serves as a useful tool for dynamic corrosion risk assessment of 

marine and offshore systems. 

• The model captures the dynamic non-linear interactions among corrosion influencing 

factors to predict the offshore system's degradation rate in operation. 

• The hybridized model can propagate the offshore system's degradation rate for the 

prediction of the failure likelihood and consequences of failure in different time-slices. 

• The model offers an integrated framework for the expected economic losses (value at risk) 

prediction based on the likely failure modes and their consequences under the multispecies 

biofilm structure. 
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• The hybridized model utilizes a probabilistic tool that integrates the soft and hard failure 

of the safety barriers/actions on the investment's overall financial losses. The results show 

a 40.3% and 57.5% increase in the total economic losses (value at risk) at the 95% upper 

and lower bound confidence intervals for the worst-case scenarios. 

• The developed risk assessment methodology offers a dynamic and robust early warning 

and prognostic tool for economic risk-based decision making in offshore operations 

experiencing microbial corrosion.  

• The marine and offshore oil and gas industries can benefit from the developed dynamic 

model in system degradation and failure propagation monitoring and forecasting. The 

associated risk/financial losses as a result of the system failure can be monitored through 

real-time risk modeling of offshore operations under MIC.   

The dynamic model application confirms its benefits in risk assessment of microbial corrosion 

induced failure in offshore operations. However, the model can be further enhanced in future 

research by integrating copula modeling, market risk influencing factors, and stochastic dominance 

rules for loss elements/scenarios dependency analysis and risk minimization decision making 

criteria under uncertainty. 
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Chapter 8 

Summary, Conclusions and Recommendations 

 

8.1. Summary 

 

This study demonstrates the novel application of the Bayesian network structure, Markovian 

stochastic process, Monte Carlo Simulation, Markovian mixture structure, Copula-based Monte 

Carlo algorithm, dynamic Bayesian network, and loss aggregation technique for dynamic risk-

based integrity assessment of corroding marine and offshore systems. The existing mechanistic 

models for microbial corrosion susceptibility assessment are not dynamically structured, unable to 

capture the unstable, dynamic, and non-linear interactions among MIC influential factors for 

failure predictions.  Dynamic risk-based assessment techniques for microbial corrosion induced 

failures are developed to capture the significant factors’ non-linear interactions; they address the 

knowledge gaps and aid integrity management of the corroding systems. 

This thesis presents an integrated and dynamic probabilistic model to assess the integrity of marine 

and offshore systems suffering microbiologically influenced corrosion. The model accounts for 

the contributory parameters’ interdependency and their effects on the pipeline's corrosion rate and 

failure probability. The stochasticity in the microbial metabolism and its impact on the failure 

behavior of the corroding pipeline are captured. Also, the random response variables variability 

and the multiple defects interactions effects on the corroding system survivability are predicted for 

optimum integrity management strategy. The Copula-based Monte Carlo algorithm captures the 

likely microbial induced failure modes and the response parameters spatial dependencies for the 

system reliability prediction. The analysis results suggest a reliable reliability-based integrity 

management strategy under multispecies microbial biofilm architectures. Furthermore, an 
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integrated dynamic Bayesian network - loss aggregation technique is developed to forecast the 

associated risk of microbial induced failures. The results provide prognostic risk-based tools that 

could aid operational decision making by engineers and integrity managers. 

8.2. Conclusions 

 

The major conclusions drawn from the current research is summarized as follows: 

8.2.1 Development of an innovative failure predictive model 

 

This research presents a new failure assessment model for corroding offshore systems, 

emphasizing the non-linear interactions among influential parameters. The BN structure is adopted 

to model the dependencies among the monitoring operating parameters (e.g., temperature, fluid 

flow rate, salinity, CO2, and pH) and the bacteria (e.g., SRB) for microbial corrosion rate 

predictions. The BN structure's input parameters are the prior probabilities and conditional 

probability of the monitoring operating parameters. The prior probabilities are assessed from the 

parameters’ sample data based on the partitioning approach, while the conditional probability is 

estimated from corrosion models and subject matter expert opinions. Given the prior and 

conditional probabilities, the BN structure is simulated to predict the MIC rate.  The predicted 

corrosion rate is used in the Markovian stochastic formulation as the transition intensity for the 

failure probability prediction. The Markovian process utilizes a four states pit depth formulation 

to characterize the corrosion deterioration process for the corroding system. The fourth state, which 

is the critical failure state (i.e., at pit depth > 75%), is used for the failure prediction based on the 

probability distribution at any time step. The failure time of the corroding system is then predicted 

based on the safety class regulation. Subsequently, the future pit depth distribution is forecasted. 

The proposed model's effectiveness is validated through the application of the model on the 
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corroding subsea pipeline. The probabilistic predictive model's application provides an early 

warning guide for a timely intervention to prevent the corroding subsea pipeline's total failure. 

8.2.2 Development of an integrated operational safety model 

 

The current study presents an operational safety assessment model for offshore systems with 

multiple MIC defects. The model integrates the BN-Markovian mixture structure with the Monte 

Carlo algorithm to explore the evolving effects of non-linear interaction among operating 

parameters and the defects interaction on the corroding system's survivability. The emphasis is 

placed on the non-linearity in the dependencies among the influential critical factors, defect 

interaction, and the complex multispecies characteristics of the microbial biofilm structure. BN is 

more appropriate for representing complex dependencies among microbial corrosion influential 

parameters and capturing the uncertainty in modeling. The BN shows a high capability of 

abductive reasoning and the ability to capture multivariate interactions. The stochastic nature of 

the propagation and interactions among the defects is considered for an effective growth rate 

prediction using the Markovian mixture formulation. The Monte Carlo algorithm stochastically 

predicts the remaining strength of the corroding system. The model is demonstrated with an in-

service corroding offshore pipeline. The results analysis shows the evolving effects of the defects’ 

interaction and the multispecies biofilm characteristics on the asset's survival likelihood. The 

model provides a parametric-based condition monitoring tool for effective integrity management 

of corroding offshore pipelines. 

8.2.3 Development of dynamic reliability model considering multiple failure modes 

 

This study has developed a dynamic methodology for reliability prediction of corroding offshore 

systems considering multi-failure modes dependencies. The BN-CMC model offers a technique 
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for predicting the effects of complex parametric dependencies and non-linear correlation on 

offshore systems' reliability. The CMC utilizes the concordance measure (i.e., the Kendall tau) to 

predict the correlation effects of corrosion response parameters and their failure modes on the 

system performance. The model is validated with a subsea pipeline with different defects depth 

under multispecies biofilm architecture. The research outputs show that the system’s failure 

probability differs diversely with the degree of correlation among the random corrosion response 

parameters. The model predicts the failure indexes that could aid integrity management of 

corroding offshore systems considering spatial interdependencies.. 

8.2.4 Development of a probabilistic integrity assessment model  

 

This phase of the study develops a probabilistic model for integrity assessment of corroding 

pipeline structures. The integrated model utilizes different susceptibility models for the pipeline's 

degradation rate and defects growth prediction in a mixed corrosive environment. The Monte Carlo 

simulation is used to capture the random response parameters and the microstructural variability 

for failure probability prediction. The model is demonstrated on three different steel grade 

pipelines with corrosion defects. The model explores the effects of heterogeneities characteristics 

and mixed corrosive environment on the steel pipelines' failure behaviors. The model offers a 

systematic framework for an appropriate material selection and risk-based integrity management 

strategy for corroding offshore structures.  

8.2.5 Development of dynamic risk assessment model 

 

The current research phase introduces a dynamic risk analysis methodology for offshore systems 

suffering microbial induced stochastic degradation. A novel DBN structure is applied to model the 

influential corrosion factors' evolving characteristics and the time-evolution effects of the 
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degradation process for failure assessment.  The loss aggregation function is used to forecast the 

expected economic loss value associated with different loss scenarios due to system failures. The 

model is tested on a subsea pipeline. The integrated model utilizes a probabilistic formalism that 

captures the safety barriers' soft and hard failure on the investment's overall financial losses. The 

model offers a dynamic framework for the prediction of the expected economic losses (value at 

risk) due to microbial corrosion induced failures and for integrity-based decision making. 

8.3. Recommendations 

  

This study was intended to develop effective models for dynamic risk-based integrity assessment 

of corroding marine and offshore systems. Based on completed objectives, the following areas are 

recommended for further investigation: 

• The development of a hybrid dynamic risk and uncertainty modeling technique for integrity 

assessment of corroding offshore systems should be vigorously explored. This can enable 

us to adequately separate the epistemic and aleatory uncertainties, considering the sources 

of data for reliable system integrity decision making. 

• The development of an advanced data acquisition and process digitalization framework for 

microbial corrosion related information should be further investigated. This will help to 

thoroughly gather, share, and analyze relevant information for a reliable integrity 

management plan.  

• The integration of the time-nonhomogeneous Markovian process with the dynamic model 

can be conducted. This will explore the significance of time-variant defect growth on 

failure probability prediction and future pit depth distribution under multispecies microbial 

biofilm structure.  
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• The development of an integrated Copula-based stochastic dominance framework should 

be explored for microbial corrosion risk minimization decision making under uncertainty.  

• The development of a dynamic cost-based integrity management optimization framework 

for offshore systems under microbial induced stochastic degradation can be a promising 

research work.  
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Supplementary Material 

 

SA: An illustrative example to facilitate understanding of the hybrid dynamic failure 

assessment methodology 

 

A simple hypothetical illustrative example with an assumed dataset is shown below to demonstrate 

how the hybrid connectionist model can be used to predict the MIC rate and the failure probability 

for an offshore pipeline. A 6mm wall thickness offshore pipeline under microbially influenced 

corrosion is examined, and the following procedure summarizes the application of the integrated 

dynamic model.  The detailed calculation for each step for the MIC rate and the time step’s failure 

probability prediction is shown. 

 

Step1:  Collect monitoring operating parameters data log for the period of 3 years together with 

inspection data; identify the bacteria characteristic associated with the corrosion and establish their 

counts; partition the data into set bounds (high, moderate, and low) for the monitoring operating 

parameters and the environmental factors that influence the corrosion given the data range; from 

the partitioned data, estimate the parameters’ prior probabilities based on the data counts within 

the range. The literature [6,68] shows that the monitoring operating parameters (temperature, pH, 

CO2 partial pressure, salinity, flow velocity) play key roles in the corrosion mechanism in 

offshore/marine systems. Consequently, the presented data is associated to the different defect 

growth rates. The estimated probabilities based on the data range is shown in Table SA1. 

For this phase, the following assumptions hold: 

 a)  The data bounds as shown in Table SA1 depict the range in which the operating parameters 

fall under the prevailing environmental conditions for the period under consideration. 
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b) The future defect growth is predicted based on the corrosion defect rate and is constant for the 

period under consideration.  

c) The Markov process is defined based on the assumption that the asset was at an initial state with 

no defects.  

d) The future defect growth prediction is assumed linearly propagated for the period under 

consideration.  

Table SA1: Hypothetical  corrosion influencing parameters & their probabilities  

for long-term MIC rate prediction 

  
Variables 

Range State /Probability 
 (Node) 

    
pH Min 4  Acidic ~ 0.4411 

 Max 10.67 Neutral ~ 0.3105 

  Basic ~0.2484 

   
Temperature (degree C) Min 15   High ~ 0.4193 

 Max 50 Moderate ~ 0.3321 

  Low ~ 0.2486 

   
Fluid velocity (m/s) Min 0.06  High ~ 0.0132 

 Max 3.04 Moderate ~ 0.3312 

  Low ~ 0.6556 

   
Salinity  Present ~ 0.67 

  Absent ~ 0.33 

   

   
Steel composition  Present > 0.5% ~ 0.6 

  Absent < 0.5% ~ 0.4 

  
 

Exposure period  Max. > 3.5yrs ~ 0.6121 

  Mean 2.5-3.5yrs ~0.2813 

  Min < 2.5yrs ~ 0.1066 

   
SRB Low < 10000cfu/ml  
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 10000 < Moderate <100000  
  High> 100000 cfu/ml   

 

Step 2: The probabilistic data from step 1 is used as input data for the BN model. The BN model 

is developed for MIC rate prediction based on the relationship among the monitoring operating 

parameters, environmental factors, mechanical properties, and the corrosion mechanism. The 

structure depicts the interdependency and interaction among these factors to probabilistically 

predict the MIC rate under the prevailing operating conditions. To determine the operating 

parameter effects on the MIC rate, this important rate is categorized into four states (severe, high, 

moderate, and low) according to the NACE-RP0775 [75] recommendation. The dependency 

among these MIC influencing parameters is defined by their conditional probability. The 

conditional probabilities for the child node are created by studying the dynamic relationship that 

exists among microbial corrosion influencing factors. The theoretical and experimental corrosion 

model proposed by the scholars [6,69] is adopted for additional information for conditional 

probability. In the case of incomplete information, data from subject matter expert opinion and 

literature [56] is adopted for the analysis.  

Step 3: The prior probabilities obtained from Table SA1 for the monitoring operating parameters 

and material properties (temperature, pH, CO2, salinity, alloy effect) are incorporated into the 

developed cause-effect BN structure (see Figure SA1). The MIC rate is probabilistically predicted 

with these monitoring operating parameters’ prior probabilities and conditional probabilities, as 

shown in Figure SA1. The prediction describes the parametric learning of the BN structure, which 

captures the characteristic non-linear dependency. The result of the simulation is shown in Figure 

SA1, with the predicted MIC rate of 0.0103mm/year, 0.2301mm/year, 0.3124mm/year, and 

0.4523mm/year for the low, moderate, high, and severe corrosion rate category, respectively. 
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Figure SA1: BN for MIC rate prediction using the upper bound probability of  

                                 corrosion influencing factors 

 

Step 5: Once the MIC rate is predicted by the BN, as shown in Figure SA1, the predicted MIC rate 

is integrated into the Markov process as transition intensity for component failure probability 

prediction. To predict the failure probability, the pipeline wall thickness is first discretized into 

four corrosion pit depth states, as demonstrated in Figure SA2, which represent different 

percentages of corrosion pit depth of the pipe wall thickness (see Table SA2). Pit depth state IV 

refers to the critical failure state of the pipeline based on the criteria in the literature [70].  

Assuming a corrosion pit depth of 0.87 mm is identified, which falls within pit depth state I (see 

Table SA2). The prior pit depth state’s probability distribution is then defined by 𝜋𝑖 =

[1 0 0 0] based on the identified pit depth.  𝜋𝑖 describes the prior state of the pipeline, which 

shows an initial state of no defects at the commencement of operation.  For the application of the 

predicted MIC rate in the Markovian process, the low, high, and severe corrosion rate categories 
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are used for 𝜇12(𝑡), 𝜇23(𝑡), 𝑎𝑛𝑑 𝜇34(𝑡), respectively. This is used to form the transition intensity 

matrix (generator matrix), as shown by Equation (SA1) based on the predefined pit states. 

Pit depth 
state IV

Pit depth 
state I

Pit depth 
state II

Pit depth 
state III

1 2 3 4

 

Figure SA2: Discretization of the pipe wall thickness into MIC pit depth states 

Generator matrix = Q = ‖
‖

−𝜇12(𝑡) 𝜇12(𝑡) 0 0 ⋯
0 −𝜇23(𝑡) 𝜇23(𝑡) 0 ⋯
0 0 −𝜇34(𝑡) 𝜇34(𝑡) ⋯
⋮ ⋮ ⋮ ⋮ ⋯
⋮ ⋮ ⋮ ⋮ ⋱

‖
‖                           (𝑆𝐴1) 

Table SA2. Pipe wall thickness for different pit depth states 
  

 

  Pit depth 

state 1 

  Pit depth   

state II 

Pit depth 

state III 

Pit depth 

State IV 

Pit depth states (pipe wall 

thickness discretization) 0-1.5mm 1.5-3.0mm 3.0-4.5mm 4.5-6mm 

% pipe wall thickness 

discretization 0%-25% 25%-50% 50%-75% >75% 

Pipe wall thickness (6mm)         

 

Step 6: Given the transition intensity, as shown in steps 4 and 5, the state’s transition probabilities 

can be estimated by the set of Kolmogorov forward differential equations (KFE) (see Equation 

(SA2)).  The set of differential equations developed to estimate the pit depth state transition 

probability is solved using the Laplace-Stieltjes transform and its inverse (see Equation (SA3)). 

The output is used to form the transition probability matrix, as shown by Equation (SA4). 

𝜇
12
(𝑡) 𝜇23(𝑡) 𝜇

34
(𝑡) 
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{
 
 
 

 
 
 
𝑑𝑃11(𝑡)

𝑑𝑡
= −𝜇12𝑃11(𝑡)                           

𝑑𝑃12(𝑡)

𝑑𝑡
= 𝜇12 𝑃11(𝑡) − 𝜇23𝑃12(𝑡)       

𝑑𝑃13(𝑡)
𝑑𝑡

= 𝜇23𝑃12(𝑡) − 𝜇34𝑃13(𝑡)        

𝑑𝑃14(𝑡)
𝑑𝑡

= 𝜇34𝑃14(𝑡)                                

                                                                               (𝑆𝐴2) 

 

Step 7: The states’ probabilities at different time steps are estimated by Equation (SA3) to form 

the state transition probability matrix and the row vector (𝜋), representing the prior probability. 

The dynamics of the state’s probabilities are dependent on the MIC rate for failure probability 

prediction.  

Step 8: All the steps in the procedure can be repeated for different scenarios and with different 

corrosion pit depth states.  

For the four-state pit depth interval as shown in Figure SA2, the developed differential equations 

can be solved by applying the Laplace-Stieltjes transform and its inverse to the KFE, which gives: 

𝑃11(𝑡) = 𝑒
−𝜇12𝑡 

𝑃12(𝑡) =
𝜇12

𝜇12−𝜇23
(𝑒−𝜇23𝑡 − 𝑒−𝜇12𝑡)        (SA3) 

𝑃13(𝑡) =
−𝜇23𝜇12[(𝜇12 − 𝜇23)𝑒

−𝜇34𝑡 + (𝜇34 − 𝜇12)𝑒
−𝜇23𝑡 + (𝜇23 − 𝜇34)𝑒

−𝜇12𝑡]

(𝜇12 − 𝜇23)(𝜇34 − 𝜇12)(𝜇23 − 𝜇34)
 

𝑃14(𝑡) = 1 − 𝑃11 − 𝑃12 − 𝑃13 

Inputting the MIC rate from Figure SA1, step 3 (i.e., taking 𝜇12 = 0.0103 ;  𝜇23 = 0.3124; 𝜇34 =

0.4523) into Equation (SA3) gives:  

𝑃11(𝑡) = 𝑒
−𝜇12𝑡 = 𝑒−0.0103 = 0.9898 
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𝑃12(𝑡) =
𝜇12

𝜇12 − 𝜇23
(𝑒−𝜇23𝑡 − 𝑒−𝜇12𝑡) =

0.0103

0.0103 − 0.3124
(𝑒−0.3124 − 𝑒−0.0103) = 0.0088 

𝑃13(𝑡) =
−𝜇23𝜇12[(𝜇12 − 𝜇23)𝑒

−𝜇34𝑡 + (𝜇34 − 𝜇12)𝑒
−𝜇23𝑡 + (𝜇23 − 𝜇34)𝑒

−𝜇12𝑡]

(𝜇12 − 𝜇23)(𝜇34 − 𝜇12)(𝜇23 − 𝜇34)
= 

=
−0.0103(0.3124)[(0.0103 − 0.3124)𝑒−0.4523 + (0.4523 − 0.0103)𝑒−0.3124 + (0.3124 − 0.4523)𝑒−0.0103]

(0.0103 − 0.3124)(0.4523 − 0.0103)(0.3124 − 0.4523)
 

𝑃13(𝑡) = 0.0013 

𝑃14(𝑡) = 1 − 𝑃11 − 𝑃12 − 𝑃13 = 0.0001 

The result is used to form the state transition probability matrix as shown below: 

Transition probability matrix P = {𝑝𝑖𝑗} = ‖

0.9898 0.0088 0.0013 0.0001
0 1 0 0
0 0 1 0
0 0 0 1

‖               (𝑆𝐴4)  

Substitute SA4 and 𝜋𝑖 = [1 0 0 0] and their transpose into Equation (SA5) for the failure 

probability distribution prediction for a  𝑡- step transition. 

ℙ(𝑋𝑡 = 𝑗) =∑ℙ(𝑋𝑡 = 𝑗|𝑋𝑡−1 = 𝑖)ℙ(𝑋𝑡−1 = 𝑖)

𝑁

𝑖=1

=∑(𝑃𝑡)𝑖𝑗𝜋𝑖

𝑁

𝑖=1

= (𝜋𝑇𝑃𝑡)𝑗                          (𝑆𝐴5) 

The probability function (SA5) is used to predict the failure probability distribution at each t-step 

transition based on the defined pit depth states in the MATLAB environment.  The result from the 

critical pit depth states’ probabilities for the period under consideration is used to characterize the 

failure profile for the microbial influenced corroded offshore pipeline under the prevailing 

environmental conditions, as shown in Figure SA3. 
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 Figure SA3: Predicted failure probability for microbial influenced corroded pipeline 

 

Operational and integrity management decision-making can be inferred from the developed failure 

characteristic profile for an offshore pipeline under microbial influenced corrosion. For instance, 

the result in Figure SA3 shows that at the threshold of 1.00 × 10−3, the likely critical failure 

probability of the offshore pipeline is 1.046 × 10−3 , while the critical failure time occurs at  10.5 

years of exposure.  

 

 

 

 

 

 

 

0

0.0005

0.001

0.0015

0.002

0.0025

0 5 10 15 20 25 30

Fa
ilu

re
 P

ro
b

ab
ili

ty

Exposure Time (years)



261 
 

 

SB: An illustrative example to facilitate understanding of the hybrid operational safety 

assessment methodology 

 

A simple illustrative example is shown below to demonstrate how the hybrid model can be used 

to predict the MIC rate, time variant strength loss, and the survival lifetime of corroded offshore 

pipeline under multiple defects interaction. A 762 mm diameter offshore pipeline under microbial 

influenced multiple defects interaction is examined and the following procedure summarizes the 

application of the hybrid methodology: 

 

1. Collect monitoring operating parameters and inspection data, identify the bacteria and their 

counts; establish set bounds, estimate their probability, and categorize the state into low, 

moderate, high or severe, where applicable, depending on the degree of influence, as shown 

in Table SB1. 

2. The second step is to develop a model for the prediction of an initial individual MIC pits 

growth rate from inspection data and monitoring operating parameters. Identify interacting 

pits based on the criteria and clusterize them into a single or group of pits. Discretize the 

pipe wall thickness into pits depth state to represent the overlapping and interacting pits 

depth.  

3. Furthermore, the effect of pits interaction on the MIC rate is predicted using Markov 

Mixture Model (MMM). The effect of the interaction on pit depth and length based on the 

interaction criteria is also captured.  

4. The residual strength model is formulated to be MIC growth rate dependent for estimating 

the effect of pits interaction on the corroded system residual strength over time. Further 
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analysis is presented considering residual strength, safe operating pressure based on the 

mixture model MIC growth rate, and survival likelihood prediction.  

Illustrative Example: 

Step 1 

Assuming that from a single inspection data and operating parameters, the following data ranges 

are selected including the microbial counts that support the corrosion mechanism. The probability 

is evaluated from the available data, literature, and SME. 

Table SB1: Monitoring operating parameters for MIC growth rate prediction 

 

Variables 
Range State /Probability 

 (Node) 

    
pH 2.8 ~ 10.67 Acidic ~ 0.4481 

  Neutral ~ 0.3105 

  Basic ~0.2414 

   
Temperature (degree C) 10 ~ 50 High ~ 0.4193 

  Moderate ~ 0.3321 

  Low ~ 0.2486 

   
Fluid velocity (m/s) 0.06 ~ 3.04  High ~ 0.0132 

  Moderate ~ 0.3312 

  Low ~ 0.6556 

   
Salinity  Present ~ 0.67 

  Absent ~ 0.33 

   

   
Steel composition  Present > 0.5% ~ 0.6 

  Absent < 0.5% ~ 0.4 

  
 

Exposure period  Max. > 3.5yrs ~ 0.6121 

  Mean 2.5-3.5yrs ~0.2813 

  Min < 2.5yrs ~ 0.1066 

   

SRB Low < 10000cfu/ml APB: Low < 1000cfu/ml 

 
10000 < Moderate <50000          1000 < Moderate <10000 
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  High> 50000 cfu/ml           High> 10000 cfu/ml 

 

Step 2 

Assumed from the BN, the predicted MIC rates under the prevailing condition are 0.3683 mm/yr., 

0.2466 mm/yr., 0.2198 mm/yr., and 0.1654 mm/yr., for severe, high, moderate, and low corrosion 

rate categories, respectively. 

 

 

 

 

    

Figure SB1: Pit depth states 

Also given  that 𝜇1
12 = 0.1654, 𝜇1

23 = 0.2466, 𝜇1
34 = 0.3683 𝑎𝑛𝑑 𝜇2

12 = 0.0827, 𝜇2
23 =

0.1233, 𝜇2
34 = 0.2198 

Considering interaction among adjacent pits and overlapping pits, the following conditions must 

hold: 

𝑙12 ≤ 2.0√𝐷.𝑤𝑡                                                                                                                                     (𝑆𝐵1) 

𝑤12 ≤ 𝜋√𝐷.𝑤𝑡                                                                                                                                        (𝑆𝐵2) 

where 𝐷 is the outer diameter of the pipeline; and 𝑤𝑡 is the pipe web thickness 

Assuming that the longitudinal and transverse distance between the pits met the above criteria and 

their exist interaction among the pits; a mixture model is proposed for the effective merged defect 

growth rate prediction. 

4321

Pit 
depth 1

Pit 
depth 2

Pit 
depth 3

Pit 
depth 4

 

  

 

4321

Pit 
depth 1

Pit 
depth 2

Pit 
depth 3

Pit 
depth 4

 

𝜇1
12 

𝜇2
34 𝜇2

23 𝜇2
12 𝜇1

34 𝜇1
23 Pit 1 Pit 2 



264 
 

Step 3: 

The Markov mixture concept is formulated from Actuarial Science [48] with the transition 

intensity (MIC growth rate) equivalent to the force of mortality: This is an acyclic model  with 

transient states and the last sate being the absorbing. It is represented as a phase type distribution 

with convolution of exponential distribution. 

Let the random variable M determines the Markov chains. The Mixing probabilities are 𝑃(𝑀 = 1) 

and 𝑃(𝑀 = 2) for the two identified defects. The transition for the two Markov chains are 

{𝜇1
𝑖𝑗
; 𝑖: 𝑗𝜖{1,2,3,4}, 𝑖 ≠ 𝑗} 𝑎𝑛𝑑 {𝜇2

𝑖𝑗
; 𝑖; 𝑗𝜖{1,2,3,4}, 𝑖 ≠ 𝑗} respectively and are evaluated in Step 1 

The mixture of the two pits Markov chains leads to a process that depends on the individual pit 

depth state history, because the intensities of observable transitions are function of a history that 

contains the information about duration and the state of the pit for an individual pits up to the 

current time.  

Let the history of the pits state up to time 𝑡 be denoted by ℋ𝑡; using similar notation by Aalen [48], 

for a mixture model, the mixture transition intensity gives 

𝜆𝑖𝑗(𝑡|ℋ𝑡) = 𝜇1
𝑖𝑗
𝑃(𝑀 = 1|ℋ𝑡) + 𝜇2

𝑖𝑗
𝑃(𝑀 = 2|ℋ𝑡)                                      (SB4) 

Thus, 𝜆𝑖𝑗(𝑡|ℋ𝑡); the transition intensity of the mixture model is dependent on the history of the 

process through the conditional probabilities on the right-hand side of Equation (SB4): 

In general, the multi-state Markov Mixture Model transition intensity gives [49,51]: 

𝜆𝑖𝑗(𝑡|ℋ𝑡
𝑘) =

∑ 𝜇𝑚
𝑖𝑗
𝑃(ℋ𝑡

𝑘|𝑀 = 𝑚)𝑃(𝑀 = 𝑚)𝑛
𝑚=1

∑ 𝑃(ℋ𝑡
𝑘|𝑀 = 𝑚)𝑃(𝑀 = 𝑚)𝑛

𝑚=1

                                                                        (𝑆𝐵5) 

So, for a two set of interacting pits, we have  
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𝜆𝑖𝑗(𝑡|ℋ𝑡
𝑘) =

𝜇1
𝑖𝑗
𝑃(ℋ𝑡

𝑘|𝑀 = 1)𝑃(𝑀 = 1) + 𝜇2
𝑖𝑗
𝑃(ℋ𝑡

𝑘|𝑀 = 2)𝑃(𝑀 = 2)

𝑃(ℋ𝑡
𝑘|𝑀 = 1)𝑃(𝑀 = 1) + 𝑃(ℋ𝑡

𝑘|𝑀 = 2)𝑃(𝑀 = 2)
                             (𝑆𝐵6) 

where 𝑃(𝑀 = 𝑚) is an assumed probability of mixture of the pits; for the two pits let 𝑃(𝑀 = 1) =

0.6 and 𝑃(𝑀 = 2) = 0.4.  

For the history-based conditional probability of the Pit, it is assumed that the condition probability 

𝑃(ℋ𝑡
𝑘|𝑀 = 𝑚) follow the transition probability formulation across the states based on the pit 

depth state history. Using the Laplace Stieltjes transformation gives: 

𝑃(ℋ𝑡
1|𝑀 = 1) = exp(−𝜇1

12) = 𝑒−0.1654𝑡 

𝑃(ℋ𝑡
2|𝑀 = 1) =

𝜇1
12

𝜇1
12 − 𝜇1

23 (𝑒
−𝜇1

23𝑡 − 𝑒−𝜇1
12𝑡) =

0.1654

(0.1654 − 0.2466)
(𝑒−0.2466𝑡 − 𝑒−0.1654𝑡) 

𝑃(ℋ𝑡
3|𝑀 = 1) =

−𝜇1
23𝜇1

12[(𝜇1
12 − 𝜇1

23)𝑒−𝜇1
34𝑡 + (𝜇1

34 − 𝜇1
12)𝑒−𝜇1

23𝑡 + (𝜇1
23 − 𝜇1

34)𝑒−𝜇1
12𝑡]

(𝜇1
12 − 𝜇1

23)(𝜇1
34 − 𝜇1

12)(𝜇1
23 − 𝜇1

34)
 

−𝜇1
23𝜇1

12 = −0.04079 

𝜇1
12 − 𝜇1

23 = −0.0812;         𝑒−𝜇1
34𝑡 = 𝑒−0.3683𝑡 

𝜇1
34 − 𝜇1

12 = 0.2029;         𝑒−𝜇1
23𝑡 = 𝑒−0.2466𝑡 

𝜇1
23 − 𝜇1

34 = −0.1217;         𝑒−𝜇1
12𝑡 = 𝑒−0.1654𝑡 

𝑃(ℋ𝑡
3|𝑀 = 1) = 0.0599𝑒−0.2466𝑡 − 0.02395𝑒−0.3683𝑡 − 0.0359𝑒−0.1654𝑡 

𝑃(ℋ𝑡
4|𝑀 = 1) = 1 − 𝑃(ℋ𝑡

1|𝑀 = 1) − 𝑃(ℋ𝑡
2|𝑀 = 1) − 𝑃(ℋ𝑡

3|𝑀 = 1) 

  = 1 − 3.001𝑒−0.1654𝑡 + 1.977𝑒−0.2466𝑡 + 0.02395𝑒−0.3683𝑡 

Similarly, the history-based conditional probability for Pit 2 is obtained as follows: 
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𝑃(ℋ𝑡
1|𝑀 = 2) = exp(−𝜇2

12) = 𝑒−0.0827𝑡 

𝑃(ℋ𝑡
2|𝑀 = 2) =

𝜇2
12

𝜇2
12 − 𝜇2

23 (𝑒
−𝜇2

23𝑡 − 𝑒−𝜇2
12𝑡) =

0.0827

(0.0827 − 0.1233)
(𝑒−0.1233𝑡 − 𝑒−0.0827𝑡) 

𝑃(ℋ𝑡
3|𝑀 = 2) =

−𝜇2
23𝜇2

12[(𝜇2
12 − 𝜇2

23)𝑒−𝜇2
34𝑡 + (𝜇2

34 − 𝜇2
12)𝑒−𝜇2

23𝑡 + (𝜇2
23 − 𝜇2

34)𝑒−𝜇2
12𝑡]

(𝜇2
12 − 𝜇2

23)(𝜇2
34 − 𝜇2

12)(𝜇2
23 − 𝜇2

34)
 

−𝜇2
23𝜇2

12 = −0.0102 

𝜇2
12 − 𝜇2

23 = −0.0406;         𝑒−𝜇2
34𝑡 = 𝑒−0.2198𝑡 

𝜇2
34 − 𝜇2

12 = 0.1371;         𝑒−𝜇2
23𝑡 = 𝑒−0.1233𝑡 

𝜇2
23 − 𝜇2

34 = −0.0965;         𝑒−𝜇2
12𝑡 = 𝑒−0.0827𝑡 

𝑃(ℋ𝑡
4|𝑀 = 2) = 1 − 𝑃(ℋ𝑡

1|𝑀 = 2) − 𝑃(ℋ𝑡
2|𝑀 = 2) − 𝑃(ℋ𝑡

3|𝑀 = 2) 

= 1 − 1.204𝑒−0.0827𝑡 + 4.383𝑒−0.1233𝑡 − 0.771𝑒−0.2198𝑡 

Note that the mixture model intensity is represented as a phase type distribution with convolution 

of exponential distribution. Assume that Pit 1 and Pit 2 was at pit depth states 1 & 2 at the point of 

inspection (see Figure. SB1) and their exist interaction between the pits, the clustered MIC pit 

(mixture model) growth rate gives the following relationships: 

𝜆12(𝑡|ℋ𝑡
1) =

𝜇1
12𝑃(ℋ𝑡

2|𝑀 = 1)𝑃(𝑀 = 1) + 𝜇2
23𝑃(ℋ𝑡

3|𝑀 = 2)𝑃(𝑀 = 2)

𝑃(ℋ𝑡
2|𝑀 = 1)𝑃(𝑀 = 1) + 𝑃(ℋ𝑡

3|𝑀 = 2)𝑃(𝑀 = 2)
 

𝜆12(𝑡|ℋ𝑡
1)

=
0.2022𝑒−0.1654𝑡 − 0.2022𝑒−0.2466𝑡 + 0.038𝑒−0.2198𝑡 + 0.1157𝑒−0.1233𝑡 − 0.0904𝑒−0.0827𝑡

0.7333𝑒−0.1654𝑡 − 0.7333𝑒−0.2466𝑡 + 0.3034𝑒−0.2198𝑡 − 0.9384𝑒−0.1283𝑡 + 0.7332𝑒−0.0827𝑡
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𝜆23(𝑡|ℋ𝑡
2)

=
0.00354𝑒−0.3683𝑡 − 0.0089𝑒−0.2466𝑡 + 0.0053𝑒−0.1654𝑡 + 0.0879𝑒−0.0827𝑡 + 0.3853𝑒−0.1233𝑡 − 0.0678𝑒−0.2198𝑡

0.01441𝑒−0.3683𝑡 − 0.03594𝑒−0.2466𝑡 + 0.0359𝑒−0.1654𝑡 + 0.4 − 0.4816𝑒−0.0827𝑡 + 1.7532𝑒−0.1233𝑡 − 0.3084𝑒−0.0827𝑡
 

𝜆34(𝑡|ℋ𝑡
3)

=
0.221 − 0.6632𝑒−0.1654𝑡 + 0.4369𝑒−0.2466𝑡 + 0.00529𝑒−0.3683𝑡 + 0.0879 − 0.1058𝑒−0.0827𝑡 + 0.3853𝑒−0.1233𝑡 − 0.0678𝑒−0.2198𝑡𝑡

0.6 − 1.806𝑒−0.1654𝑡 + 1.1862𝑒−0.2466𝑡 + 0.0144𝑒−0.3683𝑡 + 0.4 − 0.4816𝑒−0.0827𝑡 + 1.7532𝑒−0.0827𝑡 − 0.3084𝑒−0.2198𝑡
 

 

Figure SB2. The mixture MIC pit growth rate under pits interaction (State 3) 

The effects of pits overlapping and interactions on the MIC rate is shown in Figure SB2. It is 

observed that the interaction (mixture) effects gradually increase the predicted MIC rate with 

exposed time.  Also, the empirical mixture `MIC rate increase from the point of pit induction 

through the propagation (sustainable nutrients) stage to the saturation point were constant rate 

(asymptotic limit) is reached. 
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Step 4 

The corroded offshore pipeline practically fails when the residual strength falls below the operating 

pressure. For a time-variant failure analysis, the strength loss can be stochastically expressed and 

is estimated using the Monte Carlos Simulation (MCS). 

The time variant strength loss model for the corroded offshore pipeline was formulated  with 

reference to the literature [14].  The mixture MIC defect rate (see Step 2) predicted based on the 

pits interaction criteria is used in the linear corrosion growth model by [57], to gives 

𝑑𝑚𝑎𝑥(𝑇) = 𝑑𝑚𝑎𝑥(0) + 𝜆
𝑖𝑗(𝑡|ℋ𝑡

𝑘) ∙ 𝑡                                                                                               (𝑆𝐵7) 

𝐿𝑒𝑓𝑓(𝑇) = 𝐿𝑒𝑓𝑓(0) + 𝜆
𝑖𝑗(𝑡|ℋ𝑡

𝑘) ∙ 𝑡                                                                                                  (𝑆𝐵8) 

where 𝜆𝑖𝑗(𝑡|ℋ𝑡
𝑘) is the time-dependent transition intensity (Mixture (merged) pit growth rate). 

and  

𝑃𝑛𝑚(𝑡) =
2𝜎𝑢𝑤𝑡

(𝐷 − 𝑤𝑡)

[
 
 
 
 1 − (

𝑑𝑛𝑚(0) + 𝜆
𝑖𝑗(𝑡|ℋ𝑡

𝑘) ∙ 𝑡
𝑤𝑡

)

1 − (
𝑑𝑛𝑚(0) + 𝜆𝑖𝑗(𝑡|ℋ𝑡

𝑘) ∙ 𝑡
𝑄𝑛𝑚𝑤𝑡

)
]
 
 
 
 

                                                               (𝑆𝐵9) 

Thus, the residual strength can be stochastically model in term of the basic random variables as 

the primary contribution factors if their distribution is known. That is  

𝑃𝑛𝑚(𝑡) = 𝑓(𝑙𝑒𝑓𝑓(0), 𝜎𝑦, 𝑑𝑚𝑎𝑥(0), 𝐷0, 𝑤𝑡, 𝜆
𝑖𝑗(𝑡|ℋ𝑡

𝑘), 𝑡 )                                                            (𝑆𝐵10) 

The value in Table SB2 gives probabilistic properties of the corrosion parameters and is used as 

input parameters for Equation (SB9) and model using Monte Carlos Simulation. The results of 
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the time-variant simulation for the strength loss over the lifecycle of the pipeline is shown in 

Figure SB3. 

Table SB2. Assumed data from single inspection for a mid-strength 

                                          pipeline as worked example 

 

        Symbol Variable       Unit Distribution Mean Std. Dev 

 
 

 

outer diameter mm Normal 762 0 
 

𝑤𝑡 
 

pipe wall thickness mm Normal 7.92 0.077 
 

yield strength Mpa Normal  461 16.13 
 

mixture pit length mm Normal  95 32 
 

mixture pit depth(max) mm Normal  2.2 0.81 

  tensile strength MPa Normal      517 19.23 

 

 

Figure SB3. Time-variant strength loss for corroded offshore system under single  

            and multiple defects interaction effects 

 

The result shows the percentage reduction in the residual strength under single pit and merged pit 

growth rate with time, which can be estimated accordingly. 
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The maximum safe operating pressure for the corroded offshore pipeline is influenced by the 

acceptable defect depth and the corroded length. For an amalgamated pit (mixture), the maximum 

allowable operating pressure can be predicted by the expression [14]: 

𝑃𝑀𝐴𝑂𝑃(𝑡) =
2𝑤𝑡𝜎𝑢𝐹

(𝐷0 − 𝑤𝑡)
(
1 −

𝑑𝑚𝑎𝑥(𝑇)
𝑤𝑡

1 −
𝑑𝑚𝑎𝑥(𝑇)
𝑤𝑡𝑄𝑒𝑓𝑓

)                                                                                      (𝑆𝐵11) 

where 𝑄𝑒𝑓𝑓 = length correction factor = 1 + 0.31 (
𝑙𝑒𝑓𝑓(𝑇)

√𝐷0𝑤𝑡
)
2

 and 𝐹 is the design factor, which is 

normally 0.72 

From the analysis under the given pipeline operating condition and MIC defects interaction, the 

time variant safe operating pressures (MSOP) gives 9.879MPa and 5.9904MPa as the mean upper 

bound and lower bound operating pressure respectively under high MIC rate category. 

The survival characteristic for the pipeline can be estimated from the strength loss and the phase 

type distribution series model (acyclic Markov) using the mixture (merged) MIC  defect rate, 

which gives 

𝑆(𝑡)

=
𝜆23(𝑡|ℋ𝑡

𝑘)𝜆34(𝑡|ℋ𝑡
𝑘)

(𝜆12(𝑡|ℋ𝑡
𝑘) − 𝜆23(𝑡|ℋ𝑡

𝑘)(𝜆12(𝑡|ℋ𝑡
𝑘) − 𝜆34(𝑡|ℋ𝑡

𝑘))
𝑒𝑥𝑝(−𝜆12(𝑡|ℋ𝑡

𝑘)𝑡)

−
𝜆12(𝑡|ℋ𝑡

𝑘)𝜆34(𝑡|ℋ𝑡
𝑘)

(𝜆12(𝑡|ℋ𝑡
𝑘) − 𝜆23(𝑡|ℋ𝑡

𝑘) (𝜆23(𝑡|ℋ𝑡
𝑘) − 𝜆34(𝑡|ℋ𝑡

𝑘))
exp(−𝜆23(𝑡|ℋ𝑡

𝑘)𝑡)

+
𝜆12(𝑡|ℋ𝑡

𝑘)𝜆23(𝑡|ℋ𝑡
𝑘)

(𝜆12(𝑡|ℋ𝑡
𝑘) − 𝜆34(𝑡|ℋ𝑡

𝑘) (𝜆23(𝑡|ℋ𝑡
𝑘) − 𝜆34(𝑡|ℋ𝑡

𝑘))
𝑒𝑥𝑝(−𝜆34(𝑡|ℋ𝑡

𝑘)𝑡)                     (𝑆𝐵12) 
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Figure SB4. Survival probability curve of the pipeline estimated with MIC rate for the      

merged(mixture) pit and the individual pits. 

 

By assuming a minimum survival index (criteria) of 0.4 (which represent over 60% pipe wall 

penetration) as shown in Figure SB4 under the predefined operating conditions, the predicted 

maximum critical survival time of the pipeline for the MIC (merged) pit and individual pits gives 

13years, 16.5 years and 25 years respectively. Hence, the pipeline is likely to be unserviceable at 

the predicted exposed year based on the survivability index. This result will aid intervention and 

decision-making plans for integrity management of the corroding offshore pipeline. 
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