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Abstract

In this thesis we deal with Engel’s Theorem about simultaneous triangulability
of the space of nilpotent operators closed under Lie bracket, one of the corner
stones of Lie Theory. This theorem was first proven in 1892 by F. Engel in his
paper [4]. Since then several various versions of this theorem and its proofs
have been suggested ([3], [8], [12]). Tn some versions the authors deal with
weakly closed sets of elements in associative algebras [6]. In the others they
look at representations of Lie algebras by nilpotent transformations of vector
spaces [3].

Recently people began looking at the version of Engel’s Theorem for gener-
alized Lie algebras. Engel’s Theorem in the case of ordinary Lie superalgebras

was mentioned (without proof) in the fundamental paper of V. Kac [8] de-

voted to the classification of simple finite-dimensional Lie Igebras and
in the monograph of M. Scheunert [12]. It was quite clear that a similar result
should hold also in the case of more general color Lie superalgebras [2]. The
most recent development leads to Lie algebras over Hopf algebras. A version
of Engel’s Theorem for this much more general setting was suggested in the
Ph. D. dissertation of V. Linchenko [9].

In this dissertation we choose one of the possible versions of Engel’s Theo-



rem, in the spirit of Bourbaki [3], using the approach via representation theory.
We demonstrate how this approach can work in the case of the color Lie su-
peralgebras. We also tried the case of so called (H, )-Lie algebras where 8
is a bicharacter on a cotriangular Hopf algebra H. The result we give here

generalizes the case of ordinary Lie algebras but when restricted to the case

of color Lie Igebras produces a iderabl

weaker result. The proof
of this result and several complementary lemmas was communicated to us by
M. Kotchetov.
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Chapter 1
Definitions

The first chapter contains definitions, lemmas, propositions and theorems that
contribute to a better understanding of all the ideas and concepts defined in

the thesis. A collection of illustrative examples is also exhibited here.

1.1  Algebras

Definition 1.1.1. Let R be a nonempty set with two binary operations: addi-

tion and multiplication, such that R is an abelian group relative to addition and

(a+b)e=actbe, ab+c)=ab+ac

for all a,b,c € R. Then R is said to be a ring.

If there caists an element ¢ € R such that ea = ac = a for all a € R, then e is
called the unity element of R, and R is called a ring with the unity element.
If a(be) = (ab)e, for all a,b,c € R, then R is said to be associative.

If ab=ba, for all a,b € R, then R is said to be commutative.
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Definition 1.1.2. Let k be an associative commutative ring with unity ele-

ment. An abelian group A is a k-module if there is a mapping k x A — A

such that
ea=q, (1.1.1)
a(a+b) = aa+ab, (1.1.2)
(a+B)a = aa+ fa, (1.1.3)
(aB)a = o(Ba), (1.1.4)

for all a, B € k,a,b € A, e being the unity element of k.
A ring R with a structure of a k-module is said to be a k -algebra if

(aa)b = a(ab) = a(ab),

Jor all a € kya,b € R.

1.2 Lie algebras

Definition 1.2.1. Let k be a commulative associative ring with the unity
element. A k-algebra L is said to be a Lie algebra if for its multiplication [,],
called the bracket operation, the following are satisfied:

L1 The bracket operation is bilinear,

12 [a,2] =0 forallz € L,

L3 (2[5, 2] + [25[2 0l + [, [2,2]) =0 (Jacobi identity),

for all z,y,z € L.
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Notice that L1 and L2 applied to [z + y, + y] imply

L2 [z,y] = —[y,2] (anticommutativity).

Example 1.2.1. Let k = R. The vector space R® is a Lie algebra relative to

the multiplication given by the cross product of vectors.

Note 1.2.1. If V is a finite-dimensional vector space over a field k, denote
by End(V) the set of lincar transformations from V — V.. As a vector space
over k, End(V) has dimension n?, where n = dimV, and End(V) is a ring
relative to the usual product operation. Define a new operation [z,y] = zy—yz
called the commutator of ¢ and y. With this operation £nd(V') becomes a Lie
algebra over k. In order to distinguish this new algebra structure from the old
associative one, we write gl(V) for End(V') viewed as Lie algebra and call it
the general linear algebra.

Any subalgebra of a Lie algebra gl(V) is called a linear Lie algebra. Also, we
can identify gl(V') with the set of all n x n matrices over k, denoted gl(n,k).
For reference, we write down the multiplication table for gi(n, k) relative to the
standard basis consisting of all the matrices ¢;; (having 1 in the (i, ) position
and 0 elsewhere). Since e;jex = 6jxeq, it follows that [ei;, ex] = ixei — Siex;.
Definition 1.2.2. A k-submodule M of a Lie algebra L is called a subalgebra
if [o,y] € M, whenever z,y € M; in particular, M is a Lie algebra relative to
the inherited operations.

Example 1.2.2. Let k = R. Consider the set L of infinitely differentiable

functions f : R —+ R. On this vector space over R, let the Poisson’s bracket

be defined in the following way:

(fu ol = 1S3 = fifs
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where f1, f} are the derivatives of fi, fa, respectively. Then L is a Lie algebra

over R.

Definition 1.2.3. A k-submodule I of a Lie algebra L is called an ideal of L
if for any x € L and y € I, we have [z,y] € I.

Definition 1.2.4. A lincar transformation ¢ : L — L', (L and L' Lie algebras)
is called a homomorphism if ¢([z,y]) = [¢(z), ()], for all o,y € L.

Definition 1.2.5. A representation of a Lie algebra L by linear transforma-

tions of a vector space V is a homomorphism ¢ : L — gl(V).

Definition 1.2.6. By a derivation of V we mean @ k-linear map §: V — V
satisfying the product rule 6(ab) = ab(b) + 6(a)b.

The collection DerV of all derivations of V' is a vector subspace of EndV..
DerV is a subalgebra of gl(V). Since a Lie algebra L is a k-algebra in the

above sense, Derl is defined.

Definition 1.

Ifa € L, then y — [z,y] is a vector space endomorphism

and we denote it by adz.

Definition 1.2.8. The map L — DerL sending z to adz is called the adjoint

representation of L.

Definition 1.2.9. Let z € L. We say that adz is nilpotent if (adz)™ = 0, for

some m > 0.

Lemma 1.2.1. ([3]) Let @ € gl(V) be a nilpotent endomorphism. Then ads

is also nilpotent.
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Theorem 1.2.1. (ENGELS’S THEOREM FOR LIE ALGEBRAS)

Let L be a Lie algebra, V a finite-dimensional space, ¢ : L — End(V) a
representation of L by linear transformations of V. If L consists of nilpotent
endomorphisms and V # 0, then there czists nonzero v € V. for which p(L)v =
0.

The proof can be found, for example in [3].

Definition 1.2.10. A Lie algebra L is called nilpotent if there evists a natural
number N such that for any ©1,3,...,¢x € L we have (adzy)(adzy)...(adzy) =

0. In other words, for any o, T1,%2,...tx we have [...[[zo, 21], 2], ..., z§] = 0.

Corollary 1.2.1. If L is a finite-dimensional Lic algebra, in which for any z

we have ada nilpotent, than L is a nilpotent Lie algcbra.

Proof: We take ¢ = ad, V = L, in Theorem 1.2.1. Then we find 0 # z € L
such that (adz)(z) = [z,2] = 0, for all = € L. Then z is an element of
the center of L and we can form L = L/kz. This algebra satisfies the same
condition as L and dim L < dim L, so we can apply the induction hypothesis
and conclude that L is nilpotent, i.e. [.[21,52),...,Zm] = 0, for any z; =
; +kz, for some natural number m. This means [...[z1, z3], ..., 7] + kz = kz,
or [..[21,22], -y Tm] € k2. Therefore for any z,,41 we have

[l-[21, 2], ey T}, Zmg1] = 0, as required. s]
This result is also a corollary of Engel’s theorem in the case of generalized Lie
algebras, which we are going to study in Chapters 2 and 3. Tt follows from
the “main” Engel’s theorem using similar arguments. Therefore we do not

formulate this corollary in our future chapters.
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1.2.1 G-graded algebras

Definition 1.2.11. Let V' be a vector space over the field k and G an abelian

group. The vector space V is said to be G-graded if
V = 85ecVi

where each V, is a subspace of V. Any element & of V, is called homogeneous
of degree g and we write d(z) = g. In the case of G = Zy the elements of Vy
(resp., Vi ) are called even (resp., odd).

Definition 1.2.12. A subspace U of V is called G-graded if it contains the

homogeneous components of all its elements , i.e. if
U = 8ec(UNVy).

Definition 1.2.13. If V is a G-graded space and U is a graded subspace, then
W = V/U becomes G-graded if we set W, = (V, + U)/U.

Definition 1.2.14. Let G be a group. We say that a k-algebra A is G-graded
if
A= 8gechy,

where A, are k-submodules, and
A A C Agh, Vg,h €G.
If A has a unity element 1, we can prove that 1 € Ao.

Definition 1.2.15. An element a € A is said lo be homogeneous if a € A,

Jor some g € G. (In this case we write d(a) = g).
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Definition 1.2.16. Let A and B be G-graded k-algebras. We say that a
homomorphism 1 : A — B is a homomorphism of G-graded k-algebras if
$(A,) C By, forall g € G.

Definition 1.2.17. If I is a G-graded ideal of a G-graded k-algebra A, i.e.
I is an ideal of A and I = @yecl,, where I, = () A,, then the factor algebra
A/ is naturally G-graded and the canonical mapping 0 : A — A/I, 8(a) =
a+1 is a homomorphism of G-graded k-algebras.

Example 1.2.3. Free algebras are graded by the length of words, i.e. the
subspace A; of A = k{X} is defined as the subspace linearly generated by
all monomials of degree i. The elements of X are of degree 1. The grading

is the semi of gative integers.

Example 1.2.4. The polynomial algebra [z1, ..., z,] is graded as the quotient
of the free algebra A = k{zy, ...} (graded as in the example above) by the
ideal I generated by the homogeneous elements z;z; — 2;; of degree 2, where
i and j run over all integers between 1 and n. The quotient grading is the

same as the grading by degree.
1.3 Lie superalgebras

Definition 1.3.1. A Zy-graded algebra A= Ay @ A, is called a superalgebra.

1. If d(a) =0, i.e. a € Ay, then a is said to be even.

2. If d(a) = 1, i.e. a € Ay, then a is said to be odd.
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Example 1.3.1. Let V = Vo @ V4 be a Zy-graded finite-dimensional vector
space over the field k, L(V) = End(V)) the algebra of all linear transformations
of V,

LV)i={f € LV)If(V;) € Visj,j € L2}, i€ Ly
Then L(V) = L(V)o + L(V); is an associative superalgebra.

If {er, oy €m} is a basis of Vp and {emy, - €n} is a basis of V;, then each

operator f of L(V) has the matrix of a form :

P Py Fu )
Fn Fp

where Fyy is an m xm matrix, and Fy, is an (n—m)x (n—m) matrix, d(F) = 0

if and only if Fi, = 0 and Fy; = 0; d(F') = 1 if and only if F}; = 0 and Fy, = 0.

Definition 1.3.2. A Zy-graded algebra L = Lo @ Ly, with the multiplication

[,Jover k is called a Lie if for any h elements z,y,z €

L, the following conditions are satisfied:
1. [z,y]=—(-1)"0y,z]  (called super anti-commutativity),

2 ()M e, [y,2]] + ()4, [a,y]] + (~1)* Oy, [z,2]) = 0
(called super Jacobi identity).

Example 1.3.2. If char k # 2, A = Ay @ A, is a Zy-graded associative
k-algebra, then A with the bilinear multiplication defined by

[a,8] = ab — (=1)4@4®)pq,

where a,b are homogeneous elements, is a Lie superalgebra.
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1.4 Color Lie superalgebras

Definition 1.4.1. Let k be a commutative associative ring with unity ele-
ment, k* the group of invertible elements of k, G an additive abelian group. A
mapping ¢ : G x G — k* is called a bicharacter on G, if

(g:h+ f) = e(g, h)e(g, f),
2. e(g+h, f) = elg, fe(h, f),
forall g,h, f € G.

If also we have that e(g, h)e(h, g) = 1, then the bicharacter is a skew-symmetric

one. Also, we set
1. Gy ={g € Gle(g,9) =1},
2. G- ={g € Gle(g,9) = -1}.
G is always a subgroup of G of index < 2, if G is a group.
Example 1.4.1. For any abelian group G one can consider the trivial bichar-
acter ¢ given by ¢(g,h) = 1 for all g,h € G.
Example 1.4.2. For G = Z, ¢(g,h) = (—1)* for all g,h € G.
For G = Z,, €(0,0) = ¢(1,0) = ¢(0,1) = 1 and ¢(1,1) = —1.
Example 1.4.3. Let G = Zy x Zy,k = C, f = (f1, f2),9 = (91,92) € G. The
following forms are bicharacters on G:
alf,g) = (=)ot G_={(0,1),(1,0)%
a(f,9) = (—l)”‘“*’”", G.=0, G.=G;
a(f,9) = (~1)o=he)  G_=0, G,=G.
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Definition 1.4.2. Let G be an ive group, k a ive associa-

tive ring, with unity, k* the group of invertible elements of k, €: G x G — k*
a bicharacter. We say that a G-graded algebra L = @, L, over k is a color
Lie superalgebra if

[a,8] = ~¢(d(a), d(b))[b,al, (1.4.1)

e(d(c), d(a))la, [b, c]] + €(d(a), d(b))[b, [¢, al] + €(d(b), d(¢))c, [a, b]] = 0, (1.4.2)

for all homogencous a,b,c € L. (14.1) and (1.4.2) are refered to as c-anti-
commutativity and e-Jacobi identity, which are analogous to anti-commutativity

and Jacobi identity.

Note 1.4.1. Sometimes it is more convenient to use the super Jacobi identity

in the following from:

[a, b, ] = [[a,b], ¢] + e(d(a), d(5))[b, e, ]},

[la,b]; ¢] = [a, [b,c]] — e(d(a), ()b [a, ]]-

Note 1.4.2. As in the case of ordinary Lie algebras we denote the operator

y +> [z,y] by adz.

Example 1.4.4. Given a group G, a skew-symmetric bicharacter € and an

associative algebra A graded by G we can define an e-commutator by

a,b]. = ab — e(d(a), d(b))ba, (143)
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for all homogeneous a,b € A. In this context € is refered to as the commutation
factor. For simplicity we write [,]. = [,]. Then, it is easy to check that [,]
satisfies (1.4.1) and (1.4.2), that is A with this bracket becomes a color Lie
superalgebra.

Example 1.4.5. Let G be an abelian group and let V be a G-graded vector
space over a field k. By End(V), where g € G we understand the set of
all linear k-operators f € Endy(V) such that the image of each homogeneous
element z € V is a homogeneous element and d(f(z)) = g + d(). Let

End§(V) = @yecEndi(V).

Then Endg(V) is a G-graded associative k-algebra with the usual composition
of operators. The set EndZ(V) with operation defined in (1.4.3) is called the
general linear color Lie superalgebra and it is denoted gl/(V). As we have

mentioned earlier in a more general setting, the bracket satisfies (1.4.1) and

(1.4.2).
Example 1.4.6.

1. 1f e is the trivial bicharacter, then a color Lie superalgebra is a G-graded

Lie algebra.

2. 1 G = Za,e(f, ) = (=1)’7, then a color Lie superalgebra is a usual Lie
superalgebra.

1.5 Hopf algebras

Throughout we let k be a field. Tensor products are assumed to be over k

unless othewise specified. We first express the associative and unit properties
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of an algebra via maps so that we can dualize them.

Definition 1.5.1. A k-algebra (with unit) is a k-vector space A together with
two k-lincar maps, multiplication m : A® A — A and unit u : k = A, such

that the following diagrams are commutative:

meid
AQA®A ARA
u®V \d®u
dgm L k®A A@k
A®A
Figure 1.1: Associativity Figure 1.2: Uit

The two lower maps in Figure 1.2 are given by scalar multiplication. We say
that A is commutative if m o 7 = m. We use o for the composition of maps.
Definition 1.5.2. For any K-spaces V and W, the map

T VOW 5 W®V given by 7(v ® w) = w @ v is called the twist map.
Definition 1.5.3. A k-coalgebra (with counit) is a k-vector space C together

with two k-linear maps, comultiplication A : C — C @ C and counit

€:C =k, such that the following diagrams are commutative:

A
c cec c
NV \@1
A A®id k®C A Ccok
cec - CoCsC \H\C®c L

Figure 1.3: Coassociativity Figure 1.4: Counit
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The two upper maps in Figure 1.4 are given by ¢ - 1® ¢ and ¢+ ¢ @1, for
any ¢ € C. We say that C is cocommutative if 70 A = A,

Definition 1.5.4. Let C' and D be coalgebras, with comultiplications Ac and
Ap, and counits cc and ep, respectively. A linear map f : C = D is a
coalgebra morphism if Apo f = (f ® f)A¢ and epo f = ec.

We recall Lemma 1.2.2 from [11]. Tf C'is a coalgebra, then C* is an algebra,
with multiplication m = A* and unit u = ¢'. By C* we denote the dual space
of C. We mention that A* : C* ® C* — C* is defined as A*(f ® g)(c) =
(f ® 9)A(c), where f,g € C*,c € C and that u : k = C* and it is defined by
u(a)(c) = ae(c), for a € k,c € C.

Now, we combine the definitions of algebra and coalgebra.

Definition 1.5.5. A k-space B is a bialgebra if (B,m,u) is an algebra,
(B,A€) is a coalgebra, and either of the following (equivalent) conditions
holds:

1. A and € are algebra morphisms,
2. m and u are coalgebra morphisms.

Example 1.5.1. If B is any bialgebra, we can form a new bialgebra by taking
the opposite of cither the algebra or coalgebra structure. Thus B has the
same multiplication but the opposite comultiplication, B has the opposite

multiplication but the same comultiplication.

Note 1.5.1. Let C' be any coalgebra with comultiplication A: C = C ® C.

The sigma notation for A is given as follows: for any ¢ € C, we write

Ac=Y" e ® ey
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Example 1.5.2. The field k, with its algebra structure, and with the canonical
coalgebra structure ( A(a) = o(1 ® 1), (@) = al), is a bialgebra.
Example 1.5.3. If G is a monoid, then the semigroup algebra kG, endowed
with a coalgebra structure A(g) = g ® g and €(g) = 1 for any g € G, is a
bialgebra.
Definition 1.5.6. Let C be a coalgebra and A be an algebra. Then Homy(C, A)
becomes an algebra under the convolution product:

(f*9)(e) = 3 Ilew)glewm),
for all f,g € Homy(C,4), ceC.
Definition 1.5.7. Let (H,m,u,A,¢) be a bialgebra. Then H is a Hopf algebra
if there egists an clement S € Homy(H, H) which is an inverse to idy under
the convolution product. S is called an antipode for H.
Definition 1.5.8. Let C be a coalgebra. C is pointed if every simple subcoal-
gebra is one-dimensional.
Remark 1.5.1. In a Hopf algebra, the antipode is unique. The fact that
S : H — H is the antipode is written as S * [ = I + S = ue, and using the
sigma notation: 3°5(hi)hy = YhiS(ha) = €(h)1 for any h € H.
Note 1.5.2. For a bialgebra B, recall that B is a bialgebra. It may happen
that B*? is a Hopf algebra, with antipode S. Then
2(5(ha))hs = T ha(S(ha)) = e(h)L.
Lemma 1.5.1. ([11]) Let B be a bialgebra. Then B is a Hopf algebra with an
invertible antipode S under o & B°P is a Hopf algebra with invertible antipode
S. In this situation, So S = S0 S =id.
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Corollary 1.5.1. ([11]) If H is commutative or cocommutative, then S = id.
Examples of Hopf algebras:

Example 1.5.4. The group algebra.
Let G be a group, and H = kG the associated group algebra. Then by defining
S(g) = g~ for each g € G, we obtain that H is a Hopf algebra, recall (Example
1.5.3).

Example 1.5.5. Sweedler’s 4-dimensional Hopf algebra.
Assume that char k # 2. Let H be the algebra given by generators and
relations as follows: H is generated as a k-algebra by ¢ and  satisfying the

relations

=1, 2*=0, zc=—cz.

Then H has dimension 4 as a k-vector space, with basis {1,¢,, cz}.

The coalgebra structure is induced by
Ale)=c®c, Alz)=c®z+2®1, €c)=1, e(z)=0.

In this way, H becomes a bialgebra, which also has an antipode S given by
S(c) = ¢, S(2) = —ca. This was the first example of a non-commutative

and non-cocommutative Hopf algebra.

Example 1.5.6. The Taft algebras.
Let n > 2 be an integer, and A a primitive nth root of unity. Consider the

algebra H,a()) defined by the generators c and z with relations

, 2" =0, zc=Acz.



CHAPTER 1. DEFINITIONS 16
On this algebra we can introduce a coalgebra structure induced by
Al)=c®c, Alr)=c®a+281, ) =1, e()=0.

In this way H,z()) becomes a bialgebra of dimension n?, having the basis
{¢'2?|0 < i,j < n —1}. The antipode is defined by S(c) = ¢™?,
S(z) = —c~'z. We note that for n = 2 and A = —1 we obtain Sweedler’s

4-dimensional Hopf algebra.

Recall that we defined the notion of commutation factors for groups. Now

we generalize it for Hopf algebras.
Definition 1.5.9. Let H be a Hopf algebra.

1. A function B: H® H — k is called a bicharacter on H if 8 is bilincar
and for all h,k,l € H:

(a) B(hk,1) = 32 B(h,1)B(k, L),

(b) B(hykl) = 32 B(ha, k)B(hss 1),

(¢) B is normal, i.e. B(h,1) = B(1,h) = €(h),

(d) B is convolution invertible.
2. B is called skew-symmetric under % if ()~ = Bor.

Definition 1.5.10. For a k-algebra A, a left A-module is a k-space M with

a k-linear map v : A® M — M such that the following diagrams commute:
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17
meid u@id
AQAOM —————AQM k@M ——— AQM
id®y » scalar mult. 7
Ao M M M
7
Figure 1.5 Figure 1.6

Definition 1.5.11. For a k-coalgebra C, a right C-comodule is a pair (M, p),
where M is a k-vector space, p: M = M®C' is a morphism of k-vector spaces

such that the following diagrams are commutative:

M®C M MeC
» id®A ®1 id®e
MeC i MeCeC Mek
Figure 1.7 Figure 1.8

Note 1.5.3. In other words, we write this in the sigma notation for right

comodaules: p(m) = Y my ® may = Smo®@my € M@C. If My, M, are

H-comodules, with the structure maps py;, : m — ¥ mo ® m, and
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pm, 11— Y no®ny, then My ® M becomes a H-comodule with the structure
map pmem, 1 MmN = Y mo ®no ® myny.

Definition 1.5.12. A vector subspace N C M is called a subcomodule if
p(N)CN®C.

The least subcomodule containing a subset X is denoted by (X). If X is a
one-element set, say X = {b}, then we simply write (X) = (b). An important
property of comodules is the following one.

Proposition 1.5.1. ([11]) Any subcomodule (X) generated by a finite set X

is finite-dimensional.

Example 1.5.7. ((11]) Let C = kG. Then M is a right kG-comodaule if and
only if M is a G-graded k-space; that is M = @,ecM,. Here, M, = {m €
M|p(m) =m ® g}

Definition 1.5.13. Let H be a Hopf algebra and A a k-algebra. We say that
H coacts on A (or that A is a right H-comodule algebra) if the following
conditions are fulfilled:

1. A is a right H-comodule, with structure map

pi A AQH, pla)=Ya®a,
2. Y (ab)o @ (ab)y = ¥ aobo @ ayby, for all a,b € A,
8 p(1) =14 ®14.

Left H-comodule algebras are defined similarly.
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Definition 1.5.14. A Hopf algebra is called coquasitriangular(CQT) if there
eists a bicharacter (|) : H ® H — k, such that for all hym,l € H,

S (halmyymahy = hymy (holma).

A CQT Hopf algebra with a ski ic bicharacter is called a cotri 1

Hopf algebra.
Example 1.5.8. Let H be any commutative Hopf algebra. Then H is CQT
by taking (hlm) = e(h)e(m), the trivial braiding.

Example 1.5.9. ([11]) Let H = kG the group algebra. Because H is cocom-

mutative and (|) is invertible, the conditions in Definition 1.5.14 become:
1. (klgl) = (hlg){hll),
2. {hgll) = (RID){gl),

for all h,g,1 € G. That is, G is abelian and the form () is a bicharacter on G.
See Definition 1.4.1 with addition replaced by multiplication.

Note 1.5.4. It follows from above that if H = kG, for G a non-abelian group,
then H can not be CQT.

1.6 (H,p)-Lie algebras

Definition 1.6.1. Assume that (H, ) is cotriangular. A (right) (H,B)-Lie
algebra is a (right) H-comodule L together with a B-Lic bracket [,]: L®L — L

which is an H-comodule morphism satisfying, for all a,b,c € L:

1. B-anticommutativity: [a,b] = —B(ay, by)[bo, ao],
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2. B-Jacobi identity:
Bler ar)llao, 8], eo] + B(by, 1) [co, a], bo] + B(ar, br)][bo, ], a0] = 0.

Note 1.6.1. As usual, for any fixed « € L and any y € L, the map y - [z,y]
is denoted by adz.

Definition 1.6.2. Let H be a pointed cocommutative Hopf algebra with a skew-
symmetric bicharacter 8. We can define the decompositon H = Hy @ H_,
where H, is as normal subHopf algebra and H_ a subcoalgebra, and the sign
bicharacter f on H as follows: for any homogeneous h,k € H,
Bl B —e(h)e(k) ifhke H_,

(h)e(k)  otherwise.

Example 1.6.1.

. Let B = ¢ ®c¢, be the trivial bicharacter. Then an (H, ¢ ® ¢)-Lie algebra
is an ordinary Lie algebra L with an H-comodule structure such that [,]

is an H-comodule morphism.

o

Let 8 = fo, the sign bicharacter. Then an (H, f)-Lie algebra is an
ordinary Lic superalgebra L = Lo @ Ly, such that L is an H-comodule

and [,] is an H-comodule morphism.

L4

Let A be an H-comodule algebra, 8 any bicharacter on H. Define
[a,bls = ab =" B(ar, by)acho.

Throughout this section k will be a commutative ring, and the Hopf algebra

H will be an arbitrary Hopf algebra, unless othewise specified. In order to

between tions and ltiplication, when A is a right H-

comodule with coaction ps : A = A® H, we write pa(a) = Y aq) ® aq).
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In particular, note that definition of right comodule means, in this notation,

that:

D" a0 8 (2 @ (aw) = Y (@@)o) @ (a@)) ® aq)-

An important concept that we deal with here is that of an algebra or a Hopf
algebra in a category; this means that the structure maps are morphisms in the
category. Denote the category of right H-modules by My , and that of right
H-comodules by M™. In these terms, the right H-module algebra becomes an
algebra in My, and a right H-module coalgebra becomes a coalgebra in My.

A right H-comodule algebra is actually an algebra in M¥, and so satisfies

palab) = Y- abo) ® agbpy,
and
pa(la) =14 ® 1.
Similarly, a right H-comodule coalgebra is a coalgebra in M¥, and the fact

that Ac and e¢ are comodule maps is expressed by:

D (e ® (e2)o ® (@) = Y (o @ (co)2 ® ey,

> ccle@)en(em) = eolo)-
The following lemma, was first stated in [5], as Lemma 2.10. In that paper,
the proof is given for left H-comodules and the proof makes use of S, the
antipode for H*. Here we give the proof in the case of right comodules. We

will assume that the comodules are right, unless otherwise stated.
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Lemma 1.6.1. I V is a finite-dimensional object in M¥, then End(V) is
an algebra in M¥, and the evaluation map ¢ : End(V)® V — V is an M*-

morphism.

Proof: The finite dimensionality of V is the key point here, for when V is
finite-dimensional, not only is End(V) = V ® V*, but also the coaction
p:V — V®H has its image in V ® C, where C is a finite-dimensional
subcoalgebra of H. Thus we may define a left H-coaction on V* as follows.
Given the coaction p: V = V @ C, there is a standard dual action
@:0"®V — V defined by a(f ®v) = X f(vyy)v), for all v € V, f € C*; its
dual " defines a left coaction o : V= = (C*@ V)" = C® V", via

o (0")(f ®v) = v*(a(f ©v)) = v* (3 flemve) = Y S (ve)-

Writing this in our usual comodule notation gives:
) @v) =D () ® (v)@)(f &) = 3 ()0 (N o) (v),
for all v* € V*,v € V, f € C*. Hence we have the equality:
3 fm)v () = Yo )0®)-
Thus, for all f € H*, f(X v"(vw)(v)) = f(E(07)(-1)(v")0)(v)). The non-
degeneracy of evaluation H* ® H — k now implies

3ot ew)(ve) = > (@)oo @), (1.6.1)

However, we are interested in right H-comodules; V* now becomes a right

H-comodule via the coaction

BV oV QH, vt Y vl ® S(viy)
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and so V @ V* is a right H-comodule via
VO Y v ® vy ® vy S(Ei_1), (16.2)

This is seen to be an algebra coaction in the usual way; and thus

End(V) =V @ V* is an algebra in M™.

Finally, we show that the evaluation map g is in M¥, by verifying commuta-

tivity of the diagram:

VevieV——— v
Pvaveey| v
Vev ®V®II¢®TV®H

Figure 1.9
Let v,w € V,v" € V*. Then:

pvop(v®v™ ®w) = py(vi(w)w) = Z (o) ® v (w)v)-

On the other hand,

(¢ ®id)(pvgveev)(v ® v* ® w)

(P @id) (L v0) ® (v")(0) @ wio) ® vy S(V_y) Jweyy

3 i) () v(0) ® vy S((v) -1y

= X o) ® v S(v{_yy) vy (we)ww

= T ® v S((v_1) (v (W) (v5)-1

= Z o) ® vn)S(_g)vi(w)viy

X v ® vyv*(w),

as required. On the fifth step we use (1.6.1). o

L}

1}



Chapter 2
Color Lie superalgebras

In this chapter, we state and prove Engel’s theorem for the color Lie superal-

gebra case.

2.1 Preliminaries

Lemma 2.1.1. Let L be a color Lie superalgebra, z,y,z € L, h in
L, d(z) € Gy,d(y) € G_, 2,3 € K*. Then

1. [z,2] =0,
2 [ly,ylyl =0,
3. ly, vl 2] = 20y [y, 2]

Proof: We note A(d(z),d(z)) = 1. We make use of (1.4.1) and Note 1.4.1.

1. Since [¢,2] = —A(d(2), d(z))[z, 2] = —[z,2] = 2[z,2] =0 = [z,2] = 0.

24
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2. [ly, u) 9] = [y, [y, ¥l =Bk, k), [y, wl] = 2y, [y, ]l = =28(h, 2h)([y, ], 4] =
~2B(h, h)B(h, b)[[y, ), y] = ~2[y, v, 4] =
3(ly,v}y) = 0 = ([y,],y] = 0 for any y € L, where h is the degree of

y.
3. For y € Ly, z € L we derive
[y, ), 21 = [v: [y, 21 = Bk, Ry, [y, 211 = 2y, [y, 21)- o

2.2 About graded vector spaces
We will present in this subsection two lemmas related to vector spaces.

Lemma 2.2.1. Let V be a nonzero G-graded vector space and b:V =V a
graded transformation that is nilpotent, i.e. b* = 0, for some n. Then there

ezists 0% w € V, such that w is homogencous and bw = 0.

Proof: Consider b: V — V a graded nilpotent transformation and its kernel
W = Kerb = {w € V|bw = 0}. W is a nonzero subspace, since b is nilpotent.
Also, W is a graded subspace, i.c. W = @,e6W,, because b is a graded
transformation. Hence, W, # 0 for some g € G and we can pick 0 # w € W

o

Lemma 2.2.2. Let V # 0 be a G-graded vector space over k, G a group. If @

is a nilpotent endomorphism of V, then the map ad()is nilpotent.

Proof: Using the definition of adz, see (1.4.3), and replacing ¢ by f, we
compute:

(ad(2))™(y) = (ad(2))""(zy — B(d(x), d(y))y=)



CHAPTER 2. COLOR LIE SUPERALGEBRAS 26

= (ad())"*(2?y ~ B(d(x) +d(y), d(z))zyz — B(d(z), d(y))eye+B(d(z), d(z) +
d(y))ya’) = .. =

Since « is nilpotent, we obtain ' = 0 for some I. Setting m = 2/ — 1 in the

i hija'yad, where Aj € k.

formula above, we see that all the terms A;;a’ye’ vanish since either i or j
must be > . Therefore, (ad(z))*~(y) = 0 for any y. This proves that ad(z)
is nilpotent. o

2.3 Engel’s theorem

Theorem 2.3.1. (ENGEL'S THEOREM FOR COLOR LIE SUPERALGEBRAS)
Let G be an abelian group, V a G-graded vector space, B : G x G — k*
a bicharacter, char k # 2,3 and let I be a finite-dimensional graded B-Lie
subalgebra of gl(V), whose homogeneous elements are nilpotent. If V # {0},
then there exists a nonzero homogeneous u € V, such that zu = 0, for all

z€L.

Proof: The proof goes by induction on dim L. If dim L = 0, then the claim
is obvious. Assume that dimL > 0. We have that L = @yeqLq, where
L, = (gl(V)); N L. Consider a maximal proper graded subalgebra M of L.
Hence M = @yeM, , where M, = L, N M. For & € M we have adyz :
L= L, yr [g,yl M is subalgebra, so M is an invariant subspace of L
under the action ady : M — M, y > [5,5]. We consider M as an M-
submodule of L, so we can induce L/M to be an M factor module with action

adppg i LIM = LM,  y+ M [z,y] + M, where z € M,y € L.

Note 2.3.1. M is adz-invariant, so ady/yx is well-defined.
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Proof (of the note):
We show that if y,y' € L and y —y' € M, then [z,y] — [z,y'] € M. But,
[2,y] = [2,¥] = [2,y — Y] € M (because M is a subalgebra).

Now, we also have that M = @yecM, and L = @yecLy, so LIM is a
G-graded space, i.e. L/M = @gec(Ly + M)/M. Moreover,

Note 2.8.2. ady/y M is a graded subalgebra of gl(L/M).

Proof (of the note):
Consider adywz € adypM. Decompose z = ¥,cq2,2, € M,. Then
adymz = adpm Yoeas = Soectdmzs; adimzy € adiyM and adyyz,
is a homogeneous element of degree g , since: adyzy : Ly — Ligy and adya, :
My = My, implies adijya, : (L/M)y — (L/M)hsg, and so, adijma, €
gl(L/M),.

Also, we have

dimadM < dim M < dim L. (23.1)

From Lemma 2.2.2, we have that ady is nilpotent, hence

adyyz s nilpotent. (2:32)

By (2.3.1) and (2.3.2), we apply the induction hypothesis to ady/y M C
gl(L/M) and obtain the existence of a nonzero homogeneous @ € L/M, such
that (adg/me)(@) = 0 for all = € M. We express @ = b+ M,b € L. Because
@ is homogeneous of degree g,a € L, + M/M = a=b+M ,be L, = bis

homogeneous.

Observation 2.3.1. alg{b} = Span{b, b, b]}.
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Proof:

1. [b,b] € alg{b},

2. [b,[6,8]] = 0 (using Lemma 2.1.1),

3. [[b,8),6] = —[b, b, ] =0,

4. [[b, 8], [b,8]] = [[[b, 6], 8], 6] + B(26, b)[b, [[b, ], b]] = 0.

Now, M +alg{b} is a graded space, which is a subalgebra of L, because alg{b}
is a subalgebra and:

1. Ifz,ye M= [z,y) € M,
2. Ifz € M,b e alg(b} = [z,b] € M,

3. Ifz € M, then [a,[5,b]] € M, because [z, [b,b]] = [z, b], b}+B(z, b)[b, [z, 8]
M.

m

Hence we have proved that M + alg{b} is a graded subalgebra of L. By
maximality of M, we get M +alg{b} = L. Using the fact that dim M < dim L,
we apply the induction hypothesis to M C gl(V). Consider W = {v € Vov =
0, V2 € M}. We have that W is a G-graded space of V' because:

L. @yea(W NV;) = ByeaW, C W (which is obvious);

2. Let v € W = zv = 0,2 € M homogeneous of degree h. Hence,
2(T,05) = T2 = 0= 20, = 0, for all v, € W. So, W is a di-

rect sum of W, and 2v, € Wyys.
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W is binvariant, because: ab(v) = [z, Jv + B(z, b)ba(v) = 0, ( [2,8] € M) for
all homogeneous & € M. Thus b = by is nilpotent and homogeneous. By
Lemma 2.2.1, applied to ¥, we get the existence of a w € W homogeneous
such that ¥w = 0. Hence bw = 0, [b,bw
Lw =0, since L= M + alg{b}. o

0, but Mw = 0, so we finally get

Note 2.3.3. Now, we state Engel’s theorem for the particular case of Lic
superalgebras: Let V' be a Zy-graded vector space over k and L be a finite-
dimensional Zy-graded subalgebra of gl(V) whose homogeneous elements are
nilpotent endomorphisms of V. If V # 0, then there exists a nonzero homo-

geneous v € V, such that zv =0, for all z € L.

Note 2.3.4. If L is an ordinary graded Lic algebra, then we obtain the ordi-
nary Engel’s Theorem 1.2.1. , with an additional property that v is homoge-

neous.

Corollary 2.8.1. Let V be a finite-dimensional G-graded vector space, G an
abelian group, B skew-symmetric bicharacter f: G x G = k', L be a graded
finite-dimensional subspace of gl(V') closed under the 8-commutator, consisting
of nilpotent elements. Then there exists a basis of V, such that all elements of

L have strictly lower triangular matrices.

Proof: Consider dimV = n. By Theorem 2.3.1. we can find a homogencous
v =, €V, v, # 0 such that Lv, = 0. Because v, is homogeneous, kv, is
graded.

Consider ¥ = V/kv,. We denote & = v + kv,, where 5 € V for v € V.

Define #() = zv + kv,. Consider the homomorphism map ¢ : L — gl(V)

sending  to & Consider the new algebra L = € L) C End(V). For any
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z € L, & is nilpotent because

(Z)"(0) = a"v + kvp = kvy =

So, L consists of nilpotent transformations, L is G-graded , so we can apply

-1} for V such that matrices of

induction, and we obtain a basis {31, 7y, -

elements of L are lower triangular i.c.

#(5) € Span{Bissy e Tr}- (2:3.3)

For any z € L we get
#(5) = 20 + ko, (2.3.4)

So, by (2.3.3) and (2.3.4) we get
2(v;) + kv, € Span{vipr, s a1} + ko,

hence, 2(v;) € $pan{uit, s Un-1, va}. For i € {1,2,...,n — 1} we have zv, =

0, hence the matrix of  is strictly lower triangular in the basis {v;,...v,}. O

Corollary 2.8.2. Let V be a finite-dimensional G-graded vector space over
a field k and a skew-symmetric bicharacter B : G x G — k" on an abelian
group. Let LC gl(V) to be a subalgebra of gl(V) under B commutator and R
an associative subalgebra generated by L. If L consists of nilpotent operators,

then R is nilpotent.

Proof: By Corollary 2.3.1, we can find a basis in V such that all matrices
of elements of L are strictly lower triangular. Then all the matrices of R are

also strictly lower triangular. So, R is nilpotent. o



Chapter 3
(H, B)-Lie algebras

In this chapter, we state and prove Engel’s theorem for the (H, §)-Lie algebra

case.

3.1 Some auxiliary results

Observation 3.1.1. Fix a basis {¢;} in a right H-comodule W. Then we can
write p(e;) = ) & ® cij, where ¢;; are uniquely defined elements of H. We

claim that:
L Ac;=Y cu® s
k
2. e(cij) = 8.
Proof (1@ A)p(e;) = (p® Dple;): But, (18 Ap(e;) = e @ Acyj, and
) =3 HE s, <30S e, Mo,
k i k

Acj = Z cik ® cije
*

31



CHAPTER 3. (H,p)-LIE ALGEBRAS 32
(1® €)p(w) = w for any w € W, and p(e;) = 3, & ® cij.
Hence, by letting w = ¢;, we obtain:
(1®€)p(e;) = Z cleij)es = & = elci) = 85
Also, Y ¢1S¢; = Y)(Ser)ea = €(c). Take ¢ = c;j. Hence,
DleihiSles)s = Y (S(eih)(eis)e = eleiy) = &; &
3 uSay =3 (Sealey =8 o
k k

Lemma 3.1.1. Let H be a Hopf algebra, W any finite-dimensional H-comodule.
Consider End(W) with the comodule structure defined in Lemma 1.6.1. If
D € End(W) and T € End(W) ® H, then p"(D) = T if and only if for any

we W, p(Dw) = Tp(w).

Proof: Due to the finite dimensionality of W, consider W = Span{ey, .., e, }.

Choose the dual basis {¢',..., "} in W* and consider the coaction o : W* —

H@W*, corresponding to a” as in Lemma 1.6.1. Suppose p/(e’) = Y b ®e’.
7
Then (1.6.1) gives for v* = ¢ and v = ¢; and Y (e;)o® (€)1 = Z ex®cx; and

S @ (e = Zb,kg)c that z *(es)bu = z (ek)ck_, Therefore,
b; = c;. Then by (1 6.2), and ki S o E;j = ¢ ® el upon
identification of End(W) with W ® W*, we obtain: p(e;) Z e ® cx; and

P(E) = ei@e. Thatis (@) = Y a®c @ Ck(S(Cl})- Hence
! ki
P(E) =Y Eu @ cuS(eq).

kil
Also we know that,

Eije; = e (3.L.1)



CHAPTER 3. (H,B)-LIE ALGEBRAS 33
Let D € End(W), expressed as
D=3 duBu. (3.1.2)
By (3.1.1) and (3.1.2), we get that De = ¥ dies.
Also, because T € EndW @ H we represent T uniquely as
T =Y Ex ® hy. Then p"(D) =T is equivalent to

b=y ewS(en)dis. (3.1.3)
G

Now, p(Dw) = Tp(w) for any w € W is equivalent to

3 Buwe @ by = Y (Dw)o ® (Dw)y &
]

Vi > Buleo ® hule)i = Y_(Deio ® (D)

Vi Y Buei @ hucii = Y (Y duies)o ® (Y duies)r
v

Vi Y en@huei= ) dyei ®ck &
ki ks

ki Y e =D daick
7 .
We want to show:
koL =Y cuiS(ci)dis & Vhyi Y hajeii = duici:

Now,

ki D hjesi = Y duicks
3 :
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Z hijesiS(ca) Z Z dyick,S(ca)
S bl =Y duickS(eu) &
3 5
b=y duicksS(ea)-
On the other hand, o

VoL b =Y craS(esi)de; =

si

Vk,i Z hiacii = > cisS(ei)dsjei = chsdu‘s‘i = z Chslai- o

e
Lemma 3.1.2. Let V. be a finite-dimensional H-comodule and H a Hopf al-
gebra. Consider | : End(V) — End(End(V)), | given by I(A) = l4. Then | is

a comodule map.

Proof: We want to show that for all A € End(V), we have
3 lae ® Av = p(la). (3.1.4)

Now, apply Lemma 3.1.1 to W = End(V), D = Iy,
T =Yy ® A € End(End(V)) ® H, ie. for all B € End(V), we want to
show that (3.1.4) is equivalent to:

pUA(B)) = (O Las ® Ar)p(B) &

PAB) = (3 la®A) (Y Boe®B1) = Y Lag(B)®A1Br = ) ABo® A1 By.

o



CHAPTER 3. (H,()-LIE ALGEBRAS 35

Lemma 3.1.3. Let r : End(V) — End(End(V)), where r acls as r(A) =
4 and assume that H is @ commutative Hopf algchra and V. is a finite-

dimensional H-comodule. Then r is a comodule map.

Proof: We want to show that for all A € End(V), we have
D70 ® Av = p(ra)- (3.1.5)

Now, apply Lemma 3.1.1 to W = End(V), D = ra,
T =Y rs, ®A € End(End(V))® H, ie. for all B € End(V), we want to

show that (3.1.5) is equivalent to:
p(ra(B)) = (O ra, ® A1)p(B) &

p(BAY = (3 ra®A)(Y Bo®B:) = Y rao(Bo)@Ai By = Y BuAo®Ai By.
But, we know that p(BA) = Y ByAo ® B Ay, from Lemma 1.6.1, and using
commutativity of H, we obtain the desired equality. o
Lemma 3.1.4. Assume that V is a finite-dimensional H-comodule. Let (H, )
be a cotriangular Hopf algebra and consider ad : End(V) — End(End(V)),
where ad acts as ad(A)(B) = AB — ¥ B(A1B1) BoAo. Then ad is a comodule
map.

Proof: We want to show that for all A € End(V) we have:

3" adsy ® Av = plads).
Apply Lemma 3.1.1 to: W = End(V), D = ad,,
T =Y ads, ® A1 € End(End(V)) ® H, i.e. for all B € End(V), we want to
show that

plada(B)) = (3 ada, ® A)p(B).
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This is equivalent to:
Plad(A)(B)) = (3 adsy ® A1)(3_ Bo® By) &
P(AB =37 (s, B1)Bodo) = 3 ad(Ao)(Bo) ® MiBy &
P(AB — 37 B(A, B1)Bodo) = 3 (AaBo —~ 3 Ao, Bo,) Boy Ase) ® ArBi.
Now,
PAB =37 B4, B)Boddo) = p(AB) = 37 A(As, B)p(Bodo) =

> AoBo® AiBy — Y B(As, B3)BoAo ® BiAr. (3.1.6)

S (A0Bo =Y B(Aoy, Boy) Boy Auy) ® AoBo =
3" AcBo® ABy = B(Ar, Br) BoAo © A By. (3.1.7)

But both (3.1.6) and (3.1.7) are equal, following from the assumption that

H is cotriangular. Hence, we did prove our result. o

Definition 3.1.1. Suppose A is an algebra and U,V C A are subspaces. We
denote by UV = {3 wawslu; € Uyw; € W}. A subspace U C A is said to be

wilpiobert S0P =0 for somein.

Lemma 3.1.5. Let V. be a finite-dimensional comodule over a cocommutative
Hopf algebra H,3: H® H — k a skew-symmetric bicharacter. If z € End(V)
and the subcomodule generated by 3, i.e. (z), is nilpotent of degree n, then

(ad(z)) is nilpotent of degree at most 2n — 1.
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Proof:
(ad()) = ad(z) (3.1.8)

is true because ad is an H-comodule map. Let
B ey B G B (3.1.9)

(ads")(adz?)(y) = (ada")(2®y — Y B(e}, y1)yox3)
=2l (% — ) _Bl,y)yozd)

-3 8 (ehatu - Zﬁ(ﬁvy.)ymlﬁ,)(rﬁyu = B,y )youmh, )b
=a'zly— Y Blad,m)e'vos — Y B (ﬂ, oiy — Eﬂ(xi,yz)ynz?)tﬁyozﬁ
328 (=h ot — Y oB(eh wa)wiat) Y8(et i wordah.

The expression of (ada*)...(adz*"~)(y) is obtained by similar computations as

above. Using the fact that (z) is nilpotent of degree n, we obtain

(ada)...(adz*V)(y) = 0, because every term contains a product of at least n
clements from (z), hence adz is nilpotent. By using (3.1.8), we get that ad{z)
is nilpotent, hence by (3.1.9) we obtain that (ad(z)) is nilpotent. o

3.2 Engel’s theorem

Theorem 3.2.1. (ENGEL’S THEOREM FOR (H,3)-LIE ALGEBRAS)

Let H be a commutative and cocommutative Hopf algebra, V # 0 a finite-

dimensional H-comodule, 8 a sk ic bich . Suppose that we
have a representation ¢ of a B- Lie algebra L. If for all z € L, the subcomodule
(¢(x)) is nilpotent, then there ezists a nonzero v € V, such that ¢(a)(v) =0,
forallz € L.
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Proof: We prove the theorem by induction on dim L. We denote by

(dim L, g, V) the situation where ¢ : L ~» EndV is the representation of L in
an H-comodule V. For dim L = 0, we get L = 0, hence for any 0 # v € V we
have (L)(v) = 0. Now assume that dim L > 0. Replacing L with ¢(L), we
can assume without loss of generality that [ is a subalgebra of gI(V). Let M be
a maximal proper (H, 8)-Lie subalgebra of L (this is also an H-subcomodule).
Due to the fact that L is an H-comodule and M is an H-subcomodule, we
get that L/M is an H-comodule. Now, End(L/M) is an algebra in M (the
result is due to Lemma 1.6.1). Consider the map o : M — End(L/M), which
is defined as: o(z)(y + M) = [z,y] + M , for all z € M,y € L. We want to
prove that o is a representation of the g-Lie algebra M. By the definition of

the representation we have to show that:
1. ad is a homomorphism of H-comodules and
2. ad is a homomorphism of algebras.

The first statement follows from Lemma 3.1.4 and the second statement is

reduced to:
o(la,8) =
But, o([a, b])(y + M) = [[a,b],4] + M and

[

50 (0)]s-

Lo (Bla(y+M) = o{a)a(b)(y+ M)~ Bl (a)s, o(B)1)o(bor(a)ely+M) =
(a)((b,y] + M) = Y Blo(a)i, a(b)1)o(b)ol (a0, y) + M) =
fa, [b,y]] = D Blo(a)s, o (B):)lbo, [ao, yl] + M = [[a,b], y] + M.

For the last equality we use Jacobi indentity.
We can now apply the induction hypothesis to (M, o, L/M). Then there exists
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a nonzero @ € L/M such that o(z)(a) = 0, for all z € M. Let a = b+ M,
be L. So, [z,(b)] € M for all z € M.

Observation 3.2.1. The H-Lie subalgebra, alg(b), generated by (b) is spanned
by monomials w, where w are words composed of elements of (b) with a certain
bracket structure. Let I' be the set of monomials w defined by induction on
the degree as follows. If degw =1, then w € (b), and if degw = n > 1 then
w = [wy,ws), where wy, w, € T, deg wy, deg wy < n. If we denote by alg(b) the
H-Lie subalgebra generated by (b), then alg(b) = SpanI’. We can show that
Spanl is an H-subcomodule by induction on the degree of the w that span
SpanT. If degw = 1, then w € (b), hence p(w)(b) € T If degw > 1, let w =
[wr, 2] and express p(w) = Zw‘ @ hi, p(ws) = ¥ w; ® hy, where wy,w; € I
and hy, hj € H. Therefore p(w) = [p(w1), p(ws)] = [ wi @ hiy L w; @ hy] =
Ylwi,w;] ® hih; € SpanT ® H.

Now, because M and alg(b) are H-subcomodules of L, then M -+ alg(b)
is an H-subcomodule of L. The fact that M -+ alg(b) is a Lie subalgebra is

shown by induction as follows. The basis of induction is: for any z € M, [ €

o), lel€M.
Now, consider [ = [n,m] € alg(b). Then, express
[z, [n,m]] = [lz,n],m] = 3 B(na,m)[[z, mol,na). Let n = [bY),...,b®)] and

m =B, .., b, where b, B0) € (b). Also, p(n) = 3 (85", .., 6| @b{"..b{
and p(m) = 3o, -, 5 @ 5V..5Y. Hence
3 Blra, ma) [z mol,ngl = 3 Blna, mu){fe, B0, 68, o, B,

where (5", .., 5] is a commutator of degree k in (b) and [, .., 5" is a

commutator of degree [ in (b). Therefore, the induction hypothesis applies and
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we have that [z,[n,m]] € M.

Hence, we have that M + alg(b) = L by maximality of M. Consider Vo =
{v € V]a(v) = 0,z € M}, the subspace of V. Now, Vs # 0, by the induction
hypothesis applied to M. Also, V, is stable under ¥, for any ¥ € (b), since
Yz € M, z(v) = 0 implies that

2b(v) = [2,61(v) + Y Bz1,b))bpzo(v) =0, Ve € M.

Hence v € Vo. Now, due to the fact that the restriction of (8) to Vo is a
nilpotent subspace of End(Vp), the following lemma gives a nonzero vector
v € Vp, such that (b)(v) = 0. Then, obviously, alg(8)(v) = 0. Since L =
M + alg(b), we obtain that L{v) = 0. o

Lemma 3.2.1. Suppose that V # 0 is a finite-dimensional H-comodule and
b€ EndV is such that (b) is nilpotent. Then there cxists 0 # v € V. such that
®)tv) =0.

Proof: Consider W = {v € V|()v = 0}. W # 0 since (b) is nilpotent. Pick
v # 0in V. If (B = 0, we are done. Otherwise, take b’ € (8) such that
bv # 0 and replace v by b'v and so on. This process ends after at most m — 1
steps, where m is a number such that (5)™ = 0.

We show that W is a subcomodule. Consider W = Span{ey,...,e;}, and
extend it to V = Span{ey,..,e,}, k <n. From Lemma 3.1.1 we have p(e;) =
S e @i, Aley) = Y e ® cijy p(Ey) = Y Ewe ® cuiS(cir). We know that

7

st

p(W) C W ® H. Fix b € (b). We know p(¥) € (b) ® H. Hence

pB)(W 1) =0. (3.2.1)
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We want to prove that

(¥ ®id)p(e;) =0, Vji<k. (322)
Express b =3 Apq By Then (3.2.2) becomes

D AneEnei @i =06 Y Ay ®cyi =D @Y Apgcy; =0.
» v

ipa Pa

From (3.2.1) we have:

> D En®copS(ea)(e; ®1) =0, j<k=

3 Mts @ (o) =0 Vs, 3 dyepSley) =0

3" AalS(ema)ewS(e) =0, ¥im = 3" AngS(ey) =0, Vim.
Since § is bijective, 3, Angqy =0, ¥m. o

Note 3.2.1. If we apply Theorem 3.2.1. to ordinary Lie algebras with H = k,
we get the usual Engel’s Theorem 1.2.1. For H a group algebra of an abelian
group, we do not get Engel’s Theorem for color Lie superalgebras 2.3.1., be-
cause our comodule hypothesis is stronger than what we assume in Theorem
2.3.1., where the nilpotency condition is imposed only on homogeneous ele-

ments.
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