Engel's Theorem in generalized lie algebras

Radu, Oana (2002) Engel's Theorem in generalized lie algebras. Masters thesis, Memorial University of Newfoundland.

[img] [English] PDF (Migrated (PDF/A Conversion) from original format: (application/pdf)) - Accepted Version
Available under License - The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

Download (5MB)
  • [img] [English] PDF - Accepted Version
    Available under License - The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.
    (Original Version)

Abstract

In this thesis we deal with Engel's Theorem about simultaneous triangulability of the space of nilpotent operators closed under Lie bracket, one of the corner stones of Lie Theory. This theorem was first proven in 1892 by F. Engel in his paper [4]. Since then several various versions of this theorem and its proofs have been suggested ([3], [8], [12]). In some versions the authors deal with weakly closed sets of elements in associative algebras [6]. In the others they look at representations of Lie algebras by nilpotent transformations of vector spaces [3]. -- Recently people began looking at the version of Engel’s Theorem for generalized Lie algebras. Engel’s Theorem in the case of ordinary Lie superalgebras was mentioned (without proof) in the fundamental paper of V. Kac [8] devoted to the classification of simple finite-dimensional Lie superalgebras and in the monograph of M. Scheunert [12]. It was quite clear that a similar result should hold also in the case of more general color Lie superalgebras [2]. The most recent development leads to Lie algebras over Hopf algebras. A version of Engel;s Theorem for this much more general setting was suggested in the Ph. D. dissertation of V. Linchenko [9]. -- In this dissertation we choose one of the possible versions of Engel’s Theorem, in the spirit of Bourbaki [3], using the approach via representation theory. We demonstrate how this approach can work in the case of the color Lie superalgebras. We also tried the case of so called (H,β)-Lie algebras where β is a bicharacter on a cotriangular Hopf algebra H. The result we give here generalizes the case of ordinary Lie algebras but when restricted to the case of color Lie superalgebras produces a considerably weaker result. The proof of this result and several complementary lemmas was communicated to us by M. Kotchetov.

Item Type: Thesis (Masters)
URI: http://research.library.mun.ca/id/eprint/1320
Item ID: 1320
Additional Information: Bibliography: leaves 42-43.
Department(s): Science, Faculty of > Mathematics and Statistics
Date: 2002
Date Type: Submission
Library of Congress Subject Heading: Lie algebras; Lie superalgebras

Actions (login required)

View Item View Item

Downloads

Downloads per month over the past year

View more statistics