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Abstract

In applications such as mining, space exploration, and toxic waste cleanup, mobile
robots are often required to move within a common environment and to share re-
sources. This introduces the need for a means of coordinating their behaviours. Also,
due to the unpredictable nature of the worksite, there is a need to accommodate
changes in a dynamic environment.

A general framework for group robotics was developed in response to this need.
The framework includes a discrete event controller for on-line control and runtime
monitoring, the focus of the current research.

A Petri net based discrete event formalism has been investigated as a basis for
the development of an on-line controller. From a high-level task description, a set of
rules have been used to automatically generate a Petri net structure that provides
coordinated behaviour. The Petri net can then be executed to send instructions to
robots and to incorporate feedback from the robots at runtime. This on-line controller
has been used to control mobile robots in a proof-of-concept demonstration. In a
laboratory setting, the Petri net ller was able to di the behaviour of
two robots in marker-based navigation tasks.

Although the work completed to date has provided promising results, many re-
search challenges remain. Some suggestions for future work are presented.
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Chapter 1

Introduction

1.1 Why use autonomous mobile robots?

Mining, space ion, forestry, und loration, and toxic waste cleanup
are but a few examples of areas in which the use of mobile robots can be of tremen-
dous benefit. A and i robots can operate in dangerous

environments and perform operations that are hazardous to humans. In this way,
robotic systems can reduce the risk to human life. Many industrial tasks performed
by humans can be slow and highly-repetitive, and because they require constant at-
tention, can be very fatiguing. Automation of these tasks using robotic technology
can reduce the cognitive load on workers.

1.2 Why use groups of robots?

There are a number of potential advantages to using groups of mobile robots rather
than single robots. Certain tasks may be too complex or even impossible to be
completed by a single robot. Constructing and using a number of simpler robots can
be easier, cheaper, more flexible, and more fault-tolerant than using a single robot to



complete a task. Many robots can be in many places at the same time, and many
robots can do many things at the same time. Multi-robot teams can take advantage
of llelism and toi y b and achieve perf

gains.

Thus, in many icati i d systems involving groups of mobile
robots are a logical choice. In mining, multiple automated load-haul-dump vehicles
can simultaneously travel between ore piles and crushers, resulting in high produc-
tivity and a reduced need for humans to perform time-consuming tasks[36]. In toxic

waste cleanup, teams of mobile robots can be sent to waste sites to map the location
of buried waste and to retrieve, sort, treat, and package the waste. In underwater
applications, multiple machines can be deployed to inspect the hundreds of structural
nodes of an offshore oil and gas platform, or to cooperate in the construction of a
deepwater oil and gas facility(20].

1.3 Why is coordination necessary?

In many real-world applications, multiple robots are required to move within a com-
mon environment and to share resources (e.g. roads and intersections) without caus-
ing collision or deadlock. This is icularly i in certain i ial appli-
cations where vehicle collisions are not only dangerous, but may result in significant
costs in terms of vehicle repair and production downtime. It has been recognized
that the task of deploying mining trucks from a central garage requires a significant

level of coordination among vehicles. In forestry applications where many vehicles
are manually driven throughout a common worksite, collisions are not uncommon,
but could be avoided with a formal method of coordinating their movements. This
introduces the need for a means of detecting the possibility of collision and deadlock
during the task planning and resource allocation phase (i.e. in simulation).



1.4 Why is simulation alone insufficient?

Many industrial ications would requi bile robots to operate in a semi-structured,

dynamic envi Due to the dictable nature of the worksite, simulation
alone is insufficient to guarantee collision-free and deadlock-free operation. For ex-
ample, in a mining application, it is difficult and sometimes impossible to know in
advance the precise length of time required by a vehicle to traverse a tunnel. There
is a possibility that the vehicle may encounter an obstacle, run out of fuel, or be
required to drive over difficult terrain.

Due to these uncertainties, the state of the system at any given time is non-
deterministic. It is therefore necessary to monitor the robots during operation and to
send appropriate control signals at runtime. On-line system state monitoring can also
be used to dynamically reschedule the robots to deal with changes in the operating
conditions. In this way, it may be possible to optimize the operation of the system.

1.5 A Petri net approach

A Petri net based discrete event formalism has been investigated as a basis for the
development of an on-line controller for multiple mobile robot systems. A discrete
event system is a dynamic system that changes state in accordance with the abrupt
occurrence of a physical event[35].

1.5.1 Why Petri net theory?

Petri net theory is well-suited to describing and studying systems characterized as be-

ing parallel, inistic, and/or

Systems of mobile robots can often exhibit a number of these characteristics. The
theory also offers many formal analysis techniques. Petri nets can be formally verified

ic[30].



against the of i desirable states (e.g. collision and/or dead-
lock). Rules exist to describe the dynamic behaviour of Petri nets, and thus, Petri
nets can be executed at runtime to exhibit a specified behaviour. The potential then
exists for a Petri net controller to generate control signals and to incorporate feedback
from robots at runtime. In this way, it may be possible to achieve on-line monitoring
of system states.

1.5.2 Why automatic Petri net generation?

Developing a Petri net model of a system and designing a Petri net controller requires
an intricate knowledge of Petri net theory and its properties. Many of the tasks
that are executed by robots in industrial applications, however, have to be specified
by researchers or operators who may not have robot-specific knowledge, let alone a

iliarity with Petri net modeling. The need for effective human-machine interfaces

in robotic applications has been well ized (4, 17, 33).
In recognition of this need, a method of automatically generating a Petri net con-
troller from a high-level task iption has been i igated. It is envisi that

tasks requiring coordination of multiple robots will be specified at a high-level using a
user-friendly, graphical interface. From this description, the Petri net controller is au-
icall ing to ints imposed by the working environment
and by the rules of operation. In this way, it is possible to hide the details of Petri
net theory from the operator, while still providing the ability to describe a robotic
task formally and to analyze it.
A ic Petri net ion also has the ial to date changing
i diti It is envisioned that dynamic scheduling will be used to op-
timize the system during operation. A dynamic scheduler will consider changes in
the composition of the robot team as well as changes in the operating environment




and allocate or re-allocate tasks to robots as necessary. The output of the dynamic
scheduler would be a task description which, if it ically into a Petri
net structure, has great ial for loping systems well-equipped to deal with
runtime changes in a dynamic environment.

1.6 Contributions to research

Throughout the course of this research, the following contributions were made by the

author:

e Development of a method for modeling road networks using a logical represen-
tation

e Devel of a simple 1 for high-level specification of marker-based
navigation tasks for robots

o Development of rules which can be used in the automatic generation of a Petri

net controller

« Contributions to a Petri net software application initially

ped at C-CORE:

=

Incorporation of inhibitor ares

»

Capability to deal with conflict

@

Capability to perform on-line control

-

Capability to incorporate runtime feedback
Capability to perform reachability analysis

e @

Capability to receive a task description from a separate software applica-
tion and automatically generate a Petri net according to the rules men-
tioned previously



In addition, as a member of a small team of researchers (less than 6), the author
made contributions to the development of a general framework for group robotics and
to demonstrations illustrating the concept of Petri net on-line control.

1.7 Thesis Summary

Chapter 2 presents a summary of the literature in several related areas. In Chapter 3,
a brief introduction to Petri net theory is given. Further elements of Petri net theory
are introduced as they become relevant. In Chapter 4, a general framework for group
robotics, conceived by members of the Faculty of Engineering at Memorial Univer-
sity of Newfoundland and the Intelligent Systems group at C-CORE, is presented
to explain the context in which the Petri net controller was developed. Chapter 5
details the on-line Petri net controller and the methods used for automatic Petri net
generation. In Chapter 6, some additional modules which were developed for testing
purposes are described, as well as the results of experiments conducted using the
Petri net controller. Future work and conclusions of this research are presented in
Chapter 7.



Chapter 2

Related Work

A review of the literature is presented in the following related fields: cooperative

mobile robots ing in dy i i dination of multiple robots
to achieve collision- and deadlock-free behaviour, discrete event control of robotic
tasks using Petri net theory, the application of Petri net theory to the field of mobile

robotics, and Petri net-based controllers used in runtime execution and monitoring.

There has been some research into the of control fr: ks for co-
perative mobile robots operating in dynamic envi Parker’s ALLIANCE
architecture{34] addresses the issues of fault-tol liability, and ad ili

for teams of mobile robots. The fault-tolerant response considered in the work is the
dynamic re-selection (or re-allocation) of tasks due to robot failures or a dynamically
changing environment. Adaptivity refers to the ability of the robot team to change its
behaviour over time in response to changes to either improve performance or to pre-

vent y ion in The outcome of this work is a mission

planner that is dynamic, but the objective is not to deal with collision-avoidance. The
I

experiments described delib
is high.

avoid situations where the ility of collision




Brumitt and Stentz[8] propose GRAMMPS, a Generalized Robotic Autonomous
Mobile Mission Planning System for multiple mobile robots operating in unstructured
environments. Again, however, they do not address inter-robot collision avoidance.

Furth this work i ications where robots and goals are interchange-
able (e.g. applications of an exploratory nature), and the concepts are not generally
applicable.

Other areas of research address the coordination of multiple robots to achieve
collision-free and deadlock-free behaviour. Alami et. al.(1] describe the MARTHA
project. High-level missions are produced by a Central Station and sent to robots,
which then use a Plan Merging Paradigm to communicate with all the other robots
in the system to achieve coordinated behaviour. Noreils[32] developed a language
used to describe Predicate/Transition nets which are executed to control coordinated

ls. One limitation of this h is that i ls must be

d and downloaded prior to ion, limiting the possibility of changing

control strategies at run-time. Singh and Fujimura[37] suggest a navigation strategy
that can be used to achieve cooperative behaviour among a set of mobile robots
in tasks such as mapping of an unknown bounded region. Collision detection and

avoidance is solved with a method of arbitration in individual cases of i di
collision between robots.
Azarm and Schmidt[5] introduce a oo h to achievi i

free motion, an

a dynamic prioritization of the robots. In cases
where the robot priority scheme fails, inter-robot communication and a method of
negotiation are used to resolve the conflict. In this work, conflicts are seen as events,
and are resolved as they occur, sometimes requiring some vehicles to backtrack in
their routes.

Bourbakis(7] discusses the difficulty of achieving efficient synchronization of robots
moving in a dynamic environment while avoiding collisions. He presents a generic



traffic priority language, called KYKLOFORIA, which is used by each robot to make
decisions during navigation and avoid possible collisions with other moving objects.
Most of these works address collision avoidance at a local level, describing methods
tobeusedby ividual robots to resolv flicts, often requiri b ial sensory
f ion as well as ication with other robots in the environment. There
hnsbeenlxmeanphmsoncoordlmmgthevehu:luuahlgherhvel,wnththenunof
pl ing where i ding collision becomes an issue. Some exceptions,

however, are described in {14] and [10] which recognize the need to resolve potential
conflicts before they can occur.

The work of Causse and Pampagnin{14] was carried out to develop a prototype
transport system dealing with heavy loads in hospitals. The intended application im-
plies a number of functional requirements, including the sharing of common resources
such as elevators, corridors, and parking areas between robots. Also, the robots are
required to navigate indoors along a known network of paths. Their approach recog-
nizes the need for conflicts to be resolved before two robots can block each other, and
performs traffic control by the booking of nodes in a topological graph that represents
the current environment. Caloud et. al.[10] establish a set of behaviour rules which
implement space allocation policies. All robots are required to communicate with
each other as necessary to abide by the rules, thereby achieving coordination of the
motions of multiple robots.

A detailed review of much of the existing work in cooperative mobile robotics can
be found in [11].

There has been a significant amount of research into the discrete event control
of robotic tasks using Petri net theory(16, 27, 31, 41, 12, 22, 26, 9, 24]. A large
portion of the work is carried out in the context of Flexible Manufacturing Systems
and robotic assembly tasks. Petri net models are frequently used in off-line simulation
and analysis, and subsequently used to programme robots to perform tasks. In an
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area of work not specific to robotic applications, there have been developments in
translating Petri nets into control languages such as ladder logic(3, 39, 40]. Although
Petri net theory appears to be valuable in off-line simulation, the need to

robots to perform tasks remains a limitation in terms of developing systems capable

of ing changing i during

There have been a few reports on the application of Petri net theory to the field of
mobile robotics. Causse and Christensen [13] present issues in control architectures
for autonomous mobile robots, and express the view that any control architecture
must mix several kinds of hierarchies. They then explain how hierarchical principles
may be formulated in a single framework using Coloured Petri Net models. Montano
et. al.[28] view control systems for mobile robots as a collection of concurrent pro-

cesses: robot control, image ing, data from decision

making, planning, etc. They use a time Petri net formalism to allow verification
of functional and temporal system requirements, and also to allow automatic code
generation, thereby avoiding coding mistakes. Petri nets were also used by Oliveira
et. al.[33] as a formal language to describe the structure of the mission-control software
of an autonomous underwater vehicle. The Petri net description was used in auto-
matic code generation, an aspect which is discussed further below. Caloud et. al.[10]
use hierarchical Petri nets to interpret plan decompositions and to monitor execution
of tasks being carried out by mobile robots. The Petri net allows the robots to react
to unexpected events.

Petri nets in mobile robotics has been largely applied to the control systems of
single robots. Our approach differs in that we investigate the utility of the Petri
net formalism in the higher-level task of coordinating the actions of multiple robots,
rather than at the vehicle-level.

Petri net theory has, for a large part, been applied in off-line simulation. However,
in many applications, the uncertain and dynamic nature of the working environment
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makes it difficult to guarantee collision-free and deadlock-free operation through sim-
ulation alone. Rather, a method of runtime execution and monitoring is required.
The use of Petri net theory for this type of on-line control has been mentioned in
several works.

Caloud et. al.[10] present the GOFER project whose goal is to control the opera-
tions of many mobile robots in an indoor environment in order to automate a variety

of tasks. Their system for planning and ion i task planning, task al-
location, motion planning, and i itori The ion system uses a
hi hical Petri net ism to monitor ion and react to d events.

Given an instance of a plan, a robot generates a net composed of states, action tran-

sitions, and hi iti Action iti pond to the perfc

of an action, while hierarchy transitions have only a logical meaning in the process
of plan interpretation. The planning and execution system is written in COMMON-
LISP, and at the time of publication, experiments had only been performed with the
help a simulator designed to simulate actions of autonomous agents.

Mascaro and Asada[26] present an approach to interactive control of human-robot
systems using dual Petri nets. One Petri net represents the human side task process,
while the other represents the robot side. They describe a proof-of-concept experi-
ment involving a cable connection task which requires human-robot cooperation. The
Petri net model of the task is lated into using
to perform all actions pertaining to robot monitoring and control and a separate com-
puter for monitoring the human. The control programs are written using an object

oriented programming method where places, iti and tokens are d
by classes of objects which contain pointers connecting them to each other. Member
functions are used to collect data, check conditions, and fire transitions.
Crockett et. al.[15] describe work in which a Petri net is used to describe the
i fora facturi jon. An application is
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of a description of the Petri net model of the system using a declarative language,
and action-causing procedures written in the “C” programming language. Their Petri
Net-based Controller (PNC) runs on a general purpose computer, sends and receives
ASCII messages, and works mainly with software interfaces. The PNC associates a
procedure with each place and then executes that procedure when a token arrives at
that place during Petri net execution.

The work of Freund and Rossman(17] uses an on-line Petri net monitor in the
context of developing a virtual reality (VR) interface for robot control. The work
was intended to make use of the capabilities of an already existing intelligent robot
control system (IRCS), and to enhance the system with a VR interface. The IRCS
was already capable of ing high level task ipti The chall in the
interface, then, was to translate the motions of a user into a series of tasks for the
IRCS. A special class of Petri nets, “state/transition-nets with named marks”, was

used to monitor the events related to user actions in the virtual environment at run-
time. The occurrence of an event would cause a state-change in the Petri net, which
would result in an action being sent to the robot control system to be carried out at
a particular time.

Lima et. al.[24] have developed a Petri-net-based application to coordinate the
execution of robotic tasks and provide a human-machine interface. A robotic task can
be designed through a graphical user interface, by drawing a Petri net and associating
tasks to places and events to transitions. Task execution can be followed in real-time
by watching the flow of tokens through the net. In their implementation, prior to
execution, a designer is required to define in a file the location of the tasks which
are used by the net. The software then takes care of directing the request to the

location. E: les of applications to visual servoing and catching of
moving objects by a robotic arm, and to mobile robot tasks are presented.

Oliveira et. al.[33], in their design of a mission control system for the MARIUS
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autonomous underwater vehicle, have developed two specially designed software pro-
gramming environments CORAL and ATOL. CORAL is a set of software tools that
allows an operator to graphically build a library of elementary vehicle operations
(vehicle primitives) embodied in Petri nets, and to run them in real time. ATOL
provides similar tools for mission procedure programming. CORAL consists of two

| modules: the vehicle primitives library editor and generator, and the
CORAL engine. The main goal of the first is to embody each vehicle primitive into
a Petri net description. At runtime, the CORAL engine executes the Petri net and
transition firings start the execution of tasks. The engine sends commands to and
receives responses from the vehicle system tasks. This set-up allows for easy pro-
gramming of missions, and also provides the system developer with a graphical user
interface to monitor the state of progress of the mission based on the evolution of

tokens in a Petri net.

The development of these Petri net on-line controllers has been, for the most part,
dedicated to the control of single robots. In [10], although the intended application is
a multi-robot system, the utility of the Petri net is not in the
of multiple robots. Rather, a set of behaviour rules is used along with inter-robot
communication to deal with collision and deadlock. The present work explores the
utility of a Petri net-based on-line controller in the coordination of multiple robots.

The present work also i igates an additional layer of ion which has the

ial to facili the of Petri nets used for task execution and mon-
itoring. A method of automatically generating Petri nets to control tasks requiring
cooperation of multiple robots is i The tasks are described at a high-level,

and the construction of the Petri net model is accomplished automatically. To the
author’s best knowledge, there has been no published work in this area. In [10], it is
reported that “a robot generates a net”, but details of how the net is generated are

not given.



Chapter 3

Introduction to Petri Nets

3.1 Petri net theory

Petri nets, originating in the 1962 dissertation of Carl Adam Petri, are a graphical and
mathematical modeling tool which can be applied to many systems. An introduction
to Petri net theory is here. A lete tutorial-review on Petri nets can
be found in [30].

A Petri net is a directed, weighted bipartite graph whose nodes are either places
or transitions. Graphically, places are drawn as circles, and transitions are drawn as
bars. Directed arcs are drawn both from places to transitions and from transitions
to places. Arcs are labeled with weights (positive integers), and a k-weighted arc
may be interpreted as the equivalent of k parallel arcs with unity weight. Each place

may contain zero or more tokens, and each token is drawn as a black dot within the
place. The marking of a Petri net indicates the number of tokens contained within
each place, and is represented as an m-vector where m is the total number of places
in the net. Formally, a Petri net is defined as a 5-tuple PN = (P, T, A, W, M,) where:

14



P={p,p2,-.-,Pm} is a finite set of places,
T = {ty,ts,...,ta} is a finite set of transitions,
AC (PxT)U(T x P) is a set of arcs,
W:A—{1,2,3,...} is a weight function, and
M,: P —{0,1,2,3,...} is the initial marking.
PNT=0and PUT #0
Each transition has input places and output places. Formally, the set of input
places of a transition ¢ is given by I(t) = {p|(p,t)eA}. The set of output places of a
transition ¢ is given by O(t) = {p|(t,p)eA}.
In using Petri nets to model a task, one i ion of the net uses
conditions and events. Places ditions and iti events.

Input places represent conditions which must be true before the event may occur.
Output places represent conditions which are true after the event has occurred. When
a condition is true, a token appears in the iate place. Other i ions of
Petri net components are also used, and can be found throughout the literature. For
example, in some interpretations, the presence of tokens in a place does not represent
the truth of a condition, but rather k tokens can represent that k items or resources
are available Thus, a Petri net may be used to model resource allocation.

Using the Petri net components as presented above, system behaviours are mod-
eled by applying the Petri net transition (firing) rule. A transition ¢ is said to be
enabled if each input place contains at least w(p,t) tokens, where w(p,t) is the
weight of the arc connecting the input place p to transition t. Formally, ¢ is en-
abled if M(p) > w(p,t) for all pel(t). Once the transition is enabled, it may or
may not fire, depending on whether or not the event actually takes place. The fir-
ing of a transition causes a change in marking by removing w(p,t) tokens from each
input place and adding w(t,p) tokens to each output place, where w(t,p) is the
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weight of the arc connecting ¢ to output place p. The new marking is M’ where
M'(p) = M(p) - w(p,?) +w(t,p)-

A transition without input places does not consume tokens, but acts as a source of
tokens for its output places. Thus, it is called a source transition. Source transitions
are always enabled. A transition without output places is called a sink transition; it
consumes tokens from its input places but does not produce any. A single token can
be removed from a place by only one transition; they are indivisible.

Example: Figure 3.1(a) shows a simple Petri net with six places and five transi-
tions. All arcs are of unity weight. Initially, place p, is marked with a single token
and t, is the only enabled transition. When it fires, the token is removed from p;, and
a token is placed in each of p; and p;. At this point, both ¢; and t;3 are enabled and
can fire concurrently. After t; and t3 complete their firing, p and ps each contain one
token(Figure 3.1(b)). Transitions ¢ and t5 are then in conflict—both transitions are
enabled, but the firing of either disables the other.

p1 p1

t1 t
P2 p3 P2 3
©2 ) ] ]
(] ps P4 ps
t4 t5 “ t5

p6 6

(a) ®)

Figure 3.1: A Petri net example illustrating concurrency and conflict.
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An inhibitor arc is a special type of arc, represented graphically as an arc whose
arrow head has been replaced with a circle. If a place p is connected to a transition ¢t
by an inhibitor arc, the firing of ¢ is inhibited by the presence of one or more tokens
in p. When p is unmarked, it has no effect on the enabling and firing of t.

Example: Figure 3.2 illustrates the use of an inhibitor arc. In (a), transition
tl is enabled and fires. Following the firing (Figure 3.2(b)), a token is placed in p2
which inhibits any further firings of t1.

p1 el
H f
p2 P2
(a) (b)
Figure 3.2: A Petri net example illustrating the use of inhibitor arcs.

Petri nets may be divided into two d ding to the firing ch
of the transitions[42]. In untimed Petri nets, the transitions are considered to fire
instantaneously. Timed Petri nets, on the other hand, contain transitions which
require a certain amount of time to fire. During this time, tokens are neither in the
input places nor output places, but rather are considered to be contained within the
transition. Tokens emerge from the transition and are placed in the output places
after the time of the transition has passed. How long this will be depends on the type
of transition, whether it is deterministic or stochastic.

Deterministic transitions have a fixed firing time ¢. Each time the transition is
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enabled, it requires ¢ time units to fire. This type of transition is useful in representing
a fixed task which requires a known length of time to be completed. Stochastic
transitions have firing times which are selected each time they are enabled based on
a probability distribution. Thus, the firing time may vary each time the transition is
enabled. hasti itions are useful for ki di events.

The basic concepts of Petri net theory have been presented to explain the fun-
damental rules for Petri net execution. One of the major strengths of the Petri net
formalism, however, is the support available for the analysis of many properties and

problems i with systems. A di ion of some b i prop-
erties (properties which depend on the initial marking of the net) is presented later
(see Section 5.5), along with a discussion of analysis methods.

3.2 -Petri nets and group robotics

Petri nets exhibit a number of properties which make them an attractive alterna-
tive for modeling systems of mobile robots. In particular, Petri net theory is able
to accommodate some of the challenges presented by systems which require coordi-
nated behaviour among robots and which operate in unstructured or semi-structured
environments. The following advantages are noted:

1. Petri nets are naturally oriented towards the modeling and analysis of discrete
h d as being h dis-
tributed, parallel, inistic, and/or h

event systems that are

2. Petri nets can be used to model systems where the transitions between events

are enabled according to arbitrarily complex rules.

3. Petri net based isms provide a ic method for d ing high-

level b i (eg. a lete task) into I level behavi (e.g. asimple
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autonomous task).

Lol

Petri net based formalisms provide a means for decomposing or modularizing
potentially complex systems. Combining multiple systems can often be reduced
to keeping several original nets unaltered, and adding a few places and/or tran-
sitions to achieve proper coupling.

o

. Petri net theory provides well-developed, formal analysis methods which can be
valuable in i i desirable system behavi (e.g. collision
and/or deadlock).

2

Petri nets can be d, thereby providing the ial for the di

of on-line controllers capable of runtime execution and monitoring. Further-
more, their clear, graphical representation provides a means for developers to
easily track system states by following the movement of tokens through the net.

Petri net cot have been p! d as one of the of a general

framework for group robotics. This fr: k is d in the following chapter.




Chapter 4

A General Framework for Group
Robotics

The development of a Petri net-based on-line controller began in the context of on-
going work toward a general framework for group robotics. This framework has
been designed for the control of multiple mobile vehicles in an unstructured or semi-
structured environment. In order to be truly useful in real-world applications, control

architectures for multiple robot systems must explicitly address the dynamic nature of

the robot team and its envi A general fr: k was developed in response
to this need.

The general framework for group robotics is shown in Figure 4.1. The components
of interest at this time are the task description, the resource iption, the dynamic
scheduler, the discrete event controller, and the mobile robots. Details of the other

components can be found in [19].
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Figure 4.1: A general framework for group robotics.

4.1 Task Description

An operations planner describes robotic tasks as a combination of high-level subtasks.
For example, the task for a load-haul-dump (LHD) vehicle may be to load at ore pile
A, haul to a crusher at B, dump at the crusher, and to repeat the sequence while
there is still ore at A. These high-level subtasks are d to be leted semi-

autonomously by the vehicles’ onboard computing systems. It is anticipated that

tasks will be described using an intuitive interface (e.g. graphical user interface),

then input to a dynamic scheduler.



4.2 Resource Description

A description of system resources is provided to the dynamic scheduler. Resources
(e.g. mining vehicles, roads, intersections, ore piles and crushers) are characterized
by certain parameters. For example, links of roads would have associated costs that
may vary for different types of vehicles, depending on factors such as fuel cost and
fuel efficiency for the vehicle. The parameters are updated as the resources and the

elements of the operating environment change.

4.3 Dynamic Scheduler

The role of the dynamic scheduler is to optimize the execution of the system (e.g. by
maximizing efficiency). Taking into account that certain robots may only perform
certain tasks, and also that robots capable of performing the same tasks may complete
them differently, the dynamic scheduler must assign tasks to robots appropriate to
the capabilities and performance of each robot. For example, the dynamic scheduler
might have to select which load-haul-dump (LHD) vehicles to use for a task, given that
some LHD’s have greater capacity than others but also higher fuel costs. Furthermore,
given that the mine environment is such that there are multiple paths which could be
taken from the ore pile to the crusher, the dynamic scheduler would designate a route
for each LHD, bearing in mind that optimal operation may require a minimization of
total distance traveled.

4.4 Discrete Event Controller

The completion of a subtask by a robot can be considered a discrete event. A Petri
net based discrete event formalism has been proposed as a basis for the development
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of an on-line controller capable of coordinating multiple mobile robots.

4.4.1 Petri Net Generator

The output of the dynamic scheduler (and the input to the Petri net generator) is a
description of the subtasks to be performed by each robot. For example, the dynamic
scheduler may provide the generator with a list of robots to be used and also the
road segments to be followed by each robot. The generator would then merge the
individual robotic task descriptions into a centralized control scheme which can be
formally verified to ensure coordinated behaviour among the multiple robots. For
example, given that multiple LHD’s are required to share roads and intersections in
the mine, the role of the generator is to create a control scheme that is guaranteed
not to result in collision or deadlock. A method of centralized control is proposed to
achieve this coordination with minimal, if any, inter-robot communication.

4.4.2 Petri Net Interpreter

The output of the Petri net generator is a description of a Petri net controller (PNC).
The Petri net can be executed to send task-level control signals to robots. From
the perspective of the PNC, it is assumed that a single subtask (one command) can
be successfully executed by the robot, either autonomously or through some method
transparent to the PNC. The PNC tells each robot what to do, not how. For example,
upon execution, the PNC could command a particular robot to “Move to point A”. It
assumes that the robot is capable of carrying out this fundamental task, and whether
the robots moves to point A by following a light-line or through remote teleoperation
is irrelevant. In this way, the PNC remains inds dent of robot archi the

framework allows for the system to incorporate and take advantage of the latest
advances in robot development.
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Given that multi-robot teams are often required to operate in semi-structured
environments, the state of the system at any point is non-deterministic. There is
too much uncertainty in the system (e.g. determining where two robots will meet
and when) in order to solve every possible robot-interaction in advance. In order to

date this, it is d that i ions be dat ion time. The
PNC is not only responsible for system execution, but also for runtime monitoring.
Upon completion of each task, a robot notifies the PNC which is then able to update
the state of the system. The PNC is then able to send a new command to the robot
appropriate to the new system state.

4.5 Dynamic Re-scheduling

In the event that the operating conditions of the system change in such a way that
the behaviour of the group of robots is affected (e.g. a robot breaks down, a particular
road in a network must be closed), the dynamic scheduler reassigns the tasks to the
robots (e.g. gives the tasks of the broken robot to another functioning robot, re-route
the robots to avoid the newly closed road), and a new PNC is created.

The proposed framework is intended to provide the basis for the development of
a system that is responsive to changes in individual robot skills and performance, to
dynamic changes in the environment, and to changes in robot team composition while
pmwd.mg coordinated behaviour among multiple mobile vehicles. The framework
ints bot ication (a feature which is expected to enhance system
scalability), emphasizes formal analysis methods for task validation, and has the
ial to optimize system ion. Furth this k that
dynamic i ditions and other limitations prevent ion of
all robotic tasks. Thus, it d d d b chi




and dynamic reconfigurability.
This thesis describes initial in one of the
the discrete event Work leted toward the of a Petri net

generator and a Petri net interpreter is presented.



Chapter 5
A Petri Net On-Line Controller

A software application has been developed at C-CORE and the Faculty of Engineering

and Applied Science, ial University of which allows Petri net
models to be created and executed. With this software, a model may be created in
one of two ways:

and arcs (normal md-
inhibitor) can be drawn by a user through the Graphical User Interface.

. The places, iti (d inistic and

L

Provided with a task description and a resource description, the software appli-
cation can automatically generate a Petri net without user input.

In the proposed framework for group robotics, a dynamic scheduler provides a
Petri net generator with a description of high-level subtasks to be performed by each
robot. The generator then merges the individual task descripti into a ized
control scheme. Currently, marker-based navigation tasks within a network of roads

are supported, and a Petri net can be i d to ensure

proper sharing of roads and intersections.
In order to accomplish this, the Petri net generator requires (a) information about
the nature of the operating environment (e.g. which roads are connected), and (b) a

26
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set of rules which govern how resources are shared (e.g. only one robot is permitted

in an intersection at any time). The envi ion and the principl
of resource sharing are presented next.
5.1 Environment Modeling

The generation of a control scheme that ensures proper sharing of roads and intersec-
tions requires the Petri net to have a k ledge of the working

We currently consider robots navigating through a road network using a method of
marker-based navigation—robots are instructed to navigate to markers rather than
to absolute locations (e.g. global coordinates in the real world). Using this method,
a control scheme is not limited to a single physical road layout, but has the potential
to be generally applied to a number of road networks.

A simple road network is shown in Figure 5.1(a). The network is represented as a
model comprising a set of four road segments and a single intersection, each of which
is given a unique identifier (e.g. R1, R2, I1). Each road segment is associated with
two unique markers, one at each end (e.g. R1 is associated with markers M1 and M2).
Each intersection is associated with three or more markers. The markers identify the
ends of road segments leading into the intersection (e.g. I1 is associated with M2, M4,
M6, and M7). Markers have of their iated road but not of
their intersections.

Using this method of representation, each physical road network produces a unique
logical environment model. The converse, however, is not true. A logical model
can represent any number of physical road networks since the physical locations of
the markers and the of the road are i to the Petri net
generator. The generator needs to know only the logical relationship between roads
and intersections. For example, the physical road network shown in Figure 5.1(b)
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@ ®)

Figure 5.1: Two simple road networks with the same logical environment model.

would produce the same environment model as the road network in (a).

Currently, a fixed environment model is “hard-coded” as part of the Petri net
generator. Using this method of representation, however, multiple environment mod-
els may be stored (e.g. in a database) and referred to as necessary. In this way,
Petri net controllers can be generated to control multiple vehicles navigating in many

environments.

5.2 High-Level Description of Robotic Tasks

The input from a dynamic scheduler to the Petri net generator is a high-level descrip-
tion of the tasks to be performed by each robot. A simple language for describing

marker-based igation tasks has been developed. For a single robot, a task is rep-
resented as the robot identifier followed by one or more markers, indicating that the
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robot is to navigate to each marker in the order specified. In addition to the markers
which delimit the ends of the road segments, two special types of markers are also
used: virtual markers and “REPEAT" markers.

Virtual markers do not have any physical meaning, but are used to convey infor-
mation about a robot’s starting position. Because a robot may not be located at a
physical marker point when a task description is sent, the virtual marker is created
to identify the road segment in which the robot is initially found. REPEAT markers
may be included at the end of the marker list to represent iterative behaviour which
is characteristic of many robotic tasks. The REPEAT marker indicates that all the
markers in the list are to be visited repeatedly in the order given.

Currently, it is assumed that road markers are listed in an order such that for
each consecutive pair, both markers in the pair are either on the same road segment
or are connected to the same intersection. Furthermore, in the event that a REPEAT
marker is used, it is assumed that the first and last road markers in the list have been
chosen so that they are at different ends of the same road segment. The REPEAT
marker can then be interpreted to mean that the robot should navigate from the last
marker, within a road segment to the first marker, and iterate through the marker
list again.

Figure 5.1 shows two robots which must operate in the road network. An example
task provided by the dynamic scheduler may require robot V1 to continuously trans-
port ore from a muck pile at M3 to a dump site at M5. Robot V2 may be required
to do the same from a muck pile at M1 to a dump site at M8. The input to the Petri
net generator would be the following task description:

V1 MVIRTUAL1 M4 M6 M5 M6 M4 M3 REPEAT (5.1)
V2 MVIRTUAL2 M2 M7 M8 M7 M2 M1 REPEAT

The navigation tasks for each robot are specified separately; the robots have no
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knowledge of each other. It is then the responsibility of the Petri net generator to
produce a central controller capable of coordinating the actions of the two robots
(e.g. prevent collision at I1).

5.3 Automatic Petri Net Generation

Given the description of the environment and the high-level task descriptions for
multiple robots, the Petri net a Petri net

which can coordinate the behaviours of the robots. This is accomplished in software
using an application developed in Visual C++. Themdezha:hnbemdevdaped
analyses the indivi task deseripti applies op i and uses a
fixed set of rules to create a Petri net that prod i k

Once the structure has been determined, the software essentially mimics the actions
that an operator would use to create the same Petri net manually. The concepts used
in the development of the software which implements this process are described in

the following sections.

5.3.1 Constraints

To generate a which can i the b i of the robots, the Petri

net generator must consider constraints imposed by the environment and the require-
ments for safe and efficient operation. In the current implementation, it is assumed
that for safe operation,

© no more than one robot may traverse a road segment at a time
* no more than one robot may pass through a single intersection at a time.

Although initially, these constraints may appear unrealistic in some environments,
it will be illustrated later (see Section 7.2.8) that with proper environment modeling,
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these ints have the ial to facili safe jon in a variety of road
networks.

5.3.2 Resource Places

Given the above ints, road and i ions are idered shared

with mutually exclusive rules for hip. They are d in the
Petri net with resource places. Resource places can be interpreted as bemg the “key”
required for entry into a road segment or i ion. For lly excl access,

there is only one key per resource represented by a single token in the place. A marked
resource place indicates that the resource is available; the absence of a token indicates
the resource is currently “owned” by a robot. Resource places are created only for
resources that are specified in the robot task descriptions. Thus, we avoid creating
resource places for roads and intersections that are never used, thereby simplifying
the Petri net model.

The first step in automatic Petri net generation is the creation of resource places
for each of the road segments in which robots are initially found. The ID of a robot’s
initial road segment is determined from the robot’s virtual marker. Because these road
segments are currently occupied, their corresponding resources places are initially
unmarked.

Once initial resource places have been created, the Petri net generator creates
sub-Petri nets for each robot. The method by which these subnets are created is
discussed next.

5.3.3 Sub-Petri Nets

The Petri net generator creates a sub-Petri net for each robot. The subnets are
interconnected by resource places to achieve coordinated behaviour among multiple
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robots. The creation of each subnet involves a simple analysis of the task description
for each robot.

The task description for a robot consists of an ordered list of markers to be visited
by the robot. It is assumed that the markers are listed in an order that is physically
realistic. That is, both markers in each consecutive pair in the list are either on the

same road segment or are d to the same i ion. With this
the consecutive pairs of markers can be considered in one of two categories:

1. Pairs requiring a robot to move within a road segment
2. Pairs requiring a robot to move through an intersection.

A generic Petri net structure for each category has been developed. These structures
are used as basic building blocks for generating complete subnets for each robot.

Category 1: Movement Within a Road Segment

Consider the task description for robot V1 given in (5.1): “V1 MVIRTUAL1 M4
M6 M5 M6 M4 M3 REPEAT” where MVIRTUALL indicates that the robot’s initial
position is within R1. The first two markers instruct V1 to move from MVIRTUAL1
to M4, two markers belonging to the same road segment. The Petri net structure
which is generated to control this movement is shown in Figure 5.2.

With the robot at MVIRTUALL (represented by a token in place PVIRTUAL1)
and ready for its next command, transition TO M4 is enabled (Figure 5.2(a)) and
fires. When the transition fires, an instruction is sent to the robot to move to marker
M4 and tokens are placed in P1 and P2 (Figure 5.2(b)). The stochastic transition AT
M4 is enabled by the token in P2 and begins firing. While the robot is in the process
of moving to M4, P1 remains marked. When the robot reaches M4, transition AT M4
completes firing, marking P3 and hence enabling NEXT COMMAND(Figure 5.2(c)).



Figure 5.2: Petri net structure for Category 1: movement within a road segment.

Dunngexecuhonofthmwmmmd since the robot has not changed its ownership of
any (it i hip of R2), no changes to the resource places are
required.

By removing the specific marker names from the transition names and replacing
them with variables, the Petri net in Figure 5.2 can be transformed into a generic
structure. This structure can be used to command any robot to move between any

two markers on the same road segment.

Category 2: Movement Through an Intersection

Again, consider the task description for V1 given in (5.1). The second and third
markers instruct V1 to move from M4 to M6 through intersection I1. Two things
may happen: the robot may be permitted to proceed through the intersection, or the
robot will be required to stop.
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o In the first case, V1 must be able to obtain ownership of the intersection (I1)

mdsubsequmﬂyofthzxmdmnncheothunde(m) In the current

I a h is taken and V1 takes ownership of

both before entering the intersection. This means that R3 is considered occu-

pied before there is actually a robot in it. This approach, however, guarantees
Vi's ip of R3 when it its travel through I1.

Although this is not an issue in the current example, it becomes important
in situations where multiple robots are required to share road segments. The
conservative approach prevents a robot from becoming “stranded” in the inter-
section in the event that the destination road segment is occupied.

As V1 enters the i ion, it must relinquish its hip of its current
road segment (R2). Similarly, when V1 reaches the other side (M6), it must
its hip of the i ion (I1).

o In the second case, if either the intersection (I1) or the destination road segment
(R3) is occupied, the robot is issued a command to stop and waits until the
occupied resource becomes free.

The Petri net structure used to command a robot to move through an intersection
is shown in Figure 5.3. There are three resource places (shown in gray): R2, R3, and
I1. The presence of a token in a resource place indicates the resource is available.
Initially, the robot is at M4 (represented by tokens in places P1 and P3 corresponding
to places of the same name in Figure 5.2) and the robot’s current road segment R2
is not available (Figure 5.3(a)).



through an i

Figure 5.3: Petri net structure for Category 2:
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o If both I1 and R3 are available, transition TO M6 is enabled and fires, and an
instruction is sent to the robot to move to M6. Tokens are placed in P4 and
P5, and tokens are removed from resource places I1 and R3 to indicate that the
resources are in use(Figure 5.3(b)). At the same time, a token is returned to
R2 since it is no longer occupied by V1. Also, an additional token is produced
by the firing of TO M6 to mark P7. This token is simply consumed by the
sink transition SINK1(Figure 5.3(c)). When transition AT M6 fires, a token is

returned to the intersection resource place (I1).

If either I1 or R3 is not available(Figure 5.3(d)), a STOP transition is enabled
and fires, and an instruction is sent to the robot to stop moving. A token
is placed in P8, and tokens are returned to P1 and P3 (Figure 5.3(¢)). The
resulting effect is that the robot stops and waits until both resources (I1 and
R3) become free. The inhibitor arcs from P8 to the two STOP transitions
prevent multiple stop commands from being issued to the robot while it is
waiting. When both resources become available (Figure 5.3(f)), the TO M6
transition becomes enabled and fires as before. This time, however, the token
in P8 inhibits SINK1 from firing, and instead both the token in P7 and in P8
are consumed by SINK2 (Figure 5.3(g)).

At this time, it is important to note one of the assumptions of this model. When a
STOP command is issued to a robot, it is assurned that the robot receives the message
and is able to stop before it enters the intersection. This means that the transition
must fire before the robot actually reaches the end of the road segment leading into
the intersection. The length of time required for this should consider the worst case
communication delays and the dynamics of the vehicle itself. Thus, when the robot
receives a stop command, it begins action at that time (e.g. deceleration) that will
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result in the vehicle being stopped when it reaches the end of the road segment.

In practical applications, this can be impl by using “pre-markers” which
are located farther back from the intersection than the original markers and are
customized for each type of robot. The robots could provide feedback when they
reach the pre-markers, and the next command could be queued. If a robot, then, is

given two consecutive MOVE commands, it may execute them both without having
to slow down in between, thereby improving productivity.

As in the previous category, by removing the specific marker and resource names
from the net and replacing them with variables, the Petri net in Figure 5.3 can be
transformed into a generic structure. This structure can be used to command a robot

to move between two markers on different sides of an intersection.

The generic d for Ci ies 1 and 2 can be used as basic
building blocks to construct a Petri net controller for a complete task. Figure 5.4
shows the Petri net that has been generated for the task described in (5.1): “V1
MVIRTUALL M4 M6 M5 M6 M4 M3 REPEAT V2 MVIRTUAL2 M2 M7 M8 M7
M2 M1 REPEAT”.

In (a), the net generated and displayed by the Petri net software application is
shown. Although further work is required in the graphical layout of the Petri net, the

functionality of the net is complete. Resource places are located in a column at the left
side. The subnets for V1 and V2 are clearly separated, with the only interconnections
being through the resource places which are used to coordinate behaviour. The
arc from the bottommost transition to the topmost place in each subnet has been
automatically generated in response to the REPEAT marker.

In (b), the same Petri net is illustrated as an interconnection of the basic building
blocks developed for Categories 1 and 2.
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Figure 5.4: Generated Petri net structure for a complete task.
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The Petri net described can date an arbitrary number of mo-
bile robots operating in any network of roads. Thus, system scalability is not limited
by this method of automatic Petri net generation.

5.4 A Petri Net Interpreter

Our general framework for group robotics stresses the need for a means of managing
robot interactions at execution time. Once a Petri net control structure has been
automatically generated from a high-level task iption, the Petri net ller is

then executed to achieve on-line control and runtime monitoring. As the Petri net
executes according to the rules for ition firing, i i iate to the
current system state are sent to individual robots. As robots complete their tasks or

encounter difficulties, they provide feedback which is incorporated into the Petri net
execution and used to update the state of the system.

Using our Petri net software application, it is possible to model systems using
two types of iti de inistic and hastic. These two types of transitions
have been given different meanings in the context of on-line control and runtime

monitoring.

5.4.1 Deterministic Transitions and On-Line Control

Deterministic transitions can be assigned a firing time, ¢, so that when the transition

is enabled, it fires and does not deposit tokens in output places until after ¢ time units

have passed. Each d inisti ition can also be iated with a task-level

robot command. The command is specified with a robot identifier and the task to be

carried out by the robot. During Petri net execution, when a transition is fired, its
iated d is sent to the iate robot.
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For example, in Figure 5.2, transition “TO M4” has an associated robot command
that instructs robot V1 to move to marker M4. When transition TO M4 fires, the
instruction is sent to V1 and is intended to be carried out immediately.

5.4.2 Stochastic Transitions and Runtime Monitoring

Stochasti itions are iated with feedback from robots. The same as deter-
ministic transitions, stochastic transitions are enabled and fired according to the rules
for Petri net execution. The duration of the firing, however, is non-deterministic.

Thus, stochastic transitions are useful in modeling processes which require an un-
known length of time (e.g. a robot traversing a road segment which may contain

bstacles). Each stochasti ition is assigned an event to monitor. Once
a stochastic transition fires, it waits for the event to occur. When feedback is received
indicating that the event has occurred, the transition completes its firing and deposits
tokens in its output places.

In Figure 5.2, transition AT M4 is assigned to monitor the receipt of an “AT M4”
message from V1. When the transition fires, it will continue to fire until appropriate
feedback is received from V1. The transition then completes its firing and deposits
tokens in its output places.

5.4.3 Graphical Monitoring at Runti

As a Petri net is executed, the movement of tokens is shown as a two-dimensional

in the Graphical User Interface of our Petri net software application. In this
way, it is possible to monitor the state of the system during operation by observing
the distribution of tokens d in a hical form.




5.5 Petri Net Analysis

One of the major strengths of the Petri net formalism is the support available for the
analysis of many ies and 3! iated with systems. In this

section, some properties of Petri nets are defined, one particular method of analysis
is explained, and finally, the current analysis capabilities of the Petri net software

lication thiat hian heen develoged are desciibed

5.5.1 Petri Net Theory: Behavioural Properties

The behavioural properties of a Petri net are properties which depend on the initial
marking of the net. Among other properties, the initial token distribution determines
the reachability, boundedness, and liveness of a Petri net.

Reachability

When an enabled transition is fired, the marking of a Petri net is changed according
to the transition firing rule. A sequence of firings will give a sequence of markings. A
marking M, is reachable from a marking M, if there exists a sequence of firings that
transforms M, to M,. The reachability set R(M,) of a marked Petri net is the set
of all markings reachable from M,. The reachability problem for Petri nets is that of
determining if a marking M, is reachable in a net (N, M,).

For a Petri net that has been automatically generated from a task description,
let M, be a marking that represents a collision between two vehicles. Given the
initial marking M,, if it is determined that M, is reachable from M,, then the task
can be revised to prevent the collision. If, on the other hand, it is determined that
M, is not reachable from M,, then we have a formal verification that this particular
collision scenario will not occur. This type of analysis can be quite valuable during
the development phase of a control system.



Boundedness

A Petri net is said to be k-bounded if the number of tokens in each place is never
greater than a finite number k for any of the reachable markings. A Petri net is said
to be safe if it is 1-bounded: that is, the number of tokens in each place is either
1 or 0. In the context of a multiple mobile robot system, let us assume that places
represent physical locations and that a token in a place represents the presence of
a robot at a particular location. If the Petri net is determined to be safe, then the
operation of the system is guaranteed never to attempt to force two or more robots
to occupy the same space.

Liveness

A transition ¢ in a marked Petri net is said to be live if, from each reachable marking,
it is possible to progress through a firing sequence to another marking in which ¢ is
enabled. A marked Petri net is live if each transition is live. This means that a live
Petri net deadlock-free ion. A dead Petri net is defined to be a net
in which every transition is dead. Different levels of liveness have been defined, and
details can be found in (30]. The liveness of a Petri net controller for a system of
multiple mobile robots is i in ining the ductivity of the system.

5.5.2 Petri Net Theory: Analysis Methods

A number of Petri net analysis methods exist. A method of coverability trees is
explained next, followed by a description of the analysis module of the Petri net
software application.



Coverability Trees

A Petri net with an initial marking can have as many “new”markings as there are
enabled transitions. Each of these “new” markings, in turn, can generate more mark-

ings. In this way, it is possible to all the habl ings as a tree, where
each node represents a marking that has been generated from the initial marking and
its successors, and each arc a ition firing that f one state
into another. The coverability tree for a marked Petri net can be analyzed for a num-
ber of p ies, including b ded: safeness, dead transitions, and reachable
markings.

For a bounded Petri net, the coverability tree contains all possible reachable mark-
ings, and is therefore known as the hability tree, which can be used in an ex-
haustive method for all analysis probl From bility and hability trees,

di ility and reachability graphs can be drawn.

5.5.3 Software Analysis Modul
Analysis capabilities within a Petri net software application may often be very useful.
A simple analysis module has been developed for our Petri net software application,
currently capable of performing reachability analysis on bounded nets. The imple-
mentation of this module is presented.

In i hability analysis, a graphical Petri net model is first translated
into a i ion involving an input matriz, an output matriz, and
a marking vector. The input matrix, I, is a p x ¢ matrix where p is the number of

places in the net and ¢ is the number of transitions. Element (3, j) of the input matrix
contains the weight of the directed arc from place i to transition j. The ele
set to zero when the place i is not an input place of transition j, and to —1 when the
input place is connected to the transition with an inhibitor arc. Similarly, the output
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matrix, O, contains the weights of the directed arcs from transitions to places. The
marking vector, M, is of length p, and contains the number of tokens in each place.

The places and itions are bered ding to the order in which they were
created using the Graphical User Interface.
Transition firings are impl d by ipulating these matrices. In order to

fire transition j, all the input places to transition j must contain sufficient tokens and
the transition must not be inhibited. That is, for each place i where I(i,j) = ¢, if
t;>0and M(i) > t; orif t; = —1 and M(i) =0, then transition j will fire, removing
t; tokens from each input place i where t; > 0. Furthermore, for each place k where
O(k, 7) = u, ux tokens will be added to each output place k. The analysis treats all
transitions as logical with zero firing time.

A recursive algorithin implementing a “depth-first” search is used to produce the
coverability tree. The nodes of the tree (i.e. the markings represented by the nodes)
are stored in a global set. This set is initialized to contain only one marking—
the initial marking. Then for each transition that is enabled by the marking, the
transition is fired, a new marking is generated and a new node added to the tree, and
the reachability analysis is conducted for the new marking. The stopping condition
for the recursion is set when the firing of the transition generates a marking that
is already represented by a node in the tree. The arcs of the coverability tree are
stored in a second set. Each time a transition is fired, a new entry in the set is
created containing three fields: the current marking, the transition fired, and the new
marking resulting from the firing.

The reachability analysis module also guards against state explosion for large nets.
A parameter can be set to limit the maximum number of states that will be “found”
by the analysis. Once this limit has been reached, the recursion is stopped, and
the value returned as the “next state” following a ition firing indi that the
maximum number of states has been reached. A message is also sent to let the user
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Figure 5.5: The output of the reachability analysis module for a simple Petri net.

know that a complete reachability analysis was not possible.

A simple Petri net is shown in Figure 5.5(a), and the results of the reachability
analysis are shown in (b). The results are presented under two headings: “States”
and “Transitions”. Each row beneath the heading of “States” is a reachable marking.
For example, the first row reads [ 1 2 0 ] indicating that in the initial marking,
places po, p1, and p; are marked with 1, 2, and 0 tokens respectively. There are six
rows under “States”; thus this Petri net has six reachable states.

Each row under the heading of “Transiti an arc in the
tree. The middle column shows the transition that was fired to bring the Petri net

habili

from the state number in the first column to the state number in the third column.
Note that state 4 whose markingis[ 0 0 3 ] is never found in the first column under
% itions” indicating that no transitions could be fired from state 4. That is, the
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Petri net is dead. This can also be seen in Figure 5.5(c) where the textual results in
(b) are represented as a graph.
The ility tree contains inf ion about all the reachable states of the

system. The ofa tree can be sub 1 lyzed to extract
certain types of information which provide formal proof of the system properties. For
example, consider the Petri net for a complete task shown in Figure 5.4. The tree
may be modeled to show that for the subset of places that represent that a vehicle

is navigating toward a marker, no more than one place is marked at a time. Thus,

the ller can be never to d a robot to move to two different
markers simultaneously. This type of further analysis remains a subject of future
work.




Chapter 6

Implementation and

Demonstration Results

The utility of a Petri net controller for the coordination of multiple mobile robots was
illustrated in a proof-of-concept d ion. In order to d the concept

of Petri net on-line control in the context of our general framework for group robotics,
a replacement module for the dynamic scheduler was created and two mobile robot
platforms were developed. These of the fi k were i d into

a system which was used to coordinate the actions of muitiple vehicles in navigation
tasks.

6.1 Task Definition Application

The role of the dynamic scheduler is to provide the Petri net generator with a descrip-
tion of the tasks to be performed by each robot. For the proof-of-concept demonstra-
tion, a Task Definition software application was developed to provide this functional-
ity. Although in this application, robot scheduling is neither dynamic nor automatic,
an operator is able to specify marker-based navigation tasks quickly and easily using

49
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Figure 6.1: The graphical user interface for the Task Definition application.

a graphical user interface (GUI).

The GUI for the Task Definition application is shown in Figure 6.1. The interface
shows an image of the road network within a scaled mining site. The locations and
names of markers used to identify the ends of road segments are overlaid on the
image. The initial positions of two robots inside the mine are shown as coloured
squares. Through the GUI, the user is able to select a robot and then click on a series
of markers to be visited by the robot in order. A “REPEAT” marker can also be
added at the end to indicate iterative behaviour. In this way, high-level descriptions
of navigation tasks can be created for multiple robots.

Once the navigation tasks have been specified, the task description is “sent” to

the Petri net generator. The method of communication is described in Section 6.3.
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Figure 6.2: Model mining vehicles in a scaled version of a mining site.

6.2 Mobile Robot Platforms

The Petri net controller was used to control mobile robots on two different platforms:
physical robots in a scaled version of a mining site, and virtual robots in an OpenGL

mining environment.

6.2.1 Scaled Version of a Mining Site

A scaled version of a mining site was constructed as a test site for the Petri net on-
line controller. The mining vehicles used in testing were remote-controlled models of
actual construction vehicles and are shown in Figure 6.2. The remote control units
for the model trucks were modified to accept commands from a PC.

A software application was developed which is able to accept high-level commands
such as “Move to M1” and to send the appropriate remote-control signals to drive the
truck to M1. This application requires the use of a path planner and a positioning
system. For path planning, a simple straight-line method is used. For positioning,
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a pan/tilt camera is mounted head and image i i used to
d ine vehicle locati In this way, a positioning system such as GPS or DGPS
is emulated.

Upon task completion by a robot, the software application sends a message to the
Petri net controller.

6.2.2 Virtual Mining Site

When working with physical multi-robot systems, implementation presents a number
of challenges. Each robot must be outfitted with a low-level controller and a suite of
sensors. Physical mobile robots can also be prone to a variety of breakdowns. Thus,
for reasons including time, cost, and overall system reliability, the utility of physical
multi-robot systems in testing can often be quite limited.

Virtual robots in virtual environments do not grapple with the same issues and
can therefore be valuable platforms for testing. A virtual mining environment was
created in OpenGL and is shown in Figure 6.3. It is possible to view any portion
of the worksite from different viewing angles. Multiple vehicles are easily placed in
the envi with keyboard ds. As with the physical robots, the virtual
robots are able to execute high-level commands such as “Move to M1” using a simple
straight-line path planner. When the task is complete, a message is again sent to the
Petri net controller.

It is intended that the interface between the Petri net controller and the virtual
robots will be identical to the interface to the physical robots. In this way, physical
and virtual robots can be easily interchanged in a manner that is transparent to the
Petri net controller. The implication is that control schemes may be tested using
virtual robots and subsequently used to control physical robots to achieve the same
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Figure 6.3: Mining vehicles in a virtual environment created in OpenGL.

system task, with few if any modifications. Furthermore, it would be possible to have
physical robots interact with virtual robots in a coordinated fashion.

6.3 Communications

Once a task description has been created using the Task Definition Interface, the
description is sent to the Petri net generator to be translated into a Petri net struc-
ture. Also, during execution, the Petri net controller sends commands to the robots
and receives feedback from the robots when tasks are completed. Thus, a means of

among the of the framework is required.




Figure 6.4: Server-Client archi used for ication between

6.3.1 Windows Sockets

The D of the fr k i rer a local area network using Trans-
mission Control Protocol/Internet Protocol (TCP/IP). Each software application as-
sociated with a component includes a Windows Socket. A socket is a communication
endpoint, an object through which an application sends or receives data across a net~
work. Sockets are bidirectional, and can therefore both send and receive messages.

6.3.2 Server-Client Architecture

In addition to the software icati i with the of the frame-
work, a separate application was developed as a Central Server for the communica-~
tions i Each of the k must connect as a client to the

central server. This architecture is shown in Figure 6.4.

The components communicate by message-passing. Each message contains infor-
mation identifying the intended recipient of the message. All messages are sent to the
server and are subsequently broadcast to all the clients. The components recognize
and process messages intended for them, and ignore all the other messages.
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Through this method of communication, there is no limit to the number of compo-
nents that can be added to the system. The system is scalable since more robots may
be added without significant changes to the other components in the architecture.
Furth since the P i through a network, this implemen-
tation would allow an operator to control robotic tasks at a remote location.

6.4 Demonstration Results

A proof-of-concept demonstration was designed and implemented to illustrate the
utility of Petri net control in the context of a general framework for group robotics.
A Petri net ller was used to provide i igation of two

vehicles in a simple road network.
The task description required two robots to navigate repeatedly along intersecting
paths. The task description was as in (5.1):
V1 MVIRTUAL1 M4 M6 M5 M6 M4 M3 REPEAT
V2 MVIRTUAL2 M2 M7 M8 M7 M2 M1 REPEAT

Figure 6.5 illustrates the progress of the task at different stages and their corre-
sponding Petri net states (only a partial Petri net is shown). The Petri net controller
guarantees coordinated behaviour between the two vehicles.

(a) The robots are at their starting positions. Two transitions are enabled: for V1,
“TO M4” and for V2, “TO M2".

(b) V2 completes its task before V1, and is given ission to enter the i
The transition “TO M7” is enabled and fires, and V2 begins moving through
the intersection.
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(c) In the meantime, V1 arrives at M4, but the absence of a token in I1 “un-inhibits”
the “STOP” transition. V1 waits at the intersection.

(d) V2 finishes crossing the intersection and begins moving to M8. A token is re-
turned to place I1 which then enables the “TO M6” transition of V1.

(e) V1 crosses the intersection, returns a token to I1, and moves to M5.

The same task was demonstrated using two virtual vehicles in the virtual environ-
ment. The final experiment combined the two and demcnstrated a physical robot in
coordinated behaviour with a virtual robot. Thus, from the perspective of the Petri
net controller, the type of vehicle being controlled is transparent.

Although the demonstrations involved only two vehicles in a simple road network
with a single intersection, the demonstration is easily scalable. Because the rules
for automatic Petri net generations are generic, a controller can be created for an
arbitrary road network given that it is represented in the proper format. The rules
for coordinated navigation are also scalable; the number of vehicles is easily increased
without any changes to the method by which the controller is generated.
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Figure 6.5: Stages of the demonstration task and their corresponding Petri net states.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In applications where groups of mobile robots are required to operate in semi-structured
environments, there is a need to dis robot behavi and to d
changes in a dynamic environment. In response to this need, a general framework for
group robotics has been developed. Within this framework, a discrete event controller
is used for on-line control and runtime monitoring.

Research in the development of a Petri net on-line controller has been described.
From a high-level task description, a set of rules have been used to automatically
generate a Petri net structure that provides coordinated behaviour. The Petri net
can then be executed to send instructions to robots and to incorporate feedback
from the robots at runtime. This method of automatic Petri net generation and

Petri net interpretation has been used to control mobile robots in a proof-of-concept
demonstration. In a laboratory setting, the Petri net controller was able to coordinate
the behaviour of two robots in marker-based navigation tasks.

The work completed to date has provided insight into the utility of a Petri net

62
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formalism in the control of multiple mobile robotic systems requiring coordinated
behaviour. The concept of Petri net on-line control shows significant promise as a
means of developing systems capable of addressing the dynamic nature of robot teams
and their i i In particular, the i ion of a Petri
net control structure from a high-level task description appears to be a key factor in

system bility, and ic Petri net ion in this context appears
to be novel with respect to work described in the literature.

The results of this research have been very encouraging. It is apparent, however,
that many research challenges remain before a system can be implemented for use in
industrial applications. The focus of the future work needs to be in further develop-
ment of a discrete event controller, as well as in the development of other components
of our general framework for group robotics. This work in the area of Petri net on-line
control, however, has provided a good starting point.

7.2 Future Work

The work completed to date has provided a great deal of insight into the potential
for using Petri nets to control cooperative mobile robotic tasks. The research that
has been conducted has been valuable in illustrating the utility of Petri net control in
2 proof-of-concept demonstration. A number of research challenges, however, remain

to be investigated in the future.

7.2.1 Hierarchical Modeling

For complex systems, Petri net models of tasks can quickly grow in size and complex-
ity. Methods of hierarchical decomposition based on Petri nets have been developed
which may make the complexity of such systems more manageable{12]. A Petri net
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is used to describe a task at a high level. The Petri net is then decomposed in a
stepwise manner into lower-level Petri nets in which transitions can be either directly

1 d by control ds or d or further d d
into lower level nets. The method of hierarchical decomposition allows a Petri net to

retain some important properties.

The current implementation of a Petri net based on-line controller is capable of
generating high-level nets intended to provide coordination between multiple robots.
The method of automatic generation assumes that high-level subtasks (e.g. navigating
from point A to B) are able to be completed by the mobile robots.

In order to facilitate successful completion of the subtasks, on-board controllers
are required at the robot level. Lower-level Petri net controllers, derived from a
systematic decomposition of the high-level controller, could be used. In this way, the
properties of the high level net can be preserved. On-board Petri net controllers may

also be an effective means of modeling subtasks to i task-pi ing human

intervention. The subtask can be modeled as a sequence of discrete events in a way
that will allow seamless transfer of control between human and machine.

Further research is required in methods of hierarchical decomposition of high level
Petri nets for coordinated control of multiple mobile robots. Also, the modeling of
robotic subtasks in a way that will allow task-preserving human intervention remains
to be investigated.

7.2.2 Coloured Petri Nets

In coloured Petri nets(23], tokens are given attributes called colours. Transitions can
have different firings which depend on the colours and numbers of tokens in the input
places to the transition. Using the theory of coloured Petri nets, it may be possible
to “fold” identical parts of an ordinary Petri net into a single coloured Petri net[43],
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thereby simplifying the Petri net structure without losing any modeling capabilities.
The original set of places is partitioned into a set of disjoint classes, and each class of
places is replaced by a single place. The colour of each token indicates which of the
original places the token belongs to. Similarly, the set of itions is

into a set of disjoint classes, and each class is replaced by a single transition with
different firings to represent the original transitions.

Mobile robotic systems often comprise multiple robots operating concurrently
while performing similar tasks. The modeling approach taken in this work gener-
ates a separate subnet for each vehicle. It may be possible to “fold” each of these
subnets into a single coloured Petri net. For complex systems, the gain in simplifying

the visual representation of the Petri net may be significant.

Techni for modeli i mobile robot tasks using coloured Petri nets
remain to be developed. As well, extensions to our Petri net software application are
required to date the full functionality required by simulations “in colour”.

7.2.3 Petri Nets and Time

In order to study performance aspects of a multiple robot system, the duration of
various robotic tasks must be taken into account. For example, it may be desirable to

monitor the average waiting time of robots at i ions as a means of
the optimality of the system. Although the current Petri net software application
allows a firing time to be assigned to a ini the simulation ca-

pabilities involving time remain limited. Future work could include developing the
application further to consider time.
In particular, two areas of development are recommended. Firstly, the Petri net
could allow a mini and i firing time to be assigned to a
For robotic ications in semi i the d
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ministic nature of tasks makes it nearly impossible to specify a fixed task duration.
On the other hand, it is reasonable to expect that a task will be completed within
a particular time interval. Task durations outside of this interval could signal that
a problem has occurred and that human intervention may be required. Thus, rather
than assigning a fixed firing time to a transition, it would be useful to be able to
associate a “window of time” with the transition.

Si dly, the analysis bilities of the Petri net software application should
also be extended to include time. In this way, it will be possible to evaluate certain
performance characteristics of the system such as average robot idle time and sys-

tem throughput. Also, in determining whether or not a forbidden state will occur,
although a logical Petri net analysis without time may indicate that the forbidden
state is indeed reachable, timed analysis may in fact reveal that the forbidden state
will never occur. That is, some of the logical states of the Petri net may be masked
by timing effects. This type of analysis could be useful in developing controllers that

are less conservative.

7.2.4 Synthesis Techniques

A critical of our general fi k for group robotics is the automatic
Petri net generator. Given a high-level task description for multiple mobile robots,
how do we build a controller that (a) achieves the task described, and (b) preserves
certain properties (e.g. absence of deadlock)?

Some simple rules for automatically generating a Petri net have been presented.

These rules produce nets that coordinate navigation tasks while ensuring proper re-
source sharing. Although they have been very useful in providing insight into the role
of automatic Petri net generation, these rules have many limitations. They are only
useful for navigation tasks. In dating the sharing of roads and intersections,
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the rules are overly conservative. For example, before a vehicle is permitted to enter
an intersection, not only must the intersection be free, but the road segment to be
entered at the other side of the intersection must also be free.

Further research into formal Petri net synthesis techniques could be very beneficial
in overcoming these limitations. A number of Petri net synthesis techniques exist [6,
29] which provide methods of building Petri nets to meet certain constraints. By
building a net to meet the constraints, themﬂtmg?etnmng!wmmmhave
desired properties. Use of these formal i and would jall,
allow the sy is of Petri net which can date complex tasks.

7.2.5 Analysis Techniques

One of the greatest strengths of a Petri net based formalism is the support available

for the analysis of many ies and probl d with systems.
A complete Petri net software package should include a variety of analysis capabilities.
The current Petri net software ication has limited ilities for analysis; a

reachability tree can be produced for a bounded net. For complex unbounded Petri
nets, reachability trees are not always practical due to a state explosion problem.
Furthermore, it is often the case that all the detailed results of reachability analysis
are not required. Thus, the current Petri net software application would benefit
from the development of more options for analysis. For example, structural analysis,
analysis based on the structure of a Petri net, can often be useful. In particular,
invariant analysis seems to be a popular approach. More details of invariant analysis
can be found in [30].

In the context of a general framework for group robotics, it is posmble that the role
of Petri net analysis may be redundant if sophisti d b hni are used.
If it is possible from a given task iption to hesize a net that is d to
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have certain properties (e.g. absence of deadlock and collision), there may no longer
be a need to analyze the net for these properties. In this case, it may be more useful to
analyze the task description for inherent collision- and deadlock-causing instructions.
If, from the task description, it is not possible to synthesize a net that is guaranteed to
have desired properties, the task description should be revised. The role of an analysis
module in the context of the framework is an area that requires further consideration.

7.2.6 Task Specification Language

In the context of our general framework for group robotics, the Petri net generator
requires a detailed specification of a robotic task. As discussed in Section 7.2.5, it
may be desirable to analyze the task description for certain properties. If the nature
of the task description is such that the resulting system will result in collision and/or
deadlock, the task can be revised.

In order to perform an analysis at this level, a formal task specification language is
required. The task i ion | hould allow task iptions to be formally
analyzed for certain properties. At present, the 1 used in task speci ion is
relatively simple, consisting of an ordered list of markers for each robot, and is lim-
ited to the specification of marker-based navigation tasks. Realistic tasks involving
multiple robots, however, are more complex. The task specification language should
be able to describe non-navigation tasks, for example, dnmng dumping, drilling, and
blasting for a mining ication. In addition, the ifi 1 hould be ca-
pable of describing tasks which must be performed in a particular sequence (e.g. robot
1 must blast before robot 2 can begin hauling). The language may accommodate a

number of flow—control structures such as “if-then” and “do-while” statements.
Furthermore, it is paramount that an operator-friendly interface be developed
which can be used in task specification. In general, the operator in charge of specifying
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tasks will not be formally trained in describing tasks using the specification language.
Thus, a friendly interface is required to hide the details of the language from the
operator.

7.2.7 Petri Nets in Mathematical Form

Petri Net Theory: Math ical R i

A Petri net and its dynamic behaviour can be described and analyzed hy
cally. Matrix equations have been presented which govern the behaviour of concurrent
systems modeled by Petri nets[30].

Incidence Matriz: For a Petri net N with n transitions and m places, the incidence
matrix A = [a;] is an n x m matrix of integers where

5 =af—aj
and af; is the weight of the arc from transition i to output place j and ajj is
the weight of the arc from transition i to its input place j. That is, aj, a; and a;;
respectively represent the number of tokens removed, added, and changed in place j
when transition i fires once. For a Petri net with marking M, transition i is enabled
if and only if

a; < M@) j=12...m

State Equation: The marking of a Petri net M is written as an m x 1 column
vector where the j** entry of M represents the number of tokens in place j after the
k** firing in a firing sequence. The k** firing vector u; is an n x 1 column vector with
only one nonzero entry, a 1 in the i** position indicating that transition i fires at the
k™ firing. The state equation for a Petri net can then be written

Mi=Mi + ATy k=1,2,...
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Example: For the simple Petri net shown in Figure 5.5(a), the initial mark-
ing M, =[1 2 0] is changed to marking M; = [0 2 1] by the firing of £
(represented by the first element in the firing vector). The state equation is as follows:

0 1 -1 0 i
2|=|2[+]| 0o -1 X[ ]
0
1 0 1 1
In addition to describing the behaviour of the Petri net, these matrices can be
used in h ical analysis (e.g. hability and invariant analysis).

Petri Net Representations in Software

Currently, our Petri net software application allows Petri nets to be created graph-
ically. From this ical ion, a hy 1| ion is derived

and used to interpret the net.

The concept of starting with a hical Petri net and ing it into mathe-
matical form for execution can be valuable when nets are manually created using a
GUL In the context of ic Petri net ion, however, this h has
some limitations. Given the current implementation of the Petri net software appli-
cation, the automatic Petri net generator must create a graphical Petri net, described
in terms of the on-screen placement of places and transitions. However, since it can
be a nontrivial task to determine the “best” graphical layout for a net, the controllers
that can be generated automatically are severely limited by an ability to represent
them graphically.

The reverse strategy is therefore proposed in our general framework for group
robotics. The output of the Petri net isa net
From this, a Net Visualizer d a hical

The Petri net generator needs to be modified to automatically generate nets in
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mathematical form rather than in gxaphlcal form. A separate visualization mod-
ule needs to be developed to impl Igorithms for ing nets from matrix

to

Although not required for Petri net inter-

pretation, the visualization module should not be elimis d since one of th h
of Petri net theory is that the graphical representation of a net greatly enhances the
ability to monitor the state of a system with ease.

7.2.8 Environment Modelling

The rules for ic Petri net ion have been developed based on the con-

straint that for safe operation, no more than one robot may traverse a road segment at

a time, and no more than one robot may pass through a single intersection at a time.

Although initially, these ints may appear istic in some
with proper environment modeling, they have the potential to facilitate safe oper-
ation in road networks with less restrictive i i As il

two possible envi models are 4, one which allows multiple

vehicles to travel (in the same direction) in a road segment and another which allows
vehicles to travel both ways in a road segment.

7.2.9 Multiple vehicles in a road it

To accommodate the travel of multiple vehicles in the same direction within a road
segment, a road segment can be modeled as a series of “road sub-segments” which
may be traversed by only one robot at a time. Thus, rather than a single resource
place for each large road segment, a resource place can be generated for each sub-

segment. If the sub. are by “dummy i i (i
requiring zero time to cross), no changes to the rules for Petri net generation are
required. Figure 7.1 shows a modified model for road segment R1 that will allow
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Figure 7.1: A road model to allow three robots to travel within R1 simultaneously.

R1 Ria

M1 e = —

Figure 7.2: A road model that will allow two-way travel in a road segment.

three robots to travel within R1 simultaneously.

7.2.10 Two-way navigation within a road segment

The current environment model allows navigation through a road segment in only
one direction at a time. In many applications, it is highly likely that two-way traffic
will be required in road segments. In this case, a segment can be modeled as two
“side segments” (Figure 7.2). If it is assumed that the task description for each robot
obeys the directions of travel for each side segment (i.e. no robot is instructed to
travel the “wrong” way in a road), the current rules for Petri net generation need not
be modified.

It is ded that the modeling of envi be further i igated
deling methods and techni for Petri net hesis will




allow llers to be hesized for robots ing in a variety of

7.2.11 Facilitating Dynamic Re-scheduling

In the context of our general framework for group robotics, the Petri net generator
is intended to receive from a dynamic scheduler a description of tasks for individual
robots. The individual robotic task iptions are then merged into a centralized
control scheme which can be formally verified to ensure coordinated behaviour among
the multiple robots.

In the event that the operating conditions of the system change in such a way
that the behaviour of the group of robots is affected, the dynamic scheduler reassigns
the tasks to the robots, and a new Petri net controller is created.

From the perspective of the discrete event controller, the transition from one
control scheme to a “rescheduled” control scheme remains an area for future work.
The Petri net is not ly i to i with the dynamic
scheduler in this iterative fashion, and further development to accommodate this
feature is required. Also, it is quite likely that some robots will require rescheduling
when other robots are in the process of completing a task. Further investigation is
required to determine an appropriate way to change control schemes in mid-task.
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