Li, Yake (2016) Frequency-modulated continuous-wave synthetic-aperture radar: improvements in signal processing. Doctoral (PhD) thesis, Memorial University of Newfoundland.
[English]
PDF
- Accepted Version
Available under License - The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission. Download (4MB) |
Abstract
With the advance of solid state devices, frequency-modulated continuous-wave (FMCW) designs have recently been used in synthetic-aperture radar (SAR) to decrease cost, size, weight and power consumption, making it deployable on smaller mobile plat-forms, including small (< 25 kg) unmanned aerial vehicle(s) (UAV). To foster its mobile uses, several SAR capabilities were studied: moving target indication (MTI) for increased situational awareness, bistatic operation, e.g. in UAV formation flights, for increased range, and signal processing algorithms for faster real-time performance. Most off-the-shelf SAR systems for small mobile platforms are commercial proprie-tary and/or military (ITAR, International Trades in Arms Regulations) restricted. As such, it necessitated the design and build of a prototype FMCW SAR system at the early stage to serve as a research tool. This enabled unrestricted hardware and software modifica-tions and experimentation. A model to analyze the triangularly modulated (TM) linear frequency modulated (LFM) waveform as one signal was established and used to develop a MTI algorithm which is effective for slow moving targets detection. Experimental field data collected by the prototyped FMCW SAR was then used to validate and demonstrate the effectiveness of the proposed MTI method. A bistatic FMCW SAR model was next introduced: Bistatic configuration is a poten-tial technique to overcome the power leakage problem in monostatic FMCW SAR. By mounting the transmitter and receiver on spatially separate mobile (UAV) platforms in formation deployment, the operation range of a bistatic FMCW SAR can be significantly improved. The proposed approximation algorithm established a signal model for bistatic FMCW SAR by using the Fresnel approximation. This model allows the existing signal processing algorithms to be used in bistatic FMCW SAR image generation without sig-nificant modification simplifying bistatic FMCW SAR signal processing. The proposed range migration algorithm is a versatile and efficient FMCW SAR sig-nal processing algorithm which requires less memory and computational load than the traditional RMA. This imaging algorithm can be employed for real-time image genera-tion by the FMCW SAR system on mobile platforms. Simulation results verified the pro-posed spectral model and experimental data demonstrated the effectiveness of the modi-fied RMA.
Item Type: | Thesis (Doctoral (PhD)) |
---|---|
URI: | http://research.library.mun.ca/id/eprint/12218 |
Item ID: | 12218 |
Additional Information: | Includes bibliographical references (pages 144-154). |
Keywords: | Synthetic aperture radar, Frequency modulated continuous wave, FMCW SAR system, Range migration algorithm |
Department(s): | Engineering and Applied Science, Faculty of |
Date: | May 2016 |
Date Type: | Submission |
Library of Congress Subject Heading: | Synthetic aperture radar--Design and construction; Continuous wave radar--Design and construction; Signal processing |
Actions (login required)
View Item |