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Abstract 

Erioderma pedicellatum (Hue) P.M. J0rg is a globally rare and critically endangered 

lichen largely confined to the island portion ofNewfoundland and Labrador. In 2002 

the Boreal population was designated under the federal Species at Risk Act (SARA) 

as a species of "Special Concern", while the Atlantic population was listed as 

"Endangered". Under the provincial Endangered Species Act the lichen was 

designated as a "Vulnerable" species. This designation does not provide immediate 

protection for the lichen but requires the development of a management plan and 

periodic status assessment. Essential management baseline information on the species 

is lacking; especially on the ecology of the species as well as levels of genetic 

variability. This project attempts to answer key questions about the dispersal ecology 

of E. pedicellatum and identifies markers for analysis of genetic variation in 

Newfoundland and Labrador. Using the Internal Transcribed Spacer (ITS-I) ofthe 

ribosomal DNA (rDNA), two haplotypes were found among samples from 

Newfoundland and a single 62-year-old Swedish herbarium specimen. The common 

haplotype was found in both the Newfoundland samples and the Swedish sample. In 

addition through field research, this study describes for the first time the micro

ornamentation on the surface of E. pedicellatum spores and concludes through 

laboratory studies that the minute E. pedicellatum spores are actively discharged (<10 

mm), can become trapped on the leg bristles or antennae of flying insects and may 

therefore be carried individually by these small animals. Given the high probability of 

an insect landing on an E. pedicellatum thallus and the shear abundance of insects in 
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the boreal forest, our hypothesis of insects as dispersal vectors of spores is possible. 

We predict the potential number of insects carrying E. pedicellatum spores to be in 

the range of 129-161 over a 15 year period, given the calculated probability of insects 

landing on thalli, 4000-5000 incidences. This has important implications for forest 

management in E. pedicellatum habitat and further research should build on these 

findings by testing maximum distances spores travel in the average gap sizes of the 

Avalon forests, the periodicity of dispersal, and implementing harvesting /cutting 

block sizes to test the dispersal limitation of the species. These findings should be 

compared to the genetic variation of the species. This is the first study documenting 

the genetic variation of this rare species and the results provide significant, important 

information on the global population. We conclude that given the low genetic 

variation and the lack of variation between North American and European 

populations, that the global population is one evolutionary unit. This supports the 

IUCN designation of a globally endangered population. 
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General Introduction 

Globally lichen populations are facing pressures associated with urban development 

(Young and Jarvis, 2001), logging (Peterson and McCune, 2001; Esseen and 

Renhorn, 1996; Rolstad et al., 2000; Pharo and Beattie, 1997; Hedenas and Ericson, 

2000, 2003), global warming (Malcolm and Markam, 2000; van Herk et al., 2002), 

fire (Werth et al., 2006; Wolseley, 1991, 1994) and air pollution (Lambley and 

Wolseley, 2004; Maass, 1999; Richardson and Cameron, 2004; Richardson, 1992; 

Silberstein et al., 1996; Seaward, 1992). Wolseley (1995) summarizes the global 

anthropogenic and natural impacts on the lichen community as increasing and of 

concern for lichenologists. This is especially important for highly sensitive lichen 

species requiring stable environments to complete their life cycles. Many 

cyanolichens, or lichens containing cyanobacteria as the photobiont partner (lichens 

consist of a symbiotic relationship between an algae or cyanobacteria and a fungus) 

are particularly sensitive to environmental change and as they thrive mostly in old

growth habitats where the microclimatic conditions are most stable (Goward and 

Arsenault, 2000, 2001; Sillett et al., 2000). 

Erioderma pedicellatum (Hue) P.M. Jorg. is classified as a cyanolichen as it 

contains the cyanobacterium Scytonema as an aggregate partner. Although not found 

in old-growth forests typical of west-coast Canada cyanolichens (Goward and 

Arsenault, 2000), it is found in mature (50 years+) stands of balsam fir (Abies 

balsamea (L.) Mill) forests or stands approaching the end of the forest life cycle in 

Newfoundland and Labrador (Maass and Yetman, 2002). Historically the lichen was 
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also found in Sweden and Norway in Europe, and in Nova Scotia and New 

Brunswick in Eastern Canada (Maass and Yetman, 2002). The only populations 

currently known are in Nova Scotia and Newfoundland with the latter province 

having 99% of the world's population. In 2003 E. pedicellatum was listed as critically 

endangered on the International Union for the Conservation ofNature and Natural 

Resources (IUCN) global Red-List due to declining population numbers and threats 

to local habitat (Scheidegger, 2003). In 2002 the Boreal population was designated 

under the Canadian Species at Risk Act (SARA) as a species of "Special Concern" 

and the Atlantic population was listed as "Endangered". Under the Newfoundland and 

Labrador Endangered Species Act the lichen was designated as a "Vulnerable" 

species. Designation as a vulnerable species in Newfoundland and Labrador requires 

a management plan for conservation of the species. 

A management plan for Erioderma pedicellatum was drafted and released to 

the public by the Minister of Environment and Conservation, Government of 

Newfoundland and Labrador in July 2006, and lists seven main threats to E. 

pedicellatum populations, consisting of both anthropogenic and natural disturbances. 

Anthropogenic disturbances include land development, logging, air pollution, fire, 

pesticides and climate change, and natural stressors include wind, fire, insect 

outbreaks, stand senescence, and moose herbivory (Keeping, 2006). One of the main 

localities in Newfoundland and Labrador, Lockyer's Waters, has shown significant 

decline in population numbers since 1999 due to anthropogenic and natural 

disturbances (Conway, 2002). Lockyer's Waters is classified as a proposed 
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Ecological Reserve candidate under the NL Wilderness and Ecological Act (WER 

Act) giving it temporary protection. Lockyer's Waters, in the centre of the Avalon 

Peninsula, contains over half of the provinces population of the rare lichen (Maass 

and Yetman, 2002). 

Rapid decline in localized populations of Erioderma pedicellatum due to a 

combination of anthropogenic and natural disturbances is a growing concern for 

sustainability of the world's population of this lichen. Populations that rapidly lose a 

high percentage of thalli may suffer from reduced genetic variation and a loss of rare 

alleles. Such a population bottleneck may eventually contribute to a reduction in the 

number of haplotypes in a population and reduce the evolutionary resilience of the 

species (Hartl & Clark, 1997). Further genetic variation may be lost as a result of 

random genetic drift. Populations with reduced genetic variation may be more 

susceptible to stochastic environmental events and eventually extinction (Frankham et 

al., 2002). 

Mating systems may contribute to the lack of genetic variation of some 

lichens since self-compatible mating populations of sexually reproducing fungal 

partners provide virtual clones (Walser, 2004). Cloning (asexual) reproduction 

through thalli fragmentation or dispersal of diaspores may also reduce local genetic 

diversity (Cronberg, 2000). Erioderma pedicellatum only reproduces sexually and has 

never been known to reproduce asexually as other cyanolichens do (Maass and 

Yetman, 2002) and it is not known if E. pedicellatum has a self-mating system, in 
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which fungal strands of the lichen thallus self-fertilize. Other studies have shown that 

lichens are self-incompatible (Honegger et al., 2004; Scherrer et al., 2005) however, 

inferring sexual reproduction occurs in Erioderma pedicellatum. 

Genetic variation of a lichen species depends greatly on dispersal capacity 

(Walser et al., 2001; Lindblom and Ekman, 2006) and the type of stand-level 

disturbance (Werth et al., 2006). Successful regeneration oflichens is complex and 

depends on a multitude of factors such as the mobility of lichen propagules (lichen 

propagules can be either sexual spores or asexual, often symbiotic, diaspores), the 

frequency of dispersal, the ability of a propagules to reach adjacent, suitable forest 

habitat, the ability of a fungal strain to find a genetically compatible photobiont 

partner (Seymour et al., 2005) and the ability of fungal strain in small populations to 

be sexually compatible (Vekemans et al., 1998). To date these factors and their 

contribution to reestablishment of Erioderma pedicellatum have not been 

investigated. The forest disturbance regime is complex on the A val on Peninsula and 

is influenced by natural disturbance such as insect kill, wind throw and moose 

herbivory; and anthropogenic disturbance such as logging and land use. This, 

combined with a rapid 80 year natural succession makes for a complex forest system 

(Forest Ecosystem Strategy Document, 1997). Dispersal of lichen spores can be a 

limiting factor in species regeneration, especially in cyanolichens, if the gap size of 

the forest, which is determined in large part by the disturbance regime, exceeds the 

maximum dispersal distance of spores, preventing dispersal from older decaying 
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stands to younger regenerating stands (Dettki et al., 2000; Ockinger et al., 2005, 

Sillett et al.., 2000; Walser et al., 2001). 

This study attempts to elucidate the specific aspects of the life history of 

Erioderma pedicellatum crucial to management of this lichen. Firstly, what are the 

intra- and inter-population level of genetic variation both among sites in 

Newfoundland and Labrador, and between historical amphi-Atlantic populations in 

Newfoundland and Europe? Secondly, how are E. pedicellatum spores dispersed; 

specifically what are the morphological characters of E. pedicellatum spores, and are 

there vectors within forest stands in Lockyers Waters that can successfully disperse 

the spores? By answering these two basic questions managers of E. pedicellatum 

populations can begin to understand the relationship between disturbance regimes in 

balsam fir forests on the A val on Peninsula and the life history of the species. This 

will allow for the development of new scientific questions, but more importantly 

contribute to preliminary management processes for protecting the rare species. We 

make specific recommendations in this thesis on how to manage E. pedicellatum 

populations in Newfoundland and Labrador forests. 
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CHAPTER1 

Comparison of the ITS-1 region of the critically endangered lichen 

Erioderma pedicellatum in Newfoundland and Sweden. 

1.1 Introduction 

An increase in human impact on global ecosystems including deforestation, 

pollution and urban development, has threatened global species diversity (Chapin et 

al., 2000; Sala, 2001 ). In particular several significant lichen communities are 

currently threatened (Wolseley, 1995). Of these lichens, epiphytic cyanolichens are 

most vulnerable to habitat change and disturbances, such as clear-cut logging 

(Goward 1994; Prest0 and Holien, 2001) due to changes in microclimate (Renhom et 

al., 1997; Rheault et al., 2003). 

Fragmentation is common in the boreal forest as a result of anthropogenic and 

natural disturbance. Clear-cut logging and wind throw produce gaps in the continuous 

forest and separate adjacent forest stands. The prevalence of bog, fen or lakes and 

ponds also contribute to natural fragmentation. Habitat fragmentation may constitute 

a threat to boreal cyanolichens, as fragmentation produces island habitat and results in 

altered microclimate at fragment edges. In Newfoundland, the long history ofland 

use (Forest Ecosystem Strategy Document 1997) and prevalence of lakes and bogs 

produce highly fragmented habitat across the landscape. 

Small fragmented populations can result in reduced genetic diversity if genetic 

exchange between populations is limited, and may result in a greater likelihood of 

extinction (Frankham, 1995, 1997; Montgomery et al., 2000; O'Brien, 1985). 
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Templeton et al., (1990) suggest that if habitat loss and fragmentation results in 

complete genetically isolated habitat "islands", then each island becomes 

demographically independent and local extinction can occur. Scheidegger et al., 

(1998), for example, have shown that remote, isolated populations of Lobaria 

pulmonaria can become locally extinct due to genetic isolation. Such reduction in 

genetic diversity, or extinction of local populations, is not unique to lichens and has 

also been observed in mammals (Hale et al., 2001; O'Brien, 1983), birds (Westemeier 

et al., 1998) and plants (Young and Brown, 1996). 

Erioderma pedicellatum (Hue) P.M. J0rg. (family Pannariaceae) is a rare 

amphi-Atlantic epiphytic cyanolichen found in mature boreal forest and is designated 

as critically endangered on the IUCN Global Red List (2003). In Europe, E. 

pedicellatum occurred in Norway and Sweden (Holien 1995), but these populations 

were extirpated in the early 1960's in Sweden and confined to a single specimen in 

Norway (Scheidegger 2003). Currently the species is known from Nova Scotia (32 

thalli; Keeping, 2006) and Newfoundland (5060 thalli; Maass & Yetman 2002). 

Historically its distribution extended into New Brunswick; however the lichen has not 

been relocated since the early 20th century (Maass 1980). Over half of the current 

population is found on the Avalon Peninsula in eastern Newfoundland (2148 thalli). 

In 2003, the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) 

designated the lichen as "Endangered" in Nova Scotia and New Brunswick and of 

"Special Concern" in Newfoundland (Maass and Yetman 2002); the species does not 

occur in Labrador. 
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Studies of genetic variation in lichens have mostly focussed within genera 

(Crespo et al., 1997; Martinet al., 2003; Thell1999), families (Ivanova et al., 1999; 

Mattsson & Wedin, 1998; Myllys et al., 1999; 2005; Simonet al., 2005) and orders 

(Stenroos & Depriest, 1997, 1998). Several studies have investigated genetic 

variation within lichen species (Beard & DePriest, 1996; DePriest 1994; Dyer and 

Murtagh 2001; Groner and LaGreca 1997; Hogberg et al., 2002; Lindblom and 

Ekman, 2006; Prinzten and Ekman 2002; Zoller et al. 1999). The Internal Transcribed 

Spacer region (ITS) of the ribosomal DNA is widely used when studying genetic 

variation in lichenized ascomycetes (Bridge and Hawksworth 1998; Grube and 

Kroken 2000) however, Small Subunit (SSU), Large Subunit (LSU), Intergenic 

Spacer region (IGS) (Lindblom and Ekman, 2006), RBP2 (RNA Polymerase II), 

RAPDs (Heibel et al., 1999) and more recently microsatellites (Walser et al., 2003) 

have also been employed. The ITS-I region was chosen for this study since it has 

been successfully used as a proxy of genetic variability in other rare lichen studies 

such as Lobaria pulmonaria (Zoller et al., I999), Cavernularia hultenii (Prinzten and 

Ekman, 2002) and Nephroma occultum (Piercey-Normore et al., 2006), a COSEWIC 

designated "Species of Special Concern", in addition with the use of ITS-2. For this 

study only species-specific primers could be developed for ITS-I, and therefore it is 

the only rDNA region used. The ITS region has reported differences in levels of 

variation, ranging from low (Prinzten and Ekman, 2002; Zoller et al., 1999) to high 

(Lindblom and Ekman, 2006). 
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In this study was to genetic variability in the ITS 1 region ofthe rDNA gene 

within and among isolated populations of E. pedicellatum in Newfoundland was 

investigated and compared to a single herbarium specimen from Sweden. Data on 

genetic diversity within this species are needed to optimise future conservation 

priorities, such as reintroductions, and management plans for this globally critically 

endangered species. 

1.2 Methods 

Lichen Samples 

InN ewfoundland a total of 91 samples were collected in 11 sites from four 

localities representing its island distribution (Table 1; Fig. 1 ). Only one sample was 

collected per host tree, 90% of which were balsam fir (Abies balsamea). All 

specimens were mature (i.e.,> lOmm). Thalli were inspected for areas of necrosis, 

damage due to mite herbivory and parasitic fungal invasions. These areas were 

avoided during sampling and whenever possible only healthy portions of each thallus 

were taken. Thallus fragments, averaging 2mm2 were excised using a sterile surgical 

knife and stored in collecting envelopes. In rare cases where the thallus was loosely 

adhered to the tree trunk or branch or fallen to the forest floor, the entire thallus was 

taken. Samples were air dried at room temperature for 48 hours and then stored at 

5°C until analysis. 
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Thallus Preparation 

Prior to DNA extraction, thalli were rinsed twice in distilled water to remove 

other attached lichens, bryophytes and liverworts, and then placed in preweighed, 

sterile 2ml eppendorf tubes with glass beads. Tubes containing thallus fragments were 

reweighed and wet thallus weights recorded for comparison to PCR products. 

DNA Extraction 

DNA extraction was carried out using three different methods to optimise 

amplification of DNA. For samples screened in 2000, DNA extraction was carried 

out using a protocol modified for lichens by Zoller et al., (1999), and the CTAB 

method (Velegraki et al., 1999). However these methods produced less PCR product 

compared with the GenElute plant genomic DNA kit (SIGMA™, St. Louis, MO, 

USA). 

In 2001, DNA extraction was carried out using the GenElute™ kit (SIGMA™, 

St. Louis, MO, USA). After samples were cleaned and weighed (wet) thallus 

fragments (225 mg) were placed in 2 ml vials and frozen in liquid nitrogen. The 

samples were then dehydrated in an Alcatel 2004 vacuum dehydrator for at least 9 

hours prior to DNA extraction. To extract genomic DNA lichen cells were first 

disrupted by thorough agitation for 5 minutes in a shaker mill using sterile glass beads 

placed in 2ul vials. Samples were then placed on ice. 350 ul of Lysis buffer A and 50 

ul of Lysis buffer B were added to each tube and placed in a 65°C waterbath for 10 

minutes. To precipitate the cellular debris, proteins and polysaccharides, 130ul of 
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precipitation solution was added, mixed well and then centrifuged at 14000 RPM for 

5 minutes. The supernatant was pipetted onto a GenElute filtration column and 

centrifuged at 14000 RPM for 1 minute. To bind the DNA, 700 ul ofbinding solution 

was added to the flow through liquid and transferred to a GenElute Nucleic Acid 

binding column. Bound DNA was washed twice with 500 ul of Washing Solution and 

centrifuged at maximum speed for one minute. DNA was then eluted in 100 ul of 

warmed (65°C) TE buffer pH 8.4 and incubated at room temperature for 5 minutes. 

This final step was repeated twice yielding two 1 OOul aliquots of purified DNA. One 

aliquot was placed in -80°C for long-term storage. Following extraction DNA 

concentrations were measured using the Hoefer DyNA Quant 200 DNA quantifier 

(Hoefer, Pharmacia Bio- tech, San Francisco, CA). 

PCR Amplification 

Primers 

For initial amplification the fungal specific primer ITS I-F (Gardes and Bruns, 

1993) and the general primer ITS4 (White et al., 1990) were used. Other primer sets 

were used separately and in combination with ITS IF and ITS4 (Table 2). Because 

each of the primer sets either yielded low concentrations of PCR products or multiple 

products due to the presence of fungal contaminants, new primer sets were designed 

using the computer programs PRIMER (Lincoln et al.. 1991) and OLIGO 4.0 (Primer 

Analysis Software, National BioSciences). This included a series of forward (F) and 

reverse (R) species-specific primers in the 5.8 conserved and ITS regions (Ep 73F, Ep 

394R and ITS 1-135 F, ITS Erio). All primers were used in combination in an attempt 
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to increase efficiency (yield) and improve specificity. The primer set Ep 73F and Ep 

394R were selected as they produced the highest yield and greatest specificity and are 

described here for the first time (Table 3). Only after species-specific primers were 

developed (Carbone and Kohn, 1999) were we able to produce PCR products that 

proved to be E. pedicellatum rDNA. 

PCR 

Polymerase chain reaction (PCR) was carried out in a 51 ul reaction volume 

(32.5ul H20, 5ul10x PCR buffer, 5ul50mM MgCb, 2ull mM dNTP's, 2ul of 

selected primers, 0.5ul TAQ Polymerase and 2ul of DNA extract) using a standard 

cycling protocol: denaturing at 94°C for 2 minutes, 30 cycles of denaturating at 94°C 

for 1 minute, 1 minute annealing at 55°C, extension at 72°C for 1 minute, and a final 

extension at 74°C for 8 minutes. PCR products were purified prior to cycle 

sequencing reactions GenElute Plant Genomic DNA Purification Kit (SIGMA™, St. 

Louis, MO, USA). 

DNA Sequencing 

DNA sequencing was carried out using both the ABIPRISM 310 and 

ABIPRISM 377 MJ BaseStation™ (MJ Research, Waltham, MA, USA) automated 

sequencers. Because of the presence of a small poly-A microsatellite in the ITS 1 

region of the Erioderma pedicellatum rDNA (Fig. 2), TAQ polymerase slippage 

occurred immediately downstream from the microsatellite on the forward strand and 

immediately upstream relative to the microsatellite on the reverse strand. As a result, 
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the clarity of the sequences was sub-optimal in these regions but of high quality in the 

regions before and after the microsatellite on the forward and reverse strands 

respectively. Therefore sequences did not require editing in a computer sequence

assembling program. Single stranded forward and reverse electropherograms were 

visualized using the computer program Sequence Navigator PPC Alias and sequence 

alignments were consequently constructed manually. 

Swedish Herbarium Specimen: Special Protocol 

We expected highly degraded genomic DNA in the 62-year-old lichen specimen from 

Sweden. Low amounts of starting material and low amounts of genomic DNA 

translate into low amplification products in single PCR runs. In this study PCR 

products were not visible on 2% agarose gels. To remedy this problem multiple 

PCR's (50 ul each) were combined, precipitated in ethanol andre-eluted in lOul. 

Only when 24 individual PCR products were combined was there sufficient DNA for 

sequencing. 

Phylogenetic Analysis 

Phylogenetic analysis was performed using the computer program P AUP 

(Phylogenetic Analysis Using Parsimony) (Smithsonian Institution, USA). Bootstrap 

values were determined using 1000 replicates, producing a bootstrap consensus tree. 

Lobaria pulmonaria was chosen as the outgroup because the DNA was available for 

analysis (from previous Walser and Zoller studies; see references) and it represented a 
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lichen of a different family (Lobariaceae ). Pannaria sequences were downloaded 

from NCB I' s BLAST search (Altschul et al., 1997). Degelia plumbea was sequenced 

in the study along with Erioderma pedicellatum and E. sorediatum, using the same 

protocol as E. pedicellatum, and the primers ITS 1F and ITS 4. 

1.3 Results 

Two haplotypes, A and B, were found in the analysis ofiTSl region in 91 

samples collected from Newfoundland. These haplotypes were not exclusive to a 

specific geographic location (Fig. 1; Table 1 ). Haplotype A was more common 

occurring in 87 (95.5%) of the 91 samples investigated, with haplotype B occurring in 

just four samples (4.5%), one from Lockyers Waters and three from Bay D'Espoir. 

Haplotypes A and B are distinguished by 11 changes, 6 substitutions and 5 

insertion/deletions (Fig. 2). 

Subjecting Haplotype A to a BLAST search revealed a sequence of 

approximately 345 bp in length. The sequence contains a portion of the ITS-1 and the 

5.8S regions, with none of the 18S region included in the sequence. The species

specific primer designed in this study was nested within the ITS-1 region; therefore 

the entire ITS-1 was not sequenced, leaving approximately 100 bp to investigate 

variation. 

Haplotypes A and B were confirmed in two ways. First by constructing a 

bootstrap consensus tree of Pannariaceae species, using the Lobariaceae as an 

outgroup (Fig. 3), and second by subjecting the sequences to Blast search 

(www.ncbi.nlm.nih.gov/BLAST/). Following current taxonomy, the Erioderma group 
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paired more closely to its own family group (Pannariaceae) as compared to the 

outgroup. When comparing haplotype A with E. sorediatum (Fig. 4) there are 17 

substitutions and 5 insertion/deletions exceeding the differences between the two 

haplotypes. There are 27 substitutions and 22 insertion/deletions between E. 

sorediatum and haplotype B (Fig. 5). The pairing of E. pedicellatum with E. 

sorediatum, Pannaria and Degelia is supported by Ekman and Jorgenson (2002) in a 

study of the Pannariaceae. Second, by determining thee-score, or dissimilarity score, 

with other sequences; a value of (5e-11 to 9e-09) showed a significant value of 

dissimilarity with other sequences. 

Sequencing the single herbarium Swedish sample revealed an identical match 

to haplotype A, both from Lockyers Waters and Bay D'Espoir in Newfoundland. 
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1.4 Discussion 

Two haplotypes, denoted here as A and B, were found in the analysis of the 

ITS 1 region in 91 samples of Erioderma pedicellatum collected in Newfoundland, 

Canada. No genetic variation was found between the Newfoundland samples 

(haplotype A) and the specimen from Sweden. 

There were difficulties encountered in successfully amplifying and sequencing 

specimens of E. pedicellatum. Sequencing of PCR products revealed the possible 

presence of fungal contaminants. The duplicate bands could also have been the result 

of mismatches between the E. pedicellatum template and the primer pair. Ekman 

(1999) describes this as a common phenomenon in short sequences lacking intron

like insertions. Few options produce clear, distinct PCR products, although Ekman 

recommends the use of species specific primers. The primer pair, Ep 73 F and Ep 394 

R, described here for the first time, was used here to amplify E. pedicellatum rDNA, 

resulting in a clear product with a fragment length of 345 bp. 

Using the ITS regions, other lichen studies have shown a low number of 

infraspecific polymorphisms (1 - 4) and a high number ofhaplotypes (Dyer and 

Murtagh, 2001; Groner and LeGreca, 1997; Lindblom and Ekman, 2006; Zoller et al., 

1999) but the literature varies greatly. For example, Hogberg et. al (2002) compared 

the genetic variation of Letharia vulpina in Europe and North America using eight 

different loci and found almost no genetic variation in European populations. 

Conversely, Lindblom and Ekman (2006) found exceptionally high genetic variation 

within populations of Xanthoria parietina in Norway (up to 16 haplotypes). In 
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contrast this study showed a lower number ofhaplotypes (2) and a higher number of 

differences ( 11) between haplotype sequences. Prinzten and Ekman (2002) show 

similar findings of low number of haplotypes in Cavernularia hultenii in 

Newfoundland but a higher number of differences between the sequences. Our 

findings and the results of other studies, are consistent with Bridge and Hawksworth 

(1998) who concluded that the level ofvariation within the ITS regions ofthe rDNA 

gene may vary with different species and depend on the life history of that species. 

However a larger sample of European specimens would be needed to confirm 

conclusions regarding phylogeography. Grube and Kroken, 2000 illustrate the 

complexities of using ITS in determining variation by concluding that the 

investigation of a single locus may not accurately reflect the extent of the variation 

and the separation of a species, especially across continents. 

Habitat fragmentation can reduce genetic variation in instances where gap 

sizes exceed dispersal capacity of species (Hogberg et al., 2002; Templeton et al., 

1990; Wallace 2002). Werth et al., (2006) have shown that different types of 

disturbance regimes (fire, logging) influence the genetic variation of rare lichen 

species differently, and local stand-level disturbances, depending on the size ofthe 

disturbance, may not reduce genetic variation in the short term. In Newfoundland, the 

relationship between forest fragmentation and the life cycle of E. pedicellatum is not 

completely understood (Maass and Yetman 2002) but could result in creation of 

genetically isolated habitat "islands" depending on dispersal capacity. Walser et. al 

(2005) investigated the relationship between genetic variation and local landscape 
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disturbance in British Columbia and Switzerland and found that lichen diversity in 

fragmented habitat can be high, depending on the gene flow and the geographic 

isolation of alleles. Studies to identify the key factors driving patterns of genetic 

variation such as reproductive and dispersal biology of E. pedicellatum are necessary. 

Initial findings suggest insects can disperse spores, with a high probability (Yetman, 

Chapter 2), therefore potential genetic exchange between isolated habitat "islands" 

would be possible. 

The presence of haplotypes A/B, the rarity of haplotype B and sharing of 

haplotype A between North America and the single Swedish herbarium sample pose 

interesting questions about the evolution of the species. J0rgensen (1990) suggests 

that the species is a primitive member of a genus derived from Gondwanan stock. The 

species may have arrived in Europe along the Tethyan Sea and subsequently became 

isolated from the rest of the genus. J0rgensen believes that the species reached North 

America before the Quaternary glaciations and both the European and North 

American populations fluctuated with changes in the conifer forests as the glaciation 

proceeded. The island of Newfoundland had a complex deglaciation pattern, with the 

possibility of glacial refugia; however no forest survived within these refugia 

(Anderson and Macpherson 1994), therefore the populations may have established 

from a reinvasion of southern populations, or from trans-Atlantic dispersal. More 

sequences of historic European samples taken from herbarium specimens are needed 

to confirm the haplotypic frequency and the variability between European and North 

American samples. This study provides preliminary evidence that there is low 
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variation between trans-Atlantic populations, possibly caused by slow genetic drift or 

recent long distance dispersal. 

Next Steps for Future Conservation 

Results of this study are an important first step in assessing the level of genetic 

variation in Erioderma pedicellatum populations. Using a portion ofiTSl, the 

presence of low genetic variation in E. pedicellatum populations in Newfoundland 

and the lack of variation between North America and the Swedish herbarium 

specimen have implications for long-term management of E. pedicellatum. Firstly, 

managers should consider additional genetic research to reveal with more certainty, 

the lack of variation within and among amphi-Atlantic populations, especially prior to 

any transplantation efforts. Secondly, preliminary results on genetic variation support 

the IUCN designation of a single amphi-Atlantic population of E. pedicellatum; 

however a larger proportion of the genome should be analysed to confirm our 

findings. 
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Table 1.1 Portions of thalli or full thalli of Erioderma pedicellatum collected within 
Newfoundland for genetic analysis. 

Locality # of Thalli/Parts Population 
Collected Size (# thalli) 

Ripple Pond 20 121 
Lockyers Waters (S-7) 20 211 
Lockyers Waters (S-9) 20 174 
Lockyers Waters (S-1) 1 30 
Lockyers Waters (S-2) 1 46 
Lockyers Waters (S-3.1) 1 249 
Lockyers Waters (S-3.2) 1 Included in S-3.1) 
Lockyers Waters (S-4) 1 135 
Bay D 'Espoir (S-1) 13 204 

Bay D'Espoir (S-2) 12 115 

Salmonier Nature Park 1 4 

GPS Coordinates and population sizes for Lockyers Waters taken from McHugh (1998). 
Symbols S-1 to S-9 represent the Newfoundland locality in which samples were collected for 
genetic analysis and are in accordance with Maass and Yetman (2002). 
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Table 1.2: Primer sets used to amplify Erioderma rDNA. Successful amplification, including 
suitable concentrations and single fragments, are highlighted with an asterix. 

Primer Position Direction Sequence (5'-3') Source 
ITS-IF ssu F cttggtcatttagaggaagtaa Gardes and Bruns, I993 
ITS-4 LSU R tcctccgcttattgatatgc Gardes and Bruns, I993 
ITS I ssu F tccgtaggtgaacctgcgg White et al.., I990 
LR IS LSU R taaattacaactcggac Zoller et al.., I999 
LR22 LSU R cctcacggtacttgttcgct Zoller et al.., I999 
5.8S 304F 5.8S F catcgaatctttgaacgc This Study 
5.8S 26IF 5.8S F agcgaaatgcgataagtaat This Study 
5.8S 280R 5.8S R attacttatcgcatttcgct This Study 
5.8S 326R 5.8S R aatgtgcgttcaaagattc This Study 
ITS I-I35F ITS-I F tccgcatcccgtgggaccgt This Study 
ITS-Erio ITS-I F tccgcatcccgtgggac This Study 
Ep73F ITS-I F cgagagaaacggcaacagg This Study* 
Ep 394R ITS-2 R gacgcagacccaacaccaa This Study* 

Note: Under Position ITS= Internal Transcribed Spacer Region, 5.8S =subunit of the ribosome gene, 
LSU =large subunit of the ribosome gene, SSU =small subunit of the ribosome gene. Under Direction 
F and R stand for forward and reverse respectively. 
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Table 1.3: Primer specifications for species-specific primer pair Ep 73F and Ep 394R 
used to amplify Erioderma pedicellatum. 

Annealing Temp. %GC Content Tm Difference Tm 

56.5 52.1 0.8 79.3 
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Figure 1.1 Known range of Erioderma pedicellatum sites in Newfoundland and 
Labrador. Of note are sites E (Lockyer's Waters) and B (Bay d'Espoir). Map used 
with permission from the Department of Environment and Conservation, Government 
ofNewfoundland and Labrador. Haplotype B (1) was found in Lockyer's Waters and 
Bay d'Espoir (3). 
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Haplotype B 
Haplotype A 

1 

5' TCCGCATCCCGTGGGACCGTCCCGGCAGAGAAA-GC~AAAA------------CCCCGTC~T 
5' TCCGCATCCCGTGGGACCGTCCCGGCCGCG~CA--GAAAA@AAA6AAAAAANCCCCGTCAA-C 

69 138 
Haplotype B CAGTGTTGTCCG~CAGpGCAATTGGAAAATTCGCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCAT 
Haplotype A CAGCGTCGTCCGA---GGCAAATGGAAAATTCGCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCAT 

139 206 
Haplotype B CGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAA TCATCGAATCTT 
Haplotype A CGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAA TCATCGAATCTT 

207 237 
Haplotype B TGAACGCACATTGCGCCCCTTGGCATTCCG 3' 
Haplotype A TGAACGCACATTGCGCCCCTTGGCATTCCG 3' 

Figure 1.2 Sequence variation between two haplotypes (A and B) found in 
populations of Erioderma pedicellatum in Newfoundland. Of note is the ITS 1 region 
(positions 1 through 102) and the 5.8S conserved region (positons 103 through to 
237). Also of note is the Poly A microsatelite in upstream position 45. Point mutations 
are signified by in bold and insertions/deletions by frames. 
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Figure 1.3 Bootstrap consensus tree (Bootstrap values shown) showing the 
relationship of Haplotype A and Haplotype B (Erioped A and B) with Erioderma 
sorediatum (Eriosored) and other family species (Degelia) collected in Madagascar 
using Lobaria pulmonaria as an outgroup. Specimens prepared and sequenced by the 
author: Erioderma pedicellatum (EriopedA and EriopedB), Erioderma sorediatum 
(Eriosored), Lobpulm = Lobaria pulmonaria, Degeplum=Degelia plumbea. Specimen 
sequences taken from NCBI genbank: PpanpeziA = Pannaria pezizoides, 
PannconoAF = Pannaria conoplea. 
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E. sorediatum 5' TCCGCATCCCGTGGGACCGTTCC ---------CGCGAAGGGAAAAAGACAAAACTCCG 
Haplotype A 5' TCCGCATCCCGTGGGACCGTCCC@GCCGCG~CGCAGAAAAGAAAAAAAAAAACCCCG 

E. sorediatum 
Haplotype A 

E. sorediatum 
Haplotype A 

CCA-TCAGTGTCGTCCGAGGC~CGCGAAA~CGAAAAACTTTCAACAACGGA 
TC~CCAGCGTCGTCCGAGGCAA-ATGGAAAAT-T----CGCAAAACTTTCAACAACGGA 

TCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCA 
TCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCA 

237 
E. sorediatum GAATTCAGTGAATCATCGAATCTTTGAACGCACATT 3' 
Haplotype A GAATTCAGTGAATCATCGAATCTTTGAACGCACATT 3' 

Figure 1.4 Comparison ofthe ITSl region between Erioderma sorediatum, collected 
in Madagascar, and haplotype A of Erioderma pedicellatum from Newfoundland. 
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E. sorediatum 
Haplotype B 

E. sorediatum 
Haplotype B 

E. sorediatum 
Haplotype B 

E. sorediatum 
Haplotype B 

E. sorediatum 
Haplotype B 

1 

5' CTTGGTCATTTAGAGGAAGTAAAAGTCGT~CAA~TTCCGTAGGTGAACCTGCGGA--
5' CTTGGTCATTTAGAGGAAGTAAAAGTCGTA-CAGG-TTTCCGTAGGTGAACCAACGG~ 

AGGATCATTACCGCGAGCGGAG[gCG~CCGG-GC -T-----CC--G-----GGGGGCGG 
AGGATCATTAACGCGAGAGAAA--CGC--AA- CAGG§P~C~GGGGCAA 

§TTCGCC§CTTGCTCCGCATCCCGTGGGACCG~CCCGCG~GGAAAAAG-ACAAAACTC 
-TTAGCT-CTAACTCCGCATCCCGTGGGACCGT -CCCGGCA-GAGAAAGC~GAAAACCC 

CGCCA--TCAGTGTCGTCCGAGGCAACACGC~~~~CTTTCAACAAC 
CGTC~CAGTGTTGTCCGAGGCAATTGGA-AAAT-TCG--C-AAAAACTTTCAACAAC 

GGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATT 
GGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATT 

237 
E. sorediatum GCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATT 3' 
Haplotype B GCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATT 3' 

Figure 1.5 Comparison of the ITS 1 region between Erioderma sorediatum, collected 
in Madagascar, and haplotype B of Erioderma pedicellatum from Newfoundland. 
Block= insertion/deletion; bold = substitution. 
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CHAPTER2 

Dispersal Ecology of the Critically Endangered Boreal Lichen, Erioderma 
pedicellatum. 

2.1 Introduction 

Arboreal lichens are key elements of forest biodiversity in Eastern Boreal Forests 

(Desponts et. al, 2004; McCune, 2000), yet little is known as to how arboreal lichens 

colonize new hosts when their host trees degenerate as a result of change associated 

with natural forest succession. There are many factors that limit the colonization of 

individual lichen thalli from an aging host tree to a younger, more stable recipient 

host (Sillett et al., 2000; Richardson, 2002; Kalwij et al., 2005). These factors may 

include challenges during the complicated lichenization process (Richardson, 1999), 

by the complex spatial dynamics of the forest landscape (Sillett and Goslin, 1999; 

Snail et al., 2003) or limited by spore production (Pyatt, 1969;Bailey, 1976), 

periodicity (Yamamoto et al., 1998; Clayden, 1997) or projection (Dettki et al., 2000; 

Walser et al., 2001). It is becoming increasingly important to understand the 

complexities of dispersal ecology in order to manage long-term persistence of lichen 

species (Keon, 2001). This is especially true for rarer species restricted to mature or 

old growth forests subjected to intense anthropogenic disturbances such as logging or 

forest management regimes (Neitlich, 1993; Hilma et al., 2005; Sillett et al., 2000) 

and especially true given the global crisis in biodiversity extinction (Hoekstra et al., 

2005). 
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Few studies have investigated the patch-dynamics of forests in relationship to 

the persistence of lichens (Wei-Dong et al., 2001 ). Depending on the type of dispersal 

model used; (i.e., metapopulation, source-sink or remnant species model), one may 

predict the persistence of lichens over time and space (Snall et al., 2003). Reduced 

dispersal between satellite populations over time can reduce genetic variation in 

species (Walser et al., 2003) and increase vulnerability to environmental change. 

Increased or decreased gap sizes or gap dynamics effectively change the dispersal 

models over time by altering the amount of genetic exchange between remote 

populations. Both natural disturbance such as wind throw and insect kill, and 

anthropogenic disturbance such as clear-cut logging contribute to gap dynamics in 

forests. An anthropogenic disturbance more often affects larger portions of forest 

compared with natural disturbance, creating larger forest gaps and therefore greater 

distances between neighbouring populations. Wherever the gap size exceeds the 

lichens maximum distance for spore projection (in the absence of dispersal vectors), 

the result is a dispersal limitation (i.e., lichen spores not reaching adjacent forest 

stands), even though there has been little investigation of factors. Depending on the 

metapopulation model used, dispersal limitation of lichen populations within forest 

stands can be explained by spatial aggregation and gap dynamics (Lobel et al., 2005). 

In other words the dispersal capacity of a species (the ability of a species to produce x 

number of ascospores and then disperse them) is largely due to the gap cycle of the 

forest stand and the spatial arrangement of the sub-populations. In this study we 

suggest that epiphytic lichens, similar to pollen dispersal syndromes found in vascular 
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plants (Degen and Roubik, 2004) have evolved mechanisms to aid in spore dispersal 

in such sites where natural and anthropogenic disturbance have created large gaps that 

exceed maximum dispersal capacity, and may result in lower abundance of 

cyanolichens (Benson and Coxson, 2002). It is predicted that many arboreal forest 

lichens that produce sexual spores have evolved mechanisms to aid in long distance 

spore dispersal. 

Knowledge of the life history of a lichen is important in understanding how it 

persists in its surrounding environment. Most lichenologists have a conceptual 

understanding of how lichens disperse their minute spores in patchy environments but 

there have been few studies documenting this important aspect of life history. It is 

generally accepted that asexual and sexual lichen propagules are dispersed by several 

methods including wind, water and animals (Hale, 1969). The majority of studies 

have focused on wind dispersal (Bannister and Blanchon, 2003; Brodie, 1953; Bailey 

and Garrett, 1968; Heinken, 1999; Marshall, 1996; McCartney, 1997) and/or water 

dispersal (Armstrong, 1994; Bailey, 1966; 1968; Eldridge, 1996; Gilbert, 1996); few 

studies have investigated animal-lichen dispersal (Bailey, 1966; 1976; Lucking, 2000; 

McCarthy and Healy, 2000; Richards and Young, 1977). 

Few studies have investigated the specific relationship between insects and the 

dispersal of spores in lichens (Peake and James, 1967; Tibell, 1994). Several studies 

show a secondary dispersal relationship of lichen spores through ingestion, by 

animals such as slugs and mites, and eventual defecation of spores (Miura and 

Mastumoto, 1997; Meier et al., 2002) and insects are well recognized as spore 
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dispersal vectors (Artbauerova and Janitor, 1988; Gaudet and Schulz, 1984; Levieux 

et al., 1991; Russin et al., 1984). For example Fox et al. (1991) showed the adherence 

of fungal spores (Fusarium subglutinans) to the carapace of the Engraver beetle 

(Scolytidae: Ips species) using electron microscopy. However none of the lichen or 

fungal studies has shown a co-evolutionary relationship between spore production 

and dispersal vectors, as has been extensively documented for vascular plants (Dafni 

et al., 2000). 

Erioderma pedicellatum is found exclusively in the Eastern Boreal Forest of 

Atlantic Canada (Maass and Yetman, 2002) and is listed as globally critically 

endangered by IUCN (Scheidegger, 2003). Historically the lichen was also found in 

Sweden where the lichen population was eradicated in the 1950's (Holien, 1995) and 

Norway where last reports indicate the extirpation of the remaining European thallus 

(Maass and Yetman, 2002). Erioderma pedicellatum is now restricted to the Eastern 

Boreal forests ofNova Scotia (approximately 15 thalli) and especially Newfoundland 

where population numbers are estimated at approximately 5060 (Keeping, 2006; 

Maass and Yetman, 2002), with half of the world's population on the A val on 

Peninsula. 

The Eastern Boreal habitat on the Avalon Peninsula in Newfoundland has 

predictable, short lived forest life cycles (70-80 years). Dominated by balsam fir 

(Abies balsamea) these stands are susceptible to both natural and anthropogenic 

disturbance (Forest Ecosystem Strategy Document, 2003). This combined with 

natural fragmentation (barrens, bog, lakes, etc.) has created a continuum of gaps in 
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Erioderma habitat. As a result of this short turnover time and the patchy nature of the 

forest, E. pedicellatum must reproduce in these short lived mature fir stands and 

disperse spores to adjacent emerging forest stands before the eventual collapse of the 

host stand. To date there have been no studies of the dispersal ecology of this rare 

lichen, but Maass and Yetman (200 1) speculate that dispersal is a limiting factor in 

the life cycle of the species. In this study, it was hypothesized that E. pedicellatum 

has evolved specific morphological characters and expulsion methods that increase 

the likelihood of dispersal in forested areas where gap size exceeds maximum 

dispersal distance. 

This study documented various characteristics of the dispersal ecology of E. 

pedicellatum using both field and laboratory experiments. Sexual spore morphology 

is described. We then document timing of release and the quantity of spores released 

into its natural environment using in situ spore traps. Finally we investigate whether 

dispersal vectors of any kind contribute to dispersal of E. pedicellatum spores. 

Information on dispersal ecology is an important first step in understanding the life 

cycle and persistence of this rare species, and in assisting forest managers in 

implementing long-term conservation strategies for management plans. 

2.2 Methods 

Study Site 

Research was carried out in Lockyers Waters (N 52 ° 46.419'; E 32 ° 81.86'), located 

in the central Avalon Ecoregion (Damman, 1981), on the island ofNewfoundland, 
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Canada (Fig. 1 ), approximately70 kilometres east of the capital city, St. John's. This 

site contains the second largest population (953 thalli) of Erioderma pedicellatum 

known to the world (Maass and Yetman, 2002). Similar to other sites in 

Newfoundland the population is found in a balsam fir - feathermoss forest (Meades 

and Moore, 1989) near the base of a watershed, lying on a slope with a northwest 

exposure. 

The forest stand is characterized by the dominant balsam fir with subdominant 

black spruce (Picea mariana) and paper birch (Betula papyrifera). Patches of 

sphagnum moss (Sphagnum spp.) are intermixed with feathermosses (Hylocomium, 

Pleurozium) on the forest floor; these mosses are important component as they 

maintain high moisture levels throughout the forest stand (Maass, 1980). Generally 

the stand is fragmented due to a recent history of logging, wind disturbance and insect 

kill (Forest Ecosystem Strategy Document, 2003). The average gap size in the forest 

site for this study is 5. 7 metres. Trees are characterized as small to medium size 

(DBH = 39 em± 5 em), with an average height of7.1 m ± 0.16 m and with an 

average age of 61.1 years ± 1.3 ). The forest stand can be considered mature based on 

the average age and the percentage of dead standing trees in the site ( 42% ). 

Spore Morphology 

To characterize spore morphology two specimens of Erioderma pedicellatum, semi

detached from the tree trunk, were collected from Lockyers Waters. Specimens were 

transported to the laboratory in sterile petri-dishes and kept at room temperature. One 
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day after collection apothecia were sectioned and prepared with Gold Sputter for 

scanning electron microscopy (SEM) the same day. 

Spore Discharge 

Laboratory experiments and field collections were used to document the seasonality 

and abundance of spore discharge in E. pedicellatum. 

Laboratory 

Three mature thalli were collected in Lockyers Waters in the spring of2001. To 

ensure minimal impact on the population, thalli poorly attached to the substrate, with 

apothecia, were collected since these are generally lost over the winter season (Maass 

and Yetman, 2002). Immediately after collection, thalli were placed in individual, 

sterile petri dishes for transport to the laboratory. 

In the laboratory lichen thalli were transferred to clean petri dishes prepared 

for microscopic investigation. Microscope slides covered with double sided tape were 

attached under the lid of the petri dish, positioned approximately 0.5-1.0 centimetres, 

perpendicular, from the apothecia. Thalli were saturated with water and allowed to 

dry for 24 hours prior to microscopic investigation to investigate spore discharge. To 

visualize released spores, microscope slides were stained with methylene blue and 

viewed under a standard compound microscope (40 x magnifications) for the 

presence of spores. 

Field 
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In the field, 6 spore traps (Fig. 2.2) were established 1 em from healthy, mature 

apothecia. The spore traps were designed to be flexible in order to manoeuvre the end 

suction cup close to the mature apothecium. This design does not alter the 

microclimate around the lichen, and is therefore superior to the microscope slide 

design used in previous studies (Clayden, 1997). Spore traps were monitored and 

collected from May 2000 to October 2000 on a biweekly basis or after a period of 

high relative humidity or precipitation. Spore traps were collected and placed in 

sterile petri dishes for transport to the laboratory at Memorial University. Traps were 

gold coated in a Gold-Sputtering device and immediately viewed with a scanning 

electron microscope (Hitachi 5570), since they were non-transparent and could not be 

viewed under a light microscope. 

Spore Ejection: Formulating a New Hypothesis 

Ten spore traps (Fig. 2.2) were set up in Lockyer's Waters in the summer of2000 and 

monitored every 72-96 hours between May-November. Traps were collected from the 

field and immediately transported in sterile containers to the laboratory and prepared 

for SEM. Between the months of May-November no spores were collected in the 

field suggesting that some vector other than wind must play a role in the dispersal of 

spores. As such we decided to investigate in 2001 using both field and laboratory 

experiments whether insects play a role in dispersal of E. pedicellatum spores. 
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Laboratory 

In May 200 1 laboratory experiments were set up to investigate whether discharged 

Erioderma spores could be carried by flying insects. Drosophila melanogaster was 

chosen as the representative insect vector for several reasons; first, its laboratory 

maintenance is well documented, second the genus is a common inhabitant of the 

boreal forest (Tanabe et al., 2001) and third the morphological characteristics of 

Drosophila including small body, and body and leg bristles provide increased surface 

area for the adherence of spores, and reflected the general morphology of many small 

flies found in the boreal forest. 

To test whether insects can carry E. pedicellatum spores, D. melanogaster 

larvae were allowed to mature and roam in an experimental chamber containing a 

mature E. pedicellatum thallus for 48 hours. Allowing D. melanogaster larvae to 

mature in a sterile chamber ensured that adult fruit flies would only be exposed to E. 

pedicellatum spores. Following exposure the fruit flies were killed (-l5°C for 15 

minutes), immediately brought to the laboratory, placed on double sided tape on the 

specimen stub, prepared with gold coating in a Gold-Sputtering device for 

approximately 30 seconds, and viewed under a standard scanning electron 

microscope (Hitachi 5570). 

Field 

To investigate if insects actively transferred E. pedicellatum spores in situ, 

timed insect surveys were conducted on the lichen's host trees along a transitional 
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gradient in the forest site in Lockyers Waters. This gradient consisted of thalli along 

the forest edge (FE), intermediate canopy zone (ICZ) and complete forest interior 

(CFI), with two trees (main tree and replicate) in each zone (six in total). Timed 

insect surveys of 1 0 minutes in duration were carried out along each section of the 

gradient (FE, ICZ and CFI) for 6 trials per tree (3 hour durations). The number of 

insects landing on the target host tree (trunk in middle of tree was monitored 1 m 

above ground) and on the lichen thallus was recorded. To qualify as a tree-landing, 

insects had to be on the target host tree for a minimum of 3 seconds and to be 

considered a thallus-landing, insects had to land directly on the thallus or land on the 

tree and then walk over the thallus. A one-way analysis of variance was used to 

determine if there was a difference in the number of landings along the transitional 

gradient. It should be noted that because insects were collected using visual 

inspection, small flies and wasps ( eg. Agromyzidae ), and their parasites, mites may 

have been overlooked. 

Insect taxa were identified by studying the types of boreal insects present in 

Newfoundland and separating them in the field based on gross morphological 

characters including size, colour and shape. To collect information on thallus/tree 

landings by insects, spot checks were carried out, as described above, for a 3 hour 

period during the week days between June-September, rotating from lichen to lichen 

every 10 minutes, 1.5 hours in the morning and 1.5 hours in the afternoon. Weather 

conditions were recorded in a log book, and spot checks were carried out in all 

weather conditions. 
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Insects landing on Erioderma thalli were collected in sterile insect killing jars; 

a new jar was used for each collection to avoid contamination at random. Insects were 

then placed in sterile 2ml vials to determine if they had picked up spores and 

transported to the laboratory for SEM preparation the same day. Field insects were 

prepared using the same methods employed for Drosophila in the laboratory 

experiments. 

2.3 Results 

Spore Morphology 

Cross sections of mature apothecia of E. pedicellatum spores revealed that spores are 

ellipsoid in shape, ranging in length from 4-6 urn, width 2-3um. The spores have a 

unique surface morphology characterized by regular micro-ornamentation <1 urn in 

length. These micro-ornaments are not a result of a developmental stage of the spore 

as the same surface morphology was identified for fully mature spores upon release 

from the ascus (Fig. 2.3). 

Spore Discharge 

Laboratory 

E. pedicellatum spores were visible on double-sided tape in the petri dish 

experiments, when viewed under a standard light microscope ( 40x). Spores were 

present individually and in groups of 8 having discharged the entire ascus, no spores 
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were conglomerated or grouped. Out of the total number of discharged spores, 

individual spores were more common than entire groups of eight. 

Field 

Spore traps collected from May-October 2000 did not yield the presence of any E. 

pedicellatum spores. The absence of spores during the late spring, peak summer and 

early fall lead us to hypothesize that E. pedicellatum spores may be carried by some 

other agent other than wind, possibly discharged and remaining on the surface of the 

apothecia until a vector displaces the spore. 

Spore Dispersal 

Laboratory 

Experiments utilizing Drosophila melanogaster as an insect vector indicate that E. 

pedicellatum spores do adhere to the bodies of fruit flies. SEM micrographs (Fig. 2.4) 

showed the attachment of a single E. pedicellatum spore to the hair of an adult fruit 

fly. Out of eight flies analyzed, only one carried a spore. From the SEM micrographs 

there was no evidence of grouping or conglomeration of spores. This is consistent 

with our previous laboratory findings of passive single spore discharge where we 

detected single spores and asci (8 spores). 
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Field 

Over 2200 minutes(> 36 hours) of observations were conducted along the transitional 

gradient in Lockyers Waters. From these observations, a total of 467landings were 

recorded on host trees (Fig. 2.5) in 24 families of insects. On average only 3% of 

insects landing on target trees actually landed on or directly walked over the target 

thalli. Typically insects landed on the thalli by accident or casually by already being 

present on the tree. There appeared to be no attraction to the lichen thalli by the 

insects and landings were more likely so the result of a random event. The expected 

probability of an insect landing on an Erioderma pedicellatum thallus is 4%; the 

surface area of the thallus divided by the surface area ofthe tree trunk, calcuated lm 

above ground to 1m below the crown. Using Chi Square analysis the difference 

between the expected value and the actual number or landings is i = 1.50, with a i = 

5.99 (df= 2; a= 0.05); there is no significant difference between the expected and 

the observed values. Comparing the three forest zones in our site, there was no 

significant difference between FE (147 landings), ICZ (173 landings) and CFI (147 

landings). Analysis ofvariance (one way ANOVA) shows no significant difference 

between tree landings along the transitional gradient (p=0.07, a= 0.05) There was no 

significant difference between forest zones along the transitional gradient when 

comparing the frequency ofthalli landings (p=0.16, a= 0.05) (FE=3/91, ICZ=S/171, 

CZI=2/76). 

In total there were 14 families of insects and 10 species of spiders recorded 

landing on target host trees or on thalli of E. pedicellatum, including 2 families of 
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aquatic species (Tipulidae and Culicidae). Muscidae was the most common insect 

family visiting host trees. There was no differentiation made at the species level since 

many tree landings were very short in duration and insects were difficult to trap. 

Without more detailed analysis in the laboratory it would be difficult to identify 

specimens to the species level. Of the 24 families/species of insects collected, five 

were investigated as possible carrier of spores since they are relatively common 

inhabitants ofNewfoundland forests (Muscidae, Tipulidae, Culicidae, Crydsops 

species, andAnapsis rubis). Of nine specimens prepared for SEM two showed the 

presence of Erioderma spores, on the antennae of a small flying beetle Anapsis rubis 

(Fig. 2.6), and on the body of the orbatid mite (Family Oribatida), as characterized in 

other studies (Stubbs, 1994). Assuming there is a consistent number of insect landings 

each day for the peak period of the summer months (or an average during the peak 

period), there could conceivably be one landing every two minutes, over the peak 

summer period that could equal almost 2000 landings on host trees, equating to nearly 

80 thalli landings. Over a 1 0-15 year period as the E. pedicellatum population is 

maturing this could equate to 20-30,000 tree landings and 4000-5000 thalli landings. 
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2.4 Discussion 

Results from this study provide information on the dispersal mechanisms of 

Erioderma pedicellatum in its Eastern Boreal habitat in Newfoundland. Field and 

laboratory experiments confirm that spores of E. pedicellatum are either discharged at 

a different time in the year (winter or very early spring?) or at a shorter distance than 

1 em, since no spores were collected in the field traps during the period May

November. Through SEM micrographs E. pedicellatum spore have visible, sculptured 

surfaces with detailed micro-ornamentation, but no hooks or barbs that would 

facilitate attachment to putative insect dispersal agents. It is also possible that the 

newly designed traps did not work in the field, even though spores adhered to double 

sided tape in the laboratory. In the laboratory, we did not observe discharged spores 

in conglomerations, even though we did record instances of full asci (8 spores) 

discharged. Laboratory experiments confirm that insects can carry E. pedicellatum 

spores and that the spores can be trapped in the leg hairs of Drosophila melanogaster. 

In addition field results suggest that insects can act as vectors to disperse Erioderma 

spores in its natural habitat including vertical distribution (via Orbatid mite) and tree

to-tree distribution (via the small flying beetle, Anapsis rubis), or possibly forest 

stand-to-forest stand distribution, even though this needs to be proven. Given the gap 

dynamics of the Avalon Peninsula forests in Newfoundland and the short life cycle of 

fir forests, our study suggests that insects can carry spores. Further research needs to 

determine if the insects are important dispersal vectors for Erioderma spores to reach 

new host trees. 
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This study provides baseline information on the discharge and morphology of 

the spores. Other studies indicate that the spores of Erioderma are ejected more 

commonly as a group of eight, rather than individually (Maass, 1980; Maass and 

Yetman, 2002). Under laboratory conditions spores are discharged more commonly 

as individuals rather than in groups. When viewed under a scanning electron 

microscope the eight spores per ascus reveal distinct surface sculpturing and micro

ornamentation. Lichens, share a wide variety of spore sizes and shapes (Bailey and 

Garrett, 1968); however few report characters like those reported here as most spores 

have smooth surfaces. In fact, Pentecost ( 1981) reports that out of a survey of 605 

lichen species most had spores with smooth and uniform walls, and micro

ornamentation on the surface of spores was extremely rare. Some species have 

specific micro-ornamentation characteristics such as Buellia spp. which is among the 

best identification characteristics at the species level for spore ornamentation 

(Scheidegger, 1987). Some lichens such as Rhizocarpaceae and gelatinous halos! 

This study did not provide evidence for active discharge of spores as has been 

reported for other lichen epiphytes (Clayden, 1997; Christmas, 1980; Pyatt, 1974). On 

the contrary, no spores were collected in spore traps in a five month period between 

May to October. Typically spores discharge at an average distance of 3-13 mm from 

the apothecium (Pyatt, 1974). Here no spores were collected up to 10 mm from 

apothecia. It may be that E. pedicellatum discharges the bulk of its spores between 

November and April, however other studies have shown that lichen epiphytes 

discharge spores throughout the year with the bulk of spores released in early spring 
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(Clayden, 1997). Dension, 2003 has shown that Lobaria oregana and Lobaria 

pulmonaria also disperse ascospores throughout the entire year. We hypothesize that 

Erioderma spores may be actively discharged, but reaching an average distance less 

than 1 Omm. The difference between the laboratory and the field results may be due to 

deficiency of the field spore traps, the time of year, the environmental conditions, or 

the low number of field traps. Passive discharge of spores is not uncommon and such 

passive discharge has been demonstrated with other lichens including those of the 

family Caliciaceae (Tibell, 1994). 

Balsam fir forest stands on the A val on Peninsula have a shorter life cycle than 

fir stands elsewhere in Newfoundland (Forest Ecosystem Management Strategy, 

2003). Generally Avalon stands cycle every 70-80 years reaching a decaying stage 

late in the succession where the trees are vulnerable to wind throw as a result of butt 

rot (Keeping, 2006) and insect infestation (spruce bud worm; Choristoneura 

fumiferana and hemlock looper ; Nepytia phantasmaria). Often entire stands are 

decimated by strong prevailing winds leaving large gaps on the landscape. 

Scheidegger (1996) reports that E. pedicellatum thalli reach sexual maturity in the 20-

30 years ofthe overmature phase of the stand when the light regime is favourable for 

colonization and growth of the lichen, due to the breakup ofthe canopy. A 

microclimatic balance must exist between favourable light regimes and a suitable, 

consistent level of moisture to prevent desiccation of the lichen thalli (Scheidegger, 

1995; Hazell and Gustafsson, 1999; Maass and Yetman, 2002). The prevalence of 

gaps of varying sizes in the fir forest stand threatens the survival of the lichen, as the 
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microclimate changes quickly in areas once suitable for colonization. As well the 

increase of gaps caused by anthropogenic and natural disturbances in a forest stand 

increases the likelihood that a lichen will be limited by dispersal (Ockinger et al., 

2005), reducing genetic variation if there is lack of gene flow/exchange between 

subpopulations and overtime become locally extinct (Hanski, 1999). 

The gap dynamics of fir forests on the A val on Peninsula create conditions for 

potential dispersal limitation for the lichen. As the gap sizes increase in weakened 

areas of the stand, E. pedicellatum thalli, limited to sexual reproduction only, face the 

challenge of ejected spores reaching the opposite edge of the bordering gap. Within a 

ten to fifteen year period of the decaying phase of the forest stand the thalli must 

reproduce, discharge and disperse spores to new trees in favourable sites. As the gap 

size increases with further degradation of the stand, dispersal mechanisms become 

vital to the survivorship of the species. Dispersal agents are therefore intimately 

linked to the life cycle of the lichen. If the spore never reaches a suitable tree it will 

never have the opportunity to germinate, find a compatible Scytonema partner and · 

lichenize in a closed environment such as in the watersacs of the hepatic liverwort 

Frullania asagrayana (Maass, 1980; Scheidegger, 1996; Maass and Yetman, 2002). 

We hypothesize with the limitations of wind and water dispersal, insects provide one 

possible mechanism of dispersal, and a possible link between the decline of one local 

population and the emergence of another in a suitable adjacent stand by carrying 

healthy spores across significant gaps to adjacent stands. Walser et al., (2001) 

illustrate the limitations of wind dispersal in Lobaria pulmonaria, where diaspores 
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emerged in highest concentration only 1m from the nearest source and at extremely 

low concentrations 50m from the nearest source (1.2 diaspores per m2
), in the 

direction of the prevailing wind, and at a maximum of 350m from a source tree 

(Walser, 2004). Given the fact that over a 10-15 year period (assuming constant 

conditions with climate, insect and lichen population stability, etc.) insects in the 

Avalon boreal forests could land on the E. pedicellatum thalli 4000-5000 times, 

insects have great potential to disperse spores within and between forest stands. 

This study provides preliminary evidence that lichen spores can be carried by 

small flying insects in the Boreal forest of Eastern Canada. SEM micrographs clearly 

illustrate the sexual ascospores trapped in the appendage hairs of insects both in the 

field and laboratory. Insects common to the Eastern Boreal Forest can be present in 

multitudes depending on local climate conditions and canopy cover. On days of low 

cloud cover and moderate temperatures (15-20 °C) tree landings of 2.1 insects per 

second were recorded on a branch in the intermediate canopy zone (ICZ). This 

frequent event would likely result in insects picking up spores in a chance encounter, 

possibly depositing them to a potential host tree in the same stand or adjacent forest 

stand in the same location. The results show that the frequency of landings is not 

significantly different along the forest edge, intermediate-canopy zone or complete 

forest interior at alpha 0.5. More landings were recorded in the centre of the forest 

zone to the intermediate canopy zone compared to the forest edge. Further research is 

needed to identify the relationship between gap edges, distance spores are carried, 

whether spores are deposited to other trees, frequency of insect landings and the 

62 



frequency of spore-vector dispersal. For other rare lichens with spores/diaspores, 

commonly dispersed by wind, maximum distances of 100-150m are common (Walser 

et al., 2001). Insect dispersal, depending on the range of dispersal of the insect 

species, could conceivably cover hundreds of meters to kilometres in distance. 

We suggest that forest managers consider the important role of insects in the 

life cycle of Erioderma pedicellatum in conservation and management planning. 

Other researchers have shown the importance of dispersal capacity of rare species in 

the colonization of new stands, and hence the long-term conservation of the species 

(Niemela, 1997; Hanski, 1999; Ockinger, 2005). Managers must understand the 

importance of multi-species interaction in E. pedicellatum habitat and how the lichen 

has evolved a complex life history, adapting to large gap sizes and a mosaic of multi

aged stands across the landscape, similar to other cyanolichens with complex life 

histories (Kalwij et al., 2005). We conclude that the dispersal dynamics of E. 

pedicellatum spores may have evolved in response to the disturbance regimes of 

forests. This co-evolution idea needs to be investigated more; specifically 

investigating the evolution of spore dispersal cued to the gap dynamics of the forest. 

Further research also needs to be conducted on the life cycle of the lichen and 

whether there is an evolved life cycle with rapid stand replacement of the fir forests 

on the A val on Peninsula and changing gap dynamics, primarily driven by wind 

disturbance. It is possible that managers should mimic this stand replacement in their 

cutting regimes to enhance dispersal capacity and multi-species interactions as shown 

in other lichen studies (Wei-Dong Gu, 2001). In British Columbia forest managers 
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have begun to use partial cutting systems in areas with abundant arboreal lichens, 

using a mean harvesting size of 0.5 ha (Coxson et al., 2003) to mimic the natural gap 

dynamic of the forest cycle, leaving higher lichen abundance on remnant trees and 

preserving local habitat conditions (Stevenson and Coxson, 2004). Robertson (1998) 

concludes that harvesting blocks on the A val on Peninsula should be restricted to 5 ha 

based on the average gap size in forest stands, some of which contain E. 

pedicellatum. Based on the average gap sizes recorded in this study and (7 .1 m) and 

the conclusions on dispersal we conclude that this recommendation should be 

revisited, including further research on dispersal distances of E. pedicellatum spores. 

Empirical evidence on the maximum distance of spores should be an input when 

determining the size of harvesting blocks. Managers should also consider longer 

harvest rotation in sites (Kuusinen and Siitonen, 1998) with E. pedicellatum to 

preserve lichen abundance and ensure a continuum of old-growth forest-types on the 

landscape, thereby increasing biodiversity (Humphrey, 2005). Hilmo et al., (2005) 

investigated the impact of logging on the colonization of new lichen epiphytes and 

found that the successful colonization of new thalli following larger scale logging 

(2.25 hectare clear cuts) was species specific. In other words the colonization 

response to logging by a lichen depended on the life history of that lichen, including 

its capacity to disperse spores. It is recommended that managers consider a wide 

range of specific scientific information, such as dispersal capacity and vector transfer, 

when considering the size and location of cutting blocks for E. pedicellatum habitat. 
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Figure 2.1 Known range of Erioderma pedicellatum sites in Newfoundland and 
Labrador. Of note are sites E (Lockyer's Waters) and B (Bay d'Espoir). Map used 
with permission from the Department of Environment and Conservation, Government 
ofNewfoundland and Labrador. 
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Figure 2.2: Schematic diagram of spore traps used to collect Erioderma pedicellatum 
spores in situ. A suction cup, lined with double sided tape, was used in the field to 
minimize surface area covering the lichen and risking potential alterations in· 
microclimate. 

76 



Figure 2.3: Cross section of an Erioderma pedicellatum apothecium showing one 
ascus, with six spores visible (but holding eight, evident from light microscopy). 
Ascus viewed at 2.50 K magnification. 
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Figure 2.4: Spore of Erioderma pedicellatum adhered to leg bristle of Drosophila 
melanogaster, viewed under low-medium power (4.00 K) with a scanning electron 
microscope (Hitachi 5570). 
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Figure 2.5: Frequency of insect landings on Erioderma pedicellatum thalli in 
Lockyers Waters in three forest zones, Complete Forest Interior (CFI), Intermediate 
Canopy Zone (ICZ), and Forest Edge (FE), showing number of insects landing on 
host trees (tree landing), number of insect species ( # species) and number of insects 
landing on the thallus (Ep landing). ANOVA values for Ep landings (p=0.07) support 
no significant difference between the three forest zones. Landings were recorded over 
the entire time (1 0 minute intervals) at each forest zone. 
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Figure 2.6: Erioderma pedicellatum spore on the antennae of Anapsis rubis, a small 
flying beetle, collected immediately following a landing on E. pedicellatum in 
Lockyers Waters. The second micrograph (right) is presented at a higher 
magnification (4.00 K = 4000 x). 
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Conclusion 

In this thesis we investigated the genetic variation and the dispersal ecology of 

Erioderma pedicellatum. In Chapter 1 results indicated low genetic variation within 

subpopulations of E. pedicellatum in Newfoundland and Labrador. Two haplotypes 

were discovered in the Newfoundland populations but neither haplotype was specific 

to a geographic location. In addition Chapter 1 presents evidence of a lack of genetic 

differentiation between subpopulations in Newfoundland and a herbarium specimen 

in Sweden. Genetic evidence supports the designation of the global population as one 

evolutionary unit. This lack of variation between amphi-Atlantic populations may 

have important consequences in the future conservation of this species; however, 

because of the small size of the gene sequenced (number ofbase pairs) we must be 

careful in assuming low genetic variation between the continents. The methodology 

section outlines some of the problems encountered in sequencing the ITS region of 

the ribosomal DNA of Erioderma and has two important methodological findings. 

First, and perhaps most beneficial is the identification of species-specific primers for 

E. pedicellatum. Future genetic research should use these primers to build on the 

findings of genetic variability. Second a common methodology is presented for the 

extraction of nuclear DNA from older herbarium specimens (63 years old in this 

case). This procedure produced a clear PCR product and allowed for sequencing of 

the ITS region. Future genetic research should expand on these methods in comparing 

North American and historic European populations. Population comparisons of 
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historic and current populations in Nova Scotia and historic populations in New 

Brunswick should also be compared to Newfoundland and Europe. 

The finding that the ITS 1 region of the single European sample was identical 

to haplotype A of the North American samples may have important management 

implications for conservation of the species. First, further genetic research should be 

investigated expanding on the current knowledge, investigating variation in other 

genes/loci including RBP II, ITS II, LSU, SSU and possibly microsatellites given the 

latest discovery in Lobaria pulmonaria (Walser et al., 2005). Second our findings 

support the IUCN designation of the global population as one evolutionary unit, 

classifying the global population as "Critically Endangered", even though we still 

must consider, only one European sample was sequenced. Before forest managers 

consider transplants of the lichen in Newfoundland and Labrador, within the Atlantic 

Canada region, or between North America and Europe more genetic research should 

be conducted. 

In Chapter 2 we investigated several aspects of the dispersal biology of 

Erioderma pedicellatum. First we described the morphological description of the 

minute ascospores in the lichen. Contrary to the findings of other studies (Maass and 

Yetman, 2002), it was found that each ascus contains eight ascospores and these 

ascospores have distinct surface microornamentation. This microornamentation is not 

a result of a developmental stage of the lichen since we observed the exact same 

ornamentation on discharged spores. Second we demonstrated through laboratory 

experiments that the ascospores of Erioderma can be trapped in the legs of the 
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common fruit fly, Drosophila melanogaster. Spore traps placed in the field in 

Lockyer's Waters support that spores are possibly discharged from the asci at a 

distance of less than 1 Omm, since for a period six months we did not collect a single 

spore in the field traps, however there may be several other reasons for this negative 

result including lack of adhesiveness to the spore trap, environmental conditions, or 

the time of year. It is possible for example that the spores actively discharge during 

the winter at a distance of greater than 1 Omm, more work needs to be done here 

during seasons that were not monitored or using alternative spore traps. A series of 

field observations along a transitional gradient in the forest (forest edge to interior) 

illustrate the frequency and abundance of insect species that associate with the lichen. 

Results indicate that with the frequency of insect landings on the surface of the lichen 

thalli, insects can randomly disperse E. pedicellatum spores. Trapped insects in the 

field, viewed under scanning electron microscopy, confirm the presence of spores on 

the surface of some insects. Our results show a spore trapped in the antennae of 

Anapsis rubis, a small flying beetle and on the body of a common Boreal Orbatid 

mite. The flying beetle can possibly assist in long-distance dispersal and the Orbatid 

mite can possibly assist in vertical dispersal of spores on the same trees, however a 

determination of actual spore dispersal, and deposit on another tree needs to be 

investigated. For now we can conclude that spores can be carried by certain insects, 

although we are uncertain of distance, or the length of time a spore can stay on an 

insect body. 
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We conclude based on these field results and based on the morphological 

characteristics of the ascospore, that E. pedicellatum through random events, or 

through co-evolution, a principle that needs to be investigated further; these insects, 

depending on their own dispersal patterns could conceivably disperse these minute 

spores longer distances to adjacent forest stands. Given the documented evidence of 

dispersal limitations in rare cyanolichens or lichens dependent on old-growth, stable 

forest habitats (Peterson and McCune, 2001) our findings add important information 

for forest managers. The fact that E. pedicellatum only reproduces sexually and is 

likely dispersal limited, the identification of primary vectors is an important link in 

understanding the dispersal biology of the species. Insects may be a critical agent in 

ensuring viable spores reach suitable adjacent forest habitat. 

Forest managers, in implementing conservation measures for Erioderma, 

should approach conservation from a habitat-scale rather than on a population or 

remnant tree scale. By conserving a mosaic of adjacent forest stands, or multi-aged 

sites, managers can preserve multi-species interactions of E. pedicellatum, for 

example interactions between insects and the lichen. 

We have provided some initial findings on the life history of Erioderma 

pedicellatum including dispersal biology and genetic variation. Further research 

should build on the information presented in this thesis, however, in light of the 

anthropogenic and natural pressures on E. pedicellatum habitat (Keeping, 2006), 

these findings provide some initial conservation strategies for populations in 

Newfoundland and Labrador. New evidence is emerging on the effect of disturbances 
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on genetic variation in rare epiphytic lichens (Werth et al., 2006) in Europe. For the 

conservation of E. pedicellatum in Newfoundland, which hosts 99% of the world's 

entire population, it is critical to further investigate the dispersal biology of 

Erioderma, the gap dynamics of the balsam fir forests in Newfoundland, genetic 

variation and the evolutionary relationship between spore dispersal and the forest life 

cycle. 

85 



References 

Keeping, B. (2006). A 5 Year (2006- 2011) Management Plan for the Boreal Felt 

Lichen (Erioderma pedicellatum) In Newfoundland and Labrador. 

Department of Environment and Conservation. Government ofNewfoundland 

and Labrador. 

Maass, W. and Yetman, D. (2002). COSEWIC assessment and status report on the 

Boreal Felt Lichen (Erioderma pedicellatum) in Canada in COSEWIC 

assessment and status report on the boreal felt lichen Erioderma pedicellatum 

in Canada. Committee on the Status of Endangered Wildlife in Canada, 

Ottawa. 

Peterson, E., and McCune, B. (200 1 ). Diversity and succession of epiphytic 

macro lichen 

communities in low-elevation managed conifer forests. Journal of Vegetation 

Science, 12(4): 511-524. 

Werth, S., Wagner, H.H., Holderegger, R., Kalwij, J.M., and Scheidegger, C. (2006). 

Effect of disturbances on the genetic diversity of an old-forest associated 

lichen. Molecular Ecology 15(4): 911-921. 

86 










