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ABSTRACT

The umg rangs datection. of lee hazards: such as multi-year I¢e. pun—

sure ridges’ and Icebergs. will - sl or hird, effician. planniig: of Arctic

navigation routes:‘and’ gxploration In “ice Intestsd waters. -An analysis of

. “the ig from" a_ vertical : ing the,
Jransition_trom -sea ane‘r o|: 'mal»y’n;( 106 to ‘a’ multl- year \c(; ah‘oa\ has
been - Garried .ou - The ‘analysls Is ‘based ‘on'a _ imethod - of sp.egmuu
“;decomposition Where o Hoaviside funollons are- used 1o decomposs ‘-

thiee - dimenslonal space: Info.. thise reglons each *having am-um elecirical

Proparties. Maxwell's equations are ‘uséd to derlve a.-partlal . different)

qunﬂon for the complets, space. Making use of a field decompoalllcn, ihis
diferential equation. may be decomposed Into thres fleld squations. - one for
" pachi Peglon’ and. & boundary equation. “A. spherical areenV- funiction " Is.

" taken as the fundamenta) solution ‘and the spatial Fourler transiorm Is used
10 simpilty the- equations 1o & single’ Irtegral equatlon. Selecting ‘a vertical”

ectric, dipole “as the' source ﬂald the solution for _the vertical component

6 the " sirtace fleld Is obtalned by writing this_resultant intogral equation In
an. oparator Vorq. and expanding the Inverse: opsrator W, Nsum.nn serles.

Using the Laplace |u mrm and statlonhry phase (n(ugmllon this - series

solution may be summed to provide . expressions for both the backscatiered '

fleld and the fleld propagated. ‘past’ the boundary separating ‘the two ‘media:

The solution for ihe propagated fleld agrees  wiih that of both: Bremmer and
Walt:: The technique diifers from that of previéus investigators in. that'it is®

possible 1o obtain an expression for the backscattered field and thereby the

radar crou—ucuon of the .vertical discontinulty. . The. results of “this
analysis indicate that radar operating In!the High quunney range (-8 -
7 o
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_ pressire_ridges In the - eastern "Arétic ‘and Beaufor

level..For the _case’ of ddisction in an interference fr

oy s CHAPTER.1
INTRODUCTION S S P
1.1.General 4
N N
With and In the Arctic reglons and -

the growing, interest In _offshore rasources more  smphasis s being placed

. on solving ‘the p!oblems with ‘and ¢ In lce

\rynled waters. - Malor - problems Include Icebergs In the southern™ Grand

Banks'reglon. " lcebergs and sea loe. off Labrador’ and, multi-year Ice and

oa areas. While somo

“groups .are_necessarlly’ taking -the" pregaution’ of bullding ships and. driliig

platforms sble.. to_withstand large’ sculo oo foroes. the early detection of

advancing Ice :hazards will allow better pianning of navigation \joutes “and

driliing schedules,. ihereby- avolding' costly délays and possible disaster:
Many methods  presently in ue for ice hazard detection. rey heavlly on

e use of standard microwave: marine- radar. “These radars can pmvldn a

uséfyl- detection: service when th

energy reflectsd back fo the radar from
tho.I6d - targst. Is ldige In comparison’ 10’ the. background nolse. or.” olutter

enviomment: the

.nolse’ level of the radar will tiemit ﬂ-lecﬂon ,However. :for the sltuation of

Ige'targets at sea. the background. ‘or clutter signal can orlgliate from
! §

may sppear no difterent from first-year Ice’at grazing nneypme-.

by waves, g- lce “or _preci| ly - the:

‘Slutter signals Gften overpawer ‘the desired signal ang make detection very

“Y%,R:\

difflcuit. For example.: the radar return. from a small 56. erg - may be- e

obscured’ by prevailing’ sea conditions. Similarity. a I?rgo mumynr ice flow

As ‘most 6. these - may be.’

-




c
sition’ trom .one zypo of medum to dnother. the ggneml‘mod-l chosen -here

. analysls i pi

" generalized funétions. The forward. Propagated fisid s _dsrived tor com-

for snalysis Is basei on a flat adirth conslsting of two media of aamI;
Infinits extent each having different electrical properties. . PR

The analysis, of this “generat model’ provides - an Insight int“many , of.

-thb " speclal cases which occur In nature.. The ™o madia -of the ‘modal

' Gould represent land/sea. sga/ice or first-year - ice/multi-year :og llluuﬂonl

depending on the the elsctrical properties chosen: - The emphasis” of tho

od on the; ‘interaction, of the surface wave: 'mode- ofpropaga-

tlon with'.a'Vertical dlaconnnully As 'he surface . wave ‘mode. Is " pradominant

ror short "ran with ground muumld antennas opamlng In_the radio’ fre=

*quency _range” from three to thiry ‘Megahertz: “the 1ounwlng analysis s

 direclly ‘applicable 1o these lypas of radar. - s

earth’ has’ been

The - probiem ‘of. pre over an

the subject of mueh rauearcn and many jmilar- soluions: haid-beén dnrlway 4

16¢ - ihe " flelt. propagated past boundary  separating ' two. homogeneous
medla. - Howbver. an explicit rapmlonlutlon of the backscatiered fleld_from
such a haundary is not. avaliable. . ¢ e

Hereln a new. mnlhod s used for treating the problem in the sense of "

‘parlson with puv:uu- work. and in addition ' expression for the sacksaat--

" tered fleld is aiso. found. v
¢




1.2 Lierature|

Review v

Hlmrlcally, lhe emphaisis on unlvlng the so-called mixed path: probl.m ;

has: bun dlr-ct-d wnrgs deriving ‘the "fleld prﬁ;n«su past. & mumsary

twol B i« ‘media.

i o FEEL J A
_The pi work of Ml (1944) an. accurate

method for .:Ammannq the “fieid propagated past a boundary. His work

prealcm*a raoove'y oftect” n ,me fleld when passing from a- mcdium o

low conducllvlly |o one of - higher ccndm:ﬁvrty “His—gerivation" was based “on

mmymg the | reciproclty d

‘ot

trangmitter . and recelver. - . Clemmow ‘(1959 lnd Brommer Ci9sh have

holh lurmululcd general methods : for rsating the-. the : problem: of propag

tion'“over milked_paths. ‘Theli methads dlifergreatly. However, 'Brémmer '

n_emonsxrires that " Clemmow’s. result may . be~ derived ‘from- his for' large

nurherical dm-nc-s

Initially - Clemmow, considers ‘a flai ‘earth cansl-ﬁng of a aeml-invlnno-

P c a Y " medium. . The

ocond m.dlum is

. fepresonted. by an Inﬂnliely thin; - parfectly oonductlng half—plnnn lying “gn "

this~ homogeneous medium, He procasds. by, deriving a spectrum of ‘piafie
waves mprounmlon of: the "scattered- figd due . ihe Induced" surface
currents In -the :perfectly- conducting sheet. . This method leads 1o dual
Integral’ equations w;«ch he _solves _by. contour -Integration. suhuqu.mly‘

Clemmiow “relaxes: the p-r'euw Gonducting uqulrnmm on_the - second

. médium and adopts ‘a. more “appropriate. boundary gondition, namly. " that

ihe “moduliis of the complex pormittivity of . sach - setion ot earth Is large.
“Solving this alteriate problem he obtaing ro:!nn that afe in agreement wmy,

work-of . Millington... "~ .. e




Y . . "

Bremmer (1954 on the  other hand takes 'an

approach..  Essentially " he _derives ‘thg _solution In. terms of ‘an_Integral

equation based on an .ppuc.mm ‘of Green’s: theorem and- a omogensous
boundavy cdndlﬂnn at the alr/earth Interface. ' His. formulation applies 1o all

s of the

vaou of
of the earth’ and the  resultanf Integral equation- solution  Is simiiar to the
|m;gra‘|.equa'nan consldered by Hufford (1952) for the propagatidn over
Inogulpr lerruln Brémmer ‘then mmm as_a special case “the problem nl
two_ ad]ueunl mealum with nomogeneouu electrical -propertiés .and, - with the.
ald of two-sided’ operational Galculus. he..derlves a_solution ‘fér - the' fleld
boih_nedr “and far. from ‘the boundary. Bremmer 'has also derived an
mer e

_ 6xpression for the field’ propagaled. over multi-section paths.. The - deriva—

tions of both’ Bremmer and Hufford -are based ‘on a ‘scalar. wave agsumption

_whicti ‘preciudes the derivation of a reflected field component: ey

*Later Walt (1956b) showed that the Integral equation for a-clrved
two-sectjon’ path ,p;zum be derived by an appilcation of . the compensation
theorem. (Montedth. 1851, His Integral equation. is. essontially. the same
. 88 that considered by Hufford (1952). except- tha Walfretalns tho field in

& Vvectorform. In a_more mcnm treatment of ‘the problam Wait -(1970)

reducss the prablem to dual” lm‘qgrnl equations which he solves by the
His -solution s in terms of  the :mode conversion

ton 8 iadgmission

his' previoiis work Is.demonstrated, -Perhaps’ the-latest work on. this- problem

Weiner—Hop! ‘technique..

matrices ‘for the’ and with

has' been presented by Furutsu (1982). Furutsu has derived an explicit

expression for the attenuation of radio waves over a curved earth path with

sections Fving . different elactrical properties and different  heights. His
methiod-(s based’on an application of Green’s theorem: and on the deriva—

entirely _ different

and dlelectric constant

¢

3




tion of pairs-of Integral equations. Furutsu uses an lterative procedurs to

derlve an Infinite serles solution to these. Integral equations.

Most of the reviewed work'ls In agreement with respect the fleld pro-

i

3 pagated past the boundary separaling tWo semi-infliilte media; however. an

1

explicit -expression for the backscattered fleld far from the boundary has not
been presented. Walt'(1963) has derived an expression for the field close

to'and on either side of the boundary of separation.

1.3 'Scope  of Thesls
d . «

The present analysis of the problem of electromagnetic scattering “trom
a vertical discontinuity is based on a method of SPHEQ/F|B|G decomposition
developed ‘hy Walsh - (1980b). Two Heaviside , functions are utilized to
deconipose a- three dimensional space Into _three *regions. The region

o above. z=0 represents free space and- the reglon below represents .two

semi-infinite homogeneous media. Maxwell's equations are used 16" derive a

differential fleld. equatlon for the_complete space. In-a manner similar’ to

i the space decomposition this' differential field” equation Is decomposed Into

three fleld equations. one for each region. ‘and a boundary equation. This

boundary equatlon ‘represents thie conditions which’ the " electric field must
satisty at each of the Interfaces. In this manner this technique- provides. its %
own boundary conditions. The electric fleld In’ each region - is given In
torms  of the fleld ‘and Its normal derivative at the 'bounding Interfaces.
Using the appropriate spherical Green's Iunc(lqn‘ the three field equations
are reduced to the form’ of convolution-type Integral squations. ‘The boun-

".dary equation may be’ utilized to eliminate. half of the unknowns from"the

fleld e and further Is achieved by taking the two- 4:




" dimensional~(spatial} Fourler transform. Assuming ‘the refractive. Indices of
the ‘medla below are .large compared 1o free space. and taking the source
flold as tho far field of an elemantary veriloal elecirio dipole the ihres field
equamms “may ‘bereduced fo' a single ‘algebralc equation. [This_equation

may be inverse *Fourier z by an K of the'"

Integrals using. the saddle point mamau, (Walt ,1964)." The resultant con—
volution, lmoprul equunon Is written' In operator notatlon and the "operator- Is
'olmuny Inverted in’ the. form of a Neumann -series. - Utilizing stationary

phn- Inlesmllnn and the Leplace transform the ‘serles”may be summed to

glve sither. the’ propagated flald or the ! fleld. . The
flold ‘agrees with tho results dorived by ‘bot Brommer ‘(1954) " and Walt
(1964). and tho baskscatiored field Is’ulized to derive an exprassion for
the radar cross-section of the venlcal dlwonllnuhy.

Subsenusntly, ‘severdl fypes of los hazard fhre; Ghosen tor analjsis and
detection ranges calculated from the radar equation. ’

Ghapter 2 contains' the- complete- ‘analysls and derivation of the pro-
.pagaled ‘and backscattered flelds. . Chapter 3 contains the derivation of a -
radar equation and - radar . cross-section of ~the vertical - discontinulty.

Chapter '§ presents numerical ‘results. for different combinations of sea/lce

Interfaces and Chapter 6 contains the conclusions:




“CHAPTER 2
i i
¢ : FORMULATION OF THE PROBLEM

' ~
2.1 Space Dacomposition

[ The formulation of this-‘problem Is based on. a fethod of Space/Fleld

decomposition damonstrated by Walsh - (1980b)." The _three-diniensional

. sphce Is decomposed -Into three . regions wiliizing two Heaviside functions.
i The , plane’ 2=0' represents ‘the earth's suriace. The haif-space ‘bolow (s
j - t;ecompaleﬂ Into two lreglohs, ‘x<d: medium 1. xd: medium 2. ‘each hav-"
‘ i Ing hl"ara’nl‘elevl‘ﬂcu[ properties. This decomposition ‘Is ‘liustrated In Fig-
i ~ure 1 : : ! ' ¢

&
§ * Free Space . '
¥ x=d
{ : 7 *
i | Medium 1. Medium 2
i s '
N
Flgure 1 Space by Electrical’ Prop




‘The electrical propertiés..cansist of -the permeabllity. u. the permit-

tivty, - €.and the .conductivity. : 0. A “subscript s used to - denote th
The two Heaviside

appropriate. tegion “(lo:  medium 1 i e, &,

functions are given as : oo

0. ; z<0 ¥
=l .20 - 2.1

0 : x<d. >
@.2»

10 wd

» These Heaviside Iuncllonl are usad to defing the electrical properties

of the complets“space a5

=y : 2.3
€=€sh, + € (~h )C1~h ) + €,(-h Ih, . ‘(2.4)
@ =0,(0=h ) Oh,) + 0, (1~h Db, ~ ' k 2.5 .

¥
=

The equations for the electrical properties of the complete’ spage. may

bl utilized with Maxwell’s uqulllons to dorlve a differéntial lqunllon for the

“electric field. £.
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NE
i

=
I
5t

v .
2.2 Maxwall's Equations

Maxwell's equations for"the complete space are given in- thelr - point

form as
xE = -jwB ) L 2.6)
2.7
i z % ‘ 2.8
T wiB s s i fn s o B8 ] ‘_ (é.n)"
‘where : T e ? J :
E2 elsctric fild Intensity e % s <

H= magnetic fleld intensity *
B= elactric flix density N “

B= magnetic ™ density .

7 /’\‘?\c + J;: condution and source, current densities respectively

charge density . i

L
These a‘q’hamqs are In thelf .‘time ‘harmonic” form, ‘which. may be
" Interpreted as the Fdurler Transform, with respect to the time variable, -of
the time dmndam»aquunons. "A positive time dependency of the ﬂo;ds‘lls‘
"‘assumed.. (le:' ‘the time. dependent ‘electrlo . flsld &(» = .H_?[ 3
.qum)')whera = F\f ] i it ;- -

In"addition we have'the.constititive. relationships




‘the flelds
_Dirdc’ delta: function belongs to’ this cl

2.3 The Equation for the Electric Field. 2"

B=pA : . _ @

J, = of T .t Co@an

where € and o are given In (2.4) and (2.5,

We will Interpret-these Maxwell and the

f ; . -
ships in the sense of generalized functions. Further. . it wiit be seen -that
3 _ > 2

the' method of _dealing.‘with these squations Implies certain restrisilons on
The

~and thelr spatlal derivatives on" the ‘bounding .Interfac

s of lunellonu Thl electrical

- engineer s familia¥ with thls function a8 i’ Is  used w/umve the impulsé_

response of a. ull

We. may.now proceed_to derlive a um.mmd equation for the electric
or magnetic. fleids. . As the electric field is of _prime_importance -to. this
’prohhm the magmc “fleld- equation” will not/be derived. however the same
procedire _m.y be applied 1o Its derivation. For the electric fleld we may
proceed by taking the curl' of Maxweli's first cqulon.(?: 6). and using the

relationship of (2.11) we obtain _

© oxvxE = ~vxjuf 2 g [EREN

==jwp vxA v e i Loas

Inserting Maxwell’s second ‘oquullov;.(&n‘.' Into (2,19 yiel
i el

OxOxE = ~jan, B+, 4T

.




Conisider the vector identity,

S vxvxE'; vv-&)

‘inserting (2. 15) -into this Identity we obtain -
VB - jou,B - jougd, = v(y-EJ + Jumyd,
" and using the relationships of (2.10) and 2.2

VB - ek - quuaé —owEr s ‘/‘u‘mui.'

This equation may be written as

<R+ k0B = v(w-B) + Jou T,
where k

k= w [Hpe, ¢

2 5 _' il ‘I _‘
R N R R RN

freespace wavenumber

€’ €
2 1
" ) E=- a, =
17 e, 2 €,
, o,
‘m e
= gl e V5

where n, . and n,

the refractive Indices of medium 1 and medium’ 2

(2.16) -

.17

2.18)
(2.19a)

€2.190)

(2,180

respactively and ‘€.’ and €’ are the complex permitivities of medium )

and medium 2 respectively. Summarizing.

neE
o

€ egn, 4 € AR Oh) € hyoh,
+ Consider agaln (2.7)

(2.20)

S RPN BE |




“8
- ) .21
where
OOE e . ’ : )
By = (e + m}E ,Eg . Lo o e
. s
The. divergence of (2.21) is 3
v (vxd) = 0 vd[uﬁc +7, [ . - (.29
3 e . " v
Now (2.23) may be rearranged to’ yield
/9B = v.d, o 3 N (2.24)

CRENTO ]

It should be noted that the ‘support ‘of .J, is ‘entirely In the haif. space

K >0 and tharefore
9B, =0 for <0
Rewriting - (2. 22) "and" using (2.20) for E". .
B, - oF
=’€nhl ?‘Elf‘l—hl)(l-ha) ¥ “2'—“"’1".',)5
This equation ‘may be ‘Inverted to obtain an expression for &. .
1-h )(\—h:) ('l-hl)h

2.25)

o <
Equation’ (2.25) “may be written In four equivalent forms-as
B=e €,y thyh € 0D, : 2. 26)

21 PR €y




9 = -

g i
8 |
|
‘13- : |
% % . 1 i
- : i 3
{
- Q-hpe ~h (b e, 0B, R 2.2n
1 ) = |
E-= l—'—’-: '"l“‘"!":l - l’I—II‘)l:l Q.hll,')l)p i (2.28)

g N .
E = (- O-he '+ O-h )O-h e, )5,

where .
€, * € 4
cu—{:'qn}‘sn'f €10 *
L 98 1= ¢
As- It Is necessary o find an for ‘the s

st Interpret, terms like V< (1<h, )5, and v-h B, . We have |
v-(1-h 2B, = (1-h 298, - z-B;amv

veh B, = n v-B, +i-Blow

V(- 3B, = (-h)9v-B, = F-BLou-d)

g i
7 v, = n9B, + #Bou=a) $

where X and.? are unit vectors In their respective directions and 8 Is

the Dirac delta function.

e iy
The generalized derivativés. (Papoulls, 1962). of the Heaviside func-

tions have been taken and

Btx.y) = Ilm_Bc(l.y.z)
z=0

By = iim B oxy.2 ' g h
" Sy
- N z=0

2




) the. electric: fleld must: satisty. at the m(m.

. These quantities represent’ the value ‘of the elactric ‘flux density. B,

Just above. BY.. dnd just. below, .5, . thé. horizontal Interface and Just to -

g i o 5

and just o the left; ‘Eé,_ of th i

the’ right, 5?

dlvsrgoncn ‘of & may be derlvad using (2..26)(2,.20). and noting that v+ E.

vertical . interface. ‘The

should “be  uniqu

we  find " that the following relationships must hold, “ iy

(Walsh. '1980b) . 0 Y e . e
: % 4 %

TR By : Bt i

£-8] = 5.5 A . o (2o ol

s N . el S O iy -
.58 = 2.5, 5 el } 2.on

“These mluﬂansMps represent; the.- classical” Iwundary conditions ' which-". . )

That' is the narmal com—
senent of 6 mist' be com(nunus across dn Interface. ¥
We_ may_now prucl.d to “detive’ an expression for V(v E) uslng

(2.26) by first, forming the dlvnrgenca “of E 3 e R ey

21’

A 2 s S A o . ty =+
~-B"¢3m~a) e th #0706 ¥ hFB0w) (2.32)




ww-E) ————vtv J ) re {(|~h,)$-3’n(n} +

1is
Rearranging (2.32) =
s 3 .
v-E = ;T" Tt e, n-n‘zn'B:am + €, B0 -

e, (=h R B oG-d) » (2.3

<

Now forming v(v-E) by taking the gradlent of (2.34) and making use:

of the nlmlomnlp- of (2.,33) . ylelds

fw un

s":“v{n z~§'um} ":,-v{n-ul:r-g'pu—n} “(2:35)

Using this equation. "(2.35), In .(2.17) a partial differentlal equation

for the electric fleld ‘may be formed.

) % 7 2

i n

2 22 _ _ il0s
VB4 yE = T T ¥ =

]v[n‘-n,:‘i‘-E’u}p } -

"L
AP s
v{h i-E.'nrn] +
2 2
2
v{n—nlh?-E’au-a)] 2.36)
' @.3n

2 ' b 2 i n?
=k"Ch + (l—hl)(l—{i,)nl ‘? Q=h dhn2 )
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“'by equation (2.39), giving

Toa (55 (v(v- .7 IRY R ¢ (2.38)

90 Vs /ue

Ty Wl be reforred’ to as the. “electrical source operator”. - Equation
(2.36) Is the basic differential field equation which must be satlsfled. by

the electric field. E.

2.4 Field Decomposition

It can be”seen In ma fleld equation (2.36) _that the rlgm—hand side

" consists of, terms fike Q- E . B and O-n )Ew which r.pmam the’

electric fiald ‘on“a ‘particular Interface. . This suggests that we

may seok d solution to' (2,36) by decomposing. the. lofi-hand 'side .of thls
equation into a similar form and equating terms  with like . support Cle:
terms multiplied by ‘n—nz)_ have siipport In. the reglon x < d ).

Ta'thls end £ may be -decomposed. as.

=h & (l—hllﬂ—h‘)g + (-h o0 E (2:39)

Applying ‘this- decomposition to' the left-hand side.of (2.36) and equat-
g ‘terms’ haing ke, aupport fesults in four equailons, ‘Thies of the equa-
Uéns “are the. partial "difierential eqiiations that must b satisfled by the
alsctrio fleld In ehch :tegion while'ths fourih Fepresents” the set af boundary
equations that the field must satlsfy at the interfaces. Thus the solution for

£ .which-satisfles these four eguations will necessarily satisty. the' required

boundary conditions.. In’ this- manner this technique supphes Its own’ boun-

dary conditions.

For 'use In (2.36) we form the Laplaclan of the -eiectric fleld. as give
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}
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N o < a3, 20 G e ot 2 B
3%, 2% ; ai 2%, )
vhE =h en—1¢E*o'(z)’+{ﬁ} 82y i —2 (2,48
Wy Thiga e TEYET 4o "

1%

2 2 1sh 1= § 201 “
nE + 9l ash YO-n DB+ vRa n”nzé . (240

-qua’nun (2.40). tetm by term. The first term.will be " ;

th+vnErv+vnEiz e Lc2.4D

V-V E, for cartesian’ coordinates

5 3E, 3E, [an; a.}‘
"{ux“"—“ &z YTz ’] P

[reE 3E, e | g, } :
hla—x\’ll‘*hla—yY‘VEﬂll)lfhla—xl .

Eom}«—é—[”t} i"‘ e

Noting- that - E: = E:Kx, y) this equation simplifies: further to / \
€.

3% . - fag)t a
Xy Erer(z) + {——"} oz) +n—=
*E e o

C 2.4

. 'ssmi».ny. 5

oz
2 2 N
E, E, .
g » Z 40, i 2
v E, bt h +EB(X)r{a]b(1)+h (2.44) .




”~ ) E +
2 B = h O7E + B0 4 {‘;—} L)

The third term of equation (2.40) will be

5 b2 » PR | %
via-h b E v’()-a‘)fas. i +9ia-nonE,

Naw for cartesian coordinates we*have

3E,

3h E,
2 x 2 e
2 Xt -h ohy

=9

3E, J
3 AN
u-nlx[Efou—a)‘ + ":T}‘ + O-h

n [ q-nl)ié—: - E 0() }i}
o

Equations (2,42)~(2.44) may be combined In a single “vector equation as
7o+ via-nonE, E

- a %
e AN ;;{{\-nl»ﬁ, }z}

220

5 217 2%
= - e o) + {T‘} ou-a) +,

(2. 45)
- il

3E,
o
o A

+ N

13




vy

.19
°
a%e,
* by | O —F- s
2 3z i

= (=h dh,

g . | A
n-hl)[efa"(x-dl + ﬁ—]'o‘u—d) =

(2.46)

h |60 + {

Similarly.
5 s a%, a%, %, ’
@ -h oh €, = O-non |—EL+ —L+ —EI'+
17k W%l el
Lo e,
RTINS ST [a-] ox-d) | -
=51
Chy|E o + {ax} o) (2.47)
and ; . :
2, 2, 2 P
- |a%, a%,  o%,
V2-h h E, = Omh b {—EL + —F+ —= [+
AohiaCs VP Yo T e

St i T




/ R
BE,
+ G-n [E0rx-a> + {—'] scx-a) | -
1oh 26500 0d a ) 2

o [aez.]‘
Elﬂ(x) + Bz a(i) . (2.48)

‘Again these thres equations :may be combined:into a single vector equation

: B R > 2] ogea | -
v3-h on B = (1 LRLAS 2 + k) E"o(x—a) + [a' 0(x=d)>

ioy o |2E i B -
n|E o)y {-ax} ocz) ) ‘(2.40)
where B A N

2 = imE and {%é}" = iim {%%]

. - ) + +
g . Y X7 X=d . 5
. B 2 B P Y =
*.° . These quantities represent the electric field ‘and Iis derivative immediately
to the right(R) of the vertical . literface. : .

Similarly the second term of equation (2.40) will ‘be

L
3E

e % o5 - - o "t 2E
VIR 20O = b)) mh OB - ) Eloix-dr + {a

: ) a_E}
”_hz) E 0'(2) + {6; o(z) | (2.50
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|
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" These quantities represent the electric field “and ts: derivative Immediatély

where, . . S W g

2= im 2 an_d‘ {%é}‘- = |‘|m_{§§]
- X *d h,

“These quantities represent the. electric field and'its dervative Immediately

to the left(l) of the vertical Interiace.

Also,

3z

220 240
S z f 3
E 3 mE.Cang. { az}

above(+) ‘and Immediately’ bélow(-)- the_horizontal Interface.
| Summarizing.- we have” cbtalied exprossions for. eagh of_ the terms. of
the ‘fleld docomposlunn equation. '(2.40). which may now be used in the

differenttal fleld .quauon (2.36). - Writilg _the ‘left-hand side of (2.38)

© using (2.48)," (2. 09) and (2. 50) we ﬂb!aln

VB + Y =h (PB4 KB+ O-h on (9B + ¥3E) ¢

. o
e 3 g} ;
sa h,)(\ h,)(vgf'r’gl +{a, §4z)1§’o(z)4

ot-d> + Bl o'x-dy | -

1
i
3

i
1
i
i
1
|
i
{
|
i
i



i

{
L
F

ocz) + Eo'ca)| =

) [Eél o+ E 0z | -

3;

B 2
-y [[?—f] 8x-d) + Bror(x-d)

(2.8

‘Now Inserting (2:51) In the lef-hand side of (2.36) and equating

terms with llke ‘support;” we obtain four equations.” Since the support of "J,

i§ ‘entirely. In the region z >0 thie first equalion wili_be

3 .
22" ¥ kS
h, (98 + &7E) : Too g0
We also have P
) 2 2z, o
O=h oh (9%E v ¥3E) =0
i i 2 2z,
o (@ h ) (PE +97E) =0 ;
- where
4 - i - ¢
2_ 22
7y = ngk

The fourth” equation will be

(2.52)

(2. 5%

(2. 54)

(2. 56).

(2. 58




{S—f}’om + B0z - {g—é]_ + B0z | ¢

P

3.

b ' ‘amnp) { E] x-d)+ B0 x-a) | -

! P . -
|

! L 1 :

H 3E » .

{ Aa-np {a,] 0cx=ay +.E 0" x-d) » .

2 2
" - ny =1 - . 4 .
< v 1-h 03 B ocz) + |2 | 2B 8 + i
i nl . in3 % .

’)i‘»E“o(x—g) Lt B Y 42058

This: last equation represents’ the ::boundary conditions whlchgme elec—

|

1

i ‘

l ‘s tric field must satisfy -at ‘the vertical and horizontal Interfaces and as such ’
i It will_be.refered 10 as.the boundary equation.

1 . s o !

|

f 55 2.5 Hnﬂuc!lrm to Integral Equations * o L ) v

¥ £
Jn ihls sectlon the problem a3 represented. by’ squatians - 2.52)-

(2.56) will ‘be_reduced to’one Involvlng Gonvolution type_Integral equations. N

i To accomplish this we ‘make use of the. fundamental solution sub]em to the
Sommarteld radiation condition. We have ¢ . ’ E
o . ) - wy 31
9y Ik
: . Ko x.y.z ) = S @.57
. 5
) rs =lvyr g
: - K oy 2= S ) 2.58)




5
e 24
2 . :
i i
L .
! # - K y.2) = (2.59)
; :
i where ros i +2 7 and K, are: given by 4
3 ‘equation, (2. 55). My ™ . 4
; . : 1 |
i ", These functions . satisfy :
92K, = -0(x)By)b(z) tl 280>
* i
1 # a 5 - [
: 2 - s .
h 9K, + vk, B(x)B(y)0(z) i (2. o .
O g ag Ciaw !
N VK, VK, P(x)dly)b(z)

. 5 :
In ‘order "to make use -of these functions we - Introduce the' ‘following

Identities.”

2 . -

Ky i e @
g =K : 0% = 2, % B y
i &, 3k o0 E 2K = Qb b B 97K, RSN ¢ X 25}
v - > >
CRRA S o e Gamet o Al Atg .
v (! 220 nz;E —{;{l hy) O=h DE ~ 9K (2.65) {

where * denotes a mree—dlmans\onnl convolution with respect to the x. y

.. ~and z coordinates: It Is assumed that these convolutions’ exist.
We may - proceed by . considering: the_ first identily. (2.63); -and the : [
v expression for - v'h E.-(2.45). The lefi-hand side of (2.63) may be ‘writ— 4

“ ten as




e nx
e s 22
S vhE = [ h VB K L—,] 8 * K,

25

\ . :
A + B0 * Ky K - S c2.68)

and using_equation (2. 60) ‘the right-hand side of (2.63) bacomas

hEx 9K = n B R (S ax00(8¢z) < KK ) . 2.6
: e

Equaling. (2.66) and, (2.67) we have

e ;
2z a_E} 1 .
h VE Kt {a' B2~ K+ E}*Vu @ * K

ng

e 35 U g
= hyE — h B = K (2.68)

‘Rearranging (2. 68) to

| y
2 22, . aE} 5 x e
LB A RE) K - {ax 8 =K, - Eoltz) x K,

and using (2.52) In this .qunnon. we have

K . aE} F e Tt
nB =T (T K = { o)+ E’n @[ K, 2.69)

* which IS the equatior for’the efeciric fleld abéve the horizontal- Interta

-

Following the same “procedure for. the second :identlty, (2.64). and

using the expression .for v¥ (1-h )h_E. (2.40). the loft-hand: side of

€264 will ‘be




) . e A
4l < i =1 o 221 aon ) [E] s
viah on g 5 K, Qa-n, 08, V?Eor (1 "1’[3, Bix-d) +

: o 38| 40 e P
+ e B gy - 2. {B—z} 0@+ Eo'ca) K, (2.70)

. The right-hand ‘side of. (2.64) using (2.61) will be

A L W wSiae 5% x2.7
«a hl)hZE v f(’ “ hl,hzg (-8 ¢(x)0(y)6(2) ‘73‘(:12.7”

Equating  (2.70), and (2.71) and utilzing (2,53) we obtain

%} o) + B8z |+
e R
ol ) B
. B_E} IR I §f B S
. +Q-n {ax o6i-d) + B0t x-dy K, 2.72

which'ls’ the equation forthe- electric field below the horizontal Interface.

“‘and to the right of .the vertical -Interfage  Cle:. the. fleld . in, medium 2). Fol-

lowing again'the same’ procedure for equation. (2.65)... utllizing (2.50),

. (2.62) anda(2.54) ‘we may. similarly obtaln an equation for - the electric

fleld ‘below the horizontal Interface-and. to the. left of the vertical Interface
Ce: the fleld In miedium 1. . . L

i L aE} :
X i = |a- . +
a nlm‘naié =) [az 8(z) + E8°(2) :
% 2 oy




0
*3 oE " z
+ (h ) az] 8-> + B or-a> K, - HK

i " The boundary equation may be written as

.

i 5 v + ! e 7
5 {‘;—f} 06z + EYorn) - {%%} ocz) + E0'Cz) +
" “E
e a " a_E] y
: a-n) [;} ox-d) + o) [ - (-n 0 L‘ dix-d) + B orix-a)

+ + ; Figsy2
N, (b )9 £ 0@ ELtBx-a)i + (1-h DEO D) +

« iql ¥ + : * 000223
+Nyn v, Erow + 6] 8ix-d)0(2)% + h £ 02D

+ Mnul-n‘ﬁv"ﬁfau—d) -Ef Bix-d)0(D)Z +

+ h E 8 x-d0k) 2.74)

the -gradient operator has’ been expanded such . that no Heaviside

functions: reMain inside a_differential operator and. s

. 22 2.
< - . i )
N3 T 2 .
i 2
and. .
SR 7 o + : i
s'; El; ) = Um E lx.y)

x=d" g e i o

T +
sf Ef ) ’Ilv‘n*E'(x.y)

x—d 3 L
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2

e 4 um_ef(x.y) "
2305 2 g A 3 i
ey { This boundary équation may be separated- into four sub-equations: by con:

:sldering terms having common support., Making' use 'of the relationstilp

+ ;
s 2o ono 18]
7_[8—1 o+ E'orczy = (1 nl>{ Ssjo

o iy i

; o Bl tmpie
: + Ep(z } ".hz{'{a—z}atl) + B0l (2> } /
§ s
| i ViE Ny Q=h) [vxyE;uz) va:q’l!)f]' : -l g 2.75)
i ] o) + E¥or) | -y %} 0(z)+ E-0%2)
= {v Eroi + o ot (2.76)
"2 "'z B0 e fj

B 5 . L .
a8 . 25] -
Sy {;} 6i-d) + B0'6-d) | - (1-h )] {ax btx-d) + ?o»u d)

) = le(l—hl) {V,f:ﬁ(x—d) * Efﬂ‘(u—ld)l} 2 2.77)
t s
|
{
15 J : - -
@ :
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and,

=N, {E‘;"ulx—d)otn }; N [E?’upd)a(z)} -

- N"{Ef 8(x—d)b(z) }x =0 ) 2.78)

It Is - interesting - to note_ that this ‘last equation,. ¢2.78). represents the

boundary condltions ‘which the -electric"fleld must satisty on the line inter—

sedling e two, Inferfaces. As N, #\N, then (278> wil be salisfled only

et et LEfT Lo

This agrees with the interpretation of the classical boundary conditions in-

this sltuation,

In ‘this section, ‘equalions .for the slectric field In-each region’ have
been. derived (le; (2. 69).(2.72),(2.73) ) In terms of the field and its

spatial “derlvative on the bounding. interfaces. 1f the quantities

N - N I e

are known then the electric field'can be found for ali reglons. This Is a

" statement of Green's’ theorem. The problem .Is thereby reduced to one of

derlving “expréssians for these . quantities.
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2.6 Simplification of the Integral Equations

‘In the previous section we - have dorived - three field cquaunm and a

Set'of boundary equations...In this. section we. simpllfy the  fleld equations
by using the' boundary equations to eliminate half of the unknowns. To this !

end the ‘boundary equations, (2.75)-(2.77),. may be rewltten as

-h) [[ Y228 E‘nu; = (=) ‘?,E} oz + B e | -
- n -, 0 v Etow v Eor et 2.79)
L Oy ) %952 L ; z

+ .
3E v 2 {E] e = g
h {5} o+ Eorear = ny| (5] 0w +. E'o(z)

+ % etaiadl ¥
E Nz"'_z/{‘vryErB“l) + E20 mz} : €200

L s
: a ; EIL (P 2]
a-hyp) {E} oex-d) + Brorcx-a) [ = a-n ) [Bx

ou-d>. 3 Blo-a) [ -

SN, O {VREHO(x-d} + Efu'u—d)x} @

The “three. fleld squations (2.68), (2.72) and (2.73). may. be rewriten

3 82)

+
%—-E} oz BN o | 2K




I
’ i s 31 s g e
| - where B =T Gk, ithe - source "“@ ; :

o e
n—n,l»nzé =1n {3; 011)159_12)

~ G20 [ uu-aué"a G >[5 K

+C1=h,) {PE} ou-d) 3 Brorex-ar [ | XK
. i ax o

We have three equaiions, ' (2.82)-(2,84),
the boundary equations, (2.78)—(2.81).
+ eliminatéd:

becomes

" E} ; bna .
A-h g = {n, {a_ 8¢+ E’am) Noh (Ve 0@ +

At g R ?
+ E;o'(x)?} = ah, {%E} dx=d) + E‘?o'(x—d) ” 2

1

In elght unknowns;

(2.83) -

5

|

(2.84)

Using

A .
‘four of the unknowns may “be
Substituting (2. 80) Into- (2.83)" the' i3Td' squation for: medium. 2
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1 becomes

n—nx)n-n,_)E = (|-ﬁ=)[[

+ E;a'uﬁ” + A-h ) [[
oo

hy ) [vyzeful.—d) +‘Efo'u-du}] K (2.88)

o

The problem Is. ‘thereby. reduced to ‘one of solving three  equations.

(2.82), (2,85) and (2. se)‘ In four unknwnu

b [ae [?—f} B and E"

az

It ‘'we ‘could. fake planes of constant x and z such that the left-hand

. sides of the equations are zero. then we could generate six equations In

four unknowns. However, In order to do this the spatial convolutions in the

x and z directions must be carried out first. This approach has been used
sucessfully by Waish (1982) for the problem “of propagation over layered

4
media.. Walsh also uses the spatial™%-y Fourler transform to reduce the
)

ence of Dirac delta functions In both' x ‘and z prohiblis a direct application

ofs this method. However. If ‘cerlaln_assumptions are made concerning the

flelds on the horizontal and vertical Interfaces. the oquml% are reduced

to a more I.vorahlc form.

We will assurme that the refractive indices of medium 1 and. medium. 2

are ‘large p o that of pace and as a’ the flelds

. & +
8 + E'oih N, Q-h ) {nyExb{x) +

ox-d) + Eloitx-ar | -

to in the present problem the pres—




beiow the horizdntal Interface may be neglected. |n-addition.  the analysi
“will be confined 1o the vertical _polarization‘of ‘the ‘surface field. since for a

High Frequency radar system with both_ transmitting and. recelving antennas

locatéd close -to the earth’s :surface. a Norton surface wave mode of propa—
gatlon Is predominant and the vertical ‘polarization Is most efficient in this

mode. s

'As a consequence of these two -assumptions, equations (2.85) and

(2.86) will' become

. “'"x"‘f"z’sx

N ¥
s 1 i et
“—hl) (1-Il=)Ez .('I—h:) {? o(z) + Ezb (z) - N'IEIo_ (z) l(l

e

; +
= Cizh ) {5} o+ LES@| K . 280
w1 lE ] % T ) .

1 3 1 ol

i SN

These equations may be reduced to ‘an aigebralc form by taking the

i two dimensional (spatial) Fourler' transform with respect to the x and y

varlables. The Fourler transform Is.given as

dx dy

x.yle

T-Tr' . Itk o ky)

Lk k)
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o e haslTD |

where & and k, are transtorm variables and the bar under the quantity.

indicates the Fourler transform.

\ E

The_ Fourler transform of (2.87) &nd (2.88) may be written as

+
R vl o }
Ci-h Ih.E, = n={—:€

i 51 ."3 22z az 51 $209)
| . :
t - = :
3 ) 2 (z; 90) |
{ Q-h ) O-hE = O 5K oo :
Similarly the equation. for the ‘fleld above the "horizontal Interface.’
¥ (2.82).. Is transformed o give
;
|
g .00
ne g
= where £, ‘Is the z compon}! of the source fleid.
The of ‘the Iuti (2.57)-(2.59). are >
i given as.” (Walsh 1980b) . 4 " i
2.92)
: 2.99)




(2.94)

where

We may now. chiogse planes of constant z above and below the hor-
izontal interface which make “the !.ﬂ-hlnd sides of (2.89)-(2.81) zero.

For equations (2.89) and (2.90) choose a plane z =7 : Z'>0.

Equation (2:89) will be

+ -1 ey ~12h
. A L T 1T
5 0=h 13z E Pt e
_— 2’
3 Noting that %
i g + 3
-1z e, -2y,
; . 2
20 )
we have

1.
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Multiply by. . *2u,
F g .
R LA
! 0=h 3
i Similarly for (2.90) we may obtain
4 )
i

S {aez}
. e e 5F

Combining (2:95) -and (2.96) we may
+ s e
] in_terms of £} ..

noting  th
\

+
o LatE {Bsx] e
P az

—A

(2.95)

(2.96)

derWe an _expression for

-

.97




€2.98)

o . N e
Multlplying equation (2.98) by e

= ¥ 5 e
P ) 3, e,
g o { z} St
0 = e 2u) = ] i

Substituting (2.97) Into (2.99) yields

u 5

L.t +

= E cuEt
1

€2.100)

+
0. E .

will. be_glven as

The vertical electrlé fleld on the surface z
the -solution of (2.100)" Simllarly we may form an Integral equation: for
(3E,

{—57’} ihowever, we will confine our analysis to E; as we seek the

effact of the vertical discontinuity. on the vertical component of. the surface
fieid. .In‘ keeping with the assumption that _the .refractive 'Indices of the

media below are large compared to free space we may also state that nk
N 4 . 5




= Tl las .
¥ and n_k are large In comparison 1o the spatial wavenumbers of the elec—
£ : : S Ea i : -
tric fleld In the media below and we may therelore simplify the quantity —
s = n?
o : % S
g 2 2 _ 2,2,z : i
& AR alk?)
z
1 - % P
5 ent V2 - ?
_;. - —_‘.T-_ - . €210
" R oo

o, -
-2 - k4, 2,102
. o "2 - :
This Is nt to the g boundary ‘condition
of other- investigators and Is acoeptable for a.vertically polarized field ¢
» Hufiord 1952, Bremmer 1954 3. Utllizing this: approximation In the ‘surface
\ fleld equation . (2,100). we' obtaln A
i
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of " alternatively taking the - Inverse "spatial Fourier * transform
(2.109) ylelds

y & ' ¥

E: Sy R hE =Gy, 2104

where. ? : : s
1 k(A ~A) :
; -1 f ey
gx.y)= F {——] . (2.105)
Uy KB . %

and :

fony =1 ]es)? (2.108)

e A |

! N

The solution of equation (2,104) ‘will yield the. vertical component of
tha electric fiéld “at ‘ary: poini on'the" surface of the earth when the earth

Is comprised ‘of two homogeneous medi

In. the next section a method of -

solution_Is .chosen and; an-elementary vertical electric -dipole Is- selected for.

analysis.




"
2.7 Solution for the Surface ﬂcld e .

The method chosen for - solution of. équation ‘(2. 104} Is an opeator
expansion-approach. We may proceed by wriing the lefi-hand side " of

(2.1045.In operator notation -and fofmally  Inverting this équation ‘fo provide

* & salution for E] In terins of the Neumann series expansion of the inverse

operator. We may define alinear operator T as

T=gx.y) = h, () . .10

such that wheh T operates .on f(x.y) we. obtain

i =g,y = hp(tix.y))
where g(x.y) ‘and_1(x.y) aré given by (2.105) and (2:108) respectively.

Equation §2.104) may now be writien as

=TI =y s < (2.108)
whera'l.is the ‘Identlty operator. Inverting this equation we obtain

+ ) :

E =127 fop Y 2109

we, obtain an expression for the ‘solution of the -problem.. Formally. the

Inverse operator is given by the Neumann. geries. i.e.’

IR S LTS TS L LSRN (2.110)

We shall show later ‘that under certain assumptions this serles may be

summed. : -The solution for €5 may now be: formed, by taking successive -

|
|
i




wlh v .
terms of (2.108). using the “expansion -of  (2.110). Before _proceeding
further, the source fleld is taken to. be the far-field of an.elementary verti-

cal electric: dipole: . : .

2.7.1 The Fleld of & Dipole Scurce:

It will. be_convenient at this point to Introduce the -source field as the

far fleld of. an-elementary - vertical electric -dipole located at coordinates:

(0.0.1) carrying & ourrent /. with elementary length dL. as given In Figure,

2,
- ®
2 N v
; 1
dL
N ;
T N
7 i
Medium 1 + Medium 2
#
Figure 2 Geometry for & Dipole’ Source
iy 4
The source gurrent density. J, .:'Is given- by :
v ST
1 . . 7
I, =4 oma(yS[ u( zth = %n “uCz - (h +%))}z
where u Is Heaviside’s funcilon. 7
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¢

: 2 aL al %

i {u( 2-Ch -G —ul z - '—"n} -

dL=0 2 E3

. daL, dL,

e {u(x—lh—?!—u(x—(. "T"}

= lim T

dL=0

a
= diz;¢ u(z-h))

= dLB(z-h) ~ for an infinitesimal dipoie length dL

Accordingly .7. is given by

Jy =1 dL 8B(I0z-h) T TS 2.2

& il
and the totai fisid due to this source will be

B =TT &y

or equivalently

B =T, T ek - T

Utilizing (2.1123 for J; and (2.57) for K, . equation 2.113 becomes

~ikr
v &3 ! 2.4
& 7y ML -, H = 3
whare r = F 4 y? 4 (z-myH M2
Expanding the T,e OPOrator we obtain X . st




2.115)

As we are concerned with the far field of the dipole. ‘the first term in

eguation (2.115) may be negléctad for h small Cle: the dipole Is close to
the surface ) -as-this term' gives rise to the near field of the dipole Cle: it "

" Wlil_contaln ferms with decreasing -powers ‘of r_ ). The far field of the

1
dipole_is. therefore  given as E
2 i I_’k'l g
taL, Z—:2 2.116)
1 i
or denoting the -z component of E’ as £, s
) S
Ea = C T S, L@
where. |
C = —jupydL : dipole moment . . “# 2.118)

The far field derlved here -agrees with that ‘given by Jordan. and Bal~

main.. (1968) . -
The spatial Fourler transform of £, ‘will-be

~Vz-hlu,

.
£ m 0t

. Therefore for z'= 2=,




and since z. < 0 < h then,

- h <0 and -V z -h |'=(z - h

e

2.7.2 Inversion of the Integral Equation

5
¢ Summarizing. we have obtained an. equation for the vértical component
3 i g pot ey v
Z of ‘the surface fleld. Ef,. In terms of a linear operator T,.-(2.109). which
was given as, L 3 ! g
e J . A
E, =01=T1 " foey v % (2.120)
i e A . . %
i whore , o ) N
| . A T . o :
! T=gey) = () i Gaw: 2 o2z
5 (KB s
Laey) = F { ] (2.122)
7
1
3 2.129)

.y

s 3 - 7
The ‘spatial Fourler transform of the source: fiel

€2.119) and therefore’ (2.123) may be written

(2124,

[ i oy

e
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Now' for .g{x. y) ‘we have

S i (-8
DES | Ay
gx.y) =F [ o }
] Uy + KA ’ e
. ol P . =3 d 10
G s = k(A,-A) F [——— ]
P T IR
: Lo [ e T “
VAR ‘["u ST, IkA,l} }
o Ikp :

= Ik(Al_Al) { 2np =

s g wR “? L Y
% Ligp . —L e X
S : . e kgt 2 g + KB .

. ; and ~ w
et KL -1k ~lhy ’ . A v i
1 B 1 : .
Pt [ ——i - dkdk, . S22\
o L L et o e
B ® % b = =~ L : . A
- ' We may write the Integral P in_ hylmuno_'.l’cdomlnmn’ where
B X = poose - k.= Acosp 3
y = psing = Xsing R N
and




e F= 1,5 75 0P ertcti\p).

¥ Enoay Tl Gl Gy e

"“whore J Is ‘a ‘Bessel luncﬂnn of the first kind of zoro, onm. 3

This Integral P may, be. evaluated ‘asymptotically using the” saddié point
imethod as shown by w.u (1964). ‘The result s aub]ocl o the conditions..

a1 and kp»1 ; and Is given as ~

. o lkp 2
R -lﬁ o ertctifp) 5" 2 (2.128)
~ikA, . 2
wm)s p=— :numerical distance .
- o
- 2 i
orte =2 J e dy : complementary error function
w5
Inserting this-expression for P Into (2.125) we obtain for g(x.y)
kA =8 ikp
gy = — A2 F 2.120)

interpreted as a Norton attenua-

tion function, the' ‘subscript Indlcating that this ‘attenuation function applies

for propagation over medium 1. - B

of

=

3
3
§




I

Similarly we obtain for (2.124). &s h=0, _ .
: 8 .
: -1 1
tx.y) =C.F l ]
Ilu + l.A}.
(2.130) 4
o }
‘ — . ¢ 0¥ " :
Rowrlting equation (2.109) using (2.110) the surface fleld Is glven |
S : i
as. ’ i
: |
2 § : |
e =5 T rayp ’
=0 .
EAGY ATy T ALy . . (2.181)
KA -8 ~Ikp 3
mr-1=T-—rm)-n(-) :
L o
Denote each tofm of (2.131) as M,. M, being the A order term in
the solution for E . :
, . = ¥
Aoo'wdlngly. 5 .
¢ P y ¥ N .
LR e U (2.132)
3 o KB -8 ko ke i
= Ml = Tl(x:y)v= E;—?._ P F (pl h F p) lw
KCA,-8) -lkp - . r
-Tal(ly)-ﬁ———— F(px-_ : -
- [Ikes —Aal Pl /kP .
h |— £ (p) " nt F [} (2.134)
- :

3
L,




| 48 4

|

i =

| ) Similarly all_higher orders nAmyh be expressed: ‘ B

1 : The zeroth order term.of the solution.. M . mpmuanls the undisturbed

[’ fleld propagating wlth the' Norton attenuation function of medium 'I (le:

E’ F,3.” The higher order-farms’ reprasent the modification ‘of the neld due . !
n 10 the. presence’ of ‘the’ second medium. it Is” these higher ordsr terms (le: :
i I=11 10 %" which wil co‘nmbumv(o the backscattered  fleld: . h
i |
H

Py Equation. (2.,133) may be written as, ; i

CIk(A ~A ) e~k (p-p) fkp'

wilt 2 Ll G - oy .

; . Uy e J’j’ (pp) Fyomp'> b, xS Fy (0 ax'dy

! o (2.138) -
g : '

QI _ where, ) o

i 3

i (p) = (=x1% + Gy H Y2 and T ey = (02 £ o H V2

{ : ’

|

A’ graphical Interpratation of the fifst. Grder term of .the solution.. M,
1s shown. In Figure 3 -whers thls t8rm i3 nterpréled” as .a spatial’ canvaiution

over the region ¥>d,

x,y)
' ¢ 4 xsd
¢ “ Figure 3 Graphical Interpretation of the First Order Solution
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The convolution may be obtained for any (x.y) however the point (x* -

-y s restricted to the region x>d. The first order term, M. .may.

thereby be interpreted as the sum of single reflections .of the source field

in medium 2'(le: x>d)

t

The “second order term, M. Is given graphically in Figure 4 where
M_. is interpreted as a spatial convolution over the reglon x>d- to a point
(x'.y") " and another spatial emznmuén over -this reglon from (x.y*) to

any (x.y) 3

(X" y"y

: A ’
Figure 4 Graphical Interpretation of the Second Order Solution

The third order term. M_. Is the result of two convolutions In the"

region x>d. That ls. each point (x’.y) recelves energy that has been

twice reflected “In medium 2. Similarly the /7 ‘order represents /-1 such

refiections -In medium .2. Although this ray type Interpretation of the field

may. not be strictly applicable to ‘this type of propagation It certainly pro-

in

vides a coirect and o of the con Integr:

the woluilon; . ; ; W
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‘Consider the ‘second_order term. M_ .

o [m-ay
—i _]'f——r Pmp) &)
EXEN
ok p*=p) ik ¢
J'_|' WF 0"=p")h, (x”I—F (p")dx"dy"dx’dy' (2.136)

in ‘the lnligrll over x".y" in

Y o
It we ‘let rg. =P and fh =P
(2.186) we may write the Inner Integral as,

kg + 1) > [
2w b i ¥ 3
IJ‘ Folrg) b (") Fin) di"dy (2.187)

The Integrand in .(2.137) contains an exponential function which varies
much more rapidly than Its other factors. This suggests the application -of
" a saddle. point approximation at the point of ‘stationary phase. To this end

we _Introduce elliptical coordinates. In the notation of King(1968) ,

r,tr
'D b=f:usflll

= cose

rpdud @

s

.Equllloﬂ €2.137) in eliiptical coordinates will be.

- I Ik p* coshit "o
1= 2 =o_;b_‘ Flt’l,,hz (2 pnlhml)Fl(lb)r‘Ibd‘du

and ‘taking the®'saddie. point approximation at the -point of. stationary phase
(u=0) we have,

Sy

coshu =1+ 4

CTRCERIR PEr—- |
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The integral I becomes.
2
. 2 w -kph-
1 = o”lkP IFllp.)h’(% cosF (o [ o . 2 dude (2.138)
where.
Pg = Br01 + cos®) ¥

Py = E1- - cose)

+"Noting that.

(2.139)
Ke' T B Fl(p.)liz(% +pF, (P
1, Flk: \[ 2L 21 S4p, 2:140>
e o, P P
: a,f 3
Equation (2. 137) may also be written as,
7
- )
—jkp* p. F, (p) F (p'-p) ]
I~ B, @.ian

P, -
o a F.w'-ﬁ.) .

where the ~two-dimensional ~convolution has -been reduced to a one-

'

o

i



dimensional Volterra type Integral. y %
We. may now return.the result of (2.141) to equation (2.135).

c ka8 -n(p—p ) .
Sy P B -

~1kp’ o ‘j‘ﬁ (.p.) F, " -p) T @
CRLE I~ =R
The crux of the matter Is that the inner Integral over ‘p, Js zero for
e < d and consequently the Heaviside. function outside " the Inlaurll is
“ fedundant and -may be omitted.
Now: consider third order.

]II'

Ik(A -A ) ~lk (p=p*)

LR (p—p) o

o @ —jk(p'rp*)

£ - .
Iy P h, G,
Sk p"=p™) S ke
II S PP M o (o)

dx*dydx

A' : ) 3 y 2. 149

As It was for second order the  Inner Integral may be reduced 1o a

line intsgral . by a transiormation to eliiptical coordinales and stationary

phase Integration. \
Ik(A —A ) -Ik(p ')
M!- F(p'ﬂ)h(l)'
oK (" =p) e e
Dl A XIS
R N o AL I

X ainsiae




oTlkp
(-

As. for second-order the Heaviside. function hytx

PLF (B F (" p)
E:"" J AR ag, araytariay
a [P (P™-Pg)

may Be removad.

Now let. i :
o PUF (P FL(p" B
G (p"). - j‘ 1 a 1 a dp,

g a ERTIE N 2

where G (p')'Is some funenan which’ satisfles this relatlnnamp

5ubslllullng €2.145) Into (2..144),

|2
3

ik

ﬂ P

g—lll (pp*)

Ik(A -4, )}

Ii<

o /kp'—p

Fylp=p") b, (x) -

5 (p‘—p':) - .

P
& Gipyarrdy dxdy”

Again_changing the: Inner -integral to slliptical coordinates and taking »

the stationary phase approximiation_ e obtaln
¥

T

~lkp

Now the ‘expression for.G must ba ‘put_back Into ' (2:1463 .

the Integral,

Ik(A —A ) — Ik (p—§ p ) ' . s
c Ty g -
M -—{ } jj’ FLtp=phh (x)+
I

5 :FL(p)G (p!-p,
“—T;} { dp dx‘dy’
7 E(p'-n)

o Fl(pi)G(P'—pz) ;
e

@140

) Is redundant and.

(2,145 .

(2.146)

Consider




/ G(e")

L,
ER—

/This integral may: also be written as. '

. F (p'—p )G(pl
e i ot WY

£m°’

/ -~ Making use of this relationship and- the exprassion’ for

€2.146) may.be written as.

o

(N

P 3 »
f FLP)F, b py)
a

Jpa(pz‘pa) .

{/k&n‘—a J}’ “2’—_5 11

ke B FL (0P )

S
pz

Similarly fourth order term will be.

M

Ikp

. _g_{/k(Al_A
a 7

f,}‘{ﬁ}‘

e,
. Fl. lpa)F

T

and the n

th

ﬁ(u-.)

order__term wiil be given by.

Ik (A 8 )
[ )
Mn "'5{ ¥

2m

)

-

Pg)

TG

n

o~k pp")

prp"

dpgdp dr'dy’

—lk(p-p*)

e

—TT‘

gE; lﬂ'-oa".])f‘f RyPy

Ea B

a’ - dy?
dpgdp dp dx dy

g Ikp=p")
b-p)

F, Cp=ph (x)

(2.148)

FyCp=ph, (x)

(2. 149)

b (‘a—p')hz ) -

|
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»
see ™

J"n =1Pp-2

FLpIF, (ppy)

L dp.dp_dp_ - --p de'dy’ 2,150
29P29P;" Py .
a e PPy

2.7.3 The Propagated Field
> .

It ls, worthwhile at this point to derive an expression for.the field pro-
pagated past the vertical discontinulty at x=d for comparlaon with the work

of_other Investigators. ' This” may be ' achleved - If ‘the- statlonary phase

Integration. proceduire Is cared out for ‘tha outermast |megml In_all' orders

of the solution:

"The.vertical' component of the surface fiéld may be written ‘48 _
+ ‘_ bod g A, . .
| Ez = E M, i " (2.151)
where -
—Ikp . . in® . -
-y .
S Fo #, . . (2.152)

dp, (2.153)

» ]
ey
IklA »A )] [E] *Ikp F, (p-p )v.
Tk v
F e,

PaF, topdh (0 ) F, (p ) L § i
f%p dp q (2.154)

%)
{220, VB

. 3 s -
< J “%—% o~hke R Frtopy)
o e

P=P 4

e Ik(A -850 e kP Fx(p—pa),pz'zpa)F‘(pa)
P ;n ] ﬂ r

§’$°

S SO R -]
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() b
fo‘p: LU
i 37P2
b F(p—a)hlp)F(p .
3 [ -2 8.2 &1 e dpgdp dp; (2.155)

J":"’-"’-
It 'We note that the outer integrals are complete convolutions In the
Laplace sense. we .may utilize the Laplace transform_ io reduce these con—

" volutions to mumpllcnlonu.

3
i . Let. :
; IK(B -8
i g Ed p
B 3. R
é t e - je)) B
i i 1 2 . L 4
i - x
{ . ;
H ~ika ? -ia,?
; where ¢, = —*~ ando; =—5 e

Taking the Laplace transform: L. of M, to M_ as given by (2.153)

§ 1o (2.155) we have
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4

where ulﬂ) Is Heaviside's function (l- the unit ll-p) and * represents a

mlnllm

Similarly the n order term may be transformed 1o give

"I. “mF‘(P)‘ ;2100)
et

¢ |oe
L[H"} mUE
Now, :
wippF @] %
L Cladl AL .(King ,1968)
Ve B o
therslore using (2,163 for B8 ;

2.180

g )
[u F, o) LF F I
L
T #® R ]
These Laplace ransformed versions of ‘the solution are now In a form

aliows the serles 1o be summed. Forming the sum m'L[Ml} 0

] o v

.v'_zt[u =% {‘12} [’”%_F;ﬂ;)
L F“[“F F’]' <
Fﬁf‘- F»/F




‘/:r-‘.ﬁg/

T E_

© (2,182

- . As: the ‘expanded Neumann - serles for ‘the ofiginal Integral equation

€2.703)" Is now. In a.summable form any ‘concer

" the solution. may be ellminated by taking'the’ sum of- the" series a5

4 s
where,

X

/ ,(E;E,

TeX +x X e X e

R

* solution to. (2.103). Denoting the sum of the serles’by S. we have.
§ . e "

about the convergence of

(2.163)




=7 tinuity: From (2 BN; 5,5 i % A « r
Z e ¢ ; fe iy
- ; IﬁpF 2 P A e KB RF, BF, (pp”
- P ,__ P,
e 13 P 7 [pPRy -
(2.166)

59

. (2.164)

F_ﬂﬁ : Fﬂ

i 3

F_(p) “! 3
Pl s (. 2.108).
Chor R ; 4
i Taking' the IAverse Laplace fransiorm of” equation (2.165) we may

obtain the v.ﬂlcll Electric fleld ml’.ﬂ bcyond the vertical discon- s

. Py L -<ip .
i --‘E-l e pe 2 erfell

Normalizing this .qu.,uonh nnlbld that would -be pnumbr mo‘
case of a pcrw.-uy conducting medlum ; 2, . where.




4 W Fa (PP
gt 2 dp, €2.187)
J2E," R

This Is the result derived by both Bremmer (1954) and Walt (1964)

In" the next section’ we’ turn our attention to- the

for the propagated fleld.

" derivation of the backsoattered field.

2.7.4 The Backscattered.Fleld .= : <

. W& shall now " conslder sgain: the equailons (2. 142). (2.146) and
(2.148) which represent. the second. third ‘and foith ‘ordars of. the solu-'_
ﬂ‘un; In these squationis. we have nonormou -munn-ry phase Inteurnllnn ori

&l but the last Integr:

We have for (2.142),
Ik(A LA =

M - L

! Ik p' ]
Fy toranhy S Nodry,

i % 2.188)

_where. / . H 2o '_ . #

k(A -8 ) E T’F‘ (P F, (pH . ¢
2 Ed * 3. b ;

and. similarlly; (2.146) may be written as.
o o Ik (p«p ] ~ikp* .
J' J' F: =P, x" N dx’dy’

T 2,189




P, =
FLg)F, 0, -py)

—_— dp_dp.
2P
@ [Btepe)
Proceeding In“the same manner. all terins of the Solulion .may be i
writtn ‘as M_ and M, . Forming the sum of M, to M, we have, / e
£ \ ~8) =2 =ik (p-p") > ®
§ o
¥ II—(DTF p-pIh_ (x")
} =
t n . B
L W, ]dx'dy' : S 2ate
=2

" The sum ‘of N, for i trom o:vdum b exaclly * the coinns ‘odieni o0
sidered in “the previous *section for *the propagsted .field.. Utlizing the
.. Laplace wansform.” 4his Infinfte serles” may. be summed as before (seo
. equation.2.163) to yl-lu ;

. £ (p) F l_’ ; "
T.un, b= in, (i — 2.7
= L

- F*IE

and taking the Inverse Laplate transform.

2.172)

* ~der . .
2 s Iy - TFz(prp.) F,(py) o
’ = e
D & 4. [@Fepe,
¢ The backscatiered' fieid will be given as the sum of M . o M.

“excluding M, as this term the forward

Jai " - fleld. We. have for the backscattered field. Epa-

-
be. " o 1




* =M My

M, = T M
T

c Ik(A A == kP

: e Tl
, uE - lc_z’ s ‘_’[

Using (2.170) and (2.172). M Is given as.

-p) !

Filey) Fitetpp

Fyp=ph x")

R

k(A —8 ) =2

R R i B s
r ¢ F, (") 4———— “F F-FP

“observation point Is at the origin

change to polar cgordinates. .

x' = p'cose

y' = p'siné

[CRT R

"‘*\v < Accordingly. using (2.135) and (2.174),

Ik p=p")

3

e F,Ee

tp.?—' 55 ¢

«

Pa’

A (p—p')h,u'l

€2.173)

\ where M s the first order and M, Is the sum of all higher order terms.

. €2.1749,

~ikp*

dxrdy”

2,978

¢ For the practical application of this ‘equation we will assume that the
€x.y)=(0,0) ) and for convenience

j
i




= gik2p’ 4

J S ——F (G prdpide (2.176)
oc P’

where

& 7 faee Faeep
dsdc'® [P (PP

We' will- seek an ‘asymptotic solution ‘of ‘equation (2.177). Since the

G(p" = Fip)+

4;7. 2177

integrand contains no -stationary points. the maximum contribution to the
7 - -
Integral will come from the endpoints. = This -ug"g.m that an expansion - for

the integral ‘about p, = dsec® will provide - a: good approximation  the
F (py?

integral. . In the vicinlty of p, = dsec the function is slowly vary-
1 5

ing and may be removed from the integral.

Let o= deecod . J =
1y - E Y T F, <o—p.
Making. a change of varlabie .x % p'-p,

4 ,. /(E-E)TF:_‘"& i
¥ .

Gep =~ F (2] 1

2178

Gy = F | 1 =

The Integral of (2.178) may be evaluated using the definition of

F, () and a serles expansion, for the cnmphm:‘y error function.

EPE ! ) v
. orte ] fo %) 2179
; .

o R o R R B 0
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: From ' Abromowitz -and Stégun (1972).
P 3 Sl
% e By o x - s, 50 Lo & B
; b ° erfet/ o Xy = L —=
{ * n=0 l'lE + .

Equation (2..178) ‘becomes.

: “E'E'[

Gtp = F 0|

- L o Fx .
1
™ I"Im2 v dx
TS Ty i

¢ Equation (2.181) may be Integrated term by i€fm to yield.'
P T e
G =~ F (p) ‘l‘f F ‘ rary :
; ; tay?2 =5 2c0a) 2
: » R . (-/E),( ) (—/E) (pta)
B T R s 7 T2
> .. N E
B0 82 .
T(s/Ds72 ' T@@ T
: Using (2.182) In (2.176) we obtain; ,
Lo ke
o T o T om g
[N -
[ F-F

€2:180)

2.181)

(2.182)
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= (—lE)(&-a)’/' (-lE)’(p‘—.)‘
S| e A t—Tem

3 . : )

L R o prar? -
T(s/7s72 ' T@@ dp'de €2.183)

In a Tayior series about p’ =

)82

+

F 25

We may also expand
o

-
=" L
n=o | : v
-.Where (n) denotes, the n derivative with Tespedt 1o a. . L

~ Utllizing_ this expansion. In- (2.183) and making a change of variables.
3 - *

ax + & to shift the endpolnt of the Inner Integral. we obtain,

¢ sy
g

o olk2a l(;.—n:z-.\r{

m
g
'
ra‘;t‘_"“"

E(-)a/z

G it

nﬁ; F:)
(2

:(R-E)
o

g e e o ]]

—ofax -

{—2(.:)"“ -

: 2 =
I £8x 7D




]]]

288 - ¢

o |

Fla |, 1y - E’ 2farcsn i :
O LEiad 3 w2 E y
/2
=)

, (Y s,
; [';z"’] [ 1 ok S [—:-’/’ resza o
+

wly—wla

lmzar? - Cik2a) *?

r(s/n(/un”’

R St ” ]

il




(2.185)

F i@ 2F
+

. i 3. i’
- i TR a {‘x u'z.Flu)} 2180}

the first. term of the asymptotic expansion of F, (a) is:given

3 3 . 2.187)

2
R t@

.. o’

.

]

Therefore: using (2.187).




Hence (2.185). contalns ‘an asymplotic serles In“a-and It will therefore be

sufficient to. approximate the complete series by.

. ,
& & 2 2
(a) (A.-A) A (A -A) a
Lo 0k P S A v ] @ase

“This result may also .be Obtained by using’ Bremmer's spansian for »

the field In media 2 near the dlwunn»uuy (1954, pa53) .

#oew (2.189).
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jkza Fy (@)
4 Tk2a

B
rly—owld
°

2 3
F,%(dsece)
oIk 2dsec® "1 e

Jk2dsec 6

- (2.190)

 nlyole

Since d Is large, the exponential in the integrand will be much more

rapldly varying- than the other factors. thus ‘allowing the’use Bf stationary

phase Integration on this final Integral.
We have.

£(8) = seco

? : £(0) = tan® sec®

«.



5 , There is. a ‘stationary point at £ *

17(8) = cosé + tan’e sece

o =1
$ = 2 Evaluating (2.190) we have. * |
¢ Ik, —A > oih2d F ) ] .
Ebl T Tode 2n/1) e 2.191)
b 2 —uel-kza X
nh.u q’_u given by oqunllon 2. 1n) . o oo
Cow Allomnllvnly, since < v, the serlln' of E: has a known.sum and -
E may be written as. e § < 5
i t; ) A, a1 5 gy
= 2 02 i OO b 3| {_=}
8; =l =g "-z’[z} 2 S <
23 -
:
i @
¥ i .192)
Equation (2.191) represenis the vertical component of the surface
. fleld backscattered to the source poini from a vertical discontinulty located

at a distance d from the source.
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“CHAPTER 3 x.
THE RADAR EQUATION.
¥ ;
" The' expression . derived for the backscattered fieid may be. utllized to

form a radar type oqnq(lon.. The p;ownr avallable at: the receiving antenna
Is given by the Poynting power § .
&
§ =5 ExH
| By 1% £
1! b g n B s
o g . @81

whare 7. Is the intrinsic limpedence of free, space.

‘Inserting (2.191) Into (3.1)_.we have..

“where X Is the radar wavelongth.

The power recelved, P . from the

po= Ay ) < RER)
Where A, (s the effective area of the antenna and Is given by,

saat = ante vl
A, = S=: 6 = antenna gain

' b
The transmitted ‘power. F,. ang/Ahe gain, &f. the antenna.: G.. are
od to_the dipole constant, C. by the relationship,

r g




7 Z .
. . u:liqmap, RERY
. : T
3 UtliZing (svz).naunu.(ssxm-mm power Is_given as.
\ \
\ >
34 sy =
8m G r,e e -8 =
2n(2m * ama’ 28 \ 3
°
o 'p, @A E 4 5 = P
¢ X ot ——ts Sradk " g 3.5
i “um? gt ¢ " : X .
§ where. -
;M ¥ * A
! L5 o . S
/ fﬁm-A/ . .6
o & " i
“Equations (3.5 and (5.6) may ‘now be mmx.a to' ovaluate the ice hazard.
dor-cuon pbp-blmy of nﬁ radar. - e E
. .
ol ~]
|
- - . i L & I. i
o % 1
¥ . ¥ .
i s
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CHAPTER 4

ICE HAZARD DETECTION 2 3

We have developed ‘a’ useful ‘equation,. (3.6), for the calculation of

e radar. cross-section of a vertical -discontinulty separating two semi- .

Infinite_ media. This_ equation. “may now be applied. to" the ‘problam of
. Interest. namely. that of ice hazard detection. :
When navigating. or. exploring In Arctic” walers It Is of extreme Impor=

tance to Know where multi-year o6 fioes. and pressti ridgos are ‘located.

Utlizing | equation. (3. 6) the problem - Is reducéd to.a standard radar

analysis of the’ sltuation.. The Ice edge will be detected If-its reflected ulg-_ -

Hﬂl Is nlealsr than "’!B thermal ﬂol!a in the receiving system. in the 'Ol—
Jowing nnulynla it |5 lsaum.ﬂ lhﬂl the pwb-hlllly of detection -of the Ice
hazard |8 ﬁﬂpendel\! on the :Igna!ﬂe—nolaa ratlo (S/N) preﬂb"‘ at Ih. out-
put of the receiver. (Skolnik, 1970):

: Sevoral naturally oocuring Ice hazard situatlons are considered for

analysis, ‘including

(b Séa .16’ First-Year lce' (FYI)' transition
i FYi o Sea

iy, Sea to Mult-Year lco: CMYD

) FY o My

v MYl to Fyl

) MYI 10 Sea




"taken trom .Parashar (1977). The ‘conductivity ‘and permitiity of the ‘sea

o S ok
4.1 Electrical Properties of Sea and Séa lce R
The lectrical propertles. for typical'sea’ water, nm—?a{ o (FY) and

multi-ybar ‘ice .(MYD' are” givan In Table 1. whore €, and o for Soa Ics are

‘loe I3 - dependent on both the .temperatura and. brine volume. The brine

volume In turn depands on' the sallnity and- temperature ot the los. both.of

which' vary” with the- Ice. thickness: and Vertical location. ' Eirst-year ice

as the name .indicates is thie ice fram :one.winter's growth and multi-year

loe Is loo Which has. waathérad imore than one year. F"sl—ycar loe serdom

oxcads a 2" moter. thickness except whre fidging 'm y cau

v'mcul dimenslons. . First-yesr Ice hormalty m;mq,bolh a larger - pormi

tivty and_ conduativty than. multi-yeai’los s indiated v Tabla 1. Th-aa,

' difterences may. be_attributed ‘to. thie “lower ‘salinity ot mulll—ye r loo which

Is due o the'loss ‘of ‘brine’ volume over “Severai years, of -thawing - and
freezing. J : §

For the range of values of elctrical properties :given in Table 1:the

following relationship Is valid, -
el e s 5
“n . 2 5

“.n

A is defingd ‘on page 38

_n. = the__réfractive Index




€, = the relative permittivity *

o= ‘the conductivity. mho/m and.

w=2mwt;

l-lr-qumcy Hz
-pormnlmlol'ruspnt 5

The-Electrical Pmp.ﬂl.ldﬂ'llndstllelllﬂw
centigrade),

e
=5 %0
Table 1 . i
(lce at -5 degrees
Vﬂ
« os
r e,
. Sea 80 " 2400
L 6.141 4514
Salintty - :
il ¥ .

m 6.856 - 6.527
Salinity = ]
5% J

MY D 4.858°  0.967
Salinity 5

1%

-
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Utilizing these values for A the radar cross-sections-for the previously .
mentioned cases are calculated and tabulated In Table 2 as a function of .

range. d.

| Table 2

Radar crona‘guilo;t- as'a
bl (from equation 3. 6)-
A =10 m (f =730 MHz)

My

.13 ¢ 0.173 d

Media 1 FYI 0.229 d 0.028 d

MYl 0.8318 d 0.038 . d . e

. . 2,
the following ‘specifications.

A typlcal HF radar will hay

P, = 8 KW :poak power

; 7= 8RS : pulse length” "

»vﬂnﬂlf.'ilﬁz.' nolse bandwidth™-
A= 10 ...'.,..'{,.q.r'mm s e

"6, =6, =848 ; anfenna gain E .

" ®
" The radar equation may be written as,

s
N oy b
4mIN B, A

PG G Ao Fh . §
WL B £ 2 F YO # (4.2)




where.

N, ‘= nolse power spectral denshy. watts/Hz

3
ECRVRNTIRR - - Ja I

£ = signal-to-noiss ratio at the output

of the_recelver. ' R ‘

At 30 MHz the total average nolse power spectral density refered to
receiver input. N_. Is.

Nn = kT +F.h' B A B 4.3

where KT 'is the internal  thermal noise in the front end of the rad:

receiver ( k = Boltzmann's constant = 1.38 x 10 2%and T ® the system

3 temperature ~ 300 degrees_Kelvin ) . Fam 18 the median atmospheric nolse

factor ( = 20 db at 30 MHz " Barrick 1976 ).
Therefore, - ' 3 .
N, = 10log(kT) + 20 “dBwatts/Hz . % i

\ = -184 dBwatte/Hz : L
or, .

% S Ny =8.98 x 1077 watts/Hz “.o -

‘anmwmugwmu.

(o ’
% - 3226 x 10" o2l 7L Y .5
At :

Table 3 gives values- of Fl‘ for re nul;'nom 1.km to BO‘k‘ for each
type of media ¢ le: Sea. FYI. MYl ).’ i

) R




Table 3 .
Tabulated Values of the Propagation Factor, F_*. for Sea
and Sea lde . ¥ i 1
RangeCkm) Sea EYI(15%) MYIC1%)
1 1.0 E 4.6E(-8) 3,8E¢-9)
L2 ©0.92 2. 9E(-9) ' 2.4E¢-10).
5 ;7 062 S 7.3ECIN 8.1E(-12) |
10 0.25 4.6E(-12) - <CIEG-12)
20 4.0EC-3) - < 1EC-12)
30 3,3EC-4)
40 4.6E(-5)
50 9.6E(-8)
60 2.5E(-6)
. 70 7.6EC=7)
80 e 2.4EC-7) - .
Noté: 1E(-10) =1 % 10727 R o

" The values for F* over sea water ‘are 'or a sea state 2. ( significant

wave . helght = 1 meter ) and were calouiated with a spherical earth

model. -Barrick(1976)." The vuluqﬂ for 'Iml—yalr ice (FYD and multi-year

ice (MYI) were computed by the author with a flat earth model.

4 o b if ‘we let o= Ogd where LA “is the coefliclent In°Table 2 and: as

% d.= A. equation (4.5 may be wriltenas. ’

. o . F* L :
2 =8.226 x 10*7

€4.6)

It IS Interesting to note that the signal-to-noise ratio exhiblis an A

depodency whereas for a standard:  radar-the * sigi

ratio exhibits -an A" dependency in the near range' and an R™® ‘in the
; . -«
Interference’ reglon. This dependency Is dug In part to the assumption of

Infinite“ edge lonim For large Ice sheets ulost To the radar this guumk

. tion‘ls valid which ﬂlmonl(mloa Bn advumage of the aur'ues vave ‘mode. of

detaction over standard-radar detéction. - } 44,




.3
Writing equatlon (74,8) in-declbels,

=175 + 0log(o,) -+ 10log(F*) - 30log(A) @.7n

‘A\uumlng a signal-to-nalse ratlo of 21 dB Is required at the output of
ths~"recelver to- give a. probabillty .of detection of 0.9 for. the verticl .
discontinylty. . equéition (4.7)" may be plotted: as a- function of range’ as in’
F.ugurn 5 and the range. corresponding to 21 dB found. Figure 5 shows
that the detection of a multi-year ce sheet:beyond' first year Ice Is “very

limited for single puise’ detection.. This .Is due to the,surface whve atlenua-

tion I the  first-ygar Ice.  In:certan situations firsi-yoar Ics may exhibit a’

higher ‘conduciivity man that accounted ler in Table 1 |hawby dacrualng

the attenuation; however It Is expecied that for typical first-year Ice these

. tabulated valves are mprnsnnmmn .

There Is very ||l||8 dl"a'encu fn lhe detection rangel for boundaries
betwesn . sea-and - first-year loe, ang S5a and . miultiyesr los; boih being
‘about 18 km. These dstamlon‘rnngsu appear to be not too promising.
however most HE' radars offer coRerent sprogessing features which In effect
Incresse the signal-to-nolss' allo. by an amount ‘proportionsl o the humber

of pulses An ‘of 10logtn) dB in
- '

signal-to-nolse may be achleved for .n- pillses correlated. This translates

1.4 km for'n

Inté' an Increase in the detection range of a multi-year Ice sheet In open
& 128 (CODAR corre-'
!

sea to 30 km and-In first-year ice
lates 128 pulses) . :
_The ‘normal. " microwave - radar horizon for _an .antenna height of .25

meters Is 20 km indicalirig: that the HF radar will offer a definite ‘advantage

In range. capabllity. | The offier. advantage of course s :that even" the dotec-
tion ‘o ‘the Ice’ within the radar. harizon :is unveliabie’ with the ~microwave

radar as microwave Is prone to propagation and ‘clutter- proflems. .




Figure 5

Tt g  Backecattared S1gnal” to Notde Rablo'ds .

s Rl

Funct lon .of Range for Varlous Interfaces
" . TN . \

CS/N> dB

10.00

100

- -20.00
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The analysis Indicates that the detection of a multi-year ice sheet

“beyond - first-year ice will be limited: however. it should still be possible.

As Indicated in the previous discussion with the proper application of avali—

able -signal processing techniques these fanges may be further Increased.

The Influence of sea clutter -on the detection of the Ice edge In open

water may be. analyzed by ating the doppler spectrum of the  ocean.
A8 the. loy edge s expecied t0.have  amail islociy' will -ppur In the

'vnulnny of the " zer0 - dappler part of “the_spectrum.. From e work of

Srivastava’ (1989) the radar’ cror ~section of  the sea\surface at the zro

* doppler frequency, . g, (0, ‘for a radar operating at30 MHz and havlng a

horizontal beamwidth- of 6 ﬂlurll is given by,

0 (0) = 3.84x107° d - . 4.8)
e windspeed of.15 kndts. a wind direction of 45 degrées and asmlnq
l Plerson-Moskowitz' epoamm

" We rhay. write the signai-to-clutter ratio. (8/C). ‘g‘
= ik, il

o .
= i | (4.9
5,0 3 . :

ol

where o iy taken‘irom Table 2.  §

Th.mlor. "wlmulﬁ-y'lliclmilno”n ul#lﬂ‘lllllndn'ls

knots the signal-to-clutter ratio will be. * . 3 &

_0.1718
3.84x107°

4.10)

oln

= 45

7§=10156/B‘

S SRS N S Y SR APE PEe Ot R O
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From Blake (1980) this signai-to-clutter ratio will give a probability of
detoction of 0.75 for a faise alarm probability of 10™° (single pulse).
Also. it should be noted that thers ls no range d-pen_dfnon'ai Is normally
the case Yor microwave radar. Thus it would appear that for moderate seas
the ‘detection m the ice edge will be umm mainly by the nolse. level In
the receiving -ymm




»
CHAPTER § 4
CONCLUSION
= : 3 ¥
A analysis of the ttering from a vertical

discontinuity has been carried out with reference 1o the problem of ice
hazard detection. The. method is based on a method of Space/Fieid
decomposition which allowsa three dimensional space’ 1o. be decomposed
Into reglons sccording to thelr eloctrical properties, Mawoll’s equations
"weré_used 1o derive a partial difierantial -squation  for the ‘eleotric - field
Which was decomposed: Into three fleld equailons and a ‘boundary equation.
An appropriate .Green’s funclion was taken as the fundamental solution for
each of these field equations and the spatlal Fourler transform ullized to

simplify thess equations to a

mentary vertical electric dipole as the source. this integral equafion was

Ingle Integral ‘equation. Assuming an ele-

written in an operator form and the solution for the vertical component of

ihe surtace fleld derived In terms of a Neumann series expansion of the
Inverse operator.

" Uliizing stationary phase. integration ‘and the Laplace Mm the
series solution was summed to give expressions for the propagated and
backscattered flelds, The propagated fieid agrees with the results of both
Bremmer and Walt. The expression for ‘the backscattered fleld “has -been
used 1o derive the radar cross-section of the vertical discontinulty.

alysis represents tho boundary as an

' The model ghosen for

rupt

discontinuty. - Wait, (1963)" has discussed the use of this ‘type of model and

P

proposes a.model whioh conslsts of a gradual-transiion from Gie. media.to '

another.  This would seem ‘apprapriate when. treating both the problems of

propagation across & coastiine and the one at. hand, however. Walt




g i .
that far' beyond the boundary there Is no difference In-the two' models.
This I8 expected to be true alsa for-the backscattered fieid when' the boun—

; . dary is far away.

It has been:demonstrated that with a moderate amount of processing (

correlation of 128 fulses ) & pulsed radar operaiing at 30 Hz wil detect

a muiti-year ice_edge out. to a distance. of 30 km in oﬂen sea with a pw—

bability of 0.9." The effect of sea clitter hag been shown t6 be minimal for

moderate ‘seas. The 1 jotgotion’ of a* mum—ym ice ;sheet beyond llrul—ynr

reater attenuation 07 the suduce wave ‘In "II first-

e 1 imited .due  to
) year ica..

As. both the radar cross-section and.the surface wave attenuation are

dependent _on. the radar wavelength (l.e.. an Increase -In wavelength

* _Increases the radar by a amount_and g
" thé surface wave atienuation). 'a longer wavelength, miy provide for greater :
. doyac«ion _ranges.” However. for the pr_ncllcz‘ll application of this formulation

the: infiniteadge _assumption may- dictate’ the uss of.the shorter wavelength

to obtaln the' derived radar cross-section.

" In conclusion,_ It appears that a HF- radar. will offer an Increase In Ice

hazard -detection capabllity over a_ microwave radar.due: to both its over- .

the-harizon capabliity and the fact that it will not be affected: by the propa-*

! ‘
gailon and -clitter- problems which plague . radars  operating in  the

midrowave_ region. Furtheriiore. . ihe detection .mode of the HF radar ia not

: uepanuom on ‘above water height and may fherefore provide detection of
Ice lealuul which would not be detected wih a microwave radar.
) R Fiiture, wrk In_this ares might Include’ the- derlvation of the backscat-

larad fleld from multiple By mll 10

oases whero: the dluconunuluu are no Iong[r straight ‘edges with lnllnue_

e

7
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5 G0 length this derlvation may then be applled 1o the problem of the-detéction - i
; of smaller, hazards with Irregular shapes such-ds Iceborgs. In addition. it °
2 ; Woild be useful o obiain the backscatiersd fleld -for.the case when the
f * mwwummw-\mwmwntmwmm j
dorivation of the bi-static radar cross-section for -the varlous types of Ice
! R , : .
: R
.
\ .
“ N *
i 2 2
oy R
18 Y g B ¢ g B .
e -
P 2 > a1
. , \ ’
§ s




REFERENCES

Abrnmowl'z M. and Stegun, I. A.. “Handbook of Mathim.(lcll Functions®,
Dover. NY, 1970

Anglone. P. M., “Coliectively Compum Operator Approxlmnunn Theory",
Funnca—mn New Jorsey, 197

Bifrick. D. E. . ‘mplementation of Coastal Current Mapping. HF Radar |
System™. .Progress Report #1. NOAA Tech. Report ERL 373-WPL 47,

1976

Blake. L. V.. “Radar- Raiige  Performance Analysis’,
0. C.  Heath and Co, ; ~1980

Brammer, H...* Tie. Extension of Sommerfaid‘s Formula for the
£ Propagation of. Radio Waves over a Flat Earth to Differen.
Conductlvities of- Soll’, 1954, Physlca’s. Grav. 20, p 441,

Clommow, P. C.. "Radlo Propagation over a’ Flat Earth across a Boundary
Sepamﬂng Two Different Media®, 1958, Trans. -Foyal Soo.” (London)

*Lectures on App"nuﬂon! Ortented Mathematics®, ’
olden-Day Inc. . San Fransisco. 196 -

N
Furutsu. K.. "A Systernatic Theory of Waie' Propagation over lrregular
.. Terain". 1982, Radio Sclence. Vol. 17. No; 5. pp 1037-1050,

Hopl. E., * Mathematical Problems of Radiative Equlllbrlum .
Shchan—Hulnar NY, 1964

Hilford, 6. A. “An Integral Equation Appmen to the Problem of
Prnpegallnn over.an Irregular Surface”. 1982, Quart. Appl.. Math
9, p'301,

Jordan.. ... and Baimaln; K. . *Electromagnetic Waves and Radiating
‘Systems”. Prentice Hall. 1968 . i

King. R..J.. "An Introduction - to Electromagnetic Surface Wave

Propagation’; 1968, IEEE Trans. on Education. March. p-59

Miliagton, @.. *Ground Weve ‘Propagation’over an Inhomogeneous Smooth
. Eafth*. 1949, Proc.. IEE 96, p 58

Molseiwitsch, B."L.. “Intejral Equations'. Longman-inc.; NY. 1077
Monteath. .G. - D., *Application of the Comperisation Theorem t5'

Certain_Radiation and Pmpuqullon Problems*, 1951,
Proc. IEE 98, pp, 25




i "

i
}
|
|

Moore, D L 'Hoavlelde Opsra(lonul Calculus®, American Eisevier L
Puhll:mng Co., NY, 19 +

Papouus, A.. "The Fourier mlsgrul and Its Appllcallona ©
- McGraw-Hilr, 1962

Parashar. S. K. . 'S'Bgo = Evalulllon of Potential. Sea. Ice Thickness
of a Remote Sea Ice
Thickness Sensor . G OOHE Publication No. 17—6. 1977

Ryan.:J. and Walsh; 'J, . “*The Eleclromagnouc Scattering from -a Vertical
@ Discontjnuity With. Application to Ice Hazard Detection”,
* 1988, Proc. of 1983.1EEE APS/URSI Sympoulnm.
P. 469, Hbu@mn, Texas

Skolnlk, M. 1., 'Hadar ‘Handbook®, McGraw-HIl , 1870°
Srivastava, 8. K. and Walsh, J. . *An ~ Alteraate Analysis of HF Scattering

rom_an Ocean Surfact 63, Proc, 1983 IEEE_APS/URSI Symposlim.
p'680, Houston; Texas

Van Der Pol, B. &énd'Bremmer. H.. *Operational Caloulus Based on the
Two-Sided Laplace Transtorm’ Cambddgs Universly Press, 1950

Walt, J. R, 1.. Short Distances *,
1956b; JA Res.. Nat. Bur:’ Stand: -57. No. 1. pp 1-15
Walt, J.- R., "Mixe 8 ] P Larger
" Distances °. 1957. J. Res. Nat Bur Stand: 59 No. 1
pp_ 19-26 e

R [

Wait,"J. R., "Oblique Propagation of Ground-Waves Across a Coaslline®
J. Res. Nat. Bur. ‘Stand.. pt 1. vol 67D, no 6. pp 817-624, 1963;
P2, vol 87D, no 6, pp 625-030 1063; _pt 3, vol 68D. no 3.
" pp 201-296. 1964 .

Wait, J. R., Eleeuomngneuu Surface ‘Waves' In. Advances in’ Rndlo
Research, ‘Academlic, NY, 1964

Walt, J. R., 'Pmpaaullon of Elaolmmugnllm Waves over a Smo oh
Mummlon Curved Earth—An Exact Theory*®, 1970, J. Math, Phyalus
1. p8.

Waluh, J... *On the Theory. of Electomagnetic Propaunlon across @ Rough -,
A Surface and Calculations in the VHF Reglon®. 1980b. IC ‘Report
# N00242, Mamevlal ‘University of Newfoundland . L

* Walsh,. J. .. *A'Generai Theory ‘of the Interaction of Electromagnetic
- Surface Waves with Isotroplo, Horlzontally Layered 'Medla. and
Applications 10 Propagation .over Sea lce®. ‘1982, . C-CORE Tech:
Report No. 82-9, Memorial: umvauny ol N.vilounuuna
















	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Notice
	007_Title Page
	009_Abstract
	010_Abstract iii
	011_Acknowledgements
	012_Table of Contents
	013_List of Figures
	014_List of Tables
	015_Chapter 1 - Page 1
	016_Page 2
	017_Page 3
	018_Page 4
	019_Page 5
	020_Page 6
	021_Chapter 2 - Page 7
	022_Page 8
	023_Page 9
	024_Page 10
	025_Page 11
	026_Page 12
	027_Page 13
	028_Page 14
	029_Page 15
	030_Page 16
	031_Page 17
	032_Page 18
	033_Page 19
	034_Page 20
	035_Page 21
	036_Page 22
	037_Page 23
	038_Page 24
	039_Page 25
	040_Page 26
	041_Page 27
	042_Page 28
	043_Page 29
	044_Page 30
	045_Page 31
	046_Page 32
	047_Page 33
	048_Page 34
	049_Page 35
	050_Page 36
	051_Page 37
	052_Page 38
	053_Page 39
	054_Page 40
	055_Page 41
	056_Page 42
	057_Page 43
	058_Page 44
	059_Page 45
	060_Page 46
	061_Page 47
	062_Page 48
	063_Page 49
	064_Page 50
	065_Page 51
	066_Page 52
	067_Page 53
	068_Page 54
	069_Page 55
	070_Page 56
	071_Page 57
	072_Page 58
	073_Page 59
	074_Page 60
	075_Page 61
	076_Page 62
	077_Page 63
	078_Page 64
	079_Page 65
	080_Page 66
	081_Page 67
	082_Page 68
	083_Page 69
	084_Chapter 3 - Page 70
	085_Page 71
	086_Chapter 4 - Page 72
	087_Page 73
	088_Page 74
	089_Page 75
	090_Page 76
	091_Page 77
	092_Page 78
	093_Page 79
	094_Page 80
	095_Page 81
	096_Chapter 5 - Page 82
	097_Page 83
	098_Page 84
	099_References
	100_Page 86
	101_Blank Page
	102_Blank Page
	103_Inside Back Cover
	104_Back Cover

