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Abstract 

This study is a part of the research project on development of a database and 

methods for data mining of ocean data. The first part of the project describes the 

implementation of the relational database management system (RDBMS) for ocean 

data. The second part of the project introduces a clustering method for identifica­

tion of regions with homogeneous behavior of ocean parameters. Three algorithms 

K-means, Expectation Maximization(EM), and Farthest-First(FF) were implemented 

and evaluated in applications to the sea surface temperature data (SST). The cluster­

ing method was applied in analysis of two climate indices of the North Atlantic Ocean 

derived from the past observations of SST. The first one is associated with the North 

Atlantic Oscillation (NAO) and the second one with the variability of the Meridional 

Overturning Circulation (MOC). The two climate indices capture the most important 

long term variability of MOC and NAO. 
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Chapter 1 

Introduction 

The classical methods for oceanic data analysis were based mainly on using manual logging of data 

and computation. Over the years, with technological advances and new electronic instruments, the 

methods of observations of oceanic data have greatly advanced and "new ocean instruments operate 

at data rates not possible with earlier mechanical devices and produce large amount of data that 

can only be handled by high-speed computers" [21]. The volume of data acquired is growing expo­

nentially, and it is a challenging task to store, extract, manipulate and analyze the data[21]. 

This chapter presents an overview of present day methods for data storing and data analysis. 

1.1 Database 

The database research over the past 40 years has led to the database system analysis becoming a key 

research area in the field of the software engineering [11]. An electronic database helps to organize 

the information and provides the tools necessary to access specific bits of it quickly and efficiently. 

A database is a shared collection of logically related data. A database represents the entities, the 

attributes, and the logical relationships between the entities. An entity is a distinct object that 

is to be represented in the database. An attribute is a property that describes some aspect of the 

1 



Chapter 1 
object that we wish to record, and a relationship is an association between entities. A database 

management system(DBMS) is the software that manages and controls access to the database. A 

database application is a program that interacts with the database at some point in its execution. 

A database system includes a collection of application programs that interact with the database. It 

is important to distinguish between the description of the database and the database itself. The 

description of the database is the database schema. The schema is specified during the database 

design process and is not expected to change frequently. However, the actual data in the database 

may change frequently; for example, it changes every time we insert a new entity in a table or add a 

new attribute. The data in the database at any particular point in time is called a database instance. 

1.1.1 The Database Management System(DBMS) 

The DBMS is software that manages and controls access to the database. It interacts with the 

users' application programs and the database[ll]. The predecessor to the DBMS was the file-based 

system, which was the collection of application programs. Typically, a DBMS provides the following 

facilities: 

2 

(1) It allows users to define the database and to specify the data types, structures, and the 

constraints on the data that are to be stored in the database. 

(2) It allows users to insert, update, delete, and retrieve data from the database, usually through 

a Data Manipulation Language (DML). DML provides a general inquiry facility to the data, 

called a query language. The most common query language is the Structured Query Language 

(SQL), which described in Section 1.1.5. 

(3) It provides controlled access to the database, such as: 

(a) a security system to prevent unauthorized users accessing the database; 

(b) an integrity system, which maintains the consistency of stored data; 

(c) a recovery control system, which restores the database to a previous consistent state 

following a hardware or software failure. 



Introduction 
The DBMS comes with tools that assist in organizing the data and simplifying information retrieval 

and modification. Built-in indexing makes it possible to locate information rapidly and efficiently, 

while automated processes ensure that data is always stored and cross-referenced in a consistent, 

error-free manner[55]. As a tool, DBMS was widely employed in managing databases. Among the 

major components of DBMS are: software, procedures, and data. The software component includes 

the DBMS software itself and the application programs, together with the operating system[13]. 

Typically, application programs are written in a third-generation programming language such as C, 

C++, Java, Visual Basic, FORTRAN, or using fourth generation language such as SQL, embedded 

in a third-generation language[13]. SQL statements give the power to manipulate all aspects of the 

database using code instead of visual tools, thus the use of fourth generation tools can improve 

the productivity significantly and produce programs that are easier to maintain[ll]. The SQL 

statements are mostly coded instructions to perform operations such as extracting data, inserting 

new data, modifying existing data, and deleting data. Procedures refer to the instructions and rules 

that govern the design and use of the database. These may consist of instructions on how to log on 

to the DBMS, make backup copies of the database, change the structure of a table, or archive data 

to secondary storage. 

The most important component of the DBMS environment is data. The data acts as a bridge 

between the machine components and the human components. The database may contain both the 

operational data and the meta-data. The effectiveness of database design and further data analysis 

depends on the quality of the data. As Hunter[30] pointed out, "data of poor quality is a pollutant 

to clear thinking". There is no measurement procedure that is without the risk of error and the 

sources of errors can range from human errors to instrumentation failure. The main advantages of 

DBMS{Table 1.1) assure the quality of the data in a database. 
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Summary Advantages of DBMS 

Control of data redundancy 

Data consistency 

Improved data integrity 

Improved security 

Table 1.1: Main advantages of DBMS 

Chapter 1 

Database approach may control or completely eliminate the redundancy of the data by integrating 

the files in a way that multiple copies of the same data are not stored. This feature is especially 

important for the oceanographic data that comes from different data sources that overlap spatially 

and temporarily. 

By eliminating or controlling redundancy, we are reducing the risk of inconsistencies that may occur 

during the data manipulation. If a data item is stored only once in a database, any update to its 

value will be performed only once and the new, updated value will be available immediately. If a 

data item is stored more than once and the system is aware of this, the system can ensure that all 

copies of the item are consistent[13]. 

Database integrity refers to the validity, consistency, and correctness of the stored data. Database 

integrity can be considered as another type of database protection as it concerned with the quality 

of data itself. Integrity is expressed in terms of constmints, which are rules that the database is not 

permitted to violate. Constraints apply to data items within a single record, as well as they apply 

to relationships between records. 

Integration of data makes the data more vulnerable without appropriate security measures. Database 

security is the protection of the database from unauthorized users and the security takes the form 

of passwords to identify people authorized to use the database. The access that an authorized user 

is allowed on the data may also be restricted by the operation type(retrieve, update, or delete). 

Security concerns are becoming crucial when there is more than one user has an access to the 
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Introduction 
database. 

At the same time, the disadvantages of DBMS (Table 1.2) can expose the data in the database to 

possible loss,making the entire data vulnerable. 

Summary Disadvantages of DBMS 

Higher impact of failure 

Complexity 

Size 

Table 1.2: Main disadvantages of DBMS 

The centralization of resources increases the vulnerability of the system and the failure of any 

component can be disastrous[13]. The entire database may disappear if appropriate steps to secure 

the database will not be taken. 

The functionality that DBMS provides makes it at the same time a complex piece of software [11]. 

The DBMS is also a large piece of software, and it occupies many megabytes of disk space and 

requires substantial amounts of memory to run effi.ciently[ll]. 

1.1.2 Database Design and Data Model 

The structure of the database is determined during database design. The database design has to 

produce a system that will satisfy current and future requirements of the end-users[13]. 

Data model is an integrated collection of concepts for describing and manipulating data, relationships 

between data, and constraints on the data[ll]. It is a representation of 'real world' objects and 

events, and their associations. Major data models fall into three broad categories: object-based, 

record-based, and physical data models[13]. In a record-based model, the database consists of a 

number of records and they maybe of different types. Each record type defines a fixed number of 

fields, each typically of a fixed length. There are three principal types of record-based logical data 
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model: relational data model, network data model, and hierarchical data model[55]. The relational 

data model is based on the concept of mathematical relations. In the relational model, data and 

relationships are represented as tables, each of which has a number of columns with a unique name. In 

the network data model, data is represented as collections of records, and relationships are represented 

by sets. Compared with the relational model, relationships are explicitly modeled by the sets, which 

become pointers in the implementation. The records are organized as generalized graph structures 

with records appearing as nodes and sets as edges in the graph. The hierarchical data model is a 

restricted type of network model. Data is represented as collections of records and relationships are 

represented by sets. A hierarchical model can be represented as a tree graph, with records appearing 

as nodes, also called segments, and sets as edges. The majority of modern database systems are 

based on the relational data model, whereas the early database systems were based on either the 

network or hierarchical data models. 

1.1.3 Relational Database Management System(RDBMS) 

The Relational Database Management System(RDBMS) represents the second generation ofDBMSs 

and it is based on the relational data model. RDBMS is a "traditional" DBMS that was enhanced 

in the 1970s with the publishing of E.F.Codd's papers on Relational Databases [11, 9]. Since then, 

the RDBMS has become the dominant data-processing software in use today[ll]. It is more robust 

and helpful than its DBMS predecessor. The theoretical foundation of the simple logical structure of 

the relational data model is a great strength of RDBMSs that was absent in the first generations of 

DBMSs with only network and hierarchical data models. RDBMS requires only that the database 

be perceived by a user as tables, where the mathematical concept of the a relation is physically 

represented as a table[13]. Many commercial vendors supply relational databases(Section 1.1.3), 

including Microsoft(SQL Server and Access), Oracle Corporation(Oracle), and IBM(DB2). There 

are also freely available open-source products such as MySQL and PostgresSQL. In our work, we 

are currently using MySQL platform that is described in Section 1.1.4. 
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1.1.4 MySQL 

The RDBMSs are powerful, flexible, feature-rich software systems that are designed specifically for 

high-volume and mission critical applications[55]. They perform hundreds of transactions every 

second without batting an eyelid[55]. MySQL is a high-performance and multi-user RDBMS built 

around a client-server architecture[13]. MySQL designed specifically for speed and stability and 

currently it is one of the most popular RDBMSs. MySQL has two main fundamental features: 

performance and reliability. The time that takes on MySQL to execute a query and return the results 

is sometimes orders of magnitude faster than its competitors' [10, 55]. MySQL includes a unique 

new feature called a query cache. If a query made by a user returns a set of given records, repeating 

the same query should return the same set of records unless the underlying data has been changed. 

The query cache takes this principle further by storing the result in memory, thus bypassing the 

need to do the database search at all when a similar query is issued. Query cache enhances response 

times for queries that are called upon to retrieve the exact same data as a previous query[55]. AB 

a relational database management system (RDBMS), MySQL is compatible with SQL. Because the 

data is stored in a similar structure on different RDBMS platforms, similar techniques are used to 

access and manipulate the data. Each of these platforms, including MySQL, uses Structural Query 

Language(SQL) as the universal language to implement these techniques. 

1.1.5 Structural Query Language(SQL) 

SQL is a standard database language that gained wide acceptance[ll]. SQL is the language that 

is compatible with every relational database and is used to communicate and to administer the 

database. SQL allows user to: 

• create the database and relation structures; 

• perform basic data management tasks, such as the insertion, modification, and deletion of data 

from the relations; 

• perform both simple and complex queries. 
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SQL is a portable language which allows use of the same command structure and syntax when we 

move from one RDBMS to another. SQL is a declarative language, not a procedural language, such 

as Java, Visual Basic, and so on. A user specifies what needs to be done in SQL and the Database 

Management System decides the best way to do it[13]. For instance, SQL statements that define 

what data needs to be retrieved, modified, updated or deleted do not specify how the database 

should do to that[13]. An SQL statement consists of reserved words and user-defined words. 

Reserved words have a fixed meaning, and they must be spelled exactly as required. User-defined 

words are made up by the user and represent the names of various database objects such as tables, 

columns, views, indexes, and so on. SQL is also an example of a transform-oriented language, 

or a language designed to use relations to transform inputs into required outputs. As a language, 

SQL has two major components such as: 

• Data Defition Language(DDL) and Data Manipulation Language(DML) for defining the database 

structure and controlling access to the data; 

• Data Manipulation Language(DML) for retrieving and updating data. 

DDL and DML are discussed further in details in Sections 3.3.1 and 3.3.2. 

1.2 Data Mining 

Many methods of processing oceanographic data are recently developed for studying ocean cir-

culation, currents, sea surface height, sea surface pressure, temperature, salinity, and and their 

variabilities. One group of the methods of processing and analyzing oceanographic data includes 

statistical analysis. 

Data mining is one of the most vaguely defined fields. Fayyad et al.[22] define data mining as ''the 

nontrivial process of identifying valid, novel, potentially useful, and ultimately understandable pat­

terns in data". Friedman[35] points out that data mining sits at the common frontiers of several fields 

including Data Base Management, Artificial Intelligence, Machine Learning, Pattern Recognition, 

and Data Visualization. Data mining technology helps to explore large and complex data in order 
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to discover useful, previously unknown patterns and relationships in a data. It is closely connected 

with developments in computer technology, particularly with the advancement and organization of 

database development. Unlike data mining though, the primary purpose of databases, as described 

in Sections 1.1 and 3.2, is not to analyze the data. Database query tools only retrieve information 

from a database using Structural Query Language (SQL) as described in Section 1.1.5 and present it 

to the user. This stage of data retrieval, when the data and information are extracted from databases 

is very similar to data mining, but the difference is that data mining looks for relations and asso-

ciations between phenomena that are not known beforehand [23]. A query implemented on some 

random data set will have the lowest information capacity compare with data mining implemented 

on the same data set, and consequently, data mining will have the highest information capacity. 

Despite its great potential and effectiveness in analyzing various types of data sets, there is still no 

solid theoretical background behind data mining, which makes it hard to make definite statements 

about data mining techniques[23],[53]. It largely relies on trial and error when the decision needs 

to be made what technique is best for a particular data set and for solving a particular problem. 

Therefore, the representative steps that are highlighted in gray on Figure 1.2 may be repeated many 

times to get the desired data mining outcomes. 

Determining the initial set 

of expected outcomes 

Figure 1.1: Data Mining Outcomes 

Current data mining packages provide statistical analysis procedures that include clustering methods, 

association rules, nearest neighbors, feature extraction, neural networks, genetic algorithms, and 

they do not include hypothesis testing, linear regression, logistic regression, canonical correlation, 
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principal components, single factor analysis of variance{ANOVA), and factor analysis that are the 

"main-stay'' in standard statistical packages[35]. 

Data mining, especially when it applies to great amount of data, can discover patterns and relations 

in the data that were not known beforehand, therefore, they cannot be used in developing a research 

hypothesis[23], and this is one of the main features that distinguishes data mining from statistics. 

Thus, data mining methods are concerned about selecting hypothesis from competing hypotheses 

rather than testing one. Among the other important features that distinguish data mining and 

statistics is the ability of data mining to analyze entire data set, as in statistical analysis it is 

necessary to have a sample from the data set that is being analyzed. 

Berry and Linoff [3] marked two different analytical methodologies for data mining such as top-down 

and bottom-up. Top-down analysis starts with some idea, pattern, or hypothesis and uses statistical 

methods to test the hypothesis by confirming or rejecting it. There is no hypothesis to test in a 

bottom-up approach. This analysis examines the data and looks for the useful information and 

patterns to create hypothesis. The information that is obtained from a bottom-up approach shows 

patterns and tendencies in the data, but it cannot explain why the tendencies are useful and why 

and to what extend they are valid. And this is where the top-down analysis can be used to confirm 

the findings. Thus, these approaches are complementary. 

Top-Down Approach 

Starting with hypothesis 

Hypothesis formed from bottom-up approach 

Data Mining < 
Approaches/ ,..---B-o-tt-om--U-p_A_p_p_r_oach ___ _, 

Methodologies 

Val1datmg hypothesiS 

Hypothffi!B n~rd• n>vismn if rejected 

Analyzmg data and Extracting Pattnns 

Dire<:ted(Supervised) 

or 

Undirected(U nsupE!"VIBed) 

Figure 1.2: Data Mining Approaches 
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1.2.1 Processing Phases of Data Mining 

The process of data mining must be automatic or semi-automatic (56], and the patterns discovered 

must be meaningful so they will enable to make nontrivial predictions on new data. The relationships 

and summaries or patterns that we derived from the data through the data mining process can be 

divided onto several phases, such as: 

• Definition of the objectives for the analysis 

- Defining the objectives is one of the most important prerequisites to do entire analysis 

correctly; the objectives have to be stated as clear as possible without any room for 

ambiguity. 

• Selection and organization of the data 

- Identifying the data source(s); checking possible presence of missing, or incorrect data; 

representation of the data in vector or matrix form. 

• Data analysis 

- Choosing and implementing the best and most appropriate methods of analysis that fit 

to the data set 

• Evaluation of the methods 

- Evaluation based on time constraints, data quality, data availability using the results 

from the previous phase. 

1.2.2 Data Mining Techniques and Methods 

A result of implementing a data mining algorithm on a data set can be expressed as a function 

y(x), which takes x as an input and generates the output y. The exact form the function y takes 

is determined during the tmining or it is also called learning phase. The ability of a data mining to 

categorize correctly new examples of a data set that differ from those used for the training phase is 
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called generalization. Usually, and especially with large data sets, the training data constitutes only 

very small fraction of all possible input vectors, therefore generalization is one of the central goals 

in data mining. 

In many of the data mining applications, the input variables are also preprocessed to transform 

them into some new space of variables, where the particular data mining problem will be easier to 

solve[4). This preprocessing stage is called feature extraction. It helps to find features that are faster 

to compute by preserving the useful discriminatory information[23). Then, these features are used 

as the inputs in data mining process. 

Data mining applications in which the training data comprises examples of the input vectors along 

with their corresponding target vectors are known as supervised classification[4]. The goal of super-

vised classification is to assign each input vector to one of the finite number of discrete categories 

or classes. In other data mining problems, the set of input vectors a: do not have corresponding 

target values, and the classification goal is aimed to find similar groups or clusters within the data, 

therefore the technique is called clustering. 

Many data mining techniques such as nearest neighbor classification methods(Appendix VII), cluster 

analysis, (Section 2.1), and multidimensional scaling methods are based on similarity measures. 

There are two ways to obtain measures of similarity. One way is they can be obtained from the objects 

themselves, and second way is when it is necessary to give a precise definition of "similar". The 

formal definition of "similar" allows definition of "dissimilar" by applying a suitable monotonically 

decreasing transformation[26). Therefore, if s(i, j) denotes the similarity and d(i, j) denotes the 

dissimilarity between objects i and j, then possible transformations include d(i,j) = 1- s(i,j). The 

definitions such as distance and metric are used to denote a measure of dissimilarity. Appendix III 

describes in more details the notion of distance measures, metric and Euclidean space. 

1.2.3 The Form of the Data 

There are different types of data that can be fed into a data mining application and the data may 

come in different forms. These forms are known as schemas. In all data mining applications it is 

important to be aware of the schema of the data, without which it is easy to miss patterns in the 
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data[26]. The simplest form of data is a set of vector measurements on objects o(l), ... , o(n). For 

each object we have measurements of p variables Xt. ... , Xp. Thus, the data can be viewed as a 

matrix with n rows and p columns, which is a data matrix, or it also can be referred as a table. 

1.2.4 WEKA 

The WEKA software that is used in this project is a collection of machine learning algorithms and 

data processing tools. WEKA was developed at the University of Waikato, New Zealand, and the 

WEKA name stands for Waikato Environment for Knowledge Analysis. It has tools to implement all 

standard data mining procedures such as classification, clustering, association rule mining, attribute 

selection. WEKA also allows to preprocess a dataset, feed it into a learning scheme, and analyze 

the resulting classifier without writing a code, as it includes: 

* point and click icons and menus 

* input dialog boxes 

* diagrams to describe analysis 

* a variety of data plots 

* graphical representations such as trees, networks, etc. 

WEKA is written in JAVA and it has four interactive interfaces such as Explorer, Knowledge Flow, 

SimpleCLI, and Experimenter. 

Explorer is a graphical user interface that gives access to all of WEKA facilities. It reads the 

database from ARFF file (or spreadsheet) and builds a decision tree from it. Choices and options 

are presented as menus and forms. 

Knowledge Flow interface allows to drag boxes around the screen representing data sources and 

learning algorithms and join them together in a configuration that is necessary for the analysis. The 

data can be loaded incrementally. 
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Experimenter is helping to choose a method that will work best for a given problem. It also can 

distribute computing load among multiple machines. In this way large scale experiments can be 

implemented. 

SimpleCLI allows access the WEKA features by entering textual commands through command line 

interface. 

Data Mining is a useful mehtod which can be used in ocean, atmospheric and climate studies. The 

information which recently become available in these areas includes large data sets with complex 

temporal and spatial structure. Analysis of these data and pattern recognition requires advanced 

computer methods like data mining. 

1.3 Data Mining Applications in Ocean and Climate Studies 

Huang et al. [29] used cluster analysis to define the relationships between ocean salinity, temperature 

structures and climate variability. Huang et al.[29] proposed a quantitative inter-transaction associ-

ation rules mining algorithm and introduced a technique for analyzing ARGO ocean data to extract 

information about salinity /temperature patterns. They also increased the data mining efficiency by 

adopting FITI and PrefixSpan algorithms. Their study is applied to ocean salinity measurements 

obtained from the waters surrounding Taiwan. 

Steinbach et al.[38] developed an approach in clustering methodology for the discovery of Ocean Cli-

mate Indices (OCis) and divided the cluster centroids into several categories: those that correspond 

to known OCis, those that are variants of known OCis, and those that represent potentially new 

OCis. They developed alternative methodology for the discovery of OCis using clusters that repre-

sent ocean regions with relatively homogeneous behavior. The centroids of those clusters are time 

series that summarize the behavior of these ocean areas. Their goal was to use climate variables, 

such as long term sea level pressure(SLP) and sea surface temperature(SST) to discover interesting 

patterns that relate changes in Net Primary Production(NPP) to land surface climatology and global 

climate, where NPP is the key variable for understanding the global carbon cycle and the ecological 

dynamics of the Earth. 
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Wooley et al.[6] described their preliminary findings in unsupervised cla.ssification(clustering) of a 

database with very large acoustic images (about 30 megabytes each) of the ocean floor. The authors 

used an approach of parallelizing unsupervised learning algorithm to partition data with the number 

of instances to be classified that is more than 10,000 and distribute it to multiple processors. The 

learning algorithm used is AutoClass, an unsupervised Bayesian classification system. Classification 

results when 2 or 3 processors are used are similar to the classification results achieved when one 

processor is used[6]. 

Cheng and Wallace[8] have used clustering techniques to analyze the long-term climate variability 

in the upper atmosphere on the Earth's Northern hemisphere. This variability is dominated by 

three recurring spatial pressure patterns (clusters) identified from data recorded daily by National 

Meteorological Center from 1948 to 1985. The authors used hierarchical cluster analysis based on the 

Ward method, which is performed on the Northern Hemisphere wintertime 10-day low-pass-ffitered 

500-hPa height field. It was one of the first studies of this type to define the clusters in terms of 

total(low-pass-ffitered) height fields rather than height anomaly fields. 

1.4 Thesis Objectives 

The major goal of this study is to use climate variables, such as sea level pressure (SLP) and sea 

surface temperature (SST) to discover patterns relating to ocean climate indices (OCis) in the North 

Atlantic. 

This work presents results from study of interannual variability in the North Atlantic. Ocean climate 

indices have been developed that summarize the behavior of selected areas of the world's oceans[50] 

and they can be linked to major patterns of climate variability. The ocean climate indices are often 

defined through eigenvalue analysis techniques such as Principal Components Analysis (PCA) and 

Singular Value Decomposition (SVD). The main advantages of using PCA and SVD for analysis 

of the ocean data include ability to store the most important information without redundancy and 

noise. They also allow compression, which increases storage effectiveness through reduction of the 

dimensionality of the space. However, these techniques impose a condition that all discovered signals 
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must be orthogonal to each other[50]. 

In this project a different approach such as data mining is used. Data mining techniques are 

firstly applied to the Ocean Climate Indices. In addition, we study connection of variabilities among 

different parts of the ocean, as data mining and clustering provide more information about connection 

between different parts of the ocean. This section describes the methods used in the analysis of 

interannual variability of the Labrador Sea and North Atlantic SST. The approach is based on the 

use of data mining techniques such as clustering and Empirical Orthogonal Functions (EOF) analysis. 

Data mining clustering techniques are used on data sets to reveal well-separated groups of data at 

various levels of detail. We run three clustering algorithms- K-Means, Expectation Maximization, 

and Farthest-First- on the same data and test how well these algorithms perform in terms of the 

outcome and the quality of clustering. This work shows preliminary results, details specific findings, 

and outlines the data mining processes and techniques of extracting classes for ocean applications. 

This project started with creation of the database, which currently contains data from different 

observational systems with wide range of temporal and spatial attributes. The database approach is 

shown do be an effective tool for archiving, accessing and retrieving large volume of oceanographic 

data in data mining applications. 
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Methods Of Data Analysis 

2.1 Clustering 

Cluster analysis is one of the descriptive data mining methods. Clustering techniques apply when 

there is no class to be predicted as in supervised classification {Section 1.2.2) and the instances are 

to be divided into natural groups. This section focuses on clustering approaches that were chosen 

for this study- K-Means, Expectation Maximization{EM) and Farthest-First. 

The K-Means is an iterative distance-based clustering algorithm[25, 23]. Farthest-First is a sequential 

search algorithm to identify iteratively the cluster centers and it is a combination of hierarchical 

clustering and distance-based clustering[48, 58] that are described below. EM is an algorithm that 

assigns each object to a cluster according to a weight representing the probability of membership[25]. 

Clustering involves decomposition of a data set into groups so that the points in one group are 

similar to each other and are as different as possible from the points in other groups. The result of 

clustering can be expressed in different ways and the clustering output may take a form of a diagram 

that shows how the instances in a data set fall into clusters. Examples of the diagrams are shown 

on Figure 2.1 and Figure 2.2. 

In some clustering algorithms, such as partition-based clustering, the task is to partition a data 

set into k disjoint sets of points such that the points within each set as homogeneous as possible. 
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For instance, given the set of n data points D = {x(1), ... , x(n)}, the task is to find K clusters 

C = {Ct, ... ,CK} such that each data point x(i) is assigned to unique cluster Ck. Each cluster is 

exclusive and any single instance of a data set belongs only to one cluster. A diagram on Figure 

2.1(a) shows an example of partion-based clustering.Some other clustering algorithms allow one 

instance be inside of more than one cluster, and, therefore, the corresponding diagram will show the 

overlapping clusters(Venn diagram)(Figure 2.1b). 

d e 

c 
a 

b 

g 

Figure 2.1: (a)Associating a cl~ter number with with each instanJ~? (b)Overlapping subsets repre­
senting each cluster- Venn diagram 

Algorithms such as probabilistic model-based clustering associate instances with clusters probabilis-

tically (Figure 2.2a), where every instance belongs to a particular cluster with certain probability. 

Others, that are called hierarchical clustering algorithms, produce a hierarchical structure of clus-

ters, so that at the top level we have only few clusters, and each of those clusters divides itself 

into its own sub-clusters at one level down, and further down to individual instances. Figure 2.2b 

shows one possible hierarchical clustering of a eleven-instance data set. Hierarchical methods permit 

a convenient graphical display, in which the entire sequence of merging or splitting the clusters is 

shown, and such displays are also called dendrograms. There are two kinds of hierarchical techniques: 

agglomerative and divisive. They construct their hierarchy in the opposite direction, and produce 

different results. Agglomerative methods start when all objects are apart, that is at the first step we 

have n clusters, and in each step two clusters are merged until only one cluster left. On the other 

hand, divisive methods start when all objects are together and in each following step a cluster is 
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split up until there are n clusters. 

1 2 3 

a 0.4 0.1 0.5 
b 0.1 0.8 0.1 
c 0.3 0.3 0.4 
d 0.1 0.1 0.8 
e 0.4 0.2 0.4 
f 0.1 0.4 0.5 
g 0.7 0.2 0.1 
h 0.5 0.4 0.1 

(a) 

£ ((?1~ 
gaciedkbjfh 

Figure 2.2: (a)Associating instances with clusteJbbrobabilistically; (b)Hierarchical structure of clus­
ters 

The choice among the algorithms should be dictated by the nature of the mechanisms that are 

thought to underlie the particular clustering phenomenon[56]. However, very often, for pragmatic 

reasons, the choice is usually dictated by the clustering tools that are available, which in our study 

is the ability of the WEKA data mining software to perform the clustering. 

2.1.1 K-Means 

K-Means is an example of partition-based clustering. K-Means starts by randomly picking K cluster 

centers, where the number of clusters K is known beforehand. Then, it assigns each of these points 

to a cluster whose mean is closest(in a Euclidean distance sense described in Appendix III), and it 

computes a new mean for each cluster. These means are taken to be new center values for their 

respective clusters. This process is repeated with the new cluster centers, and iteratively continues 

until the same points are assigned to each cluster and the cluster centers stop changing. The 
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final clusters are quite sensitive to the initial cluster centers and completely different arrangements 

can arise from small changes in the initial random choice[25]. A brief description of the K-Means 

clustering algorithm is included in the Appendix IV. Nothing is known a priori about how to choose 

the number of clusters K, and the first step in cluster analysis is to define this number[56, 26, 4]. 

2.1.2 Expectation Maximization 

The Expectation-Maximizaion (EM) is similar to the K-Means clustering method described above 

and it can be viewed as an extension of the K-Means algorithm. Unlike K-Means though, instead 

of assigning each object to a dedicated cluster, EM assigns each object to a cluster according to 

a weight which is a probability of membership[25]. The probability of membership is calculated. 

Thus, there is no strict boundaries between clusters and the new means that are computed based on 

weighted measures. It is an iterative algorithm for "maximizing a likelihood score function given a 

probabilistic model with missing or hidden data" [26] and it starts with initial guess of the parameter 

values of the mixture model(referred as the parameter vector). It iteratively rescores the objects 

against the mixture density produced by the parameter vector. Then, those rescored objects are 

used to update the parameter estimates[58]. Each object is assigned a probability that it would 

possess a certain set of attribute values given that it was a member of a given cluster. A brief 

description of the EM algorithm is included in the Appendix V. 

2.1.3 Farthest-First 

The Farthest-First tmversal was first introduced by Hochbaum and Shmoys[28]. The Farthest-First 

starts with picking any data point, and assigning it its own cluster. Then it chooses the point farthest 

from it, then the point farthest from the first two (the distance of a point x from a setS is the usual 

min{d(x,y) : y E S}) and process continues until k points, which is a some specified threshold, 

are obtained. These points are taken as cluster centers and each remaining point is assigned to the 

closest center. If the distance function is a metric, the resulting clustering is within a factor two of 

optimal[14], that is for any kif Tis the solution returned by Farthest-First traversal, and T* is the 
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optimal solution, then 

cost(T) ::; 2cost(T*) 

A brief description of the Farthest-First algorithm is given in Appendix VI. 

2.2 Principal Component(EOF) Analysis 

Principal Component Analysis(PCA) or Empirical Orthogonal Function Analysis(EOFA) is a mul-

tivariate statistical technique with many applications to oceanographic, atmospheric and other geo-

physical fields. 

A typical example of the PCA application in oceanography can be considered the ocean climate in-

dices. The latter are simple characteristics of interannual variability of ocean and atmosphere. This 

application has been successful in describing important aspects of the North Atlantic variability. 

Cluster analysis and PCA are suitable for this type of applications and at the same time they may 

result in different types of classifications. 

The purpose of PCA is to reduce a data set that contains a large number of variables to a data 

set that contains fewer new variables. Despite the fact that the new variables are fewer than in the 

original data set, they describe the large fraction of the variability of the original data set. There­

fore, if we have multiple observations of (K) data vector x, we want to find (M*) vectors u whose 

elements are functions of the elements of the x values, that contain most of the information in the 

original collection of x values, and whose dimensionality M* «: K. 

PCA detects linear dependencies between variables and replaces groups of correlated variables by 

new uncorrelated variables, the principal components. The elements of this new vector u are called 

principal components. The choice of how many components to extract is arbitrary and it depends on 

the explained variance in each particular case. Information will be lost, if choosing a small number 

of components that fail to explain the variability in the data very well [26]. Therefore, in choosing 

an appropriate number k of principal components, one approach is to increase k until the squared 

error quantity above is smaller than some acceptable degree of squared error. 

For high-dimensional data sets, in which the variables are often relatively well-correlated, it is not 
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uncommon for a relatively small number of principal components(from 5 to 10) to capture 90% or 

more of the variance in the data. 

Some basics of PCA are described in the Appendix IX. 
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Data and Database 

3.1 Ocean Data Collection 

The oceanographic data that were collected for this project reflect different ocean features and 

characteristics and are related to different physical processes in the ocean, such as ocean currents, 

circulation, ocean-atmosphere interaction, water masses. Currently, observational methods include 

satellites, ocean buoys with equipped sensors, tide gauges, in-situ measurements, and model data. 

The major data sources are: 

* Coriolis Data Center 

* Marine Environmental Data Service, Integrated Science Data Management( GDSI) 

* Met Office Hadley Centre 

* Marine Environmental Data Service/Integrated Science Data Management(GDSI), Fisheries 

and Oceans Canada 

* Fisheries and Oceans Canada/Ocean and Ecosystem Science/ Bedford Institute of Oceanog­

raphy 

* NOAA Satellite and Information Services/National Oceanographic Data Center 
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* National Snow and Ice Data Center 

The primarily physical ocean parameters acquired are summarized in the Table 3.1. 

Arctic Buoy Data,1979-1999 

ARGO- Canadian Tracked Data 

Drifting Buoya 

Coriolill Global Profiles Distribution 

Lagrangian buoys 

GOSUD GDAC s:lobal distribution 

ARGO GDAC global distribution 

Sea Ice Concentration 

Ice Extent 

Ice Velocity 

Water Temperature 

Ice Thicknese 

for NW Atlantic 

Table 3.1: Major Data Sources and Data Sets 

1065368 

24576 

70240 

28400560 

20480 

104948 

44876356 

69632 

6892396 

7794597 

9664920 

11840 

842676 

437856 

275453 

785495 

Each data set also includes data on one or more oceanographic parameters, particularly: 
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* Arctic Buoy Data(1979-1999) include temperature, pressure, position, ic~velocity, and 

ice buoy /CTD. The data sets are divided by year from 1979 to 1999. It is collected from all 

drifting buoys reporting from north of 66 °. 

* Argo- Canadian Tracked Data contain argo-profile and argo-drift data sets with parameters 

such as temperature, pressure and salinity. 

* Drifting Buoys data set include buoy position, date, time and variables such as surface and 

subsurface water temperature, air pressure, air temperature, wind speed and wind direction. 

* Coriolis Global Profiles Distribution include types of profiles such as XBT, CTD, CTD 

from US Ocean Climate Library and Argo float. 

* Lagrangian Buoys from Coriolis Data Center is a trajectory data that is collected in real-time 
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by floating buoys. 

* GOSUD GDAC Global Distribution data include sea surface salinity collected by research 

and opportunity ships. 

* Hydrographic (Climate) data from the Bedford Institute of Oceanography acquired in the 

categories such as climate complete profiles, climate time series, and climate seasonal cycle. 

The data comes from a variety of sources including hydrographic bottles, CTD casts, profiling 

floats, spatially and temporally averaged Batfish tows, and expendable, digital or mechanical 

bathythermographs. Near real-time observations of temperature and salinity from the Global 

Telecommunications System (GTS) are also included. 

* Satellite derived(NOAA/ AVHRR) SST data for the Northwest Atlantic from 1982 to 

2005 is another data set acquired from the Bedford Institute of Oceanography. 

* World Ocean Database is coming from National Oceanographic Data Center and it includes 

drifting buoy data, expendable demographically data, high resolution CTD data, mechanical 

bathythermograph data, moored buoy data, profile float data, and plankton data. 

Most of these data sets are in NetCDF or ASCII format. Selection, organization and retrieval 

of the data for a particular time period and geographical location may be a time-consuming and 

cumbersome process, since some data may overlap, while others may be missing, and some may not 

have appropriate quality control flag. This is where the database can be applied as an effective tool 

for storage and retrieval of the data. 

3.2 Database 

This section describes the oceanographic database(hereafter "the database") that was experimentally 

created using three major data sources from the collection of data described in the previous section. 

Those data sources include: 

* Coriolis Data Center 

25 



Chapter 3 
* Marine Environmental Data Service, Integrated Science Data Management( GDSI) 

* Met Office Hadley Centre 

3.2.1 Relational Database Management System 

The database is composed of multiple tables. Figure 3.1 shows a typical data table instance from 

the MEDS data set. The table divides data into rows, with a new entry (or record) on every row. 

The data in each row is further broken down into cells (or fields), each of which contains a value for 

a particular attribute of the data. For instance, the record for ID 4 77296 is divided into separate 

fields for 'ID', 'pressure', 'temp', 'salinity', 'sig', 'depth', 'source', 'proffieiD'. The rows within a table 

can be arranged by ID, or by any other user specified criteria. It is necessary to have some method 

of identifying a specific record in the table, and in our example, it is identified by 'ID', which is a 

number that is unique to each row or record. This unique field is called the primary key for that 

table. A primary key is an unchanging and it is a unique identifier for each record. 

ID pressure temp salinity sig depth source proffieiD 

477296 5438 2.3 34.88 27.85 5437 meds 61117 

477295 5435 2.39 34.86 27.83 5434 meds 61115 

477291 5251 2.3 34.89 27.86 5250 meds 61116 

Figure 3.1: Typical data table instance from MEDS data set 

The relational database is composed of multiple tables that contain interrelated pieces of information. 

By adding more tables into database, we use the fundamental concept of RDBMS that is creating 

relationships between the tables that make up the database. In applying this concept, we relate 

records in different tables to one another through the use of foreign keys. Foreign key is a column or 

combination of columns used to establish or enforce a link between data in two tables. It serves as a 

point of commonality to link records in different tables together[13]. For example, Figure 3.2 shows 

the instances of two tables(relations) where the referencing table that has a foreign key column 
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references the primary key column of the referenced table. 

space ill long lat time 

61227 179.47 -61.19 20814.5 

61217 179.48 -61.1 20804.6 

61125 179.53 -58.08 20782.4 

Primary Key 

Foreign Key 

ID pressure temp salinity profileiD 

20045 649.1 2.53 34.49 61227 

19039 479.3 2.6 34.36 61217 

18046 294.9 3.41 34.01 61125 

Figure 3.2: Instances of two tables(relations) with Primary and Foreign Keys. It is also an example 
of one-to-one relationship between tables. . 

A relationship could be one-to-one or one-to-many. In an one-to-one relationship, a record in one 

table is linked to one and only one record in another table. Figure 3.2 is also an example of one-

to-one relationship. In one-to-many relationships a record in one table is linked to multiple records 

in another table. Figure 3.3 illustrates an instance of one-to-many relationship from Argo-data, 

January, 2007. 

As soon as a foreign key is set up, the relational database only will allow entry of those values into 

the Data Table, 'profileiD' field, which also exist in the ID Table, 'spaceiD' field. This way foreign 

key constraints can significantly help in enforcing the data integrity of the tables in a database and 

reducing the occurrences of "bad" or inconsistent field values[53]. 

3.2.2 Building Relational Data Model 

The data and the relationships among the data are represented as tables in the database, and each 

individual table in the database has a number of columns with a unique name. A typical relation 
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spaceiD long lat time 

51208 179.897 -5.019 20430.3 

Primary Key 

Foreign Key 

ID pressure temp salinity profileiD 

4672 4.4 29.691 35.565 51208 

4673 10.5 29.692 35.565 51208 

4674 16.8 29.692 35.563 51208 

4675 24 29.679 35.562 51208 

4676 31.3 29.66 35.561 51208 

Figure 3.3: One-to-many relationship between tables 

in the database is represented as a two-dimensional table with the rows corresponding to individual 

records and the columns corresponding to attributes, and it holds information about the objects 

that are represented in the database. The attributes can appear in any order and the relation 

will still be the same, therefore they will convey the same meaning. For example, location and time 

information is represented by 'ID' table with columns for attributes 'spaceiD', 'longitude', 'latitude', 

and 'time'. Similarly, the information on pressure, pressure-qc, temperature, temperature-qc, salinity 

and salinity-qc is represented by 'DATA' table, with columns for attributes 'profileiD', 'pressure', 

'presQC', 'temp', 'tempQC', 'salinity', 'salQC'. Figure 4.3 shows instances of 'ID' and the 'DATA' 

tables. It is important to mention that there is a relationship between 'ID' and 'DATA' tables: each 

point in 'ID' table has data associated with it which is stored in 'DATA' table. There is no explicit 

link between these two tables and it is only by knowing that the attribute 'spaceiD' in the 'ID' table 

is the same as the 'profileiD' in 'Data' table, we can establish that the relationship exists. 

As in the relational data model, a user sees the database as a number of tables which applies only 

to the logical structure of the database. It does not apply to the physical structure of the database, 

which can be implemented using a variety of storage structures[ll]. 
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spaceiD longitude latitude time 

70126 179.9 -61.19 20844.6 

70116 179.83 -61.19 20834.6 

61204 179.89 -58.12 20792.3 

ID pressure pressQC temp tempQC salinity salQC profileiD 

14897 269.4 1 2.36 1 34.14 1 70126 

19789 309.1 1 2.61 1 34.21 1 70116 

12876 259.4 1 3.66 1 34.07 1 61204 

Figure 3.4: A sample instance of a relational schema 

3.2.3 Ocean database main features 

The ARGO data that is organized and stored in the database, can be extracted and displayed 

in any manner and order. Through the database approach we eliminated the data redundancy 

by integrating the ffies in a way that multiple copies of the same data are not stored. However, 

sometimes it is necessary to duplicate key data items to model relationships. Therefore, through 

the database we can control the amount of redundancy inherent in the database. This feature is 

especially important for the oceanographic data that comes from different data sources that may 

overlap spatially and temporarily. By controlling data redundancy, we are greatly reducing the risk 

of inconsistencies that may occur during data manipulation, and if data value is stored once in the 

database, any update to it will be performed only once and the updated value will be available 

immediately. 

The database approach also allowed us to put constraints on the data to ffiter out all the data that 

is not necessary or the data that carries an error. Constraints apply to data items within a single 

record, as well as they apply to relationships between records. For example, integrity constraint 

states that a value in the 'longitude' field cannot be greater than 180 and cannot be less than -180; 
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or for 'latitude' field the value cannot be less than -90 and cannot be greater than 90. Therefore, 

RDBMS allows us during the database design to define and enforce integrity constraints. 

During the design stage of the database we also reinforced the quality and validity of the data, as if 

a measurement procedure has poor validity, any conclusions we draw from data will be misleading. 

A£. such, we assured the quality of the data by placing additional fields such as 'tempQC', 'pressQC', 

'salQC' in the database tables. The value of those fields is restricted to l(one), which denotes the 

quality control of each individual record. Therefore, no data were imported into the database, if the 

values of those fields are different from 1. 

3.3 Structural Query Language(SQL) 

A£. we stated in Section 1.1.5, SQL is the language that every relational database understands and is 

used to communicate and to administer the database. SQL statements that we are using currently 

in our work can be divided into two broad categories, each concerned with a different aspect of 

database management: 

* Statements used to define the structure of a database These statements define the 

relationships among different pieces of data, definitions for database, table and column types, 

and database indices. In the SQL specification, this component is referred to as Data Definition 

Language(DDL). 

* Statements used to manipulate data These statements control adding and removing 

records, querying and joining tables, and verifying data integrity. In the SQL specification, 

this component is referred as Data Manipulation Language(DML). 

3.3.1 Data Definition Language 

Data Definition Language(DDL) is used to create, modify or remove tables and other database 

objects. It includes statements such as 'CREATE TABLE', 'ALTER TABLE', 'DROP TABLE', 

'CREATE INDEX', and so on. 
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* Example of 'CREATE TABLE' statement: 

- mysql> create table medsoceanecosJM0708 select longitude, latitude, time, pressure, pro-

fileiD from medsoceaDATA2, medsoceaniD where medsoceaniD.spaceiD = medsoceanDATA2.profileiD 

and medsoceaniD.Iatitude >= 40 and medsoceaniD.Iatitude <= 80 and medsoceaneciD.Iongitude 

>= -70 and medsoceaniD.Iongitude <= 0 and medsoceaneciD.time >= 21001 and med-

soceaniD.time <= 21245 

*Example of 'ALTER TABLE' statement: 

- mysql> alter table medsoceanDATA5 rename to argoMarAug9494; 

- mysql> alter table argoMarAug9494 drop profileiD; 

* Example of 'DROP TABLE' statement: 

- mysql> drop table argogdacMA0406; 

3.3.2 Data Manipulation Language 

Data Manipulation Language(DML) provides a set of operations that support the basic data manip-

ulation operations on the data that is stored in the database. Data manipulation operations usually 

include the following: 

* insertion of new data into the database 

- The SQL statements 'INSERT' are used to insert new rows of data into database. 

* modification of data stored in the database 

- The SQL statemts 'UPDATE' are used to modify existing rows of data 

* retrieval of data contained in the database 

- The SQL statements 'SELECT' are used to read and extract data from the database. 

This portion of the language has its own name and it is a Data Query Language(DQL). 

The SQL 'SELECT' staments can also be referred as SQL queries 
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* deletion of data from the database 

- The SQL statements 'DELETE' are used to remove rows of data from the database 

32 



Chapter 4 

Cluster Analysis of SST data 

4.1 EM, Farthest-First, and K-Means algorithms 

The data used in this study is the SST analyzed observation for the North Atlantic of the Met Office 

Hadley Center. The gridded SST includes some uncertainty which is related to the sampling spatial 

and temporal resolution. The observing system in the Southern part of the region was traditionally 

better than in the Northern sulrpolar part of the ocean. Hence, the bias of the data due to the 

observational errors is higher in the Northern than in the Southern part of the study area[17], [57], 

[41]. 

The clustering algorithms that are used in this study are K-Means, Expectation Maximization, and 

Farthest-First. All three algorithms are provided within the WEKA framework(Section 1.2.4). For 

all three algorithms we used the same 1950 -1997 SST data set, which was too large in terms of 

WEKA memory usage. As such, the original SST data set was pre-processed and for each year the 

annual mean anomaly was calculated. As an example, Table 4.1 shows the extract of the SST data 

matrix that is uploaded inside of WEKA. The SST data matrix consists of 48 columns and 1468 

rows, where columns represent the the annual mean value for each year of observation and the rows 

represent the geographical locations of the points in the ocean. 
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Figure 4 .1; (al-(p) Farlhes,...Fin!t clustering outj>UL on t.he SST datA set with dilfere3lt number of 
clu!sters. The 'Fart.~est-FirSt. trBversal of n data points yields 11 sequence of ~ooulcrt such that for 
&ny k , the first k oi t- centerS define a k-clusterlug wbieb Is within a factor <woof optlmalj14). 

K-MEANS CLVS't'&llJNO 

The final output of K-Mmm clusterlug l< shown on Figure 4.2. Unlike Fartbeso,.Fin!L algoritluo, t.be 

K-Meana ciU!tering mainly fa.Uod t.o c:fiscover the contiguous areas in the ocean when i.be uUJXlber of 

clusterS is high. This cluste:ring approach sta.rtcd to show some patterns a.ud illust.mte the ooea.n 

areas of homogeneous behtwior for the the number of clusters cloee or below 200. 

ExPECTATION MAXIMIZATION 
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Figure 4.2: {a)-(p), K-Means clustering output on t.he SST dataset with dlffert:nt nUJllb(tr of clusters. 
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The final output of E<rt>ect4tion Mf.IZimuatJon cluster-lug is shown on Figure 4.3. As in EM clustering, 

lhe distribution of clasters in K-~eans is well represented wben the nu:.rober of clusters is cloec or 

balow the 200. The EM algorithm aloo allows one to select numbar of clusre,. automa<lc.Uy by 

""''" vali<Wion, which did yield 17 clus<ers shown on Figure 4.3{p). 

linp!ementation of all three algorit.hrns. resulted in assigning cluster Labels r.o the SST data lnst.ances. 

The outcome of each dust.ering &Jgoclthm t.hat was applied to the SST data set is tt. numeric value. 

The actuftl \'alUe for nev.• instances is or less intcroU. than the structure that W38 learned from 

clustering, M ee.cb of t.be a.lgorlthms clusters the SST time sertti associat.ed with t.he points in the 
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ocean. Tbe su~ of the cli.ISUring is \'tlry oftm measured mbjocti~1y in terms of how u.<~eful the 

results &ppee.r to a human ustr{54),a.nd in the Ut.erature on data mining there is no cleu benchmark 

for the methods of clustering, whl<:b makes it difficult to compare the metbods[l4j. F« evaluating 

tbe performance of the t.hree algodt.luns and comparison of thOS<! mothods, we used Lo$ M&~Jinal 

Likelihood Score and a two-tailed t - te.st, which are also inlpterne:nted within a WEKA £r$1MW0rk 

and d~ribed in the next aect.:ion. 
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4.2 Comparison of' the algorithms 

In this section we compare three clustering algorithms- EM, Farthest-First, and K-Means- in terms 

of the clustering outcome that were implemented on the SST data set using WEKA. The clusters 

are assigned to each SST data instance during the process of carrying out the execution of the 

algorithms, which produces a density based clustering model. The density based model allows us 

to calculate the Log Marginal Likelihood (LML) or Log Likelihood score (Appendix VIII). Just 

as in linear regression, where the squared error is used to measure "the goodness of fit", the log-

likelihood is used instead in logistic regression[56], and calculated for each of the three algorithms 

with different number of clusters. LML score measures how good the particular clustering algorithm 

represents the natural structure inside of the data set[58, 56]. As it is pointed out in a number of 

studies[44, 58, 34, 28], LML score is more suitable measure of "goodness of clustering" for real data 

sets(as oppose to synthetic data sets)[58], where there is no class label or class attribute is present. 

Los Marginal Likelihood Score 

NuDiber of cluaten Farthest First K-Meana EM 

30 28 41795 10 33353 19 99088 

40 34 2925 15 71887 25 42251 

50 37 9951 22 25172 29 53311 

60 41 90246 2581179 33 50167 

70 44 40617 28 28872 37 87987 

80 47 49627 30 16531 42 03299 

90 50 0089 33 31069 44 53679 

100 52 64222 36 48804 46 86435 

110 55 02508 37 81095 49 03036 

120 57 25882 40 63261 51 53814 

130 59 70435 43 52468 53 00262 

140 61 62236 45 50791 55 40301 

150 63 44433 46 97814 58 27816 

160 64 51198 48 51238 60 52072 

170 66 26683 50 06564 62 49992 

180 65 94599 51 08784 64 54388 

190 67 67236 52 77762 66 06232 

200 70 23401 54 29775 67 66619 

300 75 09048 62 04334 71 19217 

400 81 77457 71 15912 74 78973 

500 85 02074 74 56963 78 8818 

600 87 37726 71 37307 80 96763 

700 85 67269 62 99919 69 67469 

800 79 08232 49 18326 50 49671 

900 74 69723 32 35758 27 68141 

Table 4.2: Results on LML Score 

38 



Cluster Analysis of SST data 
One of the features of LML score that is important to mention is that LML score depends on 

the number of attributes and instances in a data table, and therefore, different algorithms can be 

compared with each other in terms of LML score only if they run on the same data set. Table 4.2 

shows the LML scores results from running three above mentioned algorithms on the SST data set 

with different number of clusters. The runs with those three algorithms were performed on the same 

parameters, and LML scores were obtained from 100 runs with the same random seed from 1 to 100, 

similar to what was done by Li et al.[55] in their work. 

00 

"' 
~ "' 
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number of clusters K 

Figure 4.4: Log Marginal Likelihood as a function of cluster size K for a typical run. 

Figure 4.4 shows how the log marginal likelihood varies as function of cluster size K under one 

particular experimental condition. Curves for other experimental conditions of all three algorithms 

are relatively similar. Ail K increases, the marginal likelihood first increases and then decreases, 

which is a penalty for solutions with many clusters and complexity. 

We compare three algorithms with each other by running two-tailed t- test with 0.05 significance 

39 



Chapter 4 
level. Table 4.3 refers to the results of the two-tailed t- test with the annotation wjtjl, which 

indicates that a specific result is statistically better or worse at the significance level specified, where 

w denotes that the algorithm wins in the corresponding row in w data sets, ties in t data sets, and 

loses in l data sets, compared to the algorithm in the corresponding column. 

Farthest-First slightly predominate over both EM and K-Means algorithms, having 13 wins and 9 

loses over EM, and 15 wins and 7loses over K-Means. 

Log Marginal Likelihood Score 

EM K-Means 

EM 12-3-9 

FarthestFirst 13-2-9 15-2-7 

Table 4.3: Summary of Experimental Results 

EM minimally outperforms K-Means having 12 wins and 9loses, which corresponds to the results of 

the test run and experimental comparison of clustering algorithms conducted by Li et al.,[58], and 

Meila and Heckerman[44]. As the authors suggested, EM is preferable in many applications. We also 

would suggest that Farthest-First and EM algorithms can be used in the SST time series data sets. 

Yet, we will continue to use the outcomes from all three algorithms further in this work, partially 

because we would like to evaluate the quality of clustering by adopting a widely used approach in 

the area of data mining, such as comparing the results to a "ground truth" . The results of clustering 

will be assessed on the basis of the external knowledge of how clusters should be structured using 

EOF analysis of the patterns of sea level pressure associated with North Atlantic Oscillation. 
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EOF Analysis of SLP 

5.1 EOF Analysis of SLP 

The EOF method, described in Section 2.2, reduces the dimensionality of the data by introducing 

k principal components (EOFs) that explain most of the variance in the original data with the 

assumption that the rest of the EOFs can be disregarded without losing a lot of information. The 

EOFs with smaller magnitudes do not contribute much of the information, therefore the reduction 

in the dimensionality of the original data is very significant. 

The data that is used for the EOF analysis are time series of monthly mean anomalies of the Sea 

Level Pressure (SLP). The data covers the winter months only (DJF), for the period between 1950 

and 1997. The data cover the area of the North Atlantic. 

Having the SLP data in a matrix form, where the rows consist of time series from various points 

in the area of our interest, that is the North Atlantic, we would like to find the strongest temporal 

and spatial patterns in the SLP data by using EOF method. The eigenvalue for each EOF of SLP 

represents the variance explained by the EOF. The strongest patterns, as it is shown on Figures 

5.1(a, c, e) capture the largest variation of the SLP data. The first three EOFs account for most of 

the variation in the data, explaining 44%, 23%, and 18% of total variance. 

The first EOF of SLP for the North Atlantic and Labrador Sea is shown on the Figure 5.1(a). The 
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-
(b) Time Series SLP SOF1 

----~ 

(e) SLP EOF2 ~ 0.22903 (d) 11me s.n.. SLP ElOP2 

{e) SLP EOF3 ~ 0.1814.1 (f) n ... S.O.. SLP ElOP3 

Figure 5.1: (a}-(1)1 The firet three Strongest £0Fs of the mean SLP anom.Uc:s(1930-1997) 0''" the 
North Adanlie ana Labrador Sea, and die percentage o£ tbe total variance they explaln. 

first EOF spatial pattern shoW$ t\\'0 large regions in the ocean whose mean t~J pressures 1m! in· 

~Y related, which characteri~ and represents tbe North At.la.nt.ic Osc.U.l.Mion(NAO), that: i.s the 
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fluctuations of the atmospheric sea level pressure difference between the Iceland and Azores. The 

NAO is most noticeable during the cold season from November to April, and it accounts for more 

than one-third of the total variance in SLP over the North Atlantic [33]. 

The first EOF in SLP is well separated from the second EOF. 

The second EOF 5.1(c,d) represents the Eastern Atlantic (EA) pattern. The EA pattern has a 

center near Ireland. EA appears in all months except May-August [33] and explains about 33% of 

total variance of SLP. It also contains a strong subtropical link, reflecting large-scale modulations 

in the strength and location of the subtropical ridge[33]. 

The third EOF of SLP accounts for the 18% of variance and shows tendency towards increasing 

starting from 1980s. 

One approach to evaluating ocean climate indices such as the NAO is to look at the correlation of 

the time series representing the NAO with the time series associated with the SST time series, where 

the higher value will indicate a stronger impact. This task we are going to accomplish in the next 

section of this work. 
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The North Atlantic Ocean SST 

index 

The SST interannual short-term fluctuations are driven primarily by the atmosphere through anoma­

lous air-sea fluxes, while the long-term SST patterns with periods over a few decades are driven by 

ocean dynamics, both the wind-driven circulation and the meridional overturning circulation[5], [39]. 

This section is designed to verify the previous studies using data mining outcome of the SST dataset. 

Two approaches are used to calculate NAO SST index. The first NAO SST index is defined as the 

difference of the SST centroids for clusters which show highest positive and negative correlation 

with the first three SLP EOFs. The second NAO SST index is defined as the difference of the SST 

centroids in the years of anomalous positive and negative first three SLP EOFs. 

6.1 North Atlantic Oscillation(NAO} and SST 

The North Atlantic Oscillation(NAO) is defined as the atmospheric sea level pressure(SLP) differ­

ence between Iceland and the Azores. When the Iceland low pressure center is deeper than usual, 

the Azores High is stronger than usual, and vice versa. The NAO is a measure of the strength of 

the westerly winds blowing across the North Atlantic Ocean in the 40 degrees N and 60 degrees 
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N latitude belt, and it is an important feature of atmospheric variability throughout the year, al­

though it is less dominant during warmer seasons[24]. Previous studies have demonstrated that the 

NAO is correlated with large-scale changes in the Sea Surface Temperature(SST) across the North 

Atlantic[5], and NAO driven changes in SST are also most noticeable during the winter season. 

For rest of the year, the influence of the atmospheric forcing related to NAO is mild and therefore, 

the influence on the Atlantic Ocean is minimal. During the positive phase of the NAO, the high 

pressure system intensifies and the low pressure system weakens, which creates a large pressure gra-

client between Azores and Iceland. The seesaw in winter temperatures between western Greenland 

and Europe is a clear evident of high NAO index with stronger than normal westerly winds[24]. A 

high NAO pattern is distinguished in the northeast Atlantic by a reinforcement of the westerlies 

that are pushed further south, and hence by warmer winter temperatures than normal. It is also 

recognized that the existence of an exceptionally strong positive phase of the NAO is the source 

of temperature anomalies and changes in atmospheric moisture transport[31]. The impact of the 

two phases of the NAO can be felt across the entire Atlantic and the surrounding continents, with 

its greatest effect on the storms that move to Europe, creating an area of forward-moving current 

between clockwise and counterclockwise circulation patterns that channels the weather systems from 

the United States to Europe. When the pressure difference between the two systems is large, the 

storms propogate towards Scandinavia and northern France. When the NAO index is negative, the 

winter storms propagate over the southern United States and southern Europe, the Middle East, 

and northern Africa. The direction these storms can take causes large changes in the temperature 

and the weather over Europe from December through March[33]. A positive N AO on average can 

increase rainfall in northern Europe and warm the air at the same region. A negative NAO, on the 

other hand, will bring rain to southern Europe, drop the temperatures in northern Europe [33]. 

Numerous research studies are done to investigate what governs the NAO variability, whether it is 

predictable and at what extent, and whether the ocean plays a role in determining the evolution 

of the NAO. As pointed out by Greatbatch[24], the role of the ocean, and in particular sea surface 

temperature(SST), in regulating the NAO has attracted much attention, but remains controversial. 

The important thing is if variability of the NAO is driven by that of underlying SST, then the NAO 
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can be predicted on the longer than three-week time scale, but the SST must be predictable by 

itself[24]. According to J. Hurrell et.al [33], "statistical analysis have revealed patterns in North 

Atlantic Sea Surface Temperatures(SST) that precede specific phases of the NAO by 6-9 months". 

Studies from observational data done by Czaja and Frankignoul [12] indicate a significant correlation 

between the wintertime NAO and the leading mode of anomalous SSTs from the previous summer, 

which can serve as an evidence for the oceanic forcing of NAO. 

The observed departure of SLP and SST, and air temperature over the land, associated with one 

standard deviation(positive) of the NAO index is shown in Figure 6.1. The change in winter temper­

ature associated with the NAO extends all the way across the Eurasian continent from the Atlantic 

to the Pacific[24]. This is evidence that the NAO is not a regional North Atlantic phenomenon[24]. 

The NAO is important not just for winter surface temperature variability in the North Atlantic 

sector, but for winter surface temperature variability over the northern hemisphere as a whole. The 

NAO is also closely related to a hemispheric mode of variability that is called the Arctic Oscilla-

tion(AO) described by Thompson and Wallace[52], where the AO corresponds to the first EOF of 

SLP variability over the northern hemisphere. The spatial structure of the AO and the NAO are 

closely related and both, the AO and the NAO correlate to the same physical phenomenon[24]. 

Interestingly, some studies investigate the NAO in the relation to the recruitment of the certain fish 

stock in the North Sea through the influence of the NAO on the SST[19],[18],[43]. 
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.... 

• 
(•) 

Figure 6.1: (o)-(b), SLP IUld SST change associrtk ~itb one standard devistion(pos!tlve) of NAO 
index.(Adoptcd from J. Hurrell[32]) 
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6.2 Eastern Atlantic Pattern 

Modes other than NAO also play important role in determining the changes of SST in the North 

Atlantic. Yet, unlike well established NAO pattern, the other modes of atmospheric circulation, such 

as the Eastern Atlantic, Scandinavian and Eurasian patterns are regional. According to Barnston 

and Livezey[1], their signatures are well pronounced only during part of the year and the occurrence 

of this modes is not uniform during the year. The character of the modes, the shape and the 

intensity of their action centers vary seasonally[1]. As Pokorna[47] also points out, very few authors 

pay attention to the circulation modes other than NAO. As we mentioned in Section 5.1, the second 

EOF in Figure 5.1(c,d) represents the Eastern Atlantic (EA) pattern and explains about 23% of total 

variance. The EA pattern is the second of three prominent modes of low-frequency variability over 

the North Atlantic, appearing in all months except May-August[33],[1]. The EA pattern has similar 

structure to the NAO in winter, and consists of a north-south dipole of anomaly centers which span 

the entire North Atlantic. However, its anomaly centers are located farther southward [47]. The 

EA pattern has lower-latitude center and contains a strong subtropical link, reflecting large-scale 

modulations in the strength and location of the subtropical ridge[33]. This subtropical link also 

makes the EA pattern distinct from the NAO pattern. The EA pattern which represents the second 

EOF in our study is similar to that shown in the Barnston and Livezey study[1]. The main cell of 

the EA is located westward of the British Isles and the body of high opposite values extends to lower 

latitudes, over central Atlantic, northern Africa and southern Europe. During the positive phase of 

the EA, the daily maximum, minimum and mean temperature are higher than average and south 

winds dominate[47]. The positive phase of the EA pattern is also associated with above-average 

precipitation over northern Europe and Scandinavia, and with below-average precipitation across 

southern Europe[1]. The EA pattern exhibits very strong multi-decadal variability in the 1950-2000 

record, with the negative phase prevailing during much of 1950-1955 and 1967-1977, and the positive 

phase occurring during much of 1957-1967,1977-1982,1985-1990, and 1977-2000. The positive phase 

of the EA pattern was particularly strong and persistent during 1997-2000. The NAO and the EA 

are the zonal modes and influence temperature more than other variables. They also show high 

correlation with wind directions and these correlations are generally higher in the winter when the 
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circulation modes are better pronounced[47]. 

Interestingly, the EA pattern also depends on the procedure used to derive it[42]. As Lionello P.,et 

al. pointed out, "still, the kind of variability associated with the EA pattern seems important and 

physically real, as it is also detected in studies using alternative techniques, like cluster analysis done 

by Kimoto and Ghil" [37]. 

To expand previous interrelations between the NAO, the EA pattern and SST anomalies, the next 

section will present the results from the study of the connection between SST clusters and major 

patterns in SLP. The clustering outcomes that are used to calculate correlation coefficients are 

obtained from the FarthestFirst, the Expectation Maximization(EM), and the KMeans algorithms, 

described in the sections(2.1.3),(2.1.2), and (2.1.1), and displayed in the Figures 4.1, 4.2, and 4.3. 

Here we will explore if the SST clusters can be potentially applied in deriving climate indices for 

the North Atlantic related to NAO, EA and the third EOF of SLP. The outcome of clustering is 

evaluated on the basis of the external knowledge about how clusters should be structured. Thus, we 

adopted the approach of comparing the results to a "ground truth" and the correctness of clustering 

is estimated against the existing knowledge. 

6.3 Correlation analysis of SST clusters centroids and SLP 

EOFs 

This section introduces the correlation analysis of clustered SST with the modes of variability of 

atmospheric circulation. The evidence of relationships between SLP and SST patterns is analyzed 

by the previous studies in local or regional settings by many scientists. The SST variability in 

the North Atlantic also has been evaluated in a number of research studies. In particular, it was 

found that large-scale temperature anomalies occurred in the North Atlantic Ocean on interannual 

to decadal time scales [16],[39],[27],[51]. It has also been shown that the SST variability can be 

correlated as part of the mixed layer response to variability in surface fluxes [7], [2], [49]. Although, 

"forcing by surface flux variations cannot account for all the observed features of Atlantic Ocean 

variability" [20]. 
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The research by Cayan[7] is done for the wider spatial settings, where the author examines thermo­

dynamic forcing of the upper ocean by relating latent and sensible heat flux to changes in SST over 

Northern Oceans. The main conclusion for his study is the strong similarity in the configuration 

anomalous heat flux and SST tendency patterns in their association with major SLP modes[7]. In his 

work, Cayan[7] uses two separate analysis, Canonical Correlation Analysis and composites according 

to atmospheric circulation anomaly modes. He demonstrates that heat flux and SST anomalies co-

vary with the patterns that extend over the ocean basins. The CCA performed by Cayan illustrates 

the spatial configuration of the connection between heat flux and SST. The structure of the patterns 

of these fields, their interrelationships, and the magnitude of their anomaly centers are similar in 

the North Atlantic and North Pacific. It was established that the heat flux is consistent with atmo-

spheric circulation and significantly correlated with tendencies in SST anomalies. 

In our analysis, the SST shows large-scale patterns of variability that are related to the patterns 

of major modes of SLP variability. These relationships are steady and regular, and the consistency 

of these correlations are confirmed by the use of three different data clustering algorithms, such as 

FarthestFirst, EM, and KMeans. The amount of variance ranges from 18% to 44% over most of the 

North Atlantic, which also authenticated by similar results in the studies done by Cayan[7]. 

The clustering outcomes that are presented in the Section4.1 for the SST field for all these three 

algorithms are not similar, that is, each of the algorithms interpreted the same SST data uniquely 

distinct from each other and the maps yielded from each classification show noticeably different 

outcomes for each algorithm. Despite those explicit differences, portrayal of correlation coefficients 

between major SLP modes and the SST anomalies depicts consistency of the results with small 

dissimilarities from one algorithm to another. 

The correlation coefficient between time series of dominant SLP EOFs(Fig.5.1(a, c, e) and SST 

clusters(Fig.4.1, 4.2, 4.3) are calculated. The optimal number of SST clusters is selected based on 

the analysis done in the previous section(4.2), and the final number of clusters for the further anal-

ysis is determined to be equal to 500. Figures 6.2(a), 6.3(a), 6.4(a), 6.5(a), 6.6(a), 6.7(a), 6.8(a), 

6.9(a), 6.10(a) show the correlation coefficients for the three dominant modes of SLP and for the 

three clustering algorithms. The complete results for the calculations of the correlation coefficient 
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between various number of SST clusters and dominant SLP EOFs can be viewed in the Appendix 

X. 

For EOFl, correlation maps for all three algorithms show positive correlation near the southeast of 

Greenland and in the subtropics. Between these two positive centers lies an area of negative corre-

lations. Figures 6.2(a,b), 6.5(a,b), 6.8(a,b), also show a negative correlation west of Norway, which 

may reflect the impact of the NAO on Norwegian and North Seas. Time series of SST anomalies that 

are positively and negatively correlated with first EOFs of SLP for all three algorithms are shown 

on Figures 6.2(d,e), 6.5(d,e), 6.8(d,e). The time series show that the correlation between SST and 

EOFs has the opposite sign and it is consistent through all three algorithms. Figures 6.3, 6.6, and 

6.9 show the results of correlation between EOF2 and SST clusters for all three algorithms. Figures 

6.3(a,b,c), 6.6(a,b,c), 6.9(a,b,c) identify two large and spatially consistent regions of positive and 

negative correlation centers. The center of the positive correlation corresponds to the region located 

near the Azores and Canary Islands, and the negative center is in the subtropics. Figures 6.4, 6. 7, 

and 6.10 show the results of correlation between EOF3 and SST clusters for all three algorithms. 

Figures 6.3(a,b,c), 6.6(a,b,c), 6.9(a,b,c) identify three regions of positive and negative correlation 

centers, where positive centers are located in the subtropics, and Faroe Island, and the negative cen-

ter is located south of Newfoundland. The time series for the SST anomaly and third EOF for SLP 

are consistent with the results for the first two EOFs, and show negative sign of correlation over all 

time period. The time series that are presented on the Figures 6.2(d,e), 6.3(d,e), 6.4(d,e), 6.5(d,e), 

6.6(d,e), 6.7(d,e), 6.8(d,e), 6.9(d,e), 6.10(d,e) for all three algorithms are the averaged SST-sin the 

areas of highest correlation of the SST with the NAO and they are used to define the NAO climate 

index. All the results are consistent with the previous studies of the North Atlantic Oscillation and 

Eastern Atlantic Pattern [12],[2],[24]. 
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(•) 

(b) (c) 

• 

• ":..--""'"--·----
Figure 6.2: (a)Correlatlo~d)cooffieienta for the 1'\lrtheroFir .. clus<ering ~~tput for 500 clusters and 
EOFl of SST data set;(b)·(e}, Areas of maximum poelUve and negative <lOrrelation and the time 
.. ri.,. of SST anomaly pooitively Md negatiYely correlated to EOFI for t'artberstFim clustering 
algorithm using 500 clu<te ... 

53 



(b) 

·------=-~--~====~·~-~·~----, ur 
• 

• 

.. 
• ----- ... --·---

Chapt.u6 

<•l 
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(d) (e) 
Figure 6.3: (a)Correlation OOeffic)eux.s for the fu~bersFirsl. clustering output for 500 clusters a.nd 
EOF2 of SST data ee';(b)~(e), A.reM or mt\Xlmum positive and negative oom:Jat.lon t.nd c.be t.ilne 
series. of SST anomaly poffl~IVely ~d negl'lth'ely oonelated to EOF2 fur Fhrtht'CSlFSrst. clustering 
algorithm uslng 500 clusws. 
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Figure 6.4: (e.)Corre.Le.OOn coeffietents for t.he FhrtbarsFirst clustering OUtplJt for 500 cluster"& and 
EOF3 of SST data set;(b}-(~J. Atee.s of tlltUdmum positive and DEWlth-e oorret.tion e.rad the dme 
8CJ"i($ of SST anomft.ly positiVely and negat.ivcb' correlated to EOF3 for F$rther.stPinJt. clust-ering 
a.l~oritbm uRing 500 clus(,eJ'S, 
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f~gure 6.5: (o)Correlwon eoofficltntO for the EM cl .. teri"l! output (O< 500 clll6ters and EOFI of 
SST d6u .. t: (6)-(e), A«M or mulrouw poelt!ve and n<g•llve -rolotlon IUld the lime "'"ks of 
SST ooomaly po&itlve!y and n•gat!voly corrt!lated "' EOFI for BM t),..,.rinj! ~ithm wdng 500 
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Figu"' 6.7: (a)Coutlalion ... flidonta for the EM clusteing OUlput £of 500 cl..,ters and E0£'3 of 
SST dat.a ICt<; (b}{e), AN!M or mliXimum poeitlve a.od negatlw- correlation &Jld t.be time seTiel or 
SST anomaly poditi~ly lllld nf•gat.l\•ely corrclated to EOFS for EM c:IUBtclring algodthtn using 1500 
oiiiSters. 
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(d) (e) 
Figure 6.8: {a)CorrelWon ooef6cleuts for the KMeans clustering output ror 500 clus~.erS and EOFl 
of SST data set; (bl-(e), Aret\8 or maximum positive and ne!P.'th-e COC'l'dAtion and the ~ime series. o! 
SST anomaly J)OSlh'o-efY &Dd negatlvety oorrcllt.ted t.o EOFl for KMeans clustering algorithm U8ing 
500 clusters. 
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(d) (o\ 

F.i.gurc 6.9: (&)Correlation CoeffieJents for the KMett..ns clustering output for 000 clusters and EOF2 
of SST data seii (b}o(e), Ate&B or m&Jdmum PQBit.lve and n~alive correlation and the time SCTi£8 of 
SST anom&Jy po&th-el}· and negath-el,)• oorrelated to E0f'2 for KMeans clustering algorithm uaing 
500 clust.erw. 
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(b) (c) 
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Figure 6.10: (•)Corr<l•t.J~)c:oeffic:ienta for the KM..,. clustering output)ror 500 cluste111and BOF3 
of SST data aet; (b)-(e). Areas of maximum poeithte and negative cOrrela.Won twd the Ume serles of 
SST anomacy poaitl~ ODd negotivoly oorrelaled to EOF3 for KMee.ns clust<ring algorithm uolng 
500 clusters. 
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6.3.1 SST patterns related to anomalous hlgb and low indices of NAO 

and .EA 

To test ihe ocmsi!tency of pattern& bet:wecn the beAt flux and SST tendency anomali~~ Cayan 171 

examine& this Unbge for the ease of st-rong a.nomAl.OU$ atm08phtr ie ci..reu.lataon. The oomposlte 

differences associated with pa;itive and ne.gat.h<e extremes of the. first t'\\'0 SLP E.QFs from Cayao 

a.re shown on Fig 6.11. The differences t.hat are significantly different from zero are indicated by 

shaded &refiS. Ca.yan confirmed by his findings tha.t the major regions of significant SST anomaly 

tendencies are closely matched to thoee of beat fl ux, supporting the view that they are linked. 

In the attempt to determine the connection between the SS'f and the major three modes of SLP 

during strong anomalous at:tnaspheric circulation, v.-e identified extreme positive and oegath•o EOF 

amplitudes for each oi the EOF of SLP. Then, the compa;.ites of SST were fonned by averaging 

this field during the. respecth-e extreme- EOFs. As in Cayani1J, tho composites .. 'ere exp~ as a 

djfferenoe betv.•een averages of positive( strong) and negative( weak) phase of the EOF of SLP. 

'The compo:~ite difrereooee Bl'l80Ciated 'A*itb 'POI'itl.,oe ~d negative extremes of the first th.ree SLP F.OPs 

fQC' Mch of the three clustering e.lgorithms e.nd t.hdr time $rl<'!:l are shown respectively on Figu-res 

6.12(o,b,c,d), 6.13(•,b,c,d), 6.J4(•.b,c,d), 6.15(•,b,c,d), 6.16(•,b.c,d), 6.17(a,b,c,d), 6.18(a,b,c,d), 

6.19(a,b,c,d), 6.20(o,b,c,d). 

FOe <he.,...., or Lheext:reme NAO otmoophedc dreulation potl.ml, for all three clustering algorithms, 

~are Bbowu on Lhe Figwtt~6.12(a,b,c,d), 6.15(a,b,c,d), 6.18(a,b,c,d), <be NO<Lh At.l&lUc OOW>ls 

partitioned Into se~l regions tb&t are the follor.Jling: 

1. Suoug pooiti"" region loc8lized In the are of South, West &.nd East of Greenl3lld, between 45 

degree6 N end 60 degrees N. This area metchea with Cayan's findings, with the exception ot the 

re&ion contained in the North-Wes\ of Gree.nle.nd, $lid the sign or it. is negative. 

2. Seoond s~rong positive region Is e. rele.~ivety wide region that extends a.long the Cui( Stream to 

the oentral North Atlantic.. This area is Mso ln sync wi'h the CayM map. 

3. Tile third major •rea tbot also corr<Spoods to C.yo.n 6ndiugo, 18 t.be •-llet-n 00 des>""" W 

Oll.d NO<t.b Mrl~ 
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4. Another strong, but spatially smaller area is located above Great Britain, which also can be 

located Cayan [7], again with the opposite sign. 

5. Our findings indicate another small area, north of Iceland and North-East of Greenland, between 

65 degrees Nand 70 degrees N. This area has strong negative sign, but is not located on Cayan's 

chart. 

All three algorithms show notable consistency for the regions described above, with the small de-

viations in the magnitude of the correlation. The time series for all three algorithms also show 

good consistency throughout the years. The SST patterns that are related to the positive NAO are 

more representative than those that relate to the negative NAO. The time series of the negative, 

positive and the difference of average SST for the extreme EOF1, Figures 6.12(b,c,d), 6.15(b,c,d), 

6.18(b,c,d), show opposite signs during the period between years of 1990 and 1995. The reason most 

probably can be referred to some degree of error in the calculations or in the data itself. 

We assume that the regions of significant SST differences for NAO are also closely matched to those 

of heat flux, supporting the view that they are linked [7]. 

For the EA(EOF2) atmospheric circulation pattern, for all three clustering algorithms shown on the 

Figures 6.13(a,b,c,d), 6.16(a,b,c,d), 6.19(a,b,c,d), the North Atlantic ocean is partitioned into the 

following regions: 

1. The area of strong positive differences in the central North Atlantic, between 45 degrees Nand 

55 degrees N. The area is consistent with the findings of Cayan, and again with the opposite sign 

for the feature. 

2. Small area of the negative difference at the 60 degrees W, whereas the Cayan's map shows that 

the area is slightly shifted to the East. 

The major feature for the EA pattern that differs our findings from the Cayan's ones is the area 

that occupies the pathway that runs from West of Greenland to the Labrador through the Labrador 

Sea. 

3. There are also small areas of the SST differences with negative signs that are located east of 

Greenland, above the Iceland, that are not shown at Cayan's chart. 

4. The small area with the negative sign fills the area in the North Atlantic at the 40 degrees N, 
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which is slightly shifted from the location on the Cayan's map. 

AB in the case with the extreme NAO circulation pattern, the time series of the negative, posi­

tive and the difference of average SST for the extreme EA(EOF2), Figures 6.13(b,c,d), 6.16(b,c,d), 

6.19(b,c,d), show opposite signs during the period between the years of 1990 and 1995. 

We also consider the third EOF, and run the above described procedure, as the third mode for the 

SLP accounts for 18 percent of variance in the data. The outcome for the EOF3 atmospheric circu­

lation pattern, for all three clustering algorithms shown on the Figures 6.14(a,b,c,d), 6.17(a,b,c,d), 

6.20(a,b,c,d). 

For the state of the extreme EOF3, we see one main region with negative sign that is located south­

east of Newfoundland and occupied the area from 40 degrees Wand 60 degrees W. The time series for 

the negative, positive and the difference of average SST for the extreme EOF3 are shown on Figures 

6.14(b,c,d), 6.17(b,c,d), 6.20(b,c,d). The time series are less pronounced, yet they do not show oppo­

site signs during the period between the years of 1990 and 1995, as in the case with EOF1 and EOF2. 

64 



The North Atlantic Ocean SST index 

(a) 

Figure 6.11: (a)-(b), Difference of average SST ~omaly tendency associated with positive vs. neg­
ative extremes of EOFl and EOF2 of North Atlantic SSP.(Adopted from D. Cayan[32]) 
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(a) 

• *"----- ·..,.·- ·---
(b) (<) 

Figure 6.12: (a)-(d}, Difference of &\'tl:ragc SST(~ated with poiitive and ntog&d\'e extremes of 
EOFl ofl'loctb At>aut!eSLP IWd their related normolited nocmolited by one STD time-oed,.(Axis 
Y for (b), (e), (d)) for <he f'orlherstfinlt algorithm. Axis X for (b), (c), (d) repre.o;enUI <i""' in years. 
Axis X for (a) represents longitude, Axes Y for {&} represents latitude. 
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~ 513• (a}-(ol), DID...,.,. o! ·-SST1~a•od w>th _,;,,. NOd ~,,. """""""'Ill 
EOF2 of North A!Wttlc SLP and their "'"'ted ~ n<.-mAlized by""" STO tlmo-eerieo(Axll 
Y £<>< (b), (c), (d)) for tho fllrtbe111tFU.1 algorllhm. AJtiA X for (b), (c), (d) n:J)< ... n~ <lme in Y""l1. 
Axlt X for (•) rep,...,., longitude, Axil Y for (a) rep.-.t.o lalltu<le. 
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.. 
•• 

(•) 

(b) (e) 

(d) 
F;gure 6.14: (o).(cl), Difference of avctO&'> SST """"'•t.ed with pooltive and n<gative ex<remts of 
EOF3 of North Atl .. tlc SLP Md their reiAt.ed normallz.ed by one SID tim .. serles(Axls Y for (b), 
(c), (d)) for the FanberstFirst ~orit.Jun. Axis X lor (b), (c), (d) rnp""""ts Ume in )"8l'S. Axis X 
for (a) rcpre!lcnts Jongit;:ude, AmY (or (a) rcprcsants lat.itude~ 
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(b) (e) 
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F',gure 6.15: (c)·(d), DJJl'erenoe of ave~ SST(~iol<d with poolthoc and negati"" extremes of 
EOFl of NO<'th ALlantie SLP and tbelr relA<ed nOI'lllll!ized by one STD tim~serfes(Axis Y for (b), 
(e), (d)) for the EM algorithm. Axis X for (b), (c), (d) rep""""'ts time in years. .'oris X for (a) 
represent.! Joogitude1 Axis Y for (a) representslalittude. 
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(d) 
Figure 6.16: (a}(d), DUre~ce of avera.ge SST ii.S&Ociatod wit.h positi\"8 and negative extremes of 
EOF2 of Noril> AtlMtic SLP and their ~Late<! uormali><d by ono STD tim<H~<~ries(Axis Y for (b), 
(e), (d)) for tbe EM &lgorithm. Axis X for (b), (e), (d) rep,..ento tlme In yw-s. Axis X for (a) 
reptteenLS longitude. Axi.a. Y for (a) represents IBtitude. 
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(b) (e) 
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(d) 
Figure 6.17: (a)-(d), Differente of aveltk.ge SST associated with poelt.ive and negt~.ti\•e ext.reO"'eS or 
EOF3 of NOrth A<lan<lc SLP and their rela<ed nonnallzed by one S'tO <i,..aeries(Altis V for (b), 
(c), (d)) for the EM ~thm. Axis X wr (b), (c), (d) rop....,ts time in ye4D. Axis X {O< (&) 
represents longitude, Axis Y fM (a) reprase:ntt latitude. 
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Figure 6.t8: {a}-(d), Ditferenee of b.\'tl'8.gt SST(~latcd with padtive and negative extremes o( 
EOFI of North Adamlc S.LP 8Jld lbelr related oo.-m.u..d by one STD timo-S<ri.,(Axis Y for (b), 
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The North Atlantic Ocean SST index 
6.4 MOC 

The Labrador Sea and the Greenland/Iceland/Norwegian (GIN) Seas of the North Atlantic Ocean 

are two of the few places where the deep waters of the world ocean are known to be renewed, and the 

newly formed dense waters spread into the rest of the global ocean. This phenomenon is part of the 

thermohaline circulation(THC). The key features of THC include deep water fomation, spreading of 

deep water from sources, and upwelling of deep water[17]. The THC that is associated with North 

Atlantic Deep Water contributes to the global ocean circulation termed as the "Conveyor Belt". It 

is also referred as the meridional overturning circulation (MOC). The term MOC, however, is more 

accurate and well defined, as it is difficult to separate the part of the circulation which is actually 

driven by temperature and salinity alone as opposed to other factors such as the wind. 

There are observations that support the fact that the North Atlantic THC is consistent with the 

SST variability and that "the multidecadal SST variability is closely related to variations in the 

North Atlantic thermohaline circulation[41], and that the variations in the North Atlantic THC are 

reflected in large-scale SST anomalies[41],[55],[15]. Changes of THC are important for climate, but 

there are no good methods to observe THC, therefore we try to identify SST index that would 

provide information about MOC. 

The MOC index is computed from the ECMWF coupled ocean-atmosphere-sea-ice reanalysis(data 

source KNMI- Royal Netherlands Meteorological Institute). Period of Study 1960- 1998. The MOC 

index is defined as the maximum of the overturning streamfunction calculated from ECMWF ocean 

reanalysis. The correlation map and the time series of the averaged SST for all three clusters and 

MOC are shown on Figures 6.21(a,b,c,d), 6.22(a,b,c,d), 6.23(a,b,c,d). 

The correlation maps for all three algorithms Figures 6.21(a), 6.22(a), 6.23(a) show well pronounced 

dipole structure with the negative correlation around Azores and positive correlation around Iceland. 

There are also relatively small areas with positive and negative correlation, south of Nova Scotia, in 

Hudson Bay, and in the Gulf of Mexico. 

The time series for all three algorithms, Figures 6.21(b,c,d), 6.22(b,c,d), 6.23(b,c,d), also show 

good relationships between SST and the MOC. The opposite sign of correlation between the years 

approximately between 1987 and 1997, confirms the discrepancy in the SST data or possibly in the 
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calculations of the clusters for those years. Close connection between SST clusters and the THC 

exists during the whole time period from 1957 to 1980. For the period from 1980 to 1987 we observe 

that both curves show the same tendency, although the magnitude varies, especially for the period 

between 1973 and 1976. A good correlation is shown starting from 1993 and up. The beginning 

of the study time period, from about 1961 to 1963 shows a similar tendency, but with a greater 

difference than in other years. We assume that there was not enough data or not enough high 

quality data for that period. More data SST should be investigated using the similar techniques 

to see if the results will be more accurate. Yet, we can assume that our results are comparable 

with the work of Latif et al. [41], where the simulations in coupled ocean-atmosphere models show 

that variations in the North Atlantic THC are reflected in large-scale SST anomalies. More data 

should be investigated to study the option of using data mining principles and cluster analysis in 

monitoring future changes in THC strength and its predictability using SST clusters. 
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Chapter 7 

Conclusion 

Through application of data mining and clustering techniques to the oceanographic Sea Surface 

Temperature data we obtained valuable information about how these clusters map on the natural 

structure of the problem. We investigate the relationships between the NAO and SSTs over the 

North Atlantic basin and detect a significant causal relation of SST with the dominant atmospheric 

circulation pattern. This influence is mainly centered over the Gulf Stream, the Greenland and 

the subtropics areas, which are the centers of the typical tripole pattern, which may represent the 

effect of positive feedbacks between the atmosphere and ocean in this region. Testing three different 

data mining algorithms in this context allows us to better outline possible sources of uncertainty 

for the NAO and EA indices. As was mentioned in the previous chapter, between two main data 

mining classification techniques such as supervised and unsupervised, we have chosen unsupervised 

classification or clustering, since we can not predetermine the set of classes in advance. Thus, 

since the clustering is done in a completely unsupervised manner, finding that the cluster structure 

is reasonably mapped onto the true classes supports the hypothesis that algorithms described in 

this study, such as FarthestFirst, Expectation-Maximization (EM), and KMeans are capable of 

discovering the ''true structure", the one that is inherent in the data. However, it is observed that 

perfect classification is not achieved and it is also observed that different methods of cluster analysis 

are effective at detecting different kinds of clusters, so, different clustering algorithms are biased 
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toward finding different types of cluster structures in the data. Therefore, the approach in this 

study was to try to match the method to the objectives, and "apply a cluster analytical tool that is 

effective in detecting clusters for the problem that we want to solve" (26]. Quantifying the clustering 

results is difficult and the validity of clustering is often subjective, as it depends to some degree on 

the eye of a researcher, and if the clusters produce interesting scientific insight, it can be judged as 

being useful(57]. Following this strategy, we did not obtain a direct assessment of the goodness of 

clusters per se; in exchange, we obtained valuable information about how these clusters map on the 

natural structure of the problem, something that may be more interesting than evaluating a single 

or few indirect performance parameters. To evaluate the quality of clustering and overall results, 

we adopted the approach of comparing the results to a "ground truth". The results show that 

the clustering method applied to SST compares favorably with the approach described in previous 

studies of dominant patterns of interannual variability in the North Atlantic and the results achieved 

are comparable with those obtained by the authors (7], (20], (53], (50], (18]. This comparison should 

be used as a possible conformation of the validity of the method that besides Sea Level Pressure, 

Sea Surface Temperature can be used as another parameter linked to the North Atlantic Oscillation. 

7.1 Future Work and Recommendations 

The classification step is the most computationally intensive step in the process, requiring up to 24 

hours to classify large amount of instances. Since in the long run we want to apply the process of 

unsupervised classification or clustering to the "ARGO-DATA" database described in Section 3.2 

that contains millions of instances, it is vital to examine new methods for reducing the computational 

time and to scale the entire classification process to accommodate massive amount of data in a timely 

manner. 

There are two approaches that can be investigated and compared with each other by the outcomes. 

* The first approach of scaling the process is to parallelize the learning algorithm by splitting it 

up into parallel portions and executing the splitted portions of the code on multiple processors 

to get the results. Parallel algorithm will perform the job faster than the serial(sequential) 
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one, but it may be possible that the entire sequential algorithm or part of it will be inherently 

serial, i. e. the algorithm can not be split up into parallel portions. Therefore, the second 

approach can be used. 

* Second approach partitions the data by itself into subsets, allocates those subsets to different 

processors and applies a sequential algorithm to each data subset. Second approach does not 

alter the algorithm, and allows the classification results be combined from each processor to 

one single classifier. This approach is received an attention mainly because of two reasons: 

it reduces execution time and improves classification accuracy[37]. The execution time is be-

coming shorter because the expensive classification step is allocated among several processors. 

The accuracy of classification is improved because each of the distributed classifiers makes 

different types of errors and the resulting classification is often more accurate than that of a 

single classifier [ 4 7]. 

Most of the previous work on combining classifiers is done using supervised classification algorithms[46, 

47, 37]. Since we cannot predetermine the set of classes in advance, we are using unsupervised clas-

sification or clustering. Therefore, the schema of the future work should include, first, determining 

the likeliness or similarity between classes that are outcomes from different classifiers, and then 

determining how to combine the results when classifying a particular instance. The process will 

involve writing the programs that will distribute the data and then gather the results. 

Both, first and second approaches can be implemented and then evaluated using parameters such 

as execution time, speedup, and efficiency. 

Furthermore, we would suggest that: 

* More research work should be done that would test existing algorithms and build new algo-

rithms that are applicable to time series data, as the "standard" algorithms that comes with 

data mining software such as WEKA may not always be applicable. 

* The results of the clustering algorithms presented in this study should also be compared to 

results of other methods both supervised and unsupervised. The comparison will yield the 

methods that are much fitted to the data with similar temporal and spatial characteristics. 
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* More research needs to be done to apply clustering methods to Ice Concentration data. Most 

of the work is completed successfully, and the clustering was implemented on the Ice Concen-

tration data using Farthest-First algorithm. 
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I Mathematical Relations 

To understand the true meaning of the term relation, it is useful to review some concepts from 

mathematics. Suppose that we have two sets, D1 and D2, where D1 = {2, 4} and D2 = {1, 3, 5}. 

The Cartesian product of these two sets, written D1 x D2, is a set of all ordered pairs such that 

the first element is a member of D1 and the second element is a member of D2. An alternative way 

of expressing this is to find all combinations of elements with the first from D1 and the second from 

D2. Thus, we will have: 

Dt x D2 = {(2, 1), (2, 3), (2, 5), (4, 1), (4, 3), (4, 5)} 

Any subset of this Cartesian product is a relation. For example, we could produce a relation R such 

that: 

R = {(2, 1), (4, 1)} 

We may specify which ordered pairs will be in the relation by giving some condition for their selection. 

For example, if we observe that R includes all those ordered pairs in which the second element is 1, 

then we could writeR as: R = {(x,y)lx E Dt,y E D2, andy= 1} 

Using the same sets, we could form another relationS as: 

S = {(x,y)lx EDt, y E D2, and x = 2y} 

or, in this instance, 

s = {(2, 1)} 

since there is only one ordered pair in the Cartesian product that satisfies this condition. We 

can extend the relation to three sets. Let Dt. D2 , and D3 be three sets. The Cartesian product 

D1 x D2 x D3 of these three sets is the set of all ordered triples such that the first element is from 

D1, the second element is from D2, and the third element is from D3. For example, suppose we 

have: D1 = {1,3}, D2 = {2,4}, D3 = {5,6} 

D1 x D2 x D3 = {(1, 2, 5), (1, 2, 6), (1, 4, 5), (1, 4, 6), (3, 2, 5), (3, 2, 6), (3, 4, 5), (3, 4, 6)} 

Any subset of these ordered triples is a relation. We can extend the three sets and define a general 

relation on n domains. Let Dt, D2, D3, ... ,Dn ben sets. Their Cartesian product is defined as: 
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D1 x D2 x D3 x ... X Dn = {(d1 EDt,~ E D2, ... ,dn E Dn} 

Any set of n-tuples from this Cartesian product is a relation on the n sets. 

II Metric spaces 

A metric space (x, p) consists of a set x and a distance function p: x x x -+ R that satisfies the 

three properties of a metric: 

(1) Reflexivity: p(x, y) ~ 0 with equality iff x = y 

(2) Symmetry: p(x,y) = p(y,x) 

(3) Triangle inequality: p(x, z) ~ p(x,y) + p(y, z) 

III Distance Measures 

Many data mining techniques such as nearest neighbor classification methods, cluster analysis, and 

multidimensional scaling methods, are based on similarity measures. There are two ways to obtain 

measures of similarity. One way is they can be obtained from the objects themselves, and second way 

is when it is necessary to give a precise definition of "similar". The formal definition of "similar" al­

lows one to define "dissimilar" by applying a "suitable monotonically decreasing transformation" [27]. 

Therefore, if s(i, j) denotes the similarity and d{i, j) denotes the dissimilarity between objects i and 

j, then possible transformations include d(i,j) = 1- s(i,j) and d(i,j) = J2(1- s(i,j)). 

The definitions such as distance and metric are used to denote a measure of dissimilarity. Dis­

tance refers to a dissimilarity measure taken from the characteristics describing the objects - as in 

Euclidean distance. The Euclidean distance between the ith and jth objects is defined as 

(1) 
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where n is the number of data objects with p real-valued measurements on each object; and a:( i) 

is the vector of observations for the ith object: a:(i) = (x1 (i),x2 (i), ... , xp(i)), 1 2: i:::; n, where the 

value of the kth variable for the ith object is xk(i). 

Metric is a dissimilarity measure that satisfies three conditions: 

1. d(i,j) 2: 0 for all i and j, and d(i,j) = 0 if and only if i = j; 

2. d(i,j) = d(j, i) for all i and j; and 

3. d(i, j) :::; d(i, k) + d(k, j) for all i, j and k. 

A common strategy to standardize the data if the variables are not compatible is to divide each of 

the variables by its sample standard deviation, so that they are all regarded as equally important. 

The standard deviation of the kth variable Xk can be estimated as 

(2) 

where J.tk is the mean for variable Xk, which can be estimated using the sample mean x = ~ L:~=l xk(i). 

In addition, knowing the relative importance of each variable, we can weight them to have the 

weighted Euclidean distance measure, such as 

(3) 

This property may not be always appropriate in the case when variables are highly correlated and 

one of the approaches of standardizing the data in this case is not just in the direction of each 

variable, as with weighted Euclidean distance, but also taking into account the covariances between 

the variables. If we assume that we have two variables X and Y, and also assume that we have 

n objects, with X taking values x(1), ... , x(n) and Y taking values y(1), ... , y(n), then the sample 

covariance between X and Y will be defined as 

1 n 
Cov(X, Y) = ;,: ~)x(i)- x)(y(i)- y) 

t=l 
(4) 

where x is the sample mean of the X values and y is the sample mean for the Y values. The 

covariance Cov(X, Y) is a measure of how X andY vary together: Cov(X, Y) will have a large 
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positive value if large values of X tend to be associated with large values of Y and small values of 

X with small values of Y. If large values of X are associated with small values of Y, Cov(X, Y) will 

take a negative value. In general, with p variables we can construct p x p matrix of covariances, in 

which the element (k, l) is the covariance between the kth and lth variables, and from the definition 

of covariance above, such covariance matrix must be symmetric. The value of the covariance depends 

of the ranges of X and Y. This dependence can be removed by standardizing, dividing the values 

of X by their standard deviation and the values of Y by their standard deviation. The result is the 

sample correlation coefficient p(X, Y) between X andY: 

(5) 

The same way as a covariance matrix can be formed if there are p variables, in the same manner 

p x p correlation matrix can be formed. Covariance and correlation capture linear dependencies 

between variables, therefore the more accurate terms are linear covariance and linear correlation. 

Thus independence implies a lack of correlation, but the reverse is not generally true, as it may show 

non-linear correlation. 

There is a number of other metrics for quantitative measurements, so the problem is not so much 

defining one but rather deciding which is the most appropriate for a particular situation[26]. 

IV K-Means 

As an algorithm, the K-Means method is as follows: assuming we haven data points D = { x1. ... , xn}, 

our task is to find K clusters { C1. ... , C K}: 

fork= 1, ... , K let r(k) be a randomly chosen point from D; 

while changes in clusters ck happen do 

form clusters: 

for k = 1, ... , K do 

Ck = {x E DJd(rk,x) :5 d(rj,x) for all j = 1, ... , K,j =f k}; 

end; 
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compute new cluster centers: 

for k = 1, ... , K do 

Tk = the vector mean of the points in Ck 

end; 

end; 

V Expectation Maximization(EM) 

EM clustering method is designed to solve the the missing or hidden data problems in a likelihood 

context. Particularly, let D = x(1), ... , x(n) be a set ofn observed data vectors. Let H = z(1), ... , z(n) 

represent a set of n values of a hidden variable Z, which is in one-to-one correspondence with the 

observed data points D; that is, z(i) is associated with data point x(i). We can assume Z to be 

discrete, in which case we can think of the unknown z(i) values as cluster labels that are hidden. 

We can write the log-likelihood of the observed data as: 

l(B) = logp(DIB) =log L(p(D, HIB) (6) 
H 

where the term on the right indicates that the observed likelihood can be expressed as the likelihood 

of both the observed and hidden data, summed over the hidden data values, assuming a probabilistic 

model in the form p(D, HIB) that is parametrized by a set of unknown parameters B. Let Q(H) be 

any probability distribution on the missing data H. Then the log-likelihood can be written as: 

l(B) = logp(DIB) =log L(p(D, HIB) (7) 
H 

Let Q(n) be any probability distribution on the missing data H, We can then write the log-likelihood 

in the following fashion: 

l(B) = logp(DIB) 

= 1 "'Q(H)p(D,HIB) 
og~ Q(H) 

H 
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> "Q(H) log p(D, RIO) -1f' Q(H) 

1 
= L Q(H) logp(D, HIO) + L Q(H) log Q(H) 

H H 

= F(Q,O) 

Appendices 

The function F(Q, 0) is a lower bound on the function we wish to maximize( the likelihood l(O)). 

The EM algorithm alternates between maximizing F with respect to the distribution Q with the 

parameters 0 fixed, and then maximizing F with respect to the parameters 0 with the distribution 

Q = p(H) fixed. Specifically: 

E-step: Qk + 1 = argmaxQ F(Qk, Ok) 

M-step: Ok + 1 = argmaxe F(Qk + 1, Ok) 

E and M steps have a simple interpretation. In the E-step we estimate the distribution on the hidden 

variables Q, conditioned on a particular setting of the parameter vector Ok. Then, keeping the Q 

function fixed, in the M -step we choose a new set of parameters Ok + 1 so as to maximize the expected 

log-likelihood of observed data (with expectation defined with respect to Q = p(H). In turn, we can 

now find a new Q distribution given the new parameters Ok + 1 , then another application of the 

M-step to get Ok+2 , and so forth in an iterative manner. As sketched above, each such application of 

theE and M steps is guaranteed not to decrease the log-likelihood of the observed data, and under 

fairly general conditions this in turn implies that the parameters 0 will converge to at least a local 

maximum of the log-likelihood function. 

To specify an actual algorithm we need to pick an initial starting point( for example, start with either 

an initial randomly chosen Q or 0) and a convergence detection method(for example, detect when 

any of Q, 0, or l(O) do not change from one iteration to the next). The EM algorithm is similar to 

a form of local hill-climbing in multivariate parameter space( as discussed in earlier sections of this 

chapter) where the direction and distance of each step is implicitly and automatically specified by 

theE and M steps. The method is sensitive to initial conditions, so that different choices of initial 

conditions can lead to different local maxima. In practice it is usually wise to run EM from different 

initial conditions to decrease the probability of finally settling on a relatively poor local maximum. 
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The EM algorithm is widely used given the broad generality of the framework and the relative ease 

with which an EM algorithm can be specified for many different problems. 

The computational complexity of the EM algorithm is dictated by the number of iterations required 

for convergence and the complexity of each of the E and M steps. The algorithm can often converge 

to the general vicinity of the solution after only a few (10-15) iterations. The complexity of the E 

and M steps depends on the data and for many simple models the E and M steps need only take 

time linear inn, i.e., each data point need only be visited once during each iteration. 

VI FarthestFirst 

Hochbaum and Shmoys (1985) introduced the Farthest-First traversal of a data set as an approxi­

mation algorithm for what is sometimes called 

the k-center problem, that of finding an optimal k-clustering under the cost function. The cost of 

clustering is taken to be the largest radius of its clusters. 

The Farthest-First starts by assigning each data instance to its own cluster. It finds the Euclidean 

Distance between all instances in each pair of clusters. The maximum of these distances is chosen. 

Any two clusters that have minimum of this chosen distance are merge. The process is continued 

until the total number of clusters is above some specified threshold(59]. The algorithm of Farthest­

First tmversal is described as follows: 

pick any z E Sand set T = {z} 

while ITI < k 

z = argmaxxesp(x, T) 

T=TU{z} 

This builds a solution T one point at a time. It starts with any point, and then iteratively adds the 

point farthest from the ones chosen so far. According to Hochbaum and Shmoys(29], the solution of 

the farthest-first traversal may not be perfect, but it is close to optimal, that is for any k if T is the 

solution returned by farthest-first traversal, and T* is the optimal solution, then 

cost(T) $ 2cost(T*) 
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VII Nearest-Neighbor Clustering 

In the nearest-neighbor or single link clustering method each new instance is compared with existing 

ones using a distance metric, and the closest existing instance is used to assign the class to the new 

one [27, 4]. Usually the starting point for the process is the initial clustering in which each cluster 

consists of a single data point, so that the procedure begins with the n points to be clustered. 

Nearest-neighbor defines the distance between two clusters as the distance between the two closest 

points, one from each cluster: 

{8) 

where d(x, y) is the distance between objects x andy. As an algorithm, the method is as follows: 

assuming we are given n data points D = {x{l), ... ,x(n)}, and a function D{C,,Cj) for measuring 

the distance between two clusters C, and Cj. Then the algorithm for clustering can be described as 

follows: 

fori= 1, ... , n let C, = {x(i)}; 

while there is more than one cluster left do 

let c. and cj be the clusters 

minimizing the distance D(Ck, Ch) between any two clusters; 

remove cluster Cj: 

end; 

One of the major disadvantages of this method is that it is often slow(57] and processing whole 

data set takes time that is proportional to the number of rows in the data table, that is, it can be 

computationally expensive, especially when the data set is large. 

VIII Log-Likelihood 

The most common score function for estimating the parameters of probability functions is the log-

likelihood. If the probability function of random variables X is f(x; 0), where (} are the parameters 
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that need to be estimated, then the log-likelihood is logf(DIO), where D = {x(1), ... , x(n)} is the 

observed data. Making the common assumption that the separate rows of the data matrix have 

arisen independently, this becomes 

n 

SL(O) =- I)ogf(x(i); 0) (9) 
i=l 

IT f has simple functional form then this score function can usually be minimized explicitly, pro-

clueing a closed form estimator for the parameters (), However, iff is more complex, iterative 

optimization methods may be required. Despite the importance, the likelihood may not always be 

an adequate or appropriated measure for comparing models, in particular when the models are of 

different complexity. 

IX Principal Component Analysis(PCA} 

Suppose that X is an n x p data matrix in which the rows represent the cases( each row is a data vector 

x(i)) and the columns represent the variables. The ith row of this matrix is actually the transpose 

xT of the ith data vector x( i), since the convection is to consider data vectors as being p x 1 column 

vectors rather than 1 x p row vectors. Also, we assume that X is mean-centered so that the value 

of each variable is relative to the sample mean for that variable(that is estimated mean has been 

subtracted from each column). Let a be the p x 1 column vector of projection weights( unknown at 

this point) that result in the largest variance when the data X are projected along a. The projection 

of any particular data vector xis the linear combination aT x x = ~~=l ajXj. We can express the 

projected values onto a of all data vectors in X as X a( n x p by p x 1, yielding an n x 1 column 

vector of projected values). Furthermore, we can define the variance along a as 

(10) 

where V = XTX is the p x p covariance matrix of the data. Thus, we can express a~(the variance of 

the projected data (a scalar) that we wish to maximize) as a function of both a and the covariance 

matrix of the data V. Maximizing a~ directly is not well-defined, since we can increase a~ without 
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limit simply be increasing the size of the components of a. We impose normalization constraint on 

the a vectors such that aT a= 1. With this normalization constraint we can rewrite our optimization 

problem as that of maximizing the quantity 

(11) 

where..\ is a Lagrange multiplier. Differentiating with respect to a yields 

au 
{)a = 2V a - 2..\a = 0, (12) 

which reduces to the eigenvalue form of 

(V- ..\I)a = 0 (13) 

Therefore, the first principal component a is the eigenvector associated with the largest eigenvalue 

of the covariance matrix V. Furthermore, the second principal component (the direction orthogonal 

to the first component that has the largest projected variance) is the eigenvector of the kth largest 

eigenvalue corresponds to the kth principal component direction). In practice we are interested in 

projecting to more than two-dimensions. The variance of the projected data can be expressed as 

L:~=l Aj, where Aj is the jth eigenvalue. Similarly, the squared error in terms of approximating the 

true data matrix X using only the first eigenvectors can be expressed as 

(14) 

Therefore, in choosing an appropriate number k of principal components, one approach is to increase 

k until the squared error quantity above is smaller than some acceptable degree of squared error. 

For high-dimensional data sets, in which the variables are often relatively well-correlated, it is not 

uncommon for a relatively small number of principal components(from 5 to 10) to capture 90% or 

more of the variance in the data. 
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X Correlation between SS'l' clusters and SLP EOE's 

(•) ooo dur.m (c)&JOd~ (d) 700 cl!J!IW8 

(e) eoo clu.ten ( f} $00 dUll~ (b) 300 c:lu.ten 

(k) 1$0 ~c.ft (1} 220 cluat.ers 

Figure 1: {4)-(p), Correlation cocllicienu ror Lhe KMcans clutP;erlng outpu\ and EOFl of SST dw.t.. 
&et. Uiing dilterent. number of clU8Lert 
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Figure 3: (a)-{p), Time oeri .. of SST IUlomal,y pa~lll~•ly and ~·''''"IY cor...!&t<d to EOFI fO< 
diff.....,t nliniber of dWit.,. usi"i KM..,.. clust<rlll{! llpitlun-



(a) 900 dusu!JS {b) 860 ¢1,\18\Mt (d) 100 du.tas 

(e) 600 clua~ (f) 000 dl.l8ten 

(l)'lOO- 0) 180 durnen (k) 160 clusters (I) 120 cluate:rw 

(m) LOO cluat.ert (n) 80 elUS'l«'S (o) 50 d~Moera (p} 30 d~l'll 

Figure 4: (a}..(p), Correl3t.ion coefficients for the KMeans clustering output and EOF2 o! SST daLa 
set using different Dumber of cl\JSoers 
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F~c 5: (a)-(v), Art'!as of maxitnum positive and ntgath-e correlation for Lbt KMeans clustering 
output and £61'2 o! the SS1' data set using different nwnber o! clusters 
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F'lgure 6: (4)-(p), Time serl .. of SST anamoly p01ltlvcly and negatl~ly correlated t.o EOF2 for 
dilferenl nunilier of cluo~ using KMeans elusttrU., olgoritlun. 
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Figure 7: la'l-(p), Correlation coefficients for the KMeana clustering output and EOF3 of SST data 
set usi"' diffa.rent number of clusters 
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Figure 12: (Al-(p), Tl!XIO 11eries of SST IJ>Omaly I'O"itl""y and negatl""y oo ..... lal<'d w EOFJ for 
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Figure 14: (a).(v)c~ of ~um P.<JBitive and negotive correlotion for the EM clustering output 
e.nd EOF2 o(tfie :::;~:n· data set. usmg different number of dust('f'S 
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F1gure 15, (a}-(p), 'llme series of SST anomaly po<it.ivcly and negath·e(y correlated co EOFZ for 
dllferen numbei 01 clusters using EM clustering algorithm. 
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Figure 16: (G)-(p), Com:latton ooeffic~ants for the E:M clustering output and £()F3 of SST data set. 
us5ng d.ifferent oUmber of cluak'B 
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Figure 17: (ol·l•)~~ of maximum pooit.ive e.ud uf8•'lve correlation for the EM clustering outpu' 
&nO EOF3 o(tfie ~·· da.t.aset using dltrerent number of cluaU!'rs 
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Figure 18: (al-(p), 'l'ime seri,. of SST snomaly positively and negatively eorrela!<ld to EOF3 for 
different. num'Der of clusters using EM clustering algorithm. 
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(m) 160 clooen (n) J.!iO duat.er& 

Fill"'• 20: (G)·(pl, Arees of ma.ximum pooiti"' and negative correlation for the FarthestFirst cluo­
t.enng output and EOF I of the SST data set using different. number of clusters 
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(m) 150 clusters (n) 150 clusters (o) 50 clusters (p) 30 clusters 

Figure 21: (a)-(p), Time series of SST anomaly positively and negatively correlated to EOFl for 
different number of clusters using FarthestFirst clustering algorithm. 
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(a) 900 clusters (b) 850 clusters (c) 800 clusters (d) 700 clusters 

(e) 600 clusters (f) 500 clusters (g) 400 clusters (h) 300 clusters 

(i) 200 clusters (j) 180 clusters (k) 160 clusters (1) 120 clusters 

(m) 100 clusters (n) 80 clusters (o) 50 clusters (p) 30 clusters 

Figure 22: (a)-(p), Correlation coefficients for the FarthestFirst clustering output and EOF2 of SST 
data set using different number of clusters 
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(a) 900 clusters (b) 900 clusters (c) 700 clusters (d) 700 clusters 

(e) 500 clusters (f) 500 clusters (g) 400 clusters (h) 400 clusters 

(i) 300 clusters (j) 300 clusters (k) 200 clusters (!) 200 clusters 

(m) 150 clusters (n) 150 clusters (o) 50 clusters (p) 30 clusters 

Figure 23: (a)-(p), Areas of maximum positive and negative correlation for the FarthestFirst clus­
tering output and EOF2 of the SST data set using different number of clusters 
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(a) 900 clusters (b) 900 clusters (c) 700 clusters (d) 700 clusters 

(e) 500 clusters (f) 500 clusters (g) 400 clusters (h) 400 clusters 

(i) 300 clusters (j) 300 clusters (k) 200 clusters (1) 200 clusters 
........ .. -... - ....... 

' ' ' ' . 

(m) 150 clusters (n) 150 clusters (o) 50 clusters (p) 30 clusters 

Figure 24: (a)-(p), Time series of SST anomaly positively and negatively correlated to EOF2 for 
different number of clusters using FarthestFirst clustering algorithm. 
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(a) 900 clusters (b) 850 clusters (c) 800 clusters (d) 700 clusters 

(e) 600 clusters (f) 500 clusters (g) 400 clusters (h) 300 clusters 

(i) 200 clusters (j) 180 clusters (k) 160 clusters (1) 120 clusters 

(m) 100 clusters (n) 80 clusters (o) 50 clusters (p) 30 clusters 

Figure 25: (a)-( p), Correlation coefficients for the FarthestFirst clustering output and EOF3 of SST 
data set using Cfifi'erent number of clusters 
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(a) 900 clusters (b) 900 clusters (c) 700 clusters (d) 700 clusters 

(e) 500 clusters (f) 500 clusters (g) 400 clusters (h) 400 clusters 

(i) 300 clusters (j) 300 clusters (k) 200 clusters (I) 200 clusters 

(m) 150 clusters (n) 150 clusters (o) 50 clusters (p) 30 clusters 

Figure 26: {a)-{p),Areas of maximum positive and negative correlation for the FarthestFirst clus­
tering output and EOF3 of the SST data set using different number of clusters 
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.. _ .. .,....., . .-.. ... -~ 
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(m) 150 clusters (n) 150 clusters (o) 50 clusters (p) 30 clusters 

Figure 27: (a)-(p), Time series of SST anomaly positively and negatively correlated to EOF3 for 
different number of clusters using FarthestFirst clustering algorithm. 
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