Evidence of anticipatory immune and hormonal responses to predation risk in an echinoderm

Hamel, Jean-François and Jobson, Sara and Caulier, Guillaume and Mercier, Annie (2021) Evidence of anticipatory immune and hormonal responses to predation risk in an echinoderm. Scientific Reports, 11. ISSN 2045-2322

[img] [English] PDF - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (1MB)

Abstract

Recent efforts have been devoted to the link between responses to non-physical stressors and immune states in animals, mostly using human and other vertebrate models. Despite evolutionary relevance, comparatively limited work on the appraisal of predation risk and aspects of cognitive ecology and ecoimmunology has been carried out in non-chordate animals. The present study explored the capacity of holothuroid echinoderms to display an immune response to both reactive and anticipatory predatory stressors. Experimental trials and a mix of behavioural, cellular and hormonal markers were used, with a focus on coelomocytes (analogues of mammalian leukocytes), which are the main components of the echinoderm innate immunity. Findings suggest that holothuroids can not only appraise threatening cues (i.e. scent of a predator or alarm signals from injured conspecifics) but prepare themselves immunologically, presumably to cope more efficiently with potential future injuries. The responses share features with recently defined central emotional states and wane after prolonged stress in a manner akin to habituation, which are traits that have rarely been shown in non-vertebrates, and never in echinoderms. Because echinoderms sit alongside chordates in the deuterostome clade, such findings offer unique insights into the adaptive value and evolution of stress responses in animals.

Item Type: Article
URI: http://research.library.mun.ca/id/eprint/14953
Item ID: 14953
Additional Information: Memorial University Open Access Author's Fund
Department(s): Science, Faculty of > Ocean Sciences
Date: 21 May 2021
Date Type: Publication
Digital Object Identifier (DOI): https://doi.org/10.1038/s41598-021-89805-0
Related URLs:

Actions (login required)

View Item View Item

Downloads

Downloads per month over the past year

View more statistics