A petri net on-line controller for the coordination of multiple mobile robots

Hwang, Faustina (2000) A petri net on-line controller for the coordination of multiple mobile robots. Masters thesis, Memorial University of Newfoundland.

[img] [English] PDF (Migrated (PDF/A Conversion) from original format: (application/pdf)) - Accepted Version
Available under License - The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

Download (9Mb)
  • [img] [English] PDF - Accepted Version
    Available under License - The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.
    (Original Version)

Abstract

In applications such as mining, space exploration, and toxic waste cleanup, mobile robots are often required to move within a common environment and to share resources. This introduces the need for a means of coordinating their behaviours. Also, due to the unpredictable nature of the worksite, there is a need to accommodate changes in a dynamic environment. -- A general framework for group robotics was developed in response to this need. The framework includes a discrete event controller for on-line control and runtime monitoring, the focus of the current research. -- A Petri net based discrete event formalism has been investigated as a basis for the development of an on-line controller, ftom a high-level task description, a set of rules have been used to automatically generate a Petri net structure that provides coordinated behaviour. The Petri net can then be executed to send instructions to robots and to incorporate feedback from the robots at runtime. This on-line controller has been used to control mobile robots in a proof-of-concept demonstration. In a laboratory setting, the Petri net controller was able to coordinate the behaviour of two robots in marker-based navigation tasks. -- Although the work completed to date has provided promising results, many research challenges remain. Some suggestions for future work are presented.

Item Type: Thesis (Masters)
URI: http://research.library.mun.ca/id/eprint/1380
Item ID: 1380
Additional Information: Bibliography: leaves 74-79.
Department(s): Engineering and Applied Science, Faculty of
Date: 2000
Date Type: Submission
Library of Congress Subject Heading: Robots--Control systems; Petri nets

Actions (login required)

View Item View Item

Downloads

Downloads per month over the past year

View more statistics