Efficient low-complexity data detection for multiple-input multiple-output wireless communication systems

Jiang, Fan (2018) Efficient low-complexity data detection for multiple-input multiple-output wireless communication systems. Doctoral (PhD) thesis, Memorial University of Newfoundland.

[img] [English] PDF - Accepted Version
Available under License - The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

Download (3MB)


The tradeoff between the computational complexity and system performance in multipleinput multiple-output (MIMO) wireless communication systems is critical to practical applications. In this dissertation, we investigate efficient low-complexity data detection schemes from conventional small-scale to recent large-scale MIMO systems, with the targeted applications in terrestrial wireless communication systems, vehicular networks, and underwater acoustic communication systems. In the small-scale MIMO scenario, we study turbo equalization schemes for multipleinput multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) and multipleinput multiple-output single-carrier frequency division multiple access (MIMO SC-FDMA) systems. For the MIMO-OFDM system, we propose a soft-input soft-output sorted QR decomposition (SQRD) based turbo equalization scheme under imperfect channel estimation. We demonstrate the performance enhancement of the proposed scheme over the conventional minimum mean-square error (MMSE) based turbo equalization scheme in terms of system bit error rate (BER) and convergence performance. Furthermore, by jointly considering channel estimation error and the a priori information from the channel decoder, we develop low-complexity turbo equalization schemes conditioned on channel estimate for MIMO systems. Our proposed methods generalize the expressions used for MMSE and MMSE-SQRD based turbo equalizers, where the existing methods can be viewed as special cases. In addition, we extend the SQRD-based soft interference cancelation scheme to MIMO SC-FDMA systems where a multi-user MIMO scenario is considered. We show an improved system BER performance of the proposed turbo detection scheme over the conventional MMSE-based detection scheme. In the large-scale MIMO scenario, we focus on low-complexity detection schemes because computational complexity becomes critical issue for massive MIMO applications. We first propose an innovative approach of using the stair matrix in the development of massive MIMO detection schemes. We demonstrate the applicability of the stair matrix through the study of the convergence conditions. We then investigate the system performance and demonstrate that the convergence rate and the system BER are much improved over the diagonal matrix based approach with the same system configuration. We further investigate low-complexity and fast processing detection schemes for massive MIMO systems where a block diagonal matrix is utilized in the development. Using a parallel processing structure, the processing time can be much reduced. We investigate the convergence performance through both the probability that the convergence conditions are satisfied and the convergence rate, and evaluate the system performance in terms of computational complexity, system BER, and the overall processing time. Using our proposed approach, we extend the block Gauss-Seidel method to large-scale array signal detection in underwater acoustic (UWA) communications. By utilizing a recently proposed computational efficient statistic UWA channel model, we show that the proposed scheme can effectively approach the system performance of the original Gauss-Seidel method, but with much reduced processing delay.

Item Type: Thesis (Doctoral (PhD))
URI: http://research.library.mun.ca/id/eprint/13248
Item ID: 13248
Additional Information: Includes bibliographical references (pages 184-196).
Keywords: Multiple-input multiple-output, massive MIMO, Low-complexity, Wireless Communications, Data Detection
Department(s): Engineering and Applied Science, Faculty of
Date: 28 May 2018
Date Type: Submission
Library of Congress Subject Heading: MIMO systems.

Actions (login required)

View Item View Item


Downloads per month over the past year

View more statistics