Intelligent control of an interior permanent magnet synchronous motor drive

Uddin, Mohammad Nasir (2000) Intelligent control of an interior permanent magnet synchronous motor drive. Doctoral (PhD) thesis, Memorial University of Newfoundland.

[img] [English] PDF - Accepted Version
Available under License - The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

Download (22MB)

Abstract

Novel speed control techniques using intelligent computation algorithms for the interior permanent magnet synchronous motor (IPMSM) to be used in high performance drive (HPD) systems are presented. In HPD systems, fast and accurate speed response and quick recovery of speed from any uncertain disturbance are of critical importance. The vector control technique is used in this work to obtain the highest torque response for the IPMSM drive. In the vector control scheme, both the current and the speed controllers play an important role for the drive performance. -- In order to select a suitable current controller, a current controlled voltage source inverter (VSI) fed IPMSM drive is developed and implemented in real-time. The performance of various current controllers, particularly hysteresis and ramp comparator controllers for the IPMSM drive, are investigated both theoretically and experimentally. A comparison is also made among the current controller performances for the IPMSM drive. -- In this work, the control of the IPMSM over a wide speed range incorporating the flux weakening operation is also presented. The scheme incorporates the maximum torque per ampere operation in the constant torque region and the flux-weakening operation in the constant power region. The performance of this proposed technique is evaluated by simulation results as well as by experimental results. A comparison between the flux-weakening control technique and the conventional constant flux control scheme is also presented. -- An integral part of this work is directed to develop and implement a fuzzy logic controller (FLC) for the IPMSM drive in order to overcome the unknown and/or nonlinear disturbances such as sudden load change, parameter variations, step change of command speed and system noise, etc. A specific FLC for the IPMSM is developed from the motor dynamics and nonlinear load characteristics. The complete vector control scheme incorporating the FLC is successfully implemented in real-time using the digital signal processor (DSP) board DS1102 for the laboratory 1 hp interior type permanent magnet motor. In order to achieve the better switching performance for the current controlled VSI, an insulated gate bipolar transistor (IGBT) inverter module and its associated drive circuits are also built in the Power Research Laboratory of Memorial University of Newfoundland. Numerous tests are carried out for the IPMSM drive at different dynamic operating conditions to evaluate the efficacy of the fuzzy logic controller. The experimental results validate the robustness and hence justify the applicability of the FLC for the IPMSM drive to be used in high performance drive applications. In order to prove the superiority of the FLC over the conventional controllers a comparison between the proposed FLC based system and the conventional proportional-integral (PI) controller-based system is made based on experimental results at different dynamic operating conditions. There is an excellent agreement between the simulated and the experimental results for the FLC based system.

Item Type: Thesis (Doctoral (PhD))
URI: http://research.library.mun.ca/id/eprint/9849
Item ID: 9849
Additional Information: Bibliography: leaves 179-191.
Department(s): Engineering and Applied Science, Faculty of
Date: 2000
Date Type: Submission
Library of Congress Subject Heading: Electric controllers; Electric motors, Synchronous; Permanent magnet motors

Actions (login required)

View Item View Item

Downloads

Downloads per month over the past year

View more statistics