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Abstract

The tradeoff between the computational complexity and system performance in multiple-

input multiple-output (MIMO) wireless communication systems is critical to practical appli-

cations. In this dissertation, we investigate efficient low-complexity data detection schemes

from conventional small-scale to recent large-scale MIMO systems, with the targeted appli-

cations in terrestrial wireless communication systems, vehicular networks, and underwater

acoustic communication systems.

In the small-scale MIMO scenario, we study turbo equalization schemes for multiple-

input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) and multiple-

input multiple-output single-carrier frequency division multiple access (MIMO SC-FDMA)

systems. For the MIMO-OFDM system, we propose a soft-input soft-output sorted QR de-

composition (SQRD) based turbo equalization scheme under imperfect channel estimation.

We demonstrate the performance enhancement of the proposed scheme over the conven-

tional minimum mean-square error (MMSE) based turbo equalization scheme in terms of

system bit error rate (BER) and convergence performance. Furthermore, by jointly con-

sidering channel estimation error and the a priori information from the channel decoder,

we develop low-complexity turbo equalization schemes conditioned on channel estimate for

MIMO systems. Our proposed methods generalize the expressions used for MMSE and

MMSE-SQRD based turbo equalizers, where the existing methods can be viewed as spe-

cial cases. In addition, we extend the SQRD-based soft interference cancelation scheme

to MIMO SC-FDMA systems where a multi-user MIMO scenario is considered. We show

an improved system BER performance of the proposed turbo detection scheme over the

conventional MMSE-based detection scheme.

In the large-scale MIMO scenario, we focus on low-complexity detection schemes be-

cause computational complexity becomes critical issue for massive MIMO applications. We

viii



first propose an innovative approach of using the stair matrix in the development of massive

MIMO detection schemes. We demonstrate the applicability of the stair matrix through

the study of the convergence conditions. We then investigate the system performance and

demonstrate that the convergence rate and the system BER are much improved over the

diagonal matrix based approach with the same system configuration. We further investigate

low-complexity and fast processing detection schemes for massive MIMO systems where a

block diagonal matrix is utilized in the development. Using a parallel processing structure,

the processing time can be much reduced. We investigate the convergence performance

through both the probability that the convergence conditions are satisfied and the conver-

gence rate, and evaluate the system performance in terms of computational complexity,

system BER, and the overall processing time. Using our proposed approach, we extend

the block Gauss-Seidel method to large-scale array signal detection in underwater acoustic

(UWA) communications. By utilizing a recently proposed computational efficient statistic

UWA channel model, we show that the proposed scheme can effectively approach the system

performance of the original Gauss-Seidel method, but with much reduced processing delay.
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Chapter 1

Introduction

1.1 Background

Wireless communication systems play significant roles in people’s lives nowadays. For past

several decades, the mobile access technology has experienced a revolutionary change about

every ten years [1]. It is foreseeable that by the year of 2020, the fifth generation (5G) mobile

communication systems will be commercially deployed. Yet for 5G, the key requirements,

the development of the standard, and the field trials, are still undergoing; increasing interests

and focus have been put on this research in both academia and industry [2–4]. Meanwhile,

with the evolution of 5G technologies, modern vehicular networks, aiming to providing high

level user experience on the move, have attracted much attention [5–10]. In particular,

the intelligent transportation systems (ITS) have been proposed to improve driving safety

and comfort, as well as offering in-vehicle entertainment such as social connections, video

streaming, and related services [5–7, 10–12]. It is predicted that 90 percent of vehicles

will be connected via wireless links by 2020 [10]. Wireless communication techniques have

been also applied to discover, investigate, and exploit oceanic resources [13]. Typically,

underwater acoustic (UWA) communications have been widely studied [14–19]. While the
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harsh UWA channels are agreed to be rapid time-varying and environmentally dependent,

the wireless techniques developed in radio communication systems have been demonstrated

to be applicable and efficient to establish reliable UWA communications [15, 16].

As one of the typical wireless communication techniques, multiple-input multiple-output

(MIMO) has been successfully applied to the third and currently forth generation (3G/4G)

mobile communication systems [1, 20–23], and many other application scenarios [15–17,

24, 25]. It was in the 1990s that MIMO has shown great potential to achieve high data

rate low error rate wireless communications [26–28]. Generally, MIMO systems can bring

spacial multiplexing and diversity gain over single antenna systems. The multiplexing gain

enables multiple data stream transmitted over the same time, frequency, and code resources,

resulting in high rate communication; while the diversity gain takes advantages of multi-

path fading to improve error rate performance. Recently, large-scale MIMO, also known

as massive MIMO, has attracted increasing research interests [2–4, 18, 19, 29–37]. Due to

the huge potential multiplexing and diversity gain over the conventional small-scale MIMO

and single-antenna systems, massive MIMO can increase the system spectrum and energy

efficiency in orders of magnitude [2–4, 18, 19, 29–32, 35–37]. However, it is known that

the optimum MIMO detection problem is non-deterministic polynomial-time hard (NP-

hard) [38]. That is to say, the computational complexity for MIMO signal processing is

considerable when using the optimal MIMO detection methods. For practical applications,

low-complexity, yet high-performance suboptimal MIMO detection schemes are preferred,

hence becoming the main research problems in this project.
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Figure 1.1: Illustration of a typical turbo structure

1.2 Low-complexity Detection Schemes for MIMO systems

1.2.1 Low-complexity Data Detection for Small-scale MIMO

In conventional small scale MIMO systems, optimal detection schemes, such as the max-

imum likelihood (ML) and the maximum a posteriori (MAP) receivers, are prohibited as

their complexity increases exponentially with the number of transmit antennas (or user

numbers) and the modulation symbols [38–43]. Therefore, when high order modulations,

for example 16 quadrature amplitude modulation (16QAM) and 64QAM, are adopted in the

system, the complexity is costly for implementations. In real applications, turbo receiver-

s are normally adopted to achieve a good tradeoff between the system performance and

the computational complexity [21, 22, 37–51]. A turbo structure consists of two soft-input

soft-output (SISO) modules while the extrinsic information is exchanged between them,

which is illustrated in Figure 1.1 [51]. Specifically, the two SISO modules are usually the

SISO equalizer and the SISO channel decoder, and the extrinsic information is defined as

the mutual information of the bits log likelihood ratio (LLR) and the coded bit stream.

The SISO equalizer utilizes the a priori information from the channel decoder to perform

the equalization process, producing extrinsic LLRs to the SISO channel decoder for the

decoding process. Meanwhile, with the extrinsic LLRs of the coded bit stream, the SISO

channel decoder performs the decoding process and outputs the LLRs for information and

coded bit stream. The previous one is used to produce an information bit estimation, and
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the latter one is feedback to the SISO equalizer. With sufficient iterations, the progress

between the two SISO modules comes to convergence, achieving near-optimal system per-

formance [40,43,49,50,52–54].

It has also been demonstrated that with iterative signal processing, a simple equaliz-

er can eventually approach the system bit error rate (BER) performance of the optimal

equalizers [49, 52–57]. Therefore, most studies have focused on the design of low com-

plexity and fast convergence turbo equalizers. In [55], the authors have investigated the

MMSE-based turbo equalization for a multi-path time-invariant channel. In their work, the

a priori information from the channel decoder is utilized to help with symbol detection.

Successful applications of the MMSE-based turbo equalization schemes have been applied

to orthogonal frequency division multiplexing (OFDM) and single-carrier frequency divi-

sion multiple access (SC-FDMA) systems [21,41,43,58–60]. Turbo equalization schemes for

single-carrier frequency domain equalization (SC-FDE) systems are studied in [40, 46, 47],

and it has been reported that the low-complexity turbo equalization schemes in the frequen-

cy domain achieve high robustness compared to the time domain equalization schemes. A

class of sorted QR decomposition (SQRD) based turbo equalization schemes has been stud-

ied in [22, 39, 41, 60, 61]. By using the QR decomposition algorithms, an upper triangular

matrix is obtained; hence, the original estimation solutions can be obtained successive-

ly [62]. MMSE SQRD based turbo equalization schemes employ the a priori information

from channel decoder, and construct the extended channel matrix consisting of the channel

matrix and the a priori covariance matrix. By performing the sorted QR decomposition,

the MMSE-based turbo equalization can be transformed from a parallel interference cance-

lation into a successive interference cancelation. Therefore, a back-forward solution can be

used to complete the symbol estimation. Since the SQRD-based detection schemes avoid

the matrix inversion issue in MMSE-based detection schemes, the overall computational
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complexity is comparatively reduced [22,39,41,60].

In practical applications, the channel matrix used for equalization is obtained through

channel estimation [63, 64]. However, channel estimation error is inevitable due to the fol-

lowing reasons. First, a channel estimate is usually obtained based on pilot symbols or

training sequence, which is not exactly the same as the channel used for data transmission.

The difference is even more severe when a fast time-varying channel is studied. Second, as

noise and interference are presented, there is channel estimation error in whatever channel

estimation method. Channel estimation error can always cause the system performance

degradation [21,39,65–71]. Therefore, accounting for channel estimation error in the design

of equalization schemes is significant and necessary [21, 39, 67–71]. In [21, 39], the channel

estimation error is assumed to be independent from the channel estimation. Based on that

assumption, the MMSE-based and SQRD-based turbo equalization schemes are developed.

Recently, equalization schemes conditioned on channel estimate have shown much enhanced

system performance [67–71]. Specifically, the linear zero-forcing (ZF) equalization scheme

is studied in [67], and linear MMSE equalization schemes are studied in [68,70]. In [71], the

authors derived the MMSE equalization conditioned on both the channel estimate and the

transmitted symbols. The results of their work show that slight improvement is achieved

compared to the equalization scheme in [68, 70]. In prior work [69], the turbo equalization

conditioned on channel estimate based on MMSE criteria is investigated. The results show

that compared to conventional MMSE-based turbo equalization schemes where the chan-

nel estimate is directly applied to the equalization process, the turbo equalization scheme

conditioned on channel estimate has much better system performance, especially when the

channel estimation error is severe.

In general, in conventional small-scale MIMO systems, low-complexity detection schemes

are expected to consider the a priori information from channel decoder and the channel esti-
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mation error in the development. Prevailing MMSE-based or SQRD-based turbo detection

schemes are shown to be low-complexity while achieving near-optimal system performance.

1.2.2 Data Detection Schemes in Massive MIMO Uplink

We then move the focus to large-scale MIMO (or massive MIMO) systems. Different from

the conventional small-scale MIMO systems, in massive MIMO, the antenna elements at the

base station can reach up to hundreds while the users under service can be tens [2, 3]. By

extending the MIMO systems from a small scale to a large one, an overwhelming diversity

and multiplexing gain can be achieved, leading to orders of magnitude in the improvement of

the spectrum and energy efficiency [2,3,29–31]. The idea of using massive MIMO has been

also introduced to vehicular networks [35,36] and UWA communications [18,19]. However,

in massive MIMO systems, the optimal receivers, such as ML and MAP receivers, are

prohibited due to the exponentially increased computational complexity.

To achieve good tradeoff between the system performance and the computational com-

plexity, much effort has been made in developing low-complexity detection schemes to

achieve near-optimal performance [23, 72–86]. For example, in [72, 73], the authors extend

a class of likelihood ascent search (LAS) based multi-user detection schemes to large-scale

MIMO. The Monte-Carlo sampling based massive MIMO detection schemes are studied

in [74, 75], where the Markov chain Monte-Carlo (MCMC) strategy is introduced. A class

of belief propagation (BP) based detection schemes for massive MIMO have been stud-

ied in [76, 77], where the idea of message passing through factor graph is introduced for

the development. Recently, adaptive reduced rank interference suppression based detec-

tion schemes are developed for large-scale MIMO uplink detection [78,79]. The idea behind

these schemes is to project a large dimensional signal vector to a small dimensional one, and

then multi-stage Winner filtering (MSWF) is adopted to perform optimization of the de-
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sired signal [88,89]. It has been also reported that the complexity required for each symbol

detection can be reduced to O (NB ×NU). (NB and NU denotes the number of anten-

nas at base station and the single-antenna user terminals, respectively.) Among these low

complexity detection schemes for massive MIMO uplink, a class of near linear MMSE/ZF

detection schemes are studied in [23, 80–87]. Generally, all those schemes attempt to avoid

matrix inversion operations in linear MMSE/ZF detection schemes, and the strategies can

be summarized in two categories: the first one is to approach matrix inversion, and the

other is to solve linear equations with iterative methods.

The first category is to approximate the matrix inversion [23, 80, 81]. For example,

in [23], the authors attempt to introduce Neumann series expansion to avoid the matrix

inversion in linear MMSE detection. It has been shown that when the number of antennas

at base station is much greater than the number of user equipment, the orders required for

Neumann series expansion can be as few as 3 (for example, r = NB/NU ⩾ 16). In [80], the

probability of the convergence condition that using the diagonal matrix in Neumann series

expansion based detection scheme has been comprehensively discussed. However, Neumann

series expansion suffers from matrix multiplications, and the computational complexity

is comparable to the matrix inversion algorithm when the expansion order is more than

two. In order to speed up the convergence rate, a diagonal banded Newton iteration based

matrix inversion approach is studied in [81], where the Newton iteration structure is used.

Actually, the results after P iterations in Newton iteration can be seen as the Neumann

series expansion of the order 2P − 1 [81]. Inevitably, matrix multiplications are involved

in diagonal banded Newton iteration based matrix inversion approach, and the iterations

are limited to 2 for computational complexity considerations. In summary, the methods

that are to approximate matrix inversion suffer from high computational complexity due to

the matrix multiplications and the slow convergence rate when the ratio r = NB/NU is not
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sufficiently large.

The second category is to solve linear equations with iterative methods [82–87]. The

basic idea of these methods is to transform the matrix inversion problem into solving linear

equations. To solve the linear equations, an initial estimation is provided. Then following

an iterative structure to converge, the final output is provided as the solutions to linear

equations. For example, in [82], the Jacobi method is adopted, and by following the Ja-

cobi iterative structure, the estimation eventually approaches the MMSE estimation. The

Richardson iteration in massive MIMO uplink data detection has been studied in [83], and

the authors have demonstrated that the iterative structure can converge even with zero ini-

tialization. However, as pointed out in [84,85], the convergence rate for both Jacobi method

and Richardson iteration is slow, hence quite a few iterations are required for convergence.

The application of the Gauss-Seidel method to massive MIMO uplink data detection is

studied in [84], and the convergence performance can be greatly improved. By providing an

initial estimation that is close to the MMSE estimation, the joint steepest-decent and Jaco-

bi method based data detection is proposed in [85], and the iterations are greatly reduced.

In [86], the authors formulate the MMSE estimation as a minimization problem, and use

the conjugate gradient to calibrate the next estimation. However, conjugate gradient-based

data detection scheme involves many division operations, which is also computational cost-

ly. Compared to the first category which is to approximate matrix inversion, solving linear

equations with iterative methods is of less complexity due to the replacement of matrix

multiplications with matrix-vector products. However, as summarized in [85], the overall

computational complexity of the iterative methods, including the computations in both the

initialization and iteration, is still high. It is worth pointing out that the convergence rate

of the existing iterative methods can be speeded up by using preconditioning [90]. A poten-

tial direction to further reduce the computational complexity could be to find an iterative
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method that requires less computation in initialization and fewer iterations for convergence.

1.3 Identified Problems and Main Contributions

For the MIMO-OFDM system, MMSE-SQRD based turbo equalization has been studied

in [41]. However, the inevitable channel estimation error is not considered in their scheme.

On the other side, the MMSE-based turbo equalization for SC-FDMA system with channel

estimation error is studied in [21], where parallel interference cancelation (PIC) is utilized.

The turbo equalization, taking into account of channel estimation error and using succes-

sive interference cancelation (SIC), has not been studied. Therefore, we first investigate the

MMSE-SQRD based turbo equalization for MIMO-OFDM systems under imperfect channel

estimation. The proposed scheme considers both the channel estimation error and the a pri-

ori information from channel decoder, and introduces a successive interference cancelation

in data detection.

The design of data detection schemes conditioned on channel estimate has shown obvious

system performance improvement in [68,70,71]. However, it is worth noting if the equalizer

is designed to take into account of both the channel estimation error and the a priori

information from channel decoder, the system performance can be further improved. Our

second contribution is to develop low complexity turbo equalizers conditioned on channel

estimation for MIMO systems. We also show the new proposed schemes can be viewed as a

general expression for MMSE and SQRD based turbo equalization schemes, where existing

schemes are special cases.

As OFDM systems experience high peak-to-average power ratio (PAPR), which re-

quires large dynamic range of the amplifier, they are inapplicable for uplink transmission.

To take fully advantages of OFDM systems, i.e., OFDM modulation module at transmitter

side and low-complexity frequency domain equalizer at receiver side, the SC-FDMA tech-
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nique is adopted as a standard uplink transmission technique at user terminals. Employing

the SQRD-based turbo equalization for SC-FDMA systems in [22] has revealed potential

advantages over the conventional MMSE-based turbo equalization. However, the scheme

in [22] has the following limitations. First, the a priori information is not considered in the

SQRD procedure where the user detection order is determined. Second, it only perform-

s soft interference cancelation on detected users, while the residual interference from the

undetected users remains in current user detection. Last, the expected signal component

in the identified interference component is not sufficiently extracted for the current user

detection. Therefore, we have proposed a new SQRD based turbo equalization scheme for

multi-user SC-FDMA systems, where we have demonstrated the system BER performance

improvement over existing schemes.

Extending the MIMO systems from a small scale to a large one, numerous benefits can

be brought into the system. However, we note that most data detection schemes for massive

MIMO uplink in existing literatures mainly utilize the diagonal matrix in the development.

In [23,80], the applicability of using diagonal matrix to massive MIMO uplink data detection

has been demonstrated. Nevertheless, we find some limitations for using diagonal matrix.

First of all, in the massive MIMO system configuration with small ratio of r = NB/NU (NB

and NU denotes the number of antennas at base station and the single-antenna user termi-

nals, respectively.), the convergence rate using the diagonal matrix is slow. Alternatively, a

few iterations (or orders in Neumann series expansion) are required to provide near-optimal

system performance. Besides, the convergence conditions, which are critical to data detec-

tion schemes, are met with a low probability when r is small. In other words, in some cases,

the diagonal matrix may not achieve convergence. To alleviate those limitations, we propose

to develop an iterative method to achieve performance near linear MMSE detection scheme

using the stair matrix [91,92]. We have shown the new low-complexity iterative method can
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approach the linear MMSE detection performance in massive MIMO systems, and achieve

enhanced system performance in terms of better convergence performance, lower residual

estimation error, and much improved BER performance, over the iterative method with the

diagonal matrix in the development.

The iterative methods for massive MIMO detection have reduced the computational

complexity to the order of O (N2
U). However, when considering a massive MIMO vehicle-to-

infrastructure (V2I) scenario, as more and more vehicles are on the road, the computations

are still considerable. Besides, the updating progress requires long processing delay for one

iteration. For example, in the Gauss-Seidel method, the last user needs to wait until all

previous uses have been updated. This successive detection manner makes the detection

scheme not time efficient. Moreover, the successive detection manner is not efficient for

hardware implementation [85]. To mitigate those defects, we propose to use the block di-

agonal matrix based iterative method. In this proposal, we have successfully transformed

the large-scale matrix inversion issue into a set of small-scale inversions, and a new ma-

trix inversion method is proposed to further reduce the computational complexity. The

proposed iterative method utilizes the parallel processing structure to speedup the overal-

l processing progress. To further reduce the overall computational complexity, the block

Gauss-Seidel method is proposed for the updating progress. The new proposals have shown

great improvement in terms of low complexity and fast processing.

It is known that the reliable wireless communications through harsh underwater envi-

ronment is challenging [13–16]. By employing conventional small scale MIMO and OFDM

techniques, we know that link reliability can be greatly improved. When the array of

hydrophones increases, it has been recently shown that the system spectrum and ener-

gy efficiency, signal-to-interference-plus-noise (SINR) can be greatly improved [18, 19, 93].

However, the complexity of large array signal processing will be an emergent issue to be
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addressed. We have applied the block Gauss-Seidel method to the signal processing in this

application scenario and the results are promising. Specifically, we utilize the computa-

tionally efficient statistic UWA channel model developed in [14] for simulation. We then

show that computational complexity of the new detection scheme is low compared to linear

MMSE detection scheme. After that, we show that our proposal achieves the system BER

performance close to original Gauss-Seidel method based detection scheme, and the overall

processing delay is much reduced.

1.4 Thesis Organization

The main work of this thesis is divided into two parts. In the first part, consisting of

Chapter 2 to Chapter 4, we investigate data detection schemes for conventional small-

scale MIMO, where low-complexity efficient turbo equalization schemes are studied and

evaluated. The second part, consisting of Chapter 5 to Chapter 7, focuses on low-complexity

data detection schemes for massive MIMO uplink. The specific topic in each chapter is

detailed as follows:

• Chapter 2: Soft-input soft-output MMSE-SQRD based turbo equalization for MIMO-

OFDM systems under imperfect channel estimation;

• Chapter 3: Low complexity turbo equalizers conditioned on channel estimate for MIMO

systems;

• Chapter 4: A new SQRD-based soft interference cancelation scheme in multi-user MIMO

SC-FDMA system;

• Chapter 5: Stair matrix and its applications to massive MIMO uplink data detection;

• Chapter 6: Low-complexity and fast processing algorithms for V2I massive MIMO uplink
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detection;

• Chapter 7: Efficient and fast processing large array signal detection in underwater a-

coustic communications.

Finally, we summarize our work and discuss the future work in Chapter 8.
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Chapter 2

Soft-input Soft-output

MMSE-SQRD based Turbo

Equalization for MIMO-OFDM

Systems under Imperfect Channel

Estimation

1 In this chapter, a turbo equalization scheme for MIMO-OFDM systems under imperfect

channel estimation based on SISO MMSE-SQRD is proposed. Turbo equalization schemes

are preferable in practical communication systems due to their good performance and ac-

ceptable computational complexity. The MMSE-SQRD based SISO detection scheme is

derived from SISO MMSE detection, and SIC is performed using a posteriori information

1The related work has been published in the proceedings of Global Communications Conference (GLOBE-

COM’15), San Diego, CA, USA, December 2015.
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obtained from previous detected symbols. Compared to SISO MMSE detection, MMSE-

SQRD based SISO detection is of low complexity but has significant bit error rate (BER)

performance enhancement. When channel estimation error is present, it has been pointed

out that the system performance will degrade. We investigate this practical issue in this

Chapter, and propose the SISO MMSE-SQRD based turbo equalization under imperfect

channel estimation. We first model the channel estimation error as added random Gaussian

noise over the channel estimation matrix. Based on that, we re-derive the SISO MMSE

detection for the data symbols. After that, we redefine the extended channel matrix and

receive vector by taking into account channel estimation error. The SQRD algorithm is

adjusted in accordance and MMSE-SQRD based data detection algorithm is finally per-

formed. Numerical simulation results show that the proposed SISO MMSE-SQRD based

turbo equalization for MIMO-OFDM systems under imperfect channel estimation outper-

forms the conventional MMSE-based SISO detection in terms of system BER performance

and computational complexity.

The rest of this chapter is organized as follows. In Section 2.1, we present the system

model including the transmitter and receiver structure in MIMO-OFDM systems. Following

that, we review the SISO MMSE-based turbo equalization scheme with channel estimation

error in Section 2.2. The detailed derivation of the proposed SISO MMSE-SQRD tur-

bo equalization scheme is presented in Section 2.3. After that, we present the numerical

simulation results in Section 2.4. Finally, we summarize this chapter in Section 2.5.

2.1 System Model

A turbo coded MIMO-OFDM system equipped with NT transmit antennas and NR receive

antennas is considered. The schematic diagram of the transmitter and receiver is shown in

Figure 2.1. At the transmitter side, the information bits are first fed into a turbo encoder,
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Figure 2.1: Schematic diagram of the transmitter and receiver in MIMO-OFDM systems

and then interleaved before being sent to the QAM modulator. After that, the modulated

QAM symbols are mapped to transmit antennas through a series-to-parallel mapper. At

each transmit antenna, OFDM modulation (an inverse FFT (IFFT) operation) is performed

on QAM symbols, and a cyclic prefix (CP) is added to eliminate inter-block interference

(IBI).

At the receiver side, after removing CP and FFT operations, the received signal vectors

are sent to the frequency domain equalizer (FDE). The SISO FDE employs the a priori in-

formation, and computes extrinsic information of the coded bits. The extrinsic information

is deinterleaved, and fed into the turbo decoder.

Let b = [b0,⋯, bK−1]T denotes the message bits stream, where the message block length

is K , and c = [c0,⋯, cN−1]T denotes the output bits stream after turbo encoder, where

N is the code bits length and the effective code rate is R = K/N . The output of the

interleaver at the transmitter side is denoted by q = [q0,⋯, qN−1]T, where qn = Π (ck) and
Π (⋅) is the interleaving function. After QAM modulation and series-to-parallel mapping,

the symbol vector at the k-th subcarrier are denoted by xk = [xk,0,⋯, xk,NT−1]T, where
xk,l =Q ([qkl,0,⋯, qkl,log2 M−1]T) is the transmitted symbol from the l-th transmit antenna at
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the k-th subcarrier. Q (⋅) is the mapping function that generates a QAM symbol from the

associated bits. qkl,m is the corresponding m-th bit in symbol xk,l, and M is the cardinality

of the QAM symbol set χ.

The received vector after FFT is expressed as

yk =Hkxk + zk, (2.1)

where yk = [yk,0,⋯, yk,NR−1]T, and yk,r represents the received signal from the r-th receive

antenna at the k-th subcarrier. zk = [zk,0,⋯, zk,NR−1]T denotes the Gaussian noise vector at

the k-th subcarrier, and E{zk} = 0, E{zkzHk } = σ2
zINR

. Hk ∈ CNR×NT is the channel matrix.

The turbo receiver exchanges extrinsic information between the frequency domain e-

qualizer and turbo decoder which are separated by an interleaver Π (⋅) and deinterleaver

Π−1 (⋅). The optimal MAP equalizer collects information of the entire block of symbols to

compute the a posteriori information of the bits, which requires considerable computation

complexity. Therefore, reduced complexity detection schemes such as MMSE equalizer are

preferred in practical applications. As it is shown in [55], the MMSE equalizer first com-

putes the estimate of the transmitted symbol, and the a posteriori LLR of the associated

bit is computed afterwards, given by

LO (qkl,m) = ln⎛⎜⎝P (q
k
l,m = 1∣x̂k,l)

P (qkl,m = 0∣x̂k,l)
⎞⎟⎠

= ln⎛⎝∑s∈χm
1
p (x̂k,l∣xk,l = s)P (xk,l = s)∑s∈χm

0
p (x̂k,l∣xk,l = s)P (xk,l = s)⎞⎠

, (2.2)

where χm
b ≜ {s∣s ∈ χ, qm = b} is the subset of QAM symbol set χ in which the m-th mapping

bit of s is b. P (xk,l = s) is the a priori probability of the symbol xk,l, given by

P (xk,l = s) = log2M∏
m=0

P (qkl,m = b). (2.3)

Substituting Equation (2.3) in Equation (2.2), the output a posteriori LLR of the bit qkl,m
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is given by

LO (qkl,m) = LE (qkl,m) +LI (qkl,m), (2.4)

where LE (qkl,m) and LI (qkl,m) are extrinsic and a priori LLR of the bit qkl,m , respectively,

given by

LE (qkl,m) = ln⎛⎜⎜⎝
∑s∈χm

1
p (x̂k,l∣xk,l = s) ∏

n≠m
P (qkl,n = b)

∑s∈χm
0
p (x̂k,l∣xk,l = s) ∏

n≠m
P (qkl,n = b)

⎞⎟⎟⎠ ,
LI (qkl,m) = ln⎛⎜⎝P (q

k
l,n = 1)

P (qkl,n = 0)
⎞⎟⎠ .

(2.5)

After obtaining LE (qkl,m) from Equation (2.4), and through a deinterleaver, LI (cn) =
Π−1 (LE (qkl,m)) is fed into the turbo decoder as a priori LLR of the coded bits. By using

the a priori LLR and the trellis code structure, turbo decoder outputs the a posteriori LLR

of the coded bits and the information bits. The previous one is used to derive the extrinsic

LLR of the coded bits LE (cn), while the latter one is used for final decision of b̂. At each

iteration, LE (cn) is interleaved, providing LI (qkl,m) = Π (LE (cn)) as a priori LLR for FDE.

2.2 SISO MMSE based Turbo Equalization under Imperfect

Channel Estimation

2.2.1 Imperfect Channel Estimation Model

In practical applications, only an estimated channel matrix is available. For example, in

LTE/LTE-A system, the channel estimation is performed on reference signals [21]. By using

a linear MMSE channel estimator, the estimated channel matrix at the k-th subcarrier can

be expressed as

Hk = Ĥk +ΔHk, (2.6)
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where Ĥk ∈ CNR×NT is the estimated channel matrix used for data detection. ΔHk ∈ CNR×NT

denotes the estimation error, and each entry in ΔHk is assumed to be independent and

identically distributed (i.i.d), satisfying E{ΔHk} = 0, E{ΔHkΔHH
k } = NTσ

2
eINR

.

With the a priori LLR of the associated bits for each entry in xk,l, we can obtain the a

priori mean and covariance:

μk,l =∑s∈χ s ⋅ P (xk,l = s)
vk,l =∑s∈χ ∣s∣2P (xk,l = s) − ∣μk,l∣2, (2.7)

where P (xk,l = s) is given by Equation (2.3). Based on that, we define the a priori mean

vector and covariance matrix as

μk = [μk,0,⋯, μk,NT−1]T,
Vk = diag{[vk,0,⋯, vk,NT−1]T} , (2.8)

which will be used in the following sections.

2.2.2 SISO MMSE Equalization

With the estimated channel matrix at each subcarrier, i.e., Ĥk, we can rewrite the received

vector in Equation (2.1) as

yk = Ĥkxk + nk, (2.9)

where nk =ΔHkxk + zk, satisfying
E{nk} =0,

E{nkn
H
k } =Φk = σ2

nINR
,

(2.10)

where σ2
n = σ2

e (NT−1∑
l=0
∣vk,l∣2 + ∣μk,l∣2) + σ2

z . The MMSE estimation x̂k = [x̂k,0,⋯, x̂k,NT−1]T
from Equation (2.9) is given by

x̂k = κkĤ
H
k (ĤkVkĤ

H
k +Φk)−1 (yk − Ĥkμk) +κkρkμk, (2.11)
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where κk and ρk are both diagonal matrices, with the l-th diagonal element at each diagonal

matrix are respectively given by κk,l = (1 + (1 − vk,l)ρk,l)−1 and ρk,l = eHl Bkel where Bk is

expressed as

Bk = ĤH
k (ĤkVĤ

H
k +Φk)−1Ĥk. (2.12)

From Equation (2.11), we can derive

x̂k,l = αk,lxk,l + ξk,l, (2.13)

where αk,l = κk,l ⋅ ρk,l, and ξk,l denotes the interference and noise component in the es-

timation of xk,l. We assume ξk,l is Gaussian distributed with E{ξk,l} = 0, and vξk,l =
E{ξk,lξHk,l} = κ2k,lρk,l (1 − ρk,lvk,l). Therefore, the conditional probability density function

(pdf) p (x̂k,l∣xk,l) is given by

p (x̂k,l∣xk,l = s) = 1

πvξk,l
exp
⎛⎝−∣x̂k,l − αk,l ⋅ s∣2

vξk,l

⎞⎠, (2.14)

Following Equations (2.2) to (2.4), the extrinsic LLR of the associated bits are obtained,

used for turbo decoding.

2.3 SISO MMSE-SQRD based Turbo Equalization

2.3.1 Development of the Proposed Scheme

Let A = (V1/2
k ĤH

k Φ
−1
k ĤkV

1/2
k + INT

), by using A−1A = I, we obtain

(V1/2
k ĤH

k Φ
−1
k ĤkV

1/2
k + INT

)−1V1/2
k ĤH

k Φ
−1
k Ĥk

=V−1/2k − (V1/2
k ĤH

k Φ
−1
k ĤkV

1/2
k + INT

)−1V−1/2k .

(2.15)

In order to develop the extended channel matrix, we adjust x̂k in Equation (2.9) to an

equivalent expression given by

x̂k =κkV−1/2k (V1/2
k ĤH

k Φ
−1
k ĤkV

1/2
k + INT

)−1 (V1/2
k ĤH

k Φ
−1
k yk +V1/2

k μk)
+ κkV−1k ⋅ diag{(V1/2

k ĤH
k Φ
−1
k ĤkV

1/2
k + INT

)−1}μk,

(2.16)
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where Equation (2.15) is used for the derivation. To obtain the conditional pdf p (x̂k,l∣xk,l),
Equation (2.16) is equivalent to

x̂k =(V1/2
k ĤH

k Φ
−1
k ĤkV

1/2
k + INT

)−1 (V1/2
k ĤH

k Φ
−1
k yk +V1/2

k μk)
+V−1/2k ⋅ diag{(V1/2

k ĤH
k Φ
−1
k ĤkV

1/2
k + INT

)−1}μk.

(2.17)

In addition, we rewrite Bk and ρk as

Bk =V−1/2k (V1/2
k ĤH

k Φ
−1
k Ĥkv

1/2
k + INT

)−1V1/2
k ĤH

k Φ
−1
k Ĥk

=V−1k −V−1/2k (V1/2
k ĤH

k Φ
−1
k ĤkV

1/2
k + INT

)−1V−1/2k ,

ρk =diag{Bk}
=V−1k −V−1k ⋅ diag{(V1/2

k ĤH
k Φ
−1
k ĤkV

1/2
k + INT

)−1} .
(2.18)

From Equation (2.17), we define the extended channel matrix and received vector as

Hk =
⎡⎢⎢⎢⎢⎢⎢⎣
Φ
−1/2
k ĤkV

1/2
k

INT

⎤⎥⎥⎥⎥⎥⎥⎦, (2.19)

y
k
= ⎡⎢⎢⎢⎢⎢⎢⎣

Φ
−1/2
k yk

V
1/2
k μk

⎤⎥⎥⎥⎥⎥⎥⎦. (2.20)

Hence, Equation (2.17) is rewritten to

x̂k = (HH
k Hk)−1HH

k yk
− diag{(HH

k Hk)−1}V−1/2k μk. (2.21)

Similar to [62] and [41], the QR decomposition of the extended channel matrix Hk is given

by

Hk =QR = ⎡⎢⎢⎢⎢⎢⎢⎣
Q1

Q2

⎤⎥⎥⎥⎥⎥⎥⎦R, (2.22)

where R ∈ CNT×NT is an upper triangular matrix, and Q ∈ C(NR+NT )×NT , satisfying QHQ =
INT

. Q1 ∈ CNR×NT and Q2 ∈ CNT×NT are the partitions of Q. We have the following

equations established:

QHHk =QH
1 Φ
−1/2
k ĤkV

1/2
k +QH

2 =R, (2.23)
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QH
1 Q1 +QH

2 Q2 = INT
, (2.24)

Q1R =Φ−1/2k ĤkV
−1/2
k , (2.25)

Q2R = INT
. (2.26)

Substituting Hk with Q1, Q2, and R in Equation (2.21), and defining x̃k =Rx̂k +RV−1/2k ⋅
diag{Q2Q

H
2 }μk, we have

x̃k =QH
1 Φ
−1/2
k y +QH

2 V
−1/2
k μk

=RV−1/2k xk −QH
2 V

−1/2
k (xk −μk) +QH

1 Φ
−1/2
k nk.

(2.27)

We redefine R = RV
−1/2
k , and it is easy to show that R is an upper triangular matrix;

therefore, we can introduce SIC algorithms to estimate the transmitted symbol xk,l. In

Equation (2.27), the first component shows the interference from detected symbols; the

second component reveals the interference from undetected symbols; the third component

denotes the noise. The expected signal is contained in the first and second components. In

SIC, the detection order is significant in system performance [41, 62]. We will discuss the

ordering process in Subsection 2.3.2.

Suppose we are given the detection order p = [NT − 1,⋯,0], and we adjust the mean

vector μk and covariance matrix vk in accordance. When the l-th transmitted symbol is in

detection, with the previous detected symbols, we generate the a posteriori mean μp
k,l′ and

covariance vpk,l′ . According to (2.24), we have μ̃k,l = E{x̃k,l∣xk,l} given by

μ̃k,l = eHl (R −QH
2 V

−1/2
k )el ⋅ xk,l + NT−1∑

l′=l+1
eHl Rel′ ⋅ μp

k,l′ + eHl QH
2 V

−1/2
k elμk,l, (2.28)

and ṽk,l = E{∣x̃k,l − μ̃k,l∣2∣xk,l} given by

ṽk,l = NT−1∑
l′=l+1

∣Rl,l′ ∣2vpk,l′ + 1 − ∣(Q2)l,l∣2. (2.29)
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Based on Equations (2.28) and (2.29), we can compute the conditional pdf p (x̃k,l∣xk,l) given
by

p (x̃k,l∣xk,l = s) = 1

πṽk,l
exp
⎛⎝−∣x̃k,l − μ̃k,l∣2

ṽk,l

⎞⎠, (2.30)

which can be used for the calculation of the extrinsic LLR of the bits associated with the

symbol xk,l, following the same procedure in Subsection 2.2.2.

The a posteriori mean and covariance of the estimated symbols are updated by Equation

(2.7) where the only difference is using the a posteriori LLR of the associated bits provided

by Equation (2.2).

2.3.2 Sorted QR decomposition

Ordering is significant in SIC algorithms due to the error propagation problems. In [62],

a sorting algorithm is proposed for MMSE-SQRD detection; however, it does not consider

an iterative processing. The authors in [41] make a few modifications in turbo equalization

where the a priori information is taken into account. In our case, when the channel estima-

tion errors are considered, we find the extended channel matrix has a similar expression to

the extended channel matrix in [62]. Therefore, the sorting algorithm in [62] will be applied

in our case. The difference is that the extended channel matrix in our case consists of the

a priori information and channel estimation errors, which is specific for turbo equalization

under imperfect channel estimation.

Following the ordering process in [62], we obtain the upper triangular matrix R, and

Q1, Q2, as well as the order p. As indicated in Subsection 2.3.1, p will be used to adjust the

mean vector μk and covariance matrix Vk for MMSE-SQRD detection. After computing

the extrinsic LLR of the associated bits, LE (qkl,m) will be adjust in accordance with the

detection order p as well.
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2.3.3 Complexity Analysis

Compared to the algorithms proposed in [41], the only difference is the extended chan-

nel matrix where ours takes into account channel estimation error. The computation of

the extended channel matrix is of the order of O (NTNR). According to [41], the pro-

posed MMSE-SQRD based turbo equalization has an overall computational complexity in

the order of O (N3
T +N2

TNR +NTM log2M); therefore, the computational complexity of the

proposed turbo equalization that takes into account of the channel estimation error is in

the order of O (N3
T +N2

TNR +NTM log2M). As for the SISO MMSE detection, the com-

putational complexity is in the order of O (NTN
3
R +N2

TNR +NTM log2M). Comparatively,

the computation cost in our proposed turbo equalization is less than that in SISO MMSE

detection when NR ⩾ NT .

2.4 Numerical Simulations

Montel-Carlo simulations are performed to evaluate the performance of the proposed tur-

bo equalization in turbo coded MIMO-OFDM systems with imperfect channel estimation.

Different modulation and coding schemes (MCS) are considered. The system bandwidth is

5MHz with 300 useful subcarriers in use. The Extended Vehicular A (EVA) model is used

in the simulation with the system configuration of NT = 4 transmit antennas and NR = 4
receive antennas. The imperfect channel knowledge is available at the receiver and the

random channel estimation error is generated by independent and identically distributed

(i.i.d.) Gaussian noise.

Figure 2.2 shows the BER performance versus the average SNR at the receiver for

quadrature phase shift keying (QPSK) modulated symbols with effective turbo code rate

of 0.588 (MCS index 6). In the case of perfect channel estimation, as we can see, the
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Figure 2.2: BER performance of the proposed scheme compared to SISO MMSE turbo

equalization, QPSK

Figure 2.3: BER performance of the proposed scheme compared to SISO MMSE turbo

equalization, 16QAM
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Figure 2.4: BER performance of the proposed scheme compared to SISO MMSE turbo

equalization, 64QAM

BER performance of the proposed MMSE-SQRD based turbo equalization is always better

than that of the traditional SISO MMSE turbo equalization. When the channel estimation

error is present, both schemes experience performance degradation. However, the BER

performance of the proposed MMSE-SQRD based turbo equalization always outperforms

that of the MMSE scheme. It is worth noting that at high SNR region, the performance

enhancement is remarkable compared to that in the low SNR region. This phenomenon can

be explained as follows. Apparently, at high SNR region, inter-symbol interference (ISI) is

significant in current symbol detection. By performing successive interference cancelation,

the proposed MMSE-SQRD based turbo equalization can efficiently constrain the error

propagation issue, thus leading to considerable performance gain.

The BER performance for 16QAM with effective code rate of 0.601 (MCS index 9) is giv-

en in Figure 2.3. Similar performance improvement of the proposed MMES-SQRD based

turbo equalization scheme can be seen from Figure 2.3. Though the BER performance
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degradation is caused by imperfect channel estimation, our proposed turbo equalization

scheme can efficiently alleviate this practical issue. Compared to the traditional SISO

MMSE turbo equalization, the proposed turbo equalization achieves better BER perfor-

mance in all iterations.

Figure 2.4 presents the BER performance of 64QAM with effective code rate of 0.754

(MCS index 13). It is clear that the proposed MMSE-SQRD based turbo equalization

scheme outperforms the SISO MMSE turbo equalization scheme. We even find that the

BER performance of the proposed turbo equalization at the first iteration surpasses the

SISO MMSE turbo equalization at the second iteration, which indicates the interference

cancelation is significant in high order modulation schemes.

It is also worth noting that when the channel estimation improves, the BER performance

of the proposed turbo equalization is enhanced as well. Recalling that data detection can

be used to help with channel estimation [63, 64], the system performance will be further

improved if the channel is re-estimated with aided data symbols. Therefore, future work of

this study can be joint data detection and channel estimation by employing the proposed

turbo equalization scheme in both data detection and channel estimation.

2.5 Summary

In this chapter, we conduct the study of the SISO MMSE-SQRD based turbo equaliza-

tion under imperfect channel estimation. We introduce a new extended channel matrix in

developing the MMSE-SQRD detection scheme. The new extended channel matrix takes

into account the channel estimation error and the a priori information (obtained from the

channel decoder). During the detection, the a posteriori information (updated from the

previous estimated transmitted symbol) is also considered in SIC. The ordering process is

adjusted by introducing the new extended channel matrix. Compared to the SISO MMSE
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turbo equalization scheme, the proposed MMSE-SQRD based turbo equalization requires

less computation complexity. Numerical simulations are also conducted in MIMO-OFDM

system with the MIMO size of 4 × 4. Different modulation and coding schemes are used

in the simulation. Simulation results show that the proposed MMSE-SQRD based turbo

equalization scheme outperforms the SISO MMSE turbo equalization scheme when channel

estimation error exists. The performance enhancement is more obvious in high SNR region

where the ISI is severe. The reason can be attributed to efficient restrain of error propaga-

tion and interference cancellation in the proposed MMSE-SQRD based turbo equalization

scheme. Simulation results also reveal that when the channel estimation errors decrease,

the system BER performance improvement is significant. This indicates that using the

detected data to further improve channel estimation can in turn improve data detection

performance, which can be our future research topic.
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Chapter 3

Low Complexity Turbo Equalizers

Conditioned on Channel Estimate

for MIMO Systems

1 In this chapter, we investigate low-complexity turbo equalization schemes conditioned on

channel estimate for MIMO systems. We start from the MMSE-based turbo receivers by

taking into account the channel estimation error and the a priori information provided by

the channel decoder. We then show that under the assumption that all transmit symbols

are independent and with normalized power constraint, our results in the first iteration

degrade to that in [68, 70]. In addition, we show that when the channel estimation error is

1The related work has been published in or submitted to:

• IEEE Transactions on Communications, 2018, under review.

• IEEE Communications Letters, vol. 21, no. 4, pp. 957–960, April 2017.

• Proceedings of the 25th IEEE Newfoundland Electrical and Computer Engineering Conference

(NECEC’16), St. John’s, NL, Canada, November 2016.
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low, the MMSE-based turbo equalization scheme conditioned on channel estimate degrades

to the schemes used in [21] where the channel estimation error is assumed to be independent

from channel estimate. Moreover, we also show that the conventional MMSE-based turbo

equalization scheme, where the channel estimate is directly applied to the equalization

process, can be included as a special case in our MMSE-based turbo equalization conditioned

on channel estimate. Based on the development of the MMSE-based turbo equalization,

we then investigate the SQRD-based turbo equalization conditioned on channel estimate.

Specially, we define the new extended channel matrix where the channel estimation error

and the a priori covariance matrix are considered. Based on that, we develop the SQRD-

based turbo equalization, and successive detection is introduced to complete the symbol

estimation. We also show that the new SQRD-based turbo equalization scheme is a general

expression and the SQRD-based detection schemes in [39,41] are special cases.

The rest of this chapter is organized as follows. The system model is described in Section

3.1, followed by the development of a MMSE-based turbo equalization scheme conditioned

on channel estimate in Section 3.2. In Section 3.3, we develop the SQRD-based turbo

equalization scheme conditioned on channel estimate. After that, we present the numerical

results in Section 3.4. We finally summarize this chapter in Section 3.5.

3.1 System Model

3.1.1 Transmitter and Receiver Architecture

The architecture of the transmitter and receiver is shown in Figure 3.1. As we can see

from Figure 3.1(a), the original bit stream is first sent to the channel encoder. After

encoding, the coded bit stream is interleaved, and then fed into QAM modulator, where

the bits are mapped to QAM symbols. Through a serial-to-parallel convertor, The QAM
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(a) Block diagram of the transmitter

(b) Block diagram of the receiver

Figure 3.1: Schematic diagram of the transmitter and receiver architecture in MIMO sys-

tems

symbols are spread to multiple transmit antennas. This structure is also known as bit-

interleaved coded modulation [48,52,54]. We consider an iterative receiver structure, which

is shown in Figure 3.1(b). From 3.1(b), we can see that two soft-input soft-output (SISO)

modules, i.e., SISO turbo equalizer and SISO turbo decoder, are employed. The turbo

equalizer utilizes the a priori information (which is the extrinsic information from the turbo

decoder), together with the channel estimator output, to accomplish the computation of the

a posteriori information of the bits associated with QAM symbols. In addition, the extrinsic

information of the bits associated with the QAM symbols are obtained, interleaved, and

then fed into turbo decoder as the a priori information of the coded bits. This turbo

structure has been widely studied in [39–41,46,48,49,52–58].

To be specific, we consider a MIMO system with NT transmit antennas and NR receive

antennas. At the transmitter side, the information bit stream, b = [b0, b1,⋯, bK−1]T whereK

is the block length, is first fed into the channel encoder. c = [c0, c1,⋯, cL−1]T corresponds to
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the coded bit stream of length L, and R =K/L is the effective code rate. After interleaving,

q = [q0, q1,⋯, qL−1]T, where q� = Π (cl) and Π (⋅) is the interleaving function. QAM modula-

tor follows, generating the QAM symbol xn =Q (qn), where qn = [qn,0, qn,1,⋯, qn,log2M−1]T,
and Q (⋅) denotes the operation to map log2M bits to a QAM symbol. xn is the transmit

QAM symbol from the n-th transmit antenna, and qn,m denotes the m-th mapping bit of xn.

M is the cardinality of the QAM symbol set χ = {s0, s1,⋯, sM−1}. Let x = [x0, x1,⋯, xNT−1]T
be the symbol vector after spreading to transmit antennas. Passing through the MIMO

channel, the received signal at the receiver side is given by

y =Hx + z, (3.1)

where y = [y0, y1,⋯, yNR−1]T is a complex-valuedNR×1 receiving vector with yr denoting the

received symbol from the r-th receive antenna. H = [h0,h1,⋯,hNT−1] is the channel matrix

with hn ∈ CNR×1 denoting the channel response from the n-th transmit antenna to receive

antennas. z = [z0, z1,⋯, zNR−1]T is the noise vector, satisfying E {zzH} = σ2
zINR

, with each

entry modeled as zero-mean complex Gaussian circularly symmetric (ZMCGCS) random

variable. Although the system model in (3.1) applies to single-carrier MIMO systems over

flat fading channels, it also holds for OFDM/SC-FDMA systems over frequency selective

channel at each subcarrier.

3.1.2 Turbo Structure

We employ the turbo receiver to recover the original bit information as shown in Figure

3.1(b). With the extrinsic information (i.e., log likelihood ratio (LLR) of the coded bits)

from channel decoder, after interleaving, we have LI (q�) = LE (cl). Therefore, the probabil-
ity distribution of q� is given by

P (q� = b) = exp ((2b − 1)LI (q�)/2)
exp (−LI (q�)/2) + exp (LI (q�)/2) , b = 0,1. (3.2)
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With the knowledge of the bit probability associated with a QAM symbol, we derive the

probability of the QAM symbols through

P (xn = si) = log2M−1∏
m=0

P (qn,m = bi,m), (3.3)

where si ∈ χ, i = 0,1,⋯,M −1. bi,m denotes the mth mapping bit of the QAM symbol si. In

addition, we have the a priori mean μn = E{xn} and covariance vn = E{∣xn − μn∣2} given
by

μn = M−1∑
i=0

si ⋅ P (xn = si), (3.4)

vn = M−1∑
i=0
∣si∣2 ⋅ P (xn = si) − ∣μn∣2. (3.5)

μn and vn will be used for the equalization process.

The turbo equalizer outputs the a posteriori LLR, LO (q�). The optimal computation

of LO (q�) is obtained by using the maximum a posteriori (MAP) equalizer, given by

L (qn,m) = ln(P (qn,m = 1∣y)
P (qn,m = 0∣y)) = ln(∑si∈χ1

m
P (xn = si∣y)∑sj∈χ0

m
P (xn = sj ∣y))

= ln( ∑si∈χ1
m
p (y∣xn = si)P (xn = si)∑sj∈χ0

m
p (y∣xn = sj)P (xn = sj)) ,

(3.6)

where χb
m = {si∣si ∈ χ, bi,m = b} is the subset of χ with the mth mapping bit of si, i.e.,

bi,m, is b. It is obvious that Equation (3.6) is computationally prohibitive. In practical

applications, we utilize a symbol-by-symbol detection method; as a result, we first estimate

the transmitted symbol xn, and then derive the LLR of the associated bits to approximate

the optimal L (qn,m). Specifically, after obtaining x̂n, we derive

LO (qn,m) = ln(P (qn,m = 1∣x̂n)
P (qn,m = 0∣x̂n)) = ln( ∑∀si∶si∈χ1

m
P (xn = si∣x̂n)∑∀sj ∶sj∈χ0

m
P (xn = sj ∣x̂n))

= ln( ∑∀si∶si∈χ1
m
p (x̂n∣xn = si) ⋅ P (xn = si)∑∀sj ∶sj∈χ0

m
p (x̂n∣xn = sj) ⋅ P (xn = si)) .

(3.7)

Using the a priori information from turbo decoder, we substitute Equation (3.3) into (3.7),
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yielding

LO (qn,m) = ln⎛⎜⎜⎜⎜⎝
∑∀si∶si∈χ1

m
p (x̂n∣xn = si) ⋅ log2M−1∏

l=0
P (qn,l = bi,l)

∑∀sj ∶sj∈χ0
m
p (x̂n∣xn = sj) ⋅ log2M−1∏

l=0
P (qn,l = bj,l)

⎞⎟⎟⎟⎟⎠
=LE (qn,m) +LI (qn,m) ,

(3.8)

where the extrinsic LLR LE (qn,m) is given by

LE (qn,m) = ln
⎛⎜⎜⎜⎜⎜⎝
∑∀si∶si∈χ1

m
p (x̂n∣xn = si) ⋅ log2M−1∏

l=0,l≠m
P (qn,l = bi,l)

∑∀sj ∶sj∈χ0
m
p (x̂n∣xn = sj) ⋅ log2M−1∏

l=0,l≠m
P (qn,l = bj,l)

⎞⎟⎟⎟⎟⎟⎠
. (3.9)

As shown in Figure 3.1(b), the LE (qn,m) is deinterleaved, providing the a priori LLR of

the coded bits LI (cl) for turbo decoder. Together with the turbo code trellis structure,

after the decoding process, the turbo decoder outputs the a posteriori LLR of the original

information bits and the coded bits LO (cl). The previous one is used for the estimation of

b, while the latter one is used to derive the extrinsic LLR of the coded bits LE (cl).
3.1.3 Imperfect Channel Estimation

The channel estimate used for data detection is obtained through a channel estimator, and

channel estimation is performed on pilot symbols or a training sequence. Similar to the

works in [67, 68,70,71], the estimated channel matrix Ĥ can be modeled as

Ĥ =H +ΔH, (3.10)

where ΔH = [Δh0,Δh1,⋯,ΔhNT−1] indicates the random channel estimation error, and

Δhn is independent and identically distributed, satisfying

E{ΔhnΔhH
m} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 n ≠m

σ2
eINR

n =m
Channel estimation error ΔH are orthogonal to the real channel matrix, i.e., E{ΔH ⋅HH} =
0.

38



3.2 MMSE-Based Turbo Equalization Conditioned on Chan-

nel Estimate

3.2.1 Development of the Proposed Scheme

As channel estimation error is inevitable, considering channel estimation in equalizer design

is significant. Recent studies clearly show that MMSE receiver design conditioned on chan-

nel estimate will greatly enhance the system BER performance. However, none of them

takes into account the a priori information from the channel decoder. In this section, we

present the detailed derivation of the MMSE-based turbo equalization process conditioned

on channel estimate.

To begin with, we present the following theorem:

Theorem 1. Let zi and zj be ZMCGCS random vectors with Σij = E{zizHj }; the condi-

tional zi given zj is complex Gaussian circularly symmetric with E{zi∣zj} =ΣijΣ
−1
jj zj, and

cov {zi,zi∣zj} =Σii −ΣijΣ
−1
jj Σji.

The proof of this theorem can be found in [94]. It is worth noting that this theorem has

been used in [68,70,71] for the derivation.

Before presenting the results of the MMSE-based turbo equalization conditioned on

channel estimate, we first have the following assumptions.

Assumption 1: The noise component is independent from the channel and data sym-

bols.

Assumption 2: Channel estimation error is independent and identically distributed.

Assumption 3: Data symbols are independent from channel data.

Assumption 4: Data symbols are independent from each other.

Assumption 1 to 4 are commonly used in the development of the turbo equalization

schemes in [39,41,67,68,71]. With those assumptions, we have the following theorem.
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Theorem 2. With the received signal model given in Equation (3.1), imperfect channel esti-

mation modeled as Equation (3.10), the a priori mean vector μ = [μ0, μ1,⋯, μNT−1]T where

μn is given by Equation (3.4), the a priori covariance matrix V = cov {x,x} = diag {v},
v = [v0, v1,⋯, vNT−1]T where vn is given by Equation (3.5), we have the MMSE estimation

of n-th transmitted symbol, i.e., x̂n, given by

x̂n =(1 − α)eHnVĤH((1 − α)2ĤVĤH + σ2
nINR

)−1 (y − (1 − α) Ĥμ) + μn, (3.11)

where α = σ2
e

σ2
h
+σ2

e
, σ2

n = σ2
z + ασ2

h ⋅ tr (E{xxH}).
Proof. According to Theorem 1, we have

E{Δhn∣ĥn} = αĥn, (3.12)

cov {Δhn,Δhn∣ ĥn} = ασ2
hINR

, (3.13)

Therefore, we have

E{Δhn ⋅ΔhH
n ∣ĥn} = α2ĥnĥ

H
n + ασ2

hINR
. (3.14)

In addition, we derive the conditional y given the channel estimate matrix Ĥ as

E{y∣Ĥ} =NT−1∑
n=0

E{(ĥn −Δhn)xn∣ĥn} = NT∑
n=1
(1 − α) ĥnμn = (1 − α) Ĥμ. (3.15)

The correlation of the received vector conditioned on channel estimate matrix is obtained

through

E{yyH∣Ĥ} = E ⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝NT∑
n=1
((ĥn −Δhn)xn + z)⎞⎠⎛⎝NT∑

m=1
((ĥm −Δhm)xm + z)⎞⎠

H8888888888888 Ĥ
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(a)= E {zzH} +E ⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝NT∑
n=1
(ĥn −Δhn)xn⎞⎠⎛⎝NT∑

m=1
(ĥm −Δhm)xm⎞⎠

H8888888888888hn

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(b)= σ2

zINR
+E ⎧⎪⎪⎨⎪⎪⎩

NT∑
n=1
((ĥn −Δhn)xn) ((ĥn −Δhn)xn)H88888888888 ĥn

⎫⎪⎪⎬⎪⎪⎭
(c)= σ2

zINR
+ NT∑

n=1
E {xnxHn } ⋅E {(ĥn −Δhn) (ĥn −Δhn)H∣ ĥn},

(3.16)
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where: (a) holds according to Assumption 1; (b) holds by using the Assumption 2 and

4; (c) holds with the Assumption 3.

Using the results in Equation (3.12), (3.13), and (3.14), we have the last component in

the RHS of Equation (3.16) given by

E{(ĥn −Δhn) (ĥn −Δhn)H∣ ĥn}
=(1 − α)2ĥnĥ

H
n + ασ2

hINR
.

(3.17)

By substituting (3.17) into (3.16), we have the correlation of the received vector conditioned

on channel estimate matrix given by

E{yyH∣Ĥ}
=σ2

zINR
+ NT∑

n=1
E{xnx∗n} ((1 − α)2ĥnĥ

H
n + ασ2

hINR
)

=(1 − α)2ĤE{xxH} ĤH + σ2
nINR

.

(3.18)

With the conditional mean E{y∣Ĥ} and correlation E{yyH∣Ĥ}, we obtain the conditional

covariance matrix cov {y,y ∣Ĥ} given by

cov {y,y ∣Ĥ} =E{yyH ∣Ĥ} −E{y ∣Ĥ} ⋅ (E{y ∣Ĥ})H
=(1 − α)2ĤVĤH + σ2

nINR
.

(3.19)

From the received signal model in Equation (3.1), we write the MMSE estimation, x̂n,

as

x̂n =wH
ny + dn. (3.20)

The mean-square error conditioned on channel estimate matrix Ĥ is then given by

J =E{∣x̂n − xn∣2∣ Ĥ}
=wH

nE{yyH ∣Ĥ}wn + 2wH
nE{y ∣Ĥ}d∗n

− 2wH
nE{yx∗n ∣Ĥ} + ∣dn∣2 − 2dnμ∗n +E{xnx∗n} .

(3.21)
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By letting the partial derivative of J with respective to wn and dn be zeros, we have

∂J

∂wn
= 2E{yyH∣Ĥ}wn + 2E{y∣ Ĥ}d∗n − 2E{yx∗n∣ Ĥ} = 0, (3.22)

∂J

∂dn
= 2wH

nE{y∣ Ĥ} + 2dn − 2μn = 0. (3.23)

The solutions to Equations (3.22) and (3.23) are given by

dn = μn −wH
nE{y∣ Ĥ}, (3.24)

wn = (cov {y,y∣ Ĥ})−1 cov (y, xn∣ Ĥ). (3.25)

Substituting the results in Equations (3.15) and (3.19) to Equation (3.20), we arrive at

Equation (3.11), hence completing the proof of Theorem 2.

When xn is under detection, replacing μn and vn in Equation (3.11) with μn = 0, vn = 1,
we then obtain the new expression of the estimation given by

x̂n =κn (1 − α)eHn ĤH((1 − α)2ĤVĤH + σ2
nINR

)−1 (y − (1 − α) Ĥμ) + κn(1 − α)2ρnμn,

(3.26)

where

κn = (1 + (1 − α)2 (1 − vn)ρn)−1,
ρn = eHn ĤH((1 − α)2ĤVĤH + σ2

nINR
)−1Ĥen,

3.2.2 LLR Computation

The scalar κn (1 − α) is presented at both the signal and noise components at the right

hand side (RHS) of Equation (3.26); therefore, it can be ignored for the derivation of the

conditional probability density function p (xn∣x̂n). Equation (3.26) then becomes

x̂n =eHn ĤH((1 − α)2ĤVĤH + σ2
nINR

)−1 (y − (1 − α) Ĥμ) + (1 − α)ρnμn. (3.27)
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With the common assumption that the output from the equalizer follows Gaussian distri-

bution, we rewrite the MMSE estimation in Equation (3.27) into

x̂n = βnxn + ζn, (3.28)

where the equivalent channel gain, βn, is given by

βn = (1 − α)ρn, (3.29)

and the covariance of the residual interference plus noise, i.e., v̂n = E{ζnζHn }, is given by

v̂n = ρn (1 − (1 − α)2ρnvn) . (3.30)

Therefore, according to Equation (3.28), the conditional probability density function p (x̂n∣xn)
is given by

p (x̂n ∣xn = si ) = 1

πv̂n
exp(−∣x̂n − (1 − α)ρnsi∣2

v̂n
) . (3.31)

The conditional probability density function p (x̂n∣xn = si) will be used in Equation (3.7)

for the computation of the a posteriori LLR of the associated bits.

3.2.3 Discussion

1) A Priori Information is Unavailable

In this case, the a priori LLR of the associated bits is set to 0; hence, the a priori mean

vector μ = 0, and the covariance matrix V = INT
. With the zero mean vector and the unit

covariance matrix in Equation (3.11), we arrive at

x̂n = (1 − α) eHn ĤH((1 − α)2ĤĤH + (σ2
z + αNTσ

2
h) INR

)−1y. (3.32)

The expression in Equation (3.32) is the same as the linear MMSE detection scheme con-

ditioned on channel estimate derived in [68], and the MMSE-based compensation scheme

in [71]. That is to say, their results can be seen as a special case in our scheme.
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2) Turbo Equation with Perfect Channel Knowledge

In this case, α = 0, and the expression in Equation (3.11) reduces to

x̂n = eHnVHH(HVHH + σ2
zINR
)−1 (y −Hμ) + μn, (3.33)

which is the widely used MMSE-based turbo equalization with perfect channel estimation

[39,41].

3) Turbo Equalization under Imperfect Channel with Small Channel Estimation Error

When the channel estimation error is much smaller compared to the real channel data,

i.e., σ2
e ≪ σ2

h, we derive α ≈ 0, ασ2
h ≈ σ2

e . Therefore, Equation (3.11) becomes

x̂n =eHnVĤH(ĤVĤH + (σ2
z + σ2

e ⋅ tr (E{xxH})) INR
)−1 (y − Ĥμ) + μn, (3.34)

which is the expression derived in [21,39].

It is worth noting that in the case of σ2
e ≪ σ2

h, from Equation (3.12) and (3.13), we have

E{Δhn∣ĥn} ≈ 0 and cov {Δhn,Δhn∣ ĥn} = σ2
eINR

. Alternatively, we can approximately

view that the channel estimation error is independent from the channel estimate matrix,

which is the assumption used in [21,39]. Therefore, we release the conditions used in [21,39]

and develop the MMSE estimation conditioned on channel estimate in a general channel

estimation error condition.

4) Conventional MMSE-based Turbo Equalization

In this case, by setting α = 0, we have

x̂n = eHnVĤH(ĤVĤH + σ2
zINR
)−1 (y − Ĥμ) + μn, (3.35)

where we can see that the channel estimate is directly applied to the equalization process.

Therefore, we can see the derivation provided in Equation (3.11) is a general expression

where existing MMSE-based detection schemes can be seen as special cases.
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3.3 SQRD-Based Turbo Equalization Conditioned on Chan-

nel Estimate

3.3.1 The Re-development of SQRD-based Turbo Equalization

We rewrite the MMSE estimation in Equation (3.11) in matrix format, given by

x̂ =(1 − α)VĤH((1 − α)2ĤVĤH + σ2
nINR

)−1 (y − (1 − α) Ĥμ) +μ. (3.36)

Based on Equation (3.36), we define a new received vector as

⌢
y = (1 − α)VĤH((1 − α)2ĤVĤH + σ2

nINR
)−1y.

We then rewrite
⌢
y as 2

⌢
y =(1 − α)V 1

2 ((1 − α)2V 1
2 ĤHĤV

1
2 + σ2

nINT
)−1V 1

2 ĤHy

=(1 − α) ((1 − α)2ĤHĤ + σ2
nV
−1)−1ĤHy.

(3.37)

Define the new extended channel matrix as

H = ⎡⎢⎢⎢⎢⎢⎢⎣
(1 − α) Ĥ
σnV

− 1
2

⎤⎥⎥⎥⎥⎥⎥⎦,
we can rewrite the new received vector

⌢
y as

⌢
y = (1 − α) (HHH)−1ĤHy. (3.38)

It is worth noting that the format of Equation (3.38) is typically introduced in SQRD-

based equalization, for example, [22, 39, 41, 62]. Performing QR decomposition on the new

extended channel matrix H, i.e.,

H =QR = ⎡⎢⎢⎢⎢⎢⎢⎣
P

T

⎤⎥⎥⎥⎥⎥⎥⎦R, (3.39)

2Using GH(GGH + σ2
nI)

−1
= (GHG + σ2

nI)
−1
GH, and letting G = (1 − α) ĤV

1
2 , the derivation is obtained
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we have the following governing conditions satisfied:

PR = (1 − α) Ĥ, (3.40)

TR = σnV− 1
2 , (3.41)

PHP +THT = INT
, (3.42)

(1 − α)PHĤ + σnTHV−
1
2 =R. (3.43)

R and T are upper and triangular matrices, respectively. Let ỹ = PHy, we have

ỹ =PHĤx −PHΔHx +PHz

=Rx − σnTHV−
1
2x + αPHĤx −PHΔHx +PHz,

(3.44)

where Equation (3.43) is used for the above derivation.

As R is an upper triangular matrix, we introduce a back-forward method for data

detection. Specially, we extract ỹn = eHn ỹ from Equation (3.44), i.e.,

ỹn =eHn (R − σnTHV−
1
2 )enxn + NT−1∑

l=n+1
Rn,lxl

− σn n−1∑
l=0

Tn,lxl + αeHnPHĤx − eHnPHΔHx + eHnPHz.

(3.45)

ỹn will be used for the estimation of xn. The RHS of Equation (3.45) contains six compo-

nents: the first component denotes the expected signal component; the second component

contributes to the interference from the previous detected data symbols; the third compo-

nent indicates the interference from undetected data symbols; the fourth and fifth compo-

nents are the interference introduced by imperfect channel estimation; the last component

is attributed to the noise.

We compute the conditional mean μ̃n = E {ỹn∣xn, Ĥ} and covariance ṽn = cov {⌢yn, ⌢yn∣xn, Ĥ},
given by

μ̃n =eHn (R − σnTHV−
1
2 )enxn + NT−1∑

l=n+1
Rn,lμ

P
l − σn n−1∑

l=0
Tn,lμl, (3.46)

46



ṽn =(1 − α)2eHnPHĤ (V − vneneHn ) ĤHPen + σ2
ne

H
nP

HPen

=eHn (R − σnTHV−
1
2 ) (V − vneneHn ) ⋅ (R − σnTHV−

1
2 )Hen + σ2

ne
H
nP

HPen

=eHnR (V − vneneHn )RHen + σ2
ne

H
nP

HPen + σ2
ne

H
nT

HV−
1
2 (V − vneneHn )V− 1

2Ten

=NT−1∑
l=n+1

∣Rn,l∣2vPl + σ2
n − σ2

ne
H
nT

HTen

=NT−1∑
l=n+1

∣Rn,l∣2vPl + σ2
n − σ2

n∣Tn,n∣2,

(3.47)

where μP
l and vPl denote the a posteriori mean and covariance of the already detected data

symbols. From Equation (3.45), we perform soft interference cancelation, i.e., using the a

priori information from channel decoder for the undetected data symbols, and using the a

posteriori information from the previous detected data symbols, leading to

⌣
yn = ỹn − NT−1∑

l=n+1
Rn,lμ

P
l + σn n−1∑

l=0
Tn,lμl, (3.48)

and we can easily derive the conditional mean
⌣
μn = E {⌣yn ∣xn, Ĥ} and covariance

⌣
vn =

cov {⌣yn, ⌣yn∣xn, Ĥ}, given by

⌣
μn = eHn (R − σnTHV)enxn, (3.49)

⌣
vn = NT−1∑

l=n+1
∣Rn,l∣2vPl + σ2

n − σ2
n∣Tn,n∣2. (3.50)

Based on Equations (3.49) and (3.50), and following the Gaussian output assumption, we

derive the conditional probability density function p(⌣yn∣xn = si) given by

p (⌣yn∣xn = si) = 1

π
⌣
vn

exp

⎛⎜⎜⎝−
∣⌣yn − ⌣μn∣2

⌣
vn

⎞⎟⎟⎠. (3.51)

Replacing p (x̂n∣xn = si) in Equation (3.7) with p (⌣yn∣xn = si), and following the process

from Equation (3.7) to (3.9), we derive the a posteriori LLR LO (qn,m) and the extrinsic

LLR LE (qn,m) of the associated bits. LE (qn,m) will be used for the channel decoder.
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As we introduced a successive interference cancelation manner for data detection, the

a posteriori LLR of the associated bits is required to compute the a posteriori mean and

covariance for later data detection, which is presented in Equations (3.48), (3.49), and

(3.50). By collecting the a posteriori LLR of all the bits associated with xn, i.e., L
O
n =[LO (qn,0) , LO (qn,1) ,⋯, LO (qn,log2M−1)], we derive the a posteriori probability of xn given

by

P (xn = si∣LO
n ) = log2M−1∏

m=0
P (qn,m = bi,m∣LO (qn,m)), (3.52)

where

P (qn,m = b∣LO (qn,m)) = exp ((2b − 1)LO (qn,m)/2)
exp (LO (qn,m)/2) + exp (LO (qn,m)/2) .

In addition, the a posteriori mean μP
n and covariance vPn are computed as

μp
n = ∑∀si,si∈χ si ⋅ P (xn = si∣LO

n ), (3.53)

vpn = ∑∀si,si∈χ ∣si∣2 ⋅ P (xn = si∣LO
n ) − ∣μp

n∣2. (3.54)

μP
n and vPn are used in Equation (3.48) for soft interference cancelation of the detected

symbols, and Equation (3.50) for computing the conditional covariance
⌣
vn.

We hereby present the SQRD-based turbo equalization algorithm in Algorithm 3.1.

3.3.2 Sorted QR Decomposition Algorithm

As the SQRD-based turbo equalization introduces a successive detection manner, we need

to obtain the optimal detection order to avoid error propagation issue. That is to say,

∣RNT−1,NT−1∣ is maximized, followed by the maximization of ∣RNT−2,NT−2∣, and so on. How-

ever, in the Gram-Schmidt procedure of the QR decomposition algorithm, the computation

of the diagonal elements of R is in an opposite order, from ∣R0,0∣ to ∣RNT−1,NT−1∣. The al-

ternative solution to this difficulty is to minimize ∣Rk,k∣ in the order it is computed. This is
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Table 3.1: Algorithm 3.1: SQRD-based Turbo Equalization

Input: Channel estimate Ĥ, channel estimation error σ2
e , noise covariance

σ2
z , the a priori LLRs of the associated bits LI (qn,m);

Output: The extrinsic LLRs of the associated bits LE (qn,m).
Initialization:

1. Compute the a priori mean vector μ, and the a priori covariance

matrix V through Equations (3.2) to (3.5);

2. Compute α = σ2
e

σ2
h
+σ2

e
, σ2

n = σ2
z + ασ2

h ⋅ tr (E{xxH}), and construct

the new extended channel matrix H;

3. Perform sorted QR decomposition on H to obtain P, T, R, and the detection order p;

4. Rearrange μ, V according to p;

Preprocessing:

5. Compute ỹ = PHy, and obtain ỹn;

Successive Interference Cancelation:

6. for n = NT − 1 ∶ −1 ∶ 0;
7. Compute

⌣
yn according to Equation (3.48);

8. Compute the conditional probability density function

p(⌣yn∣xn = si) based on Equation (3.51);

LLR Computation:

9. Compute the a posteriori and extrinsic LLRs, i.e., LO (qn,m)
and LE (qn,m) through Equations (3.7) to (3.9);

10. Compute the a posteriori mean μP
n and covariance vPn according

to Equations (3.53) and (3.54).

11. end

Return LE (qn,m).
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motivated by the fact that the data symbol detected latter affects fewer other users, hence a

small SINR is expected. Therefore, the sorted QR decomposition algorithm is summarized

in Algorithm 3.2.

3.3.3 Schemes Generalization and Discussion

1) SQRD-based Turbo Detection under Perfect Channel Estimation

With perfect channel knowledge, i.e., σ2
e = 0 and α = 0, the extended channel matrix is

equivalent to that derived in [41,60]. In addition, if the a priori information is unavailable,

i.e., V = INT
, then the extended channel matrix is reduced to the one used in [62] where

SQRD based detection scheme is first introduced. Therefore, the ideal cases discussed

in [41,60] and [62] can be seen as special cases in our proposition.

2) SQRD-based Turbo Detection under Imperfect Channel with Small Channel Estima-

tion Error

In this case, the expression in Equation (3.35) is reduced to the expression used in [39]

where the assumption of the independence of the channel estimation error and the channel

estimate is used. Therefore, the SQRD-based turbo equalization scheme studied in [39] can

be seen as a special case as well in our proposition.

3)Conventional SQRD-based Turbo Detection under Imperfect Channel Estimation

In this case, the channel estimate is directly applied to SQRD-based detection process.

This is equivalent to set α = 0 but the channel estimate error is present.

To summarize, we can see the derived SQRD-based turbo equalization conditioned on

channel estimate is a general expression for SQRD-based detection scheme and existing

works in [39, 41,62] are special cases.
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Table 3.2: Algorithm 3.2: Sorted QR Decomposition

Input: The extended channel matrix H, NR and NT ;

Output: The unity matrix Q = ⎡⎢⎢⎢⎢⎢⎢⎣
P

T

⎤⎥⎥⎥⎥⎥⎥⎦, upper triangular matrix R and

detection order p.

Initialization:

1. Q =H, R = 0, and p = [0,1,⋯,NT − 1]T;
2. for n = 0 ∶ 1 ∶ (NT − 1)
3. Compute the norm of the n-th column vector in Q as Normn = eHnQHQen;

4. end;

Gram-Schmidt Procedure:

5. for n = 0 ∶ 1 ∶ (NT − 1)
6. find k = argminm=n+1,⋯,NT−1Normm;

7. Exchange the n-th and k-th columns in R, p, and Norm,

and the first NR + n rows in Q, and exchange the elements

QNR+n,n and QNR+k,k;

8. Compute Rn,n = √Normn, and update the n-th column in

Q as Q∶,n =Q∶,n/Rn,n;

9. for m = n + 1 ∶ 1 ∶ (NT − 1)
10. Compute the Rn,m = eHnQHQem, and update the m-th

column vector in Q as Q∶,m =Q∶,m −Rn,mQ∶,n, and

Normm =Normm − ∣Rn,m∣2;
11. end

12. end

Return P, T, R, and p.
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3.3.4 Computational Complexity Analysis

We use the number of floating-point operations (flops) to evaluate the computational com-

plexity [41]. The main computations include the computations in SQRD algorithm in

Algorithm 2 and the turbo equalization process in Algorithm 1. From Algorithm 2,

we can derive the complexity of the SQRD algorithm is in the order of O (N3
T +N2

TNR). For
SQRD-based turbo equalization, the preprocessing requires O (NTNR) flops. For the esti-

mation of each transmitted symbol in the turbo equalization, it mainly includes soft inter-

ference cancelation (which requires O (NTNR) flops), computing the LLRs (which consumes

O (M2M) flops). Therefore, the overall computational complexity of the SQRD-based turbo

equalization is in the order of O (N3
T +N2

TNR +NTM2M). Compared to complexity of the

MMSE-based turbo equalization which is in the order of O (N2
TNR +NTN

3
R +NTM2M),

we can see the SQRD-based turbo equalization conditioned on channel estimate has lower

complexity when NT ≤ NR.

3.4 Performance Evaluation and Discussions

We use Monte-Carlo simulations to study the performance of the proposed MMSE-based

turbo equalization with imperfect channel estimation. We define λ = σ2
e/σ2

n to describe the

channel estimation error level, and let λ = 0, 0.1, 0.2, and 0.5. λ= 0 indicates the ideal

case where perfect channel knowledge is available at the receiver. The other values from λ=

0.1 to λ= 0.5 indicate the channel estimation error becoming increasingly severe. A 4 × 4
MIMO system and Turbo code with the code rate of 1/2 are considered. To facilitate the

comparison, we denotes the mentioned schemes discussed in previous Sections as follows.

• Scheme 1: Conventional MMSE-based Turbo Equalization. This is the case

where the channel estimate is directly applied to the equalization process. In this
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Figure 3.2: BER performance of the MMSE-based turbo equalization schemes, 1/2 Turbo

code, QPSK, 4 × 4 MIMO: λ = 0 and λ = 0.1.

Figure 3.3: BER performance of the MMSE-based turbo equalization schemes, 1/2 Turbo

code, QPSK, 4 × 4 MIMO: λ = 0.2 and λ = 0.5.
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case, α = 0, and σ2
n = σ2

z ;

• Scheme 2: MMSE-based Turbo Equalization with Channel Estimation Er-

ror Independent From Channel Estimate. This corresponds to the turbo equal-

ization scheme in [21, 39]. In this scheme, α = 0, and σ2
n = σ2

z + σ2
e ⋅ tr (E{xxH}). We

have shown that when channel estimation error is sufficiently low, this scheme per-

forms almost the same as the proposed MMSE-based turbo equalization conditioned

on channel estimate;

• Scheme 3: Proposed MMSE-based Turbo Equalization Conditioned on

Channel Estimate. This corresponds the derived general MMSE-based turbo e-

qualization conditioned on channel estimate. In this case, α = σ2
e

σ2
h
+σ2

e
, σ2

n = σ2
z + ασ2

h ⋅
tr (E{xxH});

• Scheme 4: Conventional MMSE-SQRD Based Turbo Equalization. In this

scheme, the channel estimate is directly applied to the SQRD-based turbo equalization

even if channel estimation error is presented. In this case, α = 0, and σ2
n = σ2

z , are

used for the development;

• Scheme 5: MMSE-SQRD Based Turbo Equalization with Channel Esti-

mation Error Independent From Channel Estimate. This corresponds to the

turbo equalization scheme in [39]. In this case, α = 0, and σ2
n = σ2

z + σ2
e ⋅ tr (E{xxH}),

are used in the development. When channel estimation error is sufficiently low, this

scheme performs almost the same as the proposed MMSE-SQRD based turbo equal-

ization conditioned on channel estimate as we show in Section 3.3.3;

• Scheme 6: MMSE-SQRD Based Turbo Equalization Conditioned on Chan-

nel Estimation. This corresponds to the proposed general expression of the MMSE-

SQRD based turbo equalization scheme where α = σ2
e

σ2
h
+σ2

e
, σ2

n = σ2
z +ασ2

h ⋅ tr (E{xxH}).
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Figure 3.4: BER performance of the MMSE-SQRD based turbo equalization schemes, 1/2

Turbo code, QPSK, 4 × 4 MIMO: λ = 0 and λ = 0.1.
It is worth pointing out that when λ = 0, i.e., perfect channel estimation is available,

Scheme 1 and 2 are equivalent to Scheme 3, and Scheme 4 and 5 are equivalent to

Scheme 6. This is because α = 0 in this ideal case. Besides, the initial estimation of all

schemes degrade to the linear detection schemes.

Figure 3.2 and 3.3 present the BER performance comparison of the discussed MMSE-

based turbo equalization schemes where QPSK modulation is adopted in the evaluation.

In Figure 3.2(a), we present the results with perfect channel estimation as a benchmark

for comparison. As we can see in Figure 3.2 and 3.3, when channel estimation error be-

comes increasingly severe, the system BER performance of all schemes has shown much

obvious degradation. In addition, the performance of the Scheme 1 becomes worse when

the channel estimation error increases, while Scheme 2 and Scheme 3 have shown much

enhanced system BER performance comparatively. These results reveal that convention-

55



Figure 3.5: BER performance of the MMSE-SQRD based turbo equalization schemes, 1/2

Turbo code, QPSK, 4 × 4 MIMO: λ = 0.2 and λ = 0.5.
al MMSE-based turbo equalization scheme where channel estimate is directly applied to

the equalization process performs very bad when channel estimation error is presented.

Moreover, in the working SNR region for this 4 × 4 MIMO system with QPSK modulation

adopted, the MMSE-based turbo equalizer can be designed with the assumption that the

channel estimation error is independent from the channel estimate.

The BER performance of the discussed MMSE-SQRD based turbo equalization schemes

are presented in Figure 3.4 and 3.5, where QPSK modulation is adopted. Again, with the

increase of channel estimation error, BER performance degradation appears in all turbo

detection schemes. Specifically, we note that when channel estimation error is severe, for

example, λ = 0.5, Scheme 4, i.e., the conventional MMSE-SQRD based turbo equalization

scheme performs worst, while Scheme 5 and Scheme 6 gain about 2.4dB and 2.7dB in

the initial iteration at the BER level 10−4, respectively, and these corresponding gains are
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Figure 3.6: BER performance comparison, 1/2 Turbo code, 16QAM, 4 × 4 MIMO: λ = 0.1
increased to 2.9dB and 3.2dB after 2 iterations, respectively. Besides, It is worth noting that

in this particular 4 × 4 MIMO system with QPSK modulation adopted, Scheme 6 shows

much improved BER performance compared to Scheme 5. This is a little different from the

results of the MMSE-based turbo equalization schemes. The difference can be attributed to

the SIC introduced in MMSE-SQRD based turbo equalization. Although the development

of the MMSE-SQRD based turbo equalization scheme is based on the expression provided

by MMSE-based turbo equalization, SIC can enlarge the gain of the previous detection. As

a result, latter detected symbols will benefit from the detection gain obtained in previous

symbol detection.

In Figure 3.6, we show the BER performance of all discussed detection schemes when

λ = 0.1 and 16QAM modulation is adopted. From 3.6, we can see when channel estimation

error is not severe, the linear detection schemes perform almost the same, within 0.5dB at

BER level 10−4. However, with iterations, we can see that:
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Figure 3.7: BER performance comparison, 1/2 Turbo code, 16QAM, 4 × 4 MIMO: λ = 0.5
• The BER performance of Scheme 1 performs the worst at all iterations;

• The performance of the Scheme 2 and Scheme 3 are almost the same; the perfor-

mance of the Scheme 5 and Scheme 6 are very close;

• The MMSE-SQRD based turbo equalization schemes have shown much better per-

formance after two iterations. To be specific, compared to the Scheme 1, the SNR

reduction at BER level of 10−4 for Scheme 4, Scheme 5, and Scheme 6, are about

0.75dB, 0.98dB, and 1dB, respectively.

These results indicate that in this case and working SNR region, the MMSE-based and

MMSE-SQRD based turbo equalization schemes will degrade to the conventional MMSE-

based and MMSE-SQRD based turbo equalization schemes.

With comparatively severe channel estimation error conditions where λ = 0.5, the BER

performance of the 16QAM modulated symbols in a 4 × 4 MIMO system is shown in Fig-

ure 3.7. In this case, it is clear that when channel estimation error becomes significant,

58



the working SNR region will be high. However, we can see that in this server channel

estimation error conditions, both conventional MMSE-based and MMSE-SQRD based tur-

bo equalization schemes have shown significant performance loss compared to the case of

perfect channel estimation. However, the design of the turbo equalization schemes which

consider channel estimation error in the development can greatly improve the overall sys-

tem performance comparatively. Specifically, compared to the performance of the Scheme

1, at the BER level of 10−4, Scheme 2 and Scheme 3 achieve about 1.5dB gain in the

linear detection, whereas Scheme 5 and Scheme 6 obtain 1.7dB. With iterations, the

corresponding gains for Scheme 2 and Scheme 3 increase to 2.5dB, and Scheme 5 and

Scheme 6 achieves about 2.75dB and 2.9dB SNR reduction, respectively. It is worth not-

ing the performance gain of the linear MMSE-based detection scheme has been revealed

in [68, 70, 71]. However, we have shown that with iterations, we can achieve much better

enhanced system BER performance for both the MMSE-based and MMSE-SQRD based

turbo equalization schemes.

3.5 Summary

In this chapter, we have investigate the turbo equalization schemes conditioned on the

channel estimate. We have shown the derivations of both the proposed MMSE-based and

MMSE-SQRD based turbo detection schemes are general expressions, while existing MMSE-

based MMSE-SQRD based turbo equalization schemes can be seen as special cases. We

then conduct numerical simulations to evaluate the system BER performance in a 4×4 MI-

MO system with both QPSK and 16QAM modulations adopted. Compared to the perfect

channel estimation conditions, we have shown significant performance degradation for all

detection schemes when channel estimation error is presented. However, within all those

detection schemes, the conventional MMSE-based and MMSE-SQRD based turbo equaliza-
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tion schemes have shown significant performance loss. The results clearly indicate that the

development of the turbo equalization schemes with channel estimation error in considera-

tion will greatly help with the improvement of the system BER performance. We have also

shown that in proper working SNR region, the proposed MMSE-based and MMSE-SQRD

based turbo equalization schemes conditioned on channel estimate will behave similarly to

the corresponding turbo equalization schemes with the assumption that channel estimation

error is independent from channel estimate. However, we also show in MMSE-SQRD based

turbo equalization schemes, due to the SIC manner in detection, the proposed MMSE-SQRD

based turbo equalization scheme conditioned on channel estimate has shown better system

performance compared to the MMSE-based turbo equalization scheme with the assumption

that channel estimation error is independent from channel estimate.
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Chapter 4

A New SQRD-based Soft

Interference Cancelation Scheme in

Multi-user MIMO SC-FDMA

Systems

1 In this chapter, we investigate SQRD-based data detection and soft interference cancela-

tion in multiuser multiple-input multiple-output (MIMO) single-carrier frequency division

multiple access (SC-FDMA) system. The SC-FDMA system has shown a block transmis-

sion property, while the symbol detection is independent over each subcarrier for a OFDM

system. We propose a new SQRD-based multi-user detection scheme by utilizing the a

1The related work has been published in:

• IEEE Communications Letters, vol. 21, no. 4, pp. 821–824, April 2017.

• Proceedings of the 24th IEEE Newfoundland Electrical and Computer Engineering Conference

(NECEC15), St. John’s, NL, Canada, November 2015.
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priori information from the channel decoder in the decomposition process through the use

of a new extended channel matrix. The received signal vector for the current user’s data

detection can be categorized into the expected signal, the interference, and the noise com-

ponents, where the interference includes those from both the detected and the undetected

users. Soft interference cancelation is then performed on the data. The residual interference

from the detected users can be easily obtained due to the use of successive interference can-

celation, whereas the interference from the undetected users can be obtained by using the

a priori information from channel decoder. We further consider on how to extract the ex-

pected signal from the interference component, thus further improving the SINR conditions

at the receiver. Simulation results show that the proposed scheme significantly improves

the BER performance compared to the original SQRD-based multiuser detection scheme

and the MMSE-based turbo receivers.

The rest of this chapter is organized as follows. In Section 4.1, we present the system

model of the multi-user MIMO SC-FDMA system. Following that, we provide the detail

derivation of the proposed new SQRD-based soft interference cancelation scheme in Section

4.2. We then present the numerical simulation results in Section 4.3. Finally, the conclusions

are drawn in Section 4.4.

4.1 System Model

We study the uplink transmission for a multi-user SC-FDMA system. The base station (BS)

is equipped with NR receive antennas and serves NU users, each equipped with a single

omni-directional antenna. The block diagram of transmitter and receiver architecture is

shown in Figure 4.1.

At the transmitter side, for user l, the information bit stream (of length K), bl =
[bl0,⋯, blK−1]T is first fed into the Turbo encoder to generate an output stream of length L,
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(a) Block diagram of the transmitter

(b) Block diagram of the receiver

Figure 4.1: Schematic diagram of the transmitter and receiver architecture in MIMO SC-

FDMA systems

cl = [cl0,⋯, clL−1]T, where the effective code rate R =K/L. The output from the interleaver,

ql = [ql0,⋯, qlL−1]T is QAMmodulated to produce the symbol block sl = [sl0,⋯, slN−1]T, where
sln = Q ([qln,0,⋯, qln,log2M−1]), and M is the cardinality of the QAM symbol set χ. After

N -point DFT operation, we obtain the frequency domain symbol vector xl = [xl0,⋯, xlN−1]T,
where xl = FNsl, and the symbols over the k-th subcarrier for all users can then be denoted

as xk = [x0k,⋯, xNU−1
k ]T. For data symbols from all users over all subcarriers, denoted by

x = [xT
0 ,⋯,xT

N−1]T, we have

x = (FN ⊗ INU
) s, (4.1)

where the time domain symbol vector for all users are s = [sT0 ,⋯, sTN−1]T and sn = [s0n,⋯, sNU−1
n ]T.

The received signal over the k-th subcarrier in the frequency domain is

yk =Hkxk + zk, (4.2)

where zk is the additive Gaussian noise satisfying E{zk} = 0 and E{zkzHk } = σ2
zINR

. Hk
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represents the frequency domain channel matrix on the k-th subcarrier. An iterative receiver

architecture, as shown in Figure 4.1(b), is considered in this work, where the extrinsic

information is exchanged between SISO decoder and SISO detector.

4.2 Sorted QR Decomposition Based Soft Interference Can-

celation Scheme

4.2.1 SISO MMSE Detection

From Equation (4.2), collecting the received symbols over all subcarriers, we have

y =Hx + z = H (FN ⊗ INU
) s + z, (4.3)

where y = [yT
0 ,⋯,yT

N−1]T, z = [zT0 ,⋯,zTN−1]T, and H is the frequency domain channel

matrix, given by

H =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0

H1

⋱
HN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.4)

With the a priori information from the channel decoder, we have the mean vector μ =
[μT

0 ,⋯,μT
N−1]T, where μn = [μ0

n,⋯, μNU−1
n ]T, and the covariance matrixC = diag{[vT

0 ,⋯,vT
N−1]T},

where vn = [v0n,⋯, vNU−1
n ]T, with

μl
n = ∑∀s,s∈χ s ⋅ P (sln = s), (4.5)

vln = ∑∀s,s∈χ ∣s∣2 ⋅ P (sln = s) − ∣μl
n∣2, (4.6)
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and P (sln = s) = log2M−1∏
m=0

P (qln,m = b). Assuming the same covariance for symbols from the

same user, the MMSE estimation is then given by

ŝ =(FH
N ⊗ INU

)HH(HVHH + σ2
zI)−1

⋅ (y −H (FN ⊗ INU
)μ) + ρμ, (4.7)

where V = IN ⊗ V̄, V̄ = diag{[v̄0,⋯, v̄NU−1]}, v̄l = 1
N

N−1∑
n=0

vln; ρ = diag{[ρT
0 ,⋯,ρT

N−1]T},
ρn = [ρ0n,⋯, ρNU−1

n ]T, and ρln is given by

ρln = ρl = 1

N

N−1∑
k=0

eHk H
H
k (HkV̄H

H
k + σ2

zINR
)−1Hkek. (4.8)

4.2.2 QR decomposition Based Soft Interference Cancelation

Inspired by the work in [22], we propose a new sorted QR decomposition based scheme for

soft interference cancelation. We first define a new extended channel matrix as

Hk =
⎡⎢⎢⎢⎢⎢⎢⎣
σ−1z HkV̄

1/2

INU

⎤⎥⎥⎥⎥⎥⎥⎦. (4.9)

The new extended channel matrix includes the a priori covariance matrix, which is not

considered in [22]. In iterative procedure, V̄, as well as Hk will be updated based on the

renewed a priori information from channel decoder.

The extended channel matrix can be then decomposed as

Hk =QkRk =
⎡⎢⎢⎢⎢⎢⎢⎣
Pk

Tk

⎤⎥⎥⎥⎥⎥⎥⎦Rk, (4.10)

with the following governing conditions satisfied

QH
k Hk = σ−1z PH

k HkV̄
1/2 +TH

k =Rk, (4.11)

QH
k Qk = PH

k Pk +TH
k Tk = INU

, (4.12)

PkRk = σ−1z HkV̄
1/2, (4.13)
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TkRk = INU
, (4.14)

where Rk and Tk are upper triangular matrices, respectively.

Let ỹk = σ−1z PH
k yk, and through Equation (4.11), we have

ỹk =RkV̄
−1/2xk −TH

k V̄
−1/2xk + σ−1z PH

k zk. (4.15)

To simplify the matrix representation, we define Rk = RkV̄
−1/2, Tk = TH

k V̄
−1/2, and

Pk = σ−1z PH
k . It is easy to derive that Rk and Tk are upper and lower triangular matrices,

respectively. We identify the l-th received signal at the k-th subcarrier, ỹk,l = eHl ỹk, i.e.,

ỹk,l =(R(l,l)k −T(l,l)k )xlk + NU−1∑
�=l+1

R
(l,�)
k x�k

− l−1∑
�=0

T
(l,�)
k x�k + NR−1∑

�=0
P
(l,�)
k z�k,

(4.16)

where R
(l,�)
k , T

(l,�)
k , and P

(l,�)
k are the l-th row, -th column element in Rk, Tk, and Pk,

respectively.

By collectively considering the received symbols of user l over all sub-carriers defining

as ỹl = [ỹ0,l,⋯, ỹN−1,l]T, we have

ỹl =(R(l,l) −T(l,l))FNsl + NU−1∑
�=l+1

R(l,�)FNs�

− l−1∑
�=0

T(l,�)FNs� + NR−1∑
�=0

P(l,�)z�
(4.17)

where the RHS of the equation corresponds to the expected signal, and the interferences

from the detected users, undetected users, and noise, respectively. z� = [z0,�,⋯, zN−1,�]T
denotes the AWGN noise from the -th receive antenna. R(l,�), T(l,�), and P(l,�) are diagonal

matrices: R(l,�) = diag{[R(l,�)0 ,R
(l,�)
1 ,⋯,R(l,�)N−1]T}, T(l,�) = diag{[T(l,�)0 ,T

(l,�)
1 ,⋯,T(l,�)N−1]T},

and P(l,�) = diag{[P(l,�)0 ,P
(l,�)
1 ,⋯,P(l,�)N−1]T}, respectively.

Soft interference cancelation is then performed and the resulting frequency domain sig-
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nal, ŷl, becomes

ŷl =(R(l,l) −T(l,l))FNsl + NU−1∑
�=l+1

R(l,�)FN (s� −μ�)
− l−1∑

�=0
T(l,�)FN (s� −μ�) + NR−1∑

�=0
P(l,�)z�,

(4.18)

where μl = [μl
0, μ

l
1,⋯, μl

N−1]T represents the time domain mean vector of the a priori in-

formation for user . We define the last three components in Equation (4.18), which cor-

respond to the residual interference and noise, as ẑl, where ẑl = NU−1∑
�=l+1

R(l,�)FN (s� −μ�) −
l−1∑
�=0

T(l,�)FN (s� −μ�) + NR−1∑
�=0

P(l,�)z�. It is clear that ẑl comes from three sources: the de-

tected users, the undetected users, and the noise, respectively. It is worth noting that the

first component in RHS of Equation (4.18) denotes the expected signal component, and it

is clear that we extract additional expected signal component from the interference compo-

nent identified in [22]. Besides, compared with the work in [22], we also conduct interference

cancelation for undetected users. In an iterative procedure, the a priori information for the

undetected users will be used; hence the residual interference from the undetected users will

be reduced. These two improvement leads to the enhancement of SINR.

It is easy to figure out that E{ẑl} = 0, and the covariance Al = E{ẑl ⋅ (ẑl)H} is given by

Al =NU−1∑
�=l+1

R(l,�)FNV�FH
N(R(l,�))H

+ l−1∑
�=0

T(l,�)FNV�FH
N(T(l,�))H + σ2

z

NR−1∑
�=0

P(l,�)(P(l,�))H, (4.19)

where V� = diag{[v�0,⋯, v�N−1]}. Assuming that the covariance for symbols from the same

user is the same, denoted by v̄�, Equation (4.19) can be re-written as

Al =NU−1∑
�=l+1

R(l,�)(R(l,�))Hv̄� + l−1∑
�=0

T(l,�)(T(l,�))Hv̄�
+ σ2

z

NR−1∑
�=0

P(l,�)(P(l,�))H. (4.20)

Utilizing the properties of QR decomposition given by Equation (4.12), we have Al =
diag{[γ0,l, γ1,l,⋯, γN−1,l]T} where γk,l = NU−1∑

�=l+1
∣Rl,�

k ∣2v̄� + 1 − ∣Tl,l
k ∣2.
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Figure 4.2: BER performance comparison, QPSK, 2/3 Turbo code

With the known expectation and covariance of the interference and noise component,

Equation (4.18) can be simplified as ŷl = (R(l,l) −T(l,l))FNsl + ẑl. Based on Equation

(4.18), the MMSE estimation of the symbols from user l now becomes

ŝl = FH
NBH

l (BlB
H
l v̄

l +Al)−1 (ŷl − blFNμl) +λlμl, (4.21)

where Bl =R(l,l)−T(l,l) is a diagonal matrix with the k-th diagonal element Bk,l =Rl,l
k −Tl,l

k ;

λl = diag{[λl
0,⋯, λl

N−1]}, where λl
n = 1

N

N−1∑
k=0

∣Bk,l∣
2

∣Bk,l∣
2
v̄l+γk,l

.

We rewrite ŝln from Equation (4.21) as

ŝln = βl
ns

l
n + ς ln. (4.22)

Similarly, we have

βl
n = λl

n, (4.23)

E{ς ln} = 0, E{ς ln(ς ln)H} = λl
n (1 − λl

nv̄
l). (4.24)
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Figure 4.3: BER performance comparison, 0 iteration

With the signal model in (4.22), we can derive the conditional probability density function

p (ŝln∣sln = s), which will be used to compute the extrinsic LLR LE (qln,m). After the detec-

tion of all symbols from user l, as shown in Figure 4.1(b), LE (qln,m) is deinterleaved, and

fed into turbo decoder for decoding.

4.2.3 Computational Complexity Analysis

In our scheme, the size of the extended channel matrix is the same as that in [22]; therefore,

the computation complexity of the QR decomposition is the same as that in [22]. We

introduce soft interference cancelation for the undetected users; hence, extra computation

is put on the current user’s detection. However, at each iteration, with the known a priori

information, the previous mentioned procedure can be pre-processed. Alternatively, the

overall computation of the proposed scheme is almost the same as that in [22], which is of

low complexity compared to the traditional MMSE-based schemes.
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Figure 4.4: BER performance comparison, 2 iteration

4.3 Performance Evaluation and Discussions

We now evaluate the performance of the proposed scheme in fading channels. The system

bandwidth is 5MHz with 300 subcarriers. The Extended Vehicular A channel (EVA) from

[22] is adopted. A 4 × 4 MIMO SC-FDMA system is considered for performance analysis.

Figure 4.2 shows the BER performance comparison of the proposed scheme with the

traditional MMSE scheme. QPSK modulation and turbo code with a code rate 2/3 are

considered. Apparently, the proposed scheme outperforms the traditional MMSE scheme in

every iteration and the performance gain is remarkable. These results are consistent with

the conclusions drawn from literature where a SQRD-based detection scheme is investigated.

In Figure 4.3, we compare the BER performance of the proposed scheme with that of

the scheme proposed in [22] for the initial iteration for different modulation schemes and

code rates. Because the a priori information from the turbo decoder is not yet available,

the extended channel matrix in our proposed scheme essentially degrades to that in [22].
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However, as explained in the previous section, because of the ability to extract additional

expected signal component from the interference component identified in [22], the SINR of

our proposed scheme is improved, thus leading to the apparent BER performance improve-

ment.

We further investigate how iteration helps to improve system performance and compare

the results from both schemes after two iterations, as shown in Figure 4.4. The performance

enhancement is obvious. With iterations, the a priori information from the turbo decoder is

available for the detection process. Therefore, the SQRD processing can use the covariance

matrix updated with the renewed a priori information to output an optimal detection

order that limits the error propagation issues in successive interference cancelation. Then,

the successive interference cancelation process performs interference cancelation for the

undetected users, and the a priori information is utilized to update the a priori mean

and the residual interference from the undetected users. The advantage in utilizing the a

priori in iterative processing as well as the capability to extracts additional expected signal

component contribute the obvious BER performance gain compared to that of the scheme

proposed in [22].

4.4 Summary

In this chapter, we have investigated the sorted QR decomposition based soft interfer-

ence cancelation in multi-user MIMO SC-FDMA systems. We have proposed an improved

SQRD-based multi-user detection scheme which is featured by 1) employing the a priori

information from the channel decoder in the sorted QR decomposition procedure; 2) per-

forming soft successive interference cancelation with the a priori information for undetected

users data; and 3) extracting more precious expected signal component by separating the

expected signal from the interference component. Simulation results show that the pro-
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posed scheme outperforms the MMSE-based turbo receivers and the original SQRD-based

multi-user detection scheme in terms of BER performance for various scenarios.
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Chapter 5

Stair Matrix and its Applications

to Massive MIMO Uplink Data

Detection

1 In this chapter, we propose to develop an iterative method to achieve near linear MMSE

detection scheme use the stair matrix. A stair matrix is a special tridiagonal matrix where

the off-diagonal elements in either the even or the odd rows are zeros [91]. In the develop-

ment of the iterative method using stair matrix, we need to address two fundamental issues:

the probability that the convergence conditions are satisfied, and the convergence rate. The

previous one tells whether the stair matrix is applicable or not (applicability) in massive

MIMO, while the latter one reveals the advantages over the use of a diagonal matrix. We

1The related work has been published in or submitted to:

• IEEE Wireless Communications Letters, 2017, under review.

• IEEE Transactions on Communications, accepted, DOI: 10.1109/TCOMM.2017.2789211.

• Proceedings of the International Conference on Communications, (ICC’17), Paris, France, May 2017.
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address these issues in massive MIMO, and the contributions are summarized as follows:

• We show that when NB grows to infinity, the probability that the convergence condi-

tions are met approaches 1. As the number of antennas at a base station in Massive

MIMO systems can be hundreds, this conclusion demonstrates the applicability of the

stair matrix in massive MIMO systems. In finite NB region (or low r region), we show

that by using the stair matrix, the probability that the convergence conditions are

met can be greatly improved, and the cumulative distribution function of the maxi-

mum eigenvalue of the convergence matrix indicates that the convergence rate can be

speeded up by using the stair matrix;

• We propose an iterative method with the use of the stair matrix, and demonstrate

the proposed scheme has the same level of computational complexity compared to the

existing iterative methods where the diagonal matrix is applied;

• We apply the stair matrix in Neumann series expansion to approach matrix inverse,

and demonstrate that the mean-square error of the truncated expansion can be greatly

reduced compared to the use of diagonal matrix;

• The proposed iterative method is to approximate linear MMSE estimation vector,

and we show that the residual estimation error, between the iterative estimation and

the linear MMSE estimation, is much less than that of the Jacobi method where the

diagonal matrix is applied;

• We perform numerical simulations to evaluate the system BER performance, and show

that the proposed iterative method achieves significant performance improvement over

the proposals where diagonal matrix is adopted in the development;

• We apply the proposed scheme to a massive MIMO system with extended vehicular A
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(EVA) channel, and show significant BER performance enhancement over the reported

near linear MMSE detection schemes.

The rest of this chapter is organized as follows. Section 5.1 provides the system model,

including the massive MIMO structure and the preliminary work of linear ZF/MMSE detec-

tion. In Section 5.2, the introduction to stair matrix and its applicability in massive MIMO

will be presented. The implementation of stair matrix in massive MIMO data detection

with iterative method is presented in Section 5.3. In Section 5.4, we conduct the numerical

simulations and present the results and discussion. Finally, the conclusions are summarized

in Section 5.5.

5.1 System Model

We consider the massive MIMO uplink withNB antennas at a base station to simultaneously

serve NU single-antenna user equipment. The NU bitstream from each user is first encoded,

then interleaved, and fed into digital modulator. The modulated symbols are transmitted

into the massive MIMO channel, and the received signal vector at base station can be

expressed as

y =Hx + z, (5.1)

where y = [y1, y2,⋯, yNB
]T is a complex-valued NB × 1 vector, with ym denoting the re-

ceived signal from the m-th receiving antenna. x = [x1, x2,⋯, xNU
]T with the transmitted

symbol of user u denoted by xu. The transmitted symbols are unit power normalized and

independent from each other, i.e., E{xxH} = INU
. H = [h1,h2,⋯,hNU

] denotes the channel
matrix with hu ∈ CNB×1 where each entry is independent and identically distributed (i.i.d.),

modeled as the flat Rayleigh fading channel [2, 29, 69, 84]. z = [z1, z2,⋯, zNB
]T is the noise

vector, satisfying E{zzH} = σ2
zINB

with each entry modeled as zero-mean complex Gaus-
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sian circularly symmetric (ZMCGCS) random variable. It is worth noting that in frequency

selective fading channels, by applying the orthogonal frequency division multiplexing and

single-carrier frequency division multiple access (OFDM/SC-FDMA) techniques, the signal

model expressed in Equation (5.1) is established over each subcarrier.

5.1.1 Linear MMSE Data Detection

The multi-user data detector at the base station is to compute the a posteriori log likelihood

ratio (LLR) of the bits associated with the modulated symbols. After the knowledge of the

channel matrix (note that the channel matrix is obtained through channel estimator, where

time domain and/or frequency domain training pilots are used for the channel estimation

[95,96]), the well-known linear MMSE data detection can be given by

x̂ = (HHH + σ2
zINU
)−1HHy =W−1yMF, (5.2)

where yMF = HHy can be seen as the matched-filter output, and the MMSE equalization

matrix W can be expressed as

W =G + σ2
zINU

, (5.3)

where G = HHH is the Gram matrix. It is worth noting that in high signal-to-noise ratio

(SNR) region, if the Gram matrix is invertible 2, Equation (5.2) can be reduced to

x̂ =G−1yMF, (5.4)

which is the linear ZF data detection scheme, where the noise component is not considered

in the equalization process.

To obtain the a posteriori LLR of the bits associated with the modulated symbols, we

2According to the random matrix theory [2, 97], in massive MIMO, the probability that G is invertible

is high.
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write the estimation in Equation (5.2) as

x̂u = eHu x̂ = ρuxu + ξu, (5.5)

where the equivalent channel gain ρu and the a posteriori noise-plus-interference (NPI) ξu

can be given by

ρu = eHuW−1Geu, (5.6)

ξu = eHuW−1G (x − xueu) + eHuW−1HHz. (5.7)

The covariance of the NPI v2u = cov (ξu, ξu) is given by

v2u = eHuW−1GGW−1eu + σ2
ze

H
uW

−1GW−1eu − ρ2u
= ρu − ρ2u. (5.8)

Given Equations (5.5), (5.6), and (5.8), we derive the max-log approximated LLR of the

bits associated with xu, given by

L (bu,k) = γu (min
s∈χ0

k

∣ x̂u
ρu
− s∣2 − min

s′∈χ1
k

∣ x̂u
ρu
− s′∣2), (5.9)

where bu,k is the k-th mapping bit associated with xu; γu = ρ2u/v2u is the a posteriori signal-

to-noise-plus-interference ratio (SINR); χb
k ≜ {s ∣s ∈ χ, qk = b} denotes the subset of χ, where

the k-th mapping bit associated with the constellation symbol s, i.e. qk, is b; χ is the

constellation symbols set. After data detection of all users, the LLRs are fed into the

soft-input channel decoder for the decoding process.

5.1.2 Neumann Series Expansion

In the previous subsection, we note that the matrix inversion operations are involved in

linear MMSE/ZF data detection. The matrix inverse is computational costly especially

when the matrix size is large. One of the promising practical solutions to address the
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matrix inversion issue is to employ the Neumann series expansion [23, 98]. The complete

Neumann series expansion of the matrix inverse W−1 is given by [23,98]

W−1 = ∞∑
l=0
(X−1 (X −W))lX−1, (5.10)

where X ≠W, and the following conditions are satisfied:

lim
l→∞
(I −X−1W)l = 0. (5.11)

When the high orders are ignored, the truncated Neumann series expansion can be expressed

as

W−1
L = L−1∑

l=0
(X−1 (X −W))lX−1. (5.12)

The significance of the Neumann series expansion is to approach matrix inversion by us-

ing matrix multiplications with known X−1. Specifically, if the inverse of the selected

matrix X−1 is easy to obtain, then the truncated expansion W−1
L can be used to approx-

imate W−1. Generally, when we select the matrix X that is close to W, a few L orders

expansion W−1
L in Equation (5.12) can be close to W−1. Fortunately, in massive MI-

MO systems, the gram matrix G is diagonally dominant; hence the diagonal matrix, i.e.,

D = diag{[W(0,0),W(1,1),⋯,W(NU−1,NU−1)]T} can be selected as X, then the L order

expansion W−1
L is given by

W−1
L = L−1∑

l=0
(D−1 (D −W))lD−1. (5.13)

In [23], the authors have provided the upper bound of the residual estimation error 3

using W−1
L to approximate W−1, i.e.,

∥(W−1 −W−1
L )yMF∥

2
⩽ ∥I −D−1W∥L

F
∥x̂∥2, (5.14)

3The residual estimation error defined in [23] is to evaluate the mean-square error between the estimation

using the L order expansion and the exact linear MMSE estimation, since the previous one is to approximate

the latter one.
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where ∥A∥F and ∥a∥2 are the Frobenius norm of a matrix A and the 2-norm of a vector

a. From Equation (5.14), we can see that the upper bound of residual estimation error

decreases as the increase of the expansion order and NB. In other words, if the number

of antennas at the base station is sufficiently large, even with a small order expansion, the

residual estimation error will be small. Particularly, when NB is sufficiently large and the

expansion order L ⩽ 2, the computation required for the Neumann series expansion will be

much reduced, compared to the matrix inverse operations. These two observations support

the use of the diagonal matrix in Neumann series expansion for massive MIMO systems.

5.1.3 Jacobi Method

In Neumann series expansion, if the expansion order is greater than 2, the matrix multi-

plication operations are involved; hence, the computational complexity is comparable with

that of the matrix inverse operations. On the other hand, as we can see in Equation (5.14),

if NB is not sufficiently large, with an expansion order that is less than 2, the residual

estimation error is still considerable. These two factors limit the applications of diagonal

matrix in Neumann series expansion.

To avoid the matrix multiplication operations, but maintain a reasonable orders of

expansion, we can use the iterative methods. To be specific, we first rewrite the MMSE

estimation in Equation (5.2) as

Wx̂ = yMF. (5.15)

By transforming the matrix inverse problem into the format of Equation (5.15), we can

adopt the iterative methods to solve linear equations. Generally, the iterative methods

follow the following process:

(1) Provide an initial estimation;

(2) Follow an iterative structure to obtain the next estimation;
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(3) When the estimation converges, output the final estimation.

In the Jacobi method, we have the initial estimation as

x(0) =D−1yMF, (5.16)

which is the common selection in most of the existing literature. The iterative structure is

given by

x(i+1) =D−1 ((D −W)x(i) + yMF)
= x(i) −D−1Wx(i) +D−1yMF,

(5.17)

where x(i) denotes the i-th estimation. According to the iterative structure in Equation

(5.17), and using the initial estimation given by Equation (5.16), we can derive the i-th

estimation given by

x(i) = i∑
l=0
(D−1 (D −W))lD−1yMF. (5.18)

That is to say, by selecting the initial estimation given by (5.16), after i iterations follow-

ing Jacobi iterative structure, we have the same estimation results as the (i + 1)-th order

expansion in the Neumann series. Therefore, the convergence conditions, the residual esti-

mation error, and the estimation results are the same as those in the previous subsection.

However, as we can see from Equation (5.16) to Equation (5.17), only matrix-vector prod-

uct operations are involved; therefore, the Jacobi method has low complexity compared

to the Neumann series expansion with the same iterations (or orders in Neumann series

expansion).

5.2 Stair Matrix and its Applicability to Massive MIMO Sys-

tems

In this section, we will first introduce the stair matrix and its properties. And then, we will

demonstrate the applicability of the stair matrix to massive MIMO systems.
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5.2.1 Stair Matrix and its Properties

To begin with, we have the following definitions.

Definition 1 [91]: In an N ×N matrix A, if its entry A(m,n) = eHmAen, m,n = 1,2,⋯,N ,

satisfies A(m,n) = 0 where n ∉ {m − 1,m,m + 1}, we then call it as a tridiagonal matrix,

denoted by A = tridiag (A(m,m−1),A(m,m),A(m,m+1)).
A typical tridiagonal matrix A can be given as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(1,1) A(1,2)

A(2,1) A(2,2) A(2,3)

⋱ ⋱ ⋱
A(N−1,N−2) A(N−1,N−1) A(N−1,N)

A(N,N−1) A(N,N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Definition 2 [91, 92]: If a tridiagonal matrix satisfies one of the following conditions:

(I) A(m,m−1) = 0, A(m,m+1) = 0, where m = 2k − 1, k = 1,2,⋯, ⌊(N + 1)/2⌋. Alternatively,

the non-diagonal elements in the odd rows of tridiagonal matrix are zeros;

(II) A(m,m−1) = 0, A(m,m+1) = 0, where m = 2k, k = 1,2, ⌊N/2⌋. In other words, the

non-diagonal elements in the even rows of tridiagonal matrix are zeros;

we then call it as a stair matrix, denoted by A = stair (A(m,m−1),A(m,m),A(m,m+1)).
In accordance, a stair matrix is of type I if the condition (I) is satisfied and is of type II

if the condition (II) is satisfied. For example, a 5 × 5 stair matrix has the following forms:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
× × ×

×
× × ×

×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× ×
×
× × ×

×
× ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The previous one is of type I and the latter one is of type II. Next, we provide the following

properties of the stair matrix in Corollary 1 and 2.

Corollary 1. Let A be a stair matrix. Then AH is also a stair matrix. In addition, if A

is of type I, then AH is of type II, and vice verse.

Proof. Using the definition, it is straightforward to obtain Corollary 1.

Corollary 1 shows that the properties of the stair matrix of type I and type II are

almost the same; therefore, we only consider the stair matrix of type I hereafter except for

specification.

Corollary 2. Let A be a stair matrix. A is nonsingular if and only if Am,m, m = 1,2,⋯,N ,

is nonzero. Furthermore, the inverse of A, i.e., A−1 is also a stair matrix of the same

type, given by A−1 = D−1 (2D −A)D−1, where D = diag ([A(1,1),A(2,2),⋯,A(N,N)]) is the

diagonal matrix extracted from A.

Proof. Since det (A) = N∏
m=1

A(m,m), we can see that A is nonsingular if and only if A(m,m),

m = 1,2,⋯,N , is nonzero.

Following the matrix multiplications, we can obtain that D−1 (2D −A)D−1A = IN .

Moreover, we can easily derive that A−1 is also a stair matrix and of the same type as

A.

From Corollary 2, we have the Algorithm 5.1 to obtain A−1. It is clear from Algo-

rithm 5.1 that the complexity to obtain the inverse of a stair matrix is O (N), which is

the same order of the computation of D−1.

5.2.2 Using Stair Matrix in Neumann Series Expansion

As the linear MMSE detection scheme is known to have better system performance com-

pared to the linear ZF detection scheme, we show the use of the stair matrix in approaching
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Table 5.1: Algorithm 5.1: Compute the Inverse of a Stair Matrix

Input: The Stair Matrix A = stair (A(m,m−1),A(m,m),A(m,m+1))
Output: A−1 =B = stair (B(m,m−1),B(m,m),B(m,m+1))
1.for m = 1 ∶ 1 ∶ N
2. B(m,m) = 1/A(m,m)

3. end

4. for m = 2 ∶ 2 ∶ 2 ⌊N/2⌋
5. B(m,m−1) = −A(m,m−1)B(m,m)B(m−1,m−1);

6. B(m,m+1) = −A(m,m+1)B(m,m)B(m+1,m+1);

7. end

Return B.

linear ZF estimation in this Section. In Section 5.4, we show the corresponding results of

using stair matrix in approximating linear MMSE estimation.

To begin with, we extract the stair matrix, S = stair(Gu,u−1,Gu,u,Gu,u+1), from the

Gram matrix, given by

S(u,v) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(u,v),

G(u,v),

0,

u ∈ U1, v = u;
u ∈ U2, v ∈ {u − 1, u, u + 1};
otherwise,

where U ≜ {n∣n ∈ N, n ⩽ NU + 1}, denoting the positive integer numbers less than NU ; U1 and

U2 are subsets of U, defined as U1 ≜ {n∣n ∈ U, n = 2k − 1, k ∈ N}, denoting the odd numbers

less than NU , and U2 ≜ {n∣n ∈ U, n = 2k, k ∈ N}, denoting the even numbers less than NU ,

respectively.

Applying the stair matrix in Neumann series expansion, similar to Equation (5.10), we
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have

G−1 = ∞∑
k=0
(I − S−1G)kS−1, (5.19)

where X is replaced with the stair matrix S and the Gram matrix is considered. The

convergence condition for Equation (5.19) is

lim
k→∞
(I − S−1G)k = 0, (5.20)

or equivalently

ρ (B) = ∣λ0∣ < 1, (5.21)

i.e., the maximum eigenvalue of the convergence matrix B is less than one. B = I − S−1G,

and ρ (B) is the spectral radius of the matrix B. ∣λ0∣ ⩾ ∣λ1∣ ⩾ ⋯ ⩾ ∣λNU−1∣ denote the NU

eigenvalues of B.

The convergence condition is critical for the application of the stair matrix in massive

MIMO systems. In order to investigate the maximum eigenvalue of B, we suppose NU is

odd 4, and derive each entry in B given by

B(u,v) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−G(u,v)
G(u,u)

, u ∈ U1, v ≠ u;
0, u ∈ U1, v = u;

−G(u,v)
G(u,u)

+ G(u,u−1)⋅G(u−1,v)
G(u,u)G(u−1,u−1)

+ G(u,u+1)⋅G(u+1,v)
G(u,u)G(u+1,u+1)

, u ∈ U2, v ≠ u;
G(u,u−1)⋅G(u−1,u)
G(u,u)G(u−1,u−1)

+ G(u,u+1)⋅G(u+1,u)
G(u,u)G(u+1,u+1)

, u ∈ U2, v = u.
(5.22)

where Algorithm 5.1 is used to compute the matrix inverse of the stair matrix.

We have the following theorem:

Theorem 3. B(u,v) is given by Equation (5.22), and ∣λ0∣ ⩾ ∣λ1∣ ⩾ ⋯ ⩾ ∣λNU−1∣ denote the

NU eigenvalues of B. We have

lim
NB→∞

Pr{∣λ0∣ < 1} = 1. (5.23)

4When NU is even, the difference in the expression of B is only present in the last row. However, the

general result is also expected.
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Proof. See Appendix B.

Theorem 3 shows that when the number of antennas at base station is sufficiently

large, the convergence conditions in Equation (5.20) can be satisfied; therefore, using the

stair matrix in Neumann series expansion can be established. As we show in Section V, for

the system with 25 active users under service, NB = 150 is sufficient to meet the convergence

conditions.

Hence we demonstrate the applicability of the stair matrix in massive MIMO systems.

5.2.3 Residual Estimation Error

We now investigate the residual estimation error by using the truncated Neumann series

expansion. According to Equation (5.12), we have

G−1L = L−1∑
l=0
(S−1 (S −G))lS−1. (5.24)

Replacing G−1 with G−1L in Equation (5.4), we have

x̂(L) =G−1L yMF. (5.25)

Therefore, the residual estimation error5 J = ∥x̂(L) − x̂∥
2
, is bounded as

J = ∥(G−1 −G−1L )yMF∥
2

= ∥ ∞∑
l=L
(S−1 (S −G))lS−1yMF∥

2= ∥(S−1 (S −G))LG−1yMF∥
2⩽ ∥B∥LF ∥x̂∥2,

(5.26)

5The residual estimation error is consistent with the definition in [23], which is to evaluate the difference

between the linear MMSE estimation and the approximate estimation using truncated Neumann series

expansion.
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where the inequality holds since ∥Ax∥2 ⩽ ∥A∥F ∥x∥2. As shown in Appendix B, when

NB → ∞, Pr{∥B∥2F < 1} → 1 and E{∥B∥2F} → 0. That is to say, the residual estimation

error will approach 0 as indicated by inequality (5.26). Inequality (5.26) also indicates

that increasing the truncation order in Neumann series expansion, the upper bound of the

residual estimation error can be reduced. This evidence, together with the high probability

that the convergence conditions will be met, supports the applications of the stair matrix

to massive MIMO systems.

5.3 Implementation of the Stair Matrix in Iterative Method

Due to the involvement of matrix multiplications, the truncation order in Neumann series

expansion is limited to three; otherwise, the computational complexity is comparable with

matrix inversion algorithm. Besides, we note that in existing work, the computation of the

LLR is obtained by utilizing the NPI after the first truncation order in Neumann series

expansion (or first iteration in iterative method). This implementation, however, causes

significant performance loss when NB is not sufficiently large (or r = NB/NU is not large,

for example, r < 8). In this Section, we address these issues by developing an iterative

method using stair matrix.

5.3.1 Stair Matrix in Iterative Method

Compared to the linear ZF detection, linear MMSE detection achieves a better balance in

consideration of interference and noise. Therefore, we will introduce an iterative method to

approach the linear MMSE detection.

To start with, we extract the stair matrix S = stair (W(u,u−1),W(u,u),W(u,u+1)). It

is worth noting that compared to the stair matrix we discussed in previous section, the

diagonal elements in the new stair matrix has increased by σ2
z according to Equation (5.3),
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which brings negligible computational cost. According to Equation (5.17), we have

x(i+1) = S−1 ((S −W)x(i) + yMF)
= x(i) − S−1Wx(i) + S−1yMF,

(5.27)

where x(i) is the i-th estimation.

In accordance, if the initial estimation x(0) is selected as

x(0) = S−1yMF, (5.28)

following the iterative process in Equation (5.27), we can derive

x(i) = i∑
l=0
(S−1 (S −W))lS−1yMF, (5.29)

which indicates that the iterative method in Equation (5.27) can be seen as the truncated

Neumann series expansion based method by selecting X = S. However, in Equation (5.27),

only a matrix-vector product is involved, hence the overall computational complexity is of

the order O (KN2
U), where K denotes the number of iterations.

5.3.2 Computation of the LLR

After the estimation of transmitted vector x, we need to compute the LLRs of the associated

bits for the soft-input channel decoder. After K iterations, the equivalent channel gain ρ
(K)
u

and the covariance of the NPI ∣v(K)u ∣2 can be respectively given by

ρ(K)u = eHuW−1
K Geu, (5.30)

∣v(K)u ∣2 = eHuW−1
K GGW−1

K eu + σ2
ze

H
uW

−1
K GW−1

K eu − ∣ρ(K)u ∣2 (5.31)

Apparently, Equations (5.30) and (5.31) requires matrix multiplications if K ≥ 2. Therefore,
in [23, 84–86], D−1, where D = diag{[W(0,0),W(1,1),⋯,W(NU−1,NU−1)]T} is considered for

the simplification. This approximation, however, as we will show in the next section, has

caused a significant performance loss.

87



As we can see from Equation (5.8), the exact a posteriori covariance of the NPI in linear

MMSE estimation can be derived if the equivalent channel gain is obtained. However, in [23],

the authors have claimed that this relationship is not supported in the truncated Neumann

series expansion. The main reason for that claim is attributed to the fact that W−1
K is far

away from W−1 with small K. In the previous section, we introduced the iterative method

for detection, and the iteration numbers can be sufficiently large since the computational

complexity in one iteration is of the order O (N2
U). With sufficiently large iterations, W−1

K

can be quite close to W−1 (we will show this in the next section); hence, we can used

Equation (5.8) to derive the covariance of the NPI. The next question is how to maintain

low computational complexity to obtain the equivalent channel gain.

We rewrite the equivalent channel gain in Equation (5.8) as ρu = eHuW
−1Geu = 1 −

σ2
ze

H
uW

−1eu. In addition, we replace W−1 with W−1
K , leading to

ρ(K)u = 1 − σ2
ze

H
uW

−1
K eu. (5.32)

That is to say, we need obtain the diagonal elements in W−1
K to compute ρ

(K)
u .

If NB and r are sufficiently large, the Gram matrix G and W will become diagonal dom-

inant; therefore, D−1 can be a good approximation of W−1, and we have the approximation

to ρ
(K)
u given by

ρ(K)u ≈ 1 − σ2
zD
−1
(u,u), (5.33)

and ∣v(K)u ∣2 is approximated as

∣v(K)u ∣2 ≈ ρ(K)u (1 − ρ(K)u ) . (5.34)

As a consequence, the a posteriori SINR is approximated as

γ(K)u ≈ ∣ρ(K)u ∣2
∣v(K)u ∣2 = ρ

(K)
u

1 − ρ(K)u

. (5.35)
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Figure 5.1: The normalized mean-square error for the approximation in Equation (5.33),

NU = 25
ρ
(K)
u and γ

(K)
u are used in Equation (5.9) to compute L (bu,k).

The accuracy of the approximation in Equation (5.33) is important for the overall system

performance. In order to show the accuracy of Equation (5.33), we define

MSE = E⎧⎪⎪⎨⎪⎪⎩ 1

NU

NU−1∑
u=0
∣ρ(K)u − ρu∣2⎫⎪⎪⎬⎪⎪⎭ , (5.36)

to show the normalized mean-square error between the approximation ρ
(K)
u given by Equa-

tion (5.33) and the exact equivalent channel gain ρu given by Equation (5.6). The results

are shown in Figure 5.1. The results are obtained by randomly generating 2000000 channel

realization, and ρu is computed by Equation (5.6), while the approximation is given by

Equation (5.33). It is clear from Figure 5.1 that the approximation in Equation (5.33) is

quite close to the exact ρu as MSE is at very low level. Besides, Figure 5.1 also indicates

that with the increase of NB or average SNR at receiver, the approximation will be closer.

These results indicate our approximation given by Equation (5.33) works well in approach-
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Table 5.2: Algorithm 5.2: Proposed Iterative Method Using Stair Matrix

Input: y, H, σ2
z , and Iteration number K;

Output: LLRs of the associated bits L (bu,k).
Initialization:

1.G =HHH, W =G + σ2
zINU

, yMF =HHy;

2. S = stair (W(u,u−1),W(u,u),W(u,u+1));
3. Compute S−1 through Algorithm 5.1, and D−1 = diag (S−1);
4. Initial estimation: x(0) = S−1yMF;

Iteration:

5. for i = 1 ∶ 1 ∶K
6. x(i+1) = S−1 ((S −W)x(i) + yMF);
7. end

LLR Computation:

8. ρ
(K)
u = 1 − σ2

zD
−1
(u,u), γ

(K)
u = ρ

(K)
u

1−ρ(K)u

;

9. L (bu,k) = γ(K)u (min
s∈χ0

k

∣ x̂(K)u

ρ
(K)
u

− s∣2 − min
s′∈χ1

k

∣ x̂(K)u

ρ
(K)
u

− s′∣2).
Return L (bu,k).

ing the linear MMSE detection method. We will also validate this result in next section in

BER evaluation.

It is worth pointing out that although we utilize the diagonal matrix to estimate the

equivalent channel gain, the computation of γ
(K)
u in Equation (5.35) indicates that we try

to approach the SINR in linear MMSE detection to derive the LLRs of the associated bits.

This is quite different from the existing work [23, 84–86], where the SINR after the first

iteration (or the first truncation order in Neumann series expansion method) is adopted. In
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fact, as the iterations increase, the covariance of the NPI will decrease, and our proposed

approximation method is more efficient and accurate. In numerical simulations, we also

validate that our approximation in (5.33) and (5.35) outperforms the approximation in

existing work.

To summarize, we present Algorithm 5.2 for the proposed iterative method using stair

matrix.

5.3.3 Computational Complexity Analysis

We consider the number of real number multiplications/divisions to evaluate the com-

putational complexity. In initialization steps, the computation of W and yMF requires

2NBN
2
U and 4NBNU real number multiplications, respectively. According to Algorith-

m 5.1, the computation of S−1 requires 3 (NU − 1) real number multiplications and NU

real number divisions. The initial estimation, provided in Step 4 of Algorithm 5.2, re-

quires NU+1
2 × 2+ NU−1

2 × (8 + 2) = 6NU − 4 real number multiplications. Therefore, the total

computational complexity in initialization steps is 2NBN
2
U + 4NBNU + 10NU − 7.

The iteration steps in Algorithm 5.2 involves matrix-vector production. The computa-

tion of (S −W)x(i) requires NU+1
2 ×4 (NU − 1)+ NU−1

2 ×4 (NU − 3) = 4(NU − 1)2 real number

multiplications. The resultant vector is multiplied by a stair matrix, and additional 6NU −4
real number multiplications are required. Therefore, the total computational complexity

in iteration steps is K (4N2
U − 2NU). That is to say, the computational complexity of the

iterative process is of O (N2
U), which is the same as the existing iterative methods where

the diagonal matrix is applied.

Last, to obtain L (bk,u), we need the computation of ρ
(K)
u , and the proposed approx-

imation method only requires the diagonal elements in D, which is obtained in step 3.

Compared to the existing work in [23, 84–86], our proposed scheme saves computational
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Figure 5.2: Cumulative distribution function of the maximum eigenvalue NU = 25.
complexity in this stage.

To summarize, the overall computational complexity is the same level of the existing

work [23,84–86]. However, as we will see in next Section, the stair matrix outperforms the

diagonal matrix in the evaluated performance metrics.

5.4 Numerical Simulations and Performance Evaluation

5.4.1 Convergence Conditions

We first investigate the convergence condition using the stair matrix. Using the Monte-Carlo

method, we generate 2e7 random channel matrices H. For each H, we extract the diagonal

matrix D and the stair matrix S, and compute the maximum eigenvalues of the matrix

I −D−1G, and I − S−1G, respectively. Using numerical simulations, we eventually obtain

the cumulative distribution function (CDF) of the maximum eigenvalues, given by Figure

5.2. In Figure 5.2, we evaluate the scenario that 25 users are in service and we increase

the number of antennas at base station from 100 to 200. The following observations can be
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found:

• With the increase of antennas at base station, the probability that the convergence

conditions are met, i.e., Pr{ρ (I − S−1G) < 1} and Pr{ρ (I −D−1G) < 1} will increase.
Specifically, for the usage of the diagonal matrix, the probability that the convergence

conditions are met, is increase from 0.29 when NB = 100, to 1 when NB = 200. In

accordance, for the usage of the stair matrix, Pr{ρ (I − S−1G) < 1} is increased from

0.74 when NB = 100, to 1 when NB = 200;
• In low r = NB/NU ≤ 5 region, the usage of the stair matrix can increase the prob-

ability that the convergence conditions are met. For example, when NB = 100,

Pr{ρ (I −D−1G) < 1} is only 0.29, while Pr{ρ (I − S−1G) < 1} becomes 0.76. This

indicates that in some low r region, the diagonal matrix is not applicable while the

stair matrix can be used;

• In any system configuration, Pr{ρ (I − S−1G) < a} ⩾ Pr{ρ (I −D−1G) < a}, a ∈ (0,1).
As the maximum eigenvalue determines the convergence rate, we can conclude that

by using the stair matrix, the convergence rate is more likely faster compared to the

use of the diagonal matrix.

The above observations validate the applicability of the usage of the stair matrix and

diagonal matrix in massive MIMO systems. Besides, the results reveal that by using stair

matrix, we can increase the probability that the convergence conditions are met in low r

region compared to the usage of the diagonal matrix. In high r region, it is also shown

that the probability that the convergence conditions are satisfied is almost 1 using both

the stair matrix and the diagonal matrix. This is consistent with the results in [23] where

the applicability of the diagonal matrix is demonstrated. It is also revealed in [80, 97]

that in high r region, the probability that the maximum eigenvalue less than 1 is near 1.
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Figure 5.3: Normalized mean-square error for the matrix inverse approximation

Furthermore, we also find that by using the stair matrix, the convergence rate is more likely

accelerated than with the use of the diagonal matrix.

5.4.2 Matrix Inverse

We now investigate the performance of the stair matrix in Neumann series expansion to

approach the matrix inverse6. We define Δ (S) = (I − L−1∑
l=0
(I − S−1G)lS−1G), where S =

stair (Gu,u−1,Gu,u,Gu,u+1), to show the error matrix between the identity matrix and the

corresponding matrix multiplication when the approximate matrix inverse is adopted. Ac-

cordingly,Δ (D) = (I − L−1∑
l=0
(I −D−1G)lD−1G) whereD = diag([G(0,0),G(1,1),⋯,G(NU−1,NU−1)]T).

In addition, we have E{ 1
N2

U

∥Δ (S)∥2F} and E{ 1
N2

U

∥Δ (D)∥2F} to indicate the normalized

mean-square error7 for the approximation using the stair matrix and the diagonal matrix,

respectively. With different truncation order, we present the results in Figure 5.3. The

6In implementation, we propose the iterative method as shown in section IV. However, the results of the

iterative method can be seen as the Neumann series expansion.
7The normalized mean-square error here is consistent with the definition in [81]. This term is defined to

evaluate the difference between the approximate and exact matrix inverse.
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following observations can be found:

• With the increase of the truncation order, the normalized mean-square error is de-

creased. This indicates that the more truncation orders used in Neumann series

expansion, the closer of the resulting approximation is to the actual matrix inverse;

• By using the stair matrix, the normalized mean-square error is always less than that

of using the diagonal matrix in the same system configuration. This indicates that

the use of the stair matrix always achieves better approximation performance with

the same truncation order compared to the use of the diagonal matrix;

• By using the stair matrix, fewer iterations are required to achieve the same level of

the normalized mean-square error than using the diagonal matrix. As the truncation

order is equivalent to the iteration number in the iterative method, the fewer iterations

indicate lower computational complexity in implementation.

To summarize, we conclude that the use of the stair matrix outperforms the use of the

diagonal matrix. As we showed in section IV.A, the truncation order is equivalent to the

iterations in the iterative method; therefore, the results in Figure 5.3 help to interpret the

convergence performance of the proposed iterative method.

5.4.3 Residual Estimation Error

In the iterative method, the estimation is to approach the estimation vector in linear

ZF/MMSE method. In section III.C, an upper bound of the residual estimation error8

for the use of the stair matrix in approaching linear ZF detection is presented. In order

8We have shown in Section IV.A that the iterative estimation is equivalent to the estimation using the

truncated Neumann series expansion; therefore, we use the term, residual estimation error, defined in [23]

to evaluate the difference between the linear MMSE estimation and the iterative estimation.
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(a)

(b)

Figure 5.4: Residual Estimation Error: (a) NB = 150, NU = 25, average SNR= 5dB; (b)

NB = 200, NU = 25, average SNR= 3.5dB
to differentiate the residual estimation error for the use of stair matrix and the diagonal
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matrix in linear ZF and MMSE detection, we define the following terms:

J (D1) = ∥(D−11 (D1 −G))LG−1yMF∥
2
,

J (D2) = ∥(D−12 (D2 −W))LW−1yMF∥
2
,

J (S1) = ∥(S−11 (S1 −G))LG−1yMF∥
2
,

J (S2) = ∥(S−12 (S2 −W))LW−1yMF∥
2
,

where W =G + σ2
zINU

, and

D1 = diag{[G(0,0),G(1,1),⋯,G(NU−1,NU−1)]T} ,
D2 = diag{[W(0,0),W(1,1),⋯,W(NU−1,NU−1)]T} ,

S1 = stair (Gm,m−1,Gm,m,Gm,m+1) ,
S2 = stair (Wm,m−1,Wm,m,Wm,m+1) ,

According to Equation (5.26), we can see that J (D1) and J (D2) denote the residual

estimation error for the use of the diagonal matrix in approaching linear ZF and MMSE

detection, respectively. J (S1) and J (S2) denote the residual estimation error for the use

of the stair matrix in approaching linea ZF and MMSE detection, respectively. For a

given system configuration and average receiving SNR, we present the residual estimation

error performance in Figure 5.4. The results are present with 2000000 randomly generated

channel realizations, and the following observations are found:

• From Figure 5.4(a) and 5.4(b), E{J (S1)} is always less than E{J (D1)}, and E{J (S2)}
is always less than E{J (D2)} after the same iteration numbers. These results reflect

that after the same iterations, using the stair matrix in the iterative method can ap-

proach both the linear ZF and MMSE estimation more closely compared to the use

of the diagonal matrix;
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• In Figure 5.4(a), we note that, for the use of the diagonal matrix, the residual esti-

mation error decreases slowly and remains a comparatively high level even with large

iteration numbers. However, by using the stair matrix, we can speed up the decreas-

ing rate and achieve a comparatively lower estimation error level. These results are

consistent with the previous numerical results where we demonstrate that the use of

the diagonal matrix may not be applicable in low r ratio.

• From Figure 5.4(a) and Figure 5.4(b), we can see that, with the increase of the re-

ceiving antennas at the base station, the performance gain with the use of the stair

matrix over the use of the diagonal matrix becomes small. These results are reason-

able as NB increases, G and W both become diagonal dominant. However, we can

also achieve comparatively lower residual estimation error by using the stair matrix

in the iterative method.

To summarize, we conclude that the use of the stair matrix outperforms the use of the

diagonal matrix in terms of the residual estimation error. The performance gain is more

significant in low r ratio, but still obvious in high r ratio.

5.4.4 BER Performance

We now evaluate the system BER performance. In the system, the base station is simulta-

neously serving NU = 25 users. For each user, a LDPC code with code length 64800, code

rate 1/2 is considered for channel code scheme9. We consider 64QAM modulation, and a

block independent channel is considered for the evaluation.

To begin with, we investigate the proposed LLR computation given by (5.35), and the

equivalent channel gain ρu and the covariance of the NPI vu are approximated by (5.33)

and (5.34). For comparison, we provide the linear MMSE detection as a benchmark, where

9LDPC code has been an agreed standard for long code in 5G
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(a)

(b)

Figure 5.5: BER performance: (a) NB = 150, NU = 25; (b) NB = 250, NU = 25. LDPC code:

code length 64800, code rate 0.5. 64QAM modulation.

the LLR computation is given by Equation (5.9) with ρu and vu given by Equation (5.6)

and (5.8), respectively. The LLR computation in existing work such as [23, 84, 85] is to

compute the covariance of the NPI after the first iteration. It is worth pointing out that

the iterative methods in [84, 85] requires fewer iterations to approach the linear MMSE
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detection; however, the LLR computation used in MMSE detection is not computed from

the exact NPI of the MMSE detection, but the NPI after the first iteration. In Figure 5.5,

we can see that the BER performance of the Jacobi method with the LLR computation

in [23, 84, 85] is far away from the BER performance of the MMSE detection with the

exact LLR computation. This is consistent with our previous analysis, where we pointed

out that the covariance of the NPI will decrease with iterations. However, we note that

the proposed LLR computation can greatly improve the BER performance of the Jacobi

method by approximating the covariance of the NPI of the MMSE detection. Hereafter, we

only utilize the proposed LLR computation for the BER performance comparison.

We now present the results with low r = NB/NU region, and the results are presented

in Figure 5.6. The following observations are found.

• From Figure 5.6(a), we note that the BER performance improvement with the pro-

posed stair matrix compared to the diagonal matrix is obvious. However, the system

performance is still far away from the MMSE detection even with sufficiently large it-

erations. Specially, for the use of the diagonal matrix, the performance levels off after

9 iterations; for the use of the stair matrix, the performance is greatly improved, but

a leveled off performance still appears. These are attributed to the slow convergence

rate and convergence conditions not 100 percent satisfied;

• From Figure 5.6(b) and Figure 5.6(c), we can see that the BER performance eventually

converges to the performance of the MMSE detection. Specifically, in the system

configuration NB = 150, NU = 25, at SNR= 5dB, the BER performance of the proposed

iterative method after 13 iterations is almost the same as the performance of the

MMSE detection. In the system configuration NB = 175, NU = 25, at SNR= 4dB, the

BER performance of the Jacobi method after 9 iterations approaches the performance

of the MMSE detection;

100



(a)

(b)

(c)

Figure 5.6: BER performance: (a) NB = 125, NU = 25; (b) NB = 150, NU = 25; (c) NB = 175,
NU = 25. LDPC code: code length 64800, code rate 0.5. 64QAM modulation.
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Figure 5.7: BER performance: NB = 200, NU = 25. LDPC code: code length 64800, code

rate 0.5. 64QAM modulation.

• From Figure 5.6(a) to Figure 5.6(c), we can see that the convergence rate of the

proposed iterative method is faster than that of the Jacobi method. These results are

consistent with the previous analysis. With faster convergence rate, fewer iterations

are required for the proposed iterative method, hence reducing the overall system

computational complexity.

Next, we evaluate the BER performance in the system configuration with high r =
NB/NU region, and the results are shown in Figure 5.7. It is clear that both the uses of the

diagonal matrix and stair matrix require few iterations to converge. However, as indicated

by the cumulative distribution function of the maximum eigenvalue, Pr{ρ (I − S−1G) < a} ⩾
Pr{ρ (I −D−1G) < a}, a ∈ (0,1), we can conclude that the convergence rate of the proposed

iterative method using the stair matrix is faster than that of the Jacobi method using the

diagonal matrix. The results validate these conclusions.
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(a)

(b)

Figure 5.8: BER performance: (a) NB = 150, NU = 25; (b) NB = 400, NU = 25. LDPC code:

code length 1152, code rate 0.5. 64QAM modulation.
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In order to show the applications of the proposed scheme in a practical system, we

evaluate the system BER performance in an OFDM system where the extended vehicular

A (EVA) channels are used to generate the channel data for each user [39,99]. We assume the

channel data remains constant during one OFDM symbol block, and varies independently

from one block to another [51, 73]. For each user, the LDPC encoder with code length

1152, code rate 0.5, is adopted. We consider 64QAM modulation, and all users take up 192

subcarriers for data transmission. As we mentioned in Section II, the received signal model

is established at each subcarrier. Therefore, the estimation is performed over individual

subcarrier. We also provide the existing proposals in [23, 85] for comparison. The results

are presented in Figure 5.8, with the following observations found:

• In Figure 5.8(a), the number of antennas at the base station is 150, and the number

of user under service is 25. In this comparatively low r region, we can see that the

performance of existing proposals is far away from that of the exact linear MMSE

detection scheme. This is obvious as we pointed out previously that the NPI in the

initial estimation is far away from the exact NPI in linear MMSE detection. However,

both the Jacobi method with the diagonal matrix in the development and the proposed

iterative method with the stair matrix can eventually approach the performance of the

linear MMSE detection scheme. In addition, we can see that the BER performance

using the stair matrix is always much better than that using the diagonal matrix,

which is consistent with our previous demonstration;

• In Figure 5.8(b), NB = 400 and NU = 25. In this scenario, r = 16, which falls in the

application region of Neumann series expansion based detection scheme [23]. We can

see that after two iterations, the performance of the Neumann series expansion based

detection scheme converges to linear MMSE detection even with the NPI in the initial

estimation for LLR computation. These results are consistent with the observations
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in [23]. In this comparatively high r region, it is clear that the BER performance of all

detection methods eventually converge to that of the linear MMSE detection scheme.

The results in Figure 5.8 validate the performance enhancement of the proposed iterative

method using the stair matrix in the development over the existing proposals where the

diagonal matrix is adopted, especially in a comparatively low r region. This is consistent

with our previous analysis. It is also foreseeable that applying the proposed scheme in SC-

FDMA systems, the performance enhancement can be achieved since the received signal

model in Equation (5.1) holds over each subcarrier as well.

5.5 Summary

In this chapter, we propose the application of the stair matrix in massive MIMO systems.

To begin with, we demonstrate that with sufficiently large number of antennas at the base

station, the probability that the convergence conditions are met with the use of the stair

matrix approaches 1. We then propose an iterative method to reduce the computational

complexity and show that the overall computational complexity is of the same level as the

existing iterative methods where the diagonal matrix is applied. Furthermore, we evaluate

the performance of the stair matrix in terms of the probability that the convergence condi-

tions are met, the normalized mean-square error in Neumann series expansion to approach

the matrix inverse, the residual estimation error of the iterative method to approach the

linear ZF/MMSE estimation, and the system BER performance. Numerical simulations

show that performance enhancement by using the stair matrix over the diagonal matrix is

present in all performance metrics.
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Chapter 6

Low Complexity and Fast

Processing Algorithms for V2I

Massive MIMO Uplink Detection

1 Using 5G techniques to support vehicular communications has been recently studied [6–

8, 10–12, 33, 35, 36, 101–103]. Particularly, one typical application scenario in future 5G

network is to provide high level service experience for end users on the move [101]. The

1The related work has been published in or submitted to

• IEEE Transactions on Vehicular Technology, 2017, under review.

• Proceedings of the 10th International EAI International Wireless Internet Conference (WiCON),

Tianjin, China, December 2017.

• Proceedings of the 10th International Conference on Mobile Ad-hoc and Sensor Networks (IEEE

MSN2014), Maui, Hawaii, USA, December 2014.

• Proceedings of 22nd IEEE Newfoundland Electrical and Computer Engineering Conference

(NECEC’13), St. Johns, NL, Canada, November 2013.
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expected data rate for downlink and uplink transmission can be at least 100Mb/s and

20Mb/s, respectively. Meanwhile, the end-to-end latency is maintained below 100ms [101].

The authors in [6] investigate the cooperative transmission in 5G small-cell networks to

improve transmission capacity and reliability for vehicular communications. X. Ge et al

have proposed a new vehicular network architecture where the 5G mobile communication

technologies and software defined networks are integrated [7]. As one of the key technologies

in 5G, massive MIMO has been considered in vehicular networks [7, 8, 33, 35, 36, 102]. At

roadside unit (RSU), hundreds of antennas can be deployed (as illustrated in [33, 36, 102],

by using millimeter-wave (Terahertz frequency band [8]), the elements at the RSU can

reach upto 256), and the simultaneous vehicles in service can be tens. The massive MIMO

architecture is quite suitable for the moving vehicles to access the roadside infrastructure

[35]. Besides, massive MIMO has shown huge potential spectrum and energy efficiency

[3, 29, 32, 34, 104]. Those benefits can be achieved by employing simple linear match-filter

(MF), zero-forcing (ZF), and minimummean-square error (MMSE) receivers [3,29,32,34,38].

However, the results in [3, 29, 32, 34] clearly show that in terms of both the achievable

sum rate capacity and the energy efficiency, linear ZF or MMSE receivers show obvious

performance gain over the MF receivers. Therefore, linear ZF or MMSE receivers are more

preferable in real implementations [23, 81,84–86,105].

However, as the number of vehicular users under simultaneous service can be huge,

the computational complexity for linear detection schemes is still considerable. Besides,

the iterative methods, for example, Gauss-Seidel method, experience large processing delay

caused by iterations and successive detection. In this chapter, we propose low complexity

and fast processing algorithms to address those issues. The proposed schemes transform

the large-scale matrix inverse problems in linear MMSE detection scheme into solving linear

equations. We then introduce iterative methods to solve linear equations. To speed up
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the updating process in the iterative method, we utilize the properties of a block matrix,

and perform the updating process on a small size block independently. The independent

processing can be done in parallel, which greatly reduces the overall processing time. We

also evaluate the performance of the proposed schemes in terms of the probability that the

convergence conditions are met, and the system bit error rate. The results show that the

proposed schemes achieve good system performance and at low complexity and latency.

The main contributions are summarised as follows.

1) We propose to utilize the block diagonal matrices for the updating progress in iterative

methods. By using small size block diagonal matrices, the matrix inversion issues

degrade from a large scale to a small scale. Therefore, the overall computational

complexity is greatly reduced;

2) We propose an alternative matrix inversion algorithm by using the block matrix inver-

sion theorem. Compared to the well-known Cholesky decomposition based matrix

inversion method, the proposed algorithm involves less memory storage and fewer

multiplications;

3) We propose the block Gauss-Seidel method for the updating progress. The proposed

Gauss-Seidel method is performed on small size block matrix independently, hence

the computational complexity on each block is greatly reduced.

4) We propose using the parallel processing for the updating progress. By utilizing the in-

dependent structure, parallel processing can significantly reduce the overall processing

time.

We also evaluate the performance of the proposed schemes in terms of the probability

that the convergence conditions are met, and the system bit error rate (BER) in various

system configurations. Numerical results have shown that the proposed schemes can achieve
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near linear MMSE detection performance but with low complexity and low processing delay.

The superiority of the proposed algorithms is even more significant when the number of

vehicles under simultaneous service becomes large. This superiority, i.e., low complexity

and fast processing time, makes the proposed algorithms quite suitable for the applications

of massive MIMO to modern vehicular networks.

The rest of this chapter is organized as follows. In Section 6.1, we introduce the system

model and briefly review the linear detection scheme, Cholesky decomposition based matrix

inversion method, Jacobi method, and the Gauss-Seidel method. The proposed iterative

method that utilizes the block diagonal matrices is presented in Section 6.2, followed by the

proposed block Gauss-Seidel method in Section 6.3. Numerical simulations and discussion

are provided in Section 6.4 and conclusions are drawn in Section 6.5.

6.1 System Model

We consider an application scenario shown in Figure 6.1 where the roadside infrastructure

and the moving vehicles on the road form a typical vehicular network. The moving vehicles

are connected with neighbouring vehicles through vehicle-to-vehicle (V2V) links and they

communicate with the RSU through vehicle-to-infrastructure (V2I) links. The RSU is

deployed with massive/large-scale antenna array and is mounted on the top of the roadside

buildings. To support ITS service, all vehicles collect traffic data and share with neighboring

vehicles or report to the RSU. For example, when the vehicle accesses a school zone, the

information includes location, speed limit, school bus, pedestrians, parking lot, and so on,

will be collected, and shared with the vehicles behind. Those information can be also

reported to the RSU, and RSU can broadcast to alert the vehicles in its communication

area. Obviously, the number of vehicles, which are simultaneously communicating with

the RSU, can be huge, and low complexity and fast processing data detection schemes are
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Figure 6.1: RSU with massive antennas to serve multiple vehicles on the road
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Figure 6.2: The baseband signal processing diagram at OBU and RSU

required.

As pointed out in [10,11], V2I communications play a significant role in ITS service, we

mainly focus on the V2I links in this Chapter. For uplink transmission, at each vehicle, the
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on-board unit (OBU) encodes the source information bitstream, and modulated to QAM

symbols. To avoid high peak-to-average power ratio (PAPR), the single-carrier frequency

division multiple access (SC-FDMA), also known as DFT-spread orthogonal frequency di-

vision multiplexing (DFT-S-OFDM), is adopted [23]. Compared to OFDM modulation, in

SC-FDMA systems, DFT operations are performed before OFDM modulations.

The baseband signal processing diagram is presented in Figure 6.2. We assume the num-

ber of antenna elements at RSU is NB, and the number of vehicles in simultaneous service is

NU . At the OBU side, for the u-th vehicular user, the LDPC encoder first encodes the source

information bitstream (of length K), bu = [bu0 , bu1 ,⋯, buK−1]T, to generate the corresponding

coded bitstream (of length L), cu = [cu0 , cu1 ,⋯, cuL−1]T. The LDPC code rate is R = K/L.
After interleaving, the output bitstream is qu = [qu0 , qu1 ,⋯, quL−1]T, where qu� = Π (cul ) and
Π (⋅) is the interleaving function. qu is fed into the QAM modulator to produce the trans-

mitted symbol block su = [su0 , su1 ,⋯, suN−1]T, where sun = Q ([qun,0, qun,1,⋯, qun,log2M−1]). The

QAM symbol sun carries log2M bits information, and the m-th mapping bit is qun,m. M

is the cardinality of the QAM symbol set χ. Performing DFT operations, the frequency

domain symbol vector xu = [xu0 , xu1 ,⋯, xuN−1]T is obtained, with xuk = N−1∑
n=0

sun exp (− j2πknN ).
Redefine the transmitted signal vector over the k-th subcarrier as xk = [x0k, x1k,⋯, xNU−1

k ]T,
we generalize the frequency domain signal vector as

x = (FN ⊗ INU
) s, (6.1)

where x = [xT
0 ,x

T
1 ,⋯,xT

N−1]T, and s = [sT0 , sT1 ,⋯, sTN−1]T with sn = [s0n, s1n,⋯, sNU−1
n ]T. After

DFT, the frequency domain symbols are mapped to available subcarriers, and fed into an

inverse-fast Fourier transform (IFFT) module. To overcome the inter-block-interference

(IBI) in the multi-path frequency selective vehicular channel [5, 9], a cyclic prefix (CP) is

put before sending to massive MIMO channel.

Assuming the length of the CP is no less than the maximum path delay, and after
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removing CP, we perform the FFT operations on the received signal at each antenna.

Through subcarrier demapping, we have

yk =Hkxk + zk, (6.2)

where Hk ∈ CNB×NU is the frequency domain channel response. zk = [zk,0, zk,1,⋯, zk,NB
]T

is the noise vector over the k-th subcarrier, with each entry modeled as zero mean complex

Gaussian circularly symmetric random variable [69]. E{zkzHk } = σ2
zINB

. yk is used for later

detection.

6.1.1 Linear MMSE Detection

From Equation (6.2), we denote the received signal over all subcarriers as y = [yT
0 ,y

T
1 ,⋯,yT

N−1]T,
given by

y =Hx + z =H (FN ⊗ INU
) s + z, (6.3)

where z = [zT0 ,zT1 ,⋯,zTN−1]T, and the frequency domain channel matrix, H, is given by

H =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0

H1

⋱
HN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

With complete knowledge of the channel matrix, the linear MMSE detection can be ex-

pressed as

ŝ = (FH
N ⊗ INU

) (HHH + σ2
zINU
)−1HHy. (6.4)

Equation (6.4) indicates that the linear MMSE estimation of ŝ consists of two stages, which

are given by the following steps:

x̂ = (HHH + σ2
zINU
)−1HHy =W−1yMF, (6.5)
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ŝ = (FH
N ⊗ INU

) x̂, (6.6)

where the equalization matrixW =G + σ2
zINU

and the Gram matrixG =HHH. yMF =HHy

is the match-filter output. W and G are both block diagonal matrices, with Wk ∈ CNU×NU

and Gk ∈ CNU×NU respectively given by

Wk =Gk + σ2
zINU

, (6.7)

Gk =HH
k Hk. (6.8)

It is worth noting that if the noise component is not considered in the equalization process,

the linear MMSE estimation degrades to the linear ZF detection.

We extract ŝun from Equation (6.4), given by

ŝun = ρusun + ξun, (6.9)

where ρu is the equivalent channel gain and ξun denotes the noise-plus-interference (NPI)

component. ρu is given by

ρu = 1

N

N−1∑
k=0

eHuW
−1
k Gkeu, (6.10)

and the covariance of the NPI, vu = cov {ξun, ξun}, is given by

vu = ρu (1 − ρu) . (6.11)

Therefore, the posteriori signal-to-noise-plus-interference ratio (SINR), γu, is given by

γu = ρu

1 − ρu . (6.12)

In addition, the max-log likelihood ratio (LLR) of the bits associated with sun is given

by [23,84]

L (qun,m) = γu (min
s∈χ0

m

∣ ŝun
ρu
− s∣2 − min

s′∈χ1
m

∣ ŝun
ρu
− s′∣2) , (6.13)

where χb
m ≜ {s ∣s ∈ χ, qm = b} denotes the subset of χ, where them-th mapping bit associated

with s is b. L (qun,m) is deinterleaved, and then fed into LDPC decoder for decoding process,

as shown in Figure 6.2(b).
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6.1.2 Matrix Inversion Based on Cholesky Decomposition

We note in Equation (6.5), the matrix inversion operations are required for linear MMSE

detection. As W is a block diagonal matrix, the inversion can be implemented on each

subcarrier. By noting that Wk is a Hermitian matrix, the matrix inversion based on

Cholesky decomposition is usually adopted [23, 106]. To begin with, Wk can be factorised

into

Wk =RH
k ΛkRk, (6.14)

where Rk ∈ CNU×NU is an upper triangular matrix where the diagonal elements are ones,

and Λk = diag{[Λ0
k,Λ

1
k,⋯,ΛNU−1

k ]T} is a diagonal matrix. The diagonal elements, Λu
k ,

u = 0,1,⋯,NU − 1, can be given as

Λu
k =W(u,u)

k − u−1∑
l=0
∣R(l,u)k ∣2Λl

k. (6.15)

The upper triangular elements, R
(u,v)
k , u < v, are given by

R
(u,v)
k = 1

Λu
k

(W(u,v)
k − u−1∑

l=0
(W(l,u)

k )∗W(l,v)
k Λl

k) . (6.16)

Let Xk =W−1
k such that WkXk = INU

, using the results in Equation (6.14), we then

have

RH
k ΛkBk = INU

, (6.17)

RkXk =Bk. (6.18)

Equation (6.17) indicates that Bk is the inverse of the matrixRH
k Λk; therefore, Bk is a lower

triangular matrix. Meanwhile, as Xk is also a Hermitian matrix, only the diagonal and the

above diagonal elements are required to obtain Xk. By noting these properties [106], we

use backward substitution to solve Equation (6.18), given by

X
(v,v)
k = 1

Λv
k

− NU−1∑
l=v+1

R
(v,l)
k X

(l,v)
k , (6.19)
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X
(u,v)
k = −NU−1∑

l=u+1
R
(u,l)
k X

(l,v)
k , (6.20)

where only upper triangular elements, X
(u,v)
k , (u ≤ v), are solved, and X

(v,u)
k = (X(u,v)k )∗

(u ≤ v) is used when needed [106].

The above solutions avoid computing Bk and fewer real number multiplications are

required.

6.1.3 Jacobi Method

The above matrix inversion method based on Cholesky decomposition is a well-known ma-

trix inversion method; however, the computational complexity is still in the order O (N3
U).

Instead of computing the matrix inverse, we can transform the matrix inversion problem

into solving linear equations. We then adopt the iterative methods to solve linear equations.

To be specific, we first rewrite Equation (6.5) into

Wx̂ = yMF. (6.21)

Using the block matrix properties, we have N independent equations established on each

subcarrier, given by

Wkx̂k = yMF
k , (6.22)

where yMF
k = HH

k yk is the matched-filter output over the k-th subcarrier. We divide Wk

into

Wk =Dk +Ek, (6.23)

where Dk = diag{dk} with dk = [d0k, d1k,⋯, dNU−1
k ]T where duk =W(u,u)

k , and Ek consists of

the rest of the elements in Wk. With the Jacobi method [85], we have the updating process

given by

x̂
(i+1)
k =D−1k (yMF

k −Ekx̂
(i)
k ) , (6.24)
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where x̂
(i)
k is the i-th estimation. Providing an initial estimate, we can follow the Jacobi

iterative structure in Equation (6.24) to update the next estimation, eventually approaching

the linear MMSE detection results.

It is worth noting that only matrix-vector products are involved in Equation (6.24), and

the computational complexity of the Jacobi method is in the order O (N2
U). When the ratio

r = NB/NU is sufficiently large, only a few iterations are required for the Jacobi method,

hence reducing the overall computational complexity relative to direct matrix inversion

methods.

6.1.4 Gauss-Seidel Method

In the case where the ratio r = NB/NU is not sufficiently large, the Jacobi method converges

slowly [84]. The Gauss-Seidel method investigated in [84] has shown a faster convergence

rate than Jacobi method. With the Gauss-Seidel method, Wk is first divided into

Wk =Dk +Lk +LH
k , (6.25)

where Lk takes the lower triangular (below diagonal) elements inWk. The updating process

can be expressed as

x̂
(i+1)
k = (Dk +Lk)−1 (yMF

k −LH
k x̂
(i)
k ) . (6.26)

Although Equation (6.26) involves matrix inversion, successive detection can be employed

as (Dk +Lk) is a lower triangular matrix. Specifically, we have

x̂
(i+1)
k,u = yMF

k,u − u−1∑
v=0

W
(u,v)
k x̂

(i+1)
k,v − NU−1∑

v=u+1
W
(u,v)
k x̂

(i)
k,v

duk
, (6.27)

where x̂
(i)
k,u = eHn x̂(i)k is the estimation of the u-th user’s transmit symbol over the k-th sub-

carrier in the i-th iteration, and yMF
k,u = eHuyMF

k . Apparently, the computational complexity

is in the order O (N2
U) in each iteration.
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6.2 Block Diagonal Matrix Inversion Based Detection Method

The Gauss-Seidel method based detection scheme [84] has the following limitations. First

of all, when the number of vehicles in service becomes very large, the successive detection

introduces large processing delay since the last user needs to wait until all previous users

have been detected. In addition to that, the successive signal processing structure is not

efficient for hardware implementation [85]. In this section, we will introduce the use of the

block diagonal matrix in massive MIMO data detection.

6.2.1 Development of the Proposed Scheme

It has been shown in [23] that Wk is a diagonal dominant matrix. Based on that, we define

the block diagonal matrix, Pk, which is given by

Pk =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pk (0)
Pk (1)

⋱
Pk (B − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.28)

where the l-th block, Pk (l), consists of the elements at the rows and the columns both from

l ⋅NL to (l + 1) ⋅NL − 1 in Wk. B and NL denote the number of blocks and the size of the

block. For better illustration, we suppose NL ×B = NU
2. According to the expressions in

Equation (6.24) and (6.26), we have the iterative estimation given by

x̂
(i+1)
k = P−1k (yMF

k −Qkx̂
(i)
k ) , (6.29)

where Qk =Wk −Pk. Although the matrix inversion, P−1k , is involved in Equation (6.29),

we can utilize the properties of the block diagonal matrix to reduce the computational

complexity. Specifically, we define ỹ
(i)
k = yMF

k −Qkx̂
(i)
k which can be preprocessed when the

2If the equation does not hold, the last block consists of the rest elements in the last block.
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estimate after i-th iteration, x̂
(i)
k , is available. We then divide x̂

(i)
k and ỹ

(i)
k into B blocks,

respectively given by

x̂
(i)
k =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂
(i)
k (0)

x̂
(i)
k (1)⋮

x̂
(i)
k (B − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.30)

ỹ
(i)
k =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ỹ
(i)
k (0)

ỹ
(i)
k (1)⋮

ỹ
(i)
k (B − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.31)

where x̂
(i)
k (l) is the l-th block in x̂

(i)
k , denoting the estimate of the frequency symbols over

the k-th subcarrier for the users from l ⋅NL to (l + 1) ⋅NL − 1 in the i-th iteration; ỹ
(i)
k (l)

is the l-th block, consisting of the elements in rows from l ⋅NL to (l + 1) ⋅NL − 1 in ỹ
(i)
k .

ỹ
(i)
k (l) is given by

ỹ
(i)
k (l) = yMF

k (l) −Qk (l) x̂(i)k , (6.32)

where Qk (l) consists of elements in rows from l ⋅NL to (l + 1)⋅NL−1 in Qk, and the elements

in columns from l ⋅NL to (l + 1) ⋅NL − 1 are zeros; yMF
k (l) consists of the rows from l ⋅NL

to (l + 1) ⋅NL − 1 in yMF
k . In addition, we have

x̂
(i+1)
k (l) = P−1k (l) ỹ(i)k (l) . (6.33)

That is to say, we only need to compute the matrix inverse, P−1k (l), with the matrix size

NL = NU/B.

Therefore, we divide the updating progress in Equation (6.29) into two steps: the pre-

processing expressed in Equation (6.32) to obtain ỹk (l), and the updating progress given by

Equation (6.33). Instead of solving a large size matrix inversion, we only need to compute

a much small size matrix inversion, which requires fewer computations.
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It is worth pointing out that if the number of blocks, B = 1, the block diagonal matrix

inverse based detection scheme is equivalent to the direct matrix inversion in linear MMSE

detection; if B = NU , the proposed scheme becomes the Jacobi method.

6.2.2 A New Matrix Inversion Method

An matrix inversion based on Cholesky decomposition can be used for the computation of

P−1k (l); however, as the size of the P−1k (l) is small, we have a better way to compute matrix

inversion, which is based on block matrix inversion [107]. As we will show later, the new

matrix inversion matrix is of low complexity and requires low storage space.

To begin with, we present the block matrix inversion given by⎡⎢⎢⎢⎢⎢⎢⎣
A B

C D

⎤⎥⎥⎥⎥⎥⎥⎦
−1

=⎡⎢⎢⎢⎢⎢⎢⎣
(A −BD−1C)−1 −A−1B(D −CA−1B)−1

−(D −CA−1B)−1CA−1 (D −CA−1B)−1
⎤⎥⎥⎥⎥⎥⎥⎦ ,

(6.34)

where A and D are square matrix; B and C are arbitrary size. The Equation (6.34) holds

when A, D, (A −BD−1C), and (D −CA−1B) are invertible.

Suppose we have a Hermitian matrix AM ∈ CM×M , and its inversion A−1M . The matrix

AM+1 is given by

AM+1 = ⎡⎢⎢⎢⎢⎢⎢⎣
AM b

bH aM+1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
where aM+1 > 0, and (aM+1 − bHA−1Mb) ≠ 0. Define d =A−1Mb, according to Equation (6.34),

we have

A−1M+1 =
⎡⎢⎢⎢⎢⎢⎢⎣

B c

cH dM+1

⎤⎥⎥⎥⎥⎥⎥⎦ , (6.35)

where B ∈ CM×M , c ∈ CM×1, and

dM+1 = (aM+1 − bHd)−1, (6.36)
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c = −dM+1d, (6.37)

B = (AM − a−1M+1bbH)−1, (6.38)

B is known as the Schur component of AM , which can be calculated as

B =A−1M + dM+1ddH, (6.39)

That is to say, if we have the vector d as d = A−1Mb, we then update dM+1, c, and B in

Equations (6.36), (6.37), (6.39), respectively.

In summary, we present the new matrix inversion method in Algorithm 6.1. It is

straightforward from Algorithm 6.1 that the new matrix inversion method only needs

O (M) extra memory storage for d. Compared to the Cholesky decomposition based matrix

inversion method where the memory storage is required for bothΛk andRk, the new method

requires less storage space.

6.2.3 Initial Estimation

The initial estimate, x̂
(0)
k , is required for iterative methods. If we have an initial estimate

that is close to the MMSE estimation, the number of iterations will be greatly reduced,

hence reducing the overall processing delay. In priori work [23, 80, 84], the authors have

demonstrated that Wk will be diagonal dominant when the ratio r = NB/NU is sufficiently

large. By using this property, we can use the initial estimation for the l-th block given by

x̂
(0)
k (l) =D−1k (l)yMF

k (l) , (6.40)

where the diagonal matrix D−1k is utilized to approximate W−1
k . Actually, this approxima-

tion is also used in [84] as an initial estimate. It is worth noting that the initial estimate

provided in Equation (6.40) is better than zero vector used in [83], and the computational

complexity is low.
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Table 6.1: Algorithm 6.1: Compute the Inversion of a Hermitian Matrix

Input: The Hermitian Matrix A ∈ CM×M ;

Output: The Matrix Inversion B =A−1.
Initialization:

1. B (1,1) = 1/A (1,1), d = zeros(1,M);
Loop:

2. for m = 1 ∶ 1 ∶ (M − 1)
3. d (1 ∶m) =B (1 ∶m,1 ∶m) ⋅A (1 ∶m,m + 1);
4. B (m + 1,m + 1) =A (m + 1,1 ∶m) ⋅ d (1 ∶m);

B (m + 1,m + 1) = 1/(A (m + 1,m + 1) −B (m + 1,m + 1));
5. B (1 ∶m,m + 1) = −B (m + 1,m + 1) ⋅ d (1 ∶m);
6. B (1 ∶m,1 ∶m) =B (1 ∶m,1 ∶m) −B (1 ∶m,m + 1) ⋅ dH (1 ∶m);
7. end

Return B.
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6.2.4 LLR Computation

In order to provide LLR for the soft-input LDPC decoder, we need to compute the LLR of

the bits associated with the symbol estimation. In the Neumann series expansion method

[23], the truncated order is limited for computational complexity consideration as matrix

multiplications are involved. In addition, in a system where NB/NU is low (for example,

NB/NU ⩽ 5), the matrix inverse approximation with the truncation order of three is far

away from W−1
k . Furthermore, we note that the matrix inverse is still involved in Equation

(6.10) for the computation of the equivalent channel gain.

Considering all those factors above, the authors in [23] propose to use the first truncation

order of the Neumann series expansion to replaceW−1
k in the computation of ρu and vu. This

indicates that the NPI after the first iteration is considered for all the rest of the iterations.

Similar idea is presented in [84, 85]. However, in iterative method, the covariance of the

NPI will decrease with iterations. Moreover, with a sufficiently large number of iterations,

the final estimation x̂
(i)
k will be quite close to the MMSE estimation given the convergence

conditions are satisfied. Therefore, if ρu and vu still adopt the method in [23, 84, 85],

significant system performance loss will be shown compared to the true MMSE detection.

In order to address the issue, we propose to utilize the NPI in MMSE estimation. To

be specific, we first write

ρu = 1

N

N−1∑
k=0

eHuW
−1
k Gkeu = 1

N

N−1∑
k=0
(1 − σ2

ze
H
uW

−1
k eu), (6.41)

where Equation (6.7) is applied. When NB become sufficiently large, Wk will be diagonal

dominant. Therefore, an approximation of ρu can be given by

ρu ≈ 1 − σ2
z

N

N−1∑
k=0

1

duk
, (6.42)

and the covariance of the NPI can be approximated using Equation (6.11). Using the

approximation in (6.42) can greatly reduce the computational complexity to obtain the
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equivalent channel gain ρu. Besides, with sufficient iterations (as we will show later, the

computational complexity and processing delay for one iteration are low, and we can perform

a large number of iterations), the relationship between vu and ρu in Equation (6.11) can be

held as the estimate is close to the MMSE estimate when convergence conditions are met.

With vu and ρu, the posteriori SINR is computed as Equation (6.12), and the LLRs are

calculated as Equation (6.13).

6.2.5 Parallel Processing

One of the most significant advantages to using the block diagonal matrix is to implement

the detection scheme with parallel processing. As we illustrated previously, both the direct

matrix inversion method and Gauss-Seidel method experience a long processing delay. The

previous one requires huge computational load (O (N3
U)), and the later one involves succes-

sive detection. By contrast, when we use the block diagonal matrix, the matrix inversion

operations are performed on a small blocks, which requires less computational complexity

for implementation. Besides, by noting the processing on each block is independent, the

parallel processing structure can be utilized to speed up the detection progress.

To be specific, the initial estimation provided in Equation (6.40) can be implemented on

each block with the block diagonal matrixD−1k (l) available. We show the parallel processing

for this progress in Figure 6.3(a). Apparently, as the size of D−1k (l) is much smaller than

D−1k , the processing delay is much reduced for computing the initial estimation. Besides, we

can also apply the parallel processing on the block diagonal matrix inversion by using the

property of the block diagonal matrix, which is shown in Figure 6.3(b). Algorithm 6.1 is

utilized on each block for matrix inversion. Compared to a large size matrix inversion, the

matrix inversion on a small size matrix is of low complexity and processing time. Last, the

iterative method can be implemented with the parallel processing structure as well, shown
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(a) Initial Estimation

(b) Matrix Inversion

(c) Iterative Progress

Figure 6.3: Parallel processing on each block
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in Figure 6.3(c). On each block, the progress for updating the next estimate is divided into

two cascaded steps: preprocessing and updating. The preprocessing step is expressed in

Equation (6.32) and the updating step is given by Equation (6.33). By using the parallel

processing structure, the overall processing time for one iteration is greatly reduced relative

to the processing time on each block.

Finally, we present the block diagonal matrix massive MIMO detection scheme in Al-

gorithm 6.2.

6.2.6 Residual Estimation Error

The proposed block diagonal matrix based massive MIMO detection scheme is to approach

linear MMSE estimation at each subcarrier by using the iterative method. To evaluate the

error vector between the iterative estimation and the linear MMSE estimation, we define

e
(i)
k = x̂(i)k − x̂k, (6.43)

where the iterative estimate x̂
(i)
k is given by Equation (6.29), and the linear MMSE estimate

x̂k =W−1
k yMF

k is derived from Equation (6.22). According to Equation (6.29), we can derive

e
(i)
k =P−1k (yMF

k −Qkx̂
(i−1)
k ) − x̂k

=P−1k (Wkx̂k −Qkx̂
(i−1)
k ) − x̂k

=P−1k Qk (x̂k − x̂(i−1)k )
= −P−1k Qke

(i−1)
k .

(6.44)

Similar to [23], the 2-norm of the residual estimation error is defined as

J(i) = ∥e(i)k ∥2 = ∥−PkQke
(i−1)
k ∥

2
= ⋯ = ∥(−PkQk)ie(0)k ∥2, (6.45)

where e
(0)
k = x̂(0)k − x̂k indicates the initial residual estimation error. Apparently, we have

J(i) ⩽ ∥(PkQk)i∥
F
∥e(0)k ∥2, (6.46)
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Table 6.2: Algorithm 6.2: Block Diagonal Matrix Based Massive MIMO Detection

Input: Hk, y
MF
k , σ2

z , number of blocks B, and iterations I

Output: Estimation after I Iterations, x̂
(I)
k .

Initialization:

1. Gk =HH
k Hk, Wk =Gk + σ2

zINU
, yMF

k =Hkyk;

2. Obtain Dk (l), Pk (l), Qk (l), and yMF
k (l), l = 0,1,⋯,B;

Parallel Processing: Initial Estimation (3-5)

3. for l = 0 ∶ 1 ∶ (B − 1)
4. x

(0)
k (l) =D−1k (l)yMF

k (l);
5. end

Parallel Processing: Matrix Inversion (6-8)

6. for l = 0 ∶ 1 ∶ (B − 1)
7. Compute P−1k (l) with Algorithm 6.1;

8. end

Iteration:

9. for i = 0 ∶ 1 ∶ (I − 1)
Parallel Processing: Iterative Progress (10-13)

10. for l = 0 ∶ 1 ∶ (B − 1)
11. Preprocessing: ỹ

(i)
k (l) = yMF

k (l) −Qk (l) x̂(i)k ;

12. Updating: x̂
(i+1)
k (l) = P−1k (l) ỹ(i)k (l);

13. end

14. end

Return x̂
(I)
k .
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where ∥Ax∥2 ⩽ ∥A∥F∥x∥2 is used for the above derivation. Given the convergence condi-

tion satisfied for the block diagonal matrix based massive MIMO detection scheme, i.e.,

lim
i→∞
(P−1k Qk)i = 0, the residual estimate will approach zero. We will show later that the

probability that the convergence condition is satisfied will approach one with proper block

size. That is to say, the iterative estimate will eventually approach the linear MMSE esti-

mate.

6.2.7 Computational Complexity Analysis

We now evaluate the computational complexity of the block diagonal matrix based detec-

tion scheme. We adopt the number of real-valued multiplications for the analysis of the

computational complexity [85]. It is clear from Algorithm 6.2, the overall computational

complexity of the block diagonal matrix based detection scheme consists of two components:

the initialization, and iteration steps.

In the initialization step, the computations of Gk, Wk, and the matched-filter output

yMF
k , are essential for most of the detection schemes [23,84–86]. Therefore, we only consider

the computations for the initial estimation and matrix inversion. In Algorithm 6.2, we

employ the parallel processing structure for the initial estimation (steps 3-5). For each

block, as Dk (l) is a diagonal matrix, the real-valued multiplications required for each block

is 2NL. We utilize the Algorithm 6.1 for the matrix inversion. Suppose the complexity

for a size M Hermitian matrix is T (M), according to the Loop in Algorithm 6.1, we

have

T (M + 1) = T (M) + (4M − 2)M + (2M + 1) + 2M + 2M2, (6.47)

where (4M − 2)M , (2M + 1)3, 2M , and 2M2, account for the number of real-valued mul-

tiplications in steps 3, 4, 5, 6 in Algorithm 6.1, respectively. It is worth noting that the

3We take the division operation in step 4 as one operation. This is to avoid T (1) = 0 when counting the

operations for size 1 matrix. However, as we can see, the overall number of division operations is M for size
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property of a Hermitian matrix is applied; as a result, only the diagonal and above diagonal

elements are considered for the computational complexity analysis. With Equation (6.47),

and let T (1) = 1, we can derive that

T (M) = 2M3 − 2M2 +M. (6.48)

That is to say, the proposed matrix inversion method requires 2N3
L − 2N2

L +NL real-valued

multiplications (and divisions) for each block matrix. Using the previous mentioned C-

holesky decomposition based matrix inversion method, 7
3N

3
L − 1

2N
2
L − 5

6NL real-valued mul-

tiplications (and divisions) are required. Both methods involves NL divisions. Therefore,

compared to the Cholesky decomposition based matrix inversion, our proposed matrix in-

version method requires fewer computations.

In the iteration step, the processing on each block involves two cascaded steps. The

preprocessing in step 11 (Algorithm 6.2) requires 4 (NU −NL)NL multiplications. The

updating process in step 12 involves 4N2
L − 2NL real-valued multiplications. Therefore, the

overall computational complexity required on each block is 4NUNL − 2NL.

To summarize, we present the computational complexity comparison of the proposed

block diagonal matrix inversion based detection method with the linear MMSE detection

scheme in Figure 6.4. For comparison, we also present the computations using the Cholesky

decomposition based matrix inversion method as a benchmark. The following observations

can be found.

1) It is clear from Figure 6.4 that with the proposed matrix inversion method, the number

of real-valued multiplications is less than that of using the Cholesky decomposition

based matrix inversion method;

2) With the proposed block diagonal matrix based iterative method, the overall compu-

M matrix, which is the same as Cholesky decomposition method.
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(a) B = 2

(b) B = 4

(c) B = 8

(d) B = 16

Figure 6.4: Computational complexity comparison for different block size
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tations have been greatly reduced even with a large number iterations. In addition,

from Figure 6.4(a) to Figure 6.4(d), it is clear that the overall computations decrease

with the increase of block size;

3) With parallel processing, we can see that the computations on each block maintain very

low level from various blocks. Furthermore, from Figure 6.4(a) to Figure 6.4(d), we

can see that the increase of block size leads to the decrease of the computations on

each block.

The results in Figure 6.4 show that proposed matrix inversion method is low complex-

ity compared to the well-known Cholesky decomposition based matrix inversion method.

Besides, the proposed iterative method based on block diagonal matrix inversion shows ob-

vious superiority of low complexity in terms of overall computations and computations on

each individual block.

6.3 Block Gauss-Seidel Method

As shown previously, the Gauss-Seidel method is of low complexity and has a fast conver-

gence rate. However, two limitations with the original Gauss-Seidel method can be found:

first, if the vehicular user number is large, the successive detection will introduce large pro-

cessing delay for the last user; second, as the detection for later users needs to wait until

all previous users have been detected, the successive signal processing structure is not effi-

cient for hardware implementation. Inspired by the block diagonal matrix based detection

scheme in previous section, we can employ the Gauss-Seidel method on small blocks.
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6.3.1 Development of the Proposed Scheme

By utilizing the block diagonal matrix Pk in Equation (6.28), we have the updating progress

given by Equation (6.29). By transforming the matrix inversion in Equation (6.29) into

linear equations, we have

Pkx̂
(i+1)
k = ỹ(i)k . (6.49)

Since Pk is a block diagonal matrix, Equation (6.49) is equivalent to B independent linear

equations, given by

Pk (l) x̂(i+1)k (l) = ỹ(i)k (l) , (6.50)

where l = 0,1,B − 1. It is worth noting that Pk (l) is a Hermitian matrix as well; therefore,

the small size linear equation (6.50) can be solved with Gauss-Seidel method. To be specific,

we can divide Pk (l) as
Pk (l) =Dk (l) +Tk (l) +TH

k (l) , (6.51)

where Dk (l) is the diagonal matrix with the diagonal elements taken from the diagonal ele-

ments in Pk (l); Tk (l) is a lower triangular matrix with the diagonal elements all zeros and

the below diagonal elements consisting of the below diagonal elements in Pk (l). Therefore,
we have the updating progress in Equation (6.50) given by

x̂
(i+1)
k (l) = (Dk (l) +Tk (l))−1 (ỹ(i)k (l) −TH

k (l) x̂(i)k (l)) . (6.52)

Similar to Equation (6.26), as (Dk (l) +Tk (l)) is a lower triangular matrix, successive

detection can be introduced for the updating process.

It is noted that when the block size B = 1, the block Gauss-Seidel method reduces to

the original Gauss-Seidel method; when B = NU , the block Gauss-Seidel method becomes

the Jacobi method. Although we introduce successive detection for Equation (6.52), the

processing delay for the last users in the block is just 1/B of that in the original Gauss-Seidel

method. This is quite obvious as the block matrix Pk (l) is of size NL = NB/B. Therefore,
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instead of a long delay time, our proposed block Gauss-Seidel method has the advantage

of much lower processing delay for one iteration. In addition, by using the Gauss-Seidel

method on each block, we successfully avoid matrix inversion (even though the matrix

size is small), which leads to further computations reduction. Moreover, the independent

processing on each block can be implemented with a parallel processing structure, which is

much efficient in hardware implementation.

6.3.2 Parallel Processing

With the availability of the previous estimate x̂
(i)
k , we update ỹ

(i)
k (l) for each block accord-

ing to Equation (6.32), and then perform the Gauss-Seidel method according to Equation

(6.52). Therefore, we can utilize the parallel processing structure to complete the prepro-

cessing and updating progress, which helps to greatly reduce the overall processing delay.

6.3.3 Residual Estimation Error

From Equation (6.52), we can derive that the matrix used for block Gauss-Seidel method,

given by

Γk =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γk (0)
Γk (1)

⋱
Γk (B − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.53)

where Γk (l) =Dk (l) +Tk (l). Similar to the previous Section, we have the 2-norm of the

residual estimation error of the block Gauss-Seidel method given by

J̃(i) =∥(−Γk (Wk −Γk))ie(0)k ∥2⩽∥(INU
−ΓkWk)i∥

F
∥e(0)k ∥2.

(6.54)

It is obvious that when the convergence condition, i.e., lim
i→∞
(INU

−ΓkWk)i = 0, is satisfied,
the residual estimation error will approach 0. As we show later, with proper block size,
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the probability that the convergence condition is satisfied approaches 1. Therefore, the

proposed block Gauss-Seidel method can achieve near linear MMSE estimation.

6.3.4 Computational Complexity Analysis

Compared to the block diagonal matrix based detection scheme, we successfully avoid matrix

inversion. Instead, we introduce the Gauss-Seidel method for the updating progress. As

the matrix size is NL, the computations required for the updating on each block is 4N2
L −

2NL. The preprocessing is the same as the block diagonal matrix based detection scheme.

Therefore, the overall amount of real-valued multiplications is 4NUNL−2NL on each block.

Compared to the block diagonal matrix based detection scheme, block Gauss-Seidel method

consumes less computations in initialization. Therefore, block Gauss-Seidel method is of

low complexity and the computations on each block are greatly reduced with a parallel

processing structure.

6.4 Numerical Simulations and Performance Evaluation

6.4.1 Convergence Conditions

We first investigate the convergence performance of the block diagonal matrix based detec-

tion method. Given the initial estimation x̂
(0)
k , according to Equation (6.29), we have

x̂
(i+1)
k =P−1k yMF

k −P−1k Qkx̂
(i)
k

=P−1k yMF
k −P−1k Qk (P−1k yMF

k −P−1k Qkx̂
(i−1)
k )

=(I −P−1k Qk)P−1k yMF
k + (P−1k Qk)2x̂(i−1)k

=⋯
=(I −P−1k Qk +⋯+ (−P−1k Qk)i)P−1k yMF

k

+ (−P−1k Qk)i+1x̂(0)k .

(6.55)
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(a)

(b)

Figure 6.5: Cumulative distribution function of the maximum eigenvalues, block diagonal

matrix based detection scheme, NU = 32: (a) NB = 112, (b) NB = 128.
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(a)

(b)

Figure 6.6: Cumulative distribution function of the maximum eigenvalues, block diagonal

matrix based detection scheme, NU = 32: (a) NB = 144, (b) NB = 160.
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Therefore, the convergence condition for Equation (6.55) is

lim
i→∞
(P−1k Qk)i = lim

i→∞
(I −P−1k Wk)i = 0, (6.56)

or equivalently,

ρ (I −P−1k Wk) = ∣λ0∣ < 1, (6.57)

where ρ (A) is the spectral radius of a matrix A, and ∣λ0∣ ⩾ ∣λ1∣ ⩾ ⋯ ⩾ ∣λNU−1∣ denote the

NU eigenvalues of (I −P−1k Wk).
We utilize Monte-Carlo simulations to obtain the cumulative distribution function (CD-

F) of λ0 by randomly generating the channel matrix Hk [23]. And the results are shown in

Figures 6.5 and 6.6, where Es/N0 = 2dB is used for the noise covariance computation. The

following observations can be found:

1) It is noted that with the increase of B, the probability Pr (∣λ0∣ ⩽ a) decreases. For

example, in Figure 6.5(a), Pr (∣λ0∣ ⩽ 1) for B = 2 is 1, and eventually decreases to

0.073 for B = 32. Similar results are shown in Figure 6.5(b), 6.6(a), and 6.6(b);

2) As ∣λ0∣ ⩽ 1 is the convergence condition for the iterative methods, the results in Figure

6.5(a) indicates that B ⩾ 8 may be inapplicable for the system configuration. In

particular, the Jacobi method (which corresponds B = 32) cannot converge for all

cases. This is consistent with the results in [23, 80] where a large ratio of r = NB/NU

is required;

3) From Figure 6.5(a) to Figure 6.6(b), it is shown that with increasing NB, the probability

that the convergence conditions is satisfied (i.e., Pr (∣λ0∣ ⩽ 1)) can be improved for

various number of blocks. As a result, computational complexity for each iteration

with larger B will be reduced (smaller block), and the processing delay can be further

improved (high parallel efficiency);
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4) The results in Figure 6.5 and 6.6 also reveal that Pr (∣λ0∣ ⩽ a), a < 1, is always greater

for a smaller B than a larger B. As the maximum eigenvalue plays a dominant role

in the convergence rate for iterative methods, we conclude that the convergence rate

for smaller B is greater than that of a large B.

Therefore, on one hand, in order to maintain low complexity and processing delay, we

require a large number of blocks; on the other hand, in order to achieve fast convergence,

we require a small number of blocks. The results in Figure 6.5 and 6.6 can be utilized for

a proper selection of B in practical implementation.

For the block Gauss-Seidel method, by replacing Pk with Γk, we can also utilize the

Monte-Carlo simulations to obtain the CDF of the maximum eigenvalue of the matrix

(I −Γ−1k Wk), and the results are shown in Figure 6.7.

The CDF of the maximum eigenvalue for the original Gauss-Seidel method in [84] (cor-

responding to B = 1 in our case) and that for Jacobi method (corresponding to B = NU )

are presented in Figure 6.7 as benchmarks. Apparently, the original Gauss-Seidel method

has a better convergence performance than the Jacobi method. This is validated from the

following obvious observations:

1) The probability that the convergence conditions are satisfied (i.e., ∣λ0∣ < 1) is much

greater for the original Gauss-Seidel method than that for the Jacobi method;

2) The probability Pr (∣λ0∣ ⩽ a), a < 1, for the original Gauss-Seidel method is much greater

than that for the Jacobi method.

In particular, the latter observation indicates that the convergence rate is much faster

than the Jacobi method. For 1 < B < NU , it is obvious that the convergence performance is

between the original Gauss-Seidel method and the Jacobi method. However, when B >
1 is applicable, by utilizing the parallel processing, we can achieve near linear MMSE
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(a) NB = 112, NU = 32

(b) NB = 160, NU = 32

Figure 6.7: Cumulative distribution function of the maximum eigenvalues, block Gauss-

Seidel method.
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performance (when the performance converges) with fast processing time.

6.4.2 BER Performance

We now evaluate the system bit error rate performance. A LDPC code with code length

1152, and code rate 1/2 is adopted for the channel code scheme. The modulation scheme

is 64QAM, which indicates each symbol carries 6 bits information. The extended vehicular

A (EVA) model is used in the simulation to reflect the multi-path channel between the

vehicles and the RSU.

In Figures 6.8, to 6.10, we present the BER performance of the proposed block diagonal

matrix based detection scheme and the Gauss-Seidel method. The system configuration

is 256 × 32, which indicates the base station is equipped with 256 receive antennas and

32 vehicular users are simultaneously served. For B = 1, the block diagonal matrix based

detection scheme degrades to the linear MMSE detection scheme, and the block Gauss-

Seidel method reduces to the original Gauss-Seidel method [84]. It is noted from Figure

6.8(a) that in this system configuration, the performance of the Gauss-Seidel method quickly

converges to that of the linear MMSE detection scheme (only two iterations are required).

For B = NU , both the block diagonal matrix based detection scheme and the block Gauss-

Seidel method become the well-known Jacobi method. From Figure 6.10(b), we can see

that after 4-5 iterations, the BER performance of the Jacobi method converges to that of

the linear MMSE detection scheme. For the number of blocks 1 < B < 32, we present the

BER performance in figures from Figure 6.8(b) to Figure 6.10(a). As we can see, with the

increase of B, more iterations are required for the convergence of the system performance

which is attributed to the slow convergence rate of larger B. This is consistent with the

conclusions in the previous analysis.

The results in Figures 6.8, 6.9, and 6.10, also reveal the performance of the block diag-
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(a)

(b)

Figure 6.8: BER Performance, NB = 256, NU = 32. BMI: block diagonal matrix based

detection scheme; BGS: block Gauss-Seidel method. (a) B = 1; (b) B = 2.
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(a) B = 4

(b) B = 8

Figure 6.9: BER Performance, NB = 256, NU = 32. BMI: block diagonal matrix based

detection scheme; BGS: block Gauss-Seidel method. (a) B = 4; (b) B = 8.
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(a)

(b)

Figure 6.10: BER Performance, NB = 256, NU = 32. BMI: block diagonal matrix based

detection scheme; BGS: block Gauss-Seidel method. (a) B = 16, (b) B = 32.

142



onal matrix based detection scheme is litter better than the Gauss-Seidel method when the

same iterations are processed. This is understandable as the block Gauss-Seidel method u-

tilizes the lower triangular matrix of the block diagonal matrix to update the next iteration.

However, the results show that the block Gauss-Seidel method achieves very close perfor-

mance compared to the block diagonal matrix based detection scheme, especially when the

number of blocks increases.

However, as shown previously, when the ratio r = NB/NU is not sufficient large, the

convergence conditions may not be satisfied for a large B. For better illustration, we present

the BER performance with the increase of NB, with fixed NU = 32, shown in Figures 6.11

and 6.12. The average received signal-to-noise ratio (Es/N0 = 7dB). It is noted that from

Figure 6.11(a) that the original Gauss-Seidel method (corresponds to B = 1) works well

and it takes about three iterations to converge to the performance of the linear MMSE

detection scheme. Figure 6.11(b) shows that about 4 iterations are required for both the

block diagonal matrix based detection and block Gauss-Seidel method schemes to converge

to the performance of the linear MMSE schemes. However, with the increase of B, we

note from Figure 6.12(a) and Figure 6.12(b) that the performance of the block diagonal

matrix based detection scheme and block Gauss-Seidel method cannot converge to that of

the linear MMSE detection scheme, especially when NB is not sufficient large. The results

are also consistent with the previous analysis where we noted that when we have a large

B, the convergence conditions may not be satisfied with a high probability, which causes

performance gap compared to the linear MMSE detection scheme.

6.4.3 Processing Time

One of the most significant contributions of our work is to develop fast processing detection

methods, and the parallel processing structure is proposed to speedup the processing time.
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(a) B = 1

(b)

Figure 6.11: BER Performance versus NB, NU = 32, BMI: block diagonal matrix based

detection scheme; BGS: block Gauss-Seidel method. (a) B = 1; (b) B = 2.

144



(a) B = 4

(b) B = 8

Figure 6.12: BER Performance versus NB, NU = 32, BMI: block diagonal matrix based

detection scheme; BGS: block Gauss-Seidel method. (a) B = 4; (b) B = 8.
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Figure 6.13: Processing time of the proposed detection schemes using parallel processing,

BMI: block diagonal matrix based detection scheme; BGS: block Gauss-Seidel method.

In this subsection, we use the running time of the program to evaluate the processing time

of the proposed schemes. In the proposed schemes, the processing on each individual block

is independent. That is to say, the overall processing delay is reduced to the processing time

on each block if the parallel processing structure is utilized. Therefore, we use the running

time of the process on each block to reflect the overall processing time of the proposed

schemes.

We use MATLAB to obtain the running time of the programs which are running on

a 3.5-GHz Intel core i7-4770K CPU with a 16G RAM and MATLAB R2012a platform.

The results are shown in Figure 6.13 with average of 400000 random simulations and the

system configuration is the same as the setup in Figure 6.8. For comparison, we present

the running time of the linear MMSE detection scheme as a benchmark where the Cholesky

decomposition algorithm is used for matrix inversion.

From Figure 6.13, we can see the overall processing time is about 10ms (millisecond) if

the Cholesky decomposition algorithm is used. The large processing delay comes from the

required sufficient computations and back-forward solutions involved in Cholesky decom-

position algorithm. With the proposed new matrix inversion method, we can successfully
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reduce the overall processing time to 7ms (about 30% improvement). The improvement

can be attributed to the computational complexity reduction which is shown in Figure 6.4.

The significant improvement of the proposed detection schemes using parallel processing

structure is clearly shown in Figure 6.13. Specifically, with the block diagonal matrix based

detection scheme, the overall processing time is reduced to 1-2ms for B = 2 and that pro-

cessing delay is dramatically reduced to less than 0.1ms when the block size increases to 32.

For the block Gauss-Seidel method, we can see that in the original Gauss-Seidel method

(corresponding to B = 1), the processing time is maintained at the 1ms level. With the in-

crease of the block size, the overall processing delay is eventually reduced to less than 0.1ms.

The significant reduction in processing time of the proposed schemes can be attributed to

the significant computation reduction on each small block. Although the proposed schemes

require sufficient iterations to converge, the results in Figure 6.13 indicate the increase of

the processing delay with iterations is not so sensitive. This is attributed to the slightly

increased computation on each block when more iterations are required (This is validated

with the results in Figure 6.4). Figure 6.13 also indicates that the processing time of the

block Gauss-Seidel method is less than the block diagonal matrix based detection scheme

with the same block size and iterations. This is because the computation in the initial-

ization steps for the block Gauss-Seidel method are fewer as no block matrix inversion is

required. However, with the increase of block size, this gap eventually decreases since the

computation of the matrix inversion on small blocks will be less significant.

6.4.4 Discussion

Numerical results have demonstrated that using the parallel processing structure, we can

achieve near linear MMSE detection performance with low complexity and fast processing

time. The results in Figure 6.4 and 6.13 indicate that the larger the block size is, the higher
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the level of parallelism that can be achieved, resulting in much lower computation on each

individual block and lower processing delay of the detection procedure. However, the results

in Figures 6.11 and 6.12 indicate that if we increase block size, the detection performance

may not converge to that of the linear MMSE detection scheme. This is revealed by the

convergence performance evaluation in Figures 6.5, 6.6, and 6.7. Therefore, a proper block

size should be selected to meet the convergence conditions.

6.5 Summary

In this chapter, we have studied the practical massive MIMO detection schemes in mod-

ern vehicular networks. We consider an application scenario where the roadside unit is

equipped with a large antenna array to simultaneously serve multiple vehicles on the road.

As the number of vehicles is huge, low complexity and fast processing detection schemes

are highly demanded. We propose a block diagonal matrix based detection scheme and

block Gauss-Seidel method to greatly reduce the overall computational complexity in linear

MMSE detection. Using the properties of the block matrix, we successfully degrade a large-

scale array issue to a small-scale one, and propose parallel processing structures for real

implementation. The parallel processing structures for the proposed schemes can greatly

reduce the overall processing delay in iterative methods and is efficient for hardware im-

plementation. We also investigate the convergence performance of the proposed scheme by

studying the probability that the convergence conditions are satisfied. Finally, we validate

the system BER performance in a practical system configuration. The results show that

with proper block size, the performance of the proposed schemes can eventually approach

the performance of the linear MMSE detection scheme, but requires low computational

complexity and low processing delay.
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Chapter 7

Efficient and Fast Processing Large

Array Signal Detection in

Underwater Acoustic

Communications

1 Underwater wireless communications have been essential for humans to investigate, and ex-

ploit the oceans. Various applications, such as off-shore oil field monitoring, remote control

in oil and gas industry, disaster detection and warning, underwater surveillance, as well as

military applications, demand the deployment of underwater wireless networks [13]. Among

those wireless techniques, underwater acoustic (UWA) communications have the advantages

1The related work has been published in or submitted to

• IEEE Global Communications Conference (GLOBECOM’18), Abu Dhabi, UAE, 2018, under review.

• Proceedings of the IEEE Global Communications Conference (GLOBECOM’17), Singapore, December

2017.
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of long distance transmission, which have appealed extensive attention [14–18,108]. Howev-

er, to provide reliable and efficient communications through UWA channels is a challenging

task [14, 15, 109]. First of all, the UWA channel is known to be highly environmentally

dependent [14]. Various factors, including water depth, wind, salinity, geometry, frequency

band, as well as other environmental conditions, can affect the UWA channel impulse re-

sponse [14, 15]. Besides, UWA channels are characterised by huge numbers of multi-path,

long propagation delay, and attenuation [14]. Last but not least, the available frequency

band for UWA communications is limited, which prohibits the applications of UWA com-

munications to some of the underwater services where high throughput is requested [110].

Deploying a large-scale array of hydrophones for underwater acoustic (UWA) commu-

nications has numerous benefits, including high spectrum and energy efficiency, high rate

communication. However, along with the benefits, large array signal processing is compu-

tational costly and requires long processing delay. Using the Gauss-Seidel method, we can

achieve low complexity and good system performance. However, the Gauss-Seidel method

introduces successive data detection, causing large processing delay and low efficiency for

hardware implementation. In this Chapter, we apply the block Gauss-Seidel method for

large array signal detection in UWA communications. In the proposed scheme, the Gauss-

Seidel method is performed on a small size block matrix, and the processing on each block

can be paralleled. Therefore, the total processing delay is greatly reduced. Moreover, the

parallel processing structure is quite efficient for hardware implementation. We also utilize

the UWA channel model developed in recent work to investigate the performance of the

proposed scheme, and the results are promising.

The rest of this chapter is organized as follows. In Section 7.1, we briefly introduce

the system model. We present the proposed low-complexity and fast processing detection

scheme in Section 7.2. The performance evaluation and discussion are presented in Section
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Platform

UWA Sensors

AUV
Hydrophone

Oilfield

Figure 7.1: An application scenario of UWA communications with large-scale hydrophones

at platform.

7.3. Finally, we draw the conclusions in Section 7.4.

7.1 System Model

We consider an UWA communication system for offshore oilfield monitoring, shown in Fig-

ure 7.1. Around the oilfield, a distributed UWA sensor network is deployed on the seafloor.

The sensors collect real-time data, including conditions of the construction, environmental

data, and status of the pipeline, and report to the platform through UWA channels. The

autonomous underwater vehicles (AUVs) are also periodically launched for emergent data

collection. At the platform where data is collected, a large array of hydrophones are de-

ployed. The platform can simultaneously communicate with a large number of AUVs and

UWA sensors. When the number of AUVs and sensors is large, the signal processing at
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the platform will be computational costly. In this application scenario, a fast and efficient

signal detection scheme is significant.

With OFDMmodulation, the received signal vector over the k-th subcarrier, yk ∈ CNR×1,

is given by [15]

yk =Hkxk + zk, (7.1)

where xk ∈ CNV ×1 with xk,u denoting the transmitted symbol at the k-th subcarrier from

the u-th AUV (or UWA sensor). zk denotes the noise vector satisfying E{zkzHk } = σ2
zINR

and Hk ∈ CNR×NV represents the channel matrix. NR is the number of hydrophones, and

NV is the number of AUVs or UWA sensors in communication (NR ≫ NV ).

7.1.1 UWA Channel Model

We utilize the statistic channel model developed in [14], where the time-varying channel

transfer function is given by

H (f, t) = H̄0

P−1∑
p=0

hpγ̃p (f, t) e−j2πfτp , (7.2)

where γ̃p (f, t) = γp (f, t) ej2πapft is the overall small-scale coefficient for path p. hp and

τp describes the large-scale coefficient and the path delay. ap denotes the Doppler scaling

factor.

It has been experimentally validated that the channel modelling in Equation (7.2) is able

to account for both large scale and small scale variations in the UWA channel. Therefore,

we will utilize this model as our channel model.

7.1.2 Gauss-Seidel Method

As demonstrated in [3,111], when NR ≫ NV , by employing a linear minimum mean-square

error (MMSE) detection scheme, we can achieve near-optimal system performance. For
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Equation (7.1), the linear MMSE estimate is given by

x̂k = (HH
k Hk + σ2

zINV
)−1HH

k yk =W−1
k yMF

k , (7.3)

where Wk = HH
k Hk + σ2

zINV
is the equalization matrix, and yMF

k = HH
k yk is the matched

filter output over the k-th subcarrier.

The estimate in (7.3) involves matrix inverse; therefore, the computational complexity is

high when the matrix size of Wk is large. To maintain low complexity in detection, iterative

methods are usually adopted. Among those iterative methods, Gauss-Seidel method [84]

has the advantages of fast convergence rate and better system performance compared to

Neumann series expansion based detection schemes [23].

In the Gauss-Seidel method, Equation (7.3) is first rewritten to

Wkx̂k = yMF
k . (7.4)

That is, the matrix inversion problem is transformed into solving linear equations. Gauss-

Seidel method is to utilize iterative estimation to approach the solutions to linear equation.

This is implemented by providing an initial estimate, then following the Gauss-Seidel iter-

ative estimation structure, and finally, providing the final estimate when it converges.

Specifically, the iterative estimate is given by

x̂
(i+1)
k = (Dk +Lk)−1 (yMF

k −LH
k x̂
(i)
k ) . (7.5)

where Dk is a diagonal matrix with the diagonal elements taken from Wk, and Lk consists

of the elements below the diagonal elements in Wk. (Dk +Lk) is a lower triangular matrix;

therefore, successive detection can be adopted in Equation (7.5) to update the next iterative

estimate.
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7.2 Block Gauss-Seidel Method

Although theGauss-Seidel method has the advantages of low complexity and fast conver-

gence rate, it suffers from large processing delay since successive detection is introduced in

each iteration. To speed up the processing time in each iteration, we propose the block

Gauss-Seidel method in this section.

7.2.1 The Development

To begin with, we extract a block diagonal matrix, Pk, from the equalization matrix Wk,

given by

Pk =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pk (0)
Pk (1)

⋱
Pk (B − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.6)

where B is the number of blocks. The l-th block Pk (l) consists of the elements at the rows

and the columns both from l ⋅NL to (l + 1) ⋅NL − 1 in Wk, where NL is the size of Pk (l)
(suppose NV = BNL. If not, the last block takes the rest of the elements with a smaller

size). We then rewrite the iterative estimation of x̂k as

Pkx̂
(i+1)
k = (yMF

k −Qkx̂
(i)
k ) , (7.7)

where Qk =Wk −Pk, which takes the remaining elements in Wk.

Define ỹ
(i)
k = yMF

k − Qkx̂
(i)
k which is the preprocessed vector after the i-th iteration.

Using the properties of block diagonal matrix, we divide x̂
(i+1)
k and ỹ

(i)
k into B blocks, with

each block consisting of NL elements. We then have

Pk (l) x̂(i+1)k (l) = ỹ(i)k (l) . (7.8)
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It is worth noting that in Equation (7.8), the size of Pk (l) is NL, which is only 1/B of

the original matrix Pk. This indicates the updating progress in Equation (7.7) can be

implemented in a small scale matrix. It is easy to derive that Pk (l) is a Hermitian matrix;

therefore, we can divide Pk (l) into
Pk (l) =Dk (l) +Ek (l) +EH

k (l) , (7.9)

where Dk (l) is the diagonal matrix of Pk (l), and Ek (l) consists of the elements below the

diagonal elements in Pk (l). Performing the Gauss-Seidel method on the small block, we

have

(Dk (l) +Ek (l)) x̂(i+1)k (l) = (ỹ(i)k (l) −EH
k (l) x̂(i)k (l)) . (7.10)

The same with Equation (7.5), successive detection can be adopted to solve (7.10).

With the previous estimation, ỹ
(i)
k can be preprocessed; therefore, the updating progress

on the small block matrix can be speeded up, without waiting for a long processing delay in

the original Gauss-Seidel method. The independent updating progress can be implemented

with parallel processing structure, which is detailed in the next subsection.

7.2.2 Parallel Processing

The preprocessing of ỹ
(i)
k can be implemented on small size block, given by

ỹ
(i)
k (l) = yMF

k (l) −Qk (l) x̂(i)k , (7.11)

where Qk (l) consists of rows from l ⋅NL to (l + 1) ⋅NL − 1 in Qk. y
MF
k (l) is given by

yMF
k (l) =HH

k (l)yk, (7.12)

where HH
k (l) consists of the rows from l ⋅NL to (l + 1) ⋅NL − 1 in HH

k .

After the preprocessing on each block, the block Gauss-Seidel method is performed on

each block. Therefore, we summarize the parallel processing structure in Figure 7.2. It is
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Figure 7.2: Block diagram of the parallel processing
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clear from Figure 7.2 that after obtaining yMF
k (l), the matched filter output is fed into the

corresponding block for preprocessing. The updating processing using Gauss-Seidel method

is performed on each block independently.

By using the parallel processing structure, for each iteration, the overall processing time

will be only 1/B of the original Gauss-Seidel method due to a small size of block matrix.

Besides, the parallel processing structure is efficient for hardware implementation, which is

much more appealing in practical applications.

7.2.3 Initial Estimation

Intuitively, if the initial estimation is very close to the linear MMSE estimation, the itera-

tions required for convergence for the proposed iterative method will be few [85]. By noting

the matrix Wk is diagonal dominant, we use the initial estimate for the iterative method,

given by

x
(0)

k (l) =D−1k (l)yMF
k (l) . (7.13)

It is worth noting that the initial estimate provided by Equation (7.13) is of low complexity.

This is because Dk is a diagonal matrix, and only O (NL) multiplications are required for

each block.

7.2.4 LLR Computation

As the soft-input channel code schemes are usually adopted in the UWA communication

system, we need to derive the soft-output of the detector. For linear MMSE detection in

Equation (7.3), we separate the estimation of the symbol from the u-th AUV or UWA

sensor, given by

x̂k,u = eHu x̂k = ρk,uxk,u + ζk,u, (7.14)
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where ρk,u is the equivalent channel gain, and ζk,u denotes the noise plus interference (NPI).

ρk,u and the covariance of NPI are respectively given by

ρk,u = eHuW−1
k HH

k Hkeu, (7.15)

vk,u = cov {ζk,u, ζk,u} = ρu,k (1 − ρu,k) . (7.16)

Therefore, the max log likelihood ratio (LLR) is given by

L (bmk,u) = ρu,k

1 − ρu,k ⎛⎝min
s∈χ0

m

∣ x̂k,u
ρu,k
− s∣2 − min

s′∈χ1
m

∣ x̂k,u
ρu,k
− s′∣2⎞⎠ , (7.17)

where bmk,u is the m-th mapping bit of xk,u. χ
0
m and χ1

m denote the subset of the constellation

symbols where the m-th mapping bit is 0 or 1, respectively.

If the convergence conditions for the block Gauss-Seidel method are satisfied2, with

sufficiently large iterations, the proposed Gauss-Seidel Method will approach the linear

MMSE estimation vector. Therefore, Equation (7.17) can be applied to derive the LLRs.

However, we note that the computation of ρu,k in Equation (7.15) involves the matrix

inversion, which is not expected for low-complexity consideration. To address this issue, we

rewrite Equation (7.15) into

ρk,u = eHuW−1
k (Wk − σ2

zINV
)eu = 1 − σ2

ze
H
uW

−1
k eu. (7.18)

That is to say, we only need to know the diagonal elements of W−1
k for the computation of

ρk,u. In addition, as we know that Wk is diagonally dominant, the approximation of ρk,u

can be given as

ρk,u ≈ 1 − σ2
ze

H
uD

−1
k eu. (7.19)

The approximation in Equation (7.19) has significant performance improvement than the

LLR computation method in [84,85].

2The iterative method will converge if lim
l→∞
(INV −P

−1
k Wk)

l
= 0, or equivalently, ∣λ (INV −P

−1
k Wk)∣max

<

1.
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Figure 7.3: Cumulative distribution function of the maximum eigenvalue

To summarize, we present the soft-output block Gauss-Seidel method in Algorithm

7.1.

7.3 Performance Evaluation and Discussion

7.3.1 Computational Complexity

From Algorithm 1, we can see the main processing delay is determined by the iterative

progress. By using the block diagonal matrix in our proposed scheme, the iterative progress

can be implemented on each block independently. For each iteration, the computational

complexity in each block is in the order of O (NV NL). Compared to the processing in (7.5),

where the overall complexity is O (N2
V ), our proposed scheme is of low complexity in each

block. Besides, we propose to use the parallel processing structure in each iterative progress,

the overall processing delay in one iteration is just 1/B of the original Gauss-Seidel method.
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Table 7.1: Algorithm 7.1: Proposed Block Gauss-Seidel Method on Each Subcarrier

Input: Hk, yk, σ
2
z , number of blocks B, and iterations I

Output: LLRs of the bits associated with transmitted symbols.

Initialization:

1. Wk =HH
k Hk + σ2

zINU
, yMF

k =Hkyk;

2. Obtain Dk (l), Qk (l), Ek (l), and yMF
k (l), l = 0,1,⋯,B;

Parallel Processing: Initial Estimation (3-5)

3. for l = 0 ∶ 1 ∶ (B − 1)
4. x

(0)
k (l) =D−1k (l)yMF

k (l);
5. end

Iteration:

6. for i = 0 ∶ 1 ∶ (I − 1)
Parallel Processing: Iterative Progress (7-10)

7. for l = 0 ∶ 1 ∶ (B − 1)
8. Preprocessing: ỹ

(i)
k (l) = yMF

k (l) −Qk (l) x̂(i)k ;

9. Updating: x̂
(i+1)
k (l) = (Dk (l) +Ek (l))−1

(ỹ(i)k (l) −EH
k (l) x̂(i)k (l));

10. end

11. end

LLR Computation

12. Compute ρu,k;

13. Compute L (bmk,u) with Equation (7.17).

Return L (bmk,u).
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7.3.2 Convergence Performance

We now evaluate the convergence performance of the proposed block Gauss-Seidel method.

We randomly generate the channel matrix with NR = 30, NV = 6, and the average signal

to noise ratio (SNR) at receiver is set to 6.5dB. We then use Monte-Carlo simulations to

obtain the cumulative distribution function of the maximum eigenvalue for the convergence

matrix INV
− P−1k Wk. The results are shown in Figure 7.3. Note in Figure 7.3, B = 1

corresponds to the original Gauss-Seidel method, while B = 6 represents the Jacobi method

(or equivalently the Neumann series expansion based detection method in [23]). Apparently,

with the increase of the block size, the probability that Pr (∣λ (INV
−P−1k Wk)∣max

< 1) will
decrease, which indicates that Jacobi method (or Neumann series expansion based detection

scheme) may be inapplicable as the convergence condition is not satisfied. Besides, the

results in Figure 7.3 also reveal reveal that Pr (∣λ (INV
−P−1k Wk)∣max

< a), 0 < a < 1, for

small size B is always greater than that for large size B. This indicates that with small

B, the convergence rate will be faster than that with a large B. However, small size B

indicates large processing delay in processing. Therefore, a proper B is required to achieve

a good trade-off between the convergence rate and efficiency in parallel processing.

7.3.3 BER Performance

The acoustic channel simulator in [14] is adopted to generate channel data for BER perfor-

mance evaluation. The OFDM parameters are given in [93]. Each AUV and UWA sensor

adopts an LDPC code with code length 1152, code rate 0.5 and 16QAM modulation. 30

hydrophones are deployed at the platform and 6 AUVs are served simultaneously3. As we

can see from Fig. 7.4, the original Gauss-Seidel method requires 2-3 iterations to converge.

3With large array of hydrophones, the number of AUVs in service can be much more, and the performance

improvement of the proposed scheme can be much more obvious.
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Figure 7.4: BER Performance, LDPC code rate 0.5, code length 1152, 16QAM

However, the iterations are about 3 and 4 for B = 2 and B = 3, respectively. Considering

that the processing time for each block is just 1/B of the original Gauss-Seidel method, the

overall processing delay for both cases is much less than the original Gauss-Seidel method.

7.4 Summary

We propose the block Gauss-Seidel method for signal detection in UWA communications

system. With a large array of hydrophones, the signal process is computational costly

and requires long processing time; however, our proposed scheme can efficiently address

these issues. By performing the Gauss-Seidel method on a small scale block matrix, and

using a parallel processing structure, the proposed scheme achieves almost the same system

performance compared to the original Gauss-Seidel method, but with much less processing

delay.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

We have proposed various low-complexity and efficient data detection schemes for conven-

tional small-scale and large-scale MIMO systems. Generally, we propose turbo equaliza-

tion schemes for conventional small-scale MIMO system, and near linear MMSE detection

schemes for massive MIMO systems. The main conclusions are listed as follows:

• The proposed soft input soft output MMSE-SQRD based turbo equalization for MIMO-

OFDM systems under imperfect channel estimation has shown enhanced system BER

performance compared to conventional turbo equalization schemes;

• The proposed turbo equalizer conditioned on estimated channel for MIMO MMSE

receiver can efficiently utilize the a priori information from channel decoder to account

for a generalized expression of existing MMSE and MMSE-SQRD based equalizers;

• The proposed SQRD-based soft interference cancelation scheme performs interference

cancelation for both detected and undetected users, and the system BER performance

is further improved;
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• The proposed data detection scheme using the stair matrix has shown much improved

system performance over the use of the diagonal matrix, in terms of the the con-

vergence performance, mean-square error to approach the matrix inversion, residual

estimation error to approach the linear MMSE estimation vector, and the system BER

performance;

• The proposed block diagonal matrix based massive MIMO uplink detection scheme

and the block Gauss-Seidel method for V2I communications have shown much reduced

processing delay and achieved nearly the performance of the linear MMSE detection

scheme;

• The block Gauss-Seidel method have shown reduced computational complexity and

processing delay to achieve BER performance close to original Gauss-Seidel method

in the applications to large-scale array signal detection in UWA communications.

8.2 Future Work

Based on the research work and promising results from this project, some of the future work

can be conducted as follows.

1. The analysis of data detection schemes for massive MIMO under imperfect channel

estimation

Our results have shown that the system performance degradation is inevitable when

channel estimation error is presented. However, by taking into account the channel

estimation error in data detection schemes, we can achieve significant performance

gain. These results are good references for the design of data detection schemes for

massive MIMO with channel estimation error.
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2. High parallelism and fast convergence detection schemes for massive MIMO

We have shown that the detection scheme using the stair matrix in the development

can improve the system convergence performance, while the block diagonal matrix

based data detection and block Gauss-Seidel method can greatly reduce the over-

all processing delay. Inspired by these results, we can further investigate the high

parallelism and fast convergence data detection scheme for massive MIMO.

3. Incorporating compressed sensing based detection schemes in massive MIMO

We have shown that when the ratio r = NB/NU is not sufficiently large, the linear

MMSE detection scheme cannot achieve near optimal system performance. On the

other hand, using compressed sensing based detection schemes, we can greatly improve

the system performance, much better than that of the linear MMSE detection scheme.

Therefore, incorporating compressed sensing based data detection in massive MIMO

can be a promising research topic in future.
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Appendix

A Preliminaries

We first present the preliminary lemmas.

Lemma A.1. Let ak ∼ CN (0,1), we then have

E{∣ak∣2} = 1, (A.1)

E{∣ak∣4} = 2, (A.2)

E{∣ak∣6} = 6, (A.3)

E{∣ak∣8} = 24, (A.4)

Proof. We first obtain the joint probability density function (PDF) f (ak) = 1
π exp (−∣ak∣2),

and then apply E{g (ak)} = ∫C g (ak) ⋅ f (ak)dak to obtain the results in Equations (A.1) -

(A.4).

Lemma A.2. Let a = [a1, a2,⋯, aNB
]T with each entry ak ∼ CN (0,1), independent and

identically distributed (i.i.d.). We then have

E{aHa} = NB, (A.5)

E{∣aHa∣4} = A3, (A.6)
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E{∣aHa∣−4} = 1

B1
, (A.7)

where

A3 = 24NB +NB (NB − 1) (NB − 2) (NB − 3)
+ 36NB (NB − 1) + 12NB (NB − 1) (NB − 2) , (A.8)

B1 = (NB − 1) (NB − 2) (NB − 3) (NB − 4) . (A.9)

Proof. Through E{aHa} = E{NB∑
k=1
∣ak∣2} = NB∑

k=1
E{∣ak∣2} and the results from Equation (A.1),

we can derive the results in Equation (A.5).

We first write ∣aHa∣4 = NB∑
k=1

NB∑
l=1

NB∑
m=1

NB∑
n=1
∣ak∣2∣al∣2∣am∣2∣an∣2. Therefore, we have E{∣aHa∣4}

given by

E{∣aHa∣4} =E⎧⎪⎪⎨⎪⎪⎩
NB∑
k=1

NB∑
l=1

NB∑
m=1

NB∑
n=1
∣ak∣2∣al∣2∣am∣2∣an∣2⎫⎪⎪⎬⎪⎪⎭=NBE{∣ak∣8} + 4NB (NB − 1)E{∣ak∣6}E{∣al∣2}

+ 6NB (NB − 1) (NB − 2)E{∣ak∣4}E{∣al∣2}E{∣am∣2}
+ 3NB (NB − 1)E{∣ak∣4}E{∣al∣4}
+NB (NB − 1) (NB − 2) (NB − 3)E{∣ak∣2}E{∣al∣2}E{∣am∣2}E{∣an∣2}

(A.10)

The results can be derived as follows. Since the elements in a are i.i.d., the non-zero terms

come from five cases:

Case1: E{∣ak∣8}, which corresponds to k = l =m = n;
Case2: E{∣ak∣6}E{∣al∣2}, which corresponds to k =m = n and k ≠ l;
Case3: E{∣ak∣4}E{∣al∣2}E{∣am∣2}, which corresponds to k = n, k ≠ l ≠m;

Case4: E{∣ak∣4}E{∣al∣4}, which corresponds to k =m, l = n, k ≠ l;
Case5: E{∣ak∣2}E{∣al∣2}E{∣am∣2}E{∣an∣2}, which corresponds to k ≠ l ≠m ≠ n.
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After expansion, we can see there are:

• NB terms in Case1;

•
⎛⎜⎜⎝

4

3

⎞⎟⎟⎠NB (NB − 1) terms in Case2;

•
⎛⎜⎜⎝

4

2

⎞⎟⎟⎠NB (NB − 1) (NB − 2) terms in Case3;

• 1
2

⎛⎜⎜⎝
4

2

⎞⎟⎟⎠NB (NB − 1) terms in Case4;

• NB (NB − 1) (NB − 2) (NB − 3) terms in Case5.

Using the results in Equations (A.1) - (A.4), we derive the result in Equation (A.6).

Equation (A.7) is obtained by noting that ∣aHa∣−1 follows an inverse-Gamma distribu-

tion, and the 4-th moment is obtained in [100].

Lemma A.3. Let a = [a1, a2,⋯, aNB
]T, b = [b1, b2,⋯, bNB

]T, with each entry ak ∼ CN (0,1),
bk ∼ CN (0,1), and i.i.d., we then have

E{∣aHb∣4} = A1, (A.11)

E{∣aHb∣8} = A5. (A.12)

where

A1 = 2NB (NB + 1) , (A.13)

A5 = 576NB + 24NB (NB − 1) (NB − 2) (NB − 3)
+864NB (NB − 1) + 288NB (NB − 1) (NB − 2) . (A.14)
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Proof. We first write

∣aHb∣2 = ⎛⎝NB∑
k=1

a∗kbk
⎞⎠⎛⎝NB∑

l=1
alb
∗
l

⎞⎠ = NB∑
k=1

NB∑
l=1

a∗kalb
∗
l bk.

In addition, we have

E{∣aHb∣4} = E⎧⎪⎪⎨⎪⎪⎩
NB∑
k=1

NB∑
l=1

NB∑
m=1

NB∑
n=1

a∗kala
∗
manb

∗
l bkb

∗
nbm

⎫⎪⎪⎬⎪⎪⎭
= NB∑

k=1

NB∑
l=1

NB∑
m=1

NB∑
n=1

E{a∗kala∗manb
∗
l bkb

∗
nbm}

= 2NB (NB − 1)E{∣ak∣2}2E{∣bk∣2}2 +NBE{∣ak∣4}E{∣bk∣4} .
(A.15)

In (A.15), the i.i.d. assumption is used for the derivation and only non-zero terms are

considered. With the results in Equations (A.1) and (A.2), we derive the result in Equation

(A.11). Moreover, we write E{∣aHb∣8} as
E{∣aHb∣8} = NB∑

k=1

NB∑
k1=1

NB∑
l=1

NB∑
l1=1

NB∑
m=1

NB∑
m1=1

NB∑
n=1

NB∑
n1=1

E{a∗ka∗k1alal1a∗ma∗m1
anan1}E{bkbk1b∗l b∗l1bmbm1b

∗
nb
∗
n1
}

= α1(E{∣ak∣2})8 + α2(E{∣ak∣2})4(E{∣al∣4})2 + α3(E{∣ak∣2})2(E{∣al∣6})2
+ α4(E{∣ak∣4})4 + α5E{∣ak∣8}E{∣al∣8} ,

(A.16)

where only the non-zero terms are considered, and the i.i.d. assumption is used for the

derivation. The coefficients αi, i = 1,2,⋯,5, account for the number of the non-zero terms,

and are given by

α1 = ⎛⎜⎜⎝
4

1

⎞⎟⎟⎠ ⋅
⎛⎜⎜⎝

3

1

⎞⎟⎟⎠ ⋅
⎛⎜⎜⎝

2

1

⎞⎟⎟⎠NB (NB − 1) (NB − 2) (NB − 3)
= 24NB (NB − 1) (NB − 2) ,

α2 = ⎛⎜⎜⎝
4

2

⎞⎟⎟⎠ ⋅
⎛⎜⎜⎝

4

2

⎞⎟⎟⎠ ⋅ 2NB (NB − 1) (NB − 2)
= 72NB (NB − 1) (NB − 2) ,
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α3 = ⎛⎜⎜⎝
4

1

⎞⎟⎟⎠ ⋅
⎛⎜⎜⎝

4

1

⎞⎟⎟⎠NB (NB − 1) = 16NB (NB − 1) ,

α4 = 1

2

⎛⎜⎜⎝
4

2

⎞⎟⎟⎠ ⋅
⎛⎜⎜⎝

4

2

⎞⎟⎟⎠NB (NB − 1) = 18NB (NB − 1) ,
α5 = NB.

With the results in Equations (A.1) - (A.4), we have the result in Equation (A.12).

Lemma A.4. Let A = aHbbHc, where a = [a1, a2,⋯, aNB
]T, b = [b1, b2,⋯, bNB

]T, and

c = [c1, c2,⋯, cNB
]T, with each entry ak ∼ CN (0,1), bk ∼ CN (0,1), and ck ∼ CN (0,1),

and i.i.d., we then have

E{∣A∣4} = A2, (A.17)

where

A2 = 96NB + 4NB (NB − 1) (NB − 2) (NB − 3)
+ 144NB (NB − 1) + 48NB (NB − 1) (NB − 2) , (A.18)

Proof. We first write

A = aHbbHc = NB∑
k=1

a∗kbk
NB∑
l=1

b∗l cl = NB∑
k=1

NB∑
l=1

a∗kbkb
∗
l cl,

and then we have

∣A∣2 = NB∑
k=1

NB∑
l=1

NB∑
m=1

NB∑
n=1

a∗kambkb
∗
l b
∗
mbnclc

∗
n.

Therefore, we have E{∣A∣4} = E{∣A∣2 ⋅ ∣A∣2} given by

E{∣A∣4} = NB∑
k=1

NB∑
l=1

NB∑
m=1

NB∑
n=1

NB∑
o=1

NB∑
p=1

NB∑
q=1

NB∑
r=1

E{a∗kama∗oaqbkb
∗
l b
∗
mbnbob

∗
pb
∗
q brclc

∗
ncpc

∗
r}

= α1(E{∣ak∣4})2E{∣al∣8} + α2(E{∣ak∣4})4 + α3(E{∣ak∣2})4(E{∣al∣4})2
+ α4(E{∣ak∣2})3E{∣al∣4}E{∣am∣6} + α5(E{∣ak∣2})8 + α6(E{∣ak∣2})6E{∣al∣4} ,

(A.19)
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where

α1 = NB,

α2 = NB (NB − 1) ,
α3 = 4NB (NB − 1) (NB − 2) + 8NB (NB − 1) ,
α4 = 8NB (NB − 1) ,
α5 = 4NB (NB − 1) (NB − 2) (NB − 3) ,
α6 = 16NB (NB − 1) (NB − 2) .

Table A.1: Non-zero Terms in Equation (A.19)

Non-zero Terms Cases

(E{∣ak∣4})2E{∣al∣8} k = l =m = n = o = p = q = r: NB

(E{∣ak∣4})4 k =m = o = q, l = n = p = r, k ≠ l: NB (NB − 1)

(E{∣ak∣2})4(E{∣al∣4})2
k =m = o = q, l = n, p = r, k ≠ l ≠ p ∶
2 ⋅ 2NB (NB − 1) (NB − 2)
or k =m = l = n, o = q = p = r, k ≠ o ∶
4 ⋅ 2NB (NB − 1)

(E{∣ak∣2})3E{∣al∣4}E{∣am∣6} k =m = o = q = l = n, p = r, k ≠ p ∶
4 ⋅ 2NB (NB − 1)

(E{∣ak∣2})8 k =m,o = q, l = n, p = r, k ≠ o ≠ l ≠ p ∶
4NB (NB − 1) (NB − 2) (NB − 3)

(E{∣ak∣2})6E{∣al∣4} k =m,o = q = l = n, p = r, k ≠ o ≠ p ∶
16NB (NB − 1) (NB − 2)
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In Equation (A.19), only the non-zero terms are considered in the expectation and the

i.i.d. assumption is used for the derivation. We summarize the non-zero terms in Table

A.1. It worth noting that we only provide an example to show how the non-zero term is

generated, and the coefficients correspond to similar cases that a non-zero term is generated.

For example, for the non-zero term (E{∣ak∣2})8, except for the cases in Table A.1, we also

have the following cases to generate the non-zero term.

k = q,m = o, l = n, p = r, k ≠ o ≠ l ≠ p;
k =m,o = q, l = r, p = n, k ≠ o ≠ l ≠ p;
k = q,m = o, l = r, p = n, k ≠ o ≠ l ≠ p.

That is why the coefficient 4 is present. The same for other non-zero terms in TABLE A.1.

With the results in Equations (A.1) - (A.4), we derive the result in Equation (A.17).

Lemma A.5. Let A = aHabHbcHbbHdaHcdHa, where a = [a1, a2,⋯, aNB
]T, b = [b1, b2,⋯, bNB

]T,
c = [c1, c2,⋯, cNB

]T, and d = [d1, d2,⋯, dNB
]T, with each entry ak ∼ CN (0,1), bk ∼

CN (0,1), ck ∼ CN (0,1), and dk ∼ CN (0,1), and i.i.d., we then have

E {A2} = A4, (A.20)
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where

A4 =NB (NB − 1) (NB − 2)3(NB − 3)3 + 26NB (NB − 1) (NB − 2)3(NB − 3)2
+ 46NB (NB − 1) (NB − 2)2(NB − 3)2 + 4NB(NB − 1)2(NB − 2)3 (NB − 3)
+ 220NB (NB − 1) (NB − 2)3 (NB − 3) + 48NB(NB − 1)2(NB − 2)2 (NB − 3)
+ 808NB (NB − 1) (NB − 2)2 (NB − 3) + 128NB(N − 1)2 (NB − 2) (NB − 3)
+ 832NB (NB − 1) (NB − 2) (NB − 3) + 40NB(NB − 1)2(NB − 2)3
+ 600NB (NB − 1) (NB − 2)3 + 4NB(NB − 1)3(NB − 2)2 + 576NB(NB − 1)2(NB − 2)2
+ 3480NB (NB − 1) (NB − 2)2 + 64NB(NB − 1)3 (NB − 2)
+ 2592NB(NB − 1)2 (NB − 2) + 8064NB (NB − 1) (NB − 2)
+ 256NB(NB − 1)3 + 4352NB(NB − 1)2 + 9888NB (NB − 1) + 2304NB.

(A.21)

Table A.2: Non-zero Terms in Equation (A.22)

Non-zero Terms Number of Terms

(E{∣ak∣2})12
2NB (NB − 1) (NB − 2)2(NB − 3)2
+NB (NB − 1) (NB − 2)3(NB − 3)3
+2NB (NB − 1) (NB − 2)3(NB − 3)2

(E{∣ak∣2})10E{∣al∣4}
12NB (NB − 1) (NB − 2)3(NB − 3)2
+20NB (NB − 1) (NB − 2)2 (NB − 3)
+2NB(NB − 1)2(NB − 2)3 (NB − 3)
+20NB (NB − 1) (NB − 2)3 (NB − 3)
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(E{∣ak∣2})9E{∣al∣6}
8NB (NB − 1) (NB − 2) (NB − 3)
+4NB (NB − 1) (NB − 2)2(NB − 3)2
+4NB(NB − 1)2(NB − 2)2 (NB − 3)
+8NB (NB − 1) (NB − 2)2 (NB − 3)

(E{∣ak∣2})8(E{∣al∣4})2

5NB (NB − 1) (NB − 2)2(NB − 3)2
+6NB(NB − 1)2(NB − 2)2 (NB − 3)
+45NB (NB − 1) (NB − 2)3 (NB − 3)
+8NB (NB − 1) (NB − 2) (NB − 3)
+50NB (NB − 1) (NB − 2)2
+NB(NB − 1)3(NB − 2)2
+10NB(NB − 1)2(NB − 2)3
+8NB (NB − 1) (NB − 2)2 (NB − 3)
+50NB (NB − 1) (NB − 2)3

(E{∣ak∣2})8E{∣al∣8} 2NB (NB − 1) (NB − 2)2 (NB − 3)

(E{∣ak∣2})7E{∣al∣4}E{∣am∣6}

8NB(NB − 1)2 (NB − 2) (NB − 3)
+28NB (NB − 1) (NB − 2)2 (NB − 3)
+40NB (NB − 1) (NB − 2)
+4NB(NB − 1)3 (NB − 2)
+24NB(NB − 1)2(NB − 2)2
+40NB (NB − 1) (NB − 2)2
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(E{∣ak∣2})6(E{∣al∣4})3

38NB (NB − 1) (NB − 2)2 (NB − 3)
+34NB(NB − 1)2(NB − 2)2
+4NB(NB − 1)2 (NB − 2) (NB − 3)
+50NB (NB − 1) (NB − 2)3
+40NB (NB − 1) (NB − 2)
+2NB(NB − 1)3 (NB − 2)
+40NB (NB − 1) (NB − 2)2

(E{∣ak∣2})6E{∣al∣4}E{∣am∣8}
4NB (NB − 1) (NB − 2) (NB − 3)
+2NB(NB − 1)2 (NB − 2)
+10NB (NB − 1) (NB − 2)2

(E{∣ak∣2})6(E{∣al∣6})2
8NB (NB − 1)
+4NB (NB − 1) (NB − 2) (NB − 3)
+4NB(NB − 1)3
+8NB(NB − 1)2 (NB − 2)
+8NB (NB − 1) (NB − 2)

(E{∣ak∣2})5(E{∣al∣4})2E{∣am∣6}
12NB (NB − 1) (NB − 2) (NB − 3)
+60NB(NB − 1)2 (NB − 2)
+40NB (NB − 1) (NB − 2)2
+16NB (NB − 1) + 4NB(NB − 1)3
+16NB (NB − 1) (NB − 2)

(E{∣ak∣2})5E{∣al∣6}E{∣am∣8} 4NB(NB − 1)2 + 4NB (NB − 1) (NB − 2)
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(E{∣ak∣2})4(E{∣al∣4})4

NB(NB − 1)2(NB − 2)2
+8NB (NB − 1) (NB − 2) (NB − 3)
+65NB (NB − 1) (NB − 2)2
+32NB(NB − 1)2 (NB − 2)
+8NB (NB − 1) +NB(NB − 1)3
+8NB (NB − 1) (NB − 2)

(E{∣ak∣2})4(E{∣al∣4})2E{∣am∣8} 24NB (NB − 1) (NB − 2) + 2NB(NB − 1)2
(E{∣ak∣2})4E{∣al∣4}(E{∣am∣6})2 16NB(NB − 1)2 + 8NB (NB − 1) (NB − 2)
(E{∣ak∣2})4(E{∣al∣8})2 NB (NB − 1)
(E{∣ak∣2})3(E{∣al∣4})3E{∣am∣6} 4NB(NB − 1)2 (NB − 2) + 36NB (NB − 1) (NB − 2)

+24NB(NB − 1)2
(E{∣ak∣2})3E{∣al∣4}E{∣am∣6}E{∣an∣8} 8NB (NB − 1)
(E{∣ak∣2})2(E{∣al∣4})5 2NB(NB − 1)2 (NB − 2) + 28NB (NB − 1) (NB − 2)

+8NB(NB − 1)2
(E{∣ak∣2})2(E{∣al∣4})3E{∣am∣8} 2NB (NB − 1) (NB − 2) + 8NB (NB − 1)
(E{∣ak∣2})2(E{∣al∣4})2(E{∣am∣6})2 4NB(NB − 1)2 + 4NB (NB − 1)
E{∣ak∣2}(E{∣al∣4})4E{∣am∣6} 4NB(NB − 1)2 + 8NB (NB − 1)
E{∣ak∣2}(E{∣al∣4})2E{∣am∣6}E{∣an∣8} 4NB (NB − 1)
(E{∣ak∣4})6 NB (NB − 1)2 + 4NB (NB − 1)
(E{∣ak∣4})4E{∣al∣8} 2NB (NB − 1)
(E{∣ak∣4})2(E{∣al∣8})2 NB

Proof. We first write

A = NB∑
k=1

NB∑
l=1

NB∑
m=1

NB∑
n=1

NB∑
o=1

NB∑
p=1
∣ak∣2∣bl∣2c∗mbmb∗ndna

∗
ocod

∗
pap,
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we then have E{∣A∣2} given by

E (∣A∣2) = N∑
k=1

N∑
l=1

N∑
m=1

N∑
n=1

N∑
o=1

N∑
p=1

N∑
k1=1

N∑
l1=1

N∑
m1=1

N∑
n1=1

N∑
o1=1

N∑
p1=1

E (∣ak∣2∣ak1 ∣2a∗oapa∗o1ap1)
⋅E (∣bl∣2∣bl1 ∣2bmb∗nbm1b

∗
n1
)

⋅E (c∗mcoc
∗
m1

co1)E (dnd∗pdn1d
∗
p1)
(A.22)

where the i.i.d. assumption is used for the derivation. Similar to the process in Lemma

A.4, we only consider the non-zero terms in the expectation, and summarize the non-zero

terms in Table 5.4. We take the non-zero term (E (∣ak∣2))12 as an example to show the

number of terms as follows. In Equation (A.22), the following cases contribute to the

expected non-zero term:

o = p =m = n, o1 = p1 =m1 = n1,

k ≠ k1 ≠ o ≠ o1, l ≠ l1 ≠ o ≠ o1;
o = o1 = n = n1, p = p1 =m =m1,

k ≠ k1 ≠ o ≠ p, l ≠ l1 ≠ o ≠ p;
o = o1, p = p1,m =m1, n = n1,

k ≠ k1 ≠ o ≠ p, l ≠ l1 ≠m ≠ n;
o = o1 = n = n1, p = p1,m =m1,

k ≠ k1 ≠ o ≠ p, l ≠ l1 ≠ o ≠ p;
o = o1, n = n1, p = p1 =m =m1,

k ≠ k1 ≠ o ≠ p, l ≠ l1 ≠ o ≠ p.
for each of the first two cases NB (NB − 1) (NB − 2)2(NB − 3)2 terms can be derived; for the

third case, NB (NB − 1) (NB − 2)3(NB − 3)3 terms are counted; and for the lase two cases,
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we obtain NB (NB − 1) (NB − 2)3(NB − 3)2 terms. Therefore, the final number of terms in

Table 5.4 for the non-zero term (E (∣ak∣2))12 is obtained. Following a similar analysis, we

can derive the rest of the non-zero terms in Table 5.4.

Using the results in Equations (A.1) - (A.4), we have the result in (A.20).

B Proof of Theorem 3

To begin with, we have the following Lemma:

Lemma A.6. B(u,v) is given by Equation (5.22). When NB > 4, we have

E{∣B(u,v)∣2} ⩽√A1

B1
, (A.23)

if u ∈ U1, v ≠ u;
E{∣B(u,v)∣2} ⩽ √A2

B1
, (A.24)

if v ∈ {u − 1, u + 1};
E{∣B(u,v)∣2} ⩽

Z\\̂12A2A3 + 6A1A2
3 + 24A4 + 48√A1A2A3

3

B3
1

(A.25)

if u ∈ U2, v ∉ {u − 1, u, u + 1};
E{∣B(u,u)∣2} ⩽Z\\̂16A3A5

B3
1

, (A.26)

if u ∈ U2, v = u. A1 −A5 and B1 are respectively given by Equations (A.13), (A.18), (A.8),

(A.21), (A.14), (A.9).

Proof. The derivation of inequations (A.23), (A.24), (A.25), and (A.26), are respectively

detailed in Appendix C, D, E, F.
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With the results in Lemma A.6, we have

E{∥B∥2F} = NU∑
u=1

NU∑
v=1

E{∣B(u,v)∣2}
⩽ N2

U − 1
2

√
A1

B1
+ (NU − 1) √A2

B1
+ (NU − 1)

2

Z\\̂16A3A5

B3
1

+N2
U − 4NU + 3

2

Z\\̂12A2A3 + 6A1A2
3 + 24A4 + 48√A1A2A3

3

B3
1

(A.27)

Apparently, at the right hand side of the inequality (A.27), as the power in numerator is

much less than that in denominator, we can derive

lim
NB→∞

E{∥B∥2F} = 0. (A.28)

Applying the Markov’s inequality, we have

Pr{∥B∥2F < 1} = 1 −Pr{∥B∥2F ⩾ 1} ⩾ 1 −E{∥B∥2F} . (A.29)

As ∥B∥2F = NU−1∑
i=0
∣λi∣2, we have

Pr{∣λ0∣ < 1} > Pr{∥B∥2F < 1} ⩾ 1 −E{∥B∥2F} . (A.30)

Therefore, we have

lim
NB→∞

Pr{∣λ0∣ < 1} = 1. (A.31)

This complete the proof to Theorem 3.

C Derivation of inequation (A.23)

For u ∈ U1, v ≠ u, from Equation (5.22), we have

E{∣B(u,v)∣2} = E⎧⎪⎪⎨⎪⎪⎩
∣W(u,v)∣2∣W(u,u)∣2

⎫⎪⎪⎬⎪⎪⎭ ⩽
√

E{∣W(u,v)∣4} ⋅E{∣W(u,u)∣−4}, (A.32)

where the Cauchy-Schwarz inequality is applied [23]. From Lemma A.3 and Lemma A.2,

we have

E{∣Wu,v ∣4} = A1, (A.33)
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E{∣W(u,u)∣−4} = 1

B1
. (A.34)

Therefore, inequation (A.23) is established.

D Derivation of inequation (A.24)

For u ∈ U2, v = u − 1, from Equation (5.22), we have

B(u,u−1) = G(u,u+1)G(u+1,u−1)

G(u,u)G(u+1,u+1)
.

Applying the Cauchy-Schwarz inequality, we have

E{∣B(u,u−1)∣2} ⩽√E{∣G(u,u+1)G(u+1,u−1)∣4} ⋅√E{∣(G(u,u)G(u+1,u+1))−1∣4} (A.35)

According to Lemma A.4 and Lemma A.2, we have

E{∣G(u,u+1)G(u+1,u−1)∣4} = A2, (A.36)

E{∣(G(u,u)G(u+1,u+1))−1∣4} = E{∣(G(u,u))−1∣4} ⋅E{∣(G(u,u))−1∣4} = 1

B2
1

. (A.37)

For u ∈ U2, v = u + 1, following a similar process, we have the same result above.

Therefore, we complete the derivation of the inequation (A.24).

E Derivation of inequation (A.25)

For u ∈ U2, v ∉ {u − 1, u, u + 1}, from Equation (5.22), we have E{∣B(u,v)∣2} given by

E{∣B(u,v)∣2}
=E⎧⎪⎪⎨⎪⎪⎩
∣G(u+1,u+1)G(u,u−1)G(u−1,v) +G(u−1,u−1)G(u,u+1)G(u+1,v) −G(u−1,u−1)G(u+1,u+1)G(u,v)∣2∣G(u−1,u−1)G(u,u)G(u+1,u+1)∣2

⎫⎪⎪⎬⎪⎪⎭
⩽√E{∣G(u+1,u+1)G(u,u−1)G(u−1,v) +G(u−1,u−1)G(u,u+1)G(u+1,v) −G(u−1,u−1)G(u+1,u+1)G(u,v)∣4}
⋅√E{∣G(u−1,u−1)G(u,u)G(u+1,u+1)∣−4}

(A.38)
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where the Cauchy-Schwarz inequality is applied. Next, we have the first expectation in the

right hand side of the inequality (A.38) given by

E{∣G(u+1,u+1)G(u,u−1)G(u−1,v) +G(u−1,u−1)G(u,u+1)G(u+1,v) −G(u−1,u−1)G(u+1,u+1)G(u,v)∣4}
= E{(A +B +C +D +E + F )2} ⩽ 6E{A2 +B2 +C2 +D2 +E2 + F 2}

(A.39)

where

A = ∣G(u+1,u+1)∣2∣G(u,u−1)G(u−1,v)∣2,
B = ∣G(u−1,u−1)∣2∣G(u,u+1)G(u+1,v)∣2,
C = ∣G(u−1,u−1)∣2∣G(u+1,u+1)∣2∣G(u,v)∣2,

D = 2Re (G(u,u−1)G(u−1,v)G∗(u,u+1)G∗(u+1,v))
⋅G(u+1,u+1)G(u−1,u−1),
E = −2Re (G(u,u−1)G(u−1,v)G∗(u,v))
⋅ ∣G(u+1,u+1)∣2G(u−1,u−1),

F = −2Re (G(u,u+1)G(u+1,v)G∗(u,v))
⋅ ∣G(u−1,u−1)∣2G(u+1,u+1).

The inequality (A.39) holds by noting that

(A +B +C +D +E + F )2
⩽ 6 (A2 +B2 +C2 +D2 +E2 + F 2) ,

where A,B,C,D,E,F are both real numbers. Next, we derive the expectations as follows

individually.

With the results in Lemma A.2 and Lemma A.4, we have E (A2) = E (B2) given by

E (A2) = E (B2) = A2A3. (A.40)
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E (C2) is given by

E{C2} = A1A3
2. (A.41)

where the results in Lemma A.2 and Lemma A.3 are applied.

By using (Re (a))2 ⩽ ∣a∣2, we derive the result of E{D2}, given by

E{D2} ⩽ 4E{∣G(u+1,u+1)G(u−1,u−1)G(u,u−1)G(u−1,v)G∗(u,u+1)G∗(u+1,v)∣2} = 4A4, (A.42)

where A4 is obtained through Lemma A.5.

Applying the Cauchy-Schwarz inequality, we have

E{E2} ⩽ 4E{∣G(u−1,u−1)G(u,u−1)G(u−1,v)G∗(u,v)∣2} ⋅E{∣G(u+1,u+1)∣4}
⩽ 4E{∣G(u+1,u+1)∣4}√E{∣G(u,u−1)G(u−1,v)∣4} ⋅√E{∣G(u−1,u−1)G(u,v)∣4} (A.43)

With the results in Lemma A.2, Lemma A.3, and Lemma A.4, we derive the result of

E{E2} = E{F 2}, given by

E{E2} = E{F 2} ⩽ 4A3

√
A1A2A3. (A.44)

Therefore, we derive

E{∣B(u,v)∣2} ⩽
Z\\̂12A2A3 + 6A1A2

3 + 24A4 + 48√A1A2A3
3

B3
1

(A.45)

F Derivation of inequation (A.26)

For u ∈ U2, v = u, from Equation (5.22), we have E{∣B(u,v)∣2} given by

E{∣B(u,u)∣2} =E⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∣G(u+1,u+1)∣G(u,u−1)∣2 +G(u−1,u−1)∣G(u,u+1)∣2∣2∣G(u,u)G(u−1,u−1)G(u+1,u+1)∣2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⩽√E{∣G(u+1,u+1)∣G(u,u−1)∣2 +G(u−1,u−1)∣G(u,u+1)∣2∣4}
⋅√E{∣G(u,u)G(u−1,u−1)G(u+1,u+1)∣−4},

(A.46)
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where the Cauchy-Schwarz inequality is applied. By using ∣a + b∣2 ⩽ 2 (∣a∣2 + ∣b∣2), we have

∣G(u+1,u+1)∣G(u,u−1)∣2 +G(u−1,u−1)∣G(u,u+1)∣2∣2
⩽ 2(∣G(u+1,u+1)∣2∣G(u,u−1)∣4 + ∣G(u−1,u−1)∣2∣G(u,u+1)∣4) ,
∣G(u+1,u+1)∣G(u,u−1)∣2 +G(u−1,u−1)∣G(u,u+1)∣2∣4
⩽ 8(∣G(u+1,u+1)∣4∣G(u,u−1)∣8 + ∣G(u−1,u−1)∣4∣G(u,u+1)∣8) .

(A.47)

Therefore, we derive

E{∣G(u+1,u+1)∣G(u,u−1)∣2 +G(u−1,u−1)∣G(u,u+1)∣2∣4}
⩽8E (∣G(u+1,u+1)∣4)E (∣G(u,u−1)∣8) + 8E (∣G(u−1,u−1)∣4)E (∣G(u,u+1)∣8) . (A.48)

With the results in Lemma A.2 and A.3, we have

E{∣B(u,u)∣2} ⩽Z\\̂16A3A5

B3
1

. (A.49)
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