A VLSI synthesis of a Reed-Solomon processor for digital communication systems

Chose, Philemon John (1998) A VLSI synthesis of a Reed-Solomon processor for digital communication systems. Masters thesis, Memorial University of Newfoundland.

[img] [English] PDF (Migrated (PDF/A Conversion) from original format: (application/pdf)) - Accepted Version
Available under License - The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

Download (13MB)
  • [img] [English] PDF - Accepted Version
    Available under License - The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.
    (Original Version)

Abstract

The Reed-Solomon codes have been widely used in digital communication systems such as computer networks, satellites, VCRs, mobile communications and high- definition television (HDTV), in order to protect digital data against erasures, random and burst errors during transmission. Since the encoding and decoding algorithms for such codes are computationally intensive, special purpose hardware implementations are often required to meet the real time requirements. -- One motivation for this thesis is to investigate and introduce reconfigurable Galois field arithmetic structures which exploit the symmetric properties of available architectures. Another is to design and implement an RS encoder/decoder ASIC which can support a wide family of RS codes. -- An m-programmable Galois field multiplier which uses the standard basis representation of the elements is first introduced. It is then demonstrated that the exponentiator can be used to implement a fast inverter which outperforms the available inverters in GF(2m). Using these basic structures, an ASIC design and synthesis of a reconfigurable Reed-Solomon encoder/decoder processor which implements a large family of RS codes is proposed. The design is parameterized in terms of the block length n, Galois field symbol size m, and error correction capability t for the various RS codes. The design has been captured using the VHDL hardware description language and mapped onto CMOS standard cells available in the 0.8-µm BiCMOS design kits for Cadence and Synopsys tools. The experimental chip contains 218,206 logic gates and supports values of the Galois field symbol size m = 3,4,5,6,7,8 and error correction capability t = 1,2,3, ..., 16. Thus, the block length n is variable from 7 to 255. Error correction t and Galois field symbol size m are pin-selectable. -- Since low design complexity and high throughput are desired in the VLSI chip, the algebraic decoding technique has been investigated instead of the time or transform domain. The encoder uses a self-reciprocal generator polynomial which structures the codewords in a systematic form. At the beginning of the decoding process, received words are initially stored in the first-in-first-out (FIFO) buffer as they enter the syndrome module. The Berlekemp-Massey algorithm is used to determine both the error locator and error evaluator polynomials. The Chien Search and Forney's algorithms operate sequentially to solve for the error locations and error values respectively. The error values are exclusive or-ed with the buffered messages in order to correct the errors, as the processed data leave the chip.

Item Type: Thesis (Masters)
URI: http://research.library.mun.ca/id/eprint/1439
Item ID: 1439
Additional Information: Bibliography: leaves 116-127
Department(s): Engineering and Applied Science, Faculty of
Date: 1998
Date Type: Submission
Library of Congress Subject Heading: Reed-Solomon codes; Integrated circuits--Very large scale integration

Actions (login required)

View Item View Item

Downloads

Downloads per month over the past year

View more statistics