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Abstract

The Reed-Solomon codes have been widely used in digital communication systems
such as computer networks, satellites, VCRs, mobile communications and high-
definition television (HDTV), in order to protect digital data against erasures,
random and burst errors during transmission. Since the encoding and decoding
algorithms for such codes are computationally intensive, special purpose hardware

implementations are often required to meet the real time requirements.

One motivation for this thesis is to i i and i Ga-
lois field arithmetic structures which exploit the symmetric properties of available
architectures. Another is to design and implement an RS encoder/decoder ASIC
which can support a wide family of RS codes.

An Galois field iplier which uses the standard basis rep-

of the el is first i It is then that the

exponentiator can be used to implement a fast inverter which outperforms the
available inverters in GF(2™). Using these basic structures, an ASIC design and

hesis of a Reed-Sol encoder/decoder processor which im-

plements a large family of RS codes is proposed. The design is parameterized in
terms of the block length n, Galois field symbol size m, and error correction capa-
bility ¢ for the various RS codes. The design has been captured using the VHDL
hardware description language and mapped onto CMOS standard cells available in
the 0.8-um BiCMOS design kits for Cadence and Synopsys tools. The experimental
chip contains 218,206 logic gates and supports values of the Galois field symbol size
m = 3,4,5,6,7,8 and error correction capability ¢ = 1,2,3, ..., 16. Thus, the block
length n is variable from 7 to 255. Error correction ¢ and Galois field symbol size



m are pin-selectable.
Since low design complexity and high throughput are desired in the VLSI chip,

the algebraic decoding ique has been i iy instead of the time or trans-
form domain. The encoder uses a self-recij ial which struc-
tures the dsina ic form. At the beginning of the decoding process,
received words are initially stored in the first-in-first-out (FIFO) buffer as they en-
ter the syndrome module. The Massey i is used to

both the error locator and error evaluator polynomials. The Chien Search and
Forney’s algorithms operate sequentially to solve for the error locations and error
values respectively. The error values are exclusive or-ed with the buffered messages
in order to correct the errors, as the processed data leave the chip.
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Chapter 1

Introduction

1.1 Statement of the Problem

The Reed Solomon (RS) codes are widely used in digital communication systems
to increase the reliability and efficiency of the communication channel. They work
in finite or Galois field arithmetic and have the ability to efficiently protect digital
data against erasures, random, and burst errors during transmission. The interest
in the RS codes was primarily theoretical until the concept of concatenated cod-
ing which uses a convolutional code/RS code channel system, was formulated and
first introduced in [1]. Their success is now reflected in modern day digital au-

dio or compact discs, computer networks, deep space telecommunication systems,

pread- systems, ies, VCRs and high
(HDTV) applications [2][3](4]-
Since the encoding and decoding algorithms for such codes are computationally
intensive, special purpose hardware implementations are often required to meet the
real-time processing requirements. The choice of a specific RS code depends on the

of the ication channel. As such, RS encoders and decoders

are traditionally designed with fixed values of the error correction capability ¢, block

1



length n and symbol size m. The reason for choosing fixed design parameters is
that the exponentiator, multiplier, divider and inverter have different designs for
different values of m [2][5](6]. Such an approach is evidently inflexible and hence
inefficient because the system has to be redesigned if the channel characteristics

lti change. , the design ity i with the error cor-
rection capability of the code, thus making it impractical to implement the system
using off-the-shelf discrete integrated circuit components. However, rapid advances
in VLSI technologies may offer i i because of higher reliability,

better performance, smaller area, lighter weight and lower power consumption (7].

Hence, there is a direct need for fast finite field arithmetic circuits which operate
in GF(2™), where m is variable. The ability to operate with different symbol sizes
of m-bits has been a limiting factor in past efforts to implement universal and
possibly RS hard If such ari ic circuits could be P
it would be possible to design highly efficient single chip encoders/decoders whose

total design cost is amortized over a wide application base. Hence, the motivations

for this thesis are:

(1) to investigate and introd: le Galois field arithmetic structures
which exploit the i ies of available i It appears that
very little work has been done in the li to develop

which can operate in finite fields.

(2) to design and implement an RS encoder/decoder ASIC which can support a
wide family of RS codes whose symbol size m and error correction capability ¢ can
be varied directly in hardware. Such a general-purpose ASIC would be suitable for

a wide variety of digital communication systems which require different RS codes.



The choice of m and ¢ depends on the application and is usually based on the
overall i and of the code. The specific Galois

field symbol size m = 8 has been standardized by the European Space Agency

and the National A ics and Space Admini: ion for satellite

tion [2]. The error correction circuits for advanced train control systems, mobile

radio systems, ding systems, data ications and digital signal

processing based modems use m = 5 [2][5].

1.2 VLSI Architectures for Implementing Galois
Field Arithmetic

The following subsections present an overview of Galois field arithmetic and a

literature review of the various arithmetic operations.
1.2.1 An Overview of Galois Field Arithmetic

Recently, Galois fields or finite fields have received great attention because of their
widespread applications in error control coding using linear block codes. They
have also been extensively used in digital signal processing, pseudo-random number

generation, encryption and decrypti in The design of

efficient iplier, inverter and iation circuits for Galois field arithmetic

is needed for these applications. These circuits should have low complexity, short
computation delay and low latency when used in high-performance systems [2].

A finite field or a Galois field designated GF(p), is a finite set of elements which
has defined rules for arithmetic. These rules are not algebraically different from
those used in arithmetic with ordinary numbers except that there is only a finite



set of elements involved. All finite fields have the following properties:
1. Multiplication and addition are the two operations defined for combining the
elements.
2. The result of adding or multiplying two elements is always a third element
contained in the field.
3. The field always contains the multiplicative identity element 1 and the additive
identity element 0 such that a +-0 = @ and @ - 1 = q for any element a.
4. Every element a has an additive inverse element (—a) and a multiplicative inverse
element a~* such that a+(—a) = 0 and a-a~* = 1. The existence of these elements
permits subtraction and division to be performed.
5. The associative [a+ (b+¢) = (a+b) +cand a- (b-c) = (a-b) - ¢], commutative
[ea+b=b+aanda-b=b-a], and distributive [a.(b+c) = a-b+a-c] laws apply.
GF(p™) is an extension field of the ground field GF(p), where m is a positive
integer. For p = 2, GF(2™) is an extension field of the ground field GF(2) of two
elements {0,1}. GF(2™) is a vector space of dimension m over GF(2) and hence is
represented using a basis of m linearly independent vectors. The finite field GF(2™)
contains 2™ — 1 non-zero elements. All finite fields contain a zero element and an
element, called a generator or primitive element, such that every non-zero element
in the field can be expressed as a power of this element.
In order to introduce the mathematical concepts of the trace and dual basis,
the following definitions are necessary [8][9].
Definition 1: The trace of an element 8 which belongs to GF(2™) is defined as

m=1
Tr(B) = ¥ B (¢

=0
Definition 2: A basis {u;} in GF(2™) is a set of m linearly independent elements

4



in GF(2™), where 0 < j <m — 1.
Definition 3: Two bases {u;} and {A:} are the dual of one another if

Tr(uh) =1, i j=k
TV o Ak a2

where0<j<m-land0<k<m-—1.

The elements of GF(2™) are usually expressed as powers of the primitive el-
ement c, where a is defined as the root of the primitive polynomial P(z) =
I 4 frn18™ 4 frn @™ ...+ fiz +1 where f; € {0,1}. Each element z of GF(2™)
can also be written in [8][9][10]
 the standard basis as z = ap-10™ " + ... + @02 + a,a* + ag.

o the normal basis as z = am_10®""" + ... + 20" + 2,0% + agar.

« the dual basis )¢ as z = T75" zehe = S0 Tr(2p6) Ae.
where
a; € GF(2) and z, = Tr(zp) is the k-th coefficient of the dual basis.
The standard basis is used in impl i ic Reed-Solomon
decoders in Since iplication is the most i i ic opera-

tion, the standard basis multiplier is often preferred for its lowest design complexity
compared to the normal and dual based multipliers [6][11]. It does not require basis
conversion and thus can be more easily matched to any input/output system.

As an example, the power, pol, ial and 3-tuple i of the Ga-
lois field elements d by the primiti jal P(z) = 1+ 1z +2° are

tabulated in Table 1.1. The non-zero elements are generated using a 3-stage linear
feedback shift register initialized to 001, with taps defined by the coefficients of the

primitive polynomial P(z).



Power | Polynomial | 3-Tuple

[] [] 000
a® o® 001
at at 010
o? o? 100
o® ot +af 011
at o +at 110
of |a?+al+a 111
a® a?+a® 101
o a® 001

Table 1.1: Elements generated by P(z) =1+ +2°

Examples:
Addition: ol +a?=at
Multiplication: o - o® = a®
Division: % =a
Ezponentiation: (o)
Inversion 2= -2=a8

sincea’ =a® =1
Addition and subtraction in finite fields are relatively straightforward, but mul-

division, iation and i ion are not. Using a symbol size

m, addition and subtraction can be realized using m-bit exclusive-or gates. How-
ever, since the more complex operations are extensively used in RS encoding and
decodi i the of their have received

considerable attention.
1.2.2 Multipliers

For arbitrary elements A(z) = S5y axz* , B(z) = Tfy bez* in GF(2™), and the
primitive polynomial P(z) = Y74 piz*, the product C(z) of A(z) and B(z) is



given by
C(z) = A(z)B(z) mod P(z)
S7% A(z)bez*] mod P(z) w3
A(2)bm1Z + A(Z)bm—2)T + )T + A(z)bo .
CmaZ™ e 2T b T G

A direct impl, of iplication by inational logic was

by Bartee and Schneider [12]. A canonical basis is used to represent the elements
of the field. D ing on the primitive element, this i ion requires as

many as (m® — m) two-input adders over GF(2). This approach has a high circuit
complexity and also lacks regularity suited for full custom VLSI designs.

A cellular array multiplier was origi ived by Laws and

in 1971 [13]. The array requires approximately 2m gate delays, a considerable
improvement over the traditional linear feedback register type multiplier which
computes the desired product sequentially in m clock cycles. A simple parity check
circuit is incorporated in the design.

In 1984, Yeh et al [14] systolic ipliers for ing multipli-
cation of arbitrary elements in GF(2™) in O(m) time and area suitable for VLSI
implementation. In the design, the elements in the field are represented in the con-
ventional manner. The throughput rate for the serial-in serial-out one-dimensional
systolic array is m clock cycles and the parallel-in parallel-out two-dimensional
systolic array, one clock cycle. Both designs have a latency of 2m clock cycles.

In 1985, Wang et al [10] developed a pipeline to impl: the multi-
plication algorithm proposed by Massey and Omura for Galois fields based on the

normal basis i By taking ad of the squaring property of the

normal basis representation, the same pipeline structure is reconfigured to com-

pute the inverse elements in GF'(2™). The throughput rate for the multiplier is one

7



product per clock cycle after an initial delay of m clock cycles. Since the design

is on the primiti L ial used to generate the field elements, the
number of XOR gates in the product function increases enormously for large m.
Hence, the pipeline structure is only practical for small m.

In 1986, Scott et al [15] presented a bit-slice architecture of a serial-in serial-out
multiplier well suited for VLSI implementation. The multiplier has a latency of
m clock cycles and yields a ion time and impl ion area of O(m).

It is shown that the architecture is attractive for use in data encryption systems
where data are segmented into long blocks to achieve high security and maximum
throughput.

A parallel-in parallel-out systolic array and a serial-in serial-out systolic array
proposed for fast multiplication in the finite fields GF(2™) with the standard basis
representation were presented by Wang and Lin in 1991 [11]. The architectures are
regular, concurrent and have unidirectional data flow. A system with unidirectional
data flow is highly desirable when designing high-speed VLSI systems. It is further
shown that the proposed parallel implementation can more easily incorporate fault-

it to previ i designs. The serial-in serial-out array

only requires one control signal instead of two as in [14]. If the input data pass
in continuously, the parallel-in parallel-out array yields output results at a rate of
one output per clock cycle after a latency of 3m cycles. It is worth noting that
the minimum clock period is governed by the propagation delay of an AND gate
in series with an XOR gate. All the operations of each basic cell are pipelined in
such a manner that each cell performs a small fraction of the multiplication and
passes the data to the neighbouring cells for further processing. Under the same



the serial-in serial-out array yields output results at a rate of

one per m cycles after an initial delay of 3m cycles.
A bit-serial systolic divider circuit and multiplier over GF(2™) was presented
by Hasan and Bhargava in 1992 [16]. The design is based on the Gauss-Jordan

ithm and iminates global data communications and

dependency of the time step duration on m. The division algorithm requires the
formulation of the supporting elements and the corresponding coefficient matrix
by using a one-dimensional systolic array. The resulting system of 2m — 1 simul-
taneous linear equations in 2m — 1 unknowns are solved using a two-dimensional
systolic array. With minor modifications, the same structure is used to perform
multiplication over GF(2™) in a computational time of 3m — 1 time steps. The
proposed inverter/divider requires three processors and a control signal consisting
of 2.5m? + 11.5m — 6 registers, 4m? + 12m — 5 AND gates, 1.5m? + 7.5m —2 OR
gates, and 0.5m? + 1.5m — 1 XOR gates. The structure has a computational time

of 5m — 1 time steps and is independent of the irreducible p

A division and bit-serial iplicatie il were by Hasan and
Bhargava in 1992 [17]. Using the coordinates of supporting elements, division over
GF(g™) is performed by solving a system of m linear equations over GF(q) when

the field are by pol. ials. It is further shown that division

can be performed with a lower order of computational complexity by solving a
Wiener-Hopf equation of degree m. The discrete-time Wiener-Hopf equation is

defined as a system of m linear inh i with m 7).
Structures for parallel multipliers derived from irreducible all-one and equally
spaced polynomials were developed by Hasan et al in 1992 [18]. It is shown that the



three basis modules of an all-one polynomial based parallel multiplier of a small
field can be used to all the ding equally spaced
of larger fields. A normal basis parallel-type multiplier for finite fields GF(2™)

d by the i ible all-one pol. ials was recently presented by Hasan

et al in 1993 [19]. It is a modified version of the Massey-Omura multiplier.
A systolic power-sum circuit designed to implement the function AB?+C where
A, B and C are elements of the field was presented by Wei in 1994 [20]. By adding

one i and one ij the pe circuit is to com-

pute eight different types of computations viz AB, AB+C, A%, A*+C, AB*, AB* +
C, A® and A% +C. All these computations are needed in decoding multiple error
correcting BCH and Reed-Solomon codes in cases where the coefficients of the error

locator ial are solved

A bit-serial multiplier which has the same hardware requirements as the tra-

ditional iplier was recently by Fenn et al in 1995 [21].

In the design, the variable multiplier is represented over the dual basis and the
constant iplit is d over the ial basis. The reverse is true

with a constant traditional Berlekamp multiplier. It is shown that constant multi-
pliers based on the proposed approach can operate at a higher frequency than those
based on the traditional Berlekamp multiplier.

1.2.3 Dividers and Inverters

Finding the inverse of an element over GF(2™) is computationally intensive in
hardware and still remains an active area of research. Finite field inversion and

division are critical in decoding Reed-Solomon and BCH codes. During the de-

10



coding process, the Berlekamp-Massey and Forney algorithms often employ these
i i The derived i for d ing double error-correcting

Reed-Solomon codes require the same functions as well. Thus, the latency and
throughput of the inverters and dividers may dictate the overall speed of the de-
coder.

The traditional method for computing the inverse of elements in GF(2™) uses
read-only memory (ROM), Fermat’s theorem or Euclid’s algorithm. The size of the
ROM is m2™ bits. The coordinates of an element are used as the address of the
location in the ROM where the corresponding inverse is stored. The value of m can

range from 3 to infinity. These methods are i i for VLSI i

if large values of m are required. In recent years, several algorithms and their

ding VLSI i for ing the inverse elements have been

presented in the literature. For an arbitrary element A in the finite field GF(2™),
the inverse operation of an element A is denoted by A~ = A?"~2. Rewriting the
exponent 2™ — 2 as 2! + 22 + 2% + . + 2™, allows the inverse operation to be
expressed as [10]

AT = (A7) - (A7) (A7) - (A7) (=)

In 1985, Wang et al [10] invented a parallel-in serial-out circuit for solving
Equation (1.4) based on the Massey-Omura multiplier. In their design, the normal
basis representation of the elements in the form (a®’,a?',a?,...,a2"1) is used.
The method is impractical for large values of m since the number of XOR gates
in the product function correspondingly becomes large. Since squaring is a cyclic

shift operation in the normal basis, the inverse function is found in m clock cycles.

11



In 1989, Feng [22] developed a serial-in parallel-out if based on the
normal basis representation of the finite elements. The algorithm requires a com-
putational complexity of O(mlog, m). A throughput rate and latency of m(q + p)
clock cycles, where p is the number of ones in the binary expression of m — 1 and
q is the lower bound on log, m, are needed to compute the inverse elements.

In 1993, Wang and Li (23] presented a serial-in serial-out systolic array architec-
ture for performing the inverse element in GF(2™). In the analysis, the standard

basis representation of the field elements is used. The design for GF(2™) mimics

the systolic array based on the G Jord imi i for solving a
system of 2m —1 linear equations over GF'(2) [24]. The proposed inversion circuitry
has a latency of 7m—3 clock cycles and a maximum throughput rate of 2m~1 clock
cycles. Without any modifications in hardware, the multiply-and-divide operation
can easily be performed. The logic design of the architecture is independent of the
primitive polynomials used to generate the field elements. All the operations of
the serial-in serial-out systolic array are pipelined in such a manner that each cell
completes a small fraction of the computations and passes the data to the neigh-
bouring cells. The entire systolic array is made up of ™3™ main array cells and
m boundary cells, where m is the size of the Galois field.

A fast normal basis inversion circuitry was presented by Fenn et al in 1996 [25].
The hardware scheme uses two registers, a multiplier, a squarer and a generator
device in GF(2™). It exploits the properties of Fermat’s theorem in order to pro-
gressively generate the solution in approximately 2 clock cycles. The inverter is
shown to be more efficient for odd values of m and its features make it suitable for

double error-correcting Reed-Solomon codes. The same design was recently reex-
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amined and improved by Yen in 1997 [26]. It is demonstrated that the number of
clock cycles per iteration can be further reduced to around % . Yen's algorithm
clearly outperforms the algorithm by Fenn et al for large values of m. Another
modification to the algorithm by Fenn et al was reported by Calvo and Torres in
1997 [27]. The generator and squarer devices have been totally eliminated from the
original circuit.
In 1997, Hasan [28] an algorithm to perform

of division-and-accumulation (DDA) over GF(2™). The algorithm can also be
used for the conventional rational numbers. It is shown that in the cases where n

multiplications and n inversions are required in the DDA, the new algorithm only
requires 3n+1 multiplications and one inversion. Such a proposition is advantageous
to fields where a division operation is at least three times more complex than
a iplicati The DDA is suitable for the systolic Reed-Solomon

encoder [29] to efficiently compute the parity symbols during the encoding process.

1.2.4 Exponentiators

E iation is i used in cry and ing codes.
The conventional approach for finding the exponent of an element in GF(2™) uses
read-only memory or table lookup. The value of m can range from 3 to infinity,
which would require storing 2™ elements of m-bit wide. This method is inefficient
‘when m becomes too large. In recent years, several exponentiation algorithms and
their ding VLSI i have been d.

For an arbitrary element £ in the finite field GF'(2™) and an integer N(1 < N <
2™ — 1), the exponentiation function is defined as § = 8". Clearly, ¢ is in GF(2™).




If NV is represented in binary form as ng, ny, na, ..., im—y Such that N = ¥ 751 n;- 2%,

then § = B can be expressed as follows [30][31]

5 =pN =pris m

8y - (- () - ()= s
e (67" £
=125 E:
where
E=p6" ifm=1 (1.6)
E;=1 ifm=0 L7)

In 1988, Scott et al [32] proposed several sequential and parallel VLSI architec-
tures for computing the product terms of the exponent in GF(2™). As described
in the reference [32], the designs are targeted for applications that use Galois fields
GF(2™) for large values of m. Both the standard and normal based exponenti-

ations are i The i iation unit requires O(m?) clock

cycles assuming repeated use of a iplier which a rate
of one multiplication every m clock cycles. The fully parallel computation of the
product terms yields one exponentiation per m clock cycles, assuming the use of

(m—1) multipliers whose combined mini latency is m+2m log, m clock cycles.
A multiplier latency of 2m clock cycles is assumed.
A VLSI design and i ion of an iation circuit was also pre-

sented by Wang and Pei in 1990 [30]. The architecture can be used to generate

number in spread ic systems and

digital signal processing applications such as noise generation. Elements in the fi-

nite field are represented in the normal basis. In this design, the exponentiation of

14



an element is found in m clock cycles. The architectural details and VLSI layout
of the chip for GF(2%) are extensively illustrated.
In 1993, Arazi [33] two efficient iation circuits which can be

adopted for smartcard applications. They operate over the standard basis repre-
sentation of elements in GF(2™). In one scheme, the algorithm is completed in 2m
clock cycles instead of m. The shift registers can be implemented with dynamic
instead of static registers, owing to the limited space in 2 smartcard-mounted chip.
The second scheme is simpler and uses duplicates of the same cell to compute
exponentiation in 6m? clock cycles.

A parallel-in-parallel-out bit-level systolic array architecture with unidirectional
dataflow for i iation was first by Wang in 1994 [31].

Using the systolic multiplier proposed by Wang and Li in the reference [11], two-
level pipelining is employed to achieve a maximum throughput of one output every
clock cycle after an initial delay of 2m?+m cycles. Unidirectional dataflow is highly
desirable in designing high-speed systems. The design can easily incorporate fault-
tolerance.

An exponentiation algorithm based on a pattern matching and recognition tech-
nique was recently presented by Kovac and Rangathathan in 1996 [34]. Unlike the
conventional methods which use repeated multiplications, the algorithm can per-

form the iati i the-fly. In the analysis, the nonzero elements

of the Galois field GF(2™) are represented in the standard basis. The elements
are divided into subsets, where each subset corresponds to a pattern. More details
on the related theorems and proofs are given in the reference [34]. In an effort to

obtain high speed and maxi a systolic archi which uses a
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multistage linear pipeline and parallelism is proposed by the authors. Once the pipe
is filled, a new result is obtained every clock cycle following a latency of 2™ clock
cycles. Thus, the i is ded for ications that use GF'(2™)

for values of m less than or equal to eight. The hardware allows the program-
ming of different primitive irreducible polynomials of degree m less than or equal
to eight. The design issues related to the CMOS VLSI implementation of the chip
which performs the exponentiation operation over Galois field GF(2*) are exten-
sively A i i rate of 40 million exponentiations

per second at a clock frequency of 40 MHz is possible.

1.2.5 Summary

An overview of Galois field arif i ions has been The mul-

tiplication, inverse, division, and exponentiation operations in GF(2™) have been

describ The traditional method for ing these i uses
ROM, Fermat’s theorem or Euclid's algorithm. However, these techniques are inef-
ficient for VLSI implementation if large values of m are required. Thus, the latency
and throughtput of the arithmetic units may dictate the overall speed of the global
system. The development of more efficient algorithms and their corresponding VLSI

architectures still remains an active area of research.

1.3 Scope of the Work

In this thesis I propose an Galois field iplier which uses the

standard basis representation of the elements. A structure is also designed to

both the t and inverse functions over GF(2™), where m is vari-
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able. The ability to operate with different symbol sizes of m-bits wide has been
a limiting factor in past attempts to implement universal and reconfigurable en-
coders/decoders [2][5](6].

By using the d ari ic circuits, coupled with a
to select different RS code parameters m and ¢, an ASIC synthesis of a testable
RS encoder/decoder which i a wide family of RS codes in GF(2™) is
developed. Unlike the chips which are customized for a specific m and ¢ as reported
in [35]-{51], it is reconfigurable and supports values of the Galois field symbol size

m = 3,4,5,6,7, 8 and error correction capability ¢ ranging from 1 to 16. This means
the total cost of such a design is amortized over a wide application base. Since low
design complexity and high throughput are desired in the experimental VLSI chip,
the ic decoding it is over the time or transform domain

methods.
Gate arrays, dard cells and full-custom are three ial VLSI

that could have been used to implement the RS encoder/decoder chip. However,
a CMOS standard cell based design dol which uses

language (HDL) logic synthesis, is found suitable because it allows easy mapping
and optimization of the logic level design into integrated circuit (IC) layout using
the state-of-the-art VLSI CAD tools. The design has been simulated at a frequency
of 50 MHz and contains 218,206 logic gates.

1.4 Organization of the Thesis

The remaining chapters of the thesis are organized as follows:

In Chapter 2, the ical b: and h ical details
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are described for understanding Reed-Solomon codes.
Chapter 3 proposes an ble Galois field iplier which uses the

dard basis ion of the el Using this iplier, it is shown

that the exponentiation and inverse operations can be both performed using the
same reconfigurable hardware.
Chapter 4 discusses the design dol VLSI hesis and
features of a new programmable Reed-Solomon encoder/decoder processor.
Chapter 5 highlights the major conclusions of this research and recommenda-

tions for possible future work.
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Chapter 2

Theoretical Background on
Reed-Solomon Codes

In this chapter, the RS encoding and ing i are first lained. A
survey on the existing RS encoder and decoder architectures usually designed for a

fixed m is given.
2.1 General RS Code Definition

Discovered by I.S. Reed and G.S. Solomon in 1960, Reed-Solomon codes are an
important subclass of nonbinary BCH codes. They are among the most versatile
and powerful error control codes commonly used to correct both random and burst
errors in digital communications and magnetic storage systems ranging from the
digital audio disc to the Voyager spacecraft. A general block diagram of a digital
communication system is shown in Figure 2.1.

The interest in RS codes was primarily theoretical until the concept of con-

codes was f and first introds by Forney in 1966 [1]. Con-

catenated coding has since been adopted by the U.S. National Aeronautics and

Space Admini ion (NASA) for i 'y space missions. It uses the con-
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Figure 2.1: A Digital Communication System
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volutional /RS channel encoding and decoding system.

For any positive integer m > 3 and error correcting capability ¢ > 1, there
exists a t-error correcting RS code from the Galois field GF(2™) with the following
parameters [52]-[57]

Block Length n = 2™ — 1 symbols

Number of Parity Check 2t = n — k symbols
Minimum Distance dpmin =2t + 1

where k is the data message in symbols.

An (n,k,t) RS code has a generator polynomial G(z) of degree n — k often
written as G(z) = (z + a)(z + o®)...(z + o®).

2.2 Encoding
The generator polynomial G(z) of an RS code has the form

G@) = TR ol
=TEo g (2.1)
= go + Q1T + ... + g2z
where b is a nonnegative integer often chosen to be 1. The number of distinct
coefficients of G(z) can be reduced by almost half by carefully choosing b = 2™~ —¢

satisfying the relationship [8]

2 +2t=2" (22)

There are two ways to encode the message M(z). In nonsystematic encoding,
the codeword C(z) is generated simply as
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C(z) = M(z)G(z) (2:3)
Thus the message M(z) is not explicitly present in the codeword C(z).
In systematic encoding, given a message polynomial M (z) and generator poly-
nomial G(z), the codeword C(z) is generated as follows:
(1) multiply the message M(z) by z% to obtain M(z)z*
(2) divide M(z)z?* by G(z) to obtain the remainder polynomial E(z) and form the
codeword C(z)

C(z) = 2 M(2) + R(z) = Q(z)G(z) (24)
where Q(z) is the quotient and R(z) = 7y + 71z + 72? + ... + Fa2%! is the
remainder or parity polynomial.

Circuits for performing division by G(z) or any arbitrary polynomial are avail-
able. The number of distinct multipliers go, g1, ..., g2: can be reduced almost by half
by choosing b = 2™~ —¢.

Maki and Owsley [58] presented the VLSI design and implementation of the
parallel Berlekamp architecture which has the speed performance equivalent to the
conventional, but at a hardware cost 8 times the serial Berlekamp architecture. The
serial and parallel VLSI architectures by Berlekamp perform encoding in the dual

or trace orth 1 basis ion of the field el ts.

A transmitted codeword C(z) may be corrupted in a noisy channel. The received

R(z) can be as the sum of the transmitted codeword C(z)

and error polynomial E(z) as
R(z) = C(a) + E(7) = ra-18™ ' + ..+ 11z + 19 (2.5)
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The following sections describe available techniques which can be used to find

and correct the errors in the received polynomial R(z).

2.3 Algebraic Decoding

The first task of an algebraic decoder is to ine the ds P!
S(z) based on R(z). The i of the synd ial are given by [54]
: i REL
S; = R(e?) = E(e?) = ¥ ria¥ (2.6)
=0

1 < j < 2t for nonsymmetric coefficients of G(z)
or 2™t —¢ < j < 2™-! 4+ ¢ —1 for symmetric coefficients of G(z)

After the evaluation of the syndromes, the error values eg, €j, .-, €a—1 Can be
found. If v errors actually occur in R(z), at the unknown locations i1, iz, ..., y, the

error polynomial can be expressed as

E(z) = Yiz" + Ya7" + ... + Yoz 2.7)

where ¥; is the magnitude of the ith error at location 3.
Prior to decoding, the values of v, iy, ...,%, and Y1, ..., ¥, are initially unknown.
If X, is the field element associated with the error location #;, then the syndrome

coefficients are given by

S =YX (2.8)
=
for j=1,2,..,2t0r j=2m"1 —¢, . 2™l 4t 1

where Y; is the error value and X; is the error location of the /th error symbol.
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An expansion of Equation (2.8) gives the following set of 2t simultaneous equa-
tions in v unknown error locations Xj,..., X, and v unknown error magnitudes
Y,...Y

Si(z) =Xi+HLXo+.. .+ VX,

Sa(z) =YiXi? + Vo Xo? + ... + V. X, 2
S3(z) = iXi* + Yo Xo* + ... + Yo X1

Sa(z) = X + BXo" + . + VX

The above set of equations must have at least one solution because of the way
the syndromes are defined. This solution is unique. Thus, the decoder’s task is to
find the given the ‘This is i to a problem in solving

a system of nonlinear equations.

Clearly, the direct solution of the system of nonlinear equations is too difficult
for large values of v. Instead, i iate variabl: be using the syn-
X, can be determined.

drome coefficients S; from which the error locations Xj, ..

The error-Is jal is i as
> (@) =A@@) = A" +Aprz* T+ + AT+ 1 (2.9)

The polynomial is defined with roots at the error locations X;* for/ = 1,2, ...,v.
The error location numbers X; indicate errors at locations i for ! = 1,2, ..., v. That

is to say,
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o
Alz) =Y (1 —zX) = (1 — zX)(1 — 2X3)...(1 — zX,) (2.10)
i=t
where X; = oft.
To determine the coefficients of A(z) from the syndromes, equate Equations (2.9)
and (2.10) and multiply both sides by ¥;X’** and set z = X; ', ie.,

VX A) = 3501 = 2X) = A® + Apra™ 4+ Az 1) (211)
=1

Then the left side becomes zero, giving
0 =YX (1 4+ AXi + Ao X2+ + A X7V 4 AX)
or
Yi(X7 + A X L+ AX) =0
Such an equation holds for each ! and each j. Summing up these equations from
l=1tol=u, for each j, gives,
T VX AXTTT L+ AX) =0
or
T YXT H MTL VX L+ AT VX =0
The individual sums seem to be the syndromes and thus the equation becomes
A1Sjse-1 + A2Sjiv-2 + oo + AySj = —Sjie
where j =1,2,...,v

This set of linear i relates the to the i of the error-

location polynomial A(z). It can also be expressed in matrix form as



S1 S S .. Seu S Ao —Ses1

S S5 S . S Sen Aot —Ses2
S3 Si S5 o Senn Sus2 Aot —Sus3

an=| . . T . . =] . (2.12)
So Susr Sesz - S22 Sper Ay —Sa

The above system of equations has a unique solution for A which can be obtained
by inverting the matrix A, if A is nonsingular. The matrix A is nonsingular if v < ¢t
[54).

Peterson’s direct-solution algorithm solves for the error locator polynomial A(z)
in Equation (2.12) as follows [54]: as a trial value, v is set to the error correction

capability of the code ¢ and the i of the matrix If the deter-

minant is nonzero, it can be shown that this is the correct value of v. Otherwise,
if it is zero, then the trial value of v is reduced by 1 and the process is repeated
until a nonzero determinant is obtained. After the determinant has been obtained,
the coefficients of A(z) are determined using the value of v in Equation (2.12) by
standard techniques of linear algebra.

Peterson’s direct-solution algorithm is inefficient for codes with a large error
correcting capability ¢. The number of computations necessary to invert a v by v

matrix is directly i to v*. In most icati i often prefer
to use codes that correct a large number of errors. The following subsections de-
tail two efficient decodi hods: the Massey i and Euclid’s
algorithm.



2.3.1 Berlekamp-Massey Algorithm

The Berlekamp-Massey algorithm relies on the fact that the matrix equation of
Equation (2.12) is not arbitrary in its form, rather, the matrix is highly structured.
This structure is used to obtain the vector A by a method that is conceptually more

but i much simpler [54](59](60].

If the vector A is known, then the first row of the above matrix equation defines
Sy41 in terms of Sy, ..., S,. The second row defines Sy42 in terms of Sy, ..., Sy41 and

so forth. This sequential process can be summarized by the recursive relation

S; v (2.13)

==Y ASj §
=

For fixed A, this is equivalent to the equation of an autoregressive filter. It can be
implemented as a linear-feedback shift register with taps given by the coefficients
of A.

Using this argument, the problem has been reduced to the design of a linear-
feedback shift register that will consequently generate the known sequences of syn-
dromes. Many such shift registers exist, but it is desirable to find the smallest
linear-feedback shift register with this property. This will give the least-weight er-
ror pattern with a polynomial A(z) of smallest degree v. The polynomial of smallest
degree v is unique, since the v X v matrix of the original problem is invertible.

Any for designing the ive filter is also a method for solving

the matrix equation for the A vector. The procedure applies in any field and does
not assume any special properties for the sequence Sy, Sy, ..., Sz:. To design the re-
quired shift register, the shift register length L and feedback connection polynomial

A(z) must be determined. A(z) has the form
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A(Z) = Az’ + Aper 2+ o+ Az + 1 (2.14)
where degA(z) < L.
The Berlekamp-Massey Algorithm uses the initial conditions
AO(z) =1,B® =1, and Ly = 0, to compute A®)(z) as follows:

A= "ff A Vs, (2.15)
&
Ly =6,(r—Lr—t) +(1=8)Lr (216)
Az) | _ 1 —A, Al-(z)
[ By | = [ AT, (L—dys ] [ B0z ] @an)

forr=1,..,2t

6. =1, if both A, # 0 and 2L,_; <7 —1; and 6, = 0, otherwise. (2.18)

At the end of the 2¢ iterations, the smallest-degree pol ial A®)(z) with A% =

1 satisfying the relation

et
5+ 3 A%S, ;=
=
where = Ly +1,..., 2t will be obtained.

Then if we define the error evaluation polynomial Q(z) by the relation
S(z)A(z) = Q(z) mod z% (2.19)

then we can use Q(z) to solve for the error magnitudes ¥;, ..., Y.
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2.3.2 Euclid’s Algorithm

Euclid’s i is a recursive d

for ing the greatest common

divisor (GCD) of two polynomials [61]. In a slightly expanded version, the algorithm

will always produce the polynomials a(z) and b(z) satisfying

GCDls(z), H(z)] = alx)s(z) + b(z)t(z)

Euclid’s i uses the initial conditi

RO(z) = 22, TO(z) = £, S;27!, and
10
) —
w=[a1]

to compute A®)(z) as follows:
@) =| 73 |
A () = “ Q(f)’(z) ] A9 (z)

[ 71:%::)%3) ] = [g Q(’}(z) ] [’;S:)((zz)) ]

The algorithm stops when the degree of T is less than ¢.

(2.20)

(2.21)
(2:22)

(2.23)

At the end of the iteration, the error evaluator and error locator polynomials

are found using

Qz) = A~ITO) ()

Az) = A48 (z)
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respectively, where A = A$)(0) and Az, is the element of the matrix A®) in the

second row and second column.
This algorithm has been modified by Shao et al to avoid the computation of
the inverse elements of the Galois field [36](62]. The modified Euclid’s algorithm
finds the é-th remainder R;(z) and the quantities 7;(z) and A;(z) that

satisfy the relation
7(@)A(z) + Xi(2)S(z) = Ri(z)
and stops when the degree of the remainder polynomial R;(z) is less than ¢, where
A(z) =z and 5(z) = T, Sez?*.
Using the initial conditions Ro(z) = A(z), Qo(z) = S(z), Ae(z) = 0, po(z) =
1,70(z) = 1,m0(z) =0, it computes R;(z), Ai(z) and v:(z) as follows:

Bi(z) = [0i1bi1 R (2) + Gim10i1Qi-1 ()] (2.26)
—zl-il[oe10;1Qi-1 () + Feorbi Rima (2)] )
Xi(@) = [oimbiciAina(2) + Fimr@imaptioa (7)]
P tartans A(a) b Besb TN @)
7(@) = [Oiabi1%ie1(2) + Firaiamia ()]
oo, e 1(3) + S ()] (a2
Qi(z) = 0:-1Qi-1(2) + Fi1 Rina(z) (2:29)
#:(z) = o111 (2) + T Aina (2) (2.30)
M(z) = 01-1m:-1(2) + Fi1%i-1(7) (2.31)

where a;_; and b;_; are the leading coefficients of Ri—y(z) and Qi—; respectively,
Loy = deg[Ri_1 ()] - [deg(Qi-1()], 0s-1 = 1 if iy > 0 and 0y = 0 if sy < O.
The iterations stop when deg[R:(z)] < t, after which the error locator polyno-

mial A(z) = Ai(z) and error evaluator polynomial (z) = Ri(z).
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Once the error locator A(z) and error evaluator Q(z) polynomials have been
determined using the above techniques, the error locations and error values or

magnitudes can be found using the Chien search and the Forney algorithm. These

methods are described in the foll

2.3.3 Chien Search

Once the coefficients of the error locator polynomial Ay, ..., A, have been found,
the roots of A(z) can be computed using the Chien search. The Chien search is
a systematic means of evaluating the error locator polynomial at all elements in a

field GF(2™) [63]. The evaluation of each element is performed in

A(z) =Ayz’ + Ay 2"+ o+ Az + 1 (2.32)
to check for A(z) = 0.
2.3.4 The Forney Algorithm

The Forney algorithm is an efficient method often used to compute the error mag-

nitudes. The error evaluator polynomial Q(z) is defined as [59]

Q(z) = S(@)A(z) mod z* (2.33)

where A(z) = Ayz® + Ay1z® L+ .+ iz + 1 =T, (1 — 2X0)
and
S(z) =Tk, S7 =T, TL, ViXizr

Equation (2.33) can now be expanded as

31



Qz) =z ) Y X: [[(1 - Xiz) (2.34)
=1 1
Instead of using matrix inversion to find the error magnitudes, the Forney al-
gorithm calculates them as

Ax™) AX) XX

Y= = = B 2.35
CHa-%XD T XN Ay W

where the derivative of A(z) is defined as
ANz) =-Y X[ -zX;) (2.36)

=L g
and hence
N ==X JI0 - XX (2.37)
JH
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Figure 2.2: Algebraic Decoder

In summary, the algebraic decoding algorithm works as follows:
Step 1: Calculate the syndromes according to Equation (2.6).
Step 2: Perform the Berlekamp-Massey or Euclid’s algorithm to obtain the error
locator polynomial A(z). Also find the error evaluator polynomial Q(z).
Step 8: Perform the Chien Search to find the roots of A(z).
Step 4: Find the error values Y (z) = E(z) according to Equation (2.35).
Step 5: Correct the received word C(z) = E(z) + R(z)

The structure of the algebraic decoder is shown in Figure 2.2.
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2.4 Time-Domain Decoding

2.4.1 Error Locator and Evaluator Polynomials

The time-domain decoding algorithm was first proposed by Blahut [64]. It is ex-
plained in detail in the references [5][6][54] and is only summarized in this subsec-

tion.
The time-domak ithm uses the initial conditions A{” = 5 = w® = 1 and

AL =5 = o = 0 for all 4, to compute the following set of recursive equations:

=S arpgon) 239)
=0
Lo=br— Lo) + (1= )y (239)
Az‘)’ A= 0 0
‘ L S
::fm =4k @ 2" 2 _A?a.. K (2.40)
50 o (1-6,) A,‘J, a-é)a ] | jle-n
o
[%]-]a @4

fori=0,..,n—-1,r=1,2,..,2t

L=0 and §=1ifboth A, # 0 and 2L < r — 1, and § = 0 otherwise.

2.4.2 Error Evaluation

Using the error locator vector A, the vector ' = A\'(?), the error evaluator vector

w =w®), the error magnitudes are computed as
e=—=d, ifx=0
e =0, if A #0
The structure of the time-domain decoder is shown in Figure 2.3.
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Figure 2.3: Time-Domain Decoder

2.5 Error Correction

Once E(z) is known, the corrected codeword C(z) can be obtained from C(z) =

R(z) + E(z).

2.6 Algebraic vs. Time-Domain Decoding Algo-
rithms

Based on the above di: ion, the fund di between the algebraic
and time-domain decoding algorithms are listed below:

(1) The time-domain i has one major i step. Unlike the

algebraic decoding algorithm, it does not compute the syndromes or perform the
Chien search to find the error locations.

(2) The time-domain algorithm deals with vectors which have n components while
different length vectors and different degree polynomials are used in the various
steps of the algebraic algorithms.

(3) By changing the error correction capability of the code ¢, the operations in the
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time-domain algori i remain the same, while those in the algebraic

algorithm are dependent on ¢.

(4) Although complex to design, the algebrai i i is
for high speed icati The major k of the time-di i i is
its high computation count. This is brought about by the fact that it has to operate
on the complete data sequence of length n, while the algebraic algorithm needs to
work only on the syndrome sequence of length 2t = (n — k) m-bit symbols.

2.7 RS Encoder/Decoder Architectures

In 1984, Blahut (64] originall two i for uni: RS decoders
based on the time-domain algorithms. The decoders work directly on the received
data to generate the error sequence. They are attractive for VLSI design since
one major computational step is required. Unlike the algebraic decoders, neither
the syndrome evaluation nor the Chien search is required. Such a decoder can be
used to decode any RS or BCH codeword up to the limits of the storage registers
associated with the chip. Within these limits, it can correct any number of random
errors and erasures depending on the received data. Shayan et al restructured
the time-domai i to i a versatile time-domain [5] and a cellular

decoder [6] which can operate in a Galois field GF(2™) with a fixed m.
Conceptual models for the logic structures of the RS encoder and decoder chips
were presented in [65](66]. The encoder is constructed by cascading and intercon-
necting a group of VLSI chips. The decoder architecture is based on the repetitive
and recursive properties of RS decoding procedures.
Truong et al [8][9] reported a single chip VLSI RS encoder implemented in
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NMOS technology. The encoding if is a bit-serial
developed by for the ding of RS codes using a dual basis over

a Galois field. Compared to the conventional RS encoder for long codes, which
often requires lookup tables to perform the multiplication of two field elements,

Berlekamp’s algorithm requires only shifting and exclusive-OR. operations.

Shao et al [62] developed a pipeline ofa decoder similar to a
systolic array to decode RS codes. The error locator polynomial is computed by the
modified Euclid’s algorithm which avoids computing inverse elements. The modified
Euclid’s algorithm architecture is based on the pipeline architecture suggested by

Brent and Kung [67] to compute the greatest common divisor of two polynomials.

A full CMOS impl ion of a RS encoder was proposed by Maki et
al in 1986 [35). In order to reduce the transistor count, domino logic was used. Its
architecture is invariant in operational speed or silicon area to the field polynomial,
generator polynomial or operation in the dual basis or normal field. With & encoder

chips operating in parallel, a k — 1 fault tolerant system can be constructed.

A pipelined RS decoder based on the decoding
earlier by the authors is described in [36][37). The transform decoding technique

is replaced by a time domain algorithm to permit efficient pipeline processing with

reduced circuitry. By using ij ing, the d Euclid’s
the throughput rate with little additional complexity.
In 1990, Tong [38] d an 8-error ing RS der-decoder. The

encoder and decoder can independently process 40 Mbytes of data per second. The
chip was designed using a standard ASIC methodology and fabricated in a 1-um

CMOS compact-array technology.
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In 1991, Seroussi [29] presented a systolic architecture for a RS encoder. The
architecture completely eliminates the global feedback signal found in the conven-
tional encoder architectures which use the linear feedback shift register (LFSR).
‘The encoding algorithm is based on the Cauchy representation of the generator
matrix of the code. The architecture is suitable for very high speed applications,
where global signals and the need for global ization may pose
on the achievable switching speed of the encoder.

A full-custom CMOS VLSI implementation of a Reed-Solomon decoder for the

Hubble Space Tels and i it was by Whitaker et

al in 1991 [3](39]. The architecture is similar to others presented in the references
[40][41]. Tt is implemented in a 1.6 um double metal CMOS technology and operates
at a data rate of 80 Mbits/s using a 10 MHz system/data clock. In these designs,
Euclid’s algorithm is used to determine both the error location and error magnitude
polynomials.

In order to solve the problem of multiple notations and multiple algorithms
often faced by designers, high level synthesis is used to study the different BCH
and RS decoding algorithms [42]. Special VHDL packages are created to describe
the various operations on Galois fields. A VHDL synthesis tool consequently allows

efficient ion of various i in order to select an optimum one.

Methods for reducing the computation count in the time domain algorithm for
RS ing were by Ct and in 1993 [43]. An

for an error ion circuit suitable for high-rate data decoding of
RS codes was proposed in [44]. The operational steps for multiple-error decoding
are reduced by a 4-stage pipeline and a superscalar processor of a Galois field. The
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experimental chip achieves 16 Mb; /s of data decoding sufficient for d
video signals of high-definition as well as those of standard-definition TV’s.

The use of high level synthesis techniques to realize a high-speed Reed-Solomon
CODEC was reported by Cools et al in 1994 [45]. High level synthesis allows rapid
design exploration over a large range of architectures. An error free transfer is
guaranteed between all the levels of the design process. The design was captured
using a combination of Mentor Graphics and a Cathedral-2 compiler. The archi-
tectural design phase concentrates on the composition of the data path and global
cycle count; logic synthesis performs local optimizations in terms of hardware and
timing; whereas the place-and-route tools compose the final layout.

A low circuit complexity architecture for a Reed-Solomon encoder suitable for
satellites and pocket size wireless terminals was presented by Hasan and Bhargava
in 1995 [46]. The encoder uses the tri lar basis iplicati if Using
pipeline and bit-serial operations the encoder is able to obtain code rates ranging

from unity to a minimum value ined by the associ circuitry.

In 1995, Chen et al [47] presented a three stage pipelined VLSI architecture of a
Reed-Solomon decoder. The decoder has an erasure function and uses the modified
Euclid’s algorithm to solve the key equation. The block length is variable. The

hardware complexity is shown to be only dependent on the number of parity check
bytes. The modified Euclid’s algorithm allows the error evaluator and error loca-
tion vectors to be determined sequentially by using a smaller amount of hardware.
The algorithm state machine and architecture were verified using Verilog hardware
description language.

In 1995, Iwamura et al [48] proposed a class of systolic arrays to perform binary
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RS decodi including erasure i Such an RS decoder is suit-

able for VLSI implementation since the arrays consist of simple processing elements
of the same type.

In 1997, Hsu and Wang [49] a pipelined VLS i of a Reed-

Solomon decoder which ines a modified-time domain Massey algo-
rithm with the remainder decoding concept. For a t-error correcting RS code with
block length 7, only 2t consecutive symbols, instead of n are required to determine
the discrepancy value during the decoding process.

A VLSI architecture for an area efficient Reed-Solomon product-code encoder
and decoder was published by Kwon and Shin in 1997 [4]. The architecture uses
functional block sharing to implement the encoder, modified syndrome and era-
sure locator polynomial evaluations. The modified Euclid’s algorithm is used to

determine the error/erasure locator and error/erasure evaluator polynomials. The

is

for ding/decoding audio and video signals over
GF(256).

Rapid pi ping was used to impl a Reed-Sol decoder in [50].

Erasure correction is supported. The chip includes two 256-byte ROMs, a table
look-up for the inverse of the elements in GF'(2®) and one 512-byte RAM or buffer
registers.

A Reed-Solomon decoder which operates in the GF(2%) was presented by Saodt
in [51]. The ASIC is targeted for military anti-j i ications in

links. It uses FIFO buffers that are external to the chip.
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2.8 Summary

The various decoding algorithms for Reed-Solomon codes have been presented.
A survey on the existing RS encoder and decoder architectures usually designed
for a fixed m has been given. Universal RS decoder architectures based on the

time-domai i first d in 1984. Versatile time-domain and cellu-

lar decoders were subsequently derived from them. They require only one major
computational step in locating the error patterns. Single chip RS decoders that im-

plement the algebraic and ing algorithms have also been reported.

The Massey or Euclid’s i is often used to find the error location

and magnitude polynomials.
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Chapter 3

Proposed VLSI Arithmetic
Architectures

This chapter introduces and describes an approach which exploits the symmetric
properties of available VLSI arithmetic architectures to perform multiplication,
exponentiation and inverse operations in GF(2™). Traditionally, such operations
are performed using hardware which has been designed to function over GF(2™) for
a fixed value of m. The requirement to operate with different symbol sizes of m-bits
seems to recur throughout the design of the RS encoder and decoder circuits. VLSI
chips which have been reported in the literature always use a fixed block length
n and a fixed symbol size m since the exponentiation, multiplication and division
circuits in Galois fields have different designs for different values of m. One of the
major contributions of this thesis has been to demonstrate that the parameters m
and n can be variable without a significant increase in hardware.

The proposed approach defines a standard symbol of 7-bits which readily al-
lows any symbol from GF(2™) where m < 7 to be represented as an 77-bit symbol
whose (7 — m) most significant bits have been set to zero. This principle facili-

tates all arithmetic functions in the Galois field with the symbol size m < 7 to
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be implemented as subsets of m = 7 with a small penalty in hardware. To il-

lustrate the concept, an Galois field iplier which uses the
standard basis representation of the elements is first proposed, where m < 8. By
using this multiplier, it is shown that the exponent and inverse functions cam be

implemented using the same hardware structure. The resulting circuits are sys-

tolic and have simple, regular ication and control They also
allow unidirectional data flow which is advantageous over systems with contrafiow-
ing data streams [68][69]. These circuits will be used in the design of an m and
t-programmable RS encoder/decoder which is later described in Chapter 4. The
choice of a fixed symbol size m = 8 is fairly common in a wide range of practi-
cal applications [2][3][4](8](35][39](45](47][65][66], but is made variable for values of
m = 3,4,5,6,7 and 8 as an illustration in this thesis. The architecture can be easily

extended to accommodate larger values of m.
3.1 m-Programmable Galois Field Multiplier

For arbitrary elements A(z) = ST axz* , B(z) = S bez* in GF(2™), and the
primitive polynomial P(z) = S"1'! pz*, the product C(z) of A(z) multiplied by
B(z) is given by

C(z) = A(x)B(z) mod P(z)
ST A(z)beat] mod P(z) @

= (..(A@)bn1Z + A(2)bm2)z + ...)z + A(z)bo
=Cm-1Z™ 4 e 2+ ..+ 1T + €

As described in [15], the product C(z) as defined in Equation (3.1) can be

computed recursively as
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i ,(z)z] mod P(z) + A(@)bni, i

T(z) i L,2,.,m (32)

(T
Clz) =Tn(
where

Ti(z) =

ima1Z7 !+ im0 L T g (33)

Denoting the most significant bit (MSB) of T

) as M;, the recurrence relation

can be rewritten as
Ti(z) = Tier(2)z + P(2)Mic1 + A(2)bm— (3.4)

where i =1,2,.

The above ion can be impl d using a parallel-in-parallel-out two

dimensional systolic array with m x m basic cells. Each cell at position (3, k) would

perform the logic operation [11]
tig = tiot kst © Pm—i - Mio1) @ (@m—k - bm—i) (3.5)

where i =1,2,..,mand k=1,2,..,m

In the case where m = 7 = 8, the systolic array with 8 x 8 basic cells is shown.

in Figure 3.1. As shown in the figure, the coefficients of A(z) and P(z) enter the

array from the top whereas those of B(z) enter from the left-hand side, such that

the fon defined in Equation (3.5) is performed at the ith row. It consists of

279 logic gates as reported by the Synopsys synthesis tools.
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Figure 3.1: A Parallel-In-Parallel-Out Multiplier for GF(2)
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The Boolean Equations t;y, as defined by Equation (3.5), for all the 64 cells of
the GF(2%) multiplier are as follows:
m = 8: Primitive Polynomial P(z) =z +z' +z* +z° + 1

Row 1: Mp=0,i=1

Row2: My =ti,i=2

Row3: My =13,,i=3

b7 - a7) tyy=(bs-ar) @12 (bs-ar) @tz

(b7 - as) bty = (b5 - a5) D t13 (bs-as) ® 123

(b7 - as) 23 = (bs - a5) D 10 (bs - as) © ta

(b7 - ag) try=(bs-a0) @ M @ t15 (bs-a) @My @ 125

b7 - a3) tys = (b5 - az) @ My B 16 (bs-a3) @ M @ty

b7 - az) ts=(bs-22) M@ t17 (b5 - a2) ® My D to7

b7 - a1) tog = (bs-a1) D trs (b5 a1) B tag

b7 - ag) tas = (bs - a0) ® M t3s = (bs - a0) ® My

: Mz =1t5,,i=4 |Rowb: My=te,i=5 | Rowb: Ms=15;,i=6
-a7) @ tsn ts1=(bs-ar) Bty -ar) ®1sy

b4 - ag) B ta3 ts2 = (by - as) Dtz -ag) Dtsz
-as) @ty ts3 = (bs-a5) D tea -as) Dtsq
ca) @ My @ tys | 5= (bs-a)) D My Dty 1a4) © Ms @ t55
~a3) @ M Dtas | tss = (bs-a3) O My Bty ~a3) ® Ms D tse
“a2) @ M3 Dty [ tss = (b3-a2) ® My Dty 1a2) ® Ms D ts7
ca) Bty tsy=(bs-01) DOtes ca) Dtsg
-a0) © My tss = (bs-a0) ® My -a0) © Ms

- Mg =ts1,i=7 |Row8 My=1tr;,i=8

by - a7) S te2 ts1 = (bo-a7) Dtr2

b1 - as) © te3 ts2 = (bo-a5) B 213

by - as) B o4 tg3 = (bo - as) @ tr4

01-a4) © M Dt |t = (b-a) © M7 O tr5

b1 -a3) © M @ tos | tas = (by-a3) O M B 176

=b )M Dtsy |tas=(bo-a) BM; D tr7
b -a1) Bss to7 = (bo-a1) Btrg
by - a0) ® Ms tas = (bo-a0) ® M7




The Boolean Equations for cases where m < 8 are as follows:

m = 3: Primitive Polynomial P(z) =

H+z+1

Row1: Mg=0,i=1

Row2 My=t,,i=2

Row3: My =tp1,i=3

tu—(bz az) tr=(b-a2) O t12 tn=(b-2) Btz
(b2-a1) ta=(b-a)®M Dt (bo-a)® M@ t23
tu—(bz %) =(b1-c0)® M tss =(by-a0) ® M,

m = 4: Primitive

Polynomial P(z) = z* +z + 1

Row 1: My =0,i=1

Row 2 My =t i=2

Row 3 My=tr,1=3

tu—(l’s du) oy = (b2-a3) ® tr2 t3n = (b1 a3) Btz
tyy=(b2-02) ®t13 taz=(b1-a2) B t23
tag=(br-a1) ® M ®t14 (bi-a))® My @ tr
tre=(by-20) ® My tsa=(b-a)® M
Row4 My=t3,,i=4
-a3) @32
“ag) D33
ca) @ My ©tay
-a0) ® My
m = 5: Primitive Polynomial P(z) = z° + 2% + 1
Row1: My =0,i=1 |Row2: M =1#,,,i=2 Row 3: M =t5,,i=3
ag) b3 -aq) © 12 =02 a)Btr2
b3-a3) @13 b2-a3) B2z
bs-a2) © My @ t14 by 02) © M @ ta
by-a) ®t1s b-a1) © 25
bs - a0) & My b2 - a0) @ My
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: Primitive Polynomial P(z) =

Row 4 Mz =t3,,i=4

Row 5: My =t4,,i=5

(b1 - aq) ® t32
(br-a3) @33
= (b1~ a2) ® M @ 13,4
(b1-a1) ®tss
iu =(b1-a) ®M;

tsy = (bo - as) ® ta2
t52 = (bo - a3) D tag
= (bo-a2) ® My @ tas
(b0 a1) D tas
= (bo-a0) ® My

m = 6: Primitive Polynomial P(z) =z°+z +1

2% + 2% +1 (continued)

Row 2: M =t1,,i=2

Row 3: Ma =t51,1=3

as) (bs-as5) ® t12 -as) Dy
@) (b4~ aq) ® 13 - aq) Dts
as) (bs - a3) B t14 “a3) Doy
az) (bs-ar) @15 -a) Blas

ar) (bs-a1) ® My Dt b3-a1) ® My @ tag
- o) = (bs-a0) & My tse = (b3 a0) & My

Row4 Ms =t3.,1 Row5 My =1t4,,i=5 Row 6: Ms =t5,,1=6

(bg - as) ® 152 b1 -as) Dlaz2 bo - a5) B L5
@) @ tys by - as) Dtz bo - ag) D5z
-a3) Dtgg b1 -as) @tas bo - a3) @ ts,4
- a2) Dtas by -az) Dies bo - a2) D155

0) ® My ®tas b -a1) ® My @tas | tes = (bo-a1) ® Ms D tss
tys = (by-a0) ® Ma 355‘(51 a) & My tos = (bo - @) & Ms
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m = 7: Primitive Polynomial P(z) =z +2z° +1

Row 1: My =0,i=1 Row 3: My =t5,,i=3
ti1 = (bs - a5) -a5) B ta2
tz = (bs - a5) -as) Oty
s = (bs - ay) g = (bs- @) Bt14 - ag) Btay
tiq = (bs - a3) tra=(bs-a)® M B t1s ca3) @M Dty5
t15 = (b - a2) tys = (bs-a2) ®tie @) ®tys

tis = (bs - a1) tas=(bs-a1) Bt ~a) Bty
tyr = (b - a) tag = (bs - a0) ® M, ‘%)M,
Row 4: Mz =t3,,1=4 Row 5: My =t41,1=5 : Ms =ts51,1=6
ta1 = (bs - a5) ® ts2 - ag) Dtz by - a6) © B2

taz = (bs - as) D tas -as) D ts b - as) D ts;3

tas = (b3 a4) D taa -04) Blag =(bL-as) Disa

toq = (bs-a3) @ M3 D tas ca3) @ My Dty by -a3) ® Ms ® tss
tys = (b3 - az) O a6 - a2) @ tag b1 - a2) @15

tes = (bs-a1) ® ta7 @) Stz by - a1) @ ts,r
to7=(bs-a0) ® M3 ts7 = (b2 -a0) ® My by - a0) & Ms
Row 7: M = to, i =7

tra = (b - as) D te2

tr2 = (b -as) @ te3

tr3 = (by - as) D tos

tra= (b -a3) ® Ms @ te5

trs = (bo - a2) @ tes

trs = (bo- @) ® tor

try = (by-20) © Ms

Careful examination of the Boolean Equations in all cases of m = 3,4,5,6,7,8

clearly shows that a two-input AND gate and a two-input or three-input XOR

gate are required to implement the function ¢;; of each cell. It is thus possible to

reuse a subset of the available 8 x 8 cells in Figure 3.1 to realize the logic function

of the m x m cells for which 3 < m < 8. Due to the sequential nature of the

multiplication algorithm and the fact that each symbol is represented as an eight-
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bit symbol whose 8—m most significant bits have been set to zero, the logic function
tix of the m x m cells for m < 8 has been realized using the cells which occupy a
square with coordinates (9 — m,9 — m), (9 — m,8), (8,8) and (8,9 — m). Where
necessary, redundant terms have been added to the Boolean equations of some of
the 8 x 8 cells in rows 2 to 8. A simple relationship has been devised whereby each
row of the GF(2%) uses a local controller which sets or clears the redundant terms
in order to correctly implement the desired function ¢ for m < 8 using the same
Each has been dasa ij Emphasis here has

been placed on hardware reusability.
It should be noted that in the circuit implementation, the control variables
M;, Mjs, Mjs, Mjz7, and Mj_iemp have been introduced to the Boolean equations,

defined in Equation (3.5), for m = 8 as overrides to allow the programmability
of the multiplier for different m = 3,4,5,6,7,8. Implementations of the various
overrriding local cell equagions are detailed below in algorithmic form.
The control variable M; replaces M, in row 2 in cells (2,4), (2,5), (2,6) and
(2,8) modifying them as follows:
by = (bs-a)) @ M;t5
s = (bs-a3) ® M;© 1
e = (bs-m)OM;Dt;
trg = (bs-a0) ® M;
The local controller then operates as follows:

if m =8 it sets M =t1,;

elseif m =Titsets iy =tiq=t1s =ty =t17=tra=M; =0;
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end if;

Accordingly, row 2 of the GF(2®) also correctly implements row 1 of the function
t:x of the GF(27) multiplier whose Boolean equations are defined in Equation (3.5).

‘The control variables M;7 and M; have been introduced to row 3 in cells (3,4),
(3,5), (3,6) and (3,8) modifying them as follows:

tss

(bs - aq) ® Mz D125

(bs-a3) ® M; ®tos

(bs-a2) @ Mz S t27
(s - a0) & M;

The local controller then operates as follows:

ifm =8 it sets My = M; = ta;

else if m = 7 it sets Mj = taz, Myr = 0;

else if m = 6 it sets tyy = t5 = tyg =ta7 = tag = M; = M7 =0;

end if;

Accordingly, row 3 of the GF(2%) correctly implements rows 2 and 1 of the

function t;4 of the GF(27) and GF(2°) multipliers respectively.

Control variables Mj7, Mj_temp, Mj7 and M; have been introduced to row 4 in

cells (4,4), (4,5), (4,6), (4,7) and (4,8) as follows:

tes

ca4) @ M7 ©t3s
- 3) © Mj_temp D t36
02) ® My © b3z
1) Dt ® Mjg

- ag) ® M;
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The local controller then operates as follows:
if m = 8 it sets Mj = Mj7 = Mj—_temp = ta,1, Mjs = 0;
else if m = 7 it sets M = Mj_emp = ta2, Mjs = Mj7 = 0;
else if m = 6 it sets M; = Mje = ts.3, M1 = Mj_temp = 0;
else if m = 5 it sets 55 = tas = to7 =tss = Mjs = Mj7 = Mj_somp = M; = 0;
end if;

The above permits i ion of the logic ions of row 1 of
the GF(2°) multiplier, row 2 of the GF(2°) multiplier, row 3 of the GF(27) and
row 4 of the GF(2%) iplier using the same h

Control variables M;7, M;_temp, Mjs, Mys and M; have been introduced to row
5 in cells (5,4), (5,5), (5,6), (5,7) and (5,8) as follows:

tsa = (b3 a)OMpDtes

tss = (53-03) © Mjtemp D s

tsg = (b3-02) ® M7 ® Mjs Staz

tsg = (b3 01) Dtag® Mjs

tsg = (bs-a0)®M;

The local controller then operates as follows:

ifm = 8 it sets M; = My7 = Mj_temp = ta1, Mjs = Mjs = 0;
else if m = 7 it sets Mj = Mj_cemp = taz, Mys = My = Mz = 0;
else if m = 6 it sets M; = Mjs = ta3, Mys = Mj7 = Mj_semp = 0;
else if m = 5 it sets M; = Mjs = tq .4, Mjs = Mjz = Mj_temp = 0;
else if m = 4 it sets Mj7 = Mj_temp = Mjs = My = Mjs =to6 =tsz =tsg =0;
end if;
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Control variables Mj7, Mj—temp» Mjs, Mjs and M; have been introduced to row
6 in cells (6,4), (6,5), (6,6), (6,7) and (6,8) as follows:

toa = (h2-a)® My Dtss
tes = (b2-03) © Mjtemp O tss
tos = (b2-22) @ M7 ® M D57

&
8
[

(br-a1) O 155 © Mjs

tss (b2-a0) © M;

I

The local controller then operates as follows:
ifm =8 it sets M; = M7 = Mj_yemp = 51, Mjs = Mg = 0;
else if m = 7 it sets My = Mj_qomp = t5.2, Mjs = Mjs = Mjz = 0;
else if m = 6 it sets M; = My = 5.3, Mjs = Mj7 = Mj_temp = 0;
else if m = 5 it sets M; = Mjs = ts, Mjs = M7 = Mj_temp = 0;
else if m = 4 it sets M7 = Mj_temp =0, M; = Mjs =ts5;
else if m = 3 it sets M7 = Mjs = Mjs = M; =t5; =t55 =0;
end if;
Control variables Mj7, M;_temp, Mjs, Mjs and M; have been introduced to row
7 in cells (7,4), (7,5), (7,6), (7,7) and (7,8) as follows:

tra = (bi-a) @M ®tes

trs = (b1-a3) ® Mj_temp ®tos
tre = (b1-a2) ® Myr @ Mjs @ te;r
try = (bi-a1) Dtes® Mjs

trs = (b1-a0)®M;
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‘The local controller then operates as follows:
ifm =8 it sets M; = Mjz = Mj_gemp = ts,1, Mjs = Mjs =0;
0:

else if m = 7 it sets M; = Mj_iemp = t52, Mjs = Mjs = Mjz =

else if m = 6 it sets Mj = Mjg = ts3, Mjs = My7 = My_temp = 0;
else if m = 5 it sets M = Mjs = tsq, Mjs = My7 = Mj_temp = 0;
else if m = 4 it sets Mj7 = Mj_temp = 0, M; = Mjs = to5;
else if m = 3 it sets Myy = Mjs = 0, M; = Mjs = tos;
end if;

Finally, the control variables Mj7, M;_temp, Mjs, Mjs and M; have been intro-
duced to row 8 in cells (8,4), (8,5), (8,6), (8,7) and (8, 8) as follows:

tae = (bo-as) ® M7 Dtrs

tss = (bo-G3) ® Mj_temp D trs
tss = (bo-02) ® Mz ® Mys D tr7
tsr = (bo-01)Dtrs® Mjs

tsg = (bo-a0) @ M;

The local controller then operates as follows:
if m =8 it sets M; = My7 = Mj_temp = tr1, Mjs = Mjs = 0;
else if m =7 it sets M; = Mj_emp = t12, Mjs = Mjs = Mj7 =0;
else if m = 6 it sets M; = Mjg = t73, Mjs = Mj7 = Mj_temp = 0;
else if m = 5 it sets Mj = Mjs = t74, Mje = Mjr = Mj_temp = 0;
else if m = 4 it sets Myr = Mj_omp = 0, M = Mg = trg;
else if m = 3 it sets Mj7 = Mg = 0, M; = Mjg = trg;
end if;
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Another controller assigns the output, i.e. product, elements as follows:
if m =7 it sets gy = 0;
else if m = 6 it sets tg) = tg2 = 0;

else if m = 5 it sets g, = tg2 = tag = 0;

else if m = 4 it sets ts, = tgy =tg3 = tsq =0;
else if m = 3 it sets ta; = tgy = ta s =taq = tss =0;

end if;

followed by

Co = tas,C1 = ts7,C2 = tg5,C3 = 135,04 = t34,Cs = ts3,C6 = t32,Cr = tan
according to Figure 3.1.

Based on the above analysis, it can be seen that a two-input AND gate and
a two-input or three-input XOR gate implements the function ¢;,. Registers and
D-flipflops have been placed between adjacent rows in order to facilitate pipeline
processing of data between neighbouring cells. The pipelined version of this m-~
programmable multiplier outputs the product C at a rate of one output per cycle
after an initial delay of m cycles. The clock period is governed by the propagation
delay of a signal through a multiplexer, a 2-input AND gate and a 2-input or 3-input
XOR gate.

The resulting GF(2™) multiplier is systolic and has a simple, regular commu-
nication and control structure. It also allows unidirectional data flow which is
advantageous over a system with contraflowing data streams. Most fault tolerance
schemes which are suitable for linear arrays route information around faulty cells
[68][69]. This can introduce significant transmission delays between cells. In unidi-

rectional data flow arrays, latches are often inserted in all data streams which are
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rerouted around a faulty cell but at the expense of increased system latency. This
does not change the required data interactions, since the relative delays between all
data paths are zeros. This technique is not suitable for arrays with contraflowing
data streams because the relative delay between paths would be non-zero and hence

data interactions may be corrupted.

The i i of the multiplier is shown in Figure 3.2. A and B are
the 8-bit elements to be multiplied; clk is the clock signal; m is the symbol size;
test_se, test_si, test_so are the test ports; O is the 8-bit product of A and B.

A ison of the ipelined and pi iplier is shown in Table

3.1. The number of gates with and without scan chain, number of detected faults

and fault coverage are icall by the is tools.

The i clock fre is esti by i i i ing the VHDL

gate level netlist file, using repeated functional verification and timing analysis
techniques. The pipelined version has a higher gate count because of the added
registers between neighbouring cells. Both versions of the multiplier have a 100%
fault coverage which ensures high quality and ease of testing after fabrication. The
multiplexed scan chain improves the controllability and observability of the internal

circuit nodes, thereby reducing the complexity of test generation.
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Figure 3.2: lic Archei of the P b
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Circuit P i Unpipelis Pipelined
Latency 1 m
Throughput rate 1 1
Number of Gates 517 2,583
Number of Gates with Scan Chain 551 3,419
Number of Detected Faults 2050 8892
Maximum Clock Frequency (MHz) 60 200
Fault Coverage % 100 100
Table 3.1: C¢ ison of the Unpipelined and Pipelined

The design procedure can be summarized as follows:
1. For a selected 77, derive all the Boolean Equations ¢; for all the 72 cells. Also
derive the Boolean Equations for m < 7 using t;x = iy k+1 ® (Pm—s - Mi—) &
(@m—k-bm—i) where i = 1,2, ...,m and k =1,2,...,m.
2. Beginning with m = 7% — 1 and adding control variables to each cell where

restrict impl, ion of ; to a square with coordinates (W + 1 —

m,f+1—m), (M+1—m,), () and (M, +1—m). Repeat the procedure
for all m = 7 — 2, — 3, ..., 4,3
3. Add registers between neighbouring cells to obtain the pipelined version of the

multiplier.
3.2 m-Programmable Exponentiator/Inverter

Definition 1: For an arbitrary element A in the finite field GF(2™), the invers