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Abstract

This study is a part of the research project on development of a database and
methods for data mining of ocean data. The first part of the project describes the
implementation of the relational database management system (RDBMS) for ocean
data. The second part of the project introduces a clustering method for identifica-
tion of regions with homogeneous behavior of ocean parameters. Three algorithms
K-means, Expectation Maximization(EM), and Farthest-First(FF) were implemented
and evaluated in applications to the sea surface temperature data (SST). The cluster-
ing method was applied in analysis of two climate indices of the North Atlantic Ocean
derived from the past observations of SST. The first one is associated with the North
Atlantic Oscillation (NAQO) and the second one with the variability of the Meridional
Overturning Circulation (MOC). The two climate indices capture the most important

long term variability of MOC and NAO.
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Chapter 1

Introduction

The classical methods for oceanic data analysis were based mainly on using manual logging of data
and computation. Over the years, with technological advances and new electronic instruments, the
methods of observations of oceanic data have greatly advanced and “new ocean instruments operate
at data rates not possible with earlier mechanical devices and produce large amount of data that
can only be handled by high-speed computers”[21]. The volume of data acquired is growing expo-
nentially, and it is a challenging task to store, extract, manipulate and analyze the data[21].

This chapter presents an overview of present day methods for data storing and data analysis.

1.1 Database

The database research over the past 40 years has led to the database system analysis becoming a key
research area in the field of the software engineering [11]. An electronic database helps to organize
the information and provides the tools necessary to access specific bits of it quickly and efficiently.
A database is a shared collection of logically related data. A database represents the entities, the
attributes, and the logical relationships between the entities. An entity is a distinct object that

is to be represented in the database. An aitribute is a property that describes some aspect of the
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object that we wish to record, and a relationship is an association between entities. A database

management system(DBMS) is the software that manages and controls access to the database. A
database application is a program that interacts with the database at some point in its execution.
A database system includes a collection of application programs that interact with the database. It
is important to distinguish between the description of the database and the database itself. The
description of the database is the database schema. The schema is specified during the database
design process and is not expected to change frequently. However, the actual data in the database
may change frequently; for example, it changes every time we insert a new entity in a table or add a

new attribute. The data in the database at any particular point in time is called a database instance.

1.1.1 The Database Management System(DBMS)

The DBMS is software that manages and controls access to the database. It interacts with the
users’ application programs and the database[11]. The predecessor to the DBMS was the file-based
system, which was the collection of application programs. Typically, a DBMS provides the following

facilities:

(1) It allows users to define the database and to specify the data types, structures, and the

constraints on the data that are to be stored in the database.

(2) It allows users to insert, update, delete, and retrieve data from the database, usually through
a Data Manipulation Language (DML). DML provides a general inquiry facility to the data,
called a query language. The most common query language is the Structured Query Language
(SQL), which described in Section 1.1.5.

(3) It provides controlled access to the database, such as:

(a) a security system to prevent unauthorized users accessing the database;
(b) an integrity system, which maintains the consistency of stored data,;

(¢) a recovery control system, which restores the database to a previous consistent state

following a hardware or software failure.
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The DBMS comes with tools that assist in organizing the data and simplifying information retrieval

and modification. Built-in indexing makes it possible to locate information rapidly and efficiently,
while automated processes ensure that data is always stored and cross-referenced in a consistent,
error-free manner([55]. As a tool, DBMS was widely employed in managing databases. Among the
major components of DBMS are: software, procedures, and data. The software component includes
the DBMS software itself and the application programs, together with the operating system[13].
Typically, application programs are written in a third-generation programming language such as C,
C++, Java, Visual Basic, FORTRAN, or using fourth generation language such as SQL, embedded
in a third-generation language[13]. SQL statements give the power to manipulate all aspects of the
database using code instead of visual tools, thus the use of fourth generation tools can improve
the productivity significantly and produce programs that are easier to maintain[11}. The SQL
statements are mostly coded instructions to perform operations such as extracting data, inserting
new data, modifying existing data, and deleting data. Procedures refer to the instructions and rules
that govern the design and use of the database. These may consist of instructions on how to log on
to the DBMS, make backup copies of the database, change the structure of a table, or archive data
to secondary storage.

The most important component of the DBMS environment is data. The data acts as a bridge
between the machine components and the human components. The database may contain both the
operational data and the meta-data. The effectiveness of database design and further data analysis
depends on the quality of the data. As Hunter[30] pointed out, “data of poor quality is a pollutant
to clear thinking”. There is no measurement procedure that is without the risk of error and the
sources of errors can range from human errors to instrumentation failure.The main advantages of

DBMS(Table 1.1) assure the quality of the data in a database.
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Summary Advantages of DBMS

Control of data redundancy

Data consistency

Improved data integrity

Improved security
Table 1.1: Main advantages of DBMS

Database approach may control or completely eliminate the redundancy of the data by integrating
the files in a way that multiple copies of the same data are not stored. This feature is especially
important for the oceanographic data that comes from different data sources that overlap spatially

and temporarily.

By eliminating or controlling redundancy, we are reducing the risk of inconsistencies that may occur
during the data manipulation. If a data item is stored only once in a database, any update to its
value will be performed only once and the new, updated value will be available immediately. If a
data item is stored more than once and the system is aware of this, the system can ensure that all

copies of the item are consistent[13].

Database integrity refers to the validity, consistency, and correctness of the stored data. Database
integrity can be considered as another type of database protection as it concerned with the quality
of data itself. Integrity is expressed in terms of constraints, which are rules that the database is not
permitted to violate. Constraints apply to data items within a single record, as well as they apply

to relationships between records.

Integration of data makes the data more vulnerable without appropriate security measures. Database
security is the protection of the database from unauthorized users and the security takes the form
of passwords to identify people authorized to use the database. The access that an authorized user
is allowed on the data may also be restricted by the operation type(retrieve, update, or delete).

Security concerns are becoming crucial when there is more than one user has an access to the
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database.

At the same time, the disadvantages of DBMS (Table 1.2) can expose the data in the database to

possible loss,making the entire data vulnerable.

Summary Disadvantages of DBMS

Higher impact of failure

Complexity

Size

Table 1.2: Main disadvantages of DBMS

The centralization of resources increases the vulnerability of the system and the failure of any
component can be disastrous[13]. The entire database may disappear if appropriate steps to secure

the database will not be taken.
The functionality that DBMS provides makes it at the same time a complex piece of software [11].

The DBMS is also a large piece of software, and it occupies many megabytes of disk space and

requires substantial amounts of memory to run efficiently[11].

1.1.2 Database Design and Data Model

The structure of the database is determined during database design. The database design has to

produce a system that will satisfy current and future requirements of the end-users[13].

Data model is an integrated collection of concepts for describing and manipulating data, relationships
between data, and constraints on the data[ll]. It is a representation of ‘real world’ objects and
events, and their associations. Major data models fall into three broad categories: object-based,
record-based, and physical data models[13]. In a record-based model, the database consists of a
number of records and they maybe of different types. Each record type defines a fixed number of

fields, each typically of a fixed length. There are three principal types of record-based logical data
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model: relational data model, network data model, and hierarchical data model[55]). The relational

data model is based on the concept of mathematical relations. In the relational model, data and
relationships are represented as tables, each of which has a number of columns with a unique name. In
the network data model, data is represented as collections of records, and relationships are represented
by sets. Compared with the relational model, relationships are explicitly modeled by the sets, which
become pointers in the implementation. The records are organized as generalized graph structures
with records appearing as nodes and sets as edges in the graph. The hierarchical data model is a
restricted type of network model. Data is represented as collections of records and relationships are
represented by sets. A hierarchical model can be represented as a tree graph, with records appearing
as nodes, also called segments, and sets as edges. The majority of modern database systems are
based on the relational data model, whereas the early database systems were based on either the

network or hierarchical data models.

1.1.3 Relational Database Management System(RDBMS)

The Relational Database Management System(RDBMS) represents the second generation of DBMSs
and it is based on the relational data model. RDBMS is a ”traditional” DBMS that was enhanced
in the 1970s with the publishing of E.F.Codd’s papers on Relational Databases [11, 9]. Since then,
the RDBMS has become the dominant data-processing software in use today[11]. It is more robust
and helpful than its DBMS predecessor. The theoretical foundation of the simple logical structure of
the relational data model is a great strength of RDBMSs that was absent in the first generations of
DBMSs with only network and hierarchical data models. RDBMS requires only that the database
be perceived by a user as tables, where the mathematical concept of the a relation is physically
represented as a table[13]. Many commercial vendors supply relational databases(Section 1.1.3),
including Microsoft(SQL Server and Access), Oracle Corporation(Oracle), and IBM(DB2). There
are also freely available open-source products such as MySQL and PostgresSQL. In our work, we

are currently using MySQL platform that is described in Section 1.1.4.
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1.1.4 MySQL

The RDBMSs are powerful, flexible, feature-rich software systems that are designed specifically for
high-volume and mission critical applications[55]. They perform hundreds of transactions every
second without batting an eyelid[55]. MySQL is a high-performance and multi-user RDBMS built
around a client-server architecture[13]. MySQL designed specifically for speed and stability and
currently it is one of the most popular RDBMSs. MySQL has two main fundamental features:
performance and reliability. The time that takes on MySQL to execute a query and return the results
is sometimes orders of magnitude faster than its competitors’ [10, 55]. MySQL includes a unique
new feature called a query cache. If a query made by a user returns a set of given records, repeating
the same query should return the same set of records unless the underlying data has been changed.
The query cache takes this principle further by storing the result in memory, thus bypassing the
need to do the database search at all when a similar query is issued. Query cache enhances response
times for queries that are called upon to retrieve the exact same data as a previous query[55]. As
a relational database management system (RDBMS), MySQL is compatible with SQL. Because the
data is stored in a similar structure on different RDBMS platforms, similar techniques are used to
access and manipulate the data. Each of these platforms, including MySQL, uses Structural Query

Language(SQL) as the universal language to implement these techniques.

1.1.5 Structural Query Language(SQL)

SQL is a standard database language that gained wide acceptance[l1l]. SQL is the language that
is compatible with every relational database and is used to communicate and to administer the

database. SQL allows user to:

e create the database and relation structures;

o perform basic data management tasks, such as the insertion, modification, and deletion of data

from the relations;

¢ perform both simple and complex queries.
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SQL is a portable language which allows use of the same command structure and syntax when we

move from one RDBMS to another. SQL is a declarative language, not a procedural language, such
as Java, Visual Basic, and so on. A user specifies what needs to be done in SQL and the Database
Management System decides the best way to do it[13]. For instance, SQL statements that define
what data needs to be retrieved, modified, updated or deleted do not specify how the database
should do to that[13]. An SQL statement consists of reserved words and user-defined words.
Reserved words have a fixed meaning, and they must be spelled exactly as required. User-defined
words are made up by the user and represent the names of various database objects such as tables,
columns, views, indexes, and so on. SQL is also an example of a transform-oriented language,
or a language designed to use relations to transform inputs into required outputs. As a language,

SQL has two major components such as:

¢ Data Defition Language(DDL) and Data Manipulation Language(DML) for defining the database

structure and controlling access to the data;

e Data Manipulation Language(DML) for retrieving and updating data.

DDL and DML are discussed further in details in Sections 3.3.1 and 3.3.2.

1.2 Data Mining

Many methods of processing oceanographic data are recently developed for studying ocean cir-
culation, currents, sea surface height, sea surface pressure, temperature, salinity, and and their
variabilities. One group of the methods of processing and analyzing oceanographic data includes

statistical analysis.

Data mining is one of the most vaguely defined fields. Fayyad et al.[22] define data mining as “the
nontrivial process of identifying valid, novel, potentially useful, and ultimately understandable pat-
terns in data”. Friedman[35] points out that data mining sits at the common frontiers of several fields
including Data Base Management, Artificial Intelligence, Machine Learning, Pattern Recognition,

and Data Visualization. Data mining technology helps to explore large and complex data in order
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to discover useful, previously unknown patterns and relationships in a data. It is closely connected
with developments in computer technology, particularly with the advancement and organization of
database development. Unlike data mining though, the primary purpose of databases, as described
in Sections 1.1 and 3.2, is not to analyze the data. Database query tools only retrieve information
from a database using Structural Query Language (SQL) as described in Section 1.1.5 and present it
to the user. This stage of data retrieval, when the data and information are extracted from databases
is very similar to data mining, but the difference is that data mining looks for relations and asso-
ciations between phenomena that are not known beforehand [23]. A query implemented on some
random data set will have the lowest information capacity compare with data mining implemented
on the same data set, and consequently, data mining will have the highest information capacity.

Despite its great potential and effectiveness in analyzing various types of data sets, there is still no
solid theoretical background behind data mining, which makes it hard to make definite statements
about data mining techniques[23],[53]. It largely relies on trial and error when the decision needs
to be made what technique is best for a particular data set and for solving a particular problem.
Therefore, the representative steps that are highlighted in gray on Figure 1.2 may be repeated many

times to get the desired data mining outcomes.

Determining the initial set

of expected outcomes

Figure 1.1: Data Mining Outcomes

Current data mining packages provide statistical analysis procedures that include clustering methods,
association rules, nearest neighbors, feature extraction, neural networks, genetic algorithms, and

they do not include hypothesis testing, linear regression, logistic regression, canonical correlation,
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principal components, single factor analysis of variance(ANOVA), and factor analysis that are the

“main-stay” in standard statistical packages[35].

Data mining, especially when it applies to great amount of data, can discover patterns and relations
in the data that were not known beforehand, therefore, they cannot be used in developing a research
hypothesis[23], and this is one of the main features that distinguishes data mining from statistics.
Thus, data mining methods are concerned about selecting hypothesis from competing hypotheses
rather than testing one. Among the other important features that distinguish data mining and
statistics is the ability of data mining to analyze entire data set, as in statistical analysis it is
necessary to have a sample from the data set that is being analyzed.

Berry and Linoff [3] marked two different analytical methodologies for data mining such as top-down
and bottom-up. Top-down analysis starts with some idea, pattern, or hypothesis and uses statistical
methods to test the hypothesis by confirming or rejecting it. There is no hypothesis to test in a
bottom-up approach. This analysis examines the data and looks for the useful information and
patterns to create hypothesis. The information that is obtained from a bottom-up approach shows
patterns and tendencies in the data, but it cannot explain why the tendencies are useful and why
and to what extend they are valid. And this is where the top-down analysis can be used to confirm

the findings. Thus, these approaches are complementary.

Top-Down Approach
Starting with hypothesis

Hypothesis formed from botlom-up approach

Vahdating hypothes:s
Data Mining Hypothesis needs revision if rejected
Approaches/
Bottom-Up Approach
Methodologies

Analyzing data and Extracting Patterns
Directed(Supervised)

or

Undirected(Unsupervised)

Figure 1.2: Data Mining Approaches
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1.2.1 Processing Phases of Data Mining

The process of data mining must be automatic or semi-automatic [56], and the patterns discovered
must be meaningful so they will enable to make nontrivial predictions on new data. The relationships
and summaries or patterns that we derived from the data through the data mining process can be

divided onto several phases, such as:

o Definition of the objectives for the analysis

— Defining the objectives is one of the most important prerequisites to do entire analysis
correctly; the objectives have to be stated as clear as possible without any room for

ambiguity.
o Selection and organization of the data

— Identifying the data source(s); checking possible presence of missing, or incorrect data;

representation of the data in vector or matrix form.
e Data analysis

— Choosing and implementing the best and most appropriate methods of analysis that fit

to the data set
e Evaluation of the methods

— Evaluation based on time constraints, data quality, data availability using the results

from the previous phase.

1.2.2 Data Mining Techniques and Methods

A result of implementing a data mining algorithm on a data set can be expressed as a function
y(x), which takes = as an input and generates the output 9. The exact form the function y takes
is determined during the training or it is also called learning phase. The ability of a data mining to

categorize correctly new examples of a data set that differ from those used for the training phase is

11
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called generalization. Usually, and especially with large data sets, the training data constitutes only

very small fraction of all possible input vectors, therefore generalization is one of the central goals
in data mining,.

In many of the data mining applications, the input variables are also preprocessed to transform
them into some new space of variables, where the particular data mining problem will be easier to
solve[4]. This preprocessing stage is called feature extraction. It helps to find features that are faster
to compute by preserving the useful discriminatory information[23]. Then, these features are used
as the inputs in data mining process.

Data mining applications in which the training data comprises examples of the input vectors along
with their corresponding target vectors are known as supervised classification[4]. The goal of super-
vised classification is to assign each input vector to one of the finite number of discrete categories
or classes. In other data mining problems, the set of input vectors 2 do not have corresponding
target values, and the classification goal is aimed to find similar groups or clusters within the data,

therefore the technique is called clustering.

Many data mining techniques such as nearest neighbor classification methods(Appendix VII), cluster
analysis, (Section 2.1), and multidimensional scaling methods are based on similarity measures,
There are two ways to obtain measures of similarity. One way is they can be obtained from the objects
themselves, and second way is when it is necessary to give a precise definition of “similar”. The
formal definition of “similar” allows definition of “dissimilar” by applying a suitable monotonically
decreasing transformation[26]. Therefore, if s(%, j) denotes the similarity and d(i, j) denotes the
dissimilarity between objects i and j, then possible transformations include d(%, j) = 1 — s(4, 5). The
definitions such as distance and metric are used to denote a measure of dissimilarity. Appendix III

describes in more details the notion of distance measures, metric and Euclidean space.

1.2.3 The Form of the Data

There are different types of data that can be fed into a data mining application and the data may
come in different forms. These forms are known as schemas. In all data mining applications it is

important to be aware of the schema of the data, without which it is easy to miss patterns in the

12
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data[26]. The simplest form of data is a set of vector measurements on objects o(1),...,0(n). For

each object we have measurements of p variables Xj,...,Xp. Thus, the data can be viewed as a

matrix with n rows and p columns, which is a data matrix, or it also can be referred as a table.

1.2.4 WEKA

The WEKA software that is used in this project is a collection of machine learning algorithms and
data processing tools. WEKA was developed at the University of Waikato, New Zealand, and the
WEKA name stands for Waikato Environment for Knowledge Analysis. It has tools to implement all
standard data mining procedures such as classification, clustering, association rule mining, attribute
selection. WEKA also allows to preprocess a dataset, feed it into a learning scheme, and analyze

the resulting classifier without writing a code, as it includes:

* point and click icons and menus

* input dialog boxes

* diagrams to describe analysis

* a variety of data plots

* graphical representations such as trees, networks, etc.

WEKA is written in JAVA and it has four interactive interfaces such as Erplorer, Knowledge Flow,
SimpleCLI, and Ezperimenter.

Ezplorer is a graphical user interface that gives access to all of WEKA facilities. It reads the
database from ARFF file (or spreadsheet) and builds a decision tree from it. Choices and options
are presented as menus and forms.

Knowledge Flow interface allows to drag boxes around the screen representing data sources and
learning algorithms and join them together in a configuration that is necessary for the analysis. The

data can be loaded incrementally.

13
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Ezperimenter is helping to choose a method that will work best for a given problem. It also can

distribute computing load among multiple machines. In this way large scale experiments can be
implemented.

SimpleCLI allows access the WEKA features by entering textual commands through command line
interface.

Data Mining is a useful mehtod which can be used in ocean, atmospheric and climate studies. The
information which recently become available in these areas includes large data sets with complex
temporal and spatial structure. Analysis of these data and pattern recognition requires advanced

computer methods like data mining.

1.3 Data Mining Applications in Ocean and Climate Studies

Huang et al.[29] used cluster analysis to define the relationships between ocean salinity, temperature
structures and climate variability. Huang et al.[29] proposed a quantitative inter-transaction associ-
ation rules mining algorithm and introduced a technique for analyzing ARGO ocean data to extract
information about salinity/temperature patterns. They also increased the data mining efficiency by
adopting FITI and PrefixSpan algorithms. Their study is applied to ocean salinity measurements

obtained from the waters surrounding Taiwan.

Steinbach et al.[38] developed an approach in clustering methodology for the discovery of Ocean Cli-
mate Indices (OCls) and divided the cluster centroids into several categories: those that correspond
to known OClIs, those that are variants of known OCIs, and those that represent potentially new
OCIs. They developed alternative methodology for the discovery of OCIs using clusters that repre-
sent ocean regions with relatively homogeneous behavior. The centroids of those clusters are time
series that summarize the behavior of these ocean areas. Their goal was to use climate variables,
such as long term sea level pressure(SLP) and sea surface temperature(SST) to discover interesting
patterns that relate changes in Net Primary Production(NPP) to land surface climatology and global
climate, where NPP is the key variable for understanding the global carbon cycle and the ecological

dynamics of the Earth.
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Wooley et al.[6] described their preliminary findings in unsupervised classification{clustering) of a

database with very large acoustic images (about 30 megabytes each) of the ocean floor. The authors
used an approach of parallelizing unsupervised learning algorithm to partition data with the number
of instances to be classified that is more than 10,000 and distribute it to multiple processors. The
learning algorithm used is AutoClass, an unsupervised Bayesian classification system. Classification
results when 2 or 3 processors are used are similar to the classification results achieved when one

processor is used[6].

Cheng and Wallace[8] have used clustering techniques to analyze the long-term climate variability
in the upper atmosphere on the Earth’s Northern hemisphere. This variability is dominated by
three recurring spatial pressure patterns (clusters) identified from data recorded daily by National
Meteorological Center from 1948 to 1985. The authors used hierarchical cluster analysis based on the
Ward method, which is performed on the Northern Hemisphere wintertime 10-day low-pass-filtered
500-hPa height field. It was one of the first studies of this type to define the clusters in terms of

total(low-pass-filtered) height fields rather than height anomaly fields.

1.4 Thesis Objectives

The major goal of this study is to use climate variables, such as sea level pressure (SLP) and sea
surface temperature (SST) to discover patterns relating to ocean climate indices (OCIs) in the North
Atlantic.

This work presents results from study of interannual variability in the North Atlantic. Ocean climate
indices have been developed that summarize the behavior of selected areas of the world’s oceans[50]
and they can be linked to major patterns of climate variability. The ocean climate indices are often
defined through eigenvalue analysis techniques such as Principal Components Analysis (PCA) and
Singular Value Decomposition (SVD). The main advantages of using PCA and SVD for analysis
of the ocean data include ability to store the most important information without redundancy and
noise. They also allow compression, which increases storage effectiveness through reduction of the

dimensionality of the space. However, these techniques impose a condition that all discovered signals
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must be orthogonal to each other[50).

In this project a different approach such as data mining is used. Data mining techniques are
firstly applied to the Ocean Climate Indices. In addition, we study connection of variabilities among
different parts of the ocean, as data mining and clustering provide more information about connection
between different parts of the ocean. This section describes the methods used in the analysis of
interannual variability of the Labrador Sea and North Atlantic SST. The approach is based on the
use of data mining techniques such as clustering and Empirical Orthogonal Functions (EOF) analysis.
Data mining clustering techniques are used on data sets to reveal well-separated groups of data at
various levels of detail. We run three clustering algorithms - K-Means, Expectation Maximization,
and Farthest-First - on the same data and test how well these algorithms perform in terms of the
outcome and the quality of clustering. This work shows preliminary results, details specific findings,
and outlines the data mining processes and techniques of extracting classes for ocean applications.
This project started with creation of the database, which currently contains data from different
observational systems with wide range of temporal and spatial attributes. The database approach is
shown do be an effective tool for archiving, accessing and retrieving large volume of oceanographic

data in data mining applications.
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Methods Of Data Analysis

2.1 Clustering

Cluster analysis is one of the descriptive data mining methods. Clustering techniques apply when
there is no class to be predicted as in supervised classification (Section 1.2.2) and the instances are
to be divided into natural groups. This section focuses on clustering approaches that were chosen
for this study - K-Means, Expectation Maximization(EM) and Farthest-First.

The K-Means is an iterative distance-based clustering algorithm[25, 23]. Farthest-First is a sequential
search algorithm to identify iteratively the cluster centers and it is a combination of hierarchical
clustering and distance-based clustering[48, 58] that are described below. EM is an algorithm that

assigns each object to a cluster according to a weight representing the probability of membership[25].

Clustering involves decomposition of a data set into groups so that the points in one group are
similar to each other and are as different as possible from the points in other groups. The result of
clustering can be expressed in different ways and the clustering output may take a form of a diagram
that shows how the instances in a data set fall into clusters. Examples of the diagrams are shown
on Figure 2.1 and Figure 2.2.

In some clustering algorithms, such as partition-based clustering, the task is to partition a data

set into k disjoint sets of points such that the points within each set as homogeneous as possible.
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For instance, given the set of n data points D = {z(1),...,z(n)}, the task is to find K clusters

C = {C4,...,Ck} such that each data point z(i) is assigned to unique cluster Ck. Each cluster is
exclusive and any single instance of a data set belongs only to one cluster. A diagram on Figure
2.1(a) shows an example of partion-based clustering.Some other clustering algorithms allow one
instance be inside of more than one cluster, and, therefore, the corresponding diagram will show the

overlapping clusters(Venn diagram)(Figure 2.1b).

(a b
Figure 2.1: (a{Associating a clus)xter number with with each insta.née;) (b)Overlapping subsets repre-
senting each cluster - Venn diagram

Algorithms such as probabilistic model-based clustering associate instances with clusters probabilis-
tically (Figure 2.2a), where every instance belongs to a particular cluster with certain probability.
Others, that are called hierarchical clustering algorithms, produce a hierarchical structure of clus-
ters, so that at the top level we have only few clusters, and each of those clusters divides itself
into its own sub-clusters at one level down, and further down to individual instances. Figure 2.2b
shows one possible hierarchical clustering of a eleven-instance data set. Hierarchical methods permit
a convenient graphical display, in which the entire sequence of merging or splitting the clusters is
shown, and such displays are also called dendrograms. There are two kinds of hierarchical techniques:
agglomerative and divisive. They construct their hierarchy in the opposite direction, and produce
different results. Agglomerative methods start when all objects are apart, that is at the first step we
have n clusters, and in each step two clusters are merged until only one cluster left. On the other

hand, divisive methods start when all objects are together and in each following step a cluster is
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split up until there are n clusters.
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Figure 2.2: (a)Associating instances with clusterg ;))robabilistically; (b)Hierarchical structure of clus-
ters

The choice among the algorithms should be dictated by the nature of the mechanisms that are
thought to underlie the particular clustering phenomenon|[56]. However, very often, for pragmatic
reasons, the choice is usually dictated by the clustering tools that are available, which in our study

is the ability of the WEKA data mining software to perform the clustering.

2.1.1 K-Means

K-Means is an example of partition-based clustering. K-Means starts by randomly picking K cluster
centers, where the number of clusters K is known beforehand. Then, it assigns each of these points
to a cluster whose mean is closest(in a Euclidean distance sense described in Appendix III), and it
computes a new mean for each cluster. These means are taken to be new center values for their
respective clusters. This process is repeated with the new cluster centers, and iteratively continues

until the same points are assigned to each cluster and the cluster centers stop changing. The
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final clusters are quite sensitive to the initial cluster centers and completely different arrangements

can arise from small changes in the initial random choice[25]. A brief description of the K-Means
clustering algorithm is included in the Appendix IV. Nothing is known a priori about how to choose

the number of clusters K, and the first step in cluster analysis is to define this number([56, 26, 4].

2.1.2 Expectation Maximization

The Expectation-Maximizaion (EM) is similar to the K-Means clustering method described above
and it can be viewed as an extension of the K-Means algorithm. Unlike K-Means though, instead
of assigning each object to a dedicated cluster, EM assigns each object to a cluster according to
a weight which is a probability of membership[25]. The probability of membership is calculated.
Thus, there is no strict boundaries between clusters and the new means that are computed based on
weighted measures. It is an iterative algorithm for “maximizing a likelihood score function given a
probabilistic mode! with missing or hidden data” [26] and it starts with initial guess of the parameter
values of the mixture model(referred as the parameter vector). It iteratively rescores the objects
against the mixture density produced by the parameter vector. Then, those rescored objects are
used to update the parameter estimates[58]. Each object is assigned a probability that it would
possess a certain set of attribute values given that it was a member of a given cluster. A brief

description of the EM algorithm is included in the Appendix V.

2.1.83 Farthest-First

The Farthest-First traversal was first introduced by Hochbaum and Shmoys[28]. The Farthest-First
starts with picking any data point, and assigning it its own cluster. Then it chooses the point farthest
from it, then the point farthest from the first two (the distance of a point z from a set S is the usual
min{d(z,y) : y € S}) and process continues until k& points, which is a some specified threshold,
are obtained. These points are taken as cluster centers and each remaining point is assigned to the
closest center. If the distance function is a metrie, the resulting clustering is within a factor two of

optimal{14], that is for any & if T is the solution returned by Farthest-First traversal, and T* is the
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optimal solution, then

cost(T) < 2cost(T*)

A brief description of the Farthest-First algorithm is given in Appendix VI.

2.2 Principal Component(EOF) Analysis

Principal Component Analysis(PCA) or Empirical Orthogonal Function Analysis(EOFA) is a mul-
tivariate statistical technique with many applications to oceanographic, atmospheric and other geo-
physical fields.

A typical example of the PCA application in oceanography can be considered the ocean climate in-
dices. The latter are simple characteristics of interannual variability of ocean and atmosphere. This
application has been successful in describing important aspects of the North Atlantic variability.
Cluster analysis and PCA are suitable for this type of applications and at the same time they may
result in different types of classifications.

The purpose of PCA is to reduce a data set that contains a large number of variables to a data
set that contains fewer new variables. Despite the fact that the new variables are fewer than in the
original data set, they describe the large fraction of the variability of the original data set. There-
fore, if we have multiple observations of (K) data vector x, we want to find (M*) vectors u whose
elements are functions of the elements of the x values, that contain most of the information in the
original collection of x values, and whose dimensionality M* <« K.

PCA detects linear dependencies between variables and replaces groups of correlated variables by
new uncorrelated variables, the principal components. The elements of this new vector u are called
principal components. The choice of how many components to extract is arbitrary and it depends on
the explained variance in each particular case. Information will be lost, if choosing a small number
of components that fail to explain the variability in the data very well [26]. Therefore, in choosing
an appropriate number k of principal components, one approach is to increase k until the squared
error quantity above is smaller than some acceptable degree of squared error.

For high-dimensional data sets, in which the variables are often relatively well-correlated, it is not
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uncommon for a relatively small number of principal components(from 5 to 10) to capture 90% or

more of the variance in the data.

Some basics of PCA are described in the Appendix IX.
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Data and Database

3.1 Ocean Data Collection

The oceanographic data that were collected for this project reflect different ocean features and
characteristics and are related to different physical processes in the ocean, such as ocean currents,
circulation, ocean-atmosphere interaction, water masses. Currently, observational methods include
satellites, ocean buoys with equipped sensors, tide gauges, in-situ measurements, and model data.
The major data sources are:

* Coriolis Data Center

* Marine Environmental Data Service, Integrated Science Data Management({GDSI)

* Met Office Hadley Centre

* Marine Environmental Data Service/Integrated Science Data Management(GDSI), Fisheries

and Oceans Canada

* Fisheries and Oceans Canada/Ocean and Ecosystem Science/ Bedford Institute of Oceanog-

raphy
* NOAA Satellite and Information Services/National Oceanographic Data Center
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* National Snow and Ice Data Center

The primarily physical ocean parameters acquired are summarized in the Table 3.1.

Sea Ice and SST 694688

Arctic Buoy Data,1979-1999 1065368

ARGOQO- Canadian Tracked Data 24576

Drifting Buoys 70240
Coriolis Global Profiles Distribution 28400560

Lagrangian buoys 20480

GOSUD GDAC global distribution 104948
ARGO GDAC global distribution 44876356

Mercator Weekly Distribution 69632
Hydrographic(Climate) data 8892396
Satellite derived (NOAA/AVHRR) SST for NW Atlantic 7794597
World Ocean Database 9664920

Sea Ice Concentration 11840

Ice Extent 842676

Ice Velocity 437856

‘Water Temperatura 275453

Ice Thickness 785495

Table 3.1: Major Data Sources and Data Sets

Each data set also includes data on one or more oceanographic parameters, particularly:

* Arctic Buoy Data(1979-1999) include temperature, pressure, position, ice-velocity, and
ice buoy/CTD. The data sets are divided by year from 1979 to 1999. It is collected from all

drifting buoys reporting from north of 66 °.

* Argo- Canadian Tracked Data contain argo-profile and argo-drift data sets with parameters

such as temperature, pressure and salinity.

x Drifting Buoys data set include buoy position, date, time and variables such as surface and

subsurface water temperature, air pressure, air temperature, wind speed and wind direction.

* Coriolis Global Profiles Distribution include types of profiles such as XBT, CTD, CTD

from US Ocean Climate Library and Argo float.
* Lagrangian Buoys from Coriolis Data Center is a trajectory data that is collected in real-time
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by floating buoys.

* GOSUD GDAC Global Distribution data include sea surface salinity collected by research

and opportunity ships.

* Hydrographic (Climate) data from the Bedford Institute of Oceanography acquired in the
categories such as climate complete profiles, climate time series, and climate seasonal cycle.
The data comes from a variety of sources including hydrographic bottles, CTD casts, profiling
floats, spatially and temporally averaged Batfish tows, and expendable, digital or mechanical
bathythermographs. Near real-time observations of temperature and salinity from the Global

Telecommunications System (GTS) are also included.

* Satellite derived(NOAA/AVHRR) SST data for the Northwest Atlantic from 1982 to

2005 is another data set acquired from the Bedford Institute of Oceanography.

* World Ocean Database is coming from National Oceanographic Data Center and it includes
drifting buoy data, expendable demographically data, high resolution CTD data, mechanical

bathythermograph data, moored buoy data, profile float data, and plankton data.

Most of these data sets are in NetCDF or ASCII format. Selection, organization and retrieval
of the data for a particular time period and geographical location may be a time-consuming and
cumbersome process, since some data may overlap, while others may be missing, and some may not
have appropriate quality control flag. This is where the database can be applied as an effective tool

for storage and retrieval of the data.

3.2 Database

This section describes the oceanographic database(hereafter “the database”) that was experimentally
created using three major data sources from the collection of data described in the previous section.

Those data sources include:

* Coriolis Data Center
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* Marine Environmental Data Service, Integrated Science Data Management(GDSI)

* Met Office Hadley Centre

3.2.1 Relational Database Management System

The database is composed of multiple tables. Figure 3.1 shows a typical data table instance from
the MEDS data set. The table divides data into rows, with a new entry (or record) on every row.
The data in each row is further broken down into cells (or fields), each of which contains a value for
a particular attribute of the data. For instance, the record for ID 477296 is divided into separate
fields for ‘ID’, ‘pressure’, ‘temp’, ‘salinity’, ‘sig’, ‘depth’, ‘source’, ‘profileID’. The rows within a table
can be arranged by ID, or by any other user specified criteria. It is necessary to have some method
of identifying a specific record in the table, and in our example, it is identified by ‘ID’, which is a
number that is unique to each row or record. This unique field is called the primary key for that

table. A primary key is an unchanging and it is a unique identifier for each record.

ID pressure | temp | salinity | sig | depth | source | profileID

477296 5438 2.3 34.88 | 27.85 | 5437 | meds 61117
477295 5435 2.39 34.86 | 27.83 | 5434 | meds 61115

477291 5251 2.3 34.89 | 27.86 | 5250 | meds 61116

Figure 3.1: Typical data table instance from MEDS data set

The relational database is composed of multiple tables that contain interrelated pieces of information.
By adding more tables into database, we use the fundamental concept of RDBMS that is creating
relationships between the tables that make up the database. In applying this concept, we relate
records in different tables to one another through the use of foreign keys. Foreign key is a column or
combination of columns used to establish or enforce a link between data in two tables. It serves as a
point of commonality to link records in different tables together[13]. For example, Figure 3.2 shows

the instances of two tables(relations) where the referencing table that has a foreign key column
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references the primary key column of the referenced table.

spacelD long lat time

61227 179.47 | -61.19 | 20814.5
61217 179.48 | -61.1 | 20804.6

61125 179.53 | -58.08 | 20782.4

Primary Key

Foreign Key

ID pressure | temp | salinity | profileID

20045 | 649.1 2.53 | 3449 61227
19039 | 479.3 2.6 34.36 61217
18046 | 294.9 3.41 34.01 61125

Figure 3.2: Instances of two tables(relations) with Primary and Foreign Keys. It is also an example
of one-to-one relationship between tables.

A relationship could be one-to-one or one-to-many. In an one-to-one relationship, a record in one
table is linked to one and only one record in another table. Figure 3.2 is also an example of one-
to-one relationship. In one-to-many relationships a record in one table is linked to multiple records
in another table. Figure 3.3 illustrates an instance of one-to-many relationship from Argo-data,

January, 2007.

As soon as a foreign key is set up, the relational database only will allow entry of those values into
the Data Table, ‘profileID’ field, which also exist in the ID Table, ‘spacellD)’ field. This way foreign
key constraints can significantly help in enforcing the data integrity of the tables in a database and

reducing the occurrences of “bad” or inconsistent field values[53].

3.2.2 Building Relational Data Model

The data and the relationships among the data are represented as tables in the database, and each

individual table in the database has a number of columns with a unique name. A typical relation
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spacelD long lat time

51208 179.897 [ -5.019 | 20430.3

Primary Key

Foreign Key

ID | pressure | temp | salinity { profileID

4672 44 29.691 | 35.565 51208
4673 10.5 29.692 | 35.565 51208
4674 16.8 20.692 | 35.563 51208
4675 24 29.679 | 35.562 51208

4676 31.3 29.66 | 35.561 51208

Figure 3.3: One-to-many relationship between tables

in the database is represented as a two-dimensional table with the rows corresponding to individual
records and the columns corresponding to attributes, and it holds information about the objects
that are represented in the database. The attributes can appear in any order and the relation
will still be the same, therefore they will convey the same meaning. For example, location and time
information is represented by ‘ID’ table with columns for attributes ‘spacelD’, ‘longitude’, ‘latitude’,
and ‘time’. Similarly, the information on pressure, pressure-qc, temperature, temperature-qc, salinity
and salinity-qc is represented by ‘DATA’ table, with columns for attributes ‘profilell)’, ‘pressure’,
‘presQC’, ‘temp’, ‘tempQC’, ‘salinity’, ‘salQC’. Figure 4.3 shows instances of ‘ID’ and the ‘DATA’
tables. It is important to mention that there is a relationship between ‘ID’ and ‘DATA’ tables: each
point in ‘ID’ table has data associated with it which is stored in ‘DATA’ table. There is no explicit
link between these two tables and it is only by knowing that the attribute ‘spaceID’ in the ‘ID’ table
is the same as the ‘profileID’ in ‘Data’ table, we can establish that the relationship exists.

As in the relational data model, a user sees the database as a number of tables which applies only
to the logical structure of the database. It does not apply to the physical structure of the database,

which can be implemented using a variety of storage structures[11].
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spacelD | longitude | latitude | time

70126 179.9 -61.19 | 20844.6

70116 179.83 -61.19 | 20834.6

61204 179.89 -58.12 | 20792.3
D pressure | pressQC | temp | tempQC | salinity | salQC | profileID
14897 | 269.4 1 2.36 1 34.14 1 70126
19789 | 309.1 1 2.61 1 34.21 1 70116
12876 | 259.4 1 3.66 1 34.07 1 61204

Figure 3.4: A sample instance of a relational schema

3.2.3 Ocean database main features

The ARGO data that is organized and stored in the database, can be extracted and displayed
in any manner and order. Through the database approach we eliminated the data redundancy
by integrating the files in a way that multiple copies of the same data are not stored. However,
sometimes it is necessary to duplicate key data items to model relationships. Therefore, through
the database we can control the amount of redundancy inherent in the database. This feature is
especially important for the oceanographic data that comes from different data sources that may
overlap spatially and temporarily. By controlling data redundancy, we are greatly reducing the risk
of inconsistencies that may occur during data manipulation, and if data value is stored once in the
database, any update to it will be performed only once and the updated value will be available
immediately.

The database approach also allowed us to put constraints on the data to filter out all the data that
is not necessary or the data that carries an error. Constraints apply to data items within a single
record, as well as they apply to relationships between records. For example, integrity constraint

states that a value in the ‘longitude’ field cannot be greater than 180 and cannot be less than -180;
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or for ‘latitude’ field the value cannot be less than -90 and cannot be greater than 90. Therefore,

RDBMS allows us during the database design to define and enforce integrity constraints.

During the design stage of the database we also reinforced the quality and validity of the data, as if
a measurement procedure has poor validity, any conclusions we draw from data will be misleading.
As such, we assured the quality of the data by placing additional fields such as ‘tempQC’, ‘pressQC’,
‘salQC’ in the database tables. The value of those fields is restricted to 1(one), which denotes the
quality control of each individual record. Therefore, no data were imported into the database, if the

values of those fields are different from 1.

3.3 Structural Query Language(SQL)

As we stated in Section 1.1.5, SQL is the language that every relational database understands and is
used to communicate and to administer the database. SQL statements that we are using currently
in our work can be divided into two broad categories, each concerned with a different aspect of

database management:

* Statements used to define the structure of a database These statements define the
relationships among different pieces of data, definitions for database, table and column types,
and database indices. In the SQL specification, this component is referred to as Data Definition

Language(DDL).

* Statements used to manipulate data These statements control adding and removing
records, querying and joining tables, and verifying data integrity. In the SQL specification,

this component is referred as Data Manipulation Language(DML).

3.3.1 Data Definition Language

Data Definition Language(DDL) is used to create, modify or remove tables and other database
objects. It includes statements such as ‘CREATE TABLE’, ‘ALTER TABLE’, ‘DROP TABLE’,
‘CREATE INDEX’, and so on.
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* Example of ‘CREATE TABLE’ statement:

— mysql> create table medsoceanecosJM0708 select longitude, latitude, time, pressure, pro-
filelD from medsoceaDATA2, medsoceanID where medsoceaniD.spacelD = medsoceanDATA2.profilelD
and medsoceanlD.latitude >= 40 and medsocean|D latitude <= 80 and medsoceaneclD.longitude
= -70 and medsoceanlD.longitude <= 0 and medsoceanecID.time >= 21001 and med-

soceanlD.time <= 21245

* Example of ‘ALTER TABLE’ statement:
— mysqgl> alter table medsoceanDATAS rename to argoMarAug9494;

— mysql> alter table argoMarAug9494 drop profilelD;

* Example of ‘DROP TABLE’ statement:

— mysql> drop table argogdacMAQ406;

3.3.2 Data Manipulation Language

Data Manipulation Language(DML) provides a set of operations that support the basic data manip-
ulation operations on the data that is stored in the database. Data manipulation operations usually

include the following:

* insertion of new data into the database

— The SQL statements ‘INSERT’ are used to insert new rows of data into database.
* modification of data stored in the database

— The SQL statemts ‘UPDATE’ are used to modify existing rows of data
* retrieval of data contained in the database

— The SQL statements ‘SELECT’ are used to read and extract data from the database.
This portion of the language has its own name and it is a Data Query Language(DQL).

The SQL 'SELECT’ staments can also be referred as SQL queries
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* deletion of data from the database

— The SQL statements ‘DELETE’ are used to remove rows of data from the database



Chapter 4

Cluster Analysis of SST data

4.1 EM, Farthest-First, and K-Means algorithms

The data used in this study is the SST analyzed observation for the North Atlantic of the Met Office
Hadley Center. The gridded SST includes some uncertainty which is related to the sampling spatial
aﬁd temporal resolution. The observing system in the Southern part of the region was traditionally
better than in the Northern sub-polar part of the ocean. Hence, the bias of the data due to the
observational errors is higher in the Northern than in the Southern part of the study area[l7], [567],
[41].

The clustering algorithms that are used in this study are K-Means, Expectation Maximization, and
Farthest-First. All three algorithms are provided within the WEKA framework(Section 1.2.4). For
all three algorithms we used the same 1950 -1997 SST data set, which was too large in terms of
WEKA memory usage. As such, the original SST data set was pre-processed and for each year the
annual mean anomaly was calculated. As an example, Table 4.1 shows the extract of the SST data
matrix that is uploaded inside of WEKA. The SST data matrix consists of 48 columns and 1468
rows, where columns represent the the annual mean value for each year of observation and the rows

represent the geographical locations of the points in the ocean.
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Sctl050|Sst1051] 5511052 SStl05 3| ssr1954 5511956 5511957
Numeric | Numenc | Numeric | Numeric | Numernc | Nume Murmeric | Humeric

" -0.246] -0.407] 0178 0113 0.196] -0.399] -0.3 0.271
. 0071 -0.385| 0262 0.08 025 -0175 0162 0.417
-0.087| -0363] 0277 0.092] 0292 -0185 0.122] 0.305
0.206] -0.364] 0281 0.054] 0.291] -0176] 0054 0.189
0320 -039] 0255 0015 0.273] -0187 002 0.08
0447 -0.412] 0.233] 0.006] 0.253] -0207| -0.009 0.013
-0.548| -D 438 u_zi 0.002] 0225 -0225 -0.048 -0.028
-0646] 0452 0188 0023 0.203] -u.% -0.082| -0.064
0.707] -0.451] 02011 0051] 0.186] -0276| -0.096 -0116
.0.743] -0468] 0177 0.034] 0.164] -0.303] -0.103] -0.208
0803 -0.521] 0106 -0.031] 0.121] -0.339] -0.144] -0.301
‘0873 -0.501] 0057 -0.108] 0074] -0.381] -0.188 -0.376
13 -0.013| -0628/ 0047 -0.153] 003 -0.41] -0.203] -0.415
14| 0878 -0595 0.075 -0.14 0.0 -0.435] -0.15( -0.412
15 0804 -0.517| 0103 -0.097] -0.027| -D457 -0157] -0.384
16 | -0.726] -0437] 0131 -0.044] -0.054] -0492] -0.129 -0.362
17 | -0.665 -0.363 0157 0.015 -0.088 -053 -0.085 -0.358
18 -0.616| -{:-.312! 0173 0068 -0.102] -056| -0032] -0.375

Table 4.1: Extract from the SST data matrix

nﬁsﬂﬂﬂﬂ'ﬁmhuhﬂlﬂ

Having some points in a metric space, and specific number of elusters K, the goal is to partition the
points into clusters €y, ..., Cy and find the cluster centers py, ..., be, in such a way that will allow
us to minimize some cost of clustering which is the maximum radius of its clusters Therefore, the
objective of our clustering analysis is to partition the observations of the SST data into groups that
are internally homogeneous and externally heterogenecus from group to group. The constitution of
homogeneous groups of abservations can be interpreted as a reduction of the dimension of the space

where the total number of observations are grouped into several subsets.

FARTHEST-FIRST

The final output of Farthest-First clustering is shown on Figure 4.1. This clustering approach
produced clusters that are spatially contiguous, and the geographically neighboring clusters represent
ocean areas with the relatively close SST values. The FF clustering technique that s used on S5T
data revealed relatively well-separated groups of data at various levels of detail and allowed the

cluster information to be displayed with good clarity.
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any k, the first k of these centers define a k-clustering which s within a factor two of optimal|14].

K-MEANS CLUSTERING

The final output of K-Means clustering i= shown on Figure 4.2, Unlike Farthest-First algorithm, the
K-Means clustering mainly failed to discover the eontiguous areas in the ocean when the number of
clusters is high. This clustering approach started to show some patterns and ilustrate the ocean

areas of homogeneous behavior for the the number of clusters close or below 200.
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I{ eans starta by randomly picking up K cluster centers and assigns each instance to the nearest
cluster center. The new mean for each cluster is calculated and instances are assigned to the closest
center.

The final output of Expectation Mazimization clustering is shown on Figure 4.3. As in EM clustering,
the distribution of clusters in K-Means is well represented when the number of clusters is close or

below the 200. The EM algorithm also allows one to select mumber of clusters automatically by

cross validation, which did vield 17 clusters shown on Figure 4.3(p).

Implementation of all three algorithms resulted in assigning cluster labels to the 85T data instances,
The outcome of each clustering algorithm that was applied to the 88T dats set is & numeric value.
The actual value for new instances is of less interest than the structure that wes learned from

clustering, as each of the algorithms clusters the S8T time series associated with the points in the
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Figure 4.3: (a)-(p), EM clustering output on the 55T data. Each object is assigned a probability

that it would possess a certain set of attribute values given that it was a member of a given cluster.
ocean. The suecess of the clustering is very often measured subjectively in terms of how useful the
results appear to a human user[54].and in the literature on data mining there is no clear benchmark
for the methods of elustering, which makes it difficult to compare the methods[14]. For evaluating
the performance of the three algorithms and comparison of those methods, we wsed Log Merginal
Likelihood Seore and a two-tailed ¢ — fest, which are also implemented within 8 WEKA framework

and deseribed in the next section.
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4.2 Comparison ot the algorithms

In this section we compare three clustering algorithms - EM, Farthest-First, and K-Means - in terms
of the clustering outcome that were implemented on the SST data set using WEKA. The clusters
are assigned to each SST data instance during the process of carrying out the execution of the
algorithms, which produces a density based clustering model. The density based model allows us
to calculate the Log Marginal Likelihood (LML) or Log Likelihood score (Appendix VIII). Just
as in linear regression, where the squared error is used to measure “the goodness of fit”, the log-
likelihood is used instead in logistic regression[56], and calculated for each of the three algorithms
with different number of clusters. LML score measures how good the particular clustering algorithm
represents the natural structure inside of the data set[58, 56]. As it is pointed out in a number of
studies[44, 58, 34, 28], LML score is more suitable measure of “goodness of clustering” for real data

sets(as oppose to synthetic data sets)[58], where there is no class label or class attribute is present.

Log Marginal Likelthood Score
Number of clustaers Farthest First K-Means EM
30 28 41795 10 33353 19 99088
40 34 2925 15 71887 25 42251
50 37 9951 22 25172 29 53311
60 41 90246 25 81179 33 50167
70 44 40617 28 28872 37 87987
80 47 49627 30 16531 42 03299
90 50 0089 88 31069 44 53679
100 52 64222 36 48804 46 86435
110 55 02508 37 81085 49 03036
120 57 25882 40 63261 51 53814
130 58 70435 43 52468 53 00262
140 61 62238 45 50791 55 40301
150 63 44433 46 97814 58 27816
160 64 51198 48 51238 80 52072
170 66 26683 50 06564 62 49992
180 65 94599 51 08784 64 54388
190 67 67236 52 77762 86 06232
200 70 23401 54 29775 67 66619
300 75 09048 62 04334 71 19217
400 81 77457 7115912 74 78973
500 85 02074 74 56963 78 8818
600 87 37726 71 37307 80 96763
700 85 67269 62 99919 69 87463
800 79 08232 49 18326 50 49671
900 74 69728 32 35758 27 68141

Table 4.2: Results on LML Score
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One of the features of LML score that is important to mention is that LML score depends on

the number of attributes and instances in a data table, and therefore, different algorithms can be
compared with each other in terms of LML score only if they run on the same data set. Table 4.2
shows the LML scores results from running three above mentioned algorithms on the SST data set
with different number of clusters. The runs with those three algorithms were performed on the same
parameters, and LML scores were obtained from 100 runs with the same random seed from 1 to 100,

similar to what was done by Li et al.[55] in their work.

LML
8

[¢] 100 200 300 400 500 600 00 800 900 1000
number of clusters K

Figure 4.4: Log Marginal Likelihood as a function of cluster size K for a typical run.

Figure 4.4 shows how the log marginal likelihood varies as function of cluster size K under one
particular experimental condition. Curves for other experimental conditions of all three algorithms
are relatively similar. As K increases, the marginal likelihood first increases and then decreases,

which is a penalty for solutions with many clusters and complexity.

We compare three algorithms with each other by running two-tailed ¢ — test with 0.05 significance
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level. Table 4.3 refers to the results of the two-tailed ¢t — test with the annotation w/t/l, which

indicates that a specific result is statistically better or worse at the significance level specified, where
w denotes that the algorithm wins in the corresponding row in w data sets, ties in ¢t data sets, and

loses in [ data sets, compared to the algorithm in the corresponding column.

Farthest-First slightly predominate over both EM and K-Means algorithms, having 13 wins and 9

loses over EM, and 15 wins and 7 loses over K-Means.

Log Marginal Likelihood Score

EM K-Means
EM 12-3-9
FarthestFirst 13—-2-9 15—-2-7

Table 4.3: Summary of Experimental Results

EM minimally outperforms K-Means having 12 wins and 9 loses, which corresponds to the results of
the test run and experimental comparison of clustering algorithms conducted by Li et al.,[58], and
Meila and Heckerman[44]. As the authors suggested, EM is preferable in many applications. We also
would suggest that Farthest-First and EM algorithms can be used in the SST time series data sets.
Yet, we will continue to use the outcomes from all three algorithms further in this work, partially
because we would like to evaluate the quality of clustering by adopting a widely used approach in
the area of data mining, such as comparing the results to a “ground truth”. The results of clustering
will be assessed on the basis of the external knowledge of how clusters should be structured using

EOF analysis of the patterns of sea level pressure associated with North Atlantic Oscillation.
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EOF Analysis of SLP

5.1 EOF Analysis of SLP

The EOF method, described in Section 2.2, reduces the dimensionality of the data by introducing
k principal components (EOFs) that explain most of the variance in the original data with the
assumption that the rest of the EOFs can be disregarded without losing a lot of information. The
EOFs with smaller magnitudes do not contribute much of the information, therefore the reduction
in the dimensionality of the original data is very significant.

The data that is used for the EOF analysis are time series of monthly mean anomalies of the Sea
Level Pressure (SLP). The data covers the winter months only (DJF), for the period between 1950
and 1997. The data cover the area of the North Atlantic.

Having the SLP data in a matrix form, where the rows consist of time series from various points
in the area of our interest, that is the North Atlantic, we would like to find the strongest temporal
and spatial patterns in the SLP data by using EOF method. The eigenvalue for each EOF of SLP
represents the variance explained by the EOF. The strongest patterns, as it is shown on Figures
5.1(a, ¢, €) capture the largest variation of the SLP data. The first three EOFs account for most of

the variation in the data, explaining 44%, 23%, and 18% of total variance.

The first EOF of SLP for the North Atlantic and Labrador Sea is shown on the Figure 5.1(a). The
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Figure 5.1: (a}-{f), The first three strongest EOFs of the mean SLP anemalies(1950-1997) over the

North Atlantic and Labrador Sea, and t

percentage of the total variance they explain.

first EOF spatial pattern shows two large regions in the ocean whose mean level pressures are in-

veraely related, which characterizes and represents the North Atlantic Oseillation(NAQ), that is the
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fluctuations of the atmospheric sea level pressure difference between the Iceland and Azores. The

NAO is most noticeable during the cold season from November to April, and it accounts for more
than one-third of the total variance in SLP over the North Atlantic [33].

The first EOF in SLP is well separated from the second EOF.

The second EOF 5.1(c,d) represents the Eastern Atlantic (EA) pattern. The EA pattern has a
center near Ireland. EA appears in all months except May-August [33] and explains about 33% of
total variance of SLP. It also contains a strong subtropical link, reflecting large-scale modulations
in the strength and location of the subtropical ridge[33].

The third EQOF of SLP accounts for the 18% of variance and shows tendency towards increasing
starting from 1980s.

One approach to evaluating ocean climate indices such as the NAO is to look at the correlation of
the time series representing the NAQO with the time series associated with the SST time series, where
the higher value will indicate a stronger impact. This task we are going to accomplish in the next

section of this work.
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The North Atlantic Ocean SST

index

The SST interannual short-term fluctuations are driven primarily by the atmosphere through anoma-
lous air-sea fluxes, while the long-term SST patterns with periods over a few decades are driven by
ocean dynamics, both the wind-driven circulation and the meridional overturning circulation[5],[39].
This section is designed to verify the previous studies using data mining outcome of the SST dataset.
Two approaches are used to calculate NAO SST index. The first NAO SST index is defined as the
difference of the SST centroids for clusters which show highest positive and negative correlation
with the first three SLP EOFs. The second NAO SST index is defined as the difference of the SST

centroids in the years of anomalous positive and negative first three SLP EOFs.

6.1 North Atlantic Oscillation(NAO) and SST

The North Atlantic Oscillation(NAO) is defined as the atmospheric sea level pressure(SLP) differ-
ence between Iceland and the Azores. When the Iceland low pressure center is deeper than usual,
the Azores High is stronger than usual, and vice versa. The NAO is a measure of the strength of

the westerly winds blowing across the North Atlantic Ocean in the 40 degrees N and 60 degrees
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N latitude belt, and it is an important feature of atmospheric variability throughout the year, al-

though it is less dominant during warmer seasons[24]. Previous studies have demonstrated that the
NAO is correlated with large-scale changes in the Sea Surface Temperature(SST) across the North
Atlantic[5], and NAO driven changes in SST are also most noticeable during the winter season.
For rest of the year, the influence of the atmospheric forcing related to NAQ is mild and therefore,
the influence on the Atlantic Ocean is minimal. During the positive phase of the NAO, the high
pressure system intensifies and the low pressure system weakens, which creates a large pressure gra-
dient between Azores and Iceland. The seesaw in winter temperatures between western Greenland
and Europe is a clear evident of high NAO index with stronger than normal westerly winds[24]. A
high NAO pattern is distinguished in the northeast Atlantic by a reinforcement of the westerlies
that are pushed further south, and hence by warmer winter temperatures than normal. It is also
recognized that the existence of an exceptionally strong positive phase of the NAO is the source
of temperature anomalies and changes in atmospheric moisture transport[31]. The impact of the
two phases of the NAO can be felt across the entire Atlantic and the surrounding continents, with
its greatest effect on the storms that move to Europe, creating an area of forward-moving current
between clockwise and counterclockwise circulation patterns that channels the weather systems from
the United States to Europe. When the pressure difference between the two systems is large, the
storms propogate towards Scandinavia and northern France. When the NAO index is negative, the
winter storms propagate over the southern United States and southern Europe, the Middle East,
and northern Africa. The direction these storms can take causes large changes in the temperature
and the weather over Europe from December through March([33]. A positive NAO on average can
increase rainfall in northern Europe and warm the air at the same region. A negative NAO, on the
other hand, will bring rain to southern Europe, drop the temperatures in northern Europe [33].

Numerous research studies are done to investigate what governs the NAO variability, whether it is
predictable and at what extent, and whether the ocean plays a role in determining the evolution
of the NAO. As pointed out by Greatbatch[24], the role of the ocean, and in particular sea surface
temperature(SST), in regulating the NAO has attracted much attention, but remains controversial.

The important thing is if variability of the NAO is driven by that of underlying SST, then the NAO
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can be predicted on the longer than three-week time scale, but the SST must be predictable by

itself[24]. According to J. Hurrell et.al [33], “statistical analysis have revealed patterns in North
Atlantic Sea Surface Temperatures(SST) that precede specific phases of the NAO by 6-9 months”.
Studies from observational data done by Czaja and Frankignoul [12] indicate a significant correlation
between the wintertime NAQO and the leading mode of anomalous SSTs from the previous summer,
which can serve as an evidence for the oceanic forcing of NAO.

The observed departure of SLP and SST, and air temperature over the land, associated with one
standard deviation(positive) of the NAO index is shown in Figure 6.1. The change in winter temper-
ature associated with the NAO extends all the way across the Eurasian continent from the Atlantic
to the Pacific[24]. This is evidence that the NAO is not a regional North Atlantic phenomenon(24].
The NAO is important not just for winter surface temperature variability in the North Atlantic
sector, but for winter surface temperature variability over the northern hemisphere as a whole. The
NAO is also closely related to a hemispheric mode of variability that is called the Arctic Oscilla-
tion(AO) described by Thompson and Wallace[52], where the AO corresponds to the first EOF of
SLP variability over the northern hemisphere. The spatial structure of the AQ and the NAO are
closely related and both, the AO and the NAO correlate to the same physical phenomenon|24].
Interestingly, some studies investigate the NAO in the relation to the recruitment of the certain fish

stock in the North Sea through the influence of the NAO on the SST[19],[18],[43].
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E"Ed with one standard deviation(positive} of NAO

Figure 6.1: (a}-(b), SLP and SS8T change associ
index. { Adopted from J. Hurrell[32])
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6.2 Eastern Atlantic Pattern

Modes other than NAO also play important role in determining the changes of SST in the North
Atlantic. Yet, unlike well established NAO pattern, the other modes of atmospheric circulation, such
as the Fastern Atlantic, Scandinavian and Furasian patterns are regional. According to Barnston
and Livezey[l], their signatures are well pronounced only during part of the year and the occurrence
of this modes is not uniform during the year. The character of the modes, the shape and the
intensity of their action centers vary seasonally[1]. As Pokorna[47] also points out, very few authors
pay attention to the circulation modes other than NAQO. As we mentioned in Section 5.1, the second
EOF in Figure 5.1(c,d) represents the Eastern Atlantic (EA) pattern and explains about 23% of total
variance. The EA pattern is the second of three prominent modes of low-frequency variability over
the North Atlantic, appearing in all months except May-August[33],[1]. The EA pattern has similar
structure to the NAO in winter, and consists of a north-south dipole of anomaly centers which span
the entire North Atlantic. However, its anomaly centers are located farther southward [47]. The
EA pattern has lower-latitude center and contains a strong subtropical link, reflecting large-scale
modulations in the strength and location of the subtropical ridge[33]. This subtropical link also
makes the EA pattern distinct from the NAO pattern. The EA pattern which represents the second
EOF in our study is similar to that shown in the Barnston and Livezey study[1]. The main cell of
the EA is located westward of the British Isles and the body of high opposite values extends to lower
latitudes, over central Atlantic, northern Africa and southern Europe. During the positive phase of
the EA, the daily maximum, minimum and mean temperature are higher than average and south
winds dominate[47]. The positive phase of the EA pattern is also associated with above-average
precipitation over northern Europe and Scandinavia, and with below-average precipitation across
southern Europe[l]. The EA pattern exhibits very strong multi-decadal variability in the 1950-2000
record, with the negative phase prevailing during much of 1950-1955 and 1967-1977, and the positive
phase occurring during much of 1957-1967,1977-1982,1985-1990, and 1977-2000. The positive phase
of the EA pattern was particularly strong and persistent during 1997-2000. The NAO and the EA
are the zonal modes and influence temperature more than other variables. They also show high

correlation with wind directions and these correlations are generally higher in the winter when the
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circulation modes are better pronounced[47].

Interestingly, the EA pattern also depends on the procedure used to derive it[42]. As Lionello P.et
al. pointed out, “still, the kind of variability associated with the EA pattern seems important and
physically real, as it is also detected in studies using alternative techniques, like cluster analysis done
by Kimoto and Ghil” [37].

To expand previous interrelations between the NAO, the EA pattern and SST anomalies, the next
section will present the results from the study of the connection between SST clusters and major
patterns in SLP. The clustering outcomes that are used to calculate correlation coefficients are
obtained from the FarthestFirst, the Expectation Maximization(EM), and the KMeans algorithms,
described in the sections(2.1.3),(2.1.2), and (2.1.1), and displayed in the Figures 4.1, 4.2, and 4.3.
Here we will explore if the SST clusters can be potentially applied in deriving climate indices for
the North Atlantic related to NAO, EA and the third EOF of SLP. The outcome of clustering is
evaluated on the basis of the external knowledge about how clusters should be structured. Thus, we
adopted the approach of comparing the results to a “ground truth” and the correctness of clustering

is estimated against the existing knowledge.

6.3 Correlation analysis of SST clusters centroids and SLP

EOFs

This section introduces the correlation analysis of clustered SST with the modes of variability of
atmospheric circulation. The evidence of relationships between SLP and SST patterns is analyzed
by the previous studies in local or regional settings by many scientists. The SST variability in
the North Atlantic also has been evaluated in a number of research studies. In particular, it was
found that large-scale temperature anomalies occurred in the North Atlantic Ocean on interannual
to decadal time scales [16],(39],[27],[51]. It has also been shown that the SST variability can be
correlated as part of the mixed layer response to variability in surface fluxes (7], [2], [49]. Although,
“forcing by surface flux variations cannot account for all the observed features of Atlantic Ocean

variability” [20].
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The research by Cayan[7] is done for the wider spatial settings, where the author examines thermo-

dynamic forcing of the upper ocean by relating latent and sensible heat flux to changes in SST over
Northern Oceans. The main conclusion for his study is the strong similarity in the configuration
anomalous heat flux and SST tendency patterns in their association with major SLP modes[7]. In his
work, Cayan|7] uses two separate analysis, Canonical Correlation Analysis and composites according
to atmospheric circulation anomaly modes. He demonstrates that heat flux and SST anomalies co-
vary with the patterns that extend over the ocean basins. The CCA performed by Cayan illustrates
the spatial configuration of the connection between heat flux and SST. The structure of the patterns
of these fields, their interrelationships, and the magnitude of their anomaly centers are similar in
the North Atlantic and North Pacific. It was established that the heat flux is consistent with atmo-
spheric circulation and significantly correlated with tendencies in SST anomalies.

In our analysis, the SST shows large-scale patterns of variability that are related to the patterns
of major modes of SLP variability. These relationships are steady and regular, and the consistency
of these correlations are confirmed by the use of three different data clustering algorithms, such as
FarthestFirst, EM, and KMeans. The amount of variance ranges from 18% to 44% over most of the
North Atlantic, which also authenticated by similar results in the studies done by Cayan|7].

The clustering outcomes that are presented in the Sectiond.l for the SST field for all these three
algorithms are not similar, that is, each of the algorithms interpreted the same SST data uniquely
distinct from each other and the maps yielded from each classification show noticeably different
outcomes for each algorithm. Despite those explicit differences, portrayal of correlation coefficients
between major SLP modes and the SST anomalies depicts consistency of the results with small
dissimilarities from one algorithm to another.

The correlation coeflicient between time series of dominant SLP EOFs(Fig.5.1(a, ¢, €) and SST
clusters(Fig.4.1, 4.2, 4.3) are calculated. The optimal number of SST clusters is selected based on
the analysis done in the previous section(4.2), and the final number of clusters for the further anal-
ysis is determined to be equal to 500. Figures 6.2(a), 6.3(a), 6.4(a), 6.5(a), 6.6(a), 6.7(a), 6.8(a),
6.9(a), 6.10(a) show the correlation coefficients for the three dominant modes of SLP and for the

three clustering algorithms. The complete results for the calculations of the correlation coefficient

51



Chapter 6
between various number of SST clusters and dominant SLP EOFs can be viewed in the Appendix

X.

For EOF1, correlation maps for all three algorithms show positive correlation near the southeast of
Greenland and in the subtropics. Between these two positive centers lies an area of negative corre-
lations. Figures 6.2(a,b), 6.5(a,b), 6.8(a,b), also show a negative correlation west of Norway, which
may reflect the impact of the NAO on Norwegian and North Seas. Time series of SST anomalies that
are positively and negatively correlated with first EQFs of SLP for all three algorithms are shown
on Figures 6.2(d,e), 6.5(d,e), 6.8(d,e). The time series show that the correlation between SST and
EOF's has the opposite sign and it is consistent through all three algorithms. Figures 6.3, 6.6, and
6.9 show the results of correlation between EOF2 and SST clusters for all three algorithms. Figures
6.3(a,b,c), 6.6(a,b,c), 6.9(a,b,c) identify two large and spatially consistent regions of positive and
negative correlation centers. The center of the positive correlation corresponds to the region located
near the Azores and Canary Islands, and the negative center is in the subtropics. Figures 6.4, 6.7,
and 6.10 show the results of correlation between EOF3 and SST clusters for all three algorithms.
Figures 6.3(a,b,c), 6.6(a,b,c), 6.9(a,b,c) identify three regions of positive and negative correlation
centers, where positive centers are located in the subtropics, and Faroe Island, and the negative cen-
ter is located south of Newfoundland. The time series for the SST anomaly and third EOF for SLP
are consistent with the results for the first two EOFs, and show negative sign of correlation over all
time period. The time series that are presented on the Figures 6.2(d,e), 6.3(d,e), 6.4(d,e), 6.5(d,e),
6.6(d,e), 6.7(d,e), 6.8(d,e), 6.9(d,e), 6.10(d,e) for all three algorithms are the averaged SST-s in the
areas of highest correlation of the SST with the NAQO and they are used to define the NAQO climate
index. All the results are consistent with the previous studies of the North Atlantic Oscillation and

Eastern Atlantic Pattern [12],[2],[24].
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6.3.1 SST patterns related to anomalous high and low indices of NAO

and EA

To test the consistency of patterns between the heat flux and 88T tendency anomalies, Cayan [7)
examines this linkage for the case of strong anomalous atmespherie circulation. The composite
differences asscciated with positive and negative extremes of the first two SLP EOFs from Cayan
are ghown on Fig 6.11. The differences that are significantly different from zero are indicated by
shaded areas. Cayan confirmed by his findings that the major regions of significant 55T anomaly
tendencies are closely matched to those of heat flux, supporting the view that they are linked.

In the attempt to determine the connection between the S8T and the major three modes of SLP
during strong snomalous atmospheric circulation, we identified extreme positive and negative EOF
amplitudes for each of the EQF of SLP. Then, the composites of 85T were formed by averaging
this field during the respective extreme EOFs, As in Ceyan|T], the composites were expressed as a
difference between averages of positive{strong) and negative(weak) phase of the EQF of SLF.

The compesite differences associated with positive and negative extremes of the first three SLP EOFs
for each of the three clustering algorithme and their time series are shown respectively on Figures
6.12(a,b,cd), 6.13(a,bed), 6.14(abed), 6.15(abed), 6.16{abed), 6.17(abed), 6.18(abed),
6.19(a,b,c,d), 6.20(abed).

For the state of the extreme NAD atmospheric eirculation pattern, for all three clustering algorithma,
that are shown on the Figures 6.12(n,b,c,d), 6.15(a,b,c,d), 6.18{a,b,c.d), the North Atlantic ocean s
partitioned into several regions that are the following:

1. Strong positive region localized in the are of South, West and East of Greenland, betwesn 45
degrees N and 60 degrees N. This area matches with Cayan's findings, with the exception of the
region contained in the North-West of Greenland, and the sign of it is negative.

2. Second strong positive region I8 & relatively wide region that extends along the Gulf Stream to
the central North Atlantic. This area is also in sync with the Cayan map.

3. The third major area that also corresponds to Cayan findings, i8 the area between 60 degrees W
and North Africs
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4. Another strong, but spatially smaller area is located above Great Britain, which also can be

located Cayan [7], again with the opposite sign.

5. Our findings indicate another small area, north of Iceland and North-East of Greenland, between
65 degrees N and 70 degrees N. This area has strong negative sign, but is not located on Cayan’s
chart.

All three algorithms show notable consistency for the regions described above, with the small de-
viations in the magnitude of the correlation. The time series for all three algorithms also show
good consistency throughout the years. The SST patterns that are related to the positive NAO are
more representative than those that relate to the negative NAO. The time series of the negative,
positive and the difference of average SST for the extreme EOF1, Figures 6.12(b,c,d), 6.15(b,c,d),
6.18(b,c,d), show opposite signs during the period between years of 1990 and 1995. The reason most
probably can be referred to some degree of error in the calculations or in the data itself.

We assume that the regions of significant SST differences for NAO are also closely matched to those

of heat flux, supporting the view that they are linked [7].

For the EA(EOF2) atmospheric circulation pattern, for all three clustering algorithms shown on the
Figures 6.13(a,b,c,d), 6.16(a,b,c,d), 6.19(a,b,c,d), the North Atlantic ocean is partitioned into the
following regions:

1. The area of strong positive differences in the central North Atlantic, between 45 degrees N and
55 degrees N. The area is consistent with the findings of Cayan, and again with the opposite sign
for the feature.

2. Small area of the negative difference at the 60 degrees W, whereas the Cayan’s map shows that
the area is slightly shifted to the East.

The major feature for the EA pattern that differs our findings from the Cayan’s ones is the area
that occupies the pathway that runs from West of Greenland to the Labrador through the Labrador
Sea.

3. There are also small areas of the SST differences with negative signs that are located east of
Greenland, above the Iceland, that are not shown at Cayan’s chart.

4. The small area with the negative sign fills the area in the North Atlantic at the 40 degrees N,
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which is slightly shifted from the location on the Cayan’s map.

As in the case with the extreme NAO circulation pattern, the time series of the negative, posi-
tive and the difference of average SST for the extreme EA(EOF2), Figures 6.13(b,c,d), 6.16(b,c,d),
6.19(b,c,d), show opposite signs during the period between the years of 1990 and 1995.

We also consider the third EOF, and run the above described procedure, as the third mode for the
SLP accounts for 18 percent of variance in the data. The outcome for the EOF3 atmospheric circu-
lation pattern, for all three clustering algorithms shown on the Figures 6.14(a,b,c,d), 6.17(a,b,c,d),
6.20(a,b,c,d).

For the state of the extreme EOF3, we see one main region with negative sign that is located south-
east of Newfoundland and occupied the area from 40 degrees W and 60 degrees W. The time series for
the negative, positive and the difference of average SST for the extreme EOF3 are shown on Figures
6.14(b,c,d), 6.17(b,c,d), 6.20(b,c,d). The time series are less pronounced, yet they do not show oppo-

site signs during the period between the years of 1990 and 1995, as in the case with EOF1 and EOF2.
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Figure 6.11: (a)-(b), Difference of average SST énz)maly tendency associated with positive vs. neg-

ative extremes of EOF1 and EOF2 of North Atlantic SSP.(Adopted from D. Cayan|[32])
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Figure 6.12; (a)-(d}, Difference of average 85T u.::nmu.:ted with positive and negative extremes of

EOF1 of North Atlantie SLP and their related normalized normalized by one STD time-series{ Axis
Y for (b), (c}, (d)) for the FartherstFirst algorithm. Axis X for (b}, (c}, (d) represents time in years.
Axis X for (a) represents longitude, Axis Y for (a) represents latitude.
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EOF3 of North Atlantic SLP and thelr related normalized by one STD time-seriea(Axia ¥ for (b)),
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Figure 6.15: (a)-(d), Difference of average EST{a!ﬁuciued with positive and negative extremes of

EOF1 of North Atlantic SLP and their related normalized by one STD time-series{Axis Y for (b),
(e}, (d)) for the EM algorithm. Axis X for (b), (¢}, (d) represents time in years. Axis X for (a)
represents longitude, Axis Y for (&) represents latitude.
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Figure 6.16: (a)-(d), Difference of average 35T m with positive and negative extremes of

EOF2 of North Atlantic SLP and thelr related normalised by one STD time-series{Axis Y for (b),
(e}, (d)) for the EM algorithm. Axis X for (b}, (¢}, (d) represents time In years. Axis X for (a)
representa longitude, Axis Y for (8) represents latitude.
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Figure 8.17: (a}-(d), Difference of average EET{MM&I with positive and negative extremes of
EOF3 of North Atlantic SLP and their related normalized by one 8TD time-series(Axis Y for (b},
(¢}, (d)) for the EM algorithm. Axis X for (b), (), (d) represents time in years. Axis X for (a)
represents longitude, Axis Y for {a) represents latitude.
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Figure 6.18: (a)-(d}, Difference of average SET{ILECEHEI:I with positive and negative extremes of
EOF1 of North Atlantic SLP and their related normalized by one STD time-series{Axis Y for (b},
(e}, (d)) for the KMeans algorithm. Axis X for (b), (¢}, (d) represents time in years. Axls X for ()
represente longitude, Axis Y for (a) represents latitude.
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Figure 6.19: {a}-(d), Difference of average 83T associated with positive and negative extremes of

EOF2 of North Atlantic SLP and their related normalized by one 8TD time-series{Axie Y for (b},
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6.4 MOC

The Labrador Sea and the Greenland/Iceland/Norwegian (GIN) Seas of the North Atlantic Ocean
are two of the few places where the deep waters of the world ocean are known to be renewed, and the
newly formed dense waters spread into the rest of the global ocean. This phenomenon is part of the
thermohaline circulation(THC). The key features of THC include deep water fomation, spreading of
deep water from sources, and upwelling of deep water[17]. The THC that is associated with North
Atlantic Deep Water contributes to the global ocean circulation termed as the “Conveyor Belt”. It
is also referred as the meridional overturning circulation (MOC). The term MOC, however, is more
accurate and well defined, as it is difficult to separate the part of the circulation which is actually
driven by temperature and salinity alone as opposed to other factors such as the wind.

There are observations that support the fact that the North Atlantic THC is consistent with the
SST variability and that “the multidecadal SST variability is closely related to variations in the
North Atlantic thermohaline circulation[41], and that the variations in the North Atlantic THC are
reflected in large-scale SST anomalies[41],[55],{15]. Changes of THC are important for climate, but
there are no good methods to observe THC, therefore we try to identify SST index that would
provide information about MOC.

The MOC index is computed from the ECMWF coupled ocean-atmosphere-sea-ice reanalysis(data
source KNMI- Royal Netherlands Meteorological Institute). Period of Study 1960 - 1998. The MOC
index is defined as the maximum of the overturning streamfunction calculated from ECMWF ocean
reanalysis. The correlation map and the time series of the averaged SST for all three clusters and
MOC are shown on Figures 6.21(a,b,c,d), 6.22(a,b,c,d), 6.23(a,b,c,d).

The correlation maps for all three algorithms Figures 6.21(a), 6.22(a), 6.23(a) show well pronounced
dipole structure with the negative correlation around Azores and positive correlation around Iceland.
There are also relatively small areas with positive and negative correlation, south of Nova Scotia, in
Hudson Bay, and in the Gulf of Mexico.

The time series for all three algorithms, Figures 6.21(b,c,d), 6.22(b,c,d), 6.23(b,c,d), also show
good relationships between SST and the MOC. The opposite sign of correlation between the years

approximately between 1987 and 1997, confirms the discrepancy in the SST data or possibly in the
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calculations of the clusters for those years. Close connection between SST clusters and the THC

exists during the whole time period from 1957 to 1980. For the period from 1980 to 1987 we observe
that both curves show the same tendency, although the magnitude varies, especially for the period
between 1973 and 1976. A good correlation is shown starting from 1993 and up. The beginning
of the study time period, from about 1961 to 1963 shows a similar tendency, but with a greater
difference than in other years. We assume that there was not enough data or not enough high
quality data for that period. More data SST should be investigated using the similar techniques
to see if the results will be more accurate. Yet, we can assume that our results are comparable
with the work of Latif et al. [41], where the simulations in coupled ocean-atmosphere models show
that variations in the North Atlantic THC are reflected in large-scale SST anomalies. More data
should be investigated to study the option of using data mining principles and cluster analysis in

monitoring future changes in THC strength and its predictability using SST clusters.
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Figure 6.21: (a)}-(d), Difference of average Eﬂ% associated with positive and negative MOC and
their related normalized time-series for the FF algorithm, Time series of MOC index(red line) and
maximurm of positive SST(blue line} are normalized by ane 8TD
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their related normalized time-series for the EM algorithm. Time series of MOC Index(red line) and
muximum of positive S8T(blue line) are normalized by one STD
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thelr related normalized time-serles for the FF algorithm. Time series of MOC index{red line) and
maximum of positive 55T (blue line} are normalized by one STD
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Conclusion

Through application of data mining and clustering techniques to the oceanographic Sea Surface
Temperature data we obtained valuable information about how these clusters map on the natural
structure of the problem. We investigate the relationships between the NAO and SSTs over the
North Atlantic basin and detect a significant causal relation of SST with the dominant atmospheric
circulation pattern. This influence is mainly centered over the Gulf Stream, the Greenland and
the subtropics areas, which are the centers of the typical tripole pattern, which may represent the
effect of positive feedbacks between the atmosphere and ocean in this region. Testing three different
data mining algorithms in this context allows us to better outline possible sources of uncertainty
for the NAO and EA indices. As was mentioned in the previous chapter, between two main data
mining classification techniques such as supervised and unsupervised, we have chosen unsupervised
classification or clustering, since we can not predetermine the set of classes in advance. Thus,
since the clustering is done in a completely unsupervised manner, finding that the cluster structure
is reasonably mapped onto the true classes supports the hypothesis that algorithms described in
this study, such as FarthestFirst, Expectation-Maximization (EM), and KMeans are capable of
discovering the “true structure”, the one that is inherent in the data. However, it is observed that
perfect classification is not achieved and it is also observed that different methods of cluster analysis

are effective at detecting different kinds of clusters, so, different clustering algorithms are biased
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toward finding different types of cluster structures in the data. Therefore, the approach in this

study was to try to match the method to the objectives, and “apply a cluster analytical tool that is
effective in detecting clusters for the problem that we want to solve” [26]. Quantifying the clustering
results is difficult and the validity of clustering is often subjective, as it depends to some degree on
the eye of a researcher, and if the clusters produce interesting scientific insight, it can be judged as
being useful[57]. Following this strategy, we did not obtain a direct assessment of the goodness of
clusters per se; in exchange, we obtained valuable information about how these clusters map on the
natural structure of the problem, something that may be more interesting than evaluating a single
or few indirect performance parameters. To evaluate the quality of clustering and overall results,
we adopted the approach of comparing the results to a “ground truth”. The results show that
the clustering method applied to SST compares favorably with the approach described in previous
studies of dominant patterns of interannual variability in the North Atlantic and the results achieved
are comparable with those obtained by the authors [7], [20], [563], [50], [18]. This comparison should
be used as a possible conformation of the validity of the method that besides Sea Level Pressure,

Sea Surface Temperature can be used as another parameter linked to the North Atlantic Oscillation.

7.1 Future Work and Recommendations

The classification step is the most computationally intensive step in the process, requiring up to 24
hours to classify large amount of instances. Since in the long run we want to apply the process of
unsupervised classification or clustering to the “ARGO-DATA” database described in Section 3.2
that contains millions of instances, it is vital to examine new methods for reducing the computational
time and to scale the entire classification process to accommodate massive amount of data in a timely
manner.

There are two approaches that can be investigated and compared with each other by the outcomes.

* The first approach of scaling the process is to parallelize the learning algorithm by splitting it
up into parallel portions and executing the splitted portions of the code on multiple processors

to get the results. Parallel algorithm will perform the job faster than the serial(sequential)
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one, but it may be possible that the entire sequential algorithm or part of it will be inherently

serial, i. e. the algorithm can not be split up into parallel portions. Therefore, the second

approach can be used.

* Second approach partitions the data by itself into subsets, allocates those subsets to different
processors and applies a sequential algorithm to each data subset. Second approach does not
alter the algorithm, and allows the classification results be combined from each processor to
one single classifier. This approach is received an attention mainly because of two reasons:
it reduces execution time and improves classification accuracy[37]. The execution time is be-
coming shorter because the expensive classification step is allocated among several processors.
The accuracy of classification is improved because each of the distributed classifiers makes
different types of errors and the resulting classification is often more accurate than that of a

single classifier(47).

Most of the previous work on combining classifiers is done using supervised classification algorithms[46,
47, 37]. Since we cannot predetermine the set of classes in advance, we are using unsupervised clas-
sification or clustering. Therefore, the schema of the future work should include, first, determining
the likeliness or similarity between classes that are outcomes from different classifiers, and then
determining how to combine the results when classifying a particular instance. The process will
involve writing the programs that will distribute the data and then gather the results.

Both, first and second approaches can be implemented and then evaluated using parameters such
as execution time, speedup, and efficiency.

Furthermore, we would suggest that:

* More research work should be done that would test existing algorithms and build new algo-
rithms that are applicable to time series data, as the “standard” algorithms that comes with

data mining software such as WEKA may not always be applicable.

* The results of the clustering algorithms presented in this study should also be compared to
results of other methods both supervised and unsupervised. The comparison will yield the

methods that are much fitted to the data with similar temporal and spatial characteristics.
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84

* More research needs to be done to apply clustering methods to Ice Concentration data. Most
of the work is completed successfully, and the clustering was implemented on the Ice Concen-

tration data using Farthest-First algorithm.
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1 Mathematical Relations

To understand the true meaning of the term relation, it is useful to review some concepts from
mathematics. Suppose that we have two sets, D, and D, where D; = {2,4} and D, = {1, 3,5}.
The Cartesian product of these two sets, written D; x Ds, is a set of all ordered pairs such that
the first element is a member of D; and the second element is a member of Ds. An alternative way
of expressing this is to find all combinations of elements with the first from D; and the second from

Ds. Thus, we will have:
Dy X Dy = {(2’ 1)1 (2’ 3)’ (2, 5)1 (4, 1)’ (4’ 3)’ (4’ 5)}

Any subset of this Cartesian product is a relation. For example, we could produce a relation R such

that:
R= {(25 1)’ (4’ 1)}

We may specify which ordered pairs will be in the relation by giving some condition for their selection.
For example, if we observe that R includes all those ordered pairs in which the second element is 1,

then we could write R as: R = {(z,y)|z € D1,y € D3, and y =1}

Using the same sets, we could form another relation S as:

S = {(z,y)|r € D1,y € D2, and = = 2y}

or, in this instance,

§={@2,1}

since there is only one ordered pair in the Cartesian product that satisfies this condition. We
can extend the relation to three sets. Let D;, Dy, and D3 be three sets. The Cartesian product
Dj x Dy x D3 of these three sets is the set of all ordered triples such that the first element is from

Dy, the second element is from D, and the third element is from Ds;. For example, suppose we

have: D1 = {1,3}, D2 = {2,4}, D3 - {5,6}
Dy x Dy x D3 = {(1’ 2, 5)’ (1: 2, 6)1 (1a45 5)’ (154, 6)’ (37 2, 5); (3’ 2, 6)’ (3’4: 5)’ (354’ 6)}

Any subset of these ordered triples is a relation. We can extend the three sets and define a general

relation on n domains. Let Dy, Do, Ds,...,D, be n sets. Their Cartesian product is defined as:
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D1XD2XD3X...XDn={(d1€D1,d2€D2,...,dnEDn}

Any set of n-tuples from this Cartesian product is a relation on the n sets.

IT Metric spaces

A metric space (X, p) consists of a set x and a distance function p: x x x — R that satisfies the

three properties of a metric:

(1) Reflexivity: p(z,y) > 0 with equality iff z =y

(2) Symmetry: p(z,y) = p(y, z)

(3) Triangle inequality: p(z,2) < p(z,y) + p(y, 2)

IIT1 Distance Measures

Many data mining techniques such as nearest neighbor classification methods, cluster analysis, and
maultidimensional scaling methods, are based on similarity measures. There are two ways to obtain
measures of similarity. One way is they can be obtained from the objects themselves, and second way
is when it is necessary to give a precise definition of “similar”. The formal definition of “similar” al-
lows one to define “dissimilar” by applying a “suitable monotonically decreasing transformation” [27].

Therefore, if s(i, j) denotes the similarity and d(%, j) denotes the dissimilarity between objects i and
Jj, then possible transformations include d(i, ) = 1 — s(4, ) and d(3, ) = /2(1 — s(3, 5)).

The definitions such as distance and metric are used to denote a measure of dissimilarity. Dis-
tance refers to a dissimilarity measure taken from the characteristics describing the objects — as in

Euclidean distance. The Euclidean distance between the ith and jth objects is defined as

4
dg(i,j) = J (Z(zk(i) - u(i))"’) 1

k=1
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where 7 is the mumber of data objects with p real-valued measurements on each object; and (%)
is the vector of observations for the ith object: (i) = (z1(%),z2(3), ..., zp(?)), 1 2> i < n, where the

value of the kth variable for the ith object is zx(3).

Metric is a dissimilarity measure that satisfies three conditions:

1. d(i,5) > 0 for all i and j, and d(4, ) = 0 if and only if i = 5;

2. d(i,7) = d(4,1%) for all i and j; and

3. d(i,7) < d(i, k) + d(k, j) for all 4, j and k.

A common strategy to standardize the data if the variables are not compatible is to divide each of
the variables by its sample standard deviation, so that they are all regarded as equally important.
The standard deviation of the kth variable X; can be estimated as

6= \] (% Z(mk(i) —#k)z) (2)

=1

where puy, is the mean for variable X, which can be estimated using the sample mean z = 1 37" | z,(3).
In addition, knowing the relative importance of each variable, we can weight them to have the

weighted Euclidean distance measure, such as

P
dwg(i, j) = \J (Z we(zk(i) — -’Dk(j))z) ®3)

k=1
This property may not be always appropriate in the case when variables are highly correlated and
one of the approaches of standardizing the data in this case is not just in the direction of each
variable, as with weighted Euclidean distance, but also taking into account the covariances between
the variables. If we assume that we have two variables X and Y, and also assume that we have
n objects, with X taking values z(1),...,z(n) and Y taking values y(1),...,y(n), then the sample
covariance between X and Y will be defined as
1 &

Cov(X,Y) =~ ;(z(i) —Z)(y() - 7) (4)

where T is the sample mean of the X values and 7 is the sample mean for the Y values. The

covariance Cov(X,Y) is a measure of how X and Y vary together: Cov(X,Y’) will have a large
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positive value if large values of X tend to be associated with large values of Y and small values of

X with small values of Y. If large values of X are associated with small values of Y, Cov(X,Y) will
take a negative value. In general, with p variables we can construct p x p matrix of covariances, in
which the element (k,!) is the covariance between the kth and lth variables, and from the definition
of covariance above, such covariance matrix must be symmetric. The value of the covariance depends
of the ranges of X and Y. This dependence can be removed by standardizing, dividing the values
of X by their standard deviation and the values of Y by their standard deviation. The result is the

sample correlation coefficient p(X,Y) between X and Y:

oY) = — T @) - D) ~ ) @
Vel -2 T 60 - 99

The same way as a covariance matrix can be formed if there are p variables, in the same manner
p X p correlation matrix can be formed. Covariance and correlation capture linear dependencies
between variables, therefore the more accurate terms are linear covariance and linear correlation.
Thus independence implies a lack of correlation, but the reverse is not generally true, as it may show
non-linear correlation.
There is a number of other metrics for quantitative measurements, so the problem is not so much

defining one but rather deciding which is the most appropriate for a particular situation[26].

IV K-Means

As an algorithm, the K-Means method is as follows: assuming we have n data points D = {zy,...,z,},

our task is to find K clusters {C},...,Ck}:

for k=1,..., K let r(k) be a randomly chosen point from D;
while changes in clusters Cy happen do
form clusters:
fork=1,..,K do
Cy = {z € D|d(rx,z) < d(rj,z) for all j =1,..., K, j # k};

end;
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compute new cluster centers:
fork=1,..,K do

T = the vector mean of the points in Cj,
end;

end;

V Expectation Maximization(EM)

EM clustering method is designed to solve the the missing or hidden data problems in a likelihood
context. Particularly, let D = z(1), ..., z(n) be a set of n observed data vectors. Let H = 2(1), ..., z(n)
represent a set of n values of a hidden variable Z, which is in one-to-one correspondence with the
observed data points D; that is, z(i) is associated with data point z(). We can assume Z to be
discrete, in which case we can think of the unknown z(7) values as cluster labels that are hidden.

We can write the log-likelihood of the observed data as:

1(6) = log p(D|6) = log Y _(p(D, H|6) (6)
H

where the term on the right indicates that the observed likelihood can be expressed as the likelihood
of both the observed and hidden data, summed over the hidden data values, assuming a probabilistic
model in the form p(D, H|#) that is parametrized by a set of unknown parameters 6. Let Q(H) be

any probability distribution on the missing data H. Then the log-likelihood can be written as:

1(6) = log p(D|6) = log Y _(p(D, H|6) @
H

Let Q(n) be any probability distribution on the missing data H, We can then write the log-likelihood

in the following fashion:

1(6) = logp(D|6)

D,H|0
- g T QunZg?
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p(D, H[)
> % Q(H)log o
1
= L}ijQ(H) logp(D, H|6) + LIV;‘ Q(H) log 5y

= F(Q,6)

The function F(Q,6) is a lower bound on the function we wish to maximize(the likelihood (8)).
The EM algorithm alternates between maximizing F with respect to the distribution @ with the
parameters @ fixed, and then maximizing F' with respect to the parameters § with the distribution
Q@ = p(H) fixed. Specifically:

E-step: Q* + 1 = argmaxg F(Q*, %)

M-step: 6* + 1 = arg maxy F(Q* + 1, %)

E and M steps have a simple interpretation. In the E-step we estimate the distribution on the hidden
variables @, conditioned on a particular setting of the parameter vector #*. Then, keeping the Q
function fixed, in the M-step we choose a new set of parameters 6% + 1 so as to maximize the expected
log-likelihood of observed data (with expectation defined with respect to Q = p(H). In turn, we can
now find a new Q distribution given the new parameters 8* + 1 , then another application of the
M-step to get 82, and so forth in an iterative manner. As sketched above, each such application of
the E and M steps is guaranteed not to decrease the log-likelihood of the observed data, and under
fairly general conditions this in turn implies that the parameters § will converge to at least a local
maximum of the log-likelihood function.

To specify an actual algorithm we need to pick an initial starting point(for example, start with either
an initial randomly chosen @ or 6) and a convergence detection method(for example, detect when
any of @, 8, or 1(6) do not change from one iteration to the next). The EM algorithm is similar to
a form of local hill-climbing in multivariate parameter space(as discussed in earlier sections of this
chapter) where the direction and distance of each step is implicitly and automatically specified by
the E and M steps. The method is sensitive to initial conditions, so that different choices of initial
conditions can lead to different local maxima. In practice it is usually wise to run EM from different

initial conditions to decrease the probability of finally settling on a relatively poor local maximum.
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The EM algorithm is widely used given the broad generality of the framework and the relative ease
with which an EM algorithm can be specified for many different problems.

The computational complexity of the EM algorithm is dictated by the number of iterations required
for convergence and the complexity of each of the E and M steps. The algorithm can often converge
to the general vicinity of the solution after only a few (10-15) iterations. The complexity of the E
and M steps depends on the data and for many simple models the E and M steps need only take

time linear in n, i.e., each data point need only be visited once during each iteration.

VI FarthestFirst

Hochbaum and Shmoys (1985) introduced the Farthest-First traversal of a data set as an approxi-
mation algorithm for what is sometimes called

the k-center problem, that of finding an optimal k-clustering under the cost function. The cost of
clustering is taken to be the largest radius of its clusters.

The Farthest-First starts by assigning each data instance to its own cluster. It finds the Euclidean
Distance between all instances in each pair of clusters. The maximum of these distances is chosen.
Any two clusters that have minimum of this chosen distance are merge. The process is continued
until the total number of clusters is above some specified threshold[59]. The algorithm of Farthest-
First traversal is described as follows:

pick any z € S and set T = {z}

while |T| < k

z = argmazzesp(z, T)

T=Tu{z}

This builds a solution T one point at a time. It starts with any point, and then iteratively adds the
point farthest from the ones chosen so far. According to Hochbaum and Shmoys[29], the solution of
the farthest-first traversal may not be perfect, but it is close to optimal, that is for any k if T is the

solution returned by farthest-first traversal, and T* is the optimal solution, then

cost(T) < 2cost(T*)
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VIl  Nearest-Neighbor Clustering

In the nearest-neighbor or single link clustering method each new instance is compared with existing
ones using a distance metric, and the closest existing instance is used to assign the class to the new
one [27, 4]. Usually the starting point for the process is the initial clustering in which each cluster
consists of a single data point, so that the procedure begins with the n points to be clustered.
Nearest-neighbor defines the distance between two clusters as the distance between the two closest

points, one from each cluster:
Du(C,,C;) = min{d(z,y)lz € Cuy € G}, ®)

where d(z,y) is the distance between objects £ and y. As an algorithm, the method is as follows:
assuming we are given n data points D = {z(1), ...,z(n)}, and a function D(C,,C;) for measuring
the distance between two clusters C, and C;. Then the algorithm for clustering can be described as
follows:
fori=1,...,nlet C, = {z(i)};
while there is more than one cluster left do
let C, and C; be the clusters
minimizing the distance D(Cj, Cj) between any two clusters;
C, =C UCj;
remove cluster Cj:
end;
One of the major disadvantages of this method is that it is often slow[57] and processing whole
data set takes time that is proportional to the number of rows in the data table, that is, it can be

computationally expensive, especially when the data set is large.

VIII Log-Likelihood

The most common score function for estimating the parameters of probability functions is the log-

likelihood. If the probability function of random variables X is f(z;#), where # are the parameters
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that need to be estimated, then the log-likelihood is logf(D|0), where D = {z(1),...,z(n)} is the
observed data. Making the common assumption that the separate rows of the data matrix have

arisen independently, this becomes

St(6) = — Y log f(x(i); 6) ©)

i=1

If f has simple functional form then this score function can usually be minimized explicitly, pro-
ducing a closed form estimator for the parameters . However, if f is more complex, iterative
optimization methods may be required. Despite the importance, the likelihood may not always be
an adequate or appropriated measure for comparing models, in particular when the models are of

different complexity.

IX Principal Component Analysis(PCA)

Suppose that X is an nn X p data matrix in which the rows represent the cases(each row is a data vector
z()) and the columns represent the variables. The ith row of this matrix is actually the transpose
27T of the ith data vector x(4), since the convection is to consider data vectors as being p x 1 column
vectors rather than 1 X p row vectors. Also, we assume that X is mean-centered so that the value
of each variable is relative to the sample mean for that variable(that is estimated mean has been
subtracted from each column). Let a be the p x 1 column vector of projection weights(unknown at
this point) that result in the largest variance when the data X are projected along a. The projection

of any particular data vector z is the linear combination o x z = Z§=1

a;x;. We can express the
projected values onto a of all data vectors in X as Xa(n x p by p x 1, yielding an n x 1 column

vector of projected values). Furthermore, we can define the variance along a as
02 = (Xa)T(Xa)=aTXTXa=a"Va, (10)

where V = XT X is the p x p covariance matrix of the data. Thus, we can express o2(the variance of
the projected data (a scalar) that we wish to maximize) as a function of both a and the covariance

matrix of the data V. Maximizing o2 directly is not well-defined, since we can increase o2 without
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limit simply be increasing the size of the components of a. We impose normalization constraint on

the a vectors such that aTa = 1. With this normalization constraint we can rewrite our optimization

problem as that of maximizing the quantity
[u=a"Va—AaTa-1), (11)

where A is a Lagrange multiplier. Differentiating with respect to a yields

du
5o =2Va-2da=0, (12)

which reduces to the eigenvalue form of
(V-=M)a=0 (13)

Therefore, the first principal component a is the eigenvector associated with the largest eigenvalue
of the covariance matrix V. Furthermore, the second principal component (the direction orthogonal
to the first component that has the largest projected variance) is the eigenvector of the kth largest
eigenvalue corresponds to the kth principal component direction). In practice we are interested in
projecting to more than two-dimensions. The variance of the projected data can be expressed as
z;?:l Aj, where ); is the jth eigenvalue. Similarly, the squared error in terms of approximating the
true data matrix X using only the first eigenvectors can be expressed as

Z§=k+1 Aj

25;1 A (14)

Therefore, in choosing an appropriate number k of principal components, one approach is to increase
k until the squared error quantity above is smaller than some acceptable degree of squared error.
For high-dimensional data sets, in which the variables are often relatively well-correlated, it is not
uncommon for a relatively small number of principal components(from 5 to 10) to capture 90% or

more of the variance in the data.
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