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Abstract 

Nonlinear Analysis 

of Mooring Lines and Marine Risers 

by 

Hui Yin 

St. John's, Newfoundland, Canada 

A six degree-of-freedom finite element numerical code, named MAPS-Mooring, has 

been developed for the static and dynamic analysis of mooring lines and marine ris­

ers. The three dimensional global-coordinate-based finite element method is adopted 

to model the mooring lines. In this method, the global coordinate system is used to 

describe the position of mooring lines instead of introducing local coordinate systems. 

The geometric nonlinearity and the environmental load nonlinearity are considered. 

Assuming that the sea bottom is flat and elastic, the non-penetrating bottom bound­

ary conditions are applied on the sea floor in the analysis. 

In the computation, the static problem is first solved to determine the initial profile 

of mooring lines. When solving the static problem, the inertia term is neglected. The 

governing differential equations of the mooring line are a set of nonlinear algebraic 

equations which are solved by Newton's iteration method. For dynamic problems, the 

first-order differential equations are solved by the first-order Adams-Moulton method. 

The developed program was verified and validated by its applications to various 



mooring systems and marine risers. The reliability and accuracy of the program 

has been demonstrated by comparing the numerical solutions with the analytical 

solutions, experimental data and numerical results by other programs. 
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Chapter 1 

Introduction 

1.1 Background 

With the oil and gas development in deep water, floating offshore structures are 

becoming increasingly important. Typical floating offshore structures include Spars, 

Floating Production Storage and Offioading (FPSO) systems , Semi-submersibles, 

Tension Leg Platforms (TLPs). These floating structures are usually kept in station 

by mooring and/ or tendon systems. To ensure the normal drilling and/ or production 

activities, the offset of a floating platform should be limited. It is important to predict 

the load and motion characteristics of a floating platform in the design process. 

Moored floating structures are different from both fixed offshore structures and 

ships in terms of the load and motion characteristics. In ship-motion problems, first­

order theory can give reasonable predictions for moderate seas. For moored offshore 

platforms, second-order responses are of great importance. Normally, floating offshore 

structures, such as Spars and TLPs, are designed so that their natural frequencies are 

away from the dominant wave frequency in order to avoid possible large responses at 

wave frequencies. However, this makes their natural frequencies close to the second­

order wave frequencies, i.e., difference-frequencies and/or sum-frequencies. Although 

the magnitudes of the second-order waves are in general small, they may be of primary 
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concern in the mooring system design when their frequencies are close to the natural 

frequencies of the platform motions and when the corresponding damping forces are 

small. Typical examples are the low-frequency motions in the horizontal plane of 

Spars and high-frequency motions in the vertical plane of TLPs. And the second­

order forces may cause significant increase in mooring line tension and horizontal 

offset. 

The dynamic characteristics of mooring lines significantly affect the motion char­

acteristics of moored floating structures, especially in deep water. For deep water 

platforms, the length of mooring lines and risers cannot be scaled due to the depth 

limitation of existing wave basins and the experimental methods cannot be reliably 

employed for design verification. Under these circumstances, the development of nu­

merical tools for mooring line analysis is essential for the prediction of the dynamic 

characteristics of mooring lines and motion characteristics of floating structures. 

1.2 Literature Review 

The topology of a mooring line can be quite simple. However, the very simple system 

can be the most difficult to model. The challenges in the analysis of mooring lines 

are associated with the nonlinearities listed below: 

• Geometric nonlinearity- the geometric nonlinearity is associated with the changes 

in shape of the mooring line. Being flexible and lacking a redundant load path, 

the mooring line can resist imposed loads only by changing its position. 

• Nonlinear bottom boundary condition - some portion of the mooring line is 

usually in contact with the sea floor. The length of the grounded line constantly 

changes due to the second-order slowly varying motion of the floating structure. 

This also causes an interaction between the bottom boundary nonlinearity and 

the geometric nonlinearity. 
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• Nonlinear hydrodynamic load- The drag force on the mooring line is propor­

tional to the square of the relative velocity between the mooring line and fluid. 

There are numerous literatures regarding the dynamics of mooring line. Migliore 

et al. (1979, 1982) and Triantafyllou (1984, 1987, 1991, 1992) reviewed the methods 

used in dynamic mooring line analysis. More recently, Kamman and Huston (2001) 

developed multibody dynamics model for variable length cable system. The most 

commonly used models are listed as below: 

A. Simple massless spring - This is normally used in the situations where the effect 

of a static restoring force is needed and dynamics or spatial variations of the 

load in the mooring line can be neglected (Jain, 1980). This method is employed 

in the first-order analysis of floating structures and it is not appropriate for the 

computation of the second-order effect of the moored floating structures. 

B. Catenaries- The well-known catenary equations can be used to model the moor­

ing line (Berteaux, 1976; Patel et al., 1994). This method can give good results 

in some situations, but it is difficult to model a complicated mooring system 

with multiple lines and with multiple segments with different cross-sectional 

properties. 

C. Lumped parameter model- This model treats the mooring line as a collection 

of lumped masses at nodes which are connected by massless straight springs 

(Nakajima, 1986; Khan et al., 1986; and Ansari, 1986). The external loads are 

lumped at the same finite number of nodes. The equations of equilibrium and 

continuity are developed on these nodes. The equations can be solved by the 

finite difference method (Huang, 1994). This approach is roughly equivalent to 

the finite element method with straight line elements (truss elements or 1-D 

simplex elements). Typical implementations of this approach are inferior to 

the finite element method in terms of computational flexibility and accuracy 

(Paulling and Webster, 1986). 
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D. Finite element method (FEM) - This is the most general modeling tool for 

mooring lines (Malahy, 1986). The finite element method employs interpolation 

functions to describe the behavior of a given variable within an element in 

terms of a set of generalized coordinates. The interpolation function defines 

the relationship between the generalized coordinates and the displacement at 

any point on the element. Applying the interpolation function to the kinematic 

equations, constitutive equations and the equilibrium equations, the equations 

of motion for a single element can be obtained. By assembling the equations 

for each element and introducing the boundary conditions, the equations of 

motion for the whole system can be obtained. The finite element method can 

offer a variety of element forms and it can model complicated mooring systems. 

Truss or beam elements can be used in the finite element method to model 

mooring lines (Hwang, 1986, Wu, 1993), which allow variation of fluid loads 

over its length. The total Lagrangian or updated Lagrangian formulations can 

be utilized to consider the geometric nonlinearity (Bathe, 1996). 

Nordgren (1974) formulated the nonlinear equations of motion based on theory 

of rod for the three-dimensional inextensible elastic rods with equal principal 

stiffness and solved them by the finite difference method. Garrett (1982) used 

the same equations and solved them by a finite element method, which increased 

the degrees of freedom by introducing a Lagrange multiplier which has the 

purpose of realizing the inextensibility condition. In the work of Garrett (1982), 

only a global coordinate system was used. Since there is no local coordinate 

system introduced, there are no computations of coordinate transformation. 

Paulling and Webster (1986) further extended this method to allow for small 

elongation of the rod. Large deflection, bending stiffness and tension variation 

along its length were considered in this method. 

The global-coordinate-based, nonlinear FEM can fully take advantage of the slen­

derness of mooring lines. In this research, this method will be employed. 
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1.3 Thesis Contents 

The goal of this research is to develop numerical tools to predict the nonlinear dy­

namic characteristics of mooring lines and marine risers. Similar to mooring lines, 

risers introduce hydrodynamic forces to the system and provide some restoring forces 

and damping forces. For simplicity, we will use mooring lines to represent both moor­

ing lines and risers hereafter. Due to the nonlinearities of the mooring system, the 

dynamic analysis of mooring lines will be conducted in the time domain. The scope of 

this thesis include the development of the numerical method for static and dynamic 

analysis of mooring lines. 

In this thesis, the derivation of the equations of motion of a slender rod is presented 

in Chapter 2. The development of the equations of motion and the mathematical 

formulations of the static and dynamic problem are discussed in detail. Chapter 3 

describes the numerical results of various mooring systems and marine risers computed 

by the developed program based on the mathematical formulations in Chapter 2. The 

numerical solutions were compared with the analytical solutions and experimental 

results. Conclusions are drawn in Chapter 4. Recommendations are also given for 

future research. 
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Chapter 2 

Mathematical Formulation of the 

Global-Coordinate-Based Finite 

Element Method 

In this chapter, the statics and the dynamics of mooring lines and its numerical 

implementation are addressed. In the mooring analysis, the static analysis is typically 

conducted first to determine the static equilibrium position and the static tension of 

mooring lines. The dynamic analysis of the mooring lines is then carried out based 

on the static analysis results. Due to the nonlinear geometrical characteristics of 

mooring lines and complexity of the loads, a robust method is required to predict 

the motion and tension of the mooring lines. The global-coordinate-based , nonlinear 

finite element method (FEM) (Garrett, 1982; Paulling and Webster, 1986; and Ran, 

2000) is applied in this research. 

Considering large deflection, bending stiffness and tension variation along the 

mooring line, the equations of motion of the mooring are first developed based on 

the theory of rod. The discretized form of equations of motion are then obtained 

by applying Galerkin's method. When solving the static problem, the inertia term 

is neglected. The governing differential equations of the mooring line are a set of 
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Figure 2-1: Coordinate System of Mooring Line 

nonlinear algebraic equations which are solved by Newton's iteration method. For 

dynamic problems, the second-order differential equations are substituted by a set of 

first-order differential equations. The first-order Adams-Moulton method is used to 

integrate the equations. 

2.1 Equations of Motion of A Slender Rod 

A 3-D Cartesian coordinate system is employed in which the xoy plane coincides with 

the calm water surface and z-axis is upward positive. As shown in Figure 2-1, the 

position of a segment of mooring line can be defined by the position vector r(s, t) 

which is the function of time, t, and the arc length, s, measured along the centerline 

of the mooring line. 

Introducing the unit tangent vector, r' = ~:, and the principal normal vector, 

r" = ~::, the bi-normal vector is directed along r' x r". The mooring line can be 

considered as a slender rod. For a segment of rod with unit arc length, we can have 

the following equations of motion based on the momentum conservation: 

F'+q=pr (2.1) 
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M' + r' x F + m = 0 (2.2) 

where F is the resultant force, M is the resultant moment at a point on the rod 

acting along the centerline, q is the applied force per unit length, p is the mass per 

unit length of the rod, m is the applied moment per unit length, the superposed dot 

denotes the time derivative and the prime denotes the partial derivative with respect 

to arc length s. 

For an elastic rod with equal principal stiffness, the bending moment is propor­

tional to curvature and is directed along the binormal vector. Thus the resultant 

moment can be written as 

M = r' x Elr" + Hr' (2.3) 

where E is the elastic modulus of the material of the rod, I is the moment of inertia 

of the cross section of the rod, and His the torque. Substituting Equation (2.3) into 

Equation (2.2) yields 

(r' x Elr" + Hr')' + r' x F + m = 0 (2.4) 

r' x (EJr")' + r" x Elr" + H'r' + Hr" + r' x F + m = 0 (2.5) 

With r" x Elr" = 0, we can obtain 

r' x [(EJr")' + F] + H'r' + Hr" + m = 0 (2.6) 

Taking dot product of Equation (2.6) by r' yields 

r' · r' x [(EJr")' + F] + r' · H'r' + r · Hr" + r' · m = 0 (2.7) 

Note that r' · r' x [(EJr")' + F] = 0, r' · r' x [(EJr")' + F] = 0, r · Hr" = 0 and 
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r' · r' = 1, Equation (2.7) can be written as 

H' +m·r' = 0 (2.8) 

If there is no distributed torsional moment m · r', it is shown in Equation (2.8) that 

the torque H is independent of arc length s. It is assumed that mooring lines have 

circular cross sections, and therefore there is no distributed torsional motion and 

torsional moment from the hydrodynamic forces. In addition, the torque in the lines 

is usually negligible. In this case, both H and m are zero. Equation (2.6) can be 

simplified as: 

r' x [(EJr")' + F] = 0 (2.9) 

Equation ( 2. 9) shows that the vector, ( E I r")' + F, is parallel to the centerline of the 

rod. Introducing a scalar function >.(s, t) leads to: 

(E!r")' + F = >.r' (2.10) 

F = -(E!r")' + >.r' (2.11) 

Taking dot product by r' to the above equation yields: 

>. = F · r' + (E!r")' · r' (2.12) 

Using r' · r"' = (r' · r")' - r" · r" = 0 - "'2 = -/'\,2
, we have 

(2.13) 

where T is the tension of the rod and "' is the curvature of the line. Combining 

Equations (2.1) and (2.11) yields the equation of motion for the rod as follows: 

-(Eir")" + (>.r')' + q = pr (2.14) 
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In addition, r must satisfy the inextensibility condition: 

r' · r' = 1 (2.15) 

If the rod is considered stretchable and the stretch is linear and small, the above 

inextensibility condition can be approximated by: 

or 

T 
r' · r' = (1 + c) 2 ~ 1 + 2E = 1 + 2 AE 

!(r' · r'- 1) = _!_ ~ ~ 
2 AE AE 

(2.16) 

(2.17) 

where the scalar function >. is the Lagrangian multiplier, E is the strain, A is the 

cross section area of the mooring line, E is again the elastic modulus. The dependent 

variables, r(s, t) and >.(s, t), can be solved from Equations (2.14), (2.15) or (2.17) in 

combination with the initial conditions and the boundary conditions. The applied 

force q on the mooring lines includes the hydrostatic and hydrodynamic force from 

surrounding fluid, and the gravity force of the rod, i.e., 

(2.18) 

where w, F8
, Fd are the weight of the rod per unit length, the hydrostatic force per 

unit length and the hydrodynamic force per unit length, respectively. 

The hydrostatic force can be written as: 

(2.19) 

where B is the buoyancy force on the rod per unit length (assuming the cross sections 

are subjected to the hydrostatic pressure), and Ps is the hydrostatic pressure at the 

point r on the rod. The second term ( P8 Ar')' is due to the pressure difference between . 
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the two ends. Note that the two ends of the segment are not exposed to the fluid, 

therefore the pressure force on the ends needs to be deducted from the buoyancy 

force. The hydrodynamic force on the rod can be obtained from Morrison's equation: 

Fd -CArn + cMvn + CDiv;el,v;el 
-CArn + yd (2.20) 

where CA is the added mass per unit length, CM is the inertia force per unit length per 

unit normal acceleration, and CD is the drag force per unit length per unit normal 

velocity. In Equation (2.20), V~el and yn are the fluid velocity and acceleration 

normal to the centerline of the rod, respectively. Assuming that the fluid field is 

not disturbed by the existence of the rod, they can be obtained from the total fluid 

velocity and the tangent vector of the line: 

V~el = (V - r) - [ (V - r) · r'] · r' (2.21) 

yn = V - (V · r') · r' (2.22) 

where V and V are the total water particle velocity and acceleration, respectively, rn 

and rn are the components of the velocity and acceleration of the rod normal to its 

centerline, respectively, which can be obtained from the following equations: 

rn = r- (r. r') . r' 

••n .. (" ') 1 r =r- r·r ·r 

Combining Equations (2.18),(2.19) and (2.20) with (2.14) yields: 

-(Eir")" + (Ar')' + w + B + (PsAr')'- CArn + Fd = pr 

pr +eArn+ (Eir")"- (Ar')'- (PsAr')' = w + B + Fd 
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(2.27) 

where 

w=w+B (2.28) 

(2.29) 

Using ;\ = T - EI ""2
, we can have 

(2.30) 

where T is the effective tension in the rod, and w is the effective weight, or the 

wet weight. Note that if the effective weight is used, the tension in the equation is 

effective tension, instead of the actual tension. Equation (2.27) along with the line 

stretch condition Equation (2.15) or (2.17) are the governing equations for the statics 

and dynamics of the mooring lines in water. 

2.2 Finite Element Modeling 

The governing Equations (2.17) and (2.27) can be written in subscript notation: 

(2.31) 

(2.32) 

where the subscripts range from 1 to 3 for the three dimensional problem. Einstein 

summation notation is employed. Equations (2.17) and (2.27) can be solved by the 

finite element method. For an element with length L, the variables, 5.(s, t) and ri(s, t), 

along the line can be approximated by: 

i = 1,2,3, k = 1,2,3,4 (2.33) 
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m=1,2,3 (2.34) 

where Ak and P m are the interpolating functions, Uik and >.m are the coefficients to 

be solved and 0 ~ s ~ L. 

Applying Galerkin's method to the Equation (2.31) over the length of the element 

yields: 

Since 8ri and 8Uil ( t) are arbitrary, we can obtain 

1L Az[-pri- cAr:r- (Eir~')" + (5.r~)' + wi + Pid]ds = o (2.37) 

Integrating the terms in Equation (2.37) by parts results in 

1L [Al (pri +CArr)+ EI A;' r~' + A;>.r~- Al ( wi + Fid) ]ds = EI r~' A;~~+ [5.r~- ( EI r~')']Ali~ 
(2.38) 

The right hand side of the above equation will vanish when the natural boundary 

condition of the element is applied. 

The interpolating function, Ak and Pm, and coefficients, Uii and >.m, are defined 

as follows: 

A1 = 1- 3e + 2e (2.39) 

A2 =e -2e +e (2.40) 

A3 = 3e- 2e (2.41) 

A4 = -e +e (2.42) 

P1 = 1- 3e + 2e (2.43) 

P2 = 4e(l- e) (2.44) 
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(2.45) 

(2.46) 

(2.47) 

).3 = 5.(L, t) (2.48) 

where~= sj L. 

Applying Galerkin's method to the stretch condition (2.17) yields: 

(2.49) 

where m and r = 1,2,3. 

Substituting Equations (2.33) and (2.34) into Equation (2.38) and integrating the 

equation term by term results in the discretized form of equation of motion as follows: 

where 
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(2.55) 

where 8ii is the Kronecker Delta function. 

Similarly, substituting Equations (2.33) and (2.34) into Equation (2.49) and inte­

grating term by term, we can have 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

where m = 1,2,3, i,l = 1,2,3,4. 

In Equation (2.56), Ps is approximated by 

(2.60) 

where 

(2.61) 

The hydrostatic pressure can be expressed as 

Ps = pgh = -pgra (2.62) 

Combining Equations (2.33) and (2.62) yields: 

Ps1 = -pgUal (2.63) 

Ps2 = -pg(0.5Ual + 0.125Ua2 + 0.5Uaa- 0.125Ua4) (2.64) 
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(2.65) 

We can see from Equations (2.50) and (2.56) that there are 12 second-order ordi­

nary differential equations and 3 algebraic equations. Note that all these equations 

are nonlinear. 

2.3 Formulation for Static Problem 

For the static problem, the inertia term in Equation (2.50) is neglected. The governing 

differential equations of rod are reduced to 

(2.66) 

(2.67) 

where Fil is the static force term including the gravity force, the drag force due to 

the steady current and other applied static forces on the line. 

Newton's method is used to solve the nonlinear equations iteratively. Using Taylor 

series expansion to the two equations above about the estimated solution or the 

solution from previous nth iteration, u<n) and 5. (n), and neglecting the higher order 

terms, we obtain: 

R(n+l) = R(n) + aRil (l:l.U· ) + a~l (1:15. ) = O 
~~ ~~ au. Jk a' n 

Jk An 

(2.68) 

c<n+l) = c<n) + aGm (l:l.U· ) + a?_m (1:15. ) = O 
m m au. Jk a' n 

Jk An 

(2.69) 

We can rewrite the equation in a matrix form as 

(2.70) 
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where 

8Ra _ Kta(n) _ Kl ). (n) K2 
aujk - ijlk - ijlk + n nijlk (2.71) 

(2.72) 

DtO(n) 
mjk = aZjk 1L Pm[~(A~Urp)(A~Urq)]ds (2.73) 

- 1L Pm(~A~A~Uiq + ~A~A~Uip)ds (2.74) 

- 1L PmA~A~dsuj;) (2.75) 

DtO(n) 
mt (2. 76) 

8C!_m = Dtl(n) = 1L(--1-P. P. )ds 
a>.n mn o AE m n 

(2. 77) 

R (n) _ (Kl \ K2 )U(n) D 
il - ijlk +An ijlk jk - I'il (2.78) 

G(n) -A U(n)u(n) B C \(n) C AP(n) 
m - mil kl ki - m- mtAt + mt St (2.79) 

i,j,m,n,r,t= 1,2,3, l,k,p,q= 1,2,3,4 

At each iteration, there are 15 linear algebraic equations for each element. The 

subscript arrangement in the above equations is not convenient for the numerical 

solution, thus a renumbering system is employed as follows: 
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1 2 9 10 

DOF of Uil = 3 4 11 12 

5 6 13 14 

fori= 1, 2, 3 l = 1, 2, 3, 4 

DOF of .\m = [ 7 8 15 ] form= 1, 2, 3 

After renumbering, Equation (2.70) can be rewritten in the following form: 

(2.80) 

(2.81) 

(2.82) 

where [K(n)] is the stiffness matrix and the vector { 6.y} consists of the variables 6.Ujk 

and 6..\m. 

(2.83) 

{F(n)} is the force vector: 

(2.84) 

After the element equations are assembled and the boundary conditions are ap­

plied, the assembled equations can be solved by Gauss elimination. An iterative 

procedure is applied with initially guessed values of U and i The variables are up­

dated by y<n+l) = y(n) + 6.y after solving the assembled equations. The generalized 

stiffness matrix, K, and force vector, F, in the equation are recalculated to solve 6.y 

again. This procedure continues until t::.y is smaller than a prescribed tolerance. The 

equilibrium position and the tension of the mooring line can be obtained. 
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2.4 Formulation for Dynamic Problem - Time Do-

main Integration 

According to the work of Ran (2000), the equation of motion (2.50) can be rewritten 

as: 

(2.85) 

where 

lkfijlk == lkfijlk 1- lkfijlk (2.86) 

(2.87) 

(2.88) 

The dynamic solution can be obtained by solving equation (2.85) and (2.56). 

Equation (2.85) is a second-order differential equation and equation (2.56) is an 

algebraic equation without time derivatives. In order to derive the integration scheme, 

we use a first order differential equation system to replace Equation (2.85): 

A o A 

lkfiilk Vjk == Fil (2.89) 

(2.90) 

Integrating the above two equations from time t(n) at time step n to t(n+l) at time 

step n + 1 yields 

(2.91) 
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(2.92) 

where Mijlk is not constant since it contains the added mass term Mtjtk which is a 

function of the line geometry, thus it varies with time. Assuming Mijlk in the time 

interval, !:l.t = t<n+l) - t<n), is constant, we can simplify the integration of the left 

hand side of Equation (2.91) as follows: 

t<n+l) 

MA (n+~)v(n+l)- MA (n+~)v(n) - r FA· dt 
ijlk jk ijlk jk - jt(n) tl (2.93) 

A (n+l) ( ) tlt 
where Mijlk 2 is the mass at time t n + 2 . Based upon the second-order Adams-

Moulton integration, Equation (2.92) can be written as: 

U(n+l) _ u<n) _ f:l.t [V(n+l) + v<n)] 
jk jk - 2 jk jk (2.94) 

Re-arranging the above two equations, we obtain: 

(2.95) 

(2.96) 

where 

Au. - u(n+l) - u(n) 
i...l. Jk- jk jk (2.97) 

1

t(n+l) A 1t(n+l) 1 1t(n+l) 2 1t(n+l) 

~&=- ~&- ~&+ ~& 
t(n) t(n) t(n) t(n) 

(2.98) 

Applying the Adams-Moulton method to the first and the second terms at the 

right hand side of the above equation, we can obtain: 
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t<n+l) 

1 F ld - ~t(Fl(n+l) pl(n))- ~t[Kl AU Kl u(n)l 
il t - -

2 
il + il - -

2 
ijlku jk + 2 ijlk jk 

t(n) 
(2.99) 

~t(p2(n+l) + p2(n)) 
2 t! tl (2.100) 

~t (). (n+l) K2.. U~n+t) + j. (n) K2.. u~n)) 
2 n mJlk Jk n mJlk Jk 

~ ~t().(n+!) K 2 .. U(n+l) + j_(n+!) K2 .. U~n)) 
2 n m)lk Jk n mJlk Jk 

~t[('(n-!) A ')K2 (U(n) Au ) ('(n-!) A ')K2 u(n) 2 An + UA nijlk jk + U jk + An + UA nijlk jk 

~t[2'(n-!)K2 u(n) K2 u(n)A\ \(n-!)K2 A l 
~ 2 An nijlk jk + 2 nijlk jk U.An +An nijlku.Ujk 

- -(n+l) -(n-1) 
where ~An = An 2 

- An 2 
• The third term in Equation (2.98) is the applied 

force Fu, including gravity force and hydrodynamic forces, and etc. Note that the 

hydrodynamic forces calculated by Morrison's equation are unknown at time step 

n + 1 since the hydrodynamic forces are functions of the unknown rod position and 

velocity. Therefore the Adams-Bashforth explicit scheme can be used for the integral: 

t<n+l) 

{ Fildt = ~t (3~~n) - ~~n-1)) 
lt(n) 2 

(2.101) 

• t(n+l) (0) 
For the first time step, ft<n> Fadt = ~tFil 

Combining equations (2.93), (2.94), (2.99), (2.100) and (2.101), we can obtain the 

integration scheme for the equation of motion (2.85): 

(2.102) 
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(2.103) 

The mass term can be approximated by using the Adams-Bashforth method 

MA (n+~)- ~(3MA (n) - MA (n-1)) 
ijlk - 2 ijlk ijlk (2.104) 

and j.(n-~) can be approximated by using the trapezoidal rule: 

(2.105) 

For the stretch condition, Equation (2.56), we can approximate G~+I) at time 

step n + 1 from G~) using Taylor expansion, i.e., 

!lQ(n) !lQ(n) 

0 G(n+l) Q(n) 2 U m AU 2 u m A \ - 2G(n) 2K2 U AU 2Dtl(n) A \ = 2 m ~ 2 m + !lU u jk+ ---uAn - m + mijlk ilU jk+ mn UAn 
U jk fJAn 

(2.106) 

Equations (2.102) and (2.106) can be rewritten in a form similar to the static 

problem: 

KA tO(n) AU· + KA tl(n) A \ _ RA (n) 
ijlk u Jk iln UAn - il (2.107) 

(2.108) 

where 

(2.109) 
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KA tl(n) - 2K2 u<n) 
iln - nijlk jk (2.110) 

DA tO(n) 2K2 U. 
mjk = mijlk il (2.111) 

btl(n) = 2Dtl(n) 
mn mn (2.112) 

R~n) = 2_(3M.(~) - A{(~-l))v(n) + (3F(n)- p(n-l))- 2K~. u~n)- 25.(n-!) K 2 .. u~n) 
d fl.t ~Jlk •Jlk Jk •l ~~ ~Jlk Jk n m]lk Jk 

(2.113) 

Q(n) = -2Q(n) 
m m (2.114) 

where the superscript n indicating the nth time step. 

The subscript arrangement in the above equations is not convenient for numerical 

solution, thus a renumbering system is employed as follows 

(2.115) 

Similar to the static problem, the final equation for a rod element can be written 

as 

(2.116) 

where {F(n)} is the force vector: 

(2.117) 
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Mooring Line 

Figure 2-2: Sea Bottom Boundary Condition 

2.5 The Sea Bottom Boundary Condition 

The mooring lines cannot penetrate the sea bottom. Assuming the sea bottom is flat 

and elastic, the sea bottom can be modeled by an elastic layer (spring mat). 

The distributed bottom support force in vertical direction can be expressed in the 

following form (Chen, 2002): 

R- (r3- Zbottam) > 0 

R- (r3- Zbottam) ::; 0 
(2.118) 

In order to consider the bottom support force, an extra term representing the 

distributed spring force is added to the equation of motion of the mooring line. Mul­

tiplying both sides of the above equation by the shape function A1 and integrating it 

with respect to s along the length of an element, which touches the bottom, we can 

obtain 
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(2.119) 

where 

(2.120) 

'Ytkm = L 16 
AtAkP mds 

6 
(2.121) 

In the dynamic analysis of mooring lines, the bottom friction force is considered 

as follows: 

C r' 
JILFpj 

0 

R- (r3- Zbottom) > 0 

R- (r3 - Zbottom) ::; 0 

-1 Vt > Cv 
_XL 

Cv 

1 Vt < Cv 

(2.122) 

(2.123) 

(2.124) 

where Vt is the tangential velocity of the mooring line, Cv is the tolerance of tangential 

velocity, and ILJ is the dynamic bottom friction coefficient. 

Due to the effect of the ocean bottom, the coefficients, /Llm and 'Ylkm, are not 

constant for the element around the touchdown point. They are integrated separately 

over the portion of the element that contacts the sea floor. 
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Chapter 3 

Numerical Results 

Based on the mathematical formulations in Chapter 2, a computer program, 

MAPS-Mooring, for static and dynamic mooring analysis, has been developed. Stud­

ies have been carried out to verify and validate the developed program. 

To validate the static analysis of MAPS-Mooring, the program has been applied 

to single and multiple mooring lines. A static analysis was first conducted for a simple 

catenary mooring line. The numerical solutions were compared with the analytical 

solutions. A moored surface buoy under steady current was also used to verify the 

load on the mooring line under current. The static analyses were then extended to a 

mooring system with multiple lines. 

To validate the dynamic analysis of the computer program, studies have been car­

ried out for the large amplitude motion of a rigid bar pendulum and a mooring system. 

The global-coordinate-based finite element method was also applied to conduct the 

vortex induced vibration (VIV) analysis for a rigid riser. 

3.1 Simple Catenary Mooring Line 

The first example is a simple catenary mooring line (Garrett, 1982) under a horizontal 

force at its lower end as shown in Figure 3-1. 
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~lphn 

Figure 3-1: Simple Catenary Mooring Line 

The configuration of the simple catenary is determined by the dimensionless pa­

rameter ~L, where W is the weight per unit length, L is the length of the catenary 

line and Tis the horizontal force. The numerical results obtained using one element 

and ten equal length elements are compared with the analytical solutions. As shown 

in Table 3.1, the numerical results agree very well with the analytical solutions. In 

Table 3.1, a is the angle between the horizontal line and the tangent direction of the 

mooring line at fairlead as shown in Figure 3-1. 
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Table 3.1: Catenary- Comparison between Numerical Solutions and Analytical Re­
sults 

a,deg X/L Y/L 
WL/T 1 10 1 10 1 10 

element elements analytical element elements analytical element elements analytical 
1 45.374 45.000 45.000 0.88138 0.88137 0.88137 0.41426 0.41421 0.41421 
2 63.277 63.434 63.435 0.72194 0.72182 0.72182 0.61790 0.61803 0.61803 
5 75.705 78.689 78.690 0.46756 0.46249 0.46249 0.82216 0.81981 0.81980 
10 80.720 84.289 84.289 0.30168 0.29982 0.29982 0.92065 0.90499 0.90499 

3.2 Moored Surface Buoy Under Steady Current 

The computer program was applied to determine the static mooring load of a moored 

surface buoy under steady current (Berteaux, 1976). The surface buoy is moored in 

2000 ft of water. The diameter of the mooring line is 0.315 in., and its line density 

is 0.124 lb/ft. The velocity of uniform current is 4.54 ft/sec. The line angle at the 

anchor is 30 degrees and the line tension is 3000 lb at the anchor. The normal drag 

coefficient is 1.8 and the tangential drag to the normal drag ratio is assumed as 0.02. 

The computed equilibrium position of mooring line is compared with those by 

Pode's method (Berteaux, 1976) in Figure 3-3. The agreement is very good. 
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Figure 3-3: Equilibrium Position of Mooring Line under Steady Current 
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3.3 Multiple Mooring Lines System 

The static analyses were then extended to a mooring system with multiple lines. In 

this case, the mooring system (Brown et al., 1998) consists of eight mooring lines, 

which have the same properties. Each mooring line has only one segment. Figures 3-4 

and 3-5 show the plan view and the three dimensional configuration of the mooring 

system, respectively. The principal parameters are given as follows: 

L6 L7 

LS LB 

L1 
L4 

L3 L2 

Figure 3-4: Plan View of the Mooring System (Brown and Lyons, 1998) 

- Total length for each mooring line: 2485 m 

- Weight per unit length: 0.194 kN/m 

- Water depth: 180 m 
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0 

-100 

Figure 3-5: Three Dimensional Configuration of the Mooring System 

- Pretension: 89.26 kN 

- Elasticity: inextensible 

The coordinates of fairleads and azimuth angles of the mooring lines are given in 

Table 3.2. The azimuth angle of each mooring line is measured counter clockwise 

from X-axis to the mooring line when it is viewed downward along Z-axis. 

Since the coordinates of anchor points were not provided in this case, the static 

analysis for each single mooring line was conducted in order to find the coordinates 

of the anchor point. This was achieved by the following steps: 

A. The coordinates for the anchor point along the direction of the mooring line 

was first guessed and the tension of the mooring line was computed by MAPS­

Mooring. 
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Table 3.2: Coordinates of Fairleads and Azimuth Angles of the Mooring Lines 

Line No. X (m) y (m) Z (m) Azimuth Angle (degree) 
1 138.0 -10.0 0.0 30 
2 126.0 -20.0 0.0 60 
3 -118.0 -23.0 0.0 120 
4 -136.0 -20.0 0.0 150 
5 -136.0 20.0 0.0 210 
6 -118.0 23.0 0.0 240 
7 126.0 20.0 0.0 300 
8 138.0 10.0 0.0 330 

B. The computed tension was compared with the pretension of the mooring line. 

If it was greater than the pretension, the anchor point was moved closer to 

the fairlead point along the direction of the mooring line; otherwise the anchor 

point was moved farther away from the fairlead point. 

C. This process was repeated until the computed tension was equal to or close 

enough to the pretension. The coordinate of the anchor point for this mooring 

line was then determined. 

After the location of the anchor point was determined for each mooring line, static 

analysis of multiple mooring lines was then carried out. By specifying the coordinates 

of the fairlead points for different offsets of the floating body, the resultant forces and 

moments were computed for a series of specified coordinates of the fairlead points 

corresponding to different offsets of the floating body. The computation was carried 

out for two cases, in which the mooring lines were assumed to be inextensible and 

extensible, respectively. 

The computed surge forces were compared in Figure 3-6 with those by MOOR, a 

program developed by Brown and Lyons (1998), and those by MOORING-SYSTEM 

(Lau et al., 2005). Note that the computation by MOOR was based on the inexten­

sible assumption. It can be seen that the results for the inextensible case agree very 
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Figure 3-6: Comparison of Results by MAPS-Mooring, MOOR and Mooring-System 

well with those by MOOR. It is also shown that the surge forces with the extensible 

assumption are lower than those with inextensible assumption for the same surge 

offset. This is due to the fact that the stiffness of the extensible mooring system is 

less than that of the inextensible mooring system. 

3.4 Large-Amplitude Motion of A Rigid 

Pendulum 

The large-amplitude motion of a rigid pendulum has been studied to verify the de­

veloped dynamic program. 

The uniform rigid bar pendulum, as shown in Figure 3-7, was modeled by a single 

element with a bending stiffness of 1011 lb-ft2 . The mass per unit length m, the length 

l and the acceleration of gravity g are 1 slug/ft, 10 ft and 32ft/s2
, respectively. The 

bar pendulum is released from rest in a horizontal position. The motion of the bar 
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Figure 3-7: Initial Position of the Uniform Rigid Bar 

pendulum was computed using a time step of O.Ols. The numerical results in Figure 

3-8 show that the amplitude of the periodic motion does not change with time and 

the computed period is equal to the analytical solution, T = 3.385s (Garrett, 1982, 

Ran, 1997). These demonstrated the great accuracy and stability of the numerical 

algorithm. 
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Figure 3-8: Motion of Uniform Rigid Bar 
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3.5 Validation Studies for Dynamic Analysis 

Validation studies were carried out for the dynamics of a mooring system which was 

tested by Ship Dynamics Laboratory, Canal de Experiencias hidrodinamicas de EI 

Pardo (CEHIPAR) in a scale of 1:16 (Kitney et al., 2001). The characteristics of the 

mooring line are listed in Table 3.3. 

Table 3.3: Characteristics of the Mooring Line Used in the Analysis and Experiments 

Mooring Line Data Prototype CEHIPAR Model CEHIPAR Model 
Required Required Actual 

Water Depth 82.5m 5.0m 5.0m 
Scale Factor 1 16.5 
Line Length 711m 43.0m 43.0m 

Diameter 140mm 8.5mm 8.0mm 
Weight /Length 3202N/m 11.76N/m 11.47N/m 
Elastic Modulus 1.69x109 N 3.76x10aN 3.83x10tiN 

The dynamic analysis was conducted for the prototype model. Firstly, the sen­

sitivity of numerical solutions to the number of elements and the time step was in­

vestigated. In the sensitivity study of the number of elements, 20, 40, 80 and 160 

elements were used with a fixed time step of 0.05s. In the sensitivity analysis of the 

time step, 0.2s, 0.1s, 0.05s and 0.025s were used with a fixed number of elements 

of 80. The numerical results for the sensitivity studies are given in Figures 3-9 and 

3-10. As shown in these figures, the dynamic solution converges as the number of 

elements is increased and the time step is decreased. In the following studies, the 

number of elements and the time step were chosed as 80 and 0.05s, respectively. Both 

the numerical solutions and the experimental results were nondimensionalized. The 

nondimensionalline tension, Tnondim, is expressed as the ratio of dynamic line tension, 

Tdynamic, to the static tension, Tstatic, at the top end of the mooring line. The dynamic 
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line tension, Tdynamic, is determined from 

Tdynamic = T max - Tstatic 

where T max is the maximum line tension. 
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Figure 3-9: Sensitivity to Number of Elements 

50 

The dynamic analyses were conducted for various fairlead motions. The amplitude 

of the fairlead motion, a, was nondimensionalized by the water depth, d. The time 

series of the top tension for nondimensional amplitudes of 0.03, 0.065, 0.075 and 0.095 

are given in Figures 3-11, 3-12, 3-13 and 3-14, respectively. The nondimensionalline 

tensions at various fairlead motions were compared with the experimental data in 

Figure 3-15. The numerical solutions agree well with the experimental results. 
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Figure 3-11: Time-domain Tension at Nondimensional Motion Amplitude of 0.03 
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Figure 3-12: Time-domain Tension at Nondimensional Motion Amplitude of 0.065 
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Figure 3-13: Time-domain Tension at Nondimensional Motion Amplitude of 0.075 
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Figure 3-14: Time-domain Tension at Nondimensional Motion Amplitude of 0.095 
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Figure 3-15: N ondimensional Dynamic Line Tension 
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3.6 Vortex Induced Vibration of Marine Riser 

The global-coordinate-based finite element method was also applied to the vortex 

induced vibration (VIV) analysis of a rigid riser with only single mode. The process 

for the VIV analysis of risers is the same as that of the analysis of mooring lines, 

except the computation of the hydrodynamic loads. For a VIV analysis, not only the 

drag forces but also the lift forces are considered in the analysis. The procedure of 

the VIV analysis is given below (Spencer, 2006): 

1. Assuming the initial value of reduced velocity Vr, drag coefficient Cd, lift coeffi­

cient n and added mass coefficient Cm, the initial apparent period of cross-flow 

motion is computed by 
VrD 

Tapparent = U (3.1) 

where D is the diameter of the riser, U is the velocity of the current. 

2. The responses of the riser, including the displacement and the velocity, are 

computed at each time step. The cycle of the VIV motion is determined from 

zero up-crossings on the displacement curve of the riser. 

3. After each cycle, the apparent period, Tapparent, and maximum and minimum 

peak motion amplitude, A+ and A-, can be obtained and therefore the reduced 

velocity, Vr, and the amplitude ratio, A*, can be computed by 

V. _ UTapparent 
r- D (3.2) 

A+-A-
A*= 2D (3.3) 

4. By using the newly obtained reduced velocity, Vr, and amplitude ratio, A*, the 

new added mass coefficient Cm is interpolated by Cm = f (A*, Vr), which are 

obtained from experiments. 
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5. The natural frequency Fn of the riser is recomputed according to the new added 

mass coefficient Cm. The reduced velocity, Vr, is recalculated by Vr = F~v· 

6. Repeat Steps 5 and 6 until Vr and Cm are compatible, which means that the 

value of reduce velocity, Vr, obtained at Step 5 is sufficiently close to that 

obtained at Step 3. 

7. The lift coefficient, C~, and the drag coefficient, Cd, are interpolated from the 

experimental database, Ct = g(A*, Vr), by using the final V,. and Cm· The 

typical plot of C1 is shown in 3-16. 
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Figure 3-16: Lift Coefficient Plot 

8. The magnitudes of drag force and lift force are computed for next cycle by 
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9. The VIV responses of the riser are obtained by repeating the Steps 2 to 8. 

This procedure is only applicable to the VIV response with single mode. For multi­

mode cases, another algorithm needs to be devised in the further research. The key 

parameters of the rigid riser were set the same as those in the experiments. The only 

difference is that the numerical model considers both inline VIV and cross-flow VIV, 

while only cross-flow VIV was considered in the experiment model. The numerical 

model of the rigid riser is shown in Figure 3-17. The key parameters are listed as 

follows 

- Length: 6.02m 

- Diameter: 0.325m 

- Thickness: 0.01765m 

- Stiffness of the support spring: 40000 N/m 

Figure 3-17: Rigid Riser Model 

The VIV analyses were conducted for the riser at two current speed, 1.65m/s and 

1.8m/s. The experimental database was used to interpolate the lift coefficients and 

validate the numerical results. The time series of cross-flow displacement are given in 

Figures 3-18 and 3-19. The nondimensional numerical solutions and the experimental 
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results are compared in Table 3.4. In Table 3.4, U is the current velocity, U* = f~D 

is the normal reduced velocity, D is the outside diameter of the riser and fn is the 

natural frequency of the riser. In the computation of U*, the added mass coefficient, 

Cm, is given as 1. The numerical solutions by MAPS-Mooring agree well with the 

experimental data. 
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Figure 3-18: Cross-flow Motion of the Riser (U=l.65m/s) 

Table 3.4: Comparison of Numerical Solutions and Experimental Results 

U (m/s) U* A* (Experimental) A* (Numerical) 
1.65 5.75 0.9 0.87 
1.8 6.27 0.77 0.77 
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Figure 3-19: Cross-flow Motion of the Riser (U=1.8m/s) 
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Chapter 4 

Conclusions and Recommendations 

A numerical tool for the static and dynamic analysis of mooring lines and marine risers 

has been developed. The global-coordinate-based finite element method was used to 

model mooring lines and marine risers. In this method, the global coordinate system is 

used to describe the position of mooring lines instead of introducing local coordinate 

systems. The geometric nonlinearity and the environmental load nonlinearity are 

considered. Assuming that the sea bottom is flat and elastic, the sea bottom is 

modeled by an elastic layer (spring mat). The non-penetrating bottom boundary 

conditions are applied for both static and dynamic problems. Small elongation of the 

rod is considered in the equations of motion of mooring lines. 

In the computation, the static problem is first solved to determine the initial profile 

of mooring lines. When solving the static problem, the inertia term is neglected. The 

governing differential equations of the mooring line are a set of nonlinear algebraic 

equations which are solved by Newton's iteration method. For dynamic problems, the 

second-order differential equations are substituted by a set of first-order differential 

equations. The first-order Adams-Moulton method is used to integrate the equations. 

Base on the global-coordinate-based finite element method, a static and dynamic 

analysis program, MAPS-Mooring, has been developed. Validation studies have been 

carried out for both single mooring line and multiple mooring lines. Static and dy-
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namic numerical results were compared with analytical solution, published numerical 

or experimental data. The accuracy and reliability of the developed program has 

been demonstrated in the validation studies. 

The global-coordinate-based finite element method was also applied to simulate 

the vortex induced vibration (VIV) of a short marine riser in the time domain. The 

added mass coefficient, lifting force coefficient and drag force coefficient were calcu­

lated from the existing database, which was set up based on experimental results. 

The computed cross-flow displacements agree well with those from the model tests 

at two velocities of current. Further validation studies are needed for the short riser 

at a large range of current velocities. It is recommended to extend this method to 

flexible marine risers with multiple VIV modes. 
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