The electromagnetic scattering from a vertical discontinuity with application to ice hazard detection : an operator expansion approach

Ryan, Joseph P. (Joseph Patrick) (1983) The electromagnetic scattering from a vertical discontinuity with application to ice hazard detection : an operator expansion approach. Masters thesis, Memorial University of Newfoundland.

[img] [English] PDF (Migrated (PDF/A Conversion) from original format: (application/pdf)) - Accepted Version
Available under License - The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

Download (15MB)
  • [img] [English] PDF - Accepted Version
    Available under License - The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.
    (Original Version)

Abstract

The long range detection of ice hazards such as multi-year ice, pressure ridges and icebergs will allow for more efficient planning of Arctic navigation routes and exploration in ice infested waters. An analysis of the electromagnetic scattering from a vertical discontinuity representing the transition from sea water or first-year ice to a multi- year ice sheet has been carried out. The analysis is based on a method of Space/Field decomposition where two Heaviside functions are used to decompose a three dimensional space into three regions each having different electrical properties. Maxwell's equations are used to derive a partial differential field equation for the complete space. Making use of a field decomposition, this differential equation may be decomposed into three field equations, one for each region, and a boundary equation. A spherical Green's function is taken as the fundamental solution and the spatial Fourier transform is used to simplify the equations to a single integral equation. Selecting a vertical electric dipole as the source field the solution for the vertical component of the surface field is obtained by writing this resultant integral equation in an operator form and expanding the inverse operator in a Neumann series. Using the Laplace transform and stationary phase integration this series solution may be summed to provide expressions for both the backscattered field and the field propagated past the boundary separating the two media. The solution for the propagated field agrees with that of both Bremmer and Wait. The technique differs from that of previous investigators in that it is possible to obtain an expression for the backscattered field and thereby the radar cross-section of the vertical discontinuity. The results of this analysis indicate that radar operating in the High Frequency range (3 - 30 MHz) should provide a significant improvement over present methods for the detection of this type of hazard.

Item Type: Thesis (Masters)
URI: http://research.library.mun.ca/id/eprint/5300
Item ID: 5300
Additional Information: Bibliography: leaves 85-86.
Department(s): Engineering and Applied Science, Faculty of
Date: 1983
Date Type: Submission
Library of Congress Subject Heading: Sea ice--Remote sensing

Actions (login required)

View Item View Item

Downloads

Downloads per month over the past year

View more statistics