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Abstract

A. Stadler proved in 2009 that the series

i 1 (2+sinn0)"
w\" 3

converges when 0 1, having answered a question posed by M. Renardy and

T. Hagen in 1999, We undertake a systematic analysis of this series considered as
& 2r-periodic function of @ and of similar other series and corresponding positive
oscillating integrals. We explore the measure and category of the sets of continuity
and convergence. Generalizing Stadler's method, we obtain suficient conditions of
convergence for such series at individual values of  in terms of arithmetic propertics
of . Suffcient conditions of divergence are obtained using some classical and new
results about Diophantine approximations. In particular, we prove a new criterion

bout 1 of real numbers th ' Khinchin's theorem

about the growth of denominators of continued fractions. We also prove a concrete

upper bound for the Renardy-Hagen series. No such bounds had been known before.
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Chapter 1

Introduction

1.1 Motivation

Consider the series

S ()

(12)

Clearly, both series are dominated by the series S5, k. By the p-serics test, both
series (1.1) and (1.2) converge if a > 0. Irrationality of 7 implies divergence of the
series (1.1) for all a < —1. Known convergence tests are inconclusive for the series
(1.1) with ~1 < & < 0 and the series (1.2) with a <0.

The convergence problem for the series (1.2) with a = 0, namely,

1 (2+sinn)"
; > (73 ) N (13)
apparently motivated by a calculus exam misprint, was proposed by M. Renardy and
T. Hagen in 1999 [15]. In 2004, J. Borwein et al. [3, p. 56] reported that this problem
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was still open. Only in 2000, the convergence of (1.3) was first demonstrated by
A Stadler [21]. From the results of this thesis it follows in particular that

S 2+sinn)"

P (2521) <o, a9

while

$oi_ et an

P2 e

A similar “calculus exam misprint”-type question about the series

S pesenn o

was proposed by S. Sadov in April 2010.

To analyze convergence/divergence of the series (1.3) or (1.6), one needs to know
how often sinn can be very close to 1 or, equivalently, how often can n be very close
to 2kn + 5. This question leads one to delve into number theoretic questions on

rational approximations of the number .

1.2 Outline of the Thesis

Because of number theoretic subtleties involved in the analysis of the series (1.1) and

(1.2), it is easier to begin with the analysis of the integrals

/em ol [¢h]
v

/’“ ﬂ% (“#) de. 8

Both integrals are dominated by [z~ dz, thus they converge if a > 0. If we

and

replace 271 in the above integrals with a nonnegative decreasing function h(z), the
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integrals may still converge. In fact, in Chapter 2 we consider somewhat more general
integrals
/ h(z) PO gy 9)

/: . (Z)I :iinlzp

where co,a, p, 8 are positive constants. The substitutions co = p

and

" gz, (1.10)

=1,a=2and

h(z) = 2" lead to (1.7) and (1.8).

Estimating the upper and lower bounds for the integrands of the oscillating in-
tegrals (1.9) and (1.10) around 20 = 2kn + § following the strategy of Laplace’s
method, we obtain Theorems 2.1 and 2.2. These theorems give sufficient and neces-
sary conditions of convergence of (1.9) and (1.10) under certain weighted monotonicity
assumptions on A(z).

In Chapter 3, we consider the corresponding oscillating series with parameters
af) = Y hn) noine)- i
=

and

a +sinng

e (112)

6 = 3 htr)

as functions on the interval [0, 2¢] and study their measure and category theoretical

behaviour. In particular, we prove Theorem 3.1 proposing that for any nonnegative
sequence (h(n)) the series T, 2L converges if and only if ¥ a(6)d6 < o0, and the
latter implies that a(6) < oo almost everywhere. Conversely and rather surprisingly,
whenever h(z) is decreasing, almost everywhere finiteness of a(6) also implies that

the integral [" a(6)d converges by Theorem 5.1(a) of Chapter 5. Similar theorems



are proved for the series b(). A curious fact (see Theorem 3.7 and remark after it) is

that under some simple conditions on h(n), the set of discontinuities of a(8) or b(6)
is the same as the set of convergence of the series (1.11) or (1.12) and it is a set of
first category but full measure.

Chapter 4 does not directly deal with convergence questions for oscillating se-
ies, but contains some mumber theoretic preliminaries for Chapter 5. We discuss
Khinchin's Theorem about the increase in the denominators of convergents of con-
tinued fractions. Then we construct an approximation criterion (Theorem 4.2) which
complements the result of Khinchin and involves a new “relative growth condition”

The results from Chapter 3 do not address convergence/divergence of the series

(1.11) or (1.12) for individual values of 6. Questions of this type are discussed in

Chapter 5. We split i d
part. The divergence analysis of the oscillating series (1.11) and (1.12) is based upon

results from Chapter 4. Then, generalizing Stadler's method of analysis of series (1.3),

we obtain several suffcient conditions for convergence of the series (1.11) and (1.12).

In Section 5.3, we provide several example cases of the main

that are speci
theorems of this paper.

In Section 5.4, we obtain, for the first time, a numerical upper bound for the series
(1.3). Our bound is 2.1664 and the first 3 digits are the same as in the partial sum
from n = 1 to 107, which is 2.163....

Finally, in Chapter 6 we post several open questions resulting from this work to
stimulate interest to the topic. We also discuss two attempted methods that seemed
attractive but did not succeed. They are based on the Buler Summation Formula and
the Uniform Distribution theory.



* nsinioys2y3p
om [ wmost  om

Figure 1.1: Graphs y = & (2:422)* and y = 7°*-? and the corresponding sequences

Figure 1.1 depicts terms of the series (1.3) and (1.6) and graphs of the corre-
sponding oscillating functions. One can observe that the graphs are quite similar.
Similarity of graphs leads to similarity of techniques of analysis. Indeed, the proofs of
all theorems for each case proceed similarly. These parallels may not be accidental,

and there may be some unknown pattern in this kind of problems.

1.3 Notation

‘Throughout the paper the following notation is used.
The symbols R, Z, N, Q denote, respectively, the sets of real numbers, integers,
natural numbers, and rational numbers. In this paper, we define natural numbers

as nonnegative integers. The symbols R*, N* denote the corresponding subsets of



positive numbers.

Other commonly used symbols are as follows.

 For a given real number z, ||z]| denotes the distance between z and Z, that
is the distance between z and the nearest integer. (In Sections 3.1 and 3.2,

{14024 denotes the LY norm of the function £.)
« {x} denotes the fractional part of .
« 2] denotes the integer part of z.
o [] denotes the smallest integer that is not less than z.

© #X denotes the number of elements in (cardinali

of) a fiite set X.

o (za)52y denotes a sequence with terms z,

We say that a function or sequence is decreasing (respectively, increasing) if it is

non-increasing (resp., non-decreasing).



Chapter 2

Positive Oscillating Integrals

2.1 Convergence Criteria for Oscillating Integrals

This chapter is organized as follows. First, we introduce two special positive o5-
cillating integrals. Theorems 2.1 and 2.2 give easily verifiable conditions for their
convergence. In Section 2.3, we prove Theorems 2.1 and 2.2 using auxiliary lemmas
from Section 2.2.

Fix cg > 0,p > 0,a > 0. The two oscillating integrals we consider in this chapter

are functions of the parameter 0 (6 > 0)

A9) = /m h(z)z? 0D g,

BO) = / ~ @

where h(z) is a given nonnegative real function.




Letting f(z) = €"/®), rewrite A(6) and B(6) in the form
AQ) = /: h@)erdz, (23)
and
B(o) = /N h(z)edz. (24)
Here g(z) and G(z) are the phase m.:ﬁum

a+sinfz
o+l

g(z) = p(sin0z —1)Inz, G(z) =pzln . (25)

and h(z) in this context is called the amplitude function.

Remark: We refer to A(6) and B(6) as positive oscillating integrals presented in the
form [ h(z)e#®)dz exemplified by (2:3) and (2.4). Our oscillating integrals differ
from a more common pattern defined as [ h(z)e**)dz or its real part (cf. [5, p. 149]).

However, we use this term because the integrands in our case also exhibit oscillating
behaviour.

Critical points play a decisive role in asymptotic analysis of oscillating integrals

5, - 150]. A point z, is a critical point of a phase function (z) if ¢/(z0) = 0. In

0

our case, critical points are found from the equations ¢/(z) = 0 and G/(z)
Remark: If 6 = 1, then
2o =2+ % (26)
are those critical points of both g(z) and G(z), where they assume their maximum
value g(zx) = G(zx) = 0. In the sequel, we refer to zy (26) as the essential critical
points.
To the function A(z) in (2.1) and (22), we put in correspondence two functions
hy(x) and hy(z) which will be used in the statements of the main theorems of this

s



chapter and in subsequent chapters:

I(z) @7

and

ha(z) = (28)

We propose the following theorems establishing conditions equivalent to conver-

gence of the integrals A(6) and B(0).

Theorem 2.1 Given a nonnegative function h(z) such that hy(z) (2.7) decreases,
the following statements are equivalent:

B [ m@)dz <oo,

(B) A(1) < o0,

(C) A(8) < oo for all 6> 0,
where A(9) is defined in (2.1).

Theorem 2.2 Given a nonnegative function h(z) such that ha(z) (2.8) decreases,
the following statements are equivalent:

(A) [;° ha(z)dz < o0;

(8) B() < o0;

(€) B(6) < oo for all 050
where B(6) is defined in (2.2).

These theorems will be proved in Section 2.3.



2.2 Auxiliary Lemmas for Convergence Analysis

In this section, we prove five lemmas which will be used in the proofs of this chapter's
‘main theorems. Lemma 2.1 is a generalization of the Cauchy Integral Test; Lemmas
2.2 and 2.3 give some lower bounds around essential critical points of two functions
related to the integrands of the oscillating integrals A(6) and B(0); Lemmas 2.4 and
2.5 adopt the strategy of the Laplace Method and provide some upper bounds of the

oscillating integrals A(6) and B(6)

2.2.1 Generalized Cauchy Integral Test

“The Cauchy Integral Test for a posi incr

function f(z) defined on [1,00), the integral [ f(z)dz converges if and only if the
corresponding series 352, /(n) converges. The following lemma is a generalized
Cauchy Integeal Test for positive decreasing functions, and it will be required for the
proofs of Theorems 2.1 and 2.2.
Lemma 2.1 (Generalized Cauchy Integral Test) Let (ya)i,, be a sequence
such that en +d < yo < c(n+1) +d, where n is a positive integer, ¢ > 0 and
d are constants. Suppose ¢ is a positive decreasing function defined on [a,c0) and
cng+d > a. Then 30 @(un) converges if and only if [ ¢(z)dz converges.
Proof. Since (z) is decreasing, we get

Yol <o = Y plen+d) <oco
By the Cauchy Integral Test, we have

iw(cﬂ+d}<w=/uw(u+d)dx<m¢=t/‘ ola)dz < oo,
= e foora

10




In addition, since ["** g(z)dz < (eng + d — a)p() is finite, then

f:w(x)nz <m=/j¢(z)¢z <.

2.2.2 Lower Bounds around Critical Points
In this section, we give some lower bounds of the functions

@) = D VinT

+sinz
at1

Sz

in a neighbourhood of the essential critical point z; defined in (2.6). The functions
Iy - fy and hy - fy are the integrands of the oscillating integrals A(1) and B(1) re-
spectively. Note that if a positive function (z) is continuous at the point 74, then
there exists a neighbourhood of z; such that for z in that neighbourhood we have
1(z) > 1f(zy). The following lemmas give explicit estimates for the boundaries of
these neighbourhoods in the case of functions f,(z) and f(z). Note that sinz =1,
50 filzx) = VInzi and fo(ze) = V.

Lemma 2.2 Let C = ;. There exists a positive integer ky such that for all k > ky
and 2 € [r4 — 7+ g we have

2 Ving > E“/In . (29)
Proof. Let 7 € [z — 7,7k + 7). Since ;& is decreasing to 0 as k — 0o
and Inz is continuous, there exists a positive integer Ky such that when k > ki, the

1



following inequalities hold:

@ b-nlsoim<n 0 j<pE<r

iy, iz
By the double angle formula, we get

2 T

sinz = cos(z — 2,

y (211) and (210) (a), we have

vimm I

2sin’
1( c \ 1
2\Vinm) ~ Wz

1-sinz

<

Together with (2.10) (b), this yields

1 _ 2
1-sinz < P ey
5‘”*4,;1”& 2plnz ~ plnz’

which is equivalent to

1
ey 1
E s > 7
In addition, by (2.10) (b) we have
Bz \ﬁ 51
Inzy 272

Therefore, the inequality (2.9) holds.

(2.10)

(211)

Lemma 2.3 Let C = \/21. There exists a positive integer k; such that for all

k> and 7 € [z — o+ ), we have

a+sinz|” /Zk
QBT s YN
ran R

(212)



Proof. By Taylor's theorem, for € [z — .2k + r] we have

eFm e 4 (R (@ -2 = e+ e Rz — ), (2.13)

7
where € is between 7 and z. Since £ is decreasing to 0 as k — 0o, there exists a

positive integer k; such that when k > ky, the following inequalities hold:

1 C 1
W Va P
@ =< @
—(1=t+%) <0 (t>0), using (2.13) and (2.14) (a), (b),

(2.14)

By the inequality e
we get

1
oz,
As in the proof of Lemma 2.2, we have

1 1
1—smzs§\zfm’<5

Then
atsing a
atding L,k
art T e

atsinz)™ 1
at1 e

By (2.14) (c), we have sinz > sin(§ —1) > 0, thus |a +sinz| = a +sinz. Using

which is equivalent to

(2.14) (d), we obtain

+sinz
a+1

Thus, (2.12) holds o

+nn1)"ﬁ>€>§

a+1




223 Laplace’s Method and Upper Bounds for Integrals

‘The general Laplace Method (4] udying bel

of integrals of the form

/.ewmdz, (2.15)

where f(z) is a twice-differentiable function, M is a large positive real number, and

a,b can be finite or infinite. Tn addition, it is required that the function f(r) has a
unique maximum at some point zo on (a, b) with f”(zo) < 0.

‘The idea of this method is to approximate f(z) by a parabolay = f(z0)+ L&) (z—

2o)? with vertex at zo, then evaluate the Gaussian Integral, which approximates

[ : T \E (2.16)

MEL) 5 0, and obtain the estimate (20, p. 80]

g o
M1 gy o),
/"g o\ e Moo

In the following two lemmas, we apply the strategy of the Laplace Method to the

(215),

where ¢ =

integrals A(6) (23) and B(6) (2.4) (with 0 = 1) restricted to the intervals
Ti= Ey=mm) (217)

where 2 are the essential critical points (2.6). Indeed, the graphs of g(z) (Figure
2.1) and G(z) (Figure 2.2) suggest using a parabola with vertex at z; to majorise the
corresponding phase functions locally on Jj. After majorising the phase functions
() and G() on the intervals Jj, we use additivity of integrals to find upper bounds

for the integrals [ h(z)e? dz and [ h(z)e% dz.

in



Figure 2.1: Graph of g(z) (p=1,0 = 1) and critical points zs, 7,77

iessing)
N

u % W X0 & 4 X

Figure 2.2: Graph of G(z) (p= 1,0 =1) and critical points x5, 76, 77



Lemma 2.4 Let g(x) be defined by (2.5) with 0 = 1. Given an n > 0, select ko(n)

50 that for k > ko(n), we have 7, — = > max(co, 1) -n. Then there ezists a positive

constant C such that under the assumption of Theorem 2.1 we have

-/::m_.h (5) &z <G »3:.,, (%) (218)

Proof. On each interval Ji (2.17) (k > ko(n)), we have

Thus we get

For € Ji, since hy(z) is a decreasing function, we obtain

Using h(z) = hy(z)vInz, by (2.20) and (2.16), we obtain

am
<

@0

A

(1 Asinz)=2pum't_,ll %(:—z.)’ -
. 1
s, (=
In ;’ 2 ( ) >0
() = plsinz = )nz < —%;'”(z — ) (220)

hy <h( '")
\)15_7) \/‘;ZT— (221)

/" 1;.(%),:(:1.1, l.a'[.;.(%) ) dz

.Em L (2) /.,,(z) .

Z h. z.—x i z.+: / “p pln(z, n(e =), “)7)
win V

I (z'»_ e (Wt

a i m(z.—«)‘

kel




where C; is a positive constant.

Remark: By definition (2.6) of z; and using k > ko(n) > 1, one can check that.

oyt < (an =) @)

T
Vit wem-n

Lemma 2.5 Let G(z) be defined by (2.5) with 0

Hence, we can simply choose Cy =

- Select ky > 2 so that for

k> ko, we have zi, — 7 > co. There exists a positive constant Cy such that under the

assumption of Theorem 2.2 we have
/ h(z)e® dz < Cy Y ha(we — ). (223)
eug-r =4

Proof. On each interval Jj, we have

1 a+1
—Sh|——|z-n) a#l
L & o (229)
¥l 1 )
- 3e-my .
Thus, we get
Gl) < =Dl — 7)(z — z)", (2.25)
where D is a constant,
(2.26)
For 2 € Ji, since ha(z) is a decreasing function, we have
ha(x) < halan ~ 7)
e . @)

VE< Vot

17



Using h(z) = ha(x)/, by (2.25) and (2.16), we obtain
M@ dz = 3 [ ()P dz = 3 Gte)
/hﬂh( )eS® dr k:zw/!-'( )eS) dz k;«-/:./"(“ﬁe dz

225) - 2
D S e I
k=ko. o

19
49 S (s~ mIVEFT,
k;,"(l' WVaEE 5
< GY hm-r),
=4
where C, is a positive constant.

Remark: Similarly to the Remark after Lemma 2.4, since k > ko > 2, we have
Zo+ 7 < i~ 7).

Thus, we can simply choose C; = /5.

2.3 Proofs of Convergence Criteria for Oscillating
Integrals

After presenting the auxiliary lemmas, we are ready to prove Theorems 2.1 and 2.2

2.3.1  Proof of Theorem 2.1
We will show that (C) = (B) = (A) = (C).
The statement, “(C) = (B) s obvious

“(B) => (A)” : By Lemma 2.2, we know that there exists ky such that for k > ky



and 2 € oy — iz, 2+ 7] we have

(@)D = hy(2)a?n = Vinz > by (zk

g

/' @)z dg > %h, (z. +

Summing over k and recalling the definition of A(1), we get

L L4 2
hy (z+ < ZA(1) < oo,
s (2 ) < AW <o
The sequence (z + 2)5; satisfies the condition of Lemma 2.1. Hence, by Lemma.
2.1, we infer that [§° hy(z) < oo, which gives us (A).
“(A) = (C)" : By substitution z  § in A(6) (2.1), we get

Al)= / i (2) plent) gr-puine-1 gy

Since 977441, as a function of ¢, is bounded away from zero and infinity, namely,

0 <min{f~!, 671} < PP < max(o

we have
A@) <0 = / z.(%) PG < 0o

By Lemma 2.4, taking 7 = 6, we obtain

T gote) S
_/;:'rrl.(E)EUJKC. b n,(

0

Since hy is decreasing, by Lemma 2.1, the condition (A) implies that the series

parwt)

Finally, we conclude that (A), (B), and (C) are equivalent. o

) converges. Hence, A(f) < co.

19



2.3.2 Proof of Theorem 2.2
1° We will show that (A) <= (B).

“(B) = (A)” : By Lemma 2.3, we know that there exists k; such that for k > ky

and 7 € [z — 74+ 5, we have

o) (282Y" = o (S5) > o+

e ‘atsinz C [+
/ (z)( ) de > Ghalect =

7=

Summing from k = k; to infinity, we get
- c 2
E,Mz“ ﬁ) <GBl <o

In addition, the sequence (zi + ;)i satisfies the condition of Lemma 2.1 Hence,

by Lemma 2.1, we obtain that [ ha(z)dz < oo.

“(A) = (B)" : By Lemma 2.5, and with ko defined there, we obtain
/ h(z)e%® dz < Cy Y ha(au — 7).
A &
‘Thus, we get an upper estimate for the integral in Theorem 2.2:
B < / T W@ dz 4 Cr Y halex 7). (229)
o =
By Lemma 2.1, we know that 3%, ha(z — ) is finite. Therefore, B(1) converges.

20 We will prove that (B) <= (C)

The statement, “(B) += (C)" is obvious.

2



“(B) = (C)” : Since B(1) converges, then [ %2 dz converges. By chang-

ing variables, we know that [, " dz converges. After relabeling  into p, the

statement “(A) => (B)" remains valid. Therefore,

1/~ z p_ |a+sinz
BA,"‘?““(E’"‘ o )a B(O) <
Finally, we conclude that (A), (B), and (C) are equivalent o
21



Chapter 3

Measure and Category Theoretical

Behavior of Oscillating Series

In the previous chapter, we discussed some properties of the oscillating integrals (2.1)
and (2.2). We also derived convenient conditions for convergence of those oscillating

integrals. In this chapter, we consider the corresponding series:

N S )

m

a+sinnf)
a+1

=30 )
where (an)7, and (ba)3Z, are |\on:1;gnllw sequences of real numbers. The corre-
spondence between (2.1), (2:2) on the one hand, and (3.1), (3.2) on the other hand,
is established by letting

b = h(n), (33)

where A(z) is the nonnegative function from (2.1) or (2.2) respectively. Thus the
integeals with respect to the z variable are replaced with the sums.

2



In this chapter, we describe measure and category theoretical properties of the
2x-periodic functions a(6) and b(6), which demonstrate the behaviour of the series in
the large. In Chapter 5, we will study the behaviour of the series a(6) and b(6) at
individual values of § and discuss arithmetic properties of 6 that ensure convergence

or divergence of the series.

3.1 Measure Theoretical Results

In this section, we present two theorems which give conditions of integrability of the
functions (3.1) and (3.2) over the interval [0, 27]. Integrability means finiteness of the
L' norms

WOlaa = [ a0 @4
and

-
WOt = [ b0, @3)

Theorem 3.1 For a nonnegative sequence of real numbers (an)i2., defining the func-

tion a(6) (3.1), the following statements are equivalent:

1) lla()llz2p0zs) < 00,

where hy(z) is defined in (2.7)

Theorem 3.2 For a nonnegative sequence of real numbers (ba)3 defining the func-
tion b(6) (3.2), the following statements are equivalent:

1) [0 llzo2e < 00




where ho() is defined in (2.8)

The following two corollaries describe the measure theoretical behaviour of the

series a(f) or b(0)
Corollary 8.3 Under the condition of Theorem 3.1 , if 32 ha(n) < oo, then the
series a(6) converges almost everyuhere on [0, 2].
Corollary 3.4 Under the condition of Theorem 3.2, if %, ha(n) < oo, then the
series b() converges almost everywhere on [0,21].

In contrast with conditions of Theorems 2.1 and 2.2, Theorems 3.1 and 3.2 do not
require monotonieity of the functions hy(z) and hy(z). However, if these functions
‘monotonically decrease, then employing the Cauchy Integral Test we obtain the fol-
lowing statements, which give another condition equivalent to the convergence of the
oscillating integrals A(6) (2.1) and B(6) (2:2) in Theorems 2.1 and 2.2
Corollary 8.5 Let h(t) be a positive function such that hy(t) (2.7) decreases. Let ay
and a(9) be defined by (3.8) and (3.1). Then the following statements are equivalent:

1) lla()llzsoan < 00y

2) [ (0t < oo
Corollary 8.6 Let h(t) be a positive function such that ha(t) (2.8) decreases. Let by
and b{6) be defined by (3.3) and (3.2). Then the following statements are equivalent:

1) 160 |z oan) < 005

2) [ ha(t)dt < co.




Remark: As we will show in Theorem 5.1 of Chapter 5, under a stronger assumption,
namely, that h(t) is decreasing, the statements of Corollary 3.5 are equivalent to
almost everywhere convergence of the series (3.1). Similarly, by Corollary 5.4, if h(t)
is decreasing, the statements of Corollary 3.6 are equivalent to almost everywhere
convergence of the series (3.2). Of course, in general, the condition 1) is much stronger

than the condition b(6) < oo almost everywhere.

3.2 Proofs of Measure Theoretical Results

3.2.1 Proof of Theorem 3.1

b)) d ble, we can apply Lebesgue's

Monotone Convergence Theorem [18] to interchange summation and integration:
o =
lla()lz1p02n) = / a(0)do =y / ) (3.6)
. ne=1 70

By substitution, we obtain

[t [ esnig
8 8

s [ oy e [ o,
, .

ann
etn [ oy
§ 37

In the last step of (3.7), we used the substitution 0 0 — & and shifted the limits of

integeation using 2r periodicity.

For all 0 € (-7, 7], we have

” [ ’
1= Sesd<1-G (38)




By (37) and (38), for n > 1 we get

o - .
/ wee-lgy > g [ g 50
o .

Vor
o

where

Exf(z) % /ﬂ " et

. cf. [1, p. 207). Note that the function Frf(z) is monotone

is the Error functi

increasing and lim, - Erf(z) = 1. Hence, there exists a positive integer ny such that

for all n > ng, we have

Therefore, for such n

20 1
A n"*“"‘"”"dﬁ)&\/ﬁ, (3.10)

From (3.6) and (3.10) we obtain

o luoan > \/gz L @)

Similarly, by (3.7) and (3.8), for n > 1 we have

2 . .
/ D=1y < ﬂ—v/ =) gy

et ap

= —‘/67 Erf(vw Pn")
Vol VB
o 1
Vi

Combining this with (3.6), we obtain

w e
way +z/ a1 < 2may + G;"
=2

2

(3.12)

()220




By (3.11) and (3.12), we have

NESaE- - Ol < e [ 5°to

The double-sided inequality verifies the equivalence of 1) and 2). o

3.2.2 Proof of Theorem 3.2

Again, by Lebesgue’s Monotone Convergence Theorem, we have

- e
WOltozs = [ w00 =3 [t

By substitutions similar to those used in (3.7), we obtain

atsinnd|” )

2\ bsinnd]® [ .
e .
v /" ( @19
Since tho function exp(npln |452]) s 2 periodic, we got
o a+cost| (I a+cos) .
Lexp(npln to )dxp(/ﬁ;/ﬁ Pxp(npln 2o )da (3.15)

Next, we find lower and upper bounds for the integral [, exp (npln |*£552]) do
through estimating the above two subintegrals.

The function In |#£2

In (££529) has a unique local maximum value 0 at
6= 0 on the interval [~F, 5] and In (2£53%)" |s—o < 0. Instead of approximating the
function In (252) by a parabola as in the Laplace Method, we use two different
parabolas to control this function from above and below. Namely, there exist positive
constants C; and C; depending only on a such that

a+cosd

-G < m( ) <-Gf". (3.16)

2




From the right side of (3.16), we get

rxp(npl.n| ”"“‘9‘)# </T o gy
+1 s

x 71
Ve <\[on 7m

Likewise in (3.9), there exists no such that for all n > n we have Erf(§vCipn) > }.

(317)

Using the lef side of (3.16),for such n we obtain
3 a+cosf) LI
f W(npln T )M)/ 8

* 171
/C-np Eel(5VOm) > 5 G e

Hence, by (3.17) and (3.18), for n > n we conclude

Lo (el o E2 oo
{l el =

Clearly, 0 < M < 1. Moreover, since lim.o M""/fi = 0, for sufficiently large n (we

(3.18)

a -+ cosd|

For all 0 € [, %]

=2
at1]

may assume n > no), we have

¥
/ um(npln “‘”")Muwu (3:20)
s
y (3.15), (3.19) and (3:20), for n > n we obtain
V[ a+cosf
& CTFW<Lap(npln Lo Ddli<(/cﬂl+l) (321)

Therefore, by (3.13) and (3.21), we conclude

,\/ZZ7<um)uu{.,,.‘<Zm+(f+x)2f (2)

The double-sided inequality (3.22) verifies the equivalence of 1) and 2). a

2



3.3 Baire Category Result

‘We recall some terminology and fundamental results related to the Baire Category.
For the purpose of our discussion, we restrict our attention to the one dimensional

real case, that is, we consider only subsets E C R. Let E denote the closure of £

and E* the complement of E, namely, E° = R\E. Recall that £ C R is a dense set

if £ = R. The notation E” in the following definition means (E)°.

Definition 3.1 ([17, p. 158]) A set E is nowhere dense if E* is dense, i.c. E
contains no nonempty open set. A set E is said to be of first category if E is the
union of a countable collection of nowhere dense sets. A set which is not of first

category is said to be of second category

The following lemma will be needed in the proof of Theorem 3.7. It states that

the

of points of discontinuity of a real function can not be an arbitrary subset of

R. In fact, cither this subset is of first category or its complement is not dense.

Lemma 8.1 For a real-valued function on the real line, the set of points of discon-
tinuity is of first category if and only if this function is continuous at a dense set of

points
For proof see (13, p. 33).

Definition 3.2 (18, p. 38)) Let I be an interval of R. A function f(z) : I =
RU{~00, +00} is lower semicontinuous if for any a € R, the set E = {t]/(t) > a}

is open in I



Remark: By definition, 0o > a for any a € R. And “E is open in I" means that £
is the intersection of an open set of R with the interval /.
Another, equivalent definition of lower semicontinuity will be helpful later in this

section. We say that the function f(z) is lower semicontinuous at a point zo if
liminf f(z) > f(zo).

Then f is lower semicontimuous on  (in the sense of Definition 3.2) if and only if the

above property holds at any zy € , see (17, p. 51, Problem 50(c)].

Lemma 3.2 Suppose (ra(t))32, is a sequence of positive continuous functions defined
on an interval I. Then

10=3m0

is lower semicontinuous on I.
Proof. By Definition 3.2, it suffices to show that for any real number a, the set
E = {tolf(to) > a}
i open. Tt is cquivalent to checking that for any to € E, there exists a neighbourhood
Uslto) = (to — bt + )
of to such that Us(ty) C E. Depending on convergence/divergence of the series

T2 a(t) at to € E, we split our proof into 2 cases:

1) f(to) > a is finite. For 0 < € < f(to) — o there exists N € N such that

TN 7alto) > f(to) — 3. Since each ry(t) is positive and continuous, there exists

5> 0 such that for ¢ € U(to), we have ra(t) > ra(to) = 55 (n = 1,2,..., N). Thus,

¥ N
10 >3 ralt) > Yo ralte) —g > flt)) —€>a, (323)
= i
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for t € U(to). Hence, E is open.

2) f(ty) = +oo. For any € > 0, there exists N € N such that 30,

Then, there exists § > 0 such that for t € Us(to), we have ra(t) > ra(to) — %

(n=1,

N). Thus,
¥
IO > 3o ralt) > Yoralte) > o (324)
= =

Hence, in this case E is also open.

‘We conclude that f(t) is lower semicontinuous on /. o
Remark: An alternative proof can be derived from [17, p. 51]. It starts with the
observation that a function f defined on [a, ] is lower semicontinuous if and only if
there is a monotone increasing sequence ()32, of continuous functions such that
f(x) = lim gy (z) for each z in [a, b]. Define p,(t) = k.., ri(t). Obviously, (wa(t))2y

is a monotone increasing sequence of continuous functions. Hence, f(¢) is lower

semicontinuous.

Terms of the series a(9) (3.1) and b(6) (3.2) satisfy the condition of Lemma 3.2.
By Lemma 3.2 we know that the functions a(9) and b(6) are lower semicontinuous
Let us apply Lemma 3.1 to discuss the sets of discontinuities of a(¢) and b(6). The

set of divergence of the series a(0),

A={0€[0,24]| a(6) = oo},

and its complement, the set of convergence A® = [0,27] \ A, are the subject of the

proof of the following theorem.
Theorem 3.7 Let (yn)3%; be a monotone decreasing and positive sequence such that
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the series 2., yn diverges. 1]

2 (3:29)
holds for eachn > 1, then
1) the set of discontinuities of the function a(6) : (0,2x] — [0, +oo] coincides with
the set of convergence A° of the series (3.1);
2) This set is of first category.
The same holds true for the series b(0) (3.2).

Proof. Notice that the extended real line is homeomorphic to the closed interval [~1,1]
under the mapping ¢(z) = 2arctanz. For z € R, ¢(z) is monotone increasing and
continuous. Any topological property of a function W with values in the extended
real line is equivalent, to the same topological property of the real-valued function
¢oW. Hence, by Lemma 3.2, ¢ o is also lower semicontinuous,

First, we will show that the function a(6) is continuous at any point fy where

a(f) = 0.

By lower semicontinuity of a(6), we have

inf¢oa(0) 2 $oa(fe) = ¢(o0)
In addition, since ¢(t) < 1 everywhere, we get
1> limsup ¢ 0 a(8) > liminf 6 o a(9).
e (s

Thus,
$oalfe) =1

Jim ¢ 0a(@
Hence, ¢ is continuous at each f € A.
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Second, let us show that under the assumption about a, the set A is a dense
subset of [0, 27]
The set Ag of all 6 € [0,2n] in the form 6, = YT, where [,m (I < m) are

positive integers, is a dense subset, of [0,27]. Since sin(nflm) = 1 for n = (4k +

1)m, k=0,1..., by the inequality (3.25), we have
alm) 2 Y aanrim = Y Yakrme
= =

Since the sequence (y)3%., is decreasing, we get

1
Uitri 2 §em s,

Thus, we obtain
- ‘e
3 akrm 2 3 D vhm
= =
Again by monotonicity of the sequence g, we get

1
Yim 2 (Y + Yo+ + Yikrym-1)

Consequently,
- e
D vk = 7= > v = 0.
Thus, ¢ 0 a(fim) = 1, 50 Ag C A. Hence, A is a dense subset of [0, 2], By the first
step, we know that o a is continuous at each . Therefore, a() is continuous on
& dense subset of (0,27].
Third, due to the density of the set A, a(9) is continuous only at each 0 € A.
By way of contradiction, suppose there exists fy € A° such that a(6) is continuous
at 6y, Then we must have
Jim a(0) = a(f) < o (3.26)
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However, we have shown that the set A is a dense subset of 0, 27]. Thus, there exists

a sequence (9,)32, such that cach clement is from A and 6, — 6 as n — co. Since
a(8) = oo for every n, we get a contradiction with (3.26).

By Lemma 3.1 the set of points of discontinuity of a(6), that is, the set of conver-
gence of the series a(8) is of first category.

The above proof is also valid for b(0). o

Remark: In [13], Theorem 1.6 states that “the real line can be decomposed into two
complementary sets X and ¥ such that X is of first category and Y’ is of measure

zero”. If we take b, = 1 and define b(6) as in (3.2), then by Theorem 3.7 we know that

X = {8/] b(6) < oo} is of first category. In addition, 332, % = Xor, 71z < o0,
50 by Corollary 3.4 (p. 24), for almost all 0 € [0,27], 4(6) < co. Hence, ¥ = X*
has measure zero. This is another possible example that can be used to ascertain

Theorem 1.6 in [13] on an interval.




Chapter 4

Some Results on Diophantine

Approximations

In this chapter, we will present some fundamental theorems on Diophantine approxi-
‘mations as well as our results. In Sections 4.1 and 4.2, we discuss Dirichlet’s and
Chebyshev's Approximation Theorems and their gencralizations. In Section 4.3,
we first review approximations by continued fractions and some classical results of
Khinchin. Then under the new relative growth condition (RGC) and by the General-
ized Dirichlet’s Theorem, we obtain an approximation criterion that complements the
results of Khinchin. In the last section, from the new criterion we derive preparatory
‘number theoretic results, which will be essential for the proofs of the theorems on the

divergence analysis of oscillating series in Chapter 5.




4.1 Generalized Dirichlet’s Theorem

Dirichlet’s Approximation Theorem is a fundamental theorem on rational approxi-
‘mations of irrational numbers. Lemma 4.1 is one of several equivalent forms of this
theorem. Another form can be found in [14, p. 33]. The idea is to use the Pigeonhole

Principle. Recall that || - | denotes the distance to the nearest integer.

Lemma 4.1 (Dirichlet’s Approximation Theorem) For an irrational § and a

positive integer N, there exists a positive integer q < N such that
1001 < 3 (@)

Proof. Split [0,1) into N + 1 disjoint parts: Jo = [0,

is irrational, (4.1) is equivalent to

{a0} € o U Iy, (42)

Suppose, by way that all the N el ({afD)y lie
in the remaining N —1 disjoint subintervals Iy, ..., Iy-1. By the Pigeonhole Principle,
one of these intervals contains at least two elements of the sequence. Namely, there
exist two different positive integers g1,¢2 € {1,2,..., N} and a positive integer m

such that
+1
Ty

g < (a0 < (o) <

where 1 <m < N — 1. Then

0< (00) - (00} < 5



In general, there are two possibilities: either {g26} — {@:0} = {(¢2 — )6}, or {@:0} —
(@0} = ({02~ )0} ~ 1. However, {(g ~ )0} ~ 1 < 0. Thus, in our case

0< {00} - (@0} = (@ - 0)0) < oy )

Setting ¢ = | — @, we obtain (4.1). a

Remark: In the case where § = L is rational, the above conclusion still holds
except, in the case m = N + 1 the inequality (4.1) may be non-strict. For m > N,
Theorem 17a from (14, p. 33] clarifies this situation. While in the case m < N, since
[lm8]l =0 < 5k, we can choose g =m.

In the above proof we partitioned [0,1) into N + 1 parts. If we split [0,1) into
& smaller number X of equal length intervals, where 2 < X < N +1, then possibly
more elements of the sequence (81, will lie in [0, %) U [%¢*, 1) and we can obtain

the following result

Lemma 4.2 (Generalized Dirichlet’s Theorem) Given a positive integer N and
an irpational , for any positive integer 2 < X < N+1 the sequence (q6)1%., contains

at least M

-] terms such that

1
llafll < %

where q; are different integers and 1 < g < N, i=1,2,+, M.

Proof. Split [0,1) into X disjoint parts: fo = [0, %), .+, Ix-1

irrational, (4.4) is equivalent to
{a0} € U Ixa. (45)
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It suffices to verify that there are at least M elements of the sequence ({af})),
belonging to fo U Ix-1
Suppose, by way of contradiction, that there are at most M — 1 such clements.

Then there are at least N — (M — 1) elements lying in the remaining X — 2 intervals

\Ix-a. Since M = | ] < ¥£1, we have

_N+1
“x-1

N+1-(N+1)/(X -
. = B >M. (46)

By the Pigeonhole Principle, one of i, .., I contains at least L = M +1 different

terms. Namely, there exist L different positive integers gi, ..., qz € {1,2,..., N} and
a positive integer m such that 1 < m < X 2 and

+1
F <0} << (a0 <

For k=2, r to the proof of Lemma 4.1, we have

0< (a0} - (@) = (@ - )0} < n

Hence

{lax— 0|6} € I UlIx-s. (4.8)

Next. we will show that g — 1| # la — | once k # 1.

Suppose, to the contrary, that |g — ¢i| = | — @il. We have

w-n=a-a (49)

(4.10)




The equality (4.9) gives g = g, which contradicts k # L. If (4.10), then by (4.7), we

obtain

~{a-a))>1- g

1> (@—a)) = (- a)0} =

Then X < 2, which contradicts X > 3.

M different positive integers g — @il oz — ai| €

‘Therefore, we find L —

{1,2,...., N} such that

1
o —mloll < 5 k= WL (411)

Relabeling |gx — g1 into gy, we obtain (4.4). =]
Remark: If X = 1 or 2 and @ is irrational, then for all 1 < ¢ < N we have
llofll < § < %

Corollary 4.1 Given a positive integer N and an irrational 6, for any positive real

number 2 € (2, N +1] the sequence (q0)., contains at least M = | 5] terms such

that
(4.12)

1
ladll < 23

where g, are different integers and 1 < g < N, i=1,2,

Remark: Although the inequality (4.4) of this Generalized Dirichlet’s Theorem is
weaker than (4.1), we have more elements satisfying this weaker inequality, which will
be useful in Section 4.3. In mumber theory we rarely know the accuracy of approxi-
‘mation of particular irrational mumbers. Lemmas 4.1 and 4.2 provide some a priori

information regarding the approximation of any irrational numbers by rationals.
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4.2 Generalized Chebyshev’s Theorem

Dirichlet’s Theorem implies that the inequality 8] < % has infiniely many integer
solutions n. The next theorem concerns approximation of [ — b for any real
numbers 6 and b, where n is a positive integer.
Chebyshev’s Theorem(7] For an arbitrary irrational number 6 and an arbitrary
real mumber b, the inequality

‘n9717b|<§ (413)
has infinitely many solutions in integers n and l.

For proof see [7, p. 30-40].

Remark: Chebyshev's Theorem shows the existence of infinitely many integer so-

lutions (n, ) of the inequality (4.13). On some occasions one may be interested in

rational i of a special form with eq but with ex-
plicit bounds for solutions. This point of view motivates us to generalize this theorem

and modify the proof given in [7).

Lemma 4.3 (Generalized Chebyshev's Theorem) Suppose g is a positive in-
creasing function and ¢(z) < z. Given real numbers 0,b and a, |e| € N*, if|g6 — p| <

i (@,Ipl € N*,ged(p,q) = 1), then there exist | € Z,n € N* such that

(19

Remark: The relation of this lemma to Chebyshev's Theorem can be demonstrated

as follows. For any irrational number 0 there are infinitely many co-prime integers

0



P, such that [g0 — p| < } 1 and p(z) = 7, then Lemma 4.3

shows that there exist n, I such that

g<n<
(4.15)

né

.
we<d

Proof. Since |g6 — p| < 15, we can write g9 — p = &, where [§] < 1. Then we have

L
o " a " anel@) wie)

the fraction 2 in the lowest terms: - = 2, where Q € N*. Note that
% @
q
f<Qsam 1n

Let ¢ be a nonzero integer such that |*2 —¢| < 1. Similarly to (4.16), write

i=gte ll<t (4.18)

Since god(P, Q) = 1, by Theorem 5.1 of (2}, there exist integers r, s such that

rP-sQ=1, 1<r<Q. (4.19)

Hence (rt)P — (st)Q = t, and for any k

(kQ +71)P — (kP + st)Q (4.20)
Let k be the integer such that
v<kibien, (4.21)
Q
Define.
n=kQ+rt, 1=kP+st. (4.22)

a



Then by (4.17), (4.21)

(423)
By (4.16) and (4.18), we have
foad S
e Q
_ ‘ﬂ L B
Q " agele) Q
By (4.20) and (4.22), the right hand side equals k| + [4]- since

6 <1and & < 1, by (4.23) and monotonicity of the function ¢(z), we obtain

<

L‘+
aapla)

Multiplying by a/c, we get

‘"5>nl+b‘
<

By (4.23) and (4.24), inequalities (4.14) follows o

4.3 Some Results on Rational Approximations by
Continued Fractions

4.3.1 Continued Fractions and Some Results of Khinchin

We refer to (7] for details on notation and basic properties of continued fractions.



Definition 4.1 A simple continued fraction representation of a real number 0 is

defined by

bmat———
@t ——
.
where aq is an integer and allay(i > 1) are positive integers. We also write a; ay,as, -

to denote 6. The n-th convergent of 0 is defined by
B _ agiap,aa,...., )
"

The sequence (a;) either terminates at a finite term ay (when 6 is rational) or

never stops (when i irrational), see 7, Theorem 14, p. 16].

“The following fundamental property explains the role of convergents in the theory

of Diophantine approximation. Let py/gn be the nth convergent of 6, and pu1/dus

the next convergent. Obviously, gus1 > gn > 0. By Theorem 9 of [7, p. 9], we have
1 1

<&
ot

(4.25)

We will be interested in more general Diophantine approximations of the form

1@

= (4.26)
i (4.26)
Let us review two related important results of Khinchin.

Lemma 4.4 (Theorem 31 of Khinchin[7)) There ezists an absolute positive con-

stant B such that for almost all 6, for sufficiently large n > no(6),
4o =m0) <™ (a21)
Here and below ,(6) denotes the denominator of the n-th convergent of 0.

3




For proof see [7, p. 65-69]

Let B be some suitable constant in Lemma 4.4. Denote the set of real numbers

that satisfy (4.27) by
K= {0 € R ga(6) < ¢ for suffciently large n}. (428)
“This notation will be used in Section 4.4 and in Chapter 5.

Remark: In 1935, Khinchin proved a stronger result: there erists an absolute con-

stant y such that for almost all 6
Va@) -y (n—o0).

In 1936, P. Lévy found that y = e*/021" (see [11, p. 320]).

Khinchin used his estimate (4.27) of the growth of the denominators of convergents

of continued fractions to prove the following result on Diophantine approximations.

Lemma 4.5 (Theorem 32 of Khinchin[7]) Suppose that f(z) is a positive con-
tinous function of a positive variable z and that 2 (z) is a decreasing function. Then
the inequality (4.26) or equivalently, |lqf]| < f(q) has, for almost all 8, an infinite
‘number of solutions in integers g i, Jor some positive ¢, the integral

/ F@)iz (429)
diverges. On the other hand, if the integral (4.29) converyes, then the inequality (4.26)
has, for almost all 6, only a finite number of solutions in integers q.
For proof see [7, p. 69-71].
Example If r > 1, then [{* < 0o, 50 by Lemma 4.5, for almost all 0, the inequality

1
llafll = r (4.30)

4



holds for g > go(f). Numbers @ possessing this property are said to be not approx-
imable to any order greater than r. Similarly, if s > 1, then, for almost all 6, the
inequality

ol > e (3
holds for g big enough.

To determine whether a specific number has the property (4.30) or (4.31) is a
difficult question in number theory. For example, Liouville's Theorem [6, p. 161] states
that a real algebraic number of degree n is not approzimable to any order greater than
n. The famous Roth’s Theorem [16] asserts that for all algebraic irrational numbers
0, the incquality (4.30) holds for q > go(6) if r > 1. There are open questions about a

‘ment. Although it tosetr =

in Roth's Theorem,

Lang’s Conjecture [10, p. 214] states that for all algebraic irrational numbers 6, the
inequality (4.31) would hold for all s > 1.

Note that if r < 1, the inequality [lgf]] < 2 always has infinitely many solu-
tions because of (4.25). Recall that by Hurwitz's Theorem (6, p. 164), there are no

irrationals 0 such that the inequaliy lgf] > J&; holds for all ¢ > go. The follow-

ing definition facilitates the convergence analysis of oscillating series in Chapter 5.
The sets defined below are nonempty, and their complements have measure zero, cf.

Lemma 4.5 and (4.30) in the above example.

Definition 4.2 Forr > 1, we define

z€R: ozl > % holds for g > a(z)}, (432)
where go(z) is a positive integer depending on z.
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4.3.2 Relative Growth Condition and New Approximation

Criterion

Lemma 4.4 (Khinchin’s theorem) bounds the growth rate of the denominators of
convergents of continued fractions for almost all real numbers. We now introduce
a new condition and prove a theorem on Diophantine approximation that comple-
‘ments Khinchin’s result. The proof is based on Lemma 4.2 (Generalized Dirichlet’s

Theorem).

Definition 4.3 Given a positive increasing function ¢(z) such that ¢(z) < z when
z > 1, and another positive increasing function ¥(z), we say that ¥(z) satisfies the
relative growth condition (RGC) with respect to ¢(z) if
(o) > 1
v
.
P =

where b> 1, ¢, and z are positive constants.

2210, (4.33)

Examples will be given at the end of this subsection.
Remark: The condition “p(z) <  and @(z) is increasing” is crucial, otherwise we
can not utilize the result of Lemma 4.2.

In the remaining part of this paper, we use Definition 4.3 with parameters b = 2

and ¢ = 1/2. Since p(¥(z)) > [p(¥(2))] =12 1, by (4.33), we get

¥(z)
EE)l] o)

Hence we have

(4.35)




In the proof of Theorem 4.2, [(z)] and [¢(¥(x))] play the same role as N and X,

respectively, in Lemma 4.2.
Approximation Criterion Involving RGC
Theorem 4.2 Let ¢(t) be a positive increasing function such that ¢(t) < t and w(t)
satisfies RGC with respect to ¢(t). Then for any irrational number 0 there ezists a
sequence of different positive integers (qn)3-1 Such that
1
llamfll < ——=
wlam) (436)
G < ¥(logy(4m))

wherem =1,2,

Proof. Define N = [(n)] (n > 7o) and z = (¥(n). By (4.35), the number

in Corollary 4.1 (p. 39) satisfies the inequality

T P
w=|at=) =

Thus, there exists a sequence of positive integers (¢;)%;

¥ such that

1Sq <@ < <gria < [¥(n)]
1 1 >

@) ~ ela)

201~ 1. Similarly, for N = [1(n +1), there exists a sequence of

(437)

lladll <

where i =1,2,....

positive integers (b)2;" such that

1<b <b <o <bpot < W0 +1)]

1 1 . (4.38)
M €= S —
18411 < S 1) < e
Since the number of terms (b;) is more than twice that of (g;), there exist at least
271 different terms in (b;) that do not belong to (g;). Next, we relabel exactly o

g



different terms in (b) by designating them as (g)?"32., arranged in the increasing
order. (Note that it is possible that gys-1 < g-1-y). Thus, inductively, we construct

a sequence (g:)i%, where all g are different, and

@i < lw(")Jv n2z

(4.39)
w0l < ——. =1,
lla:éll w( @' i
For any positive integer m, there exists a positive integer n such that
rigm<r-1
Observing that n + 1 < log, 4m, we obtain
n < ant < [(n+ 1)) < (logy(4m).
Together with (4.39), this yields (4.36) o

Remark: One can construct many pairs of functions satisfying the RGC and use
Theorem 4.2 to derive various special approximation results.

The following two examples of pairs of functions that satisfy RGC will be impor-
tant in the next section and for the divergence analysis of the oscillating series in

Chapter 5. In both cases, b=2, ¢ =1/2, and zo = 1.

Example 1

la)
. 0s<p<L (440)

¥(z) =277

Let, us check the nontrivial part $£; > 25" of (4.33). Indeed, from (4.40) we have

¥(x) 23

o " Ey 2T
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Example 2

¢(z) = Vlogy 7
(a.41)
V@) =2VE

To check RGC, by (4.41), we get

(z) Z g

PG I ' S

WO~ Viow@rm  JieegE V2

4.4 Applications: Estimates for Integer Sequences
for which sinnf — 1

Define the set

as= (R\Qiu{ﬂ,};l lmeN‘,LeZ} (142)

A motivation of this definition will become apparent in Section 5.1.1 of Chapter 5.
Combining the facts from Theorem 4.2, Lemmas 4.3 and 4.4, and Example 1, we
are able to obtain the following result, in which part (b) is an analog of part (a) in

the case § = 1

Lemma 4.6 There exists an absolute positive constant C' such that:
(@) If 0< 8 <1, then for all 6/x € Q there exist infinitely many integers ny
(k=1,2,...) such that
ny < 8(2k) ™1
o (4.43)
sinngd > 1 - —5
in P
(5) For almost all 6/x € Q, namely for all 6/x € 2N Kp there exist infinitely many

integers g (k= 1,2,....) such that



ng < 8P
5 (444)
snm>1- G

e

where B and K are defined by (4.27) and (4.25).
Proof. (1) Case 6/ € R\ Q. By (4.25), there are infinitely many positive integers q;

such that

(4.45)

where pi, g are co-prime, k

=1,c=2 ¢() =2° (0 < § <1). Then, applying Lemma 4.3, we
have, by (4.14),
< 8k

Al +1
‘,,.,g _ %

8
(m/8)"

Hence

A +1 nr c
sinnyd = cos (muf ~ ) > 087 > 1= =5,
2 nf ny

where C is a positive constant (note that cosz > 1~ % when z > 0).
Next, we will determine the upper bound for each ny:
(a) For 0 < < 1, by Theorem 4.2 and (4.40), we get ny < 8¢ < 8(2K)™7
(b) For 6/ € 2N K, by Lemma 4.4, we have n; < 8g < 8¢ | where B is defined
in (4.27).
(2) Case 0/r = 231 (1€ N*,m € 2). Let g = (4k + 1)l for m even and

(4k = 1)1 for m odd. Then we get




The upper bound of n in this case is trivial in both (4.43) and (4.44), o

From Lemma 4.6, we can directly get the following proposition, which pertains to
one of the aspects of the divergence analysis of the oscillating series of Chapter 5 (see

proofs of Theorems 5.2 and 5.3).

Proposition 4.1 For C defined in Lemma 4.6

(@) If0.< B <1, then for all 6/ € 9 we have

where the sequence (ny) is determined in Lemma 4.6(a).

(5) For all 0/x € 20\ K, where K is defined in (4.98), we get
a+sinngg| "
a+1

lim in

where the sequence (ng) is determined in Lemma 4.6(t)

Proof. By Lemma 4.6(a), we obtain sinnf > 1 — . Then

a+sinngd|"t? at1- 5"
liming 250 0 —
i a+1

a+1

The proof of case (a) is finished. The proof of case (b) is completely similar. O

Lemma 4.6 deals with the pair of functions (4.40) satisfying RGC from Example 1
of Section 4.3. Similarly, the pair of fnctions (4.41) from Example 2 leads to the
following lemma, which will be used in the proof of Theorem 5.1
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Lemma 4.7 For /r € Q, there are infinitely many positive integers (nk)y, such

that for each ni,

i < 32k/Tog, (4F)

(a47)

(=
sinmyd > 1- —o—
loga(mi)

where C s a positive constant, ky € N*
Proof. (1) Case 6/ € R\ Q. Define ¢(z) and ¥(z) as in (4.41). By Theorem 4.2,

there exists a sequence of distinet. positive integers (g}, such that

lladll < —=

1
o)~ Voaw ) @)
< W(logy(4k)) = 4k+/log, (4K)

Leta=4,b=1,c=2. By Lemma 43, we can find a sequence (ns) such that

e < 32k/Tog(48)
o0 Al 8 8 A (4.49)

= < b <
T 2 Viogs(¥) * Viogy(ne) — v/loga(ne)
where A is a positive constant, k > ko € N* and I € Z. Hence,

a+|

sinngd = cos (

Ax c
3 600 | 1 =,
) °‘“( rogm) )
‘where C is a positive constant.

(2) Case 0/m

(1 € N*ym € Z). Let n = (4k + 1)l for m even and

e = (4 — 1)1 for m odd. Then we get

+1
- ) =151
st =i (Mt bnur) 1>

The upper bound of . in this case is trivial in (4.47). o



Chapter 5

Convergence/Divergence of
Oscillating Series at Individual

Points

After establishing several mumber theoretical lemmas in Chapter 4, we will study how
the arithmetical propertics of  control convergence or divergence of the oscillating
series (3.1) and (3.2) at individual values of 6. In Section 5.1, several sufficient
conditions of divergence are developed. Tn Section 5.2, generalizing the method of
A. Stadler [21], we obtain some sufficient; conditions of convergence. In Section 5.3,
we give several examples as an application of the main theorems of this chapter. In
the last section, we rigorously prove an upper bound for the series Y5, (22522,

No such bounds had been known before.



5.1 Divergence Analysis of Oscillating Series

5.1.1 Results on Divergence

Let us begin with some trivial observations. For 6 in the form 6/m = %’*’.—“ ‘where
m € N¥, I € Z, the sequence (sinnf)32, takes the value 1 periodically infinitely
many times. In this case, the series a(f) and b(6) diverge whenever the sequence
(A

proof of Theorem 3.7)

is monotone and 32, A(n) diverges (similarly to the second part of the

166/ s irvational, then sinnf becomes arbitrarily close to 1 infinitely many times
and the question of divergence/covergence is nontrivial.

In the remaining case, ie. /7 € 0, where Q° is the complementary set of
(4.42), we have sinnf < My < 1 for all n > 1, where My s a positive constant, Then
it is casy to establish convergence conditions for the series a(6) and b(0) under as-

‘sumptions that are much weaker than those in theorems of Chapter 3 and Section 5.2

From now on, we focus on sufficient condi 1s of divergence in the nontrivial case.
They are complemented by some simple conditions of convergence. Nontrivial cases
of convergence will be analyzed in the next section.

Theorem 5.1 pertains to the series a(6) (3.1), and it should be compared to Corol-

lary 3.5 of Chapter 3

Theorem 5.1 (a) Suppose h(z) is a positive decreasing function. If [* hn(t)dt di-
verges, where hy is defined in (2.7), then for all 0/ € 52 the series a(0) (3.1) diveryes.
(8) If hn) < €, where C is a positive constant, then for all 6/x € 0° the series

a(f) (3.1) converyes



Remark: The condition h(n) < £ in part (b) can be replaced by A(n) < C15

for some real s, or, more generally, by the condition A(r)n'~ — 0 for any ¢ > 0 as
n—oo
The following two theorems relate to the series b(6) (3.2). Compared to Theorem

5.2, the assumption of Theorem 5.3 is weaker and the conclusion is different,

Theorem 5.2 (a) Suppose h(z) is a positive decreasing function. If [ "8t di-
verges, then the series Y5 h(n) 225%™ diverges for almost all 0/r € 9,
‘namely, for all 0/ € Ky (15, where K is defined in (4.28),

(8) I h(n) is bounded, then the series Yo, h(n) 245 converges for all

0/m € and all a > 0.

Remark: By the Comparison Test for positive series, the conclusion of part (a)
remains valid if we replace the exponent 2 in n? by a smaller number, but in that

case the next theorem gives a stronger statement.
‘Theorem 5.3 Suppose h(z) is a positive decreasing function, 0 < f < 1, and a <
6. If the integral [7° *hdt diverges, then the series 0., h(n) | 228552 " diverges

Jor all 0/7 € Q.

Remark: W i b ! e
details vary: they refer to different cases of Lemma 4.6, In the proofs of Theorems
5.2 and 5.3, we depend upon upper bound for the sequence of denominators of the
convergents of the continued fraction of 0/r. Theorem 5.3 clarifies the case a < 2,
and its conclusion is valid for all 6/x € 2. On the contrary, part (a) of Theorem 5.2
describes the case o = 2, and its conclusion is only valid for almost all 0/ € 2. This
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gap is not accidental: when a < 2, we use the RGC-based approximation criterion of

Theorem 4.2, which holds for all irrational 0, while when a = 2, we use Lemma 4.4
(Khinchin’s Theorem) where the conclusion is valid for almost all 0. Tn the latter
case the only way we know to control the numbers 7, for which sinnyf is very close

to 1 as in (4.44) is to use Khinchin's measure-theoretic argument of Lemma 4.4,

When = } in Theorem 5.3, the following corollary gives some stronger properties

of the series b(9) (3.2) than Corollary 3. of Chapter 3.

Corollary 5.4 (a) Suppose h(z) is a positive decreasing function. If [ ha(t)dt di-
verges, where hy is defined in (2.8), then for all 6/x € S the series b(6) (9.2) diverges.

(b) If h(n) is bounded, then the series b(6) converges for all 0/ € S

5.1.2  Proofs of Theorems 5.1-!

Proof of Theorem 5.1. (a) By Lemuma 4.7, we can find infinitely many distinct positive

integers ny indexed by k = ko, ko + 1,...., such that

e < 32ky/108, (1K)

5.1)
D (
f#>1- ——
S g ()
where C s a positive constant. By the second inequality in (5.1), we get
somo
T
and hence
h(nnfene=n (5.2)




Since h(z) is decreasing and ng < 32k/10g;(4F), we have

S (s2kVogsT9) < 3 ) 69

By the substitution t = 32z/log,(4z) and the Cauchy Integral Test, we obtain
/:7.,(:)4::0@ - /‘Nn(m\/m)a:w
P i h (SQkW) B
The first equivalence is based on the result

Vin2

Jim Z\/ln =

Thus, Y52, h(ny) is divergent, and so is 352, A(ng)nf™ ™"~ (see (5.2)). Hence,
the series 3552, h(n)ne 1) diverges.

(8) Since h(n) < €, we have

5 (o1 < $ Cpoi-vti-ston)
= d

Since /7 € ¢, we have sinnd < My < 1 where My is a positive constant. Thus, we

obtain
1) < $° 1M,
=

Hence, the series 52, h(n)n'(“"("" " converges by the p-series test. o

Proof of Theorem 5.2. (a) By part. (b) of Lemma 46, for all 6/ € 21K there exist

infinitely many positive integers nx (k = 1,2,...) such that ny < 8¢, where B is

defined in Lemma 4.4. Since h(z) is decreasing, we get ‘
D h(Ee™) <3 him). (54) !
=
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By the Cauchy integral test and substitution, for any positive constants Ay, A, we

obtain
f @a = o0 b /mfl(/\|c"')d!=co = Yo h(ne) = co.
. k=1
Taking A =8, As = B and using (54), we conclude that S, A(ny) s divergent.

By Proposition 4.1 (5), we have

a + sinny

liminf
+1

(=

Multiplying both sides by h(ng) and summing over k, we conclude that the series

2 b [ 2225252 i divergent. Clearly, the seres 532 h(n) |42
also diverges.
(b) Since h(n) is bounded, there exists M > 0 such that
> hm) B

Since 0/x € 0, similarly to the the proof of Theorem 5.1 (£), we have

sk sl
0

a+sinnf|
a+1

where K < 1is a positive constant. Hence
> ohm)

The proof is completed. o

a +sinnf)
o+l

<Mik""<m.

Proof of Theorem 5.3. By part. (a) of Lemma 4.6, for all 6/ € € there exists infinitely

) such that ny < 8(2k)77. Since h(z) is decreasing, we

many integers n (k= 1,

have
3 h(s0)™) < 3 him). 65)
&=

Since 0 < f < 1, we have a trivial but crucial equivalence

/_, %m:m = (-5 m#af ™ h(dt'~? = oo (56)
\
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By substitution and the Cauchy Integral Test, for any positive constant A we obtain
/ B = / ha™T)dz =00 <= Y HOET) = oo,
a a e
Taking A = 8-277, by (5.5) we see that 352, h(ns) is divergent. By Proposition 4.1

(), we have
i’

a+sinmd|
a+1

I

i
e

Multiplying both sides by h(ny) and summing over k, we conclude that the series
S b |22 "5 i divergent. Clearly, the series 32, h(n) 242322 also

diverges. Since a < 26, the conclusion follows by the comparison test, o

5.2 Convergence Analysis of Oscillating Series

Theorems 5.1 (b) and 5.2 (b) of Section 5.1 already give some simple sufficient con-
vergence conditions for the series. In this section, we focus on less trivial cases, We
generalize the method of [21] to analyze suficient conditions of convergence of the
oscillating series (3.1) and (3.2). The results are stated in Section 5.2.1. The key
ingredients of the method are described in Section 5.2.2, and in Section 5.2.3 the
proofs of the main theorems on convergence are finished.

Note that the arithmetical properties of the number 0 in this section are expressed

in terms of /0 rather than 0/ as in other sections.

5.2.1 Results on Convergence

Definition 4.2 of the sets A, (4.32) is crucial for the discussion in the remaining part

of this chapter,



Theorem 5.5 Let 7/ € A, and g > }. If

h(n) < Cn~(inn)~}(Inlnn)
where C is a positive constant, then we have
a(0) = 3" )09 < oo
=
Theorem 5.6 Let /0 € &, and ¢ > } — 1. If
h(n) < Cni~%,
where C is a positive constant, then we have

i h(n)

¥(0) L P

(57)

(58)

(5.10)

Remark: Both functions (5.8) and (5.10), which are identical to the series (3.1) and

(3:2) respectively, are 27-periodic. In the rest of this paper, it

0€ (0,21

5.2.2 Stadler’s Method with Parameters

be assumed that

First, we define cut-off functions similar to those in [21]. Given a positive real number

 from the definition (4.32), choose ¥(z) to be cven and [r] +2 times continuously

differentiable on R, such that

v(a) =

and 0.< %(z) <1 for 1 < Jz] <2
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% s o s 0 o5 1 s
Figure 5.1: Graph of a 5 times continuously differentiable function 1(z)
Choose 0 < ¢ < 4, define
(z) = w(a/e) (5.12)
for z € [, 3], and extend ¢ to a 1-periodic function on R. Then we can write
9(z) = i ™ (5.13)
=1

where
4
Bz)e My
a / § (z)e

s the k-th Fourier cocffcient of ¢(z)



In addition, we introduce the following notations related to ¢(z):
.
a= [ e,
3
o =(n) / 10 ),
-2 (5.14)
e [ s
N
=@ @),
where 0 < 4 < 1, and § will be specified in Lemma 5.2. The constants ¢; defined in
this section may depend on parameters 0,p, etc, but are independent of .

For any integer k, we have

] ] + d
Joul < [iwwtz)\a= [ wetats=c [ e [ wteas

In particular when & = 0, we get
|aol < coe. (5.15)

In addition, for any integers m, k with 1 < m < |r] +2 and & # 0, the [r] +2 times

differentiability of ¥(z) implies that

1
@R

n

il
< [ypena =g

&
- e [, el

.
) 27}""[’\w""’(zﬂdz

g

Taking m = [r] +2, we obtain

o
loal i (516)
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And taking m = [r] + 1, we get

o < g (517)
Thus, for k # 0 and any § € [0, 1), we have
o
< o o
i < () (i)™ = w619
Next, we introduce another notation
— cos(fe), (519)

where ¢ is the parameter in the definition (5.12) of ¢(z).
The use of the function ¢(x) and of the constant & defined above relies on the
following property.
Lemma 5.1 The inequality
1-sinng <4 (5.20)
holds if and only if there is an integer q such that 6(“50) = 1 or equivalently,

e
o] <,

Proof. The inequality (5.20) is equivalent to
x
sin(n6) = cos (0 - 5) > 16 = cos(fe).
Since 6 € (0,27 and 0 < ¢ < f‘ there exists ¢ € Z such that

_ Ut 1)n
‘nﬂ 2

™
<
<oe<d

Equivalently, we have

_ (g4 1)r
w | <°
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Thus, by (5.11) and (5.12) we get ¢(“%1%) = 1, and vice versa. o
The following sets are defined with this property of the function (t) in mind.
Given N € N*, define a “bad” set By and a “good” set G,

By={neN|N<n<2N and1—sinnf <3},
(5.21)
Gy={neN|N <n<2N and 1-sinnf > 6}.

From Lemma 5.1, we can get another, equivalent characterization of the set By,

namely

u,,={newm<nngm ‘n—%

<([orsmneasl}.
Those numbers g in the second definition of By form a subset of the following set

a4
Lt

1
<o il
<avsl}

Since ¢ < }, it is easy to sce that if n # /, then the corresponding values of ¢ and ¢’

are different. Thus, we have

Yisy a(%) (522)

by aean

From the above results, we can get an upper bound of the cardinality of the st

By for m/0 € A, where A, is defined in (4.32).

Lemma 5.2 For /0 € A, and {r} < § < 1, we have

#By= Y 1< aNe+ o, (529)
7
where ¢y, cs are positive constants.
Proof. By (5.22) and (5.13), we obtain

sy 44“";5"") I S o o
=" &

by 4eQn
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Now we consider the cases k = 0 and k # 0 separately. In the case k =0, we observe

that #Qy < 52+ 1. In the case k # 0, we need the following inequality

where z € R\Z and ,m € Z.

From the above results, we get

0
#ov <l (1) + oo

Together with (5.15) and (5.18), this yields

o 1
#By < caNe+ 5 FETFRE]"
o S

where ¢; > %2 +¢q is a positive constant. Then by definition (4.32) of A, we have

1
Forer)

(K =Y

#By SaNe+ 511 va (Z

Since § is an irrational number, [[2k%( > 0. Since § > {r}, the series
3 e
i T

converges. Setting

)
(5 e ). 6

we get (5.23). o




5.2.3 Proofs of Theorems 5.5 and 5.6
To cstimate partial sums of the oscillating series (5.8) and (5.10), we define
m
oy=Y h(n)nein0-)
W

a+sinnf|™ (820)
et |

'm
™= hin)

=
The notation By, Gy (5.21) will be used throughout the proofs.

Proof of Theorem 5.5. We first estimate the following partial sum
=
S5 e _ 5 e 4 5 tsten-h
= b= <G
Since nPOROND < 1, we get e, nP0900D < #By. Forn € Gy, we have
1-sinnf > 4. Thus,
w
3 w0 D < By + 3 NTH < By + NI
= veg

By definition (5.19) of 8, there exists a positive constant cg such that

— cos(fe) > coe”. (5.26)
Using Lemma 5.2, we obtain
a
S D ¢ o Ne b cyelFB 4 NI,
niN

By the assumption (5.7) about A(n), we get

< Clese +es- N

() ata Ny 620

o

e=(InN)"d(nin N)FH,
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50 that for N big enough ¢ < }. Next we will show that there exists N such that for

N = Ny we have

a
S Nl MF L

where ¢; is a positive constant.
Let us work out the right hand side of (5.27) term by term. Plugging the value of
€in cye, we obtain

e

M N~ NN FT 6.2)

For any real numbers s,t, we have. lim N~(In N)*(Inla N)' = 0. Hence, for N big
enough, we always have

N-lelrp o

(nN)¥(Inln Ny ~ InN(nln N)F+T°

(5.30)

In addition, since In N7 = peg(Inln N)+4, the inequality

1
InN(lnln N) 47

s equivalent to
po N (1«
oty > N (1 9) i
pes (ninNyo+d > 25 (4+2)l Inln N,
which is true for N big enough since ¢ > 1, and hence (5.31) also holds for such N.

The inequalities (5.29), (5.30), and (5.31) verify (5.28),

By (5.25) and (5.28), we obtain

S (- 3 - o
n»iguﬂ/ i :ZM’”W b Z ln’l}(lnln’)))'A

n2 Z 1..,+Lum )

f=4
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Hence, the series a(0) (5.8) converges. o

Proof of Theorem 5.6, We first estimate the following partial sum

. T o
a+sinnd a+ sinng|" atsinnd[”
P e n Y = Y ey

Since [a£882¢|" < 1, we get ) n#"0)1) < #By. For n € G, we have

=4
sinn < 1-6, thus
.
-+ sinng | .
-+ sinnf| B P
S < e 3 (-0)

&\
< #BN+N(lrm)

Note that 1 -z < exp(~) holds for all real z, and by (5.26) we get

v e O
55 atsinnd|™ #B,,,,Nu,,(_,\y,,i)
=N+ a+1
Ne
< #EN+Nexp( ”“"H‘)

Using Lemma 5.2, we obtain

w
> [l et w0 4 Newp (- P”‘)‘
wibe a+1 +1

By the assumption (5.9) about A(n), we get the bound for the partial sum 7y from

(5.25)

.
™w<C (mm—m +eN-d-ee o 4 N =xp( ":" )) (5.32)

Since co > § — 71y, there exists e, (0 < ¢ < 1~ {r}) such that
1 1
=
23T rratl



Choosing 8 = {r} + e, we get {r} < § < 1. Set
o= N-FHE
s0 that for N big enough € < }. Next we will show that there exists Ny such that for
N2 Ny we have
v < N TR (5.33)

where cy is a positive constan.
Let us work out, the right hand side of (5.32) term by term. Plugging the value of

€ in ceNA~9 and eN-h-0¢1r19, we obtain

Nt = e N1 ) (5.34)
and
N0 tr1=8 = g N Ao, (5.35)
In addition, the inequality
1o axp (=92 NEY ¢ yh-om i
N m(p( o) SN wHE (5.36)
is equivalent to
By > . (537)

a+1 ZT+A+1 E 1
Clearly, (5.37) and hence (5.36) hold for N > N, where No is a positive integer. The

inequalities (5.34), (5.35), and (5.36) ver

(5.33).

By (5.25) and (5.33), we obtain

—Zm(Z w 5 <o

o g




5.3 Interesting Examples

In this section, we are going to provide several interesting examples, which are special
cases of the main theorems of this chapter. The examples are based on the arithmetic
‘properties of the number # and of algebraic irrationalities

In Examples 1 and 2, we deal with the irrational number . We use some recent

results about rational approximations to 7. In [19], V. Salikhov proves that

lom=pl2q a2 qo, (5.38)
for ll integers p, g with g big enough, where
v =6.60630- - (5.39)

A lower bound gy in (5.38) is not specified in [19).
In Examples 1 and 2, we take 0 = 1, 50 that 7/ = 7. In view of (5.39), by
Defnition 4.2 we see that 7 € 4.
In Example 1, the value of v is not important; in particular, the fist result [12]
of the type (5.38) with v = 41 (and g = 2) would suffice.
Example 1 By Theorem 5.5, for ¢ > } we have

& gpltan)-il-t

; Taminmnyire < ™ (©40)

In particular, the result for p = 1 takes the form

)3

&5 (mn)(nlnn)i+e

.
L <oo (o5 %). (5.41)
On the other hand, Theorem 5.1 shows that
© p-seian

>

=

(5.42)

(lnn)¥Inlnn

0




Remark: From (5.42) we see that

3 nen = oo, (5.43)
The convergence problem for the series (5.43) was proposed by S. Sadov in April
2010 as another example of a “calculus exam misprint” similar to [15]. This problem
stimulated us to include the series a(0) (3.1) in this research,

Example 2 By Theorem 5.6, for ¢g > } ~ by = 0.36853 -, we obtain

(5.44)

In particular, for a = 2,p = 1, we have
1 2+ sinn’ -
¥ o (320) <o (545)
‘This is an improvement over Stadler's result

SBL (“%) <o (©40)

On the other hand, by Corollary 5.4, we get

zﬁ(zfxmn)

Remark: The problem of convergence of the series (5.46) was posed in [15] and the
solution was first presented in [21]. This problem was also mentioned as an open
problem in the book [3, p. 56]. Our generalization of Stadler's methods led to the
stronger results (5.44) and (5.45). In addition, the divergence of the series (5.47) is
obtained here as a consequence of a more general Theorem 5.3 whose proof is based
on number theoretical results of Chapter 4.
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In Examples 3 and 4, we discuss irrational algebraic numbers. Roth's Theorem

[16] states that for any irrational algebraic number a, given r > 1, the inequality

(5.48)

holds for g big enough.

In Examples 3 and 4 we assume that a = /6 is an algebraic irrationality. Hence,
a€ A, (See Definition 4.2, p. 45.)
Example 3 By Theorem 5.5, for ¢g > §, we obtain

= ppln

z T nmayre = &

In particular, the result for p = 1 takes the form

111

(5.49)

<o (0> (5.50)

2 o e
On the other hand, Theorem 5.1 indicates that
e

Y= (551)

& (nn)ininn

Example 4 By Theorem 5.6, for &g > } - 7, we obtain

2t < oo (5.52)

Since r can be any real number greater than 1, we can choose e arbitrarily close to

0. Therefore, the inequality (5.52) holds for any o > 0.

In particular, for a = 2,p = 1, we have
= T
S (%L <o (0>0). (553)
=

On the other hand, by Corollary 5.4, we get

i#(“i“’!)

Zniln

(554)

7



5.4 Upper Bound for the Renardy-Hagen Series

M. Renardy and . Hagen discussed the following series in [13]
)”':1 (2+snm)"
2a\73

Its partial sum equals to approximately 2.163 after 107 terms as mentioned in [22]

No proper upper bounds for this series had been known. We will provide a concrete

upper bound in Theorem 5.7. The derivation depends on Lemma 5.2, the technique
of proof of Theorem 5.6, and the following result by M. Kondratieva and S. Sadov
[8], of the form (5.38) with an exponent worse than Saliklov’s but an explicit lower

bound gy = 2.

Lemma 5.3 For any integer q with g > 2, we have

llgml > 4 (5.55)
A proof is given in [8).
Theorem 5.7 (Upper Bound) We hae the following upper bound
i%(w)n<21664 (5.56)

Proof. We split the series into 3 parts

» 2o
5=Y, =Y ., &=
=t i 1

The splitting points are chosen somewhat arbitrarily after some numerical experi-

‘mentation. The parts 5, Sz, S will be estimated separately.



(1) To estimate S, we follow the developments in Section 5.2.2 and use the no-

tation from there. Let r = 9 and # = 1, and define an 11 times continuously

differentiable even function (z) s follows:

1, el <1

W)= 15224936/ (-1 E- 0", 1<ld <2,
&

0, |zl 22

where 16224936 = (f(t — 1)!(2—t)!1dz)~". Using Mathematica (see Appendix), we

get the values in (5.14)

] 2
o L‘Mz)lﬂ =% a= / [90(2)ldz < 12204,

By (5.15) and (5.18),

1
R

o< i =

@ < i (6 £0)

lasl < (2m)”

Like in the proof of Lemma 5.2, we have
N o 3 s
";Mls\m(ﬁn) +ac (EN'vG)ef»m,

where ¢; is defined in (5.24), and numerically (see Appendix)

a 1 2
a=2 ¥ mmort X | <484283.
’ (msm‘“ [EE=
Similarly to the proof of (5.32), we have
2
2ve).

(5.59)

(5.5)

(5.61)




3
<(2
TN’(Z?{
Thus, we obtain
o 1 (24sinn)"_
a- £ e S

i 1 , 68
[( +<\) = +exv( fzﬁ)] < 0.00067.
%) Rt oE 3
=)
(2) By MATLAB (see Appendix), we have
» »
8 z%(“%) <2.16316. (5.63)

(3) It remains to get an estimate for the partial sum

-

se ()

Fix ¢ = 102, Similarly to the definition of “good” and “bad” s

s (5.21) in the
proof of Theorem 5.6, introduce a “bad” set B and a “good” set G adapted to the

present problem:

B={ne[+1,2%|nN|3keN ‘n*errrf,l

and G is the complement of B in the interval [2% + 1,25%] of integers.
Claim: if ny,ng € N and ny < na, then n — ny > T, where T = 81273,
This fact is verified in Appendix. From this Claim, we can get an upper bound

for the “bad” sum

2+ sinn _ 3002
,;u( ) zz’“+]+Tk’T_/ "i .

75




The estimate of the “good” sum is as follows:

e

@n k=
(564
<5t (2+sm(§ 84
o 3
Thus,
)< 0.00257. (5:65)
Cormbining (5.62), (5.63), and (5.65), we get an upper bound
>t (L;"”') < 2.16316-+0.00257 + 0.00067 = 2.1664.
o

Remark: Since computation of sinz with large z by a particular software needs to be
validated, we compared the values of sin 2% produced by MATLAB and Mathematica

set to 50 digits of accuracy. The results from both programs were consistent.



Chapter 6

Open Questions and Other

Attempted Methods

In this chapter, we first propose several open questions related to the oscillating series
considered in this work. Then we present two seemingly promising methods that had
been attempted to prove divergence o convergence of the series (5.8) or (5.10) but

did not lead to the actual proofs.

6.1 Several Open Questions

In this section, we post several open questions to stimulate interest and potential

further progress.

Question 1 Under what conditions on ¢ can one prove that the series
pbin(u)-11-1

> (Inn)¥(Inlnn)i+e

©1)

converges or diverges if 0 < ¢ < §?



Remark: From the results of Chapter 5, we know that: (1) if & < 0, then by

Theorem 5.1(a) the series (6.1) diverges for all 6/7 € @; (2) if ¢ > }, then by
Theorem 5.5 the series (6.1) converges for all 7/0 € A,.

The next question is analogous.
Question 2 Under what conditions on ¢ can one prove that the series

L=

k=

a+sinn|”

at1

(62)

converges or diverges if 0 < < § — 77
Remark: (1) If ¢ < 0, then by Corollary 5.4 the series (6.2) diverges for all 6/ € .
(2) If & > & — 715, then by Theorem 5.6 the series (6.2) converges for all /6 € A,
Question 3 Suppose that [ hy(t)dt converges, where f(t) s defined in (2.7)
Under what condition on 0 (likely involving the function A(t)) can one prove that the
series a(6) (5.8) converges?
Remark: Corollary 3.5 shows that [, hy(t)dt < oo implies almost everywhere con-
vergence of the series a(d). But it is unclear whether or not the series converges at
specific points 6.

The following question is similar.
Question 4 Suppose that [ hy(t)dt converges, where ha(t) is defined in (2:8).
Under what condition on 0 (likely involving the function h(t)) can one prove that the

series b(6) (5.10) converges?

In relation to Lemma 4.5 (Theorem 32 of Khinchin) let us mention one potential

useful extension of Definition 4.2 of the sets A,. For r > 1 and an arbitrary real s or

8



forr=1and s > 1, define

{8ER: [lg8] > holds for ¢ > go(6)}, (6.3)

ang

where go(6) is a positive integer depending on 0.
Remark: (1) 0 € A, must be irrational, otherwise lgf]| will assume the value 0
periodically. (2) For r < 1orr =1 and s <0, A,, = @ by Hurwitz's Theorem [6,

P.164); for r = 1 and 0 < 5 < 1, by Lemma 4.5, Ay, has measure 0. (3) For r

s> 1, A, is a set of full measure by Lemma 4.5. (4) For r > 1, the conclusion of
Theorems 5.5 and 5.6 still holds if we replace A, by A,.,, because the set of admissible
values of ¢ is open in both theorems and A,, C A, for any r’ < r.

Question 5 In Theorem 5.6, if we replace A, by Ay, is it true that the series
b(8) (5.10) converges under the condition h(n) < Cn~(Inn)~* or a similar condition

(depending on s) weaker than h(n) < Cn=4-% for any ¢ > 07

6.2 Other Attempted Methods

We are going to report methods that we tried, though we did not successfully obtain
results from these methods. To be specific, we describe our attempt to prove diver-
gence of the series 377, n2*%%" (5.43). Note that both methods are successful when

applied to the series (1.1) with any a < 0.



6.2.1 Euler’s Summation Formula

The following proposition is based on the Euler Summation Formula [2, p. 54];
1f £(t) has a continuous derivative f'(t) on the interval [y,z], where 0 < y < , then

> g0 = [ oact [(rons - @i 69
Proposition 6.1 For a positive, continuously differentiable and bounded function

J(t) defined on [1,0), if there ezists C > 0 such that for any z > 1
I[(z)/’(zm’ <c, (65)
then the integral [ J(t)dt converges if and only if the series 2., f(n) converges.
Proof. Taking y = 1 in (6.4), we get
o L=l .
Joroa= e+ 3o~ [ ron
Since f is bounded and the condition (6.5) holds, letting z — oo, we obtain
‘Z 10 [ 10

The conclusion follows o

<o

Attempted proof of divergence:  Suppose (z) = #*"*~% By Theorem 2.1,
I fa)dz = [ 29052z diverges because hy(z) = k= and [*(z)dz = oo.
One may try to prove divergence of the series (5.43) by referring to Proposition 6.1
It remains to verify (0.5).

Note that

J(2) = (sinz = 22750 4 cosInz a0,

80



— P Zcosmine

= ™ cosin

Figure 6.1: Graph of y = {z}a*?cos In
Clearly, /."v {z}(sinz — 2)2%"*-3|dzx < co. We need to check whether the integral
/N(z)wszl.nrz’""”da (©6)
converges. However, we did not succeed in proving that. In fact, even after the results
of Chapter 5 we do not know whether the hypothesis about convergence of the inegal

(6.6) is true. We know from Theorem 5.1 that the series (5.43) diverges, but it does

ot mean convergence of (6.6). Figure 6.1 presents a graph of the integrand of (6.6).

| 6.2.2  Uniform Distribution
Definition 6.1 [9, p. 1] The sequence (z,) is uniformly distributed modulo 1 if for
every a,b with 0 < a < b < 1, we have that
#{il1<F <N, {z;} €[ab]}
sass R

—b-a asN—oo,
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where {z;} is the fractional part of z;

Proposition 6.2 (Weyl’s Criterion (9]) The following are equivalent:
(i) the sequence (z,) is uniformly distributed mod 1;

(if) for each | € Z\{0}, we have

75 0 as n— oo,

For proof see [9, p. 7).

Remark: By Weyl's criterion, we can verify that (K0)i2, is uniformly distributed
mod 1 when § is irrational, cf. proof of Lemma 5.2. In particular, (2k7 + 3)32, is
uniformly distributed mod 1. However, if 0 is rational, the sequence is not uniformly
distributed mod 1.

By Definition 6.1, we have, for any fixed ¢ > 0 and any positive integer a
‘# {k € la+1,a+ M) such that |2k + gn < ¢} = 2M(‘ <leMM,  (67)

where o(M) = 0, as M —» co.

Attempted proof of divergence: For any given ¢ > 0, we have

711(”7;‘01‘&

where A is a positive function of ¢, which s almost constant when e is small.

Fixan ¢ once and for all. For a given , let n be the integer for which [n—2kr—

[[2km + 3|. Define
Tu= {n € [M,2M — 1] such that

Su=

et




Then we have

1
Su 2 Zn..ﬁ"};mm

1 AMAVE = [p(M)|M
AVE _ [o(M)]

S T arefe

Replacing M by 2M, we get

Ave le(2M)|
S 2 Fary B
Thus,
S S~ (_AVE le(@M)]
?;s”" e ; (2‘(7)M)‘ B 2"((7}M)‘> 69

Next we will compute the sums in the right hand side of (6.9) separately. First,

A
Meeln2 ~ In2yeM*

Recall that (M) — 0 as M — co. Therefore for any 6 > 0 there exists Np such that

for M > Ny we have |io(M)| < 8. Hence, for such M,

S~ _le@an] S 6 8 1
Loy < S mnEy w0y

=

Returning to (6.9) we see that
S A §
;S“’ 2 na/aMe 2@ - DM (610)

We can choose & such that




Thus, we obtain

;swzmzlfﬁ‘w (611)

We would prove divergence of the series (5.43) if we were able to show that the
right hand side of (6.11) can be arbitrarily large, equivalently, y/EM¢ — 0 as ¢ — 0.
But the behaviour of M as a function of ¢ is unclear and we were not able to complete

a proof by this method.
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Appendix: Mathematica and

MATLAB Codes

The following software versions were used for computations: Mathematica 7.0.0 and

MATLAB 7.10.0.499 (R2010a).
o Evaluation of f7(t —1)"'(2~ )!"dt (in Mathematica)

1/Integrate[(-£"2+3t-2)"11, {t,1,2}]

16224936
 Evaluations in (5.58) (in Mathematica)

2.0+Integrate [Abs(D[16224936 Integrate[(-t"2+36-2)"11,
4,%,21], 4, 11011, {x,1,2))/(2P1)"11

12293.9

2.0vIntegrate[16224936 Integrate[(-t"2+3t-2)"11, {¢,x,2}],{x,1,2}]

1.

« Bvaluations for (5.61):



(1) MATLAB code for

55 1
K2k

Wi

w

1 5
;W <2x3.5324221

function y-nearN(x)
it

x-floor (x)<1/2 y=x-floor(x);
else

y1-x+floor();

for n=1:N

a=a+1/(n"BenearN(2+mspi)) ;
end

yea;

>> sumearN(10°7,11)

3.532422092684871

(2) Analytic evaluation for the second sum in (5.61)

P s g qegn g0
i 2 2 e =2 = 0.0001024
> W Z,M‘I’<K da = 157 = 000010

2 3
s [t o &

Thus, c; < 12224(7.0648442 + 0.0001024) < 43428,
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« Bvaluation of (5.62) in Mathematica
NSum[(43428+3/(2 P1))/2" (a/11)+3/2° (12/11 m)+
Exp[-2/(3P1°2)2"((1-2/11) )] ,{n,330, Infinity}]
0.000662298

« Evaluation of (5.63) in MATLAB

function y=sumsini(W);
y=0;
for x=1:N

yey+1/x+ (2/3+8in(x)/3)"x; end

>> sumsini (2°30)
ans

2.163153954333316

« Evaluation of T in the Claim (p. 75) in Mathematica

£0x_:=x-Floor[x]; glxJ:=1£[£[x]<2+10°(-3), 1, 0]; n=1;

Vhile(gON[2+Pi n,8011<1, e+l
Print(2.0vPisn]; Print(nl;
81273

12035.
« Evaluation of (5.64) in Mathematica

NSum[(Sin(Pi/2-10"(-3)1/3+2/3) "n/n, {n,2°30, Inf inity}]

1.05882¢10°-80
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