Ocean data mining with application to climate indices of the North Atlantic

Hakobyan, Madlena (2010) Ocean data mining with application to climate indices of the North Atlantic. Masters thesis, Memorial University of Newfoundland.

[img] [English] PDF - Accepted Version
Available under License - The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

Download (13MB)

Abstract

This study is a part of the research project on development of a database and methods for data mining of ocean data. The first part of the project describes the implementation of the relational database management system (RDBMS) for ocean data. The second part of the project introduces a clustering method for identification of regions with homogeneous behavior of ocean parameters. Three algorithms K-means, Expectation Maximization (EM), and Farthest-First (FF) were implemented and evaluated in applications to the sea surface temperature data (SST). The clustering method was applied in analysis of two climate indices of the North Atlantic Ocean derived from the past observations of SST. The first one is associated with the North Atlantic Oscillation (NAO) and the second one with the variability of the Meridional Overturning Circulation (MOC). The two climate indices capture the most important long term variability of MOC and NAO.

Item Type: Thesis (Masters)
URI: http://research.library.mun.ca/id/eprint/10594
Item ID: 10594
Additional Information: Includes bibliographical references (leaves 125-130).
Department(s): Science, Faculty of > Computer Science
Date: 2010
Date Type: Submission
Library of Congress Subject Heading: Climatology--Data processing; Cluster analysis; Data mining.

Actions (login required)

View Item View Item

Downloads

Downloads per month over the past year

View more statistics