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Abstract

The Reed-Solomon cocles have been widely used in digital communication systems

such as computer networks, satellites, VCRs, mobile communications and high­

definitioo television (HOTV), in order to protect digital data against erasures.

random and burst errors during transmission. Since the encoding and decoding

algorithms for such codes are computationally intensive, special purpose hardware

implementations are often required to meet the real time requirements.

One motivation for this thesis is to investigate and introduce rec:onfigurable Ga­

lois field arithmetic structures which exploit the symmetric properties of available

architectures. Another is to design and implement an RS encoder/decoder ASIC

which can support a wide family of as codes.

An m~programmableGalois field multiplier which uses the standard basis rep­

resentation of the elements is litst introduced. It is then demonstrated that the

exponentiator can be used to implement a fast inverter which outperforms the

available inverters in GF(2"'). Using these basic structures, an ASIC design and

synthesis of a reconfigurable Reed-Solomon encoder/decoder processor which im·

plements a large family of RS codes is proposed. The design is parameterized in

terms of thi! block length n. Galois field symbol size m. and error correction capa­

bility t for the various RS codes. The design has been captured using the VHDL

hardware description language and mapped onw CMOS standard cells available in

the O.S-~mBiCMOS design kits for Cadence and Synopsys tools. The experimental

chip contains 218,206 logic gates and supports values of the Galois field symbol size

m =3,4,5,6,7,8 and error correction capability t = 1,2,3, ... , 16. Thus, the block

length n is variable from 7 to 255. Error correction t and Galois field symbol size



m are pin.selectable.

Since tow design complexity and high throughput are desired in the VLSI chip,

the algebraic decoding technique has been investigated instead of the time or trans-­

form domain. The encoder uses a selI.reciprocal generator polynomial which struc·

tures the codewords in a systematic form. At the beginning of the decoding process,

received words are initially stored in the first·in·6rst--out (FIFO) buffer as they en·

ter the syndrome module. The Berlekemp-Massey algorithm is used to determine

both the error locator and error evaluator polynomials. The Chien Search and

Forney's algorithms operate sequentially to solve for the error locations and error

values respectively. The error values are exclusive or-« with the buffered messages

in order to correct the errors. as the processed data lea\--e the chip.
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Chapter 1

Introduction

1.1 Statement of the Problem

The Reed Solomon (RS) codes are widely used in digital communication systems

to increase the reliability and efficiency of the communication channel. They work

in finite or Galois field arithmetic and have the ability to efficiently protect digital

data against erasures, random, and burst errors during transmission. The interest

in the as codes was primarily theoretical until the concept of concatenated cod­

ing which uses a convolutional code/RS code channel system, was formulated and

first introduced in {II. Their success is now reflected in modem day digital au­

clio or compaCt discs, computer networks, deep space telecommunication systems,

spread-spectrum systems, computer memories, VCRs and high-definition television

(HDTV) applications [2J[31[41.

Since the encoding and decoding algorithms for such codes are computationally

intensive, special purpose hardware implementations are often required to meet the

real-time processing requirements. The choice of a specific RS code depends on the

characteristics of the communication channel. As such, RS encoders and decoders

are traditionally designed with fixed values of the error correction capability t, block



length n and symbol size m. The reason for choosing fixed design parameters is

that the exponentiator, multiplier, divider and inverter have different designs for

different values of m [2][5][6]. Such an approach is evidently inflexible and hence

inefficient because the system has to be redesigned if the channel characteristics

ultimately change. Moreover, the design complexity increases with the error cor-

rectiOD capability of the code, thus making it impractical to implement the system

using off-the-shelf discrete integrated circuit components. However, rapid advances

in VlSI technologies may offer attractive solutions because of higher reliability,

better performance, smaller area, lighter weight and lower power consumption (7].

Hence, there is a direct need for fast finite field arithmetic c;ircuits which operate

in GF(2m ), where m is variable. The ability to operate with different symbol sizes

of m·bits has been a limiting factor in past efforts to implement universal and

possibly reconJigurable AS hardware. Ifsuch arithmetic circuits could be developed,

it would be possible to design highly efficient single chip encoders/decoders whose

total design cost is amortized over a wide application base. Hence, the motivations

for this thesis are:

(1) to investigate and introduce programmable Galois field arithmetic structures

which exploit the symmetric properties of available architectures. It appears that

very little work has been done in the literature to develop reconfigurable hardware

which can operate in finite fields.

(2) to design and implement an RS encoder/decoder ASIC which can support a

wide family of RS codes whose symbol size m and error correction capability t can

be varied directly in hardware. Such a general-purpose ASIC would be suitable for

a wide variety of digital communication systems which require different RS codes.



The choice of m and t depends on the application and is usually based on the

overall cornction performance and throughput of the code. The specific Galois

field symbol size m = 8 has been standardized by the European Space Agency

and the National Aeronautics and Space Administration for satellite communica­

tion [21. The error correction circuits for advanced train control systems, mobile

radio systems, magnetic recording systems, data communications and digital signal

processing based modems use m = 5 (2][51.

1.2 VLSI Architectures for Implementing Galois
Field Arithmetic

The following subsections present an overview of Galois fie.ld arithmetic and a

literature review of the various arithmetic operations.

1.2.1 An Overview of Galois Field Arithmetic

Recently, Galois fields or finite fields have received great attention because of their

widespread applications in error control coding using linear block codes. They

have also been extensively used in digital. signal processing, pseudo-random number

generation, encryption and decryption protocols in cryptagraphy. The design of

efficient multiplier, inverter and exponentiation circuits for Galois field arithmetic

is needed for these applications. These circuits should have low complexity, short

computation delay and low latency when used in b..igh-performance systems [2J.

A finite field or a Galois field designated GF(p), is a finite set of elements which

has defined rules for arithmetic. These rules are not algebraically different from

those used in arithmetic with ordinary numbers except that there is only a finite



set of elements involved. All finite fields have the following properties:

1. Multiplication and addition are the two operations defined for combining the

elements.

2. The result of adding or multiplying two elements is always a third element

contained in the field.

3. The field always contains the multiplicative identity element I and the additive

identity element 0 such that a + 0 = a and a· 1 = a for any element a.

4. Every element a has an additive inverse element (-4) and a multiplicative inverse

element a-I such that a+(-4) = 0 and 4'4-1 = 1. The existence oithese elements

permits subtraction and division to be performed.

5. The associative [4 + (b + c) = (4 + b) + c and 4' (b· c) = (4' b) . cl, commutative

(4 +b = b+4 and a·b = b· aJ, and distributive [a.(b+c) = a' b+4' c]laws apply.

GF(p"') is an extension field of the ground field GF(p), where m is a positive

integer. For p = 2, GF(2m ) is an extension field of the ground field GF(2) of two

elements {O,l}. GF{2m ) is a vector space of dimension mover GF(2) and hence is

represented using a basis of m linearly independent vectors. The finite field G F(2"')

contains 2'" - 1 non-zero elements. All finite fields contain a zero element and an

element, called a generator or primitive element, such that every non-zero element

in the field can be expressed as a power of this element.

In order to introduce the mathematical concepts of the trace and dual basis,

the following definitions are necessary [8][9].

Definitian 1: The trace of an element (3 which belongs to GF(2m) is defined as

(1.1)

Definitian 2: A basis {~j} in GF{2m) is a set oim linearly independent elements



in GF(2"'), where 0 S j ::::: m - 1.

Definition 3: Two bases CPt} and {),.t} are the dual of one another if

Tr(Pi),.t) = 1, if j = Ir;
= 0, if j-F1r;

(1.2)

where 0 Sj Sm-l and 0 Sir; Sm-1.

The elements of GF(2"') are usually expressed as powers of the primitive el­

ement a, where a is defined as the root of the primitive polynomial P(x) =

:r"'+1"'_1];"'-1+1"'_2:1;"'-2 ... + ftx+l where Ii ~ {O,l}. Each element Z ofGF(2"')

can also be written in (8][9}[101

• the standard basis as z = a"'_IQ"'-1 + + <l2a2 + alai + ao.

• the nonna! basis as z = a..._Ia2"'-' + + a2a22 + ala2' + aoc:r.

• the dual basis ),.t as z = E~ot z.t),.t = E~l Tr(zp.tp..t.

where

a; f GF(2) and z, =Tr(zp.t) is the Ir;·th coefficient of the dual basis.

The standard basis is commonly used in implementing algebraic Reed-Solomon

decoders in hardware. Since multiplication is the most dominant arithmetic opera·

tion, the standard. basis multiplier is often preferred for its lowest design complexity

compared to the nonna! and dual based multipliers [6][111. It does not require basis

conversion and thus can be more easily matched to any input/output system.

As an example, the power, polynomial and 3-tuple representations of the Ga·

lois field elements generated by the primitive polynomial P(x) = 1 + x + r are

tabulated in Table 1.1. The non-zero elements are generated using a 3-stage linear

feedback shift register initialized to 001, with taps defined by the coefficients of the

primitive polynomial P(x).



Power Polynomial 3-Thple
0 0 000
cI' cI' 00'
Q' Q' 0'0
a' a' 100
a' 0 1+0° Oll
Q' 0.2 +0.1 llO
Q' a 2 +a l +oP III
Q' 0.'+0.° LOI
Q' Q' 00'

Table 1.1: Elemen'5 generated by P(x) =1 + % + r

Examples:
Addition:
Multiplication:
Ditti8ion:
E%pOnentiation:
[nver.non:

since aT =0.0 = 1

a l +o/l=a4

a'.a'_a'
::~a'

(0.1):1 = all = a4
<!r =0.-2 =0.1-, =a!

Addition and subtraction in finite fields are relatively straightforward, but mul·

tiplication, division, exponentiation and inversion are not. Using a symbol size

m, addition and subtraction can be realized using m-bit exclusive-or gates. How­

ever, since the more complex operations are extensively used in RS encoding and

decoding algorithms, the development of their hardware structures have received

considerable attentioo_

1.2.2 Multipliers

For arbitrary elements A(x) = Lt'.-ol akr'= • B(%) =LM1 bkr'= in GF(2m), and the

primitive polynomial P(x) = Lh:Ql Ps.x*, the product C(%) of A(x) and B(x) is



(1.3)

given by

C(.) _ A(.)B(.) mod P(.)
=IE:;t .4(:z:)b",rtl mod P(:z:)
= (...(A(:z:)b,.,,_l:Z: + A(:z:)b"._2)% + ...):z: + A(:z:)bo
= c..._L:r"'-l + c..._2r"-2 + ... + CI% + Co

A direct. implementation of multiplication by combinational logic was proposed

by Bartee and Schneider [12]. A canonical basis is used to represent the elements

of the field. Depending on the primitive element, this implementation requires as

many as (m3 - m) ~input adders over GF(2). This approach has a high circuit

complexity and also lacks regularity suited for full custom VLSI designs.

A cellular array multiplier was originally conceived by Laws and Rushforth

in 1971 [131. The array requires approximately 2m gate delays, a considerable

improvement over the traditional linear feedback register type multiplier which

computes the desired product sequentially in m clock cycles. A simple parity check

circuit is incorporated in the design.

In 1984, Yeb et al [141 presented systolic multipliers for performing multipli~

cation of arbitrary elements in GF(2"') in O(m) time and area suitable for VLSI

implementation. In the design, the elements in the field are represented in the con~

ventional manner. The throughput rate for the serial-in serial-out one-d.imensional

systolic array is m clock cycles and the parallel-in parallel-out ~ensional

systOlic array, one clock cycle. Both designs have a latency of 2m clock cycles.

In 1985, Wang et aJ 110J developed a pipeline structure to implement the multi~

plication algorithm proposed by Massey and Omura for Galois fields based on the

normal basis representation. By taking advantage of the squaring property of the

normal basis representation, the same pipeline structure is reconfigured to com~

pute the inverse elements in GF(2"'). The throughput rate for the multiplier is one



product per clock cycle after an initial delay of m clock cycles. Since the design

is dependent on the primitive polynomial used to generate the field elements, the

number of XOR gates in the product function increases enormously for large m.

Hence, the pipeline struCture is only practical for small m.

In 1986, Scott et al (15) presented a bit-slice architecture of a serial·in serial-out

multiplier well suited for VLSI implementation. The multiplier has a latency of

m clock cycles and yields a computation time and implementation area of Oem).

It is shown that the architecture is attractive for use in data encryption systems

where data are segmented into long blocks to achieve high security and maximum

throughput.

A parallel-in parallel-out systolic array and a serial-in serial-out systolic array

proposed for f&.'lt multiplication in the finite fields GF(2"') with the standard basis

representation were presented by Wang and Lin in 1991 [11J. The architectures are

regular, concurrent and have unidirectional data Bow. A system with unidirectional

data Bow is highly desirable when designing high-speed. VLSI systems. It is further

shown that the proposed parallel implementation can more easily incorporate fault­

tolerance compared to previously published designs. The serial-in se.ria1-out anay

only requires one control signal instead of two as in {14J. U the inPUt data pass

in continuously, the parallel-in parallel-out array yields output results at a rate of

one output per .clock cycle after a latency of 3m cycles. It is worth noting that

the minimum clock period is governed by the propagation delay of an AND gate

in series with an XOR gate. All the operations of each basic cell are pipelined in

such a manner that each cell performs a small fraction of the multiplication and

passes the data to the neighbouring cells for further processing. Under the same



operating conditions, the serial-in serial-out array yields output results at a rate of

one per m cycles after an initial delay of 3m cycles.

A bit-serial systolic divider circuit and multiplier over GF(2m ) was presented

by Hasan and Bhargava in 1992 (16]. The design is based on the Gauss-Jordan

Elimination algorithm. and completely eliminates global data communications and

dependency of the time step duration on m. The division algorithm requires the

formulatioo of the supporting elements and the corresponding coefficient matrix

by using a one-dimensional systolic array. The resulting system of 2m - 1 simul·

taneous linear equations in 2m - 1 unknowns are solved using a two-dimensional

systolic array. With minor modifications, the same structure is used to perform

multiplication over GF(2"') in a computational time of 3m - 1 time steps. The

proposed inverter/divider requires three processors and a control signal consisting

of 2.5m' + Il.5m - 6 registers, 4m' + 12m - 5 AND gates, L5m2 + 7.5m - 2 OR

gates, and O.5m' + l.5m - 1 XOR gates. The structure has a computatioDal time

of 5m - 1 time steps and is independent of the irreducible polynomiaL

A divisioD and bit-serial multiplication algorithm were presented by Hasan and

Bhargava in 1992 (17). Using the coordinates of supporting elements, division over

GF(q"') is performed by solving a system of m linear equations over GF(q) when

the field elements are represented by polynomials. It is further shown that divisioD

can be performed with a lower order of computational complexity by solving a

WieDer-Hopf equation of degree m. The discrete-time Wiener-Hopf equatioD is

defined as a. system of m linear inbomogenoous equations, with m unknowns {17J.

Structures for parallel multipliers derived from irreducible all-one and equally

spaced polynomials were developed by Hasan et ai in 1992 [18]. It is shown that the



three basis modules of an all..ane polynomial based parallel multiplier of a small

field can be used to COllStruct all the corresponding equally spaced polynomials

of larger fields. A normal basis parallel-type multiplier for finite fields GF(2"')

generated by the irreducible a11·one polynomials was recently presented by Hasan

et al in 1993 [191. It is a modified version of the Massey-Omura multiplier.

A systolic power-sum circuit designed to implement the function AB'l+C where

A, B and C are elements of the field was presented by Wei in 1994 (201. By adding

one multiplexer and one demultiplexer, the power-sum circuit is configured to com­

pute eight different types ofcomputatiollS viz AB,AB+C,A'l,A'l+C,AB'l,AB'l+

C. A3 and A3 + C. All these computatiollS are needed in decoding multiple error

correcting BCH and Reed-Solomon codes in cases where the coefficients of the error

locator poLynomial are solved algebraically.

A bit-serial multiplier which has the same hardware requirements as the tra-

ditional Berlekamp multiplier was recently presented by Fenn et al in 1995 (211.

m the design, the variable multiplier is represented over the dual basis and the

constant multiplicand is represented over the polynomial basis. The reverse is true

with a COllStant traditional Berlekamp multiplier. It is shown that constant multi­

pliers based on the proposed approach can operate at a higher frequency than those

based on the traditional Berle1:amp multiplier.

1.2.3 Dividers and Inverters

Finding the inverse of an element over GF(2"') is computationally intensive in

hardware and still remains an active area of research. Finite field inversion and

division are critical in decoding Reed-Solomon and BCH codes. During the de-

10



coding process, the Berlekamp-Massey and Forney algorithms often employ these

arithmetic operations. The derived algorithms for decoding double error.col'Ittting

Reed-Solomon codes require the same functions as well. Thus, the latency and

throughput of the inver\er$ and dividers may dictate the overall speed of the de­

coder.

The traditional method for computing the inverse of elements in GF(2m ) uses

read-only memory (ROM), Fermat's theorem or Euclid's algorithm. The size of the

ROM is m2m bits. The coordinates of an element are used as the address of the

location in the ROM where the corresponding inverse is stored. The value ofm can

range from 3 to infinity. These methods are inefficient for VLSI implementation

if large values of m are required. In recent years, several algorithms and their

corresponding VLSl architectures for computing the inverse elements have been

presented in the literature. For an arbitrary element A in the finite field GF(2m ),

the inverse operation of an element A is denoted by A-I = A2"'-2. Rewriting the

exponent 2m - 2 as 21 + 22 + z3 + ... + 2"'-l. allows the inverse operatioo to be

expressed as (10]

(1.4)

10 1985, Wang d 4l [10] invented a parallel-in serial-out circuit for solving

Equation (1.4) based 00 the Massey-Omura multiplier. In their design, the normal

basis representa.tion of the elements in the form (~,a2',a22,... ,a2"-1) is used.

The method is impractical for large values of m since the number of XOR gates

in the product function correspondingly becomes large. Since squaring is a cyclic

shift operation in the nonnal basis, the inverse function is found in m clock cycles.
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In 1989, Feng [22] developed a serial-in parallel-out architecture based on the

nonnal basis representation of the finite elements. The algorithm requires a com-

putational complexity of Oem log2 m). A throughput rate and latency of m(q + p)

clock cycles, where p is the number of ones in the binary expression of m - 1 and

q is the lower bound on 10g2 m, are needed to compute the inverse elements.

In 1993, Wang and Li [231 presented a serial-in serial-out systolic array architec­

ture for performing the inverse element in GF(2m ). In the analysis, the standard

basis representation of the field elements is used. The design for GF(2m ) mimics

the systolic array based on the Gauss-Jordan elimination algorithm for solving a

system of 2m -1 linear equations over GF(2) [24J. The proposed inversion circuitry

has a latency of7m-3 clock cycles and a maximum tbroughput rate of 2m-1 clock

cycles. Without any modifications in hardware, the multiply-and.divide operation

can easily be performed. The logic design of the architecture is independent of the

primitive polynomials used to generate the field elements. All the operations of

the serial-in serial-out systolic array are pipelined in such a manner that each cell

completes a small fraction of the computations and passes the data to the neigh­

bouring cells. The entire systolic array is made up of~ main array cells and

m boundary cells, where m is the size of the Galois field.

A fast normal basis inversion circuitry was presented by Fenn et al in 1996 [25].

The hardware scheme uses two registers, a multiplier, a squarer and a generator

device in GF(2m ). It exploits the properties of Fermat's theorem in order to pro-

gressively generate the solution in approximately T clock cycles. The inverter is

shown to be more efficient for odd values of m and its features make it suitable for

double error-correcting Reed-Solomon codes. The same design was recently reex·
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amine<! and improved by Yen in 1997 (261. It is demonstrated that the number of

clock cycles pee iteration can be further redw:ed to around !f . Yen's algorithm

clearly outperforms the algorithm by Fenn et ai for large values of m. Another

modification to the algorithm by Fenn et al was reported by Calvo and Torres in

1997 [271. The generator and squarer devices have been totally eliminated from the

original circuit.

In 1997, Hasan [281 presented an algorithm to perform sequential computation

of division-and-accumulation (DDA) over GF(2"'). The algorithm can also be

used for the conventional rational numbers. It is shown that in the cases where n

multiplications and n inversions are required in the DDA, the new algorithm only

requires 3n+1 multiplications and one inversion. Such a proposition is advantageous

to fields where a division operation is at least three times more complex than

a multiplication. The DDA structure is suitable for the systolic Reed·Solomon

encoder [29J to efficiently compute the parity symbols during the encoding process.

1.2.4 Exponentiators

Exponentiation is extensively used in cryptosyStems and error-correeting codes.

The conventional approach for finding the exponent of an element in GF(2"') uses

read-only memory or table lookup. The value of m can range from 3 to infinity,

which would requite storing 2m elements of m-bit wide. This method is inefficient

when m becomes too large. In recent years, several exponentiation algorithms and

their corresponding VLSI architectures have been proposed.

For an arbitrary element 0 in the finite field GF(2"') and an integer N(1 :5 N :5

2m - 1), the exponentiation function is defined as 6 =ON. Clearly, 6 is in GF(2m ).
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IfN is represented in binary form as l1o,nI.1l2, ...,n.,.-I such that N = r::G1ll\·2',

then 6 = pH can be expressed as follows [30](31]

6 =Pi'l =pr:.;;,' ...~
- (P)~ . (Ii')"' . (fJ")"' ... ur-'j"--'
=n:,olW)A;
= fC".(i1 Eo

where

Ei=pT ifn;=1

E;=1 Un;=O

(1.5)

(1.6)

(1.7)

In 1988, Scott d al (32] proposed several sequential and parallel VLSI architec·

tures for computing the product terms of the exponent in GF(2m ). As described

in the reference [32], the designs are targeted for applications that use Galois fields

GF(2"') for large values of m. Both the standard and normal based exponenti­

ations are considered. The sequential exponentiation unit requires O(m') clock

cycles assuming repeated use nf a multiplier which possesses a throughput rate

of one multiplication every m clock cycles. The fully parallel computation of the

product terms yields one exponentiation per m clock cycles, assuming the use of

(m-l) multipliers whose combined minimum latency is m+ 2m log, m clock cycles.

A multiplier latency of 2m clock cycles is assumed.

A VLSI design and implementation of an exponentiation circuit was also pre­

sented by Wang and Pei in 1990 {30]. The architecture can be used to generate

pseudorandom number sequences in spread spectrum, cryptographic systems and

digital signal processing applications such as noise generation. Elements in the fi·

nite fietd are represented in the nonnal basis. In this design, the exponentiation of
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an element is found in m clock cycles. The architectural details and VLSI layout

of the chip for GF(24 ) are extensively illustrated.

In 1993, Arazi [33] presented two efficient exponentiation circuits which can be

adopted for smartcard applications. They operate over the standard basis repre­

sentation of elements in GF(2"'). In one scheme, the algorithm is completed in 2m

clock cycles instead of m. The shift registers can be implemented with dynamic

instead of static registers, owing to the limited space in a smartcard~mounted chip.

The second scheme is simpler and uses duplicates of the same cell to compute

exponentiation in 6m2 clock cycles.

A parallel-in-parallel-out bit-level systolic array architecture with unidirectional

dataflow for computing exponentiation was first presented by Wang in 1994 [311.

Using the systolic multiplier proposed by Wang and Li in the reference [l1J, two­

level pipelining is employed to achieve a maximum throughput of one output every

clock cycle after an initial delay of 2m2 +m cycles. Unidirectional dataflow is highly

desirable in designing high-speed systems. The design can easily incorporate fault­

tolerance.

An exponentiation algorithm based on a pattern matching and recognition tech­

nique was recently presented by KovaC and Rangathathan in 1996 [34]. Unlike the

cODventional methods which use repeated multiplications, the algorithm can per­

form the exponentiation operation on-the-tly. In the analysis, the nonzero elements

of the Galois field GF(2m ) are represented in the standard basis. The elements

are divided into subsets, where each subset corresponds to a pattern. More details

on the related theorems and proofs are given in the reference [341. In an effort to

obtain high speed and maximum throughput, a systolic architecture which uses a

15



multistage linear pipeline and parallelism is proposed by the authors. Once the pipe

is filled, a new result is obtained every clock cycle foUowing a latency of 2m clock

cycles. Thus, the a.reb.itecture is recommended for applications that use GF(2m )

for values of m less than or equal to eight. The hardware allows the program­

ming of different primitive irreducible polynomials of degree m less than or equal

to eight. The design issues related to the CMOS VLSf implementation of the chip

which performs the exponentiation operation over Galois field GF(~) are exten-

sively enumerated. A maximum computational rate of 40 million exponentiations

per second at a clock frequency of 40 MHz is possible.

1.2.5 Summary

An overview of Galois field arithmetic operations has been presented. The mul­

tiplication, inverse. division. and exponentiation .operations in GF(2m ) have been

extensively described. The traditional method for evaluating these functions uses

ROM. Fermat's theorem or Eudid's algorithm. However. these techniques are inef­

ficient for VLSI implementation if large values of m are required. Thus, the latency

and throughtput of the arithmetic: units may dictate the overall speed of the global

system. The development of more efficient algorithms and their corresponding VLSI

architectures still remains an active area of research.

1.3 Scope of the Work

In this thesis I propose an m-programmable Galois field multiplier which uses the

standard basis representation of the elements. A structure is also designed to

implement both the exponent and inverse functions over GF(2m ), where m is van-
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able. The ability to operate with different symbol sizes of m-hits wide has been

a limiting factor in past attempts to implement universal. and reconfigurable en­

cod",/docod." [2][5][61.

By wing the proposed arithmetic circuits, coupled with a multiplexing technique

to select different RS code parameters m and t, an ASIC synthesis of a testable

RS encoder/decoder which implements a wide family of RS codes in GF(2"') is

developed. Unlike the chips which are customized for a specific m and t as reported

in (35)-[511, it is reconfigucable and supports values of the Galois field symbol size

m = 3,4.5,6, 7,8 and error corTeCtion capability t ranging from 1 to 16. This means

the total cost of such a design is amortized over a wide application base. Since low

design complexity and high throughput are desired in the experimental VLSI chip,

tbe algebraic decoding technique is preferred over the time or transform domain

metbods.

Gate arrays, standard cells and full-custom are three potential VLSI technologies

that could have been used to implement the RS encoder/decoder chip. However,

a CMOS standard cell based design methodology, which uses hardware description

language (HDL) logic synthesis, is found suitable because it allows easy mapping

and optimization of the logic level design into iotegrated circuit (IC) layout using

the state-of-the-art VLSI CAD tools. The design has been simulated at a frequency

of 50 MHz and contains 218,206 logic gates.

1.4 Organization of the Thesis

The remaining chapters of the thesis are organized as follows:

In Chapter 2, the mathematical background and necessary theoretical details
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are described for understanding Reed-Solomon codes.

Chapur 3 proposes an m-programmable Galois field multiplier which uses the

standard basis representation of the elements. Using this multiplier, it is shown

that the exponentiation and inverse operations can be both performed using the

same reconfigurable hardware.

Chapter 4 discusses the design methodology, VLSI synthesis and operational

features of a new programmable Reed-Solomon encoder/decoder prO«SSQr.

Chapter 5 highlights the major conclusions of this research and recommenda­

tions for possible future worle.
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Chapter 2

Theoretical Background on
Reed-Solomon Codes

In this chapter, the RS encoding and decoding algorithms are first explained. A

survey on the existing RS encoder and decoder architectures usually designed for a

fixed. m is given.

2.1 General RS Code Definition

Discovered by LS. Reed and G.S. Solomon in 1960, Reed-Solomon codes are an

important subclass of nonbinary BCH codes. They are among the most versatile

and powerful error control codes commonly used to correct hoth random and burst

errors in digital communications and magnetic storage systems ranging from the

digital audio disc to the Voyager spacecraft. A general block diagram of a digital

communication system is shown in Figure 2.L

The interest in RS codes was primarily theoretical until the concept of COD.·

catenated codes was formulated and first introduced by Forney in 1966 [lJ. Con­

catenated coding has since been adopted by the U.S. National Aeronautics and

Space Administration (NASA) for interplanetary space missions. It uses the con-
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Figure 2.1: A Digital Communication System
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vo!utionaljRS channel encoding and decoding system.

For any positive integer m 2:: 3 and error correcting capability t ~ 1, there

exists a t-error correcting RS code from the Galois field GF(2"") witb the foUowing

parameters [52H57]

Block Length n = 2m- 1 symbols

Number of Parity Check 2t = n - k symbols

Minim'Jm Distance d...'n = 2t + 1

where k is the data message in symbols.

An (ft, k, t) RS code has & generator polynomial G(:z:) of degree n - k often

written as G(.r) = (:z: + a)(.r + a2) .. (.r + a't).

2.2 Encoding

The generator polynomial G(.r) of an RS code bas the form

G(.r) = El:.t-l(.r-a')
=E~g;.ri (2.1)
=90 + 91:Z:+"'+,9:uz2t

where b is a nonnegative integer often chosen to be 1. The D.umber of distinct

coefficients of G(:z:) can be reduced by almost half by carefully choosing b = 2"'-I_t

satisfying the relationship (81

2b+2t = 2'" (2.2)

There are two ways to encode the message M(.r). In nonsystematic encoding,

the codeword C(x) is generated simply as
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C(x) ~ M(x)G(x) (2.3)

Thus the message M(x) is not explicitly present in the codeword C(x).

In systematic encoding, given a message polynomial M(x) and generator poly­

nomial G(x), the codeword C(x) is generated as foUows:

(1) multiply tbe message M(x) by X 21 to obtain M(x)x2t

(2) divide M(z)::r;2t by G{x) to obtain the remainder polynomial R(x) and form the

codeword C(x)

C(x) = x2tM(x) + R(x) = Q(x)G(x) (2.4)

where Q(x) is the quotient and R{x) = To + FIx + T2X
2 + ... + 1'2t_IX21- 1 is the

remainder or parity polynomial.

Circuits for performing division by G(x) or any arbitrary polynomial are avail­

able. The number of distinct multipliers 90, 91> ... , g2t can be reduced almost by half

by choosing b = 2m- 1 - t.

Maki and Owsley [581 presented the VLSI design and implementation of the

parallel Berlekamp architecture which has tbe speed performance equivalent to the

conventional, but at a hardware cost 8 times the serial Berlekamp architecture. The

serial and parallel VLSI architectures by Berlekamp perform encoding in the dual

or trace orthogonal basis representation of the field elements.

A transmitted codeword C(x) may be corrupted in a noisy channel. The received

polynomial R(x) can be expressed as the sum of the transmitted codeword C(x)

and error polynomial E(x) as

R(x) =C(x) +E(x) = Tn_1X,,-1 + .. +T1X +ro (2.5)
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The following sections describe available techniques which can be used to find

and correct the errors in the received polynomial R(x).

2.3 Algebraic Decoding

The first task of an algebraic decoder is to determine the syndrome polynomial

Sex) based on R(x). The coefficients of the syndrome polynomial are given by [54]

Sj = R(a!) = Sea!) =~ riO-
,j

1 :s:: j ~ 2t for nonsymmetric coefficients of G(x)

or 2m- L - t ~ j :s; 2m- I + t - 1 for symmetric coefficients of G(x)

(2.6)

After the evaluation of the syndromes, the error values ea, e\, .., en_I can be

found. If v errors actually occur in R(x), at the unknown locations i lt iz, .., i", the

error polynomial can be expressed as

(2.7)

(2.8)

where Yi is the magnitude of the lth error at location il.

Prior to decoding, the values of v, i lt ••• , itt and Yi, ... ,Y" are initially unknown.

If XI is the field element associated with the error location i lt then the syndrome

coefficients are given by

Sj=~YiXf

for j = 1,2, .. ,2tor j=2m- 1 _t, ...,2m- 1 +t-l

where Yi is the error value and Xl is the error location of the lth error symbol.
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An expansion of Equation (2.8) gives the foUowing set of 2t simultaneous equa-

tions in v u.nknown error LocatiolLS Xl •..• X. and v unknown error magnitudes

Yt •...• Y"

5 1(%) = YtXI + l'2X2 + ... + Y"X.

52 (%) = YtXI2 + Y;X22 + + y"X.2

53(%) = YiXl3 + YiX23 + + y"X.3

The above set of equations must have at least one solution because of the way

the syndromes Me defined. Tbis solution is unique. Thus. the decoder's task is to

find the unknowns, given the syndromes. This is equivalent to a problem in solving

a system of nonlinear equations.

Clearly, the direct solution of the system of nonlinear equations is too difficult

for large values of v. Instead, intermediate variables can be computed using the syn­

drome coefficients Sj from which the error locations Xl> ..• X. can be determined.

The error-locator polynomial is introduced as

The polynomial is defined with roots at the error locations X/- l for l = 1.2, .. " v.

The error location numhers Xl indicate errors at locations il for l = 1.2, ... , v. That

is to say,
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A(%) = ~(1 - %X,) = (1 - %Xd(1 - %X,) ..(1 - %X.) (2.10)

wbereX, =a".
To determine the codIicients of A(%) from the syndromes, equate EquatioDS (2.9)

and (2.10) and multiply both sides by Y/xj- and set % = X,-I, i.e.,

Then the left side becomes zero, giving

0= y/X/+U(l + ALXI-
1+ A2X,-2 + .. + AU_LX,-(U-I) + AuXI-

U)

y/(XrU+ A1X{+U-l + ... + AuX!) = 0

Such an equation holds for each I and each j. Summing up these equations from

1= 1 to I =v, for each j. gives.

Ei_1 Y/(Xl+u + A1xl--1+ ... + AuXI) = 0

Ei"". Y/xl+u + A1Ei••YiXI--1+ ... + A"Ei.tYtxl =0

The individual sums 5I!em to be the syndromes and thus the equation becomes

A.Sj+u_l + A2Si +u_'l + ... + AuSj = -SHu

where;=l,2, ...,v

This set of linear equations relates the syndromes to the coefficients of the error­

location polynomial A(z). It can also be expressed in matrix form as
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s. s, s, s_. S. A. -5'-+1
S, S, S. S. S_. 11.-. -5_2
S, S. S, S_. S_, 11.-. -S..,

AA~ (2.12)

S. S_. S_, 5'211_2 s..-. A. -S~

The above system ofequations has a unique solution for A which can be obtained

by inverting the matrix A, if A is nonsingular. The matrix A is nonsingulari£v::; t

[54).

Peterson's direCvsolution algorithm solves for the error locator polynomial h(x)

in Equation (2.12) as follows [54J: as a trial value, v is set to the error correction

capability of the code t and the determinant of the matrix computed. If the deter·

minant is nonzero, it can he shown that this is the correct value of v. Otherwise,

if it is zero, then the trial value of v is reduced by 1 and the process is repeated

until a nonzero determinant is obtained...cUter the determinant has been obtained,

the coefficients of A(:z:) are determined using the value of v in Equation (2.12) by

standard techniques of linear algebra.

Peterson's direct.-solution algorithm is inefficient for codes with a large error

correcting capability t. The number of computations necessary to invert a v by v

matrix is directly proportional to tr. In most applications, designers often prefer

00 use codes that correct & large number of errors. The following subsections de­

tail two efficient decoding metb.ods: the Berlekamp-Massey algorithm and Euclid's

algorithm.
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2.3.1 Berlekamp-Massey Algorithm

The Bedekamp-Massey algorithm relies on the fact that the matrix equation of

Equation (2.12) is not arbitrary in its form, rather, the matrix is highly structured..

This structure is used to obtain the vector A by a method that is conceptually more

complicated but computationally much simpler [54][59][60J.

IT the ve<:tor A is known, then the first row of the above matrix equation defines

8 01+l in terms of St •... , Su, The second row defines 8 01+2 in terms of~•...• Su+t and

so forth. This sequential process can be summarized by the recursive relation

Si=-tiAiSi-i, j=v+l, ...• 2v (2.13)

For fixed A, this is equivalent to the equation of an autoregressive filter. It can be

implemented as a linear-feedback shift register with taps given by the coefficients

ofA.

Using this argument, the problem has been reduced to the design of a linear­

feedback shift register that will consequently generate the known sequences of syn­

dromes. Many such shift registers exist, but it is desirable to find the smallest

linear-feedback shift register with this property. This will give the least-weight er­

ror pattern with a polynomial A(x) of smallest degree v. The polynomial of smallest

degree v is unique. since the v x tI matrix of the original problem is invertible.

Any procedure for designing the autoregressive filter is also a method for solving

the matrix equation for the A vector. The procedure applies in any field and does

not assume any special properties for the sequence 51>~' ... , 8'/t.. To design the re­

quired shift register, the shift register length L and feedback connection polynomial

A{x) must be determined. hex) has the form
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where deg A(x) :5 L.

The Berlekamp-Massey Algorithm uses the initial conditions

MOl(x-) = 1, B(O) = 1, and L o = 0, to compute J\CZl}(.x) as follows;

(2.14)

.-,
.6.r = L A;r-t}Sr_i (2.15)

jri

L r = oAr - Lr_d + (1 - ,qLr _ 1 (2.16)

forr=1, ...,2t

Or =- 1, if both AT I- 0 and 2Lr _ 1 5. r - 1; and Or = 0, otherwise. (2.18)

At the end of the 2t iterations, the smallest.degree polynomial M2IJ(X) with i\~2t) =

1 satisfying the relation

Sr +EA;21)Sr_j = 0
;e><L

where r = L:2! + 1, .. ,2t will be obtained.

Then if we define the error evaluation polynomial flex) by the relation

5(x)1\(x) =O(x) mod xZc

then we can use O(x) to solve for the error magnitudes 11, .., Y".

28

(2.19)



2.3.2 Euclid's Algorithm

Euclid's algorithm is a recursive procedure for calculating the greatest common

divisor (OeD) of two polynomials [611. fn a slightly expanded version. the algorithm

will always produce the polynomials a{x) and b{x) satisfying

GCD[s(x),'(x)l_ a(x)s(x) +b(x)'(x)

Euclid's algorithm uses the initial conditions

R(Ol{x) = x2!, T(O){x) = EJ~I SjXi-1, and

to compute A(2t){X) as foHows:

(2.20)

(2.22)

(2.23)

(2.21)Q"'(x)-l~J

A(r+t)(_) _ [ 1 0 ] A(r)(x)
... - 0 Q(r){x)

[:::,«;) ]- [~ Q":(x)] [ ;.,~;) ]
The algorithm stops when the degree of T(r) is less than t.

At the end of the iteration, the error evaluator and error locator polynomials

are found using

fl(x) = ~-IT(r){x)

A(x) =.6. _1A~(X)
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respectively, where .6. = A~;?(O) and A22 is the element of the matrix A(~) in the

second row and second column.

This algorithm has been modified by Shao et al to avoid the computation of

the inverse elements of the Galois field [36](62]. The modified Euclid's algorithm

recursively finds the i-th remainder Ro(x) and the quantities '7;(x) and A,(X) that

satisfy the relation

'7,(x)A(x) + A,(X)S(x) = Ro(x)

and stops when the degree of the remainder polynomial R;-(x) is less than t, where

A(x) = X21 and Sex) = E~~, Skx21-k.

Using the initial conditions Ro(x) = A(x), Qo(x) = Sex), AO(X) = 0, Jlo(x) =

1, '7o(x) = 1, 17o(X) = 0, it computes Ro(x), A;(X) and '7;(x) as foHows:

R;-(x) = (I1,_tbj_IR;-_I(X) +8j _ tC1;_IQi_t(X)]
-xll,-d[Q"_Ia.:_IQ;_I(X) + (1i_ tbi_1R.:_l(X)]

Ai(X) = [cri_Ib;_tAi_I(X) +O'i_IC1;_IJ4_I(X)]
-xll'-ll[crj_Ia;_t~_I(x) +8;_lbj_1Ai_I(X)]

'7,(x) = [Q',_lbj_I'7i_t(X) + (1j_Ia.:_111,_I(X)]
- XII,-Li[Q'._I{lj_tJ4_I(x) + (1i_tb;_I'7,_l(X)]

Q;(x) = cri_tQi_I(X) + (1i_lR.:_I(X)

1];(X) = cri_I1];_I(X) +81_I'7j_l(x)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

where C1;-1 and b'_1 are the leading coefficients of R.:_t(x) and Qi-I respectively,

1'_1 = deg(R.:_I(x)]- [deg(Qj_I(X)1. cri_t = 1 if 1._1 ~ 0 and crj_1 = 0 if l,_t < O.

The iterations stop when deg(R.:(x)] < t, after which the error locator polyno­

mial A(x) = Ai(X) and error evaluator polynomial O(x) = R.:(x).
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Once the error locator A(x) and error evaluator n(x) polynomials have been

determined using the above techniques, the error locations and error values or

magnitudes can be found using the Chien search and the Forney algorithm. These

methods are described in the following subsections.

2.3.3 Chien Search

Once the coefficients of the error locator polynomial All .., Au have been found,

the roots of A(.:z:) can be computed using the Chien search. The Chien search is

a systematic means of evaluating the error locator polynomial at all elements in a

field GF(2m ) [63}. The evaluation of each element is performed in

(2.32)

to check for A(x) = O.

2.3.4 The Forney Algorithm

The Forney algorithm is an efficient method often used to compute the error mag4

nitudes. The error evaluator polynomial n(.:z:) is defined as [59}

fl(x) = S(x}A(x) mod x2t

where A(x) = A..xu+ A.._1x"- 1+ ... + A1:t + 1 = ni'=l(l- :tXtl

and

Sex) = E;~l Sjzi = E;~l E:':l YtX!x j

Equation (2.33) can now be expanded as
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n(%) =%t y;x, 11(1- x,%) (2.34)
"=1 ljli

Instead of using matrix inversion to find the elTOr magnitudes, the Forney al­

gorithm calculates them as

where the derivative of A(x) is defined as

A'(%) ~ - t X, 11(1- %xi )
i=( i~-;

and hence

A'(Xj-
l

) = -Xl II(l- XiX/-I)
i#'
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Figure 2.2: Algebraic Decoder

In summary, the algebraic decoding algorithm works as follows:

Step 1; Calculate the syndromes according to Equation (2.6).

Step 2: Perform the Bedekamp-Massey or Euclid's algorithm to obtain the error

locator polynomial I\(x). Also find the error evaluator polynomial O(x).

Step 3: Perform the Chien Search to find the roots of I\(x).

Step .+: Find the error values Y(x) = E(x) according to Equation (2.35).

Step 5: Correct the received word C(x) = E(x) + R(x)

The structure of the algebraic decoder is shown in Figure 2.2.
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2.4 Time-Domain Decoding

2.4.1 Error Locator and Evaluator Polynomials

The time-domain decoding algorithm was ftnt proposed by Blahut (641. It is vc­

plained in detail in the references [51[61[54J and is only summarized in this subsec·

tion.

The time-domain algorithm uses the initial conditions ~O) = b!O) = w~O) = 1 and

>:,(0) = b~(OI = ~O) = 0 for aU t, to compute the following set of recursive equations:

tl.~ = ~o/r[~r-I)TjJ

L. = o.(r - L.._d + (1 - 6..)4_1

[
j:;] [a'\5 (l-~)~'-. ~ ~] [ ~:~:: ]
~(" ~ '0' -t;. 1 -(;.a"' ~(."')
b~(r) 0 (1 - Or) 6.;l6,. (1 - 6,.)0-( b;Cr- 1)

[ ~:: ] = [6;116,. (l__~~:'-i] [~:=:: J
fori =0, .. ,n-I, r = l,2•...• 2t.

L =0 and 0" = 1 if both 6 .. #0 and 2£::; T -1, and 0=0 otherwise.

2.4.2 Error Evaluation

(2.38)

(2.39)

(2.40)

(2.41)

Using the error locator vector A, the vector>..' = ,\,1(2C). the error evaluator vector

w = w(2t), the error magnitudes are computed 88

~:~~. ~~;~
The structure of the time-domain decoder is shown in Figure 2.3.

34



Figure 2.3: Time-Domain Decoder

2.5 Error Correction

Once E(x) is known, the corrected codeword C(x) can be obtained. from C(x) =

R(x) + E(x).

2.6 Algebraic vs. Time-Domain Decoding Algo­
rithms

Based on the above discussion, the fundamental differences between the algebraic

and time-domain decoding algorithms are listed below:

(1) The time-domain algorithm has one major computational step. Unlike the

algebraic decoding algorithm, it does not compute the syndromes or perform the

Chien search to find the eCTor locations.

(2) The time-d.omain algorithm deals with vectors which have n components while

different length vectors and different degree polynomials are used in the various

steps of the algebraic algorithms.

(3) By changing the error correction capability of the code t, the operations in the
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time-domain algorithms essentially remain th@ S&m@, whil@ those in the algebraic

algorithm are dependent 00 t.

(4) Although complex to design, the algebraic decoding technique is recommended

for high speed applications. The major drawback of the time-domain algorithm. is

its high computation count. This is brought about by the fact that it has to operate

on the complete data sequence of length n, while the algebraic algorithm needs to

work only OD. the syndrom@ sequence of length 2t =(n - k) m-bit symbols.

2.7 RS EncoderIDecoder Architectures

[n 1984, Blahut [64] originally presented two architectures for universal RS decoders

based OD. the time-domain algorithms. The decoders work directly on the received

data to generate the error sequence. They are attractive for VLSI design since

one major computational step is required. Unlike the algebraic decoders, neither

the syndrome evaluation nor the Chien search is required. Such a decoder can be

used to decode any RS or BCH codeword up to the limits of the storage registers

associated with the chip. Within these limits, it can correct any number of random

errors and erasures depending on the received data. Shayan d aJ restructured.

the time-domain a1goritlun to implemeD.t a versatile time-domain [5] and a cellular

decoder [6] which can operate in a Galois field GF(2"') with a fixed m.

Conceptual models for the logic structures of the RS eD.coder and decoder chips

were presented. in [65][66]. The encoder is constructed by cascading and intercon·

necting a group of YL$I chips. The decoder architecture is based OD. the repetitive

and recursive properties of RS decoding procedures.

Truong et al [8][91 reported a single chip VLSI RS eD.coder implemeD.ted in
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NMOS technology. The encoding algorithm is a bit·serial multipLication algorithm

developed by Berlekamp for the encoding of RS codes using a dual basis over

a Galois field. Compared to the conventional RS encoder for long codes, which

often requires lookup tables to perform the multiplication of two lield elements,

Berlekamp's algorithm requires only shifting and exclusive-OR operations.

Sbao et at [621 developed a pipeline structure of a transform. decoder similar to a

systolic array to decode R.S codes. The error locator polynomial is computed by the

modified Euclid's algorithm which avoids computing inverse elements. The modified

Euclid's algorithm architecture is based on the pipeline architecture suggested by

Brent and Kung [67] to compute the greatest common divisor of two polynomials.

A full-custom CMOS implementation of a RS encoder was proposed by Maki et

al in 1986 [351. In order to reduce the transistor count, domino logic was used. Its

architecture is invariant in operational speed or silicon area to the field polynomial,

generator polynomial or operation in the dual basis or normallield. With k encoder

chips operating in parallel, a k - 1 fault tolerant system can be constructed.

A pipelined RS decoder based on the transform decoding algorithm presented

earlier by the authors is described in [36J137J. The transform decoding technique

is replaced by a time domain algorithm to permit efficient pipeline processing with

reduced circuitry. By using multiplexing, the proposed Euclid's algorithm maintains

the throughput rate with little additional complexity.

In 1990, Tong [38J presented an 8-error correcting RS encoder·decoder. The

encoder and decoder can independently process 40 Mbytes of data per second. The

chip was designed using a standard ASIC methodology and fabricated in a 1.JJm

CMOS compact-array technology.
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I.n 1991, Seroussi (29) presented a systolic architecture for a RS encoder. The

architecture completely eliminates the global feedback signal found in the conven­

tional encoder architectures which use the linear feedback. shift register (LFSR).

The encoding algorithm. is based on the Cauchy representation of the generator

matrix of the code. The areh.it.eeture is suitable for very high speed applicatiollS,

where global signals and the need for global synchronization may pose restrictions

on the achievable switching speed of the encoder.

A full-custom CMOS VLSI implementation of a Reed-Solomon decoder for the

Hubble Space Telescope and television applications was presented by Whitaker et

al in 1991 [3][391. The architecture is similar to others presented in the referellces

[40][41J. It is implemented in a 1.6 ~m double metal CMOS technology and operates

at a data rate of 80 Mbits/s using a 10 MHz system/data clock:. In these designs,

Euclid's algorithm is used to determine both the error location and error magnitude

polynomials.

In order to solve the problem of multiple notations and multiple algorithms

often faced by designers, high level synthesis is used to study the different SCH

and RS decoding algorithms 142). Special VHDL packages are created to describe

the various operations on Galois fields. A VHDL synthesis tool consequently allows

efficient exploration of various areh.iteetures in order to select an optimum one.

Methods for reducing the computation count in the time domain algorithm for

RS decoding were presented by Choomchuang and Arambepola in 1993 [43J. An

architecture for an error correction circuit suitable for high-rate data decoding of

RS codes was proposed in (441. The operational steps for multiple-error decoding

are reduced by a 4-stage pipeline and a superscalar processor of a Galois field. The
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experimental chip achieves 16 Mbytes/s of data decoding sufficient for compressed

video signals of higb...<Jefinition as well as those of standard.definition TV's.

The use of high level synthesis techniques to realize a high-speed Reed-SOlomon

CODEC was reported by Cools et al in 1994 [451. High level synthesis allows rapid

design exploration over a large range of arc:hiteetures. An error free transfer is

guaranteed between all the levels of the design process. The design was captured

using a combination of Mentor Graphics and a Cathedral-} compiler. The archi­

tectural design phase concentrates on the composition of the data path and global

cycle count; logic synthesis performs local optimizations in terms of hardware and

timing; whereas the pLace-and-route tools compose the 6nallayout.

A low circuit complexity architecture for a Reed-Solomon encoder suitable for

satellites and pocket size wireless terminals was presented by Hasan and Bbargava

in 1995(46]. The encoder uses the triangular basis multiplication algorithm. Using

pipeline and bit-serial operations the encoder is able to obtain code rates ranging

from unity to a minimum value determined by the associated hardware circuitry.

In 1995, Chen d al [47] presented a three stage pipelined VLSI architecture of a

Reed-Solomon decoder. The decoder has an etasUIl!: function and uses the modified

Euclid's algorithm to solve the key equation. The block length is variable. The

hardware complexity is shown to be only dependent on the number of parity check

bytes. The modified. Euclid's algorithm allows the error evaluator and error loca­

tion vectors to be determined sequentially by using a smaller amount of hardware.

The algorithm state machine and architecture were verified using Verilog hardware

description language.

In 1995, Iwamura et al [48) proposed a class of systolic arrays to perform binary
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RS decoding procedures including erasure correction. Such an RS decoder is suit­

able for VLSI implementation since the arrays consist of simple processing elements

of the same type.

[n 1997, Hsu and Wang [491 presented a pipelined VLSI architecture of a Reed­

Solomon decoder which combines a modified-time domain Berlekamp-)'1assey algo-

rithm with the remainder deaJcling concept. For a t-error correcting RS code with

block length n, only 2t consecutive symbols, instead of n are required to determine

the discrepancy value during the decoding process.

A VLSI architecture for an area efficient Reed-Solomon product-code encoder

and decoder was published by Kwon and Shin in 1997 [41. The architecture uses

functional block: sharing to implement the encoder, modified syndrome and era-

sure locator polynomial evaluations. The modified Euclid's algorithm is used to

determine the error/erasure locator and error/erasure evaluator polynomials. The

architecture is recommended for encoding/decoding audio and video signals over

GF(256).

Rapid prototyping was used to implement a Reed-Solomon decoder in (50].

Erasure correction is supported. The chip includes two 256-byte ROMs, a table

look-up for the inverse of the elements in GF(28 ) and one 512-byte RAM or buffer

registers.

A Reed-Solomon decoder which operates in the GF(28) was presented by Saodt

in [51]. The ASIC is targeted for military anti-jamming applications in microwave

links. It uses FIFO buffers that are external to the chip.
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2.8 Summary

The various decoding algorithms for Reed-Solomon codes have been presented.

A survey on the existing as encoder and decoder architectures usually designed.

for a fixed m has been given. Universal RS decoder architectures based on the

time-domain algorithms first appeared in 1984. Versatile time-domain and cellu­

lar decoders were subsequently derived from them. They require only one major

computational step in locating the error patterns. Single chip RS decoders that im­

plement the algebraic and transform decoding algorithms have also been reported.

The BeriekamI>Massey or Euclid's algorithm is often used to find the error Location

and magnitude polynomials.
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Chapter 3

Proposed VLSI Arithmetic
Architectures

This chapter introduces and describes an approach which exploits the symmetric

properties of available VLSI arithmetic architectures to perform multiplication.

exponentiation and inverse operations in GF(2"'). Traditionally, such operatioos

are performed using hardware which has been design~ to function over GF(2m ) for

a fixed value of m. The requirement to operate with different symbol sizes of m-bits

seems to recur throughout the design of the RS encoder and decoder circuits. VLSI

chips which have been reported in the literature always use a fixed block length

n and a fixed symbol sUe m since the exponentiation, multiplicatioQ and division

circuits in Galois fields have different designs for different values of m. One of the

major contributions of this thesis has been to demonstrate that tbe parameter.,; m

and n can be variable without a significant increase in hardware.

The proposed approach defines a standard symbol of ffi..bits which readily a1~

lows any symbol from GF{2"') where m $; mto be represented as an ffi.bit symbol

whose (m - m) most significant bits have been set to zero. This principle facili­

tates all arithmetic functions in the Galois field with the symbol size m :5 iii to
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be implemented as subsets of m = m with a. small penalty in hardware. TQ il­

lustrate the concept, an rn-programmable Galois field multiplier which uses the

standard basis representation of the elements is first proposed, where m ~ 8. By

using this multiplier, it is shown that the exponent and inverse functions can be

implemented using the same hardware structure. The resulting circuits are sys­

tolic and have simple, regular communication and control structures. They also

allow unidirectional data flow which is advantageous over systems with contraflow-

ing data streams [68][69J. These circuits will be used in the design of an m and

t-programmable RS encoder/decoder which is later described in Chapter 4. The

choice of a fixed symbol size m = 8 is fairly common in a wide range of practi~

cal applications [2][3](4](8][35J[391(45][47][65][66], but is made variable for values of

m = 3,4,5,6,7 and 8 as an illustration in this thesis. The architecture can be easily

extended to accommodate larger values of m.

3.1 m-Programmable Galois Field Multiplier

For arbitrary elements A(x) = 2:~ol a.l:x.l: , B(x) = 2:4',;01 b.l:X.l: in GF(2m ), and the

primitive polynomial P(x) = 2:4'=01P.l:x.l:, the product C(x) of A(x) multiplied by

B(x) is given by

C(.) ~ A(.)B(.) mod P(.)
= [E4'.:oL A(x)b.l:x.l:] mod P(x)
= (...(A(x)b"'_LX + A(X)bm._2)X + ...)x + A(x)bo
= Cm_1Xm - 1 + Cm_2x",-2 + ... + C1X + CO

(~.l)

As described in [15J, the product C(x) as defined in Equation (3.1) C8.II. be

computed recUrsively as
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To(x) =0
Ti(x) = [T;_l(X)X] mod P(x) + A(x)bm_i , i = 1,2, ... , m (3.2)
C(x) = Tm(x)

where

Denoting the most significant bit (MSB) ofTi(x) as Mil the recurrence relation

can be rewritten as

T;(x) = T;_l(X)X + P(x)Mi_ 1+ A(X)b",_i

wherei=1,2, .. ,m.

(3.4)

The above computation can be implemented using a parallel-in-parallel-out two

dimensional systolic array with m x m basic cells. Each cell at position (i, k) would

perform the logic operation (111

ti,k = t,_l,k+L EEl (Pm_Ii: . Mi-tl EEl (am-Ii: . bm _ i) (3.5)

where i = 1,2, ..,m and k = 1,2, ... ,m.

In the case where m = m= 8, the systolic array with 8 x 8 hasic cells is shown

in Figure 3.1. As shown in the figure, the coefficients of A(x) and P(x) enter the

array from the top whereas those of B(x) enter from the left-hand side, such that

the operation defined in Equation (3.5) is performed at the ith row. It consists of

279 logic gates as reported by the Synopsys synthesis tools.
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Figure 3.1: A Parallel-In-Parallel-Out Multiplier for GF(211 )
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The Boolean Equatioru ti"k, as defined by Equation (3_5), ror all the 64 cells or

the GF(~) multiplier are as foUows:

m - 8: Primitive Polynomial P(:r) - r' + z4 +:r' + r + 1
Row 1: Mo 0, i 1 Row 2: M1 tl.l. i 2 Row 3: M2 f,,1, i 3
tl,1 (b-r·ar) ~,l (bs·at)EEltl,2 t3,t '~~·ar!EElt2,.2
t l,2.= (b-r.Q.ci;) ~,2.=(bs·Q.ci;)EEltl,3 t3,2=(bs-Q.ci;)EDt2,J
tl,3 = (b-r . as) t2,3 = (bs· as) ED tt.t t3,3 = (bs . as) ED t.2.t
tl,t=(b-r-a..) t2,t=(be;·C4)EBM\EBtl,.5 t3,,=(bs·a.c)EBM2ED~,.5

tt,.5 = (b-r, 0.3) t.2,.5 = (bw; . 0.3) EEl MI EBtl,' t3,5 = (bs ·aJ)l1lM2 EElt:t,l
tl" = (b-r'02) t:t,. = (bw;·a2)EilMI EBtl,r t3,. = (bs·I12)EllM2 lDt.2,t
tl,t = (b-r . ail t.2,7 = (bs ·ad EBtl,l h,t = Cbs· ad EB~,I

t l =ib-r'~) ~,=ibs'ao)EBMt tu=(bs 'ao)EBM2
Row 4: M3 t3.1, i 4 Row 5: M, _ t,,1> i 5 Row 6: Ms tS,11 i 6
t"L (b,'ar)et3,2 tS,1 (~'at)EDt,,2 tll,1 :~~.arl$ts,2.

t,,2 = (b4 • 06) ED t3,3 t5,2 = (b3 .~) $ t,,3 tll,2 = (~ , 06) $ tS,3
t',3=(b,·as)$t3,4 t5,3=(~'as)EBt", lts,3= (b:z'as)ets"
t'.4 =(b'·I1.I)EBM3EBtu ts,4=(ll;,'a.c)EBM,$tu tll,,=(b:z·a..)eMs EBts,.5
t4,.5 = (b, -a3) ED M, EDt3,' tS,.5 = (ll;, 'a,)E9M, EBt'A te,.5 = (b:z ·a3)lDMsEBtu
t4,l = (b, . a2) tB M, tB t3,t t s,. = (II, . a2) EEl M, tB Lt,r tll,l = (b:z . C2) ED Ms lD ts,t
t"r=(b,·adEBtu ts.r=(b;,·adEElt,,1 4.t= (b:z·adEBts,l
Lt,l=(b"co)EBM3 tS,I=(b;,-ao)EBM, ts,l=(b:z'co)EBMs
Row 7: M, lts 11 i 7 Row 8: Mt ttl, i 8
tt.1 (bl ·arlEB4,2 ta,l (llo,ar)etr,2
tr,2=(bl'~)EB4..3 t&,2=(bo'aa)E9tr,3
tr,3 = (bl . as) tB 4" t.,3 = (1.10 . as) ED tt.,
tr., = (bt . ot) tB M,EB 4,.5 t•., = (1.10 '04) EEl Mt ED tr,.5
tr,.5 =(bt ·a3)E£lM,ED4,l tu = (llo·a3)EElMtEBtr,l
tt,ll = (bt 'C2)E£lM,EDlts,r t.,11 = (llo·C2)tBMt EBtr.r
tt,t = (b l · all ED 4.. t•.r = Clio· all tB tt..
tt.. = (bl 'ao)EDM. tl,l = (bo'ao)EDMt
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The Boolean Equations for cases where m < 8 are as foUows:

m = 3: Primitive Polynomial P(%) = x3 + % + 1

m = 4: Primitive Polynomial P(%) = %4 + % + 1

m = 5: Primitive Polynomial P(%) = r + r + 1

Row 1: Mo O. i 1
tl,l (b.. '111.!
t 1,2=(b"'a3)
t 1,3 = (b.. ·az)
t 1•• =(b,,·ad
tt = (b... ao)

tu (b;,·I1I.)6'lt l •2

tz,2 = (b)·a3)6'lt1,3

tz,J = (b) ·az)mMt $tl ,.

tz,. = (b)·at)eft,5
t2,S=(b)·ag)$Mt

47

t.u .~~·I1I.)EBtz,2
t3,2 = (b:z·a3)ffitz.3
tU=(b:z'112)ffiM2 EBtz,4
t 3 ,4 = {b:z·ad6'lt2,5
tU=(b:z·ag)ffiM'l



m = 5: Primitive Polynomial P(z) = .r + z2 + 1 (continued)

t.,1 (bl 'a.) ffit3,2
t.,2=(bt - a3)ffit3,3
t.,3=(b l -a:;,;)EBM3 EBt3,.
t.,. = (b l • ad ffi t3,5
t.,s = (b i - ao)ffi M3

tS.l (bo-~)ffit."

tu=(bo'a3)ffi t.,3
t S ,3 = (bo·a,) ffiM.EBt.,.
ts,.=(bo·adEBtu
tss = (bu,t1(I) eM.

m = 6: Pr-imitive Polynomial P(z) = x6+ X+ 1

Row 1: Mn O,i 1
tl,1 (bs - as)
t 1"= (bS 'a4)
h,3= (bs-as)
tl,.=(bs'a:;,;)
h,s=(bs-ad
t l,6=(bs,t1(I)
Row 4: M3 t3,1. i 4

t.,1 (b.· aslffit3,2
t." = (b.·a.)ffit3,3
t.,3 = (b.'a3lffit3,.
t.,. = (b.'a,)ffit3,.5
t.,5 = (b. ' ad e M3 ffi t3,6
tu =(b.,t1(I)EBM3

t2.1 (b. 'as) ffih"
t", = (b.-a.)ffit l ,3
t,,3 = (b.,a3)etl,.
t2,. = (b. -a,) etl,s
t2,5 = (b. ,adeMI EBt l ,6

t,,6=(b.·an)EBMI

Row 5: M. t •. I , i 5
tS,1 (b l -as)EBt4,2

tS,2=(bl'~)EBt.,3

ts,3=(bt - as)E9t.,.
ts,.=(b\'Cl2)e t.,5
ts,s= (bl ·allffiM.EBt.,6
tu = (bl -l1(J) eM.
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t3,1 (bs' as)EBt",
h.,=(bs-~)et"s

t3,3 = (bs,a3)EDt".
t3 ,4 = (bs -a,) EBt,,5
t3,5 = (b3 -a!lEBM,EBt',6
tU =(b3 -t1(I)EBM,
Row 6: Ms tS,l> i 6
t6,1 (bo-as)E9ts"
t6,,==(bo·a.)ets,s
te,3==(bo- a 3)EBts,.
te,. == (bo'a,)ets,s
t6 ,5 == (bo' ad ffi Ms EB tS,6
t6,6==(bo-an)EBMs



m = 7: Primitive Polynomial P(x) = xT + r' + 1

Row 1: Mo 0, i 1
t1.1 (br;-f:16)
h:z={br;·a,)
tl,2={~-Q.j,)

tl.• ={~·aJ)
t 1,.5 =(~-o,)

tU={~'al)

t l •7 =(~-oo)

Row 4: M3 t3hi 4
t.,l (b)'f:16!EDt3.2
t4,2 = (b:J -a~)EB tu
t 4 ,3 = (!l:J-a..)lil t3,4
t 4 ,4 = (b:J·aJ)EBM3 EBt3,5
t4,.5 = (b:J -a,) Iiltu
t4., = (b:J-a!l EBtJ,T
t4.T=(b:J-Oo)EBM3
Row 7: M, 4,11 i 7
tT.! (bo 'Oc)EB 4,2
t7,2=(bo-~)EB4,2

t7,2 = (bo'04)EB4,4
t7.4 =(bo-a,)EBM,EB4,s
t7,.5 = (bo-0,)EB4.,
tr,ll = (bo-adEB4,7
tT,T=(l/o'Oo)IilM,

t2,l (b$-llf;)EBt1,2
t",=(bs-aS)e t l,2
~,2=(bs-Q.j,)EBtl.4

t,.4 =(bs-a3)eMtEBt1,s
t2 ,.5 = (bs-o,)EBtu
tu =(bs -atllilt1,7
t2•7 =(bs-ao)EBMl
Row 5: M4 tu,i 5
ts,l (b,-l1tl)EBt4,2

ts,2= (b,- aS)EBt4,3

tS,3= (b,-G.t)E9 t 4.4

ts•4 =(b,-aJ)EBM4 EB t4,S
tS,.5= (b,'a,)EBt4"
tS,ll = (b,- a l)EB t4,T
t s,T=(b,-ao)EBM4

Row 3; M, t2,l, i 3
t3.1 (b4'lZ6)ED~:z

h:z=(b4-as)e~,2

tu=(b4 -04)etz,4
h.4 = (b4 -aJ) ED M2 EB tu
ts,s = (b4 -o,)EBtu
t3,6 = (b4-al)EBt'l.T
t3,T=(b4 'ao)EBM2
Row 6: Ms tsbi 6
t'.1 (bl -f:16)EBtS•2t,., = (b l -a~)EBtS,2

t,,3 = (bl-a4)etS•4
t,,4=(bl-aJ)EBMs EBts,.5
f"s = (b1 '0,) EBts,'
t". = (bl·atlEBts,T
t'.T = (b1 - (0) EB Ms

Careful exam.ination of the Boolean Equations in all ca.ses of m = 3,4,5,6,7,8

clearly shows that a two-input AND gate and a two-input or three-input XOR

gate are required to implement the function t>,k of each cell. It is thus possible to

reuse a subset of the available 8 x 8 cells in Figure 3_1 to realize the logic function

of the m x m cells for which 3 S m < 8. Due to the sequential nature of the

multiplication algorithm and the fact that each symbol is represented as an eight-
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bit symbol whose 8-m most significant bits have been set to zero, the logic function

ti,J: of the m x m cells for m < 8 has been realized using the cells which occupy a

square with coordinates (9 - m, 9 - m), (9 - m, 8), (8,8) and (8,9 - m). Where

necessary, redundant terms have been added to the Boolean equations of some of

the 8 x 8 cells in rows 2 to 8. A simple relationship has been devised wb.ereby each

row of the GF(2I) uses a local controller which sets or clears the redundant terms

in order to correctly implement the desired. function t;,J: for m :5 8 using the same

hardware. Each controller has been modelled as a multiplexer. Emphasis here bas

been placed on hardware reusability.

It should be noted that in the circuit implementation, the control variables

Mj, Mjs, Mjs , M,"7, and Mj_w-, have been introduced to the Boolean equations,

defined in Equation (3.5), for m = 8 as overrides to allow the programmability

of the multiplier for different m = 3,4,5,6,7,8. Implementations of the various

overrriding local cell equations are detailed below in algorithmic fDem.

The control variable Mj replaces M l in row 2 in cells (2,4), (2,5), (2,6) and

(2,8) modifying them as follows:

t,.• ('" 44)eMjlB t l,5

.... ('" a3)EBMj EB t l.,

.... ('" ·Q2)EBMj lBtt.7

t,. ('" ao)EBMj

The local controller then operates as follows:

um =8 it sets M J =tl,li

else ifm =7 it sets t 1,3 =tl,4 =tl,5 =tt,S =tl,7=tl.a=Mj =0;
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end if;

Accordingly, row 2 of the GF(:z3) also correctly implements row 1 of the function

4.l- ofthe GF(2T) multiplier whose Boolean equations are defined in Equation (3.5).

The control variables Mj7 and Mj have hem introduced to row 3 in cells (3,4),

(3,5), (3,6) and (3,8) modifying them as follows:

t 3 ,( (b, a()lBMj7 lBt2,5

t,. (b, ·a3)lBMj EIlt2,1I

t .. (b, lJ2)EBMj7 EBt2,7

t .. (b, ao)EBMj

The local controller then operates as follows:

ifm = 8 it sets M j7 = Mj = t2,1;

else ifrn -= 7 it sets Mj =t:z,.2,Mj7 =0;

else ifrn =6 it sets t2,( = t2,.5 =t,,lI = t,,7 = t,,1 = M j = Mp =0;

end if;

Accordingly, row 3 of the GF(~) correctly implements rows 2 and 1 of the

function ti.l- of the GF(27) and GF(211 ) multipliers respectively.

Control variables M j7, M j_ump , M j7 and M j have been introduced to row 4 in

cells (4,4), (4,5), (4,6), (4,7) and (4,8) as foUows:

.... (b, C4)lBMj1 fIltu

'" (b, a3) Ell Mj_kmp EEl tu

t(,6 (b, ·a,)EBMj7 EBh,1

t4,7 (b. ·adEBt3,lleMjll

t .. (b. ao)eMj
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The local controller then operates as follows:

if m = 8 it sets Mj = MjT = Mj _ lemp = tJ.lr MjG = 0;

else if m = 7 it sets Mj = Mj _ l _ p = tJ ,2. !vljG = Mp = 0;

else ifrn = 6 it sets Mj "" M jG = t',J.Mj1 = Mj _ I4mp =0;

else ifrn::; 5 it sets tJ ,5 =ts,a = t,,1 =t:J,l = M~ = MJ? = Mj-'-'P = M j =0;

end if;

The above procedure permits implementation of the logic functions of row 1 of

the GF(~) multiplier, row 2 of the GF(2') multiplier. row 3 of the GF(21
) and

row 4 oftbe GF(2G) multiplier using the same hardware.

Control variables Mp • M j _ l -.-. M js , MjG and Mj have been introduced to row

5 in cells (5,4), (5,5), (5,6), (5,7) and (5.8) as foUows:

tS•• (b, Got)eMJ?$tu

t" (b, a,) ED Mj_tttrop ED t.,ll

t.. (b, . '12) $ Mj1 $ Mjs e t.,7

t S•7 (b, ·adet•.aeMja

t.. (b, "ao)EDMj

The local controller then operates as follows:

ifrn = 8 it sets Mj =MJ? = Mj_ump = t.,ltMJ~ = M~ =0;

else ifrn = 7 it sets Mj = Mj_'-'P = t..,2,Mjs = l\{~ = M j7 = 0;

else ifrn = 6 it sets Mj = Mj , =t.,."Mjs = Mj7 = Mj_tttrop =OJ

else if m = 5 it sets M j = Mjt> = t.,4. MiG = Mi7 = Mj_ump =0;

else if m = 4 it sets Mi7 = Mj_t-.p = M js = Mi = Mi , = t•.a = t •.1 = t.,a .. Oi

end ifi
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Control variables Mj7, M j_tcnp , Mjs • M j & and Mj have been introduced to row

6 in cells (6,4), (6,5). (6.6). (6,7) and (6,8) as foUows:

4" (b-z-'l4)EBMj7EBts,s

4. (0, -(3)EBMj_~petS,8

4. (0, (2) e M j7 e Mjs e tS,7

4" (0, (1)ets.. WMj6

t.. (0, ao)eMj

The local controller then operates as follows:

ifm = 8 it sets M j = M j7 = Mj_ktnp = ts.l,Mjs = Mj& =0;

elseifm = 7itsets M j = Mj_unop=t5.2,Mjs = Mj &= MJ"7 =0;

else if m = 6 it sets M j = M j & = t5.], Mjs = MJ"7 = Mj-lcnp = 0;

else ifm = 5 it sets Mj = Mjs = ts.4 ,Mj& = Mj1 = Mj_,-::IE 0;

else ifm = 4 it sets MJ"7 = Mj_ktnp =O,Mj = M js = t$,5;

else ifm = 3 it sets MJ"7 = M js = M js = M j = tS.7 = ts.. = 0;

end if;

Control variables M J"7. Mj_unop, Mjs , Mjfj and M j have been introduced to row

7 in cells (7,4), (7,5). (7,6), (7,7) and (7,8) as follows:

t7•• (b, "'l4)eMJ"7 EBtu

t" (b, - (3) ED Mj_U:m.p e tfj.6

t7,6 (b, - (2) ED M j7 ED MiS ED t S,7

t7.7 (b, -adetS.6EBMjs

t7 ., (b, -ao)eMj
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The local controller then operates as foUows:

um = 8 it sets M j = M fT = M j _-..., = tt.l,Mjs = Mje -0;

else um = 7 it sets M j = Mi_u.tq> = 4"" MiS = Mje = M jl =0;

else um = 6 it sets M j = MiS = 4;.J,Mjs = M J"1 = Mj_~ =0;

else um = 5 it sets M j = M js = tt,4,MjS = M
J
"1 =M j __,. =0;

else um = 4 it sets M J"1 = Mj-'-'P =O,Mj = Mj$ =4;,.5;

else ifm = 3 it sets M jl = M js = O,Mj = M js = tu;

end if;

Finally, the control variables M jT , Mj_kmp, Mis, Mjs and M j have been intro-

duced. to row 8 in cells (8,4), (8,5), (8,6), (8,7) and (8,8) as foHows:

te,. (b, G.!)G:lMj7 W!r,s

t.. (b, a,)ffiMj_tcmpffi!r.o

t.. (b, (12)ffiMjT WMjs Wtr,T

t., (b, ·adWt7~G:lMj6

'.. (b, ao)eMi

The local controller then operates as follows:

ifm = 8 it sets Mj = MJ"1 = Mj_Wrlp = tr,hMjS =MjS = 0;

else um = 7 it sets M i = M j _ l _ = tr,."Mjs = M j• = M jT =0;

else ifm =6 it sets M j = M j • = t 7,J,Mjs = M jT = Mj_ump =0;

else um = 5 it sets M j = M js = tT,4,Mj6 = M j7 = Mj _ mnp =0;

else if m = 4 it sets M jT = M j _ r-.p = 0, M j = MiS = t7,S;

else ifm = 3 it sets Myr =MJs = a,Mj = Mjt. =t7,s;

end if;
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.>\nother controller assigns the output, i.e. product, elements as follows:

urn = 7 it sets tu =0;

else urn =6 it sets tll,l =18,2 =0;

else ifrn =5 it sets tll,l = t8,2 = tl,3 =0;

else ifrn .. 4 it sets tu = 11,2 = tl,3 = ta,,, =Oi

else um E: 3 it sets tl,l = t,,2 =t,,3 =t8,,, = t,l,5 = Oi

end if;

followed by

~=~,~=~~=~,~=~,~=~.~=~,~=~.~=~l

according to Figure 3.l.

Based on the above analysis, it can be seen that a two-input AND gate and

a two-input or th.ree--input XOR gate implements the function 'o,.t. Registers and

D-8ipHops have been placed between adjacent rows in order to facilitate pipeline

processing of data between neighbouring cells. The pipelined version of this Tn­

programmable multiplier outputs the product C at a rate of one output per cycle

after an initial delay of m cycles. The clock period is governed by the propagation

delay of a signal through a multiplexer, a 2-input AND gate and a 2-input or 3-input

XORgate.

The resulting GF(2"') multiplier is systolic and has a simple, regular commu­

nication and control structure. It also allows unidirectional data. How which is

advantageous over a system with contraHowing data streams. Most fault tolerance

schemes which are suitable for linear arrays route information around faulty cells

[68J(69]. This can introduce significant transmission delays between cells. In unidi­

rectional data How arrays, latches are often inserted in all data streams which are
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rerouted around a faulty cell but at the expense of increased system latency. This

does not change the required data interactions, since the relative delays between all

data paths are zeros. This technique is not suitable for arrays with contrafiowing

data streams because the relative delay between paths would be non-zero and hence

data interactions may be corrupted.

The symbolic architecture of the multiplier is shown in Figure 3.2. A and B are

the 8-bit elements to be multiplied; elk is the clock signal; m is the symbol size;

test..se, test..si, test..so are the test ports; 0 is the 8-bit product of A and B.

A comparison of the unpipelined and pipelined multiplier is shown in Table

3.1. The number of gates with and without scan chain, number of detected faults

and fault coverage are automatically generated by the Synopsys synthesis tools.

The maximum clock frequency is estimated by interactively simulating the VHDL

gate level netlist file, using repeated functional verification and timing analysis

techniques. The pipelined version has a lligher gate count because of the added

registers between neighbouring cells. Both versions of the multiplier have a 100%

fault coverage which ensures high quality and ease of testing after fabrication. The

multiplexed scan chain improves the controllability and observability of the internal

circuit nodes, thereby reducing the complexity of test generation.
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Figure 3.2: Symbolic Arch.lltecture of the Programmable Multiplier
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Circuit Properties
Latency

Throughput rate
Number of Gates

Number of Gates with Scan Chain
Number of Detected Faults

Maximum Clock Frequency (MHz)
Fault Coverage %

Unpipelined Pipelined
1
1 1

517 2,583
551 3,419

2050 8892
60 200
100 100

Table 3.1: Comparison of the programmable Unpipelined and Pipelined Multiplier

The design procedure can be summarized as follows:

1. For a seleeted m, derive all the Boolean Equations t i ): for all the m2 cells. Also

derive the Boolean Equations for m < musing t;): = ti_I):+l e (P"'-k . Mi_ l ) e
(am-k.b",.-i) where i = 1,2, ... ,m and k =1,2, ... , m.

2. Beginning with m = m- 1 and adding control variables to each cell where

appropriate, restrict implementation of t i ): to a square with coordinates (ffi + 1 ­

m,m+l-m), (m+l-m,m), (m-,m) and (m,m+l-m). Repeat the procedure

forallm=m-2,m-3, ... , 4,3.

3. Add registers between neighbouring cells to obtain the pipelined version of the

multiplier.

3.2 m-Programmable Exponentiator/Inverter

Definition 1: For an arbitrary element A in the finite field GF{2m), the inverse of

an element A is denoted by A-1 = A2"'-2 [10). Rewriting the exponent 2m - 2 as

21 + 22+ 23 + .. + 2"'-1, allows the inverse operation to be expressed as

(3.6)
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Definition 2: For an arbitrary element A in the finite field GF(2"') and an integer

N(1 :$ N :$ 2'" - 1), the exponentiation functioD. is defined as 5 '"" AN. Clearly,

5 is in GF(2"'). If N is represented in binary form as no, nIl fl2, ... ,n",-I such that

N =E::G' n; 2;, then 6 = AN can be expressed as follows [30][311

where

o = AN =AE;:;',.,·2'
= (A)"O. (A2)'" . (A2'(> ... (A2"'-')"--'

= n:O l (A2
')""

=n~'E.

E;=A:zO un.=1

E;=1 ifn;=O

(3.7)

(3.8)

(3.9)

Assuming the temporary result is ~ = n{..o Ei , then the following recursion is

derived.
Flo = I·Eo,
R I = Flo· E l ,

Rio: =~_i·EIo:, (3.10)

R.n_l = R...._2 . E.._I
=AN

By using the definition for the exponentiatioD. function, an alternate method

can be derived to evaluate the inverse of an element in GF(2"'). Equations (3.6)

and (3.7) show that if N = (no,nl,fl2, ... ,n.",_I) such that N = I:r;oIn..2' as in

Definition 2, then the inverse function is a. special case of exponentiation. They are

equivalent, that is AN = A-I, if and only if the foUowing conditions are satisfied
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no= °and
nl = n, = ... = nrn_1 = 1 (3.11)

These conditions are always valid as we can observe that Equation (3.6) can be

restructured as Equation (3.7) in the fonn

when N = (1\(J, nil n2, ... , 1lrn-d = (0, 1, 1, ... , 1)

Henceforth, similar to the exponentiation function, the inverse element can be com-

puted as

where

A-I = AE:';'n;o2'
= (A)o. (A2)l. (A2)1 ... (A2"'-')1
=m~,;ol(A2')

= m~oIE;

(3.13)

(3.14)
E; =A2' if ilO
Eo =1 if i=O

Let the temporary result be 14 = m~;iil Ei , then the following recursion is also

obtained,

Rn._1 = Rm_2 . Ern_ 1
= A-I
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Figure 3.3: A General Exponentiation Architecture

From a hardware implementation point of view, the exponentiation architecture

can be used to compute the inverse element as welL It can be implemented using

registers to hold the data, control circuitry and repeated use of a single multiplier

or use of multipliers in parallel. According to the above analysis, multiplication

stands out as the most critical arithmetic operation. Thus, the ideal multiplier

circuit structure must be modular, easily expandable and require a simple control

scheme. A global system diagram comprising the three main components is depicted

in Figure 3.3.

In the ease wherem =8, one only needs to set N =(no, nl, floz, nJ, n., n5, ne, n1) =

(0,1,1,1,1,1,1, I) in order to evaluate inverse elements by using the same exponen­

tiation hardware. A structure for computing exponentiation or inverse elements of

the GF(2') is shown in Figure 3.4.. It is an extended version of the array described

in [311.

The word-level systolic array consists of 14. multipliers (MULl to MULl.), 8

8-bit multiplexers (MUXo to MUX1 ). 28 I-bit one-eycle delay elements (D I ) and

one 8-bit one cycle delay element (DfI ).

The multipliers On the left bank (MULt to MUL,) evaluateA2' fori = 1,2, ..,m-
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Figure 3.4.: Exponentiation/Inverse Architecture for GF(28 )
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Latency m
Throughput rate 1
Number of Gates 7,735

Number of Gates with Scan Chain 8,821
Number of Detected Faults 29,705

Fault Coverage % 99.8

Table 3.2: Features of the program.mable Exponentiator/lnverter

1 while those on the right bank (MULa to MUL l4 ) evaluate Rt = Ro_l·Ei fori = 1

to m - 1. The multiplexers (MUXo to MUX7 ) select A 2' if 11; = 1 or the B-bit

identity element I = uOOOOOOOl" if n; =0 as the output E j •

Thus the output 0 = A .... is available as R7 • The m-programmable GF(2m )

multiplier has been used to implement the MULj such that the output is also ac­

cessible at various points Rm_t form = 3,4,5,6, 7,8 as specified in Equations (3.10)

and (3.15). The output points R2 to R7 are directly connected to an independent

module which assigns them to 0 = AN based on the word size m.

The symbolic structure of the combined exponentiation/inverse architecture is

shown in Figure 3.5. CHlPrnode configures the chip to operate as an exponentiator

or inverter; E%ponentln is the port for the exponent; GF..ELEMENT is the Galois

field element A; elkIn is the clock signal; m is the symbol size; testJe, test.....ri, wuo
are the test ports; VALUE is the B-bit inverse or exponentiation of GF...ELEMENT.

Its circuit properties are shown in Table 3.2. The number of gates with and

without scan chain, number of detected faults and fault coverage are automaticaUy

generated by the Synopsys synthesis tools.

63



test-s:=

Figure 3.5: Symbolic Architecture of the Programmable Exponentiator/I:nverter
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A comparison of the programmable exponentiator/inverter when operating as

an inverter for fixed m with other inversion circuits is illustrated in Table 3.3. The

algorithm in [22} requires a computational complexity of O(mlog2 m). p is the

number of ones in the binary expression of m - 1 and q is the lower bound on

log2m. If the input data pass in continuously, the VHDL gate-level simulations

show that the parallel-in parallel-out inverter can produce results at a rate of one

output per clock cycle after a latency of m cycles. The new inverter is flexible and

clearly outperforms circuits proposed in 122][23].

Since the standard basis is commonly used in implementing algebraic RS de­

coders in hardware, the exponentiator/inverter is implicitly based on the normal

basis, and therefore exponentiation can be easily implemented via cyclic shifts.

However, additional circuitry would be required to convert between the normal and

standard basis representation of the Galois field elements, thus making the design

of the RS decoder more complex.
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Circuit Properties Proposed Inverter Inverter in [23J Inverter in [22]

Latency 7m-3 m(p+q)

Throughput 2m-l m(p+q)

Computational Complexity 0(1) Oem) O(mlog2 m)

Regularity High High Moderate

Dependence on
Primitive PoLynomial Yffi No Yffi

Basis Standard Standard Normal

I/O format Parallel-In Serial-In Serial-In
Paralle[~Out Serial-Out Serial-In

Table 3.3: Comparison of Exponentiator/lnverter with other Inverters for fixed m
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3.3 Discussion and SUlllInary

An m-programmable Galois field multiplier, which can operate in the GF(2"'),

where m is variable, bas been presented.. It uses a simple controUer in some of

the basic ceUs. The cases where m = 3,4,5,6,7 and 8 have been considered. Its

pipe!ined version has a speedup factoe of about four. Using this multiplier and the

modified version of the word level systolic array for exponentiation discussed in [311.

it bas been discovered that both the inverse and exponentiation functions can be

evaluated using the same hardware structure. The results snow that the proposed

method of performing inversion of Galois field elements is more efficient and faster

than available circuits. These arithmetic circuits are systolic and have simple. reg·

ular communication and oontrol structures. They also allow unidirectiooal data

flow which is advantageous over systems with oontraflowing data streams [681(691.

A very high fault coverage has been obtained by using a full scan test methodol­

ogy which uses multiplexed fiip-Hops. This means they will be easy to test using

automatic test equipment after fabrication [70). All the gate-level simulations Cor

the proposed architectures have been performed using the Synopsys YHDL System

Simulator. These programmable arithmetic circuits are easily expandable, heDce

can be tailored for a wide range of applications requiring variable symbol size m.
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Chapter 4

Synthesis of the Reed-Solomon
EncoderjDecoder ASIC

This chapter presents the design methodology, circuit synttlesis and functional ver­

ification of the major modules of the RS encoder/decoder ASIC.

4.1 Design Flow, Functional Verification and Test

The circuit synthesis of the RS encoder/decoder ASIC was realized using the 0.8­

p.m BiCMOS design kits for Synopsys and Cadence tools licensed by the Canadian

Microelectronics Corporation (CMC).

The design flow made use of a O.8-p.m CMOS standard cell library, which did

not include any bipolar junction transistors (BJTs), provided in the BiCMOS fab­

rication software. It supported a top down VLSI design methodology in which

the functional abstraction of the digital Ie could be initially specified using the

YHDL hardware description language. The circuit models were described using a

subset of the VHDL constructs called Register Transfer Levels (RTL). Once logic

simulation was completed and verified, the RTL circuit models were then synthe­

sized to obtain the gate level (structural) circuit models using the Synopsys suite
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VHDL (RlL code)

Rn.. Simulation

Logic Synthesis

Scan-Chain Insertion (OFT)

Gate·[.evel Simulation

PIac::e&Route

Figure 4.1: Design Flow

of tools. The design could then be imported into the Cadence environment as a

VeriIog gate level netlist file, automatically generated by the Synopsys tools. It

could then be automatically placed and routed in order to create the IC masks

required for the fabrication process. These steps were independent of each other

and are summarized in Figure 4.l.

As shown in Figure 4.1 the modelling, verification and implementation processes

were integrated. The integrated design Bow reduced the amount of code that had

to be maintained and the risk of inconsistencies between models. Thus, an error

free transfer was ensured between all the levels in the design process. Rapid design

exploration of the different architectural styles could easily be made. The Synopsys
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tools focus on the composition of the datapath and global cycle count while the

Cadence suite of tools concentrate on the creation of the integrated circuit layout.

Once the behavioral model of the RS encoder and decoder had been captured

using the VHOL hardware description language, each block was then partitioned

into smaller modules which were modelled separately using a subset of the VHOL

constructs suitable for logic synthesis. The size of each synthesizable module varied

from 45 to a maximum of 20,000 gates although a reasonable gate count (250 to

5,000 gates per module) was recommended in order to reduce the compile time

{71]. Larger modules were characterized by sequential processes which had heavy

dataflow dependencies. They required large CPU time, huge memory and logic syn­

thesis run times of up to three days. The functional correctness of each VHDL RTL

model was verified using an interactive UNIX based RS encoder/decoder simulator

written in C {72]{73].

Hierarchical compile is the simplest method for compiling a hierarchical design

[74]. However, a bottom-up compile strategy whereby individual modules were

compiled first foUowed by higher modules, was adopted. This way once a module

had been compiled, it was assigned a danLtau.ch Rag so that Synopsys did not need

to compile or read it again. The bottom-up compile method worked well when the

entire chip was synthesized into gates since the entire design was not required. to be

stored in memory. Unlike the hierarchical compile, this led to significant savings in

CPU and swap space. The design rules were checked and an initial fault coverage

reported on each module as it was developed. The report helped identify the block

that had design rule violations or an unacceptable fault coverage so that testability

problems could be fixed at an early stage. Testability analysis was then performed

70



on the top-level core design before scan insertion, because test design rule violations

could be introduced due to interconnect between the hierarchical blocks. At the

time, a partial or full scan test methodology which used the multiplexed flip-flops

was the only design.for-testability (DIT) style supported in the O.8-Jlm SiCMOS

technology.

The architecture of the chip and its major modules are described in the following

section.

4.2 Chip Architecture

This thesis implements an algebraic encoder/decoder chip using CMOS standard

cells. The standard algebraic decoder for decoding RS codes is described in de­

tail in Chapter 2. The complex arithmetic operations needed in the encoder and

decoder generally require the use of the m-programmable multiplier and exponen­

tiator/inverter proposed in Chapter 3. As previously reported, the first step in

the decoding algorithm is to calculate the syndrome polynomial S(x) which con­

tains the information to correct correctable errors or detect uncorrectable errors.

The Berlekamp-Massey or Euclid's algorithm can be used to determine the error·

locator polynomial [3]. The Berlekamp-Massey algorithm was selected because its

low design complexity makes it suitable for VLSI synthesis. Another module ex­

ists to determine the error magnitude polynomial using the relationship between

the syndrome and error location polynomials, i.e., O(x) = S(x)u(x) mod x 2! or

flex) = S(x)A(x) mod x2l . Once the location and magnitude of the errors have

been determined using the Chien Search and the Forney algorithm respectively, the

received messages can he corrected.
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Sizes of the field

Primitive Polynomials, P(x)

Generator Polynomial, G(x)
Error Correction Capability, t

Encoder Latency
Decoder Latency

Gate Count
Technology

GF(2 ),GF(2 ),GF(2")
GF(2S ),GF(24 ),GF(23

)

x'+x4 +r+x2 +1
x7 +r+l
x5 +x+l
r+x'+l
x4 +x+l
x3 +x+l

(x + o::)(x + o::') (x + 0::2t)

t=1,2,3, ,16
n

2n+2t+m+3
218,206

O.8-~m SiCMOS

Table 4.1: RS Encoder/Decoder Characteristics

The symbolic architecture of the programmable RS encoder/decoder is shown

in Figure 4.2. Values of the Galois field symbol size m = 3,4,5,6,7,8 and error

correction capability t ranging from 1 to 16 are supported. Thus the block length

n = 2m - 1 varies from 7 to 255 symbols. The device contains 218,206 gates, where

a gate is defined as a 2-input NAND gate. Its characteristics are given in Table 4.1.

The size and description of each I/O signal are given in Table 4.2.

Implementation details of the main modules of the RS encoder/decoder are

described in the roUowing subsections. All the required arithmetic operations in

Galois fields are accessible to global entities as components or junctioru defined

in a VHDL package. Each module has been modelled in VHDL using component

instantiation.
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Figure 4.2: Symbolic diagram of the RS Encoder/Decoder
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Signal
Clock
Data

Message
Mode-port

Reset
Start

Codeword

Data-Correct
ErrorPosition

ETTorValue

FinishedDecode
FinishedEncode

NoErrors

Bit Size Description
clock signal

input port for the received word
from channel

input port for the message symbols
selects the encoding or decoding mode

reset signal
starts the encoding or decoding process

Galois field symbol size
error correction capability

output port for the codeword polynomial
to channel

output port for the corrected data
output port for the error positions

from Chien Search
output port for the error value/magnitude

from Fomey Algorithm
goes high when the decoding process is complete
goes high when the encoding process is complete

goes high when there is a functional error

Table 4.2: RS Encoder/Decoder I/O Pins
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4.3 Modules

4.3.1 Encoder

Let the message polynomial be M(x) = C2CX21 +C2I+lX2tH + _. + c.._lX,,-l and the

parity check polynomial be P(x) = Co + elI + ... + C2t_1X2t- 1 . Then the encoded

RS code polynomial, often called the codeword, can be expressed as

C(x) = M(x) + P(x)
~ Q(x)G(x) (4.1)

.. M(x) ~ Q(x)G(x) - P(x)

The quantity Q(x)G(x) means that a valid code polynomial C(x) must also be

a multiple of the generator polynomial C(x). Hence, the encoder must find P(z)

from M(x) and G{x). Tbis is achieved by the division algorithm. That is, dividing

M(x) by G(x) gives the remainder polynomial R{x) such that

M(x) ~ Q(x)G(x) + R(x) (4.2)

where Q(x} is the quotient.

In this thesis, the RS encoder uses a conventional architecture to perform the

division of M(x) by G(x) to obtain the parity check polynomial F(z) = -R(:z:)

defined in Equation (4.1). Its structure is shown in Figure 4.3.

In the figure, G(i)'s axe the symmetrical coefficients of G(x). Initially all the

registers are cleared and both switches set to position A. The message symbols

c",-l' ... , C2t are fed into the division circuit and are also transmitted from the encoder

symbol by symbol every clock cycle. Immediately after k clock cycles, both switches

are set to position B to allow the parity check symbols to be serially shifted out of

the encoder to form the complete C(x). The shifting process takes 2t clock cycles.
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Figure 4.3: RS Encoder

The encoder module consists of 9,644 gates. It has been designed as a 32~

stage 8-bit linear feedback shift register (LFSR) whose components include 16 m­

programmable Galois field multipliers, a modulo-255 counter and 8-bit registers. m

and t are variable for 3, 4, 5, 6, 7, 8 and 1,2,3, ..., 16 respectively. If m had been fixed.

as in [35][65J, the multipliers for the coefficients G(i)'s and the feedback connectIon

could have been designed as constant multipliers consisting of a tree of XOR gates.

This version of the encoder is also available for fixed m = 8 and fixed t = 16. The

VHDL code for any coustant multiplier in GF(2m ) can be automatically generated

using a C++ program written by the author.

Figure 4.4 shows a symbolic diagram for the RS encoder. The calculation of

the various coefficients ofG(z) is generally tedious and hence was automated using

a C program available in [72][731. Their values are heavily dependent on t and m

and are stored in the appropriate registers during chip initialization.

The bit size and description of each I/O signal are given in Table 4.3.
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Figure 4.4: Symbolic diagram of the RS encoder
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Signal
Message

StartEncoding
<II<
m
c,t
t

Codeword

Finishe4Encoding

Bit Size Description
input port; for the message symbols

starts the encoding process
clock signal

Galois field symbol size
reset signal

error correction capability
output port; for the codeword polynomial

to channel
goes high when encoding is complete

Table 4.3: Encoder I/O Pins

4.3.2 Syndrome

As noted earlier, the 2t syndromes or syndrome polynomial coefficients axe com-

puted as

.-,
Sj=~r,cij, 2m - l _t::;j::;2m - l +t_1 (4.3)

where T,(O::; i::; n - 1) are the coefficients of the received polynomial R(x).

By using Horner's rule, Equation (4.3) can be rewritten as

Figure 4.5 shows a block diagram for computing tbe syndrome values defined in

Equation (4.4).

As shown in the figure, each cell implements the following register transfer

relation:

78



r;:-l~,..--v-1•II S,

~,

I .~. ,

=:=7".L:-J: ..
"",

ar"'·'··-'

Figure 4.5: Systolic Array to compute Syndrome Polynomial

79



cell 1: Bl +- Al e B.Ql"'-'-1
ct!ll 2: lh +- A 2 e lhQl"'-'-I+1
cdl 3: B) +- A, e S,?-'-I+2

(4.5)

(0'

2m
-

1 -t 5i 5 2m - L +t_1; 15 k 5 2t

where +- implies the operation "is replaced by".

Based on the values of t and m, the corresponding ~ variables are stored in the

cell registers during chip initialization. After the complete R(z) has entered, the

required syndromes 5j are contained in the registers Bjo After n clock cycles, the 2t

syndromes are shifted out in parallel and fed into the Berlekamp-Massey module.

A maximum of 32 syndrome cells are supported by the device.

The symbolic structure of the syndrome module is shown in Figure 4.6. It

consists of 22,515 gates. The size and description of each I/O signal are given in

Table 4.4.
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Signal
Codeword

Compv.teSyndrome
elk
m

N',
ALPHA_CONSTANT

Finished$yndrome

NoErrors
Syndrome Valv.e....KX

Bit Size Description
8 input port for the received word

from channel
starts the decoding process

clock signal
Galois field symbol size

reset signal
error correction capability

offset term required in
the Forney algorithm

goes high after the syndromes
have been calculated

1 goes high when all syndromes are zero
256 32 syndrome values

Table 4.4: Syndrome I/O Pins

4.3.3 Berlekamp

The Berlekamp-Massey Module implements the following algorithm(53][54][57]. As

shown below, minor modifications to the original Berlekamp-Massey algorithm are

necessary to facilitate RTL logic synthesis. u(X), 5(X) and {J(X) are 16-byte

registers. Land l' can have maximum integer values of 16 and 32 respectively since

tmoa =16.

The Massey-Berlekamp Algorithm

Step 1: If Reset. 1 then Initia~i2:e att the flip-flops

lind registers

l' = 0; u(X) = 0; £=0, P(X) = 1; 5(X) = 0; .CI. = 0;

else

Step 2: For l' = 1 to 2.. t c~ock cyc~es

--compute the error discrepancy.CI. and 6-1
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6. = Ef~ UiS.,_i ;

if 6. > o then

8(X) ~ "(X) - <>XP(X);

if 2£ < "Y then

P(X) ~ 6.-1u(X);

"(X) ~ 8(X);

L ~ 1 - L;

else

P(X) XP(X);

"(X) 8(X);

end if;

else

P(X) XP(X);

end if;

end for;

;k;

After the error locator polynomial u(X) has been determined, the error evalu­

ator polynomial O(X) is found using the relationship O(X) = S(x)u(X) mod xu.

The 16 coefficients ofO(X) are determined in parallel after "Y = 2*t cycles as shown

below:

Step 3: Error Evaluation Polynomial

If "Y = 2*t cycles then --Compute the 16 error evaluator polynomial

-- coeffidents in paraUet
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end if;

The symbolic structure of the Berlekamp Module is shown in Figure 4.7. Its

major components include 170 multipliers, an exponentiator/inverter, a 32-byte

register, a 16-to-l multiplexer. a 32 integer counter, a 16-byte shift register, 4 16­

byte registers. It requires 2t+1 clock cycles to determine u(X) and fI:(X). The total

gate count is 107,015. If gate count had been a design issue, an aggressive design

could drastically reduce the number of multipliers by almost one-third but at the

expense of speed. All the 16 coefficients of fI:(X) could be determined sequentially

using the last expression fl:ul = Sus xor 0"15L5 xor 0"25t4 xor ... xor O"t6. In this case.

a minimum of 2t + 17 clock: cycles would be needed to compute O"(X) and fI:(X).

The size and description of each I/O signal are given in Table 4.5.
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Figure 4.7: Symbolic diagram of the Berlekamp Module
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Signal
CHIPmode

-"',
Syndrome.J(.J(

St4rtBerlekamp

""m
,.",

FinuhedBerlekamp
OMEGA...xX
SIGMA...xX

Bit Size Description
1 configures the exponentiator/inverter

to operate as an inverter
8 set toFE~ for inversion

256 32 syndrome values
1 starts the evaluatioD of a and n
1 docksign.al
4 Galois field symbol size
1 reset signal
5 error correction capability
1 goes high after (T and n have been found

128 1611 coefficients
128 16 (T coefficients

Table 4.5: Berlekamp Module I/O Pins

4.3.4 Error Magnitude Evaluation

4.3.4.1 The Chien Search

The Chien search evaluates the error locator polynomial

A(%) =,g(1-XX1) =a.:r;-+a.-I.J:--1+ .. +olz+1 (4.6)

at all elements of the Galois field GF(2m ), where Xj = a i ,.

The actual error locations are indicated by Q';', ~' •..., ai.. Obviously h(:)

has roots a-il, o-i" ... , 0:-". Clearly an error occurs at position i if and only if

A(a-i) =Oor

A(O-l) =1 + tAla- i' =0 ~ tAIQ:-i, = 1 (4.7)
1=[ I_I

An implementation of Equation (4.7) is done using the Chien search circuit

shown in Figure 4.8. It consists of an mt-input exclusive-or gate, t multipliers and

t registers. In this design, a maximum of 16 multipliers and 16 registers can be
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The Chien search operates as follows::

Eacli coefficient of A(:) is repeatedly multiplied by ai, where a is the primitive

element in GF(2"'). Each set of the products is then summed by the mt-input

exclusive-or gate to obtain the Output = Li"'l AIQ-~

U a i is a root of A(x) then the Output = 1, and an error is indicated at the

coordinate associated with a-i = a n- i , Otherwise, if the Output = 0, there is no
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4.3.4.2 The Forney Algorithm

If Ct-'''' is a zero of A(x), then the error magnitude module computes the error value

at location R.._i... using [541

(4.8)

wherej=2+t~2m-l,

N(x) is the first derivative of A(x) with respect to x and Ct''''; is the offset term.

The calculations indicated. by Equation (4.8) are almost identical to those re-

quired in the Chien search, and the realization shown in Figure 4.8 can be modified

to evaluate each of the polynomials n(Ct-i ... ) and N(Ct- .... ). The structure of the

circuit which evaluates the error evaluation polynomial n(x) at x = 0:-1 is shown in

Figure 4.9. It consists of an mt-input exclusive-or gate, t m·bit registers and t mul­

tipliers. Unlike the Chien search circuit, this circuit does not have a one-detector

at its output [531.
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Figure 4.9: Enor Evaluation Polynomial Circuit
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Figure 4.10: Derivative Circuit

The first derivative of A(x), i.e., N(x) required in the Forney algorithm is given

by

l"¥J 2.1:_2
A/(x) = Al + ~x2 + Asz4 + A7z6 + .. = E A2.1:_lx (4.9)

where k is an integer.

An evaluation of N(O-i) suggests the implementation shown in Figure 4.10.

The derivative circuit consists of an m(2k - 2} input exclusive--or gates, 2k - 2

multipliers, and 2k - 2 registers, where k is an integer. The offset term o,... j and

the inverse of N(o-'''') as specified in the Forney algorithm are evaluated using

the proposed exponentiator/inverter configured to operate as an exponentiator and
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Figure 4.11: Block Diagram of the Error Magnitude Evaluation

inverter respectively. The block diagram of the Forney algorithm is shown in Figure

4.11.

As shown in Figures 4.8, 4.9 and 4.10 the error location polynomial A(x), error

evaluation polynomial n(x) and the first derivative of A(x) are evaluated for the

same field elements. The values of ai, which are based on user defined t and m, are

stored in the cell registers during chip initialization. All the polynomials A(x), A'(x)

and f.!(x) are evaluated in parallel followed by one inversion, one exponentiation

and two multiplications to obtain the error values. This process takes n + m + 2

clock cycles. The symbolic structure of their module is shown in Figure 4.12. It

consists of 37,952 gates. The bit size and description of each I/O signal are given
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Signal
ALPHA..CONSTANT

E$pOnem
Mode...EXPONENT

MrxkJNVERSE

OMEGA.J(X
SIGMAJCX

StartCalculaU Value
dk
m....",,

Cyclu
ERROR_VALUE

ErrorPosition
FinishedCalcuJate Value

Bit Size

128
128
1
1
4
1
5

Description
offset term in Forney algorithm

exponent
conJigures the exponentiator/inverter

to operate as an exponentiator
configures the exponentiator/inverter

to operate as an inverte.r
l6 n coefficients
l6 (T coefficients

starts the evaluation of error values
clock signal

Galois field symbol size
reset signal

error correction capability
clock cycles for error value evaluation

error value/magnitude
error position

goes high after tile errors are found

Table 4.6: I/O Pins of the Error Magnitude Evaluation

in Table 4.6.

4.3.5 Error Correction and Verification

The error com!<:tion module CODSist5 of eight 2.input XOR gates and eight mul­

tiplexers which are equivalent to 45 gates. It performs the Galois field addition

operation C(:r) = R(z) + E(z) which exclusive or's the error values E(z) with the

buffered messages R(z) in order to correct the errors.

The error verification module computes the syndrome values of the corrected

symbols to check if they are all zero as the processed data leave the chip through the

Data_Correct output port. If the syndrome values are not all zero, an error Bag is

generated by the NoErrors signal indicating that the data contains an uncorrectable

number of errors.
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Signal
eLK

DATAJN
RD

RESET
WR

DATA_OUT

Bit Size Description
clock signal

input port ror the received word
enables reading the symbols from the stack

reset signal
enables writing the symbols to the stack

output port ror the bufFered symbols

Table 4.7: I/O Pins of the FIFO Module

4.3.6 First-In-First-Out Buffer

The first-in-first-out (FIFO) buffer is a 255-byte register stack which is used to tem­

porarily store the received code polynomial as the decoder determines the location

and magnitude of the erroneous symbols.

When a write (WR) request is generated by the 6.nite state machine, the symbols

are pushed onto the stack ir it is not full. The FlFO stack does not write to a full

stack, hence this condition is monitored.

When a read (RD) request is generated by the FSM, the symbols are read from

the "bottom" of the stack at depth 2'" - 1 where m =3,4,5,6,7,8. U the stack is

empty, tben no symbol is read.

The symbolic architecture of the FIFO is shown in Figure 4.13. It consists of

18,127 gates. The size and description of each I/O signal are given in Table 4.7.
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4.3.7 Finite State Machine

As sbown in Figure 4.14, the finite state machine (FSM) for the as encoder/decoder

bas ten (10) states which can change on the rising edge of the docie. These states

are detailed below;

L Resetting: In this state all the counters, B.i~8opsand registers in the as modules

are initialized to all zeros.

2. SetModeo' In this state the chip can be configured to operate as an encoder or

decoder.

3. Encoding..BWe1: In this state, the encoder calculates the codewords based on

the eITOr correction capability, symbol size and message symbols. The parity check.

symbols are also shifted out of the encoder.

4. Encoding..$tate2: The FSM module monitors whether the encoding process is

complete before it advances to the Resetting state.

5. Syndrome..SWeJ: In this state, the Syndrome module calculates the syndrome

values based on the error correction capability, symbol size and received word. At

the same time, the received word symbols are stored in the FIFO.

6. Svndrome..Bto.te2: The FSM module monitors if the syndrome evaluation is

complete before it advances to the Berleko.mp..Bto.tel state.

7. Berlekamp..statel: In this state, the Berlekam.p module calculates the error

location and error evaluation polynomials based on the error cotn!Ction capability,

symbol size and syndrome values.

8. Berlekamp..sto.te2: The FSM module monitors if the error location and error

evaluation polynomials have been calculated before it advances to the ErrorVal­

ueCorrut..Statel state.
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9. ErrorValueConuLSt4te1: In this state, the Error Magnitude module finds the

error locations and error values/magnitudes and corrects erroneous symbols. An

uncorrectable error condition is also tested and reported.

10. ErrorValueCorrect..State2: The FSM module monitors if the error correction

has been completed before going back to the Ruetting state.

The finite state machine is a Moore machine, Le., a sequential state machine

whose outputs depend only on the current state, independent of the inputs. In

other words, the functionality can be expressed as;

Next State (N) = [unction [current state (P), Input (1)1
Outputs (0) = [unction [current state (PH

The FSM has been completely described by a single VHDL proce88 with a

synchronous reset signal. It uses a one-hot encoding style which requires the use of

one positive edge triggered !lip-Bop per state, the current state being determined

by the Sip-flop that is on.

The symbolic an:bitecture of the FSM is shown in Figure 4.15. It consists of

313 gates. The size and description of each I/O signal are given in Table 4.8.
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Figure 4.14: RS Encoder/Decoder Finite State Machine
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Signal
CYCLES

Clock
FinishedBerlekamp

FinishedCalculate Value
FinishedEncoding
FinishedSyndrome

Mode-port
Reset
Start

CHIPmode

ComputeSyndrome
ComputeSyndrome_verify

Exponent
Mode...EXPONENT

ModeJNVERSE

RD
ReseLBerlekamp

Reset...Encoder
ReseLSyndrome

ReseLSyndrome....verify

ReseLValue
StartBerlekamp

StartCalculate Value
StartCorrectErrors

StartEncoding
WR

m..out

Lout

Bit Size Description
8 the clock cycles for

error magnitude evaluation
clock signal

notifies the FSM after (f, n are found
goes high after the errors are found

notifies the FSM when encoding is done
signals the FSM

after syndromes are found
selects the encoding or decoding mode

resets the RS encoder/decoder
starts the encoding or decoding process

Galois field symbol size
error correction capability

configures the exponentiator/inverter
to operate as an inverter

starts the decoding process
tests the uncorrectable error condition
set to F Ehuakcima! during inversion

configures the exponentiator/inverter
to operate as an exponentiator

configures the exponentiator/inverter
to operate as an inverter

enables reading symbols Crom the stack
resets the Bedekamp module

resets the encoder
resets the Syndrome module
resets the syndrome module

which determines uncorrectable errors
resets the Error Magnitude module

starts the evaluation of (f and n
starts the evaluation of error values

starts the error correction
starts tile encoding process

enables writing symbols to the stack
Galois field symbol size

to modules
error correction capability

to modules

Table 4.8: I/O Pins of the FSM Module
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4.4 Testing and Results

As previously mentioned, once the behavioral model of the RS encoder and decoder

has been captured using the VHDL nardware description language, each block is

then partitioned into smaller modules which are modelled separately using a subset

of the YHDL constructs suitable for logic synthesis. The size of each synthesizable

module varies from 45 to a maximum of 20,000 gates. Larger modules are char­

acterized by sequential processes which have heavy dataBow dependencies. The

functional correctness of each VHDL RTL model has been verified using an inter­

active UNIX based as encoder/decoder simulator written in C [72](73].

This section presents partial sample simulations showing the encoding and de­

coding stages of the ASIC at a frequency of 50 MHz, which is equivalent to a

clock period of 20 nanoseconds. Test cases where error-correction succeeds and

where it fails are considered for selected values of m = 8 and t = 3. The user

can reconfigure the ASIC on-the-fiy using any combination of m = 3,4,5,6,7,8

and t = 1,2,3, ... , 16 depending on the application. To simplify the examples, it is

assumed that a message of k = n - 2t = 255 - 6 = 249 zero symbols is input to

the ASIC for encoding. Each symbol is m =8 bits so that the generated codeword

contains n = 2'" - 1 = 255 symbols.

In the first instance, it is assumed that an error value of 000OOOI0IJin..... occurs at

position 1 during the transmission of the codeword via the communication channel.

In the second scenario, it is assumed that 4 errors occur in the received data at

positions 1, 2, 3 and 4. In the timing diagrams, the time scale is in nanoseconds

and all the Signal values are represented as hexadecimal numbers.

Figure 4.16 illustrates the states of the input/output signals of the RS encoder
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module described in section 4.3.1, during the encoding stage of the ASIC. As indi­

cated by the FinishedEncoding signal, the encoding process takes 255 clock: cycles,

for the chosen variables m =8 and t =3.

Figure 4.17 illustrates the input/output signals of the syndrome module de­

scribed in section 4.3.2, during the first the step of the decoding stage. As indicated

by the FinuhedSyndrome signal, syndrome evaluation takes 255 clock cydes. The

meaningful 6 syndromes are indicated, all other syndrome values are zero. These

can easily be verified using the equations described in section 4.3.2.

Figure 4.18 illustrates the simulation cycles of the overall RS ASIC during en­

coding. As shown in the figure, the encoding process takes 255 clock: cycles for the

chosen parameters. The relevant signals are indicated.

Figure 4.19 illustrates the simulation cycles of the overall RS ASIC during the

decoding process. As shown in the figure, the decoding process takes 553 clock

cycles for the chosen parameters. The relevant signals are indicated. The error

position Ls correctly denoted at position 1 of the received data.

Figure 4.20 illustrates the simulation cycles of the overall RS ASIC during the

decoding process, where error correction fails. Since there are 4 etTors in the received

data at positions 1, 2, 3 and 4, the decoder fails to correct the errors because the

actual number or errors u = 4 Ls greater than the selected t = 3. As shown in the

figure, the error positions and error values cannot be determined by the ASIC.
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Figure 4.16: Gate Level Simulations of the RS Encoder
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Figure 4.18; Gate Level Simulations of the overall RS ASIC (Encoding)
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4.5 Discussion and Summary

By using the proposed arithmetic circuits and a multiplexing technique which se­

lects the different values of m and t for various RS codes, a new programmable RS

encoder/decoder is designed and implemented. Values of the Galois field symbol

size m "" 3, 4, 5, 6, 7,8 and error conection capability t = 1,2,3, ... , 16 are supported

in the illustration. The chip contains 218,206 gates, where a gate is equivalent to

a 2-input NAND gate...o\n inverse ROM is completely eliminated for performing

Galois field element inversion as suggested in the various decoder implemeotations

presented in the literature [2}[36Jf38][a9J[45][47][49][SO][51]. They have been ellS-

tomized for a specific m and t. The reason for avoiding a ROM is that six different

ROMs would have been required because the inverse elements in Galois fields arl!i

different for variable symbol size m. The same argument applies for the aponen·

tiation operation. Therefore, a total of twelve different ROMs would have been

required for the inverse and exponentiation operations. The constant multipliers

have also been replaced with the general m.progra.m.mable multipliers throughout

the encoder, syndrome, Chien search and error value evaluation circuits.

The design is parameterised directly in VHDL in terms of tbe symbol size m

and the error correction capability t. The syndrome values are calculated in n clock

cycles, the &Tor locator and error evaluator polynomials in 2t + 1 clock cycles, and

the error value calculations and error corrections in n + m + 2 clock cycles. The

overall clock cycles for the encoder and tbe decoder are n and 2n + 2t + m + 3

respectively. Thus, the encoder can generate codewords at a sustained rate of ~ x

1()3 Mbits/sec whereas the decoder can process incoming data at a maximum rate

of (iIiO+~:+3x..j x l@ Mbits/sec, where T is the clock period in nano"econd", and
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m "- Encoder (Mbits/sec) Decoder (Mbits{sec)
3 3 150 40
4 7 200 59
5 15 250 78

• ,. 300 113
7 ,. 350 150
8 ,. 400 184

Table 4.9: RS Encoder/Decoder Data Rates

n = 2'" - 1 is the block length. The VHDL gate-level simuIatiol1S were performed

at 50 MHz. The estimated data rates when t = t....., and T = 20 os are shown in

Table 4.9.

Clearly, higher data rates can be expected at higher frequencies or by using the

more aggressive technologies such as the O.35-Jlm CMOS. It also appears that the

decoder datapath could be constructed with three linear pipeline stages in order to

further increase the decoding throughput rate (75][76J. Pipeline registers would be

required between the syndrome, Berlekamp and error magnitude modules. Thus,

using the O.8-Jlm CMOS standard cells, the pipelined version of the chip sbould be

able to process data at three times the estimated rates in Table 4.9.

The gate counts for the various modules are shown in Table 4.10.
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MODULE
Encoder

Syndrome
Berlekamp

Error Magnitude Evaluation
Error Correction
Error Verification

First-In-First-Out Buffer
Finite State Machine

Glue Components
TOTAL NUMBER OF GATES

GATE COUNT
9,644
22,515
107,015
37,952

45
22,515
18,127

25.
138

218,206

Table 4.10: RS Encoder/Decoder Modules and Equivalent Gate Count

no



Chapter 5

Conclusion and Future Work

Forward error correction (FEe) is a common technique used to improve the reli·

ability and efficiency of communication channels. The RS codes are widely used

in modern day digital communications systems to correct erasures, random and

burst errors during data transmission. As a contribution to the field, this thesis

introduced

(1) new parameterizable Galois field arithmetic VLSI structures.

(2) an algebraic encoder/decoder ASIC which implements a wide family of RS

codes. The design is parameterized in terms of the RS code variables m, nand t.

Hence, it can be configured to operate in various communication channels which

require different RS cod.~.

5.1 Galois Field Arithmetic Architectures

An overview of Galois field arithmetic operations and their corresponding VLSI

implementations was presented in Chapter 1. Only the most complex operations

namely exponentiation, inversion and multiplication were considered. Chapter 3

introduced new m-programmable arithmetic structures which exploited the sym-
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metric properties of available architectures. These could be configured for the

symboL size m = 3,4,5,6,7 and 8. The standard representation for the elements

was used. It appeared that little work had been done in the literature to develop

such structures. For this purpose, exponentiation, inversion and multiplication cir­

cuits were investigated in detail. It was also demonstrated that inversion was a

form of exponentiation in Galois fields. An m-programmable array which evalu­

ated both operations was designed and simulated. It had a low design complexity,

low latency, high throughput rate and a very high fault coverage compared to other

structures. The proposed exponentiator/inverter outperformed the inverters pre­

sented in [22][231 when it was configured to compute field element inversion. All the

proposed architect.ures were implemented in standard cells using a VHOt based de­

sign entry. Thus, they could be used in applications that required a variable symbol

sizem.

5.2 VLSI Reed-Solomon Encoder/Decoder

The different RS decoding algorithms were described in Chapter 2. A survey of

the existing encoder and decoder structures was also presented. A multiplexing

technique and the proposed arithmetic circuits were used throughout the design

and implementation of the new programmable RS encoder/decoder in CMOS stan~

dard cells. The chip supported a wide family of RS codes whose symbol size m

and error correction capability t could be parameterized to meet different user re­

quirements. Unlike the decoders customized for a fixed m and t as presented in

the literature [21[3ti][38][39][45][47][49][50][51]. it was found to be flexible since the

symbol size m, block length n and error correction capability t were all variable.
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Constant multipliers and inverse ROMs were also completely avoided to allow ease

of reconfigurability. In the thesis, example values of the Galois field symbol size

m = 3,4,5,6,7,8 and error correction capability t = 1,2,3, ... , 16 were supported.

The main advantage of such an ASIC is that its total design cost is amortized. over

a wide application base.

The algebraic encoding/decoding technique was used.. The encoder used. the

self-reciprocal generator polynomial which structured. the codewords in a systematic

form. The first step in the decoding algorithm calculated the syndrome polynomial

8(r). The Berlekamp-Massey algorithm determined. the error-locator polynomial.

Its low design complexity made it suitable for VLSI synthesis. The error magnitude

polynomial was calculated using the expression n(x) = S(x)u(x) mod x2'. Once

the location and magnitude of the errors had been determined. using the Chien

Search and the Forney algorithm respectively, the received messages were corrected

and verified. as they left the chip.

It was found that the overall clock cycles for the encoder and the decoder were

n and 2n + 2t + m + 3 respectively. Hence, the encoder could generate codewords

at a sustained. data rate of ~ x 103 Mbits/sec whereas the decoder could process

incoming data at a maximum data rate of (2n+2t~:+J)(r) x loJ Mbits/sec, where r

was the clock period in nanoseconds, and n = 2m - 1 was the block length. All

the YHDL gate-level simulations were performed. at a frequency of 50 MHz. The

equivalent gate count was 218,206 gates.

This thesis fully demonstrated that the parameters m, n and t can indeed be

variable in RS encoder/decoder design by using the same hardware.
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5.3 future Work

As indicated in the thesis, emphasis was placed on the algebraic decoding technique

alone. Other algorithms could be investigated to see if their designs could be

parameterized in terms of m, n and t as well. Due to limitations in the design

kit, it was Dot possible to investigate design issues such as power dissipation and

backannotation. 8acka.nnOtatiOD would have allowed the original gate-level netlist

to be annotated. with extracted pacasitic:s from the layout SO that a more a.ce::urate

VHDL simulation could be performed. These simulations would confirm the timing

and help estimate power dissipation as well. One direction for future research is

to investigate the effects of parasitic:s and power dissipation on increasing values

of the RS code parameters Tn, n and t when advanced design kits are released by

CMC. The only major changes required in the current ASIC are the increase of the

sizes of the bus signals and redesign of the multiplier and exponentiator/inverter

to accommodate larger values of m > 8. Such an exercise rl!quires a small fraction

of the effort and cost of the original design if a maximum of m =64 was required,

for instance.

It can be inferred from Chapter 5 that the design complexity increases with the

block length, error correction capability and symbol size of the code. One could

further investigate how the overall gate count varies with these parametera as a

measure of design complexity. A relationship between the clock cycles and these

design variables has already been found.

The sequential nature of the decoding algorithm. suggests that the datapath

may be constructed with three linear pipeline stages in order to further increase the

decoding throughput rate [75][76]. A substantial portion of the decoder is always
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m ,_ Encoder (Gbitsjsec) Decoder (Gbits/sec)
3 3 1.80 0.48
4 7 2.40 0.71
5 15 3.00 0.94

• 1. 3.60 l.36
7 ,. 4.20 1.80
8 ,. 4.80 2.21

Table 5.1: Projected RS Encoder/Decoder Data Rates

idling during the decoding process. Pipeline registers would be required between

the main modules. Higher data rates in the Gbits/sec region could be expected if

the pipeline version was implemented using the more aggressive technologies. The

technology roadmap projects a O.llhtm CMOS technology to be available in 1999

and O.l-~m in 2001 [77J. It is projected that the encoder and decoder could have

maximum throughput rates of ~ x 3 Gbits/sec and (2..+21~:+3Jt..) x 3 Cbits/sec

respectively. These are shown in Table 5.1 for T = 5 ns. To meet the specifications

for a k*current data rate Gbits/sec channel, it also seems that k chips could be

configured to operate in parallel, wh.ere k = 1,2,3, ... is an integer. One could

investigate the design issues and limitations involved. Work in this direction is also

re<:ommended.
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