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Ab stract

A. Sta dler proved in 2009 th at th e series

converges when 0 = 0 = 1, having answered a qnest ion posed hy M. Renardy and

T. Hagen in 1999. We nnd crt akc a systemati c analysis of thi s series considered as

a 21T-periodic funct ion oCB and of similar ot her series and corresponding positive

oscillat ing integrals. We explore the measnr e and categ ory of th e sets ofco nt innity

and convergence. Generalizing Stadler's method , we obta in sufficient condit ions of

convergence for such series at individu al values of B in terms af ar ithmeticproperties

oCB. Sufficient condit ions of divergence are obta ined using some classical and new

results about Diophantine approximat ions. In parti cular, we prove a new criterion

abo ut rational approximations of real numbers that compl ements Khinchin's theorem

about the growth of denomin ator s of cont inued fracti ons. We also prove a concrete

npperboundfor th eRenard y-Hagen series. No snch bound s had been known before.
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Chapter 1

Introduction

1.1 Motivat ion

(1.1)

(1.2)

Clearly, both series aredominatedbythe seriesl: :;'~, ;;fr. . I3ythe p-seriestest , both

series (1.1) and (1.2) converge if a > 0. Irrat ionality of rr implies divergence of t he

series (1.1) for all a < -1. Known convergence tests are inconclusive for the series

(1.1) with - I :5 a :5 0 and the series (1.2) with a :5 0.

T he convergence pro blem for the series (1.2) with a = 0, namely,

(1.3)

apparently motiva ted by a calculus exam misp rint , was proposed by M. Renardy and

T . Hagenin I999 [15]. ln2004 , J .B orwein et al. [3, p. 56] report ed t hat this probl em



was still open. Only in 2009, the convergence of (1.3) was first demonstrated by

A. Stadler [21]. From the result s of this thesis it follows in parti cular that

~ n08~853 C+ ; in n )" < 00, (1.4)

~nl:nn C + ;inn)" =00. (1.5)

A similar "calculus exam misprint "-type question about the series

(1.6)

was proposed byS . Sadov in April 2010.

To analyze convergence/ divergence of the series (1.3) or (1.6), one nccds to know

how often sin n can be very close to 1 of, equivalently, how often can n be very close

to 2k1r+j . This question leads one to delve into number theor et ic questions on

rational approximationsofthenumb cr1r.

1.2 Outline of th e Th esi s

Because of number theoretic subtleties involved in the analysis of the series (1.1) and

(1.2), it iseas ierto begin with theanalysisofthe integrals

(1.7)



integrals may st ill converge. In fact , in Chapter 2 we consider somewhat more general

integrals

(1.9)

fh(X) l a :~nlxrdX' (1.10)

where Co,a, p, O are posit ive constants. The subst itutions Co= P = 0 = 1, a = 2 and

h(x) = x- a - lleadto (1.7)and (1.8).

Est imat ing tbe upper and lower bounds for the integrands of the oscillat ing in-

tegrals (1.9) and (1.10) around xO = 2k1r+ ~ following the st rategy of Laplace's

method, we obta in Theorems 2.1 and 2.2. These theorems give sufficient and neces-

sary condit ions of convergence of (1.9) and (1.10) under certain weighted monotonicity

assumptionso n h(x) .

In Chapte r 3, we consider the corresponding oscillating series with param eters

b(O) =~h(n) l a : :nlnol np

(1.11)

(1.12)

as functions on the interval [0, 2rr] and st udy their measure and categorythcoret ical

behaviour. In par t icular , we prove Theorem 3.1 proposing that for any nonnegative

sequence (h(n)) the series L:::'=2*!; converges if and only if J:' a(O)dO< 00, andthe

latt er implies that a(O) < 00 almost everywhere. Conversely and rather surprisingly,

whenever h(x ) is decreasing, almost everywhere finiteness ofa (O) also implies that

t he integral J: 'a(O)dO converges by Theorem 5.1(a) of Chapter 5. Similar thcorems



are proved for th e series b(8). A curious fact (sce T hcorem 3.7 and remar k after it) is

t hat undcrsomesimplecondit ions on h(n) , thesetof discontinuit iesof a(8)orb(8)

is th e same as t he set ofconvergencc of thescries (1.11) or (1.12) and itisasetof

first catego ry bu t full measur e.

Chapte r 4 does not dir ectly deal wit h convergence quest ions for oscillating se-

ries, but contains some number theoret ic prelimin aries for Chapte r 5. Wediscuss

Khinchin'sTheorem about the increase in the denominators of convergents of con-

t inued fracti ons. Th en we const ruct an approxima tion crite rion (T heorem 4.2) which

complements th e result of Khinchin and involves a new "relat ive growth condit ion" .

Th e results from Cha pter 3 do not address convergence/ divergence of the scries

(1.11) or (1.12) for indiv idual values of 8. Quest ions of th is type are discussed in

Chapter 5. We split th e discussion into two cases: thcdivergence par t and convergencc

part . Thcdivergenceana lysisof theoscillatin g scries (1.11) and (1.12) is bascdupon

result s from Cha pter 4. Th cn, gencralizing Stadlcr 'sm cth od of analysis of series (1.3),

wco bt ain several sufficientcondit ionsfo rconvcrgenccoft hc scries (1.11) and (1.12) .

In Section 5.3, we provide severa l examples that are special cases oCthe main

t heorems of th is paper .

In Sect ion 5.4, we obtain, for the first t ime, a numerica l upp er bound for th e series

(1.3). Our bound is 2.1664 and the first 3 digits arc the same as in the part ial sum

from n =l to107,whichis2.163 ...

Finally, in Chapte r 6 we post sevcral open questions result ing from this work to

st imulate interest to the topic. We also discuss two atte mpted meth ods that seemed

att ract ive but did not succeed. Th ey are based on t he Euler Summ at ion Formula and

the Uniform Distr ibution t heory.



' l /n'((sin(n)+2)13C

- lI x' ((sin(x)+2)13t

Figure 1.1: Graphs y = ~ (~r and y = x sinz - 2 and the corresponding sequences

Figure l.ldepicts terms of the series (1.3) and (1.6) and graphs of the corrc-

sponding oscillat ing funct ions. One can observe that t he graphs arc quite similar.

Similar ity of graphs leads to similarity of techniques of analysis. Indeed, thep roofs of

all t heorems for each case proceed similarly. These parallels may not be accidenta l,

and there may be some unknown pattern in this kind of problems.

1.3 N ot ation

Throughout thepaper thefollowingnotat ion is uscd.

The symbols JR, Z, N, Q denote, respectively, the sets of real numbers , integers,

natural numbers, and ratio nal numbers. In th is paper, we define natural numbers

as nonn ega/iveintegers. The symbols JR+, N+ denote the corresponding subsets of



positive numbers.

Oth er commonly used symbols are as follows.

o For a given real number x , Ilxll denotes the dist ance between x and Z, that

is the distance between x and the nearest integer. (In Sections 3.1 and 3.2,

IIf{·)llu[o,2' l denotes the L' norm of the function J, )

o {x} denotes the fractional part of x.

o lxJ denotes the integer part of x.

o [xldenotesthe smallestintegerthatisnotlessthan x.

o # X denotes the number of elements in (cardinality of) a finite set X .

• (xn)~= l denot es a sequence with terms Xno

\Ve saythat a function or sequence is decreasing (respect ively, increasing)if it is

non-increasing (resp., non-decreasing).



Chapter 2

Positive Oscillating Integrals

2. 1 Conver genc e Cri teri a for Os cillating Int egrals

This chapter is organized as follows. First , we introduce two special positive 08 -

cillat ing integrals. Theorems 2.1 and 2.2 give easily verifiable conditions for their

convergence. In Section 2.3, we prove Theorems 2.1 and 2.2 using auxiliary lemmas

Fix eo > O, p > O, a > O. The two oscillatin g integrals we consider iu this chapte r

are functions of the parameter 8 (8) 0):

(2.1)

8 (8) = f h (X) la : ~n/x I Px dx, (2.2)

where h(x) is a given nonnegat ive real function .



Let t ing f (x ) = e'nf(zl, rewrite A(8) and B(8) in the form

B(8) = L~ h(x)eG(Zldx .

Here g(x) and G(x ) are the phase functi o ns

(2.3)

(2.4)

g(x ) = p(sin 8x - I) ln x, G(x) =px lnla:~~8xl , (2.5)

and h(x) in this context is called the am plit ud e fun ct ion .

R em ark: We refer to A(8) and B(8) as posit ive oscillat ing integrals presented in the

form f::h(x)e. (z)dx exemplified by (2.3) and (2.4). Our oscillating integrals differ

from a more common pattern defined as f h(x )e'· (z)dx or its real par t (cf. [5, p. 149]).

Howevcr, weu se this termb ecause the integrancisi n our case also exhibit oscillating

Crit ical points play a decisive role in asymptotic analysis of oscillat ing integrals

[5, p.1 50j. A point z -, is a critical poin t of a phase funct ion <p(x)if <p'(xo) = 0. In

our case, critical points are found from the equati ons g'(x ) = 0 and G'(x ) = 0.

R em ark : If 8 = I , then

x, = 2k" +~ (2.6)

arc those crit ical points of both g(x ) and G(x), where they assume their maximum

valueg(x,) =G(x, ) = 0. In the sequel, we refer to x, (2.6) as /he essentia/ critical

points.

To the function h(x ) in (2.1) and (2.2), we put in correspondence two functions

h,(x ) and h, (x ) which will be used in the stat ements of the main theorems of this



chapter andin subsequentcba pters:

hl (x) =~,
v1nX

h, (X) = 7!'

(2.7)

(2.8)

We prop ose tb e following tb eorems esta blishing condit ions equivalent to conver-

genceof t he integrals A (O) and B (O).

Th cor em2.1 Given anonneg ative func tion h(x) suc h thath, (x ) (2.7) decreases,

thefol/owing stat em ents are equivalent:

(A) It h , (x )d x <00 ,

(8 ) A (I ) <00,

(e) A(O) <oo for al/ O> O,

whereA(O) is defin ed in (2.1) .

T heor em 2.2 Given a nonn egativefunction h (x) such that h,(x) (2.8) decreases,

thefol/owingstatements are equivalent :

(A) I,~ h,( x )d x <00;

(8) B (I ) <00;

(C) B (O) < oo for al/ O > O

where B( O) is defined in (2.2) .

Th ese theorems will be proved in Sect ion 2.3.



2.2 Auxiliary Lemmas for Convergence Analysis

In this section, we prove five lemmas which will be used in the proofs of th is chapte r's

main theorems. Lemma 2.1 is a generalizat ion of the Cauchy Integral Test ; Lemmas

2.2 and 2.3 give some lower bounds around essential critical points oftwo functions

related to the integrands of the oscillating integrals A(O) and B(O); Lemmas 2.4 and

2.5 adopt the strat egy of the LaplaceM ethod andprovide someupperbounds of the

oscillatingi ntegrals A(O) and B(O).

2.2 .1 G en er alized Cauchy Integr al Test

The Cauchy Integral Test states that for a positive decreasing (we mean non-increasing)

funct ion f (x ) defined on [1, oo), the integralft ' f (x )dx converges if and only if the

corresponding series L~~l f (n ) converges. The following lemma is a genera lized

Cauchy Integral Test for posit ive decreasing functions, and it will be required for the

proofs of Th eorems 2.1 and 2.2.

Lemma 2.1 (G en eralized C au chy Int egr al Test ) Let (Yn}::'~n, be a sequence

such that en +d :S Yn :S c(n+ l)+ d, where no is a posit ive in teger, c> 0 and

dare cons tan ts .Suppose rp is aposit ive decreasingfunctiondefin ed on [0 , 00 ) and

eno+ d 2:o. Then L~~"" rp(Yn) converges if and only if f: rp(x)dx converges .

Proof Since rp(x) is decreasing, we get

f, rp(Yn) < oo = f, rp(en + d) <00.
"="0 n=no

By the Cauchy Integral Test , we have

n~ rp(en+d) < 00 = L~ rp(cx + d)dx < 00 = J~+d rp(x)dx < 00.



In addit ion, since !:, o+dcp(x)dx < (cno+d-o)cp(o) is finite, t hen

J~+d cp(x)dx < 00 = 1~ cp(x)dx < 00.

2.2.2 Lower Bound s around Critica l Points

In this sectio n, we give some lower bounds of the functions

in a neighbourh ood of th e essent ial crit ical poinr z, defined in (2.6). Th e functions

h, ·t. and h2 · j, are th e integrands of the oscillat ing integrals A( l ) and B (l ) re-

spect ively. Note tha t if a positive function f (x ) is cont inuous at th e point X ko then

there exists a neighbourh ood of z, such th at for x in that neighbourh ood we have

f (x ) 2':V (Xk). Th e following lemmas give explicit estima tes for th e boundaries of

these neighbourho ods in the case of functions jj fz ) and j,(x). Note th at sin z, = I ,

Lemma 2.2 Let C = -jr,;. There exists a positive integer k , such that for all k 2':k ,

andxE[xk-~,xk+~),wehave

(2.9)

Proof Let x E IXk- ~,Xk +~J. Since~ is decreas ing to 0 as k ~ 00

and lo x is continuous , the re exists a positive integer kl such that when k ~ kl , the



following inequa lit ies hold:

(a) Ix -x.'~k< 1 ; (b) ~ <~ <2 . (2.10)

By the double angle formula, we get

sin z = cos(x - x.) = 1 - 2 sin' x ~ x.. (2.11)

By (2.11) and (2.10) (a), we have

I- sln x = 2 sin' x ~ x. s Ix -
2x.

I'

s ~ (k)' = 4P l~X"
Togeth er with (2.10) (b), t his yields

1 - SiIl X ~ 4PI~ X. < 2P :n x< ~'

which is equivalent to

X p(lIinr -l) > ~.

In add it ion, by (2.10) (b) we have

T herefore, the inequalit y (2.9) holds.

Lemma 2.3 Let C = j¥. There exists a positive integer k, such that for all

k?: k, and x E [x. - *,x. + *1, we have

(2.12)



(2.14)

Proof By Taylor's theorem, for x E [x. - ~,X. + ~), we have

e-~ = e-~ + (e- k)'{x - x.) = e-.:. + pf,e -k (x - x.), (2.13)

\Vhcre ~ is betweenxandxk' Since ~ isdecreasing toO ask --+ oo , there exists a

positi ve i nteger k, such that whenk ~ k" thefollowinginequalitieshold :

(a) pf,~ < 2p'lx." (b) Pk < ~ ,

(e) ~ < I , (d) ff >~·

By the inequality e-' - ( I - t +~) < °(t > 0), using (2.13) and (2.14) (a) , (b),

As in the proof ofL emma 2.2, we have

which is equivalent to

( a ::i~ Xr > ~.

By (2.14) (c), we have sin z ~ sin( ~ - I) > 0, thus la + sin z] = a + sinx . Using

(2.14) (d),weobta in

la::i~xIPZ vx =(a ::i~Xr vx >~ > ~.

Thus , (2.12) holds.



2.2.3 Lapl ace 's M eth od and Upper Bounds for Integrals

The general Laplacel\ lethod [4)is inst rumenta l fors tudyingt heas ymptoticb ehaviour

of integrals of the form

(2.15)

where f( x) is a twice-differenti able function, M is a large positive real number, and

a,b can be finite or infinite. In addit ion, it is required that t he function f (x ) has a

unique maximum at some point Xo on (a,b) with j" (xo) < 0.

The idea of th is method is to approximate f (x ) by a parabola y = f(xo )+~(x-

XO)2 with vertex at Xo, then evaluate the Gaussian Integral, which approximates

(2.15),

(2.16)

where c =-~ > 0, and obta in the estimate [20, p. 80]

l ' ~"eMI(x) dx~ _ _ eM !(x o) as M-too
a - M f" (xo) ' .

In the following two lemmas, we apply the strategy of the Laplace Method to the

integralsA (8) (2.3) and 8 (8) (2.4) (with 8 = I) restricted to the intervals

(2.17)

where z j, a re the essent ial crit ical points (2.6). Indeed, t he gra phs of g(x ) (Figure

2.1) and G(x ) (Figure 2.2) suggest using a parab ola with vert ex at z, tomajorisc the

correspond ing phase functions locally on J•. After major ising the phase functions

g(x) and G(x) on the intervals J., weus ea ddit ivityof integralsto find upper bounds

for the integrals J::h(x)eg(z)dx and J::h(x )eG(z)dx.



Figure 2.1: Graphofg (x) (p= 1, 0= 1)andc ritical pointsxs,x6,x7

Figure 2.2: Graphof G(x) (p= 1,0 = 1) and critical points XS,X6,X7



L emm a 2.4 Let g(x ) be defined by (2.5) with 6 = 1. Given an 1) > 0, select 1.0(1))

so that for k ~ 1.0(1)), we have x. - tr > max(eo, I ) . 1). Then there exists a positive

ronstant C, such that under the assumption of Theorem 2.1 we have

( " ,_, h G)e9(' )dx < C, .~.) h, ( x. ; tr ). (2.18)

Proof On each interval J, (2 . 17)(k ~ko(1))), we have

fp(1 - sin x ) = 2p sin' x ~ x. ~ ~(x - x . )' .

l ln ~ ~ ln (x.;tr ) > 0 (2.19)

Thus we get

g(x ) = p(sin x - I ) ln x ~ - 2p ln(:~ - tr) (x _ x.)' . (2.20)

For x e J. , sinceh, (x) is a decreasing funct ion, we obta in

Ih! (~) ~ h, (x.; tr) .
Q ? x. +tr )
V ln ~ < Vln

\..----:;;-)

Using h(x) = h,(x )vlnX, by (2.20) and (2.16), wco btain

(2.21)



where C, is a positive consta nt.

R ema rk : By definition (2.6) of z, and using k 2: kO(1)) 2: l , one can check that

(2.22)

Hence, we can simply choose Ct = J~ +~.

Lemma 2.5 Let G(x) be defined by (2.5) with 0 = 1. Select ko 2: 2 so that for

k 2:k o, we have Xk-1r > eo. There exists a positive consui ni Cy such that under the

assump tion of Theorem 2.2 we have

(2.23)

Proof. On each interval Jv. we have

ln la + Sinl) - ~ln l~ l (x - x.) ' ai l (2.24)

a+ l l-~ (X - Xk ) '

Thus, we get

where Disa consta nt ,

G(X) < - D(Xk - 1r)(X - X.)' , (2.25)

D __ l ;' ln l~ I ' ai l. (2.26)

~ , a= 1

For x E Jk, sincch 2 (x) is a decreasing funct ion, we have

(2.27)



Usingh( x) =h,(x)/X , by (2.25) and (2.16), we obtain

('~5) ~h'(Xk-1r)~l: e-D(" -')(X - Xd'dx

('~6) ~h'(Xk -1r)~~

< C'~ h'(Xk - 1r)'

where Cs is a positive constant .

h,( x)/X eG(x ) dx

Remark: Similarly to the Remark after Lemma 2.4, since k ::: ko ::: 2, we have

Thus, we can simply choose C2 = Ii.

2.3 Proofs of Convergence Criteria for Oscillating

Integrals

After present ing the auxiliary lemmas, we are ready to prove Theorems 2.1 and 2.2.

2 .3 .1 Proof of Theorem 2.1

We will show that (C) => (B) => (A) => (C).

The statement "(C) => (B)" is obvious.

" (B ) => (A)" : By Lemma 2.2, we know that there exists k, such that for k ::: k,



andXE[Xk-~l Xk+~] we havc

r ...+~

J h(X)XP('in r- t ) dx > ~ht(X> + ~) '
r.-~

Summing over k and recalling the definition of A(I), we get

!;,ht(X>+~) < ~A( I ) < oo.

The sequence (x>+~)r. sat isfies the condit ion of Lemma 2.1. Hence, by Lemma

2.1, we infer that !2°Ohl(x ) < 00, which gives us (A).

" (A) ==>(e) " : By substitution x .....~ in A(8) (2.1), we get

SinceOP- p8int- l , as a function oft, is bounded away from zero and infinity,namcly,

A(8) < 00 = i:h G) tp(·'nt- I)dt < 00

By Lemma 2.4, taking 1/= 8, we obtai n

Since hI is decreasing, by Lemma 2.1, the condition (A) implies that the series

I::::'''''(8)h t (¥ ) converges. Hence, A(8) < 00.

Finally, we conclude tha t (A), (B), and (C) are equivalent.



2.3 .2 Proof of T heor em 2.2

10 We will shaw that (A) = (B).

"( B) = (A) " : By Lemma 2.3, we know that there exists k, such that far k ~ k,

and x E Ix. - ~, x. + ~J, we have

h(x) (a :~i~ Xr = h'(X)JX (a:~i~Xr >~h,(x.+~) .

Summing from k = k, to infinity, we get

00 C 26: h, (x. +~) < e B( I) < 00 .

In additian,the sequence (x. + ~)r, satisfies the canditian afLemma 2.1. Hence,

by Lemma 2.I , we obtain that ! ,OOh, (x )dx < 00.

"(A) = (B)" : By Lemma 2.5, and with ko defined there, we obt ain

Thu s, we get an upper estimate far the integral in Theorem 2.2:

B(I ) < J:'o-' h(x)eG(r)dx + C, 'foh, (x. - 11"). (2.28)

By Lemma 2.1, we know tha t L~ .... h, (x. - rr) is finite. Therefore, B(I ) converges,

20 We will prove tha t (B) = (C).

The statement "(B) <==(C)" is obvious.



"( B) = (e) " : Since B( l)converges, then f::'o/t dx converges . By chang­

i ng vari ables, we know that f:; ~ dI converges. Afterr elabeling i intop,the

sta tement "(A) = (B)" remains valid. Th erefore,

Finally, we conclude th at (A), (B), and (e) are equivalent .



Chapter 3

Measure and Category Theoretical

Behavior of Oscillating Series

In the previous chapter, we discussed some properti es ofthe oscillat ing integrals (2.1)

and (2.2). We also derived eonveuient conditions for convergence of those oscillating

integrals. In thischapter, we consider the corresponding series'

b(e)=~bn la:~nlnelnp ,

(3.1)

(3.2)

where (an)~= 1 and (bn)~= l are nonnegative sequences of real numbers. The corre-

spondence between (2.1), (2.2) on the one hand , and (3.1), (3.2) on the other hand ,

is esta blished by lettin g

an =h(n), bn =h{n), (3.3)

where h{x) is t he nonnegative function from (2.1) or (2.2) respectively. Thus the

int egra ls with respect to the x variable are replaced wit h the sums .



In this cha pte r, we describe measu re and catego ry theoretical propert ies of the

21r-periodicfunct ions a(O) and b(O), which demonst rate thebehaviour of the series in

the large. In Chapte r 5, we will st udy the behaviour of the series a(O) andb(O) at

indiv idual values of 0 and discuss arit hmet ic properties of 0 t ha t ensureconvergence

or divergence of t he series.

3.1 Measure Th eoreti cal Resul ts

In t his sect ion, we present twotheoremswhich give condi tions of integrabili ty of th e

functi ons (3.1) and (3.2) over th e interval [0, 21rJ. Integrabil ity means finiteness of t he

lIa(·)IIL' lo,2.)= [ ' a(O)dO

Ilb(' )IIL'[o.2'
1=

[· b(O)dO.

(3.4)

(3,5)

T heor em 3 .1 For a nonnegative sequence oj real numbers (an}~= l defining the [unc-

tion a(O) (3.1), the Jollowings tatementsareequivalent:

1) lIaOIl L' lo.2. 1< 00,

where h1(x) is defined in (2.7).

T heo re m 3.2 For a nonnegative sequence oj real numbers (bn)~~ l defining the Junc-

tionb (O) (3.2), the Jollowing statements are equivalent:

1) lIb(·) IIL'(o.2' « 00,



2 ) ~h,(n) = ~~ < 00 ,

whereh, (x ) isdejined in (2.8}

Th e following two corollaries describe the measure t heoret ical behaviour of the

series a( 8) or b(8).

C or ollary 3.3 Und er the cond it ion o] Ttieor em B.l , ,j L;,~, h , (:n) < '00, then the

series a(8) conve rges almost everyw here on [O,21r).

Corolla ry 3.4 Und er the cond it ion oj Theorem 3.2,

series b(8) conv erges almos t everyw he re on [O,21rJ.

requir e monotonicity of th e functions h,(x) and h, (x ). However, It th ese tunctions

Co ro lla ry 3 .5 Leth(t ) be apositiveJruncl ion su ,ch tholt h ,(t:) (2.·7) decreases.

an da(8) bedejin edby (3.3) and (3. I}. Th en thejo,llowil1g sta tem en.lsare equit'alent :

1) Ila( ·)IIU[o,'nl <00,

2) J,""h , (t )dt < 00.

Corolla ry 3.6 Let hi:!) be a positive j unction suc h thath, (t ) (2.8} decre,ases. Let b;

andb(8) be deji ned by (3.3) and (3.2). Then tlie jo llowinq stc temen is areequiv'alent :

1) IIb(.) IIL' [o,'nj <00,

2) J,"" h , (t) dt < 00 .



Rem ark: As we will show in Theorem 5.1 of Chapter 5, und er a st ronger assumpt ion,

namely, that hI t ) is decreasing, the state ments of Corollary 3.5 are equivalent to

almost everywhere convergence of the series (3.1). Similarly, by Corollary 5.4,ifh(t )

is decreasing, th e state ments of Corollary 3.6 are equivalent to almost everywhere

convergence of the series (3.2). Of course, in general, the condit ion 1) is much st ronger

than the condition b(O)<00 almost everywhere.

3.2 Proofs of Measu re Th eor etical R esults

3 .2 .1 P ro of o f Th eorem 3.1

Since the funct ions annP[sin(nO) - I! are positive and measurab le.we can apply Lebesgue's

Monotone Convergence Theorem [18J to interchange summat ion and integration:

By substit ntion , we obtain

(3.7)

In the last step of (3.7), we used the substi tution 0~ 0 - ~ and shifted the limits of

integration using Za periodicity.

For allO E [-rr,rr], we have

(3.8)



By (3.7) and (3.8) , forn > 1 we get

J." np[, inCn81- 1IdB > n- P1: e-'-!p O'dB

= ~ Erf ( n~) .

is t he Error functi on , cf. [1, p. 2971. Note th at the funct ion Erf(x) is monoton e

increasing and lirnx_ ooErf(x) = 1. Hence, th ere exists a posit ive integer no such that

for all n ,2:no, we have

Th erefore,for such n

Erf (n~» ~. (3.9)

J." nP[< in Cn8) - I J dB > J!li,~. (3.10)

From (3.6) and (3. 10) we obtain

Simila rly, by (3.7) and (3.8) , forn > 1 we have

1"nP[<'n(n8)- lldB < n- PI'ePlnnCl- ','.ldB = I' e-"'f'8'dB

o = ~ Erf ( n7)-'

< ff~·
Combining thi s with (3.6), we obtain



By (3.11) and (3.12), we have

The double-sided inequality verifies the equivalence of 1) and 2).

3.2.2 Proof of Theor em 3.2

Again, by Lebesgue's Monoton e Convergence Theorem, we have

IIb(.)IIL'[o." 1= [ ' b(O )dO=~[' bn l a:~nlno l np s« (3.13)

By substitutions simiia r to those used in (3.7), weo bta in

[' l a : ~nlno l np dO= [' l a ::i~ O l np dO =[' l a :~o: O l np dO

= { exp(np ln l a :~o: O [) dO .

Sincethe functionexp(np lnl~ll is21l" periodic,weget

(3.14)

Next , we find lower and upper bounds for the integral f~, exp (np ln1~1l dO
through cstimati ng the above two subintegrals.

The function In l~l = In (~) has a unique local maximum value 0 at

0 = 0 on the interval [-~, ~J and In (~)" 1.=0 < O. Instead of approximat ing the

function In ( a~~8) by a parabola as in the Laplace Method, we use two different

parabolas to contro l this funct ion from above and below. Namely, thereex ist positive

consta nts C, and C, dependingo nlyo nasuch that



(3.17)

Fromtherightsideof (3.16},w e get1:exp (npln la ::~0l) dO<1:e-C,npO'dO

= flii Erf( ~vc;,;;;} < fli~·

Likewise in (3 . 9} , thereexistsnasuch that forall n~ no we have Erf(jvc;pn) >!.

Using the left side of (3.16), for such nwe obt ain

1:exp(npln la : : o;°l)dO > 1 > - c.npO' dO

=~Erf(~~) > hflP~·
Hence, by (3.17) and (3.18), forn ~ na we conclude

(3.18)

~flp~ <1:exp ( np ln la : : o; 0 l) dO< fli~· (3.19)

ForallOE [j,~],weget

la::o;ol ~ max { I~I , I~ I } = M .

Clearly, 0 < M < I. Moreover, since limn_ ooMnp.fi! = 0, for sufficiently large n (we

may as..'iume n ~ no ) , wehave

J.'f exp(nPln l a ::o; ° l) dO < 1rMnp < ~. (3.20)

By (3.15), (3.19) and (3 . 20 } ,forn ~nowe obtain

~flp~ < 1: exp (nP ln l a ::~ ° l) dO< (fli + I)~ . (3.21)

Therefore, by (3.13) and (3.21), we conclude

~flpn~~ < IIb(·)IIL'(o.2.) < ~21rbn + (fli+l) n~~' (3.22)

The double-sided inequality (3.22) verifies the equivalence of I} and 2}.



3.3 Baire Category R esult

We recall some termi nology and fundamental results relat ed to the Baire Category.

For the purpose of our discussion, we restrict our attention tothe one dimensional

real case, tha t is, we consider only subsets E C JR. Let E deuote the closure of E

and EC t he compleme nt of E , namely, EC= JR\E. Reealll t hai: E c JRis a derlSe sel

if E = JR. The notation F in the following definit ion means (E )c.

Definiti on 3 .1 ([17, p . 158]) A set E is now here dens e in? is dense

contains no nonempt y open set. A setE is said to be<>/first ca te go ry ilEisthe

union oj a countable collection of nowhere dense sets. A set wl\ich is not ,'1 first

category is said to be of seco nd ca te gory .

points

For proof see [13, p. 33].

Defini tio n 3.2 ([18 , p , 38]) Let I be an in terval of JR.

is open in I .



Remark: By definition, 00 > 0" for any a E R. And "E is open in I" means that E

istheintersect ionof anopen set of lRwiththeinterval / .

Another, equivalent definition of lower semicontinuity will be helpful later in this

sect ion. We say that the function f (x ) is lower semicontinuous at a point Xo if

li~~ff(x) 2':f (xo ) .

Thenfislower semicontinu 0 uso n /(inthese nseo f Definition 3.2) if and only if the

above property holdsatany xoE / ,see[17, p.5 1, Problem 50(c)].

Lemma 3.2 Suppose (rn(t))::'_, is a sequence of positive continuous functions defined

f(t ) =~rn (t)

Proof By Definit ion 3.2, it suffices to show that for any real number 0 , the set

E = (tolf(to) > o }

is open. It is equivalent to checking that for any to E E , there exists a neighbourhood

U. (to) = (to - 6, to + 6)

of to such that U. (to) C E. Depending on convergence/ divergence of the series

2:::,,=,rn(t ) at to E E, we split our proof into 2 cases:

I ) f (to) > o is finite. For 0 < e < f (to) - 0, there exists IV E N such that

2:~=, rn(to) > f (to) -~. Since each rn(t) is positive and continuous, t here exists

6 > 0 such that for t E U. (to), we have rn(t) > rn(to) - iN (n = 1,2, . . , IV). Th us,

f( t) > ~ rn(t ) > ~ rn(to) - ~ > f (to) -, > 0 , (3.23)



fort EU , (to). Hence, E isopen.

2) j(t o) = +00. For any e > 0, there exists N E N such that L~=l , , (t ) > a + <­

Then , there exists d > °such that for t E U,(to ), we have ,.(t) > , , (to) - N

(0= 1,2 , .. ,N ). Thus ,

j(t » ~ ,, (t » ~ ,, (to) - < > a . (3.24)

Hence, in this case E isalsoopen.

We concludethatj(t) is lower semicontinuous on I .

R em ark : An alternativ e proof can be derived from [17, p. 51J. It st arts with the

observation that a function j defined on [a, b]is lower semicont inuous if and only if

there is a monotone increasing sequence (r.pn)~= l of continuous functions such that

j(x) = lim 'l" (x) for each x in [a, bJ. Define 'I',(t ) = L~= I ,,(t) . Obviously, ('I', (t))~= 1

is a monotone increasing sequence of continuous functions. Hence, f (t) is lower

Terms ofthe series a(B) (3.1) andb(B) (3.2) sat isfy the condit ion of Lemma 3.2.

By Lemma 3.2 we know that the functions a(B) and b(B) are lower semicontinuous.

Let us apply Lemma 3.1 to discuss the sets of discontinuities ofa(B) andb(B). The

set oj divergence of the series a(B),

A= {BE [0, 211'l l a(B) =oo},

and its complement , the set of convergence AC= [0, 211'J \ A, are the subject of the

proof of the following theor em.

T heo rem 3. 7 Let (Y' )~= 1 be a monotone decreasing and positive sequence such that



theseriesL:;a~I Yn diverges. If

holds jor each n > 1, then

the set of convergence A' of the series (3.1);

2) Th is set is of first category.

Th e same holds truefor the seriesb (O) (3.2).

und er the mappi ng 4>(x) = ~arctanx. For z. e R, 4>(x) is monoton e increasing an d

4>0 ~V . Hence , by Lemma 3.2, ¢ 0 a is also lower semicontinuous.

a(Oo) = 00.

By lower semico nt inuity of a( O), we have

li~~~f 4> oa(O ) ~ 4>0 a(Oo) = 4>(00)= 1.

In add it ion, since ¢(t ) ~ 1 everywhere, we get

T hus,

J~n;:, 4> o a (O ) = 4>0 a(Oo) = 1.

Hence , ¢o a is continuous at each 00 EA.



Second, let us show that under the assumption about an, the set A is a dense

subset of [0, 2rr)

The set Ao of all B E [0,2rr) in the form B"m = ~' where I, m (I < m) are

positi ve integers, is a dense subset of [0, 2rr]. Since sin(n B"m) = 1 for n = (4k+

l )m , k =O , l .. , by the inequality (3.25), we have

Since thesequence(Yn)~= l isdecreasing,w e get

Y(4 k+ l)m 2: ~ (Y(4k+l )m + "+Y(4k+ 4)m) '

Thus,w e obtain

Again by monotonicity of the sequence Yn, we get

Ykm2: ~(Ykm+Ykm+l···+ Y(k+ l)m-Jl .

Consequent ly,

~Y(4k+l )m 2:~~ Yk = 00 '

Thus, rP0 a(B/,m)= 1, so Ao c A. Hence, A is a dense subset of [0, 2rr]. By the first

step, we know that <jJoa is continuous at each Ol,m. Therefore,a(O) is cont inuous on

a dense subset of [0, 2rr].

Th ird ,duetothedensity ofth e set A, a(B) is continuous only at each B E A

Bywa y ofcontr adictioll, supposeth ere existsOo E ACsuch thata(0) is cont inuous

at 00 , Th en we must have

J!..'1', a(B) = a(Bo) <00. (3.26)



However, we have shown that the set A is a dense subset of [a,2".]. Thu s, there exists

a sequence (8"}::"~ 1 such that each element is from A and 8" ---+80 as n ---+00 . Since

a(8,,} =00 for every n, we get a contradiction with (3.26).

By Lemma 3.1 the set of points of discontinuityof a(8}, t hat is, the set of conver-

gence of the series a(8} is of first category.

The above proof is also valid for b(8).

R emark : In [13],Theorem 1.6 states that "the real line can be decomposed into two

complementa ry sets X and Y such that X is of first category and Y is of measure

zero". If we take b" = ~ and define b(8}as in (3.2), then by Theorem 3.7 we know that

X = {8 Ib(8} < oo} is of first category. In addit ion, L~_, ~ = L~=, n7n < 00 ,

so by Corollary 3.4 (p. 24), for almost all 8 E [0, 2".], b(8} < 00. Hence, Y = X '

has measure zero. This is another possible example that can be used to ascertain

Theorem 1.6 in [13] on an interval.



Chapter 4

Some Results on Diophantine

Approximations

In this chapter, we will present some fundamental theorems on Diophantine approxi-

mat ions as well as our results . In Section s 4.1 and 4.2, we discu ss Dirichlet 's and

Chebyshev's Approximation T heorems and their genera lizatio ns. In Sect ion 4.3,

we first review approximations by continued fractions and some classical results of

Khin chin. Th en und er the new relativ e growt h condition (RGC) and by the General -

izcd Dirichlet 's Theorem, we obtain an approximation criterion that complements the

result s of Khin chin . In th e last section, from the new criterion we derive preparat ory

numb er t heoret ic results, which will be essent ial for the proo fs of th e th eorems on the

divergence analysis of oscilla t ing series in Cha pter 5.



4 .1 Gen erali zed Di richl et 's Th eorem

Dirichlet's Approximation Theorem is a fundamental theorem on rational approxi-

mations of irrational numbers. Lemma 4.1 is one of several equivalent forms of this

t heorem. Another form ean be found in [14, p. 33]. The idea is to use the Pigeonhole

Principle. Recall t hat 11·11 denotes the dista nce to the nearest integer.

Lemma 4.1 (D ir ich le t's App roxim ati on T heo rem) For an irrational e and a

positiveintegerN,thereexistsapositiveinteger q:sNsuch that

(4.1)

Proof Split [0, I ) into N + I disjoint part s: 10 = [0, Nh), .. , IN = [r!h , I ). Since e

is irrati onal, (4.1) is equivalent to

(4.2)

Suppose, by way of contrad iction , that all the N elements of thes equence ({qe} ):~\lie

in the remainin g N - Idisjoint subintervals I " .. . , I N _ 1. By the Pigeonhole Principle,

one of these intervals contains at least two elements of the sequence. Namely, there

exist two different positive integers q\, q, E {1,2 , . . . , N } and a positive integerm

where I :Sm :S N - I. Then



0 < {q,B} - {qtB} = {(q, - qtl B} < N~ I ' (4.3)

(G en era liz ed Diri ch let 's T heor em) Given a positive in teger Nand

at least M =lx':'tJ terms suc h that

(4.4)

u here q, aredifferen t int egers andl ~qi :S N , i= 1 ,2 , · · 1M.

Proof Split [0, 1) into X disjoint par ts: 10 = [0, * ), .. '!x - t = [¥ ,1). Since B is

irrational, (4.4) is equivalent to

{q,B} E/oUl x _t • (4.5)



It suffices to verify that there are at least M elements of the sequence ({qO}}:=,

belonging to Io U IX- I.

Supp ose, by way of contradict ion, t hat there are at most M - 1 such elements.

Then there are at least N - (M - I ) elements lying in the remaining X - 2 intervals

1" ... , Ix_2. Since M=l6J<~, we have

N -Y: ;l) > N+ l -(~~ ~)/(X- l) ~ ~~ > M. (4.6)

BythePigeonho]e Prin ciple, oneo f I" .. . , Ix_ 2 contains at least L = M + l different

terms. Namely, there exist Ld ifferent positive integers ej , ... , qL E {1,2 , .. , N} and

a posit ive integer m such that 1 $ m $ X - 2 and

For k = 2, .. I L, similar to the proof of Lemma 4.1, we have

0 < {qkO}- {q,O} = {(qk - q.)O} < ~ . (4.7)

Next we will show that Iqk - qd l' Iq,- qdonce k l' I.

Suppose, to the contrary, that Iqk - qd=!q,- qd· We have

(4.9)

qk - q, =-(q,- q.). (4.10)



Th e equality (4.9) gives qk =q" which cont radicts kf' l. If (4.10) , then by (4.7), we

Th en X < 2, which cont radicts X ~ 3.

T herefore, we find L - 1 = At different positive integers Iq2 - qd , · · , IqL - qd E

{l , 2, .. , N } such that

IIlqk -qd811< ~, k = 2, .. . , L. (4. 11)

Relab eling Iqk - qd intoqk_hwe obt ain (4.4).

R em ark: If X = 1 or 2 and 8 is irrat ional , then for all 1 :s: q :s: N we have

Coro lla ry 4.1 Givenaposit iveintegerN and an irra tional 8, joranypositive real

numb er x E (2, N +11the sequence (q8)~_ , conta ins at least M = L~J term s suc h

(4.12)

uh ete q, are dijJerenti ntegersan d l:5 qj::: N ,i= 1, 2,

R em ark : Although the inequality (4.4) of this Generalized Dirichlet 's Theorem is

weaker than (4.1), we have more elements sa tisfying t his weaker inequality, which will

be useful in Sect ion 4.3. In numb er theory we rarely know the accuracy of approxi-

mation of par t icular irra tional numbers. Lemm as 4.1 and 4.2 provide some a priori

informat ion regarding the approximatio n of any irrat ional numb ers by rat ionals.



4.2 Generalized Ch eb ysh ev 's Th eor em

Dirichlet 's Th eorem implies that the inequality IInOIl < ~ has infinitely many integer

solut ions n. Th e next th eorem concerns approximat ion of IInO- bllfor any real

numb ers 8 and b, wheren is a posit ive integer .

Ch eb ysh ev 's Th eo rem [7] For an arbitrary irrationa l num ber 0 and an arbitrary

renlnumber b, the inequality

[nO- I - bl < ~

has injin itelymany solutions in int egersnandl.

For proof see [7, p. 39-40J.

(4.13)

R e m ar k : Chebyshev's T heorem shows t he exist ence of infinitely many integer so-

lut ions (n,l) of the inequa lity (4.13). On some occas ions one may be interested in

rational approximatio n of a special form with weaker inequality condition but with ex-

plicitb oundsfor solutions. Thi s point of view mot ivat csu s to generalize this th eorem

and modify th e proof given in [7].

Lem ma 4.3 (G eneralized C hebysh ev 's T heorem) Suppos e 'I' is a positive in-

creasing functi on andrp(x ):Sx. Given renlnumbersO,banda, [cI E N+, iflqO-p[<

~ (q,!pIEW, gcd(p, q) = I), then thereexist lE Z, nEWsuch that

1 '!.l n: ~ : :: I < ~ +~ (4.14)
c rp(f.;) rp(n )

R em a rk : Th e relation of t his lemma to Chebyshev's T heorem can be demonst rated

as f01l0W8. For any irrational numb er (J there are infinitely many co-prime integers



shows that there exist n, I such th at

jq :5 n < 2q

6 '
InB- I -bl < ;;:

(4.15)

Proof. Since IqB- p i < ~, we can write qB- p = ~, where 161< I. Then we have

(4.16)

Write the fraction ~ in the lowest terms: f =~, where Q E N+. Note that

~:5 Q :5a q.

Let tbe a nonzeroi nteger suchthat I ~- tl < I. Similarly to (4.16) , write

Since gcd(P,Q) = I , by Theorem 5.11 of [2], there exist integers r, s such that

rP-sQ = I, 1 :5 r < Q.

Hence (rt) P - (s t) Q = t , and for any k

(4.17)

(4.18)

(4.19)

(kQ + rt) P - (k P + st) Q = t . (4.20)

Let kbe theinteger such that

l :5k + g <2 .

n = kQ + rt , I = kP + st.



Then by (4.17), (4.21)

By (4.16) and (4.18), we have

~ SQS n< 2QS 2aq. (4.23)

By (4.20) and (4.22), the right hand side equals I~ - ~I S I~I + I~I· Since

8< 1 and 8, < I , by (4.23) and monotonicity of the funct ion cp(x), we obta in

Mult iplying by a / c, we get

Ino- 01: bl <~ + Ic l ~~n) S CP~~ ) +~. (4.24)

By (4.23) and (4.24), inequalities (4.14) follows.

4 .3 Some R esults on Ra tional Approximations by

Continued Fractions

4.3 .1 Continued Fracti ons an d Some Resul ts of Khin ch in

We refer to [7) for details on notat ion and basic propert ies of continued fractions .



Deflni ti on d. J A sim pleco llt illue d frac t io ll represent at ion oja real num ber O is

defined by

0 = 00+ -
1

- 1
al+~

where 00 is anin teger and al/ a,(i 2':I) are posit ive integers . We also wri te [Oo;a" a" ... ]

to denote B. Th en-t h conv e rge nt oj O is defin ed by

~= [Oo;a"a" . .. ,a n].

T he sequence (ai) eit her ter minates at a finite term aN (when 0 is rational) or

never stops (when 0 isi rrat ional ), sce [7, Th eorem 14,p.16].

T he following fundamental prop erty explains th e role of convergents in thetheory

of Dioph antin e approximation. Let Pn/q n be th e nt h convergent of 0, and Pn+l/q n+l

the next convergent . Obviously, qn+l > qn> O. By T heorem Dof j'[, p. 9], we have

(4.25)

We will be interested in more general Diophantine approximations of the form

(4.26)

Let us review two related irnporta nt results of Khinchin.

Le mm a 4 .4 (T h eo rem 31 o f Khill ch in [7]) Th ere exis ts an absolut e posit ive con­

stantB suchthat joralmostaI/O , j or sujJicientl ylaryen 2':no(O),

(4.27)

Here and belowq n(O) denot es the denom inat or ojthen-th conve ryen t oj O.



For proof see [7, p. 65-69j.

Let B be some suita ble consta nt in Lemma 4.4. Denote the set of real numbers

that satis fy (4.27) by

KB ={ OE R lqn(O) < eBn for sufficiently large n]. (4.28)

Th is notation will be used in Section 4.4 and in Chapte r 5.

R em ark : In 1935,Khinchinproved a stronger rcsult : there exists an abso/ute can-

stant,,! such that for a/most al/ O

yq;;(ij-> ,,! (n->oo) .

In 1936, P. Levy found that "!=e" /(12In2)(see jl l , p. 320J).

Khinchin used his est imate (4.27) of the growth of the denominator s ofco nvergents

of cont inued fraction s to prove the following rcsult on Diophant ine approximati ons .

Lemma 4.5 (Th eo rem 32 of Kh inchin [7]) Suppose that f(x) is a positive con-

tinuous function of a positive variab/e x and that x f (x ) isadecreasingfunction. Then

the inequa/ity (4.26) or equiva/ently , IlqOIl < f (q) has, fora/most all B, an infini te

num ber ofso/utions in integers q if, for some positive c, the int egm/

[f(x )dX (4.29)

diverges. Onthe otherh and , ifthe integm/ (4.29) canverges, then the inequality (4.26)

has, fora/most al/O,on/yafinitenumberofso/utionsin in tegers q.

For proof see [7, p. 69--71j.

Example If r > I , t hen Jt' ~ < 00, so by Lemma 4.5, for almost all 0, the inequality

(4.30)



halds far q ;:>:qo(8). Numhers8 possessing this prope rty are said to he not app rox-

imable to a ny order greate r tha n r . Similarly, if s > I , then, for almost all 8, the

inequality

(4.31)

holds farq big enough

To determin e wheth er a specific number has t he prop erty (4.30) or (4.31) is a

difficultqucst ian in numb er thcar y. For example, Licuvil le's Th ecr em lficp. 161] stat cs

that a real algebmic number of degree n is not approximable to any ordergreaterthan

n. Th e famous Roth 's T heorem [16J asserts that for all algebraic irrational numbers

8,theinequality(4.30)halds farq;:>:'Io(8) ifr> I. Th ere are open quest ions about a

possible stro nger state ment . Although it is impossible to set r = I in Roth 's Th eorem,

Lang's Conject ure [10, p. 214J statcs that for all algebraic irrati onal numbers U, the

inequa lity (4.31) would haldfor all s > I.

Not e that if r ~ I , t he inequality IIqUl1 < ~ always has infinitely many solu­

tions because of (4.25) . Recall tha t by Hurwitz's Th eorem [6, p. 164], t here ar c no

irra tionals 8 such that the Inequality IlqUII;:>: fsq holds for all q ;:>: qo. Th e fallaw-

ing definition facilitates the convergence analysis of oscillati ng series in Chapter 5.

The sets defined below are nonempty, and their complements have measure zero, cf.

Lemma 4.5 and (4.30) in the above example.

D eflnl tl on a. z For r > I , we define

~,={x E JR : I lqxlI ;:>:~haldsfarq ;:>:qo (x)} , (4.32)

where qo(x) is a posit ive in teger dependingonx.



4 .3.2 R elative Growth Co nd ition and New Approximation

Cr it erio n

Lemma 4.4 (Khinchin's theorem) bounds the growt h rate of th e denomin ators of

convergentsofcontinued fractions for almost all real numbers. \Ve now introduce

a new condition and prove a theorem on Diophantine approximation that compIe-

ments Khinchin's result . Th e proof is based on Lemma 4.2 (Genera lized Dirichlet 's

Theorem).

D eAnit ion 4 .3 Given a positive increasing function <p(x)such that <p(x) <x when

x ~ I , and another positive increasing function ,p(x), we say that ,p(x ) satisfies the

rela t ive gro wt h co n d it ion (RGC) with respect to <p(x)if

!
<p(,p(X)) > 1

,p(x ) r' X ~ Xo,
<p(,p(x)) ~c· b

whercb > 1, c, andxo are positive consta nts.

Examples will be given at t he end of thi s subsect ion.

(4.33)

R em ark : The condit ion "cp(x)<xandcp(x) is increasing" is crucial, otherwise wc

In the remaining part of this paper, we use Definition 4.3 with parameters b = 2

andc= 1/ 2. Since <p(,p(x)) > r<p(,p(x))1- 1 ~ I , by (4.33)' we get



In the proof of Theorem 4.2, [",(x)J and r<p(",(x))l play the same role as N and X ,

respectively, in Lemma 4.2.

Ap pr oxim a ti on C r it erio n Inv ol ving R G C

T heo rem 4.2 Let <p(t) be a positive increasing function such that <p(t) « t and ",(t)

satisfies RCG with respect to <p(t). Then for any irrational number 0 there exists a

sequence of dif!erent positive integers (qm):= 1 such that

(4.36)

where m = 1, 2, . .

Proof. Define N = [",(n)J (n 2: xo) and x = <p("'(n )). By (4.35), the number

M = [6 J in Corollary 4.1 (p. 39) satisfies thein equality

Thus, there exists a sequence of positive integers (qi)i:~ I _ I such that

1
1 $ q, < q2< . . . < q2n- ' _1 s [",(n )J

1 1 ' (4.37)

Il q;OII<<p(", (n))$~

where i = 1, 2, . . , 2"- ' _ 1. Similarly, for IV= [",(n+ l )J , there exists a sequence of

positive integers (b.);:~ ' such that

1
1 $. bl < b, < . . . < b,n_1 s [",(n+ l )J

1 1 . (4.38)

Il b, OII<<p(",(n + l))$ ~

Since the nnmber of terrns (b.) is more than twice that of (q.), there exist at least

2"-1 different terms in (b;) t hat do not belong to (q,). Next , we relabel exactly 2"- 1



different term s in (b,) by designatin g them as (q,};2;L.,arranged in the increasing

ord er. (Note that it is possible th atq2' - ' <q2.-.-d. T hus , inductiv ely, we construc t

asequence(q'}~ 1 where all q, are different , and

(4.39)

For any positive integer m, there exists a positive integern such that

Observingthatn +l :5 1og24m, we obta in

Qm:5Q2' -1 :5 l,p(n+ l}J :5,p( log2(4m)}.

Toget her with (4.39) , this yields (4.36).

R em ar k: One can construct many pairs of functions satisfying the RGe and usc

Theorem4 .2 toderiveva riouss pccialapproximationrcs ults.

T he following two examples of pairs of funct ions that sat isfy RGC will be impor-

tantinthe next sect ionandforthcdivergcnce analysisoftheoscillating seriesin

Chapt er 5. In both cases, b=2, c = I f2 , andxo = I.

Example 1

{

<p(X} = x"
, O:5 {3<1.

,p (x ) = 2~

(4.40)

Letus chcck thenontrivialpart ~ :::: 2% -l of (4 . 33 ) .Indeed,from (4.40}wehave

~= 2~ = 2%> 2%-1
<p(,p(x)} (2~)P .



Exa mp le 2

(4.41)

To check RGC, by (4.41), we get

4.4 Applications: Estimates for Int eger Sequen ces

for whi ch sin n kB -> 1

A motivation of this definition will become apparent in Section 5.1.1 of Chapter 5.

Combining the facts from Theorem 4.2, Lemmas 4.3 and 4.4, and Example 1, we

are able to obtain the following result , in which part (b) is an analog of part (a) in

the case {3= 1

Lem ma 4.6 There exists an absolut e positive constantC such that:

(a ) If 0 :;; {3 < 1, then for all OJ,, E fl there exist infini tely many in tegers nk

(k = 1,2 , .. . ) such that

l
nk < 8 (2k)~ (4.43)

sinn kO> I - f¥ ·

(b) For almost all OJ,, E fl , namely for all OJ,, E fl nlC B there exist infini tely ma ny

inteqers ru; (k = I ,2 , .. . ) such that



(4.44)

Proof (I)Case Ojrr EJR\IQI. By (4.25), t here are infinitely many posit ive integers e,

I~-;I <~, (0 $f3 $ 1) (4.45)

where pk, qk areco- prime,k = 1,2 ,

Set a = 4, b = I, c = 2, ",(x) = xP (0 < f3$ I ). Then, applying Lemma 4.3, we

have, by (4.14),

where C is a positive consta nt (note that cosx ~ 1 - 'i-when x ~ 0).

Next , we will determine the upp er bound for each n.:

(a) For °$ f3< I , by Theorem 4.2 and (4.40), we get n. < Sq. $ S(2k)~

(b) For Ojrr E fl n !CB , by Lemma 4.4, we have n. < Sq. $ SeB' , where B is defined

in (4.27).

(2) Case Ojrr = ¥ (l E N+,m E Z). Let n. = (4k + I )l for m even and

n. = (4k - 1)1 for m odd. Then we get



The upp er bound of nj, in this case is tri vial in hoth (4.43) and (4.44).

From Lemma 4.6, we can directly get the following proposit ion, which pertains to

one of the aspects of the divergence analysis of the oscillatin g series of Chapter 5 (see

proofs of Th eorems 5.2 and 5.3).

Pro position 4.1 For C defined in Lemm a 4. 6:

(a) IjO <5, {3< I, thenjorallB j Jren we have

1~',;l-!~f la +as:;kT:"p 2':e- !f"

where the sequence (nk) is determ ined in Lem m a 4.6 (a ).

(b) Forall Bj Jre n nK. B , where K.B is defin ed in (4.28), we get

1~',;l-!~fl a+aS~l;kB ln:p 2':e- !f"

where the sequence (nk) is determined in Lem m a 4. 6(b).

Proof By Lemma 4.6(a), we obt ain sinnk B > I - ~ . Then

> lim la+ l_~ln:"p
- nk .....oo a +l

= lim (I __ C )n;"p
= :~-; . (a + l )n~P

The proof of case (a) is finished. The proof of case (b) is completely similar.

Lemma 4.6 deals with the pair of functions (4.40) sat isfying RGC from Example 1

of Section 4.3. Similarly, t he pair of functions (4.41) from Example 2 leads to the

following lemma, which will be used in the proof of Th eorem 5.1



Lem ma 4.7 For B]« E n, there are infini tely many positive integers (n.)r:.o such

thatfor each n..

jn. < 32k y1og,(4k)

sin n. O> I - Iag~n. ) '
whereC is a positive constant, koEN+

(4.47)

Proof. (I) Case O/ rr E IR\ Qi. Define ",(x) and t/J(x) as in (4.41). By Theorem 4.2,

there exists a sequenceaf distinct pasitiveintegers (q. )r: , suchthat

Let a = 4, b = I , c = 2. By Lemma 4.3, we can find a sequence (n.) such that

jn. < 32k y1og,(4k)

In. ~_4\+ I I <k+~<~' (4.49)

where A is a positive constant, k 2::ko E N+ and lk E Z. Hence,

. ( 41. +1) ( Arr) Csm n. O=cas n.O --rr > cas r.::::::T::\ > 1 - -1 ( )'
2 y lag,( n. ) ag, n.

where C isa positive constant .

(2) Case O/rr = ¥ (l E W , m E Z) . Let n. = (4k + 1)1 far m even and

n. = (4k - 1)1 far m add . Then we get

The upper bound of n, in this case is tr ivial in (4.47).



Chapter 5

Convergence/Divergence of

Oscillating Series at Individual

Points

After esta blishing several number theoretical lemmas in Chapter 4, we will study how

the arithmetical properti es of 0 cont rol convergence or divergence of theoscillat ing

series (3.1) and (3.2) at individualvalues ofO . In Section 5.1, several sufficient

conditions of divergence are developed. In Section 5.2, generalizing the method of

A. Stadler [21], we obtain some sufficient conditions of convergence. In Sect ion 5.3,

we give severa l exa mples as an application of th e main thcoremsofthis chapter. In

the last sect ion, we rigorously prove an upper bound for the series L:=l~(~r



5.1 Diver gen ce Analysi s of Oscillating Series

5.1. 1 R esul t s on Div er gen ce

Let us begin with some trivial observations. For () in the form B/1r=~, where

mE N+, I E Z, the sequence (sinn O)::"=, ta kes t he value 1 periodically infinite ly

many times. In this case , th e series a(O) and b(O)diverge whenever the sequence

(h(n))::,,=, is monotone and I: ::,=,h (n ) diverges (similarly to t he second par t of the

proof of Th eorem 3.7).

If 0/ " is irrat ional, then sin nObecomes ar bitra rily elose to 1 infinitelymany t imes

and the questi on of divergence/ covergence is nontr ivial.

In the remaining case, Bi rr E DC, where nc is the complementary set of n

(4.42), we have sin nO~ M, < 1 for all n 2: 1, where M, is a positive consta nt. T hen

it is easy to esta blish convergence condit ions for the series a(O) and b(O) under as-

sumpt ions that are much weaker than those in theorems of Chapter 3 and Sect ion 5.2.

From now on , we focus on sufficient cond it ions of divergence in the nontrivial case.

They are complemented by some simple conditions of convergence. Nontrivial cases

of convergence will be analyzed in th e next section

Th eorem 5.1 pert ains to the series a(O)(3.1), and it should be comp ared toCorol-

lary 3.5 of Chapter 3

T heo rem 5.1 (a) Supposeh( x) is a positive decreasing junction. IjJ,ooh, (t )dt di­

verges, uihere ti, is defined in {1!.7},then joraIlO/"E O theseriesa(O) (3.1} diverges.

(b) Ijh(n ) ~~, whereC is a positive constant, then for oll Ill n E 0' the series

a(O) {3.1} converges.



R em ark: Th e condition h(n ) ::; ~ in part (b) can be replaced by h(n ) s~
for some real s, or , more genera lly, bythe condit ionh(n )n' - '-> Ofor any < >O as

Th e following two theorems relat e to th e series b(B) (3.2). Compared to Th eorem

5.2, th e assumption of Th eorem 5.3 is weaker and t he conclusion is different .

T heor em 5 .2 (a) Supposeh(x ) is a positive decreasing junction. IjJ,oo ~dt di­

verges,then theseries L::'= l h(n) I~ln'Pdiverges jor almost all Bj7re fl ,

namely,jorall Bj7reK.B n fl , where K.B is defined in (4.28).

(b) Ij h(n)isbounded,then theseries L::'= l h(n) I~I""Pconvergesjor all

Bj 7refl' and alla > O.

R emark: By th e Comparison Test for positive series, t he conclusion of part (a)

remains valid if we replace the exponent 2 in n2 by a smaller number, but in that

case th e next th eorem gives a stro nger sta tement

T heo re m 5.3 Suppose h(x) isapositivedecreasing junc tion, O ::;f3 < 1, anda ::;

2f3 . Ijthe integraIJ,oo "tPdtdiverges,thenthe seriesL::,=lh(n ) I~l n"P diverges

jo rallB j 7refl .

Rem ark : While the proof strateg ies for these two theorems are similar, the important

det ails vary: t hey refer to different cases of Lemm a 4.6. In t he proofs of Th eorems

5.2 and 5.3, we depend upon upp er bound for th e sequence of denomin ator s of the

convergents of t he continued fraction ofB /1r. Theorem 5.3 clarifies th e case a < 2,

and its conclusion is valid for a ll Bj7re fl. On the contra ry, part (a) of Th eorem 5.2

describ es t he case a = 2, and its conclusion is only valid for a lm ost a ll Bj 7re fl . Thi s



gap is not accidental: when Q < 2, we use the RGC-based approximation criterion of

Th eorem 4.2, which holds for a ll irrat ional 0, while when" = 2, we use Lemma 4.4

(Khinchin's Th eorem) where the conclusion is valid for a lmos t a ll O. In th e latt er

case the only way we know to control the numbers n k for which sin n k(} is very close

to I as in (4.44) is to usc Khin chin 's measur e-th eoret ic argument of Lemma 4.4.

When 13 = ~ in Th eorem 5.3, the following corollary gives some st ronger prop erties

of t he series b(O) (3.2) than Corollary 3.6 of Chapter 3.

Corollary 5.4 (a) Supposeh (x ) is a positive decreasing func tion. If!,OOh, (t)dt di­

verges, where h, is defined in (2.8), then for a ll Ojrre f1 the seriesb (O) (3.2) diverges.

(b) Ifh (n ) is bounded, then the series b(O) convergesfor all Ojrre f1'.

5.1.2 Proofs of T heor ems 5. 1- 5.3

Proof of Theorem 5.1. (a) By Lemma 4.7, we can find infinitely many distinct positi ve

intcgers n r mdexed byk = ko,ko+l , ... ,s uch that

l
nk < 32k~

sinnkO> I - IOg~nk) ,

where C is a posit ive consta nt. By the second inequality in (5.1), we get

(5.1)

(5.2)



Sinceh(x)isdecreasingandn. <32k~,we have

By the subst itution t = 32x~ and the Cauchy Integral Test , we obta in

l °Oht (t )dt= oo = J.oo h (32X~) dX = OO

= ~ h (32k~)=OO.

The first equivalence is based on the result

Thus, L: r=th (n. ) is divergent , and so is L: ;;':l h(n.)n~(·in (n. 9) - I ) (see (5.2)). lienee,

the seriesL:;;':, h(n )nP(Oin(n91- 1) diverges.

(v) Since h(n ) :O; ~ , we have

Since B/ tr E fY, we have sinnB ~ AlB< 1 where 1.10 is a posit ive constant . Thus, we

~h(n)np(' i n (n9 ) - ' ) :o;~ cn-t -p(I -M' ) '

Hence, these ries L:::"_l h(n)nP('in(n9)- t) converges by the p-series test .

Proof of Theorem 5.2. (a) By part (v) of Lemma 4.6, for all OJ,, E fl nKB there exist

infinitely many positive integers n. (k= 1, 2, .. . ) such that n, < BeB
' , whereB is

defined in Lemma 4.4. Sinceh(x) is decreasing, we get

(5.4)



By t he Ca uchy integral test and substi tu t ion, for any positiv e cons ta nts A" A" we

/ 00 ¥dt = 00 <=* / 00 h(A,e''')dx = 00 <=* ~h(A, e" . ) = 00 .

Taking A, = 8, A, = B and using (5.4) , we conclude that I:~, h(n.) is divergent.

By Proposit ion 4.1 (b), we have

lir.:~fla+as~n;·rp ~ e-:fr.

Multipl ying both sides by h(n. ) and summing over k, we conclude that the series

2: :l h(nk)I~lnlp is divergent . Clearly, the series L~=,h(n) 1~ln'p

also diverges.

(b) Since h(n) is bounded, thereexists M > Os uch that

SinceO/1r E !1' , similarly to the th e proof of Th eorem 5.1 (b),we have I~I::; K ,

where K < l is a positive constant. Hence

~h(n) l a: ~,~no l n.p < M~[("·P < 00 .

Th e proof is completed.

Proof of Theorem 5.3. By part (a) of Lemm a 4.6, for all O/ 1rE !1 t here exists infinitely

many integersn.(k = I, 2, ... )suchthatn. <8(2k)~ . Since h(x) is decreasing, we

(5.5)

Since 0 ::; {J < I , we haveatrivial butcrucialequivalence

/ 00~dt = 00 <=* (1- {J)/ 00 ~dt;: / 00 h(t )dt ' - P = 00 . (5.6)



By subst itut ion and th e Cauchy Integral Test , for any positi ve const ant), we obt ain

<= ~h()'k~ ) = OO.

Takin g ), = 8· 2~ , by (5.5) we see th at 2::%:1 h(n.) is divergent . By Propo sition 4.1

(a), we have

Multipl ying both sides by h(n.) and summing over k, we conclude th at th e series

L.:r=lh(nk)1~ln~l1p is divergent. Clearly, the series L::=lh(n)1~ln2Pp also

diverges. Sinceo :'02(3, the conclu sion follows by th e compari son test .

5.2 Converg ence Analys is of Oscill at ing Seri es

Theorem s 5.1 (b) and 5.2 (b) of Section 5.1 already give some simple sufficient con-

vergence conditions for th e series. In thi s section, we focus on less tri vial cases. \Ve

genera lize th e met hod of [21] to analyze sufficient condit ions of convergence of the

oscillatin g series (3.1) and (3.2). Th e result s are stated in Section 5.2.1. The key

ingredie nts of the method are describ ed in Section 5.2.2, and in Section 5.2.3 the

proofs of th e main theorem s on convergence are finished.

Note t hat the arit hmetical properties of t he number Bin thissec tion arc expressed

in terms of1f /B rath er th an B/1f as in other sect ions.

5.2 .1 Resu lts on Convergen ce

Definition 4.2ofthe setsl> , (4.32) is crucia l for th e discussion in th e remainin g part

of thi s chapt er.



Theor em 5.5 Let rr/B E t. , and '0 >~. If

whereC is a posit ive cons tant, then we have

T heor em 5 .6 Letrr/B Et., and '0> ~-t:b . If

(5.8)

(5.9)

whereC is a positive constan t, then we have

b(B ) =~h{n) l a : :nlnB l np <00. (5. IO)

Rem ark: Both function s (5.8) and (5.IO), which are identica l to th e series (3.1) and

(3.2) respectively, are 2rr-periodic. In the rest of th is pap er , it will be assumed that

B E {0, 2rr].

5.2.2 St ad ler's Met ho d wit h Para mete rs

First , we define cut-off function s similar to t hose in [21]. Given a positi ve real number

r from the definition (4.32),choose1/J{x) to be even and lrJ + 2 times continuously

differenti ab le on lR,s uch th at

{

I ,
1/J{x) =

0,

and O<1/J(x)< lfor l<lxl< 2.

Ix l ::;1

[z] ~ 2

(5.1I)



IJI(X)

Figure 5.1: Graphof a 5 t imes cont inuously differentiabl e function efz)

Choose Gc s < i, define

¢(x )=,p(x/,) (5.12)

for x E [-~,~], and exte nd ¢Jto a l -periodic function on IR. Then we can write

¢(X)=k~~

is the k-t h Four ier coefficient of¢(x).

(5.13)



In addit ion, we intro duce t he following not ati ons related to .p(x):

<:0= L lfiI (X)ldX,

c,=(21lrt' J-21:'filllrJ+2)(x), dx,

C2 = (21r)-l rJ- l1 : lfilllrJ+l)(x )ldX,

C3= (crl~(C2) 1-~ ,

(5.14)

where °:5 {3:5 1, and {3will be specified in Lemm a 5.2. T he const an ts Cj defined in

this sect ion may depend on pararneters d.p , etc , but are independent of f.

For any integer k,w e have

lakl:51: l.p(x)Idx = 1 : IfiI(x/<)1dx = e1 : IfiI(x)1dx = <L IfiI(x)1dx.

In particu lar when k= O,weget

laol :5<:o<· (5.15)

In addition , for any integers m, k with 1 :5 m :5 [r J+ 2 and k # 0, the [r J+ 2 times

differcntiabi lity of tstz ] implies t hat

lakl :5 ( 2 1r~)m1:1.p(~l(Xl l dx = ( 2 1r ~<)m1:IfiI(m)(x /<l ldx

= ( 21rk)~<m_ l 1: l fiI(m)(x) l dX

= km<~_1 (2 1r ) -mL l fiI (m) (x ) ldX.

Taking m = [rJ+ 2, we obtain

(5.16)



Andtakin g m = [rJ + 1, we get

(5.17)

Thu s, fork ",Oand any {3e [0,1], we have

lakls Cl"J +l~~WJ+2rCl"J ~:"J +l)' -P = E l"J+PI~ll"J +l+P ' (5.18)

Next ,weintroduceanother notat ion

0= l-cos(OE),

whereE isthe pa ramete r in t hedefinit ion (5.12) ofq.(x) .

(5.19)

Th e use of th e funct ion q.(x) and of th e consta nt 0 defined above relies on the

following prop erty.

Lemma 5.1 The inequality

(5.20)

holdsif and onlyifthereisaninteger qsuch thatq.(~) = lorequivalent/y,

Proof Th e inequali ty (5.20) is equivalent to

sin(nO) = cos (nO- ~) > 1 - 0 = COS(OE).

Since 0 e (0,2"1 and °< E:S ~ , th ere exists q e Z such th at

Equivalently, we have



Thus,by (5 .11 ) and (5 .12 ) we get ¢(~) =I,and vice versa.

Th e following sets are defined with th is property of the funct ion ¢( t) in mind.

Given N E N+ , define a "bad" set E N and a "good" set GN ,

BN = {nE Ii' I N < n~ 2N and l - sinnO <J},

GN = {n E Ii' I N <n~ 2N and l - sin nO ::':J}.
(5.21)

From Lemma 5.1, we can get another, equivalent characterization of the set EN l

namely

BN = {nE Ii' I N < n~ 2N and In - {4
q;

/)
1r

1 < < forsomeqEZ}.

Those numbersqinthe seconddefinition ofB Nf orma subsetof the following set

QN= {qEIi'IN_ ~«4q~ I)1r ~2N+ n .

Since e ~~, it is easy to sec that if n je n', then the corrcspondin g valucsofq andq'

are different. Thus, we have

From the above result s, we can get an upp er bound of the cardinality of the set

B N for 1r/0 E t. " where t. ,isd efined in (4.32).

Lemma 5.2 For1r/OE t. , and {r } < f3~ 1, we have

whereC4,CSarepositiveconstants.

Proof By (5.22) and (5.13), we obtai n



Now we consider t he cases k = 0and k i' 0separa tely. In th e case k = 0, we observe

tha t # QN ~ ~ + 1. In t he case k i' 0, we need th e following inequality

1

m ·1 le2
. (m - l+ l )Xi _ 11 2 I I

~ e2.nx> =~~ l eni - e-nil = lsin1rxl ~2f,if '

where x E IR\ Z and l, m E Z

From th e abo ve results , we get

# BN ~ laol (~ + l) +f;2 1 11;Z~ II ·

Togeth er with (5.15) and (5.18), this yields

where c. > 'f! +Cois a posit ive consta nt. Th en by definit ion (4.32) of t>" we have

, C3 (" 1 " 2')# BN ~ c,/\, + 2,l,j+P L..J k l,j +l+PII2k ~ 1 1 + L..J Ikll+p-(,j .
Ikl$ qo 8 Ik!> qo

Since * is an irration al numb er, 112k*II> 0.Since (3> {r}, th e series

converges. Settin g

C3 ( 1 2' )c,= 2 L k l,j + l+P I 1 2k~ 1 1 + L Ikl'+p-{,j ,
Ikl:5Qo 8 Ikl>qo

we get (5.23).

(5.24)



5.2 .3 Proofs of T heor em s 5.5 and 5.6

To est imate par t ial su ms of the oscillat ing series (5.8) and (5.10), we define

Th e not ati on BN,G N (5.21) will be used throu ghout th e proofs.

Proof of Th eorem 5.5. We first est ima te the following parti al sum

Since nP(lIin{n8) - I ) ::5I, we get L nEBN nP(lIin(n8) - 1) < # BN · For n E G N , we have

l- sinn0 2:J. T hus ,

13ydcfinition (5.19) of J ,there exist s apositi ve const ant c£ suchthat

J = l - cos(O, ) 2: c£".

Using Lemma 5.2, we obta in

13ythc assumption (5.7) abouth(n ),wc gct

G(c" + csN- ',- l'J -P + N- pq;,' )
"N < (lnN)I (lnlnN)1+<o .

,=(ln N) -I(ln ln N)'l'+l ,

(5.26)

(5.27)



so tha t for N big enough e < t. Next we will show t ha t the re exists No such t ha t for

N2: No we have

" N < In N(ln ;~ N) 'J' + I '
whore c- is a posi t ive consta nt.

(5.28)

Let us wor k ou t the right han d side of (5.27) term by te rm . Pl ugging t he value of

f in c. e, we obtai n

(5.29)

For any rea l numbe rs s,t , we have ~~ooN- I( lnN)'( lnlnN)t = O. Hence, for N big

enough,wealways have

(In ~~~:~~~';~t+" < In N(ln ;~ N)'J'+I' (5.30)

[n add it ion , sinceln N """ ' = pc,;(ln ln N )'O+! , t he inequality

N-Pct3('l 1

(InN) !( ln lnN)t+'o ~ In N (lnln N ) 'J'+1 (5.31)

is equivalent to

pc,;(In In N)' o+! ::': ln l; N - n + ~) ln ln ln N ,

which is tru e for N big enough since <0 > ~, and hence (5.31) also holds for such N.

Th e inequ ali ties (5.29), (5.30) ,and (5.3 1) verify (5.28).

By (5.25) and (5 .28) ,weobta in

n=~+ l h (n)np(' i n(n. ) _ I) = j~o ln2j( ln;~ 2j)'J' + 1

= ~j~oj(lnj+ I~ ln 2)'J' +1 < 00.



n~Ja:~nlne lnp < #Bdn~JI- ;:hr

< #BdN (I-;:hfP.

ni,la:~nlnelnp < #Bd Nexp(-NP;:h)
s #BN+ NeXp(-c::n·

By the assumpt ion (5.9) abouth(n), we get the bound for the par tial sum TN from

(5.25)

Since '0 > ~ -;:h, there exists '1 (0 < 'I::; 1 - (T}) such that

1 1
'02:2-~'



'TN <cs N! -(O-trrlm (5.33)

is equivalent to

~Nf;jffii 2: lrJ+1f3+ 1 In N. (5.37)

Clearly, (5.37) and hence (5.36) hold for N 2: No, where No is a positive integer. T he

inequalit ies (5.34), (5.35), and (5.36) verify (5.33).

By (5.25) and (5.33) , we obtain

j~o ~(,o+~-i) <OO.



5.3 Interesting Ex ampl es

In thi s sect ion, we are going to provid e severa l intercstin g exampl es, which are special

cases of th e main t heorems of this chapter. T he examples are based on the ar ithmeti c

propert ies of the numb er n and of algebra ic irrati onaliti es.

In Exampl es I and 2, we deal with the irrational number tr. We use some recent

resul ts about rational approximatio ns to zr. [n [19], V. Salikh ov proves th at

(5.38)

for allintegersp,qwithqbig enough,whcre

(5.39)

A lower bound qo in (5.38) is not specified in [191.

In Exa mples I and 2, we take 0 = I , so t hat triO = n . In view of (5.39) , by

Defin i tion4.2 we see that tr E~" .

In Exa mple I , the valueof vis notimportan t ; in part icu lar , t he firstresult [12]

of the type (5.38)withv=41 (andqo =2) would suffice.

Exarnp lc 1 By Theorem 5.5, for eo > ~ we have

~ (ln :;[;';;~)I:l~-)II+" <00.

In par ticular vt he result for p e I takes th e form

(5.40)

~ (lnn)~~~:;;~ :) I+'O < 00 «0> ~ ). (5.41)

On t he other hand ,Theorem 5.1 shows that

~ (lnn:;:;:: n =00.
(5.42)



Remark : From (5.42) we see that

(5.43)

The convergence problem for the series (5.43) was proposed by S. Sadov in April

2010 as another example of a "calculus exam misprint " similar to [15]. Th is problem

stimulated us to include these ries a{O) (3.1) in this research.

Example 2 By Theorem 5.6, for <0 > ~ - -.tv = 0.36853 " , we obta in

~~ l a ::i I; nl np < oo .

In par t icular , fora =2,p = 1, we have

(5.44)

~ n0 8~853 C+~in nr< 00. (5.45)

This is an improvement over Stadler 's result

(5.46)

On the oth er hand , by Corollary 5.4, we get

~ nl:n n C + ~in nr = 00. (5.47)

Remark: The problem of convergence of the series (5.46) was posed in [15] and the

solut ion was first presented in [21]. Thi s problem was also ment ioned as an open

problem in the book [3, p. 56]. Our generalizat ion of Sta dler's metho ds led to the

stro nger results (5.44) and (5.45). In addition, t he divergence ofthe series (5.47) is

obt ained here as a consequence of a more general Th eorem 5.3 whose proof is based

on number theoretica l results of Chapter 4.



In Examples 3 and 4, we discuss irrational algebraic numbers. Roth's Theorem

[16] states that for any irrat ional algebraie number o, given r> 1, the inequality

(5.48)

holds for q big enough.

In Examples 3 and 4 we assume that ° = 1r/8 is an algebraic irrat ionality. Hence,

oE C;., . (See Definition 4.2, p.45.)

Examp le 3 By Theo rem 5.5, for '0> ~ , we obtai n

00 nP[ (lIin ~ )- 1 1 -1 < 00

~ (ln n) ! ( lnln n ) I+'o .

[II par t icular , theresultforp= 1 takes the form

(5.49)

~ ( In n~;;I:;::)I+'Q < 00 ('0 > ~ ) . (5.50)

On the ot herhand , Theorem 5.1 indicates that

~ (lr~:;~';:~ln = 00.

Exam ple 4 By Theorem 5.6, for fO > ~ - ti;, we obtain

(5.51)

(5.52)

Since T can be any real number greater than l , we can choosc fo arbitrarily close to

O. Therefore, the inequality (5.52) holds for any '0 > 0.

In par t icular, fora=2, p = 1, we have

On the ot her hand , by Corollary5.4 , weg et

~ n l :n n (2+ ~n ,,;;,r =00. (5.54)



5.4 Upper Bound for th e Renardy-Hagen Seri es

M. Renardy and T . Hagen discussed the following series in [15]

Its part ial sum equals to approximately 2.163 after lO'terms asment ioned in [22].

No proper upp er bounds for this series had been known. We will provide a concrete

upper bound in Theorem 5.7. The derivation depends on Lemma 5.2, the technique

of proof of Theorem 5.6, and the following result by M. Kondr at ieva and S. Sadov

[8], of the form (5.38) with an exponent worse th an Saliklov's but an explicit lower

bound qo = 2

Lem ma 5.3 For any integer q with q 2: 2, we have

(5.55)

A proof is given in [8].

Th eore m 5. 7 (U ppe r Bound) We have the following upper bound

~H2 +;in nr <2.1664 .

Proof. We split the series into 3 part s:

(5.56)

The splitting points arc chosen somewhat arbitrarily after some numerical experi-

mentation . The par ts SI,S"S3 will be estimated separately.



(1) To est ima te 83 , we follow th e developm ent s in Sec tio n 5.2.2 and use the no-

tati on from t her e. Let r = 9 and (3 = 1, and define an 11 t imes cont inuously

different iable eve n fun cti on 1/J(x) as follows:

1

1, Ixl:,> 1

1/J(x) = 16224936 ( ' (t - l )l1(2 - t)l1dt, 1 < Ix l < 2 ,
J 1xl

0, Ixl2: 2

(5.5 7)

where 16224936 = (J,' (t - 1)11(2 - t )l1dtt ' . Using Mathematica (see App endi x) , we

get the values ill (5.14)

"0= LI1/J(x )ldX= 3, (5.58 )

By (5. 15) and (5.18) ,

!Iakl :'> < IOI~I 11(21r) - 11 1: 11/J( 11)(X)ldX:'> < IO~~I 11 (k "!'O)

,ao,:,><1 : ,1/J(x),dx = 3< . (5.5 9)

Like in t he proo f of Lemm a5.2 , we have

whe re c, is defined in (5. 24) ,and nume rica lly (see App end ix)

c3
( 1 2' )

C5 = "2 L kll l12k1r11+ L jkj2 < 4342 8.3.
IkJ:5107 Ikl>IOT

Simila rly to the proof of(5 .32), we have

(5.61)



Note that since B = 1, we can choose C{; = :J, (see (5.26)). Taking e = N - tr, we get

Thus,w e obtain

33 = n~~+1 ~ C +;in n)" =

::; j~0 [ (~ +C5) -ft;+zW +exP (-~2lt ) ] < 0.00067.

(2) By MATL AB (see Appendix), we have

(5.62)

31 = ~ ~C+ ; in n ) n < 2.16316. (5.63)

(3) It remains to get an estimate for the par tia l sum

Fixf= 10- '. Similarly to the definit ion of "good" and "bad" sets (5.21) in the

proof of Th eorem 5.6, introd uce a "bad" set Banda "good" set G adapted to the

present problem:

B = {n E [230 + 1, 23301n /II 13k E /II : In - 2kTr- ~I < e]

and G is the complement of B in the interval [230 + 1,2 3301of integers

C laim : if nl, n, E /II and nl < n" then n, - n, ::: T , where T = 81273.

This fact is verified in Appendix. From this Claim, we can get an upper bound



whereK= l2""i 2"j.
The estimate of the "good" sum is as follows:

~~C +~in nr < ~ ~ c + sin? - <)r

< n~' ~ c + sin3( ~ - <)r < 1.06 x 10- 80

Thus,

52 < 0.00257.

Combining (5.62) , (5.63), and (5.65), wege tan upper bound

~ ~C+ ~inn)n < 2.16316 + 0.00257 + 0.00067 = 2.1664.

(5.64)

(5.65)

Rem ark: Since computa tion of sin x with large x by a parti cular software needs to be

validated , we compared the values of sin 260 prod uced by MATLAB and Mathematica

set to 50 digits of accuracy. The results from both programs were consistent.



Chapter 6

Open Questions and Other

Attempted Methods

In thi s cha pte r, we first propose severa l open question s relat ed to th e oscillatin g series

considered in thi s work . Then we present two seemingly promi sing meth ods th at had

been atte mpted to prove divergence or convergence of t heserics (5.8) or (5.10) bu t

did not lead to the actual proofs.

6 .1 Severa l Op en Qu est ions

In thi s sect ion, we post several open questions to stimulate int erest and potential

furth er progress.

Q uest ion 1 Underwhat cond ition s onf} can oneprovethat th e series

~ (In:;:~:::::~ :+"
converges or diverges if 0 < EO~ ~?

(6.1)



R em ark : From t he results of Chapter 5, we know th at : (I) if '0 ~ 0, then by

Th eorem 5. I(a) t he series (6.1) diverges for all OJ,, E n; (2) if '0 > ~, then by

T heorem 5.5 the series (6.1) converges for all " jOE Ll., .

Th e next quest ion is analogous.

Qu es ti on 2 Under wha t condit ions on ocan one prove t hat the series

(6.2)

converges or diverges if O< fO::; ~ - ;:h?

R em ark : (I) If '0~ 0, then by Corollary 5.4 the series (6.2) diverges for all OJ,,E n.

(2) If , o > ~ -;:t,-,t hen by T heorem 5.6 t he series (6.2) converges for all " fOE Ll., .

Qu esti on 3 Sup pose that J,ooh,(t )dt converges, where h,(t ) is defined in (2.7).

Under what condit ion on 0 (likely involving t he function h(t )) can one prove that the

series a (O) (5.8) converges?

R em a rk : Corollary 3.5 shows tha t J,ooh, (t)dt < 00 implies almost everywhere con­

vergence of the series a(O). But it is unclear whether or not the series converges at

specific points O.

Th e following quest ion is similar.

Q uest io n 4 Supp ose that Jlooh, (I)dl converges, where h, (I) is defined in (2.8).

Underwhatconditio no nO(likely involvingthe funct ion h(l))canone prove that t he

seriesb(O) (5.10)eon\'erges?

In relat ion to Lemm a 4.5 (T heorem 32 of Khinchin) let us menti on one potential

uscful cxtcnsion of Definition 4 .2 of the sets ~r ' Forr > 1 and an arbit rary rcalsor



for r =I ands> 1, define

D.,., = {OE IR : IIqOl1 ~ q'l~' q holds for q~ qo(O)} , (6.3)

whereqo(O) isa posit ive integer depending on O.

Remark: (I)OE D.,., must be irrat ional,otherwisell qOIlwill assume the value 0

periodically. (2) For r < 1 or r = 1 and s < 0, D.,., = Ql by Hurwitz's Theorem [6,

p. I64J; for r = 1 and 0 ~ s ~ 1, by Lemma 4.5, D.", has measur e O. (3) For r = 1,

s > 1,1',. , ., is a set of full measure by Lemma 4.5. (4) For r > 1, t he conclusion of

Thcorems 5.5 and 5.6 still holds if we replace D., by D.,." because the set of admissible

values of foi sopeninboth theorems and .6.r,.t C .6.r' for anyr' <r.

Qu esti on 5 In Theorem 5.6, if we replace D., by 1',.1,,, is it tru e that the series

b(O) ( 5 . IO)converges under thecond i t ion h(n)~ Cn-l(ln nt' or asimiiarcond it ion

(depending on s) weakerthanh(n) ~ Cn- I -" for any es o D?

6.2 Other Attempted Methods

We are goingtoreportmethodsthatwetricd,thoughw e didnot successflllly obt aill

results from these method s. To be spec ific, we describe our atte mpt to prove diver-

gence of the seriesL::'~l n-2Hinn (5.43). Note that both methods are successful when

applicdtothese ries( l.l)withanyo < O.



6.2.1 Eu ler 's Summation Formula

The following proposit ion is based on the Eu le r Summation For mu la [2, p. 541:

lff (t ) has a continuous derivativef'(t) on the interval [y,x], where O<y <x, then

,~xf(n)= 1,' f (t )dt + 1,' {t }!' (t )dt +{Y} f (Y) -{x }f(x ). (6.4)

P rop ositi o n 6.1 For a posit ive, continuously differentiable and bounded function

f (t ) dejinedon[ l,oo), if there existsC> 0 such that f or any x > 1

1[{t }f'( t)dtl<C, (6.5)

thentheintegral ,hOO f(t)dtconvergesifandonlyiftheseries L::'=, f(n)converges

Proof Taking y = 1 in (6.4), we get

[{ t}f'(t )dt = {x}f (x ) +~f(n)-[f(t )dt .

Since f is bounded and the condition (6.5) holds, let ting z e-s oo, we obta in

I ~f(n)-[ f(t)dtl<oo .

At t emp t ed proof of d iver gence: Suppose f (x ) = x'inx-'. By Theorem 2.1,

! ,OOf(x )dx =!,ooX'inx- 'd xdivergcsbecause h , (x ) = ± and !,OOh,(x)d x =oo.

One may try to prove divergence of the series (5.43) by referring to Proposit ion 6.1.

It remains to verify (6.5)

!,(x) = (sinx _2)x'inx-3+cosx lnxx'inx-'.



Figure 6.1: Graph of y = {x} x' ;or- 2cos x ln x

Clearly, JaOO I{x}( sin x-2)x' inX-3Idx < 00. We nc'Cd to check wheth er the integral

(6.6)

converges. Howcver, wedid not succeed in proving that. In fact , even after ther csults

of Chapter 5 we do not know whet her the hypothesis ab out convergence of t he integra l

(6.6) is t rue. We know from Th eorem 5.1 tha t th e series (5.43) diverges, but it does

not mean convergence of (6.6). F igur e 6.1 presents a gra ph of the integrand of (6.6).

6.2 .2 Uniform Di stribution

Defin ition 6.1 [9, p v L] The sequence (xn ) ;'uniformly d;. tributed modulo 1 if for

everya , b with O:5 a< b< I, we have that

# {il l <j < ~' {Xi} E [a, b]} - b- a as N- oo,



where {Xj} is the jractiono l port oj xu,

Pr opo sit ion 6 .2 (Wey l's Criterion [9]) The fo llowing are equivalent·

(i ) the sequence (x n ) is uniformly distributed mod 1;

(ii)foreach IEZ\ {O}, we have

Forproof scc [9, p. 7].

Remark: By Weyl's criterion, we can verify that (k6);;;', is uniformly distr ibuted

mod 1 when 6 is irrational, d . proof of Lemma 5.2. In par t icular, (2krr+~);;;', is

uniformly distributed mod L However, if () is rat ional, the sequence is not uniformly

ByDefinit ion 6.1, we have, for any fixed< > Oa ndany positive integera

1# { kE [a + l, a + M ] such that 1 1 2 krr + ~ 11 < <} - 2M<I:::; Irp(M) IM , (6.7)

where rp(M) ~ 0, as M ~ 00.

Att empted p ro of of d iver gen ce: For any given e c-I t we have

l - sin n « -:= I n - 2krr - ~1 < Av<,

where A is a positive function of e, which is almost constant when e is small

Fix an <once and for all. For a given k, Iet n bet hei ntegerfo rw hich I n -2krr - ~ 1 =

112krr+~ II. Define

fTAt= { n E [M,2 M - l ]s uch tha t In - 2krr - ~I < Av< }

1SAt =n~Mn,;nn-2 (6.8)



SAl ~ n~,;;k ~ n~, (2A~) I+'
= _1_(" 1) > 2MAv"-I<p(M)IM

(2M) I+' n~, - (2M)I+'

Av" 1<p(M)1
= 2!'XF-- 21+(A/("

Replacing M by2M,weget

S>~-~
2A1_ 2' (2M )' 21+'(2 M)"

T hus,

Next we will compute the sums in the right hand side of (6.9) sepa ra tely. First ,

~ 2'~~)' = (;~, ~~ = M'~~ 1)

~ N: f, 2 = ln2~M"
Recall tha t <p(M ) ---+a as M ---+00 . Th erefore for any § > a there exists No such t hat

for M ~ No we have 1<p(M)1< s.Hence, for such 1\4,

Retu rni ng to (6.9) we see t hat

~ S2i Al ~ In2~'W - 2(2'!l)M" (6.10)



Thus, we obtain

~S2'M 2:2In 2~'W . (6.11)

We would prove divergence of the series (5.43) if we were able to show th at the

righthand side of (6.U ) canbe arbi tr arilylarge,equivalentl y, ,jiM'-O as ' -O.

But th ebehaviour ofMasafunction of ' isunclear and we were not able to complete

a proof by thi s meth od .
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Appendix: Mathematica and

MATLAB Codes

The following software versions were used for computations: Mathematica 7.0.0 and

MATLAB 7.10.0.499 (R201Oa).

• Evaluat ion of s« - 1)" (2 - t)"dt (in Math emati ca)

1/Integrate [(-t -2+ 3t -2) -ll,{t,l, 2}]

• Evaluat ions in (5.58) (in Math emati ca)

2 .0* In tegrate [Abs [D[16224936 In teg ra te [ (- C 2+3t-2) - 11,

{t,x,2}],{x , ll}]],{x, l , 2}] /(2Pi )-1l

2 .0* In tegrate[16224936 Integrate [( -t-2+3t -2) - ll , {t,x,2}],{x ,l , 2}]

• Evaluat ions for (5.61):



(1) MATLAB code for

1 10
7

1

I k~o7 k ll Il 2k7r 1 1 = 2£;kllI12k7r11 < 2 x 3.5324221

fun ctiony=nearN(x)

x-floor(x) <1/2y=x-floor(x) ;

y=l-x+floor(x) ;

f uoctiony=sumnearN(N,B);

a=a+!/(n-B*nearN(2*n*pi)) ;

(2) Analyti c evaluat ion for th e second sum in (5.61)

IkE o7~ = 2 k=~+l ~ < D~dX = ~ = 0.0001024.

Thus , c5 < ~(7.0648442 +0.0001024) < 43428 .



• Evaluat ionof(5.62)inMathematica

NSum[ (4 34 28+3/ (2Pi) ) / 2 - (n /ll )+3 /2 - (l 2/11n) +

Exp [-2/(3Pi-2)2"«1-2/11)n)) , {n,330,Inf i nity})

• Evaluation of (5.63) in MATLAB

f un ction y=sums inl(N) ;

y=O;

y=y+l/x*(2/3+sin (x)/3)-x;end

• Evaluat ion of T in the Claim (p. 75) in Mathe mat ica

f[x_):=x-Floor[x); g [x_) :=If [f[x) <2* l O- (- 3 ) ,1 , O) ;n=1 ;

Whil e [g [N[2*P in , 80)) <1.n++ ;) ;

Pr i nt[2 . 0*Pi *n) ; Pr i nt[n) ;

• Evaluatio nof(5.64)inMathcmatica

NSum[( Si n [Pi/2- 10-(-3) )/3+2/3)-n/n . {n.2-30, I nfi ni ty})
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