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Abstract 

To solve the problems of data security in modern electronic communication environments 

and applications, researchers have been placing much effort on the design of efficient and se

cure ciphers. Substitution-permutation encryption networks (SPNs) are an important class of 

private-key block ciphers. The objective of this thesis is to develop an advanced substitution

permutation encryption network that not only is efficiently secure but also can be simply im

plemented in both hardware and software. 

Two of the most powerful attacks are linear cryptanalysis and differential cryptanalysis. After 

investigating the application of linear cryptanalysis to an SPN, a new nonlinearity criterion for 

the design of S-boxes is presented. S-boxes satisfying this criterion strengthen the ability of 

an SPN to frustrate linear cryptanalysis. As well, we propose a novel linear transformation as 

the method of interconnection between rounds of S-boxes. The use of the linear transformation 

increases the resistance of an SPN to both linear cryptanalysis and differential cryptanalysis. 

Finally, we implement an SPN which consists of our new linear transformation and 4 x 4 S-boxes 

satisfyingour new design criterion by using a Field Programmable Gate Array (FPGA). The 

simulation results confirm that the digital hardware implementation of the SPN is practical 

and not complicated. 
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Chapter 1 

Introduction 

Every day, millions of people use telephones, fax machines, and computer networks to exchange 

information. Electronic communication is now an unavoidable component of modern life. En

suring communications security appears to be more and more important. As cryptography 

is seen as the only effective means of ensuring security in communications and in computer 

systems, increased research effort is now being applied to the area of cryptography. 

Cryptography is the science of techniques which make information unintelligible and unmodifi

able by outsiders and still comprehensible or verifiable by the intended receiver. A cryptographic 

system or cryptosystem is referred to as any system which applies methods of cryptography to 

transform data and restore data. A general cryptosystem is shown in Figure 1.1. Encryption is 

a special computation that operates on messages, converting them into a representation that is 

in unintelligible form. The original message is called plaintext and the transformed represen

tation is called ciphertext. Decryption is used to reverse the process of encryption: it accepts 

ciphertext as input and yields the corresponding plaintext. Both encryption and decryption 

are controlled by a key, which is a parameter to the process. It should be beyond the means 

of the eavesdropper, who has no access to the key of the receiver, to obtain the plaintext from 

the ciphertext. 

There are two general forms of cryptographic algorithms or ciphers: private-key and public-key. 

In a private-key cipher, the same key is used to encrypt and decrypt data. (In Figure 1.1, the 

sender's key (key 1) and the receiver's key (key 2) are secret and identical). In a public-key 

cipher the mathematically related but different keys are used for encryption and decryption. 
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Sender Receiver 

Figure 1.1: A General Cryptographic System 

One key is kept secret and is only known to its owner, whereas the other key is made publicly 

known. In Figure 1.1, key 1 is different from key 2. The intended receiver can make his key 

1 public for all those who want to send him messages and keep his key 2 secret in order to 

decrypt his messages. 

Private-key ciphers can be divided into two categories. Ciphers that operate on the plaintext 

a single bit at a time are called stream ciphers; ciphers that operate on the plaintext in blocks 

of bits are called block ciphers. 

In this thesis, we examine substitution-permutation networks or SPNs, which are a class of 

private-key block ciphers. Shannon [24] proposed using the concepts of "confusion" and "diffu

sion" to create a mixing transformation, which uniformly distributes the redundant statistical 

properties of the plaintext over the set of all possible ciphertexts. "Confusion" means that 

the relationship between input and output is mathematically complex. "Diffusion" involves 

spreading local effects in input across all output bits. The SPN architecture first proposed by 

Feistel [9] is directly based on the principles of confusion and diffusion. A basic SPN uses small 

substitutions, called S-boxes, to achieve confusion, and permutations to achieve diffusion. 

As the results of the thesis, we first proposed a new nonlinearity criterion for the design of S

boxes. S-boxes satisfying this criterion and the diffusion order requirement improve remarkably 

the ability of an SPN to resist linear cryptanalysis and differential cryptanalysis. Secondly, 

we designed a new linear transformation as the method of interconnection between rounds 

of S-boxes. When the linear transformation is adopted in an SPN, the ability of an SPN to 

resist linear cryptanalysis and differential cryptanalysis is strengthened noticeably. Finally, we 
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implemented an SPN constructed from our new 4 x 4 S-boxes and our novel linear transformation 

using a Field Programmable Gate Array (FPGA). The information about the complexity of the 

FPGA implementation shows that the digital hardware implementeation of our SPN is practical 

and not complicated. 

1.1 Motivation for the Research 

Designing efficient, secure ciphers that keep pace with modern electronic communication envi

ronments and applications motivated us to do this research. The Data Encryption Standard 

(DES) [17], which has been by far the most popular private-key block cipher used, will soon 

be unusable for securing modern electronic communications due to its inadequacies. The size 

of the keyspace, 256 , is too small to be secure with the speed of today's computer hardware. 

According to Wiener's design [28], a $1,000,000 machine could search the entire key space in 

about 3.5 hours. Also, the secrecy surrounding the design of the DES algorithm has caused 

suspicion that the National Security Agency embedded a "trapdoor" into the cryptosysytem 

and prevented any simple modifications or extensions of the algorithm. To date, no ciphers 

have been well enough developed such that they would convincingly be able to face the chal

lenge of modern electronic technology and replace DES. The National Institute of Standards 

and Technology (NIST) is currently calling for cipher proposals [7]. 

An SPN is a simple yet efficient implementation of a block cipher. Each round of a basic SPN 

consists of a layer of n x n S-boxes and a permutation which connects two adjacent layers of 

S-boxes. The simplicity of its structure is advantageous as it allows us to analyze its strength 

against various kinds of cryptanalysis and then to effectively improve the cipher. As well, since 

in an SPN, substitutions and permutations are operated on the whole block of the messages 

(unlike DES which operates on half a block at a time), intuitively an SPN is more efficiently 

secure in enciphering a message. That is, an SPN with a small number of rounds of operation 

should attain a great security. These two basic properties of an SPN give us confidence to select 

an SPN as the object of study that can reasonably be designed to meet the security needs of 

modern electronic communications. 
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1.2 Outline of the Thesis 

This thesis is organized as follows: 

• Chapter 2 provides an introduction to the substitution-permutation encryption network. 

Some techniques of cryptanalysis related to this thesis are also introduced. 

• Chapter 3 presents a new criterion for the design of 8 X 8 S-boxes. 

• Chapter 4 introduces a novel linear transformation and shows its ability in helping an 

SPN against linear cryptanalysis. 

• Chapter 5 examines the capacity of the linear transformation in thwarting differential 

cryptanalysis. 

• Chapter 6 discusses the implementation of our SPN using a Field Programmable Gate 

Array (FPGA). 

• Chapter 7 provides a summary of the thesis and proposals for future work. 
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Chapter 2 

Background 

In this chapter, the basic knowledge necessary for understanding the substitution-permutation 

network is presented. Some cryptanalysis techniques related to this thesis are also introduced. 

As well, previous research related to the design of the substitution-permutation network is 

reviewed. 

2.1 Substitution-Permutation Network 

The detailed architectures for block ciphers based on Shannon's [24] concept of "confusion" 

and "diffusion" were first designed by Feistel [9] and Feistel, Notz, and Smith [10]. One of the 

block cipher architectures became the network structure for substitution-permutation networks 

(SPN), and the other became that for DES-like ciphers. 

Both an SPN and a DES-like cipher are product ciphers, which iteratively perform simple basic 

cryptographic operations on the data for a number of rounds. The main difference between 

the SPN architecture and the DES-like architecture is that an SPN performs substitutions and 

permutations on the whole block of data, while a DES-like cipher performs these operations on 

only half the block at a time. 

One round of a DES-like cipher is illustrated in Figure 2.1. The round operation of round r 

can be described as follows: 

Rr+l = f(Rr, Kr) EB Lr 
Lr+l = Rr 

(2.1) 

where Lr is the left half-block of data, Rr is the right half block of data, Kr is the key bits 
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l 

l 
Lr+l 

Round function 
f 

Rr+l 

Figure 2.1: One Round of A DES-like Cipher 

Kr 

associated with round r, and f is a function that executes the substitutions and transposition 

(or permutation). 

One round of a basic SPN is shown in Figure 2.2. Each round consists of a layer of substitutions 

on small sub-blocks and a bit position transposition (permutation). Each of the substitutions 

is referred as an S-box. As the study in the design of the SPN has been furthered, it has been 

shown that the permutation can be viewed more generally as a linear transformation [12]. In 

this thesis, we shall use the S-box interconnection layer to refer to both the permutation and 

the linear transformation. We shall still refer to these networks as SPNs even though the S-box 

interconnection layer could be a linear transformation which is not a permutation. Keying the 

SPN is omitted in Figure 2.2. 

Generally, the SPN can be viewed as consisting of three components: S-boxes, S-box intercon-

nections, and key scheduling. We shall elaborate on the notion of these three components. 

2.1.1 S-box 

In general, an m x n S-box substitutes an n-bit output block for an m-bit input block. The 

S-boxes of the SPN must be symmetric (size n x n) and invertible so that an SPN performs a 

one-to-one mapping and the ciphertext is decryptable. Ann x n symmetric S-box can be viewed 

6 



0----t---1 

Figure 2.2: One Round of A Basic SPN 

S-box 

2-to-4 
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-----------
1 

I I 

:Permutation 1 __________ J 

IN 

00 
01 

10 
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OUT 
10 

00 
11 
01 

4-to-2 

encoder 

Figure 2.3: An S-box Example 

0 

1--r---- 0 

as formed by sandwiching a permutation between a decoder and a corresponding encoder. It 

supplies 2n internal terminals that can be connected in 2n! different ways. Hence, there are a 

total of 2n! S-boxes of size n x n. A 2 x 2 symmetric S-box is depicted in Figure 2.3. 

In an SPN only the S-boxes can be designed to be nonlinear. A nonlinear S-box implies that 

for the S-box there does not exist a mod-2 linear combination of input bits such that for all 

possible input vectors it can be equal to a particular mod-2 linear combination of output bits. 

The cryptographic strength of an SPN relies highly on the strength of the S-boxes. As a result, 

the design and analysis of S-boxes has been a topic of considerable interest in the cryptographic 

community. 

Kam and Davida [13] proposed the completeness criterion, which requires that each output bit 
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of an S-box or cipher depends on every input bit. Webster and Tavares [27] suggested the strict 

avalanche criterion (SAC) for the design of S-boxes. An S-box satisfies SAC if, over all possible 

input vectors, inverting input bit i causes output bit j to be changed with a probability of 1/2 

for all i and j. Adams and Tavares [1] proposed a design procedure for the S-boxes which satisfy 

(i) bijection, (ii) nonlinearity, (iii) strict avalanche criterion, and (iv) output bit independence. 

(Output bit independence ensures that over all possible input vectors any pair of two output 

bits are not equal to each other significantly more, or significantly less, than half the time.) 

According to O'Connor's analysis [5], this procedure becomes impractical as the size of an S-box 

increases. 

Dawson and Tavares [6] extended the work of Forn§ [11] in applying information theory to 

S-box design. They suggest selecting S-boxes such that (i) the mutual information between a 

subset of output bits and any subset of input and/or output bits is minimal, and (ii) the mutual 

information between a subset of output bit changes and any subset of changes of input and/or 

output bits is minimal. 

Nyberg [20] proposed using bent functions to construct highly nonlinear S-boxes. Unfortunately, 

the bent functions must be modified to achieve other cryptographically desirable properties such 

as balance, and there is no known effective way to do so. (Balance implies that the bit which 

is a Boolean function of input bits takes on the values 0 and 1 equally.) 

Heys and Tavares [12] stated that (i) large S-boxes are more likely to have high nonlinearity 

than small S-boxes, and (ii) S-boxes with good diffusion of bit changes increase resistance to 

differential cryptanalysis. An S-box posseses good diffusion if a one bit input change causes 

several output bits to change. 

While so much research has been conducted into the design of S-boxes, the design of S-boxes that 

can be easily implemented in hardware and simultaneously have provably good cryptography 

properties has been largely neglected. 

2.1.2 S-box Interconnection 

A basic SPN uses permutations as S-box interconnections. A permutation essentially involves 

reordering the bits in the data. Compared with the work on the design of S-boxes, less work 
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has done on the design of S-box interconnections. 

In [13], Kam and Davida presented a permutation design approach to achieve the completeness 

property of an SPN. In [2], Ayoub extended the work of Kam and Davida and suggested a class 

of cryptographically equivalent permutations (CEP) such that (i) the same permutation is used 

in every round ofan SPN, and (ii) the completeness of an SPN can be achieved in the minimum 

number of rounds. To date Ayoub's permutations seem to be the most practical permutations 

to employ in an SPN. 

Generally, in a linear transformation every output bit is a mod-2 linear combination of some 

or all of the input bits. A permutation can be viewed as a special case of a linear transforma

tion. Linear transformations used as interconnections in an SPN must be invertible to make 

decryption feasible. 

In [12], Heys and Tavares first suggested using linear transformations between rounds of S

boxes to intensify the quick diffusion of bits and increase the resistance to differential and 

linear cryptanalysis. In [32], the authors extended the work in [12] and suggested an improved 

linear transformation which is more effective in resisting differential and linear cryptanalysis. 

2.1.3 Keying the Network 

In an SPN, two methods (see Figure 2.4) can be used in keying an S-box: 

• Selection Keying: one or more of the sub-key bits are used to select which of the S-box 

mappings is to be used. 

• XOR Keying: the data bits are XORed with the sub-key bits before entering an S-box. 

For an SPN using XOR keying, the key must be XORed after last round as well as at the inputs 

to each round. The reason that the key must be XORed after the last round is that, only after 

the output of the last round is XORed with the key, the input of the S-boxes in the last round 

is unknown, so that the last round is a valid round. 

During encryption a cipher key is picked for the operation such that it is only known to the 

sender and receiver. The sub-keys for rounds of an SPN are derived from this cipher key. A 
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n x n S-box 2 

-------n 
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}, 
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n x n S-box 

XORKeying 

Figure 2.4: Two Keying Methods 

different round may have a different sub-key. Determination of the sub-keys from the cipher 

key is done by a key scheduling algorithm. For an SPN, decryption is accomplished by passing 

the data in reverse direction through the network. Correspondingly, for decryption, the key 

schedule must be applied in reverse to encryption. 

A key scheduling algorithm easily implemented for an SPN is to apply the cipher key to each 

round as the sub-key of the round. The security of such a simple key schedule scheme has never 

been determined. 

In this thesis, we will not consider the design of the key scheduling algorithm. 

2.2 Other Block Ciphers 

To date many block ciphers have been proposed. Some of the most notable ones are FEAL, 

IDEA, and RC5. 

FEAL [25] developed by Shimizu and Miyaguchi is a block cipher similar to DES. It uses a 

64-bit data block and a 64-bit key. The basic design principle is to use stronger round functions 

to reduce the number of rounds, making the algorithm run faster. 

IDEA [15] is proposed by Lai and Massey. It is a block cipher which operates on 64-bit 

plaintexts. The length of the key is 128 bit. The design idea of the cipher is to use the 
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operations from three different algebraic groups to achieve the efficient mixing transformation. 

The three algebraic groups are: XOR, addition modulo 216 , and multiplication modulo 216 + 1. 

RC5 [22, 23] is a block algorithm designed by Ron Rivest and analyzed by RSA Laboratories. 

RC5 is in fact a family of algorithms and has three parameters: block size, key size, and number 

of rounds. Three operations are adopted in the cipher: XOR, addition, and rotation. Since 

these operations are generally found on most processors, RC5 is expected to be a very fast, 

secure cipher, easily implemented in software. 

2.3 Cryptanalysis Techniques 

A cryptosystem is said to be compromised via cryptanalysis if it is possible to recover the 

plaintext of a message from the ciphertext without knowledge of the key used in the encryption 

algorithm or if it is possible to derive the key from a set of available ciphertexts or plain

text/ciphertext pairs. It is usually assumed that in cryptanalysis the cryptanalyst knows the 

details of the cryptosystem. Since a one-time pad cipher is the only scheme that can be proven 

to be unconditionally secure [26], in modern cryptology a cipher is considered to be unbreakable 

if the cipher is computationally secure. A cryptosystem is computationally secure if the best 

known algorithm for breaking it requires an unreasonably large amount of computing time with 

available resources. 

An attack refers to an intended cryptanalysis. There are three general types of cryptanalytic 

attacks of block ciphers: (1) ciphertext only, (2) known plaintext, and (3) chosen plaintext. In 

a ciphertext only attack, the cryptanalyst only posseses some ciphertexts. A known plaintext 

attack assumes that the cryptanalyst obtains the plaintexts corresponding to some known 

ciphertexts. A chosen plaintext attack is more powerful than a known plaintext attack. In 

this attack, the cryptanalyst can use some chosen plaintexts to obtain the desired ciphertexts. 

The exhaustive key search attack tries every possible key to break a cipher. Ciphers are consid

ered theoretically secure against a particular attack if the attack has a computational complexity 

that is at least as large as an exhaustive key search. Besides the exhaustive key search attack, 

the two notable and most powerful attacks against block ciphers are differential cryptanalysis 

and linear cryptanalysis. 
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2.3.1 Differential Cryptanalysis 

Biham and Shamir [3] discovered the technique of differential cryptanalysis to attack block 

ciphers. With this method they have attacked a number of block ciphers such as DES [3] and 

FEAL [4]. 

Differential cryptanalysis is a chosen plaintext attack which examines the bitwise XORs of 

pairs of plaintexts and the XORs of the corresponding pairs of ciphertexts. The XOR of a 

pair of plaintexts is particularly chosen such that a specified sequence of XORs through the 

rounds of encryption will occur with a relatively high probability. An r-round characteristic 

is defined to be a sequence of r pairs of input and output XOR differences each of which 

corresponds to one round. Differential cryptanalysis of an R-round block cipher relies on the 

existence of highly probable (R- 1)-round characteristics. Whether this kind of characteristic 

exists in a block cipher depends heavily on the properties of the S-boxes. S-boxes that have 

a significantly non-uniform distribution of S-box difference pairs would help the occurrence of 

highly probable characteristics, where an S-box XOR difference pair refers to an input XOR 

and the corresponding output XOR of the S-box. 

Differential cryptanalysis of a DES-like cipher which uses XOR keying is applied in this way: 

according to the structure of the cipher, the input to the last round and the input XOR values 

of the S-boxes in the last round can be directly obtained from the ciphertext. The output 

XOR values of some targeted S-boxes in the last round can be derived with a probability in 

the light of a characteristic. When a pair of the input and output differences of an S-box is 

known, the possible input values of the S-box are known. The possible sub-keys associated 

with each targeted S-box can consequently be achieved with a particular probability by using 

the knowledge of input to the last round and the possible input values to the S-box, where the 

sub-key of an S-box consists of those cipher key bits applied to the S-box. Precisely, with each 

plaintext pair, for each targeted S-box a set of bit-strings is achieved each member of which 

is a possible sub-key of the S-box, and among the set of these bit-strings, one bit-string is the 

correct sub-key of the S-box. By trying a number of plaintext pairs which have a specified XOR 

difference, a number of these kinds of sets of bit strings are obtained. Since a characteristic 

ideally occurs with a relatively high probability, the bit-string that is the correct sub-key of the 
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S-box should appear in these sets many more times than other bit-strings. The bit-string that 

appears in these sets most frequently is thus deduced as the correct sub-key of the S-box. One 

characteristic may involve a number of S-boxes in the last round and the key bits associated 

with these S-boxes can be deduced simultaneously using the characteristic. After using one or 

more characteristics, most of cipher key bits will be located. The rest of the cipher key bits 

may be easily located by using exhaustive key search. 

Differential cryptanalysis of DES-like ciphers can be applied in a similar way to attack a basic 

SPN which uses XOR Keying. The difference between differential cryptanalysis of DES-like 

ciphers and that of a basic SPN is that differential cryptanalysis of a basic SPN locates the key 

bits XORed to the output instead of the key bits XORed to the input of the S-boxes in the last 

round. Also, differential cryptanalysis of a basic SPN uses the deterministic knowledge of the 

output of the last round and of the output XOR differences of the S-boxes in the last round, 

and the probabilistic knowledge of the input XOR differences of the S-boxes in the last round, 

to decide the sub-keys of the targeted S-boxes. 

Heys and Tavares [12] found that linear transformations and S-boxes with good diffusion prop

erties lower the probablility of the best probable (R- 1)-round characteristic of an R-round 

SPN and increase resistance to differential cryptanalysis. 

2.3.2 Linear Cryptanalysis 

Matsui [16] presented the method of linear cryptanalysis to attack DES. The attack determines 

key bits by using a probable linear approximation of plaintext, ciphertext, and key bits which 

are likely to be satisfied. This is a known plaintext attack. 

In the linear cryptanalysis of DES, the probable linear approximations of S-boxes are first 

investigated. Once a best probable linear approximation of an S-box is known, a best probable 

linear expression of a round can be obtained by using the knowledge of the round function. 

A probable linear expression of a round consists of the input, output, and sub-key bits of the 

round. After applying the best probable linear approximations of one round to a number of 

rounds and combining them, a probable cipher linear approximation can be achieved which 

consists of only plaintext, ciphertext, and key bits. Linear cryptanalysis then uses this kind of 
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probable linear approximation to locate the key bits using a hypothesis testing approach. 

O'Connor [5] stated that as the size of an S-box gets larger the best probable linear approxi-

mation of the S-box tends to be worse and a cipher is more resistant to linear cryptanalysis. 

According to Nyberg's definition [19], the nonlinearity of an n x n bijective S-box is defined as 

the minimum nonlinearity of all non-zero linear combinations of output functions: 

n 

N L(S) = min N L(E9 Wd;) 
W1 , .•• ,Wn E{O,l },allW; #0 i=l 

(2.2) 

where fi represents the n-input function of the i-th output of the S-box, and the nonlinearity 

of ann-input boolean function, f : {0, 1 }n -t {0, 1 }, is defined as the Hamming distance to the 

nearest affine function: 

n 

N L(f) = min #{Xif(X) # E9 Uixi EB V} 
Ul, ... ,U,.,VE{O,l} i=l 

(2.3) 

where X is ann-bit vector, i.e. X= [x1,x2, ... ,xn] with x; E {0, 1}, 1 ~ i ~ n. 

Linear cryptanalysis can also be used to attack an SPN. ·To improve an SPN against linear 

cryptanalysis, Heys and Tavares [12] claimed that (i) large, randomly selected S-boxes are very 

likely to have high nonlinearity and (ii) the use of an appropriate linear transformation between 

rounds for the S-box interconnections increases the resistance to linear cryptanalysis. 
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Chapter 3 

8 x 8 S-box Design 

In this chapter, a new nonlinearity criterion for the design of 8 X 8 S-boxes is proposed. S-boxes 

satisfying this criterion and the diffusion criterion improve remarkably the ability of an SPN to 

resist linear cryptanalysis and differential cryptanalysis. 

3.1 Introduction 

A basic substitution-permutation encryption network consisting of a number of rounds of S

boxes connected by bit permutations is a straightforward implementation of a private-key block 

cipher [9]. The SPN structure is directly based on the concepts of "confusion " and "diffusion" 

introduced by Shannon [24]. Letting N represent the block size of a basic SPN composed of 

R rounds of n x n S-boxes, a simple example of an SPN with N = 16, n = 4, and R = 3 is 

illustrated in Figure 3.1. We assume that keying the network is realized by XORing the key 

bits with the data bits before each round of substitution and after the last round. The key bits 

associated with each round are derived from the cipher key according to some key scheduling 

algorithm. In this chapter we will consider an SPN with a block size of N = 64 using 8 X 8 

S-boxes and whose interconnections are permutations where no two outputs of an S-box go to 

the same S-box in next round. 

Like other block ciphers, an SPN is susceptible to linear cryptanalysis and differential crypt

analysis. Linear cryptanalysis suggested by Matsui [16] is a known-plaintext attack which uses 

some plaintext ciphertext pairs to break the cipher. Differential cryptanalysis, introduced by 

Biham and Shamir [3], is a chosen plaintext attack which examines the changes in ciphertext 
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Figure 3.1: SPN with N = 16, n = 4, and R = 3 

in response to controlled changes in the input. To attack an SPN, linear cryptanalysis is done 

by using knowledge of a highly probable linear approximation, while differential cryptanalysis 

is implemented by finding a highly probable differential characteristic. Both a highly probable 

linear approximation and a highly probable characteristic are achieved by exploiting the local 

properties of the network, specifically the S-box properties. Thus the design of S-boxes is crucial 

to the strength of an SPN. 

In this chapter, a new S-box design criterion is proposed. S-boxes satisfying this criterion and 

the diffusion criterion [12] improve the ability of an SPN to resist linear cryptanalysis and 

differential cryptanalysis. 

3.2 Background 

In the application of linear cryptanalysis to SPN, the best r-round linear approximation of the 

form 

P;l EB P;2 EB • · • EB P;, EB Cit EB Ch EB • • • EB Cjp = Kk1 EB Kk2 EB • · · EB Kk-r (3.1) 

is of interest. This linear approximation is derived by combining a number of probable linear 

expressions of S-boxes from different rounds such that any intermediate terms (i.e., terms that 

are not plaintext, ciphertext, or key terms) are eliminated. The linear approximation of each 
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round which holds with some probability is obtained by using the knowledge of the linear 

approximations of S-boxes. As we will see later, when the linear approximations of S-boxes 

hold with small value of IPi- 1/21, where Pi denotes the probability of a linear approximation 

of an S-box, the overall cipher linear approximation will be satisfied with a small value of 

IPL - 1/21, which is inversely proportional to the number of plaintexts required to attack an 

SPN using a basic linear attack, where p L represents the probability of the overall cipher linear 

approximation. Thus the nonlinearty property of an S-box needs to be considered in the context 

of linear cryptanalysis. 

Definition 3.1 [16]: For a given n x n S-box, S, N S( a, f3) is defined as the number of inputs to 

S, where a mod-2 linear combination of the input bits specified by vector a is equal to a mod-2 

linear combination of output bits specified by vector f3. In particular, 

n-i n-i 

N S (a, f3) = # {X I X E { 0, 1 } n, ( ffi a [ i] · X [ i] = ffi f3 [ i] · S (X)) } (3.2) 
i=O i=O 

where the symbol x[i] represents the i-th bit of vector x, s(x) is the output of the S-box corre

sponding to input x, and EJ7f,;;-0ia[i]· x[i] = EJ7f,;;-0if3[i]· s(x) is referred to as a linear approximation 

of an S-box. 

For some {a, /3}, the probability p of a linear approximation of an S-box is defined as p = 

N S( a, f3) /2n. When IP - 1/21 is small, then the linear expression defined by {a, f3} is a poor 

approximation of the S-box. 

For an R-round SPN, differential cryptanalysis is dependent on the existence of a highly 

probable (R- 1)-round characteristic. An r-round characteristic is a list of difference pairs 

{ (~Ui, ~VI), ... , (~Ur, ~Vr)}, where (~Ui, ~Vi) represents the input XOR value and output 

XOR value in round i respectively, and ~Ui =~Vi-i, 2 ~ i ~ r, and ~Ui is the plaintext 

XOR difference. The existence of a highly probable (R- 1)-round characteristic is determined 

by two factors [12]: (1) the distribution of an S-box XOR difference pairs (~x, ~y), where ~x 

is the bit-wise input XOR difference of 2 input vectors, Xi and x2, (i.e., ~x = Xi El7 x2), and 

~y is output XOR difference of an S-box, (i.e., ~y = s(xl) El7 s(x2)), and (2) the diffusion of 

bit changes in the network. 
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Definition 3.2 [12]: An S-box satisfies a diffusion order of A, A 2: 0, if, for wt (~x) > 0, 

(") { A+1-wt(~x) ,wt(~x)<A+1 
wt I..J..y > 0 , wt( ~x) 2: A + 1 (3.3) 

where ~x and ~y denote the input XOR difference and the corresponding output XOR differ

ence of an S-box respectively, and wt (-)refers to the Hamming weight of the specified argument. 

The diffusion order of an S-box is used to measure how many output bits can be changed while 

some of the input bits are changed, and it requires that the total number of changed input and 

output bits exceeds some assigned bound. 

3.3 S-box Design Constraints 

In this section, constraints on S-boxes that are good at strengthening an SPN against linear 

cryptanalysis and differential cryptanalysis are proposed. 

3.3.1 Nonlinearity Requirement 

In the linear cryptanalysis of an SPN, a cryptanalyst is interested in finding a linear approxima-

tion which is deduced by combining a number of probable linear approximations of the involved 

S-boxes. Suppose there are 8 S-boxes involved in the derivation of a linear approximation of 

the overall cipher, and the probable linear expression of the i-th S-box holds with probability 

Pi· Also suppose that the key bits XORed to the data bits prior to entering the S-boxes are 

independent and uniformly random and consequently the inputs to the S-boxes involved in the 

derivation of the cipher linear approximation are independent and uniformly random. Then 

according to Lemma 3 in [16] the cipher linear approximation holds with probability 

fJ 

PL = 1/2 + 2fJ-l fi(Pi -1/2). (3.4) 
i=l 

Also, it is shown in [16] that for a basic linear attack (algorithm 1) the number of known 

plaintexts required to guess the equivalent of a key bit (i.e. the right side of equation (3.1)) is 

approximately N L, where 

(3.5) 
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By rewriting (3.4) as 
8 

PL = 1/2 + 1/2 II (2pi- 1), (3.6) 
i=l 

it is evident that PL, the probability of a linear approximation, is decided by two parameters: 

(1) 8, the number of S-boxes involved in the derivation of the linear approximation, and (2) Pi, 

the probability with which the linear expression of the i-th S-box is satisfied. 

In [12], iPL - 1/21 was bounded by considering 8 and !Pi - 1/21 separately, without noticing 

that indirectly there exists a relationship beween 8 and Pi. That is, when the probability of a 

probable linear expression of an S-box was bounded, no matter how many input and output 

bits are include in the linear expression, the probability Pi was bounded with the same relation 

!Pi - 1/21 :::; !Pc - 1/21 (3.7) 

where Pc represents the probability of the best linear approximation and it can be described by 

(3.8) 

where n is the size of an S-box and N Lmin is the lowest nonlinearity of any S-box in the cipher, 

i.e., for all S-boxes 

(3.9) 

For a basic SPN, the permutation between two layers of S-boxes is usually arranged in this 

way: no two input bits of an S-box come from the same S-box in the previous round. Hence, 

intuitively, when a linear expression of an S-box includes more input and output bits, more S-

boxes in the previous round and the next round will be caused to be involved in the derivation 

of a linear approximation of the overall cipher. 

After studying the nature of the S-box interconnections in a basic SPN, it is not hard to see 

that, if a linear approximation of the overall cipher is obtained by combining the S-box linear 

approximations which include the same number of input plus output bits, the average number 

of S-boxes per round involved in the derivation of the linear approximation of the cipher is 

proportional to the number of input plus output bits which are included in each S-box linear 

approximation. Mathematically, let '' 2 ~ 'Y ~ 2n, represent the number of input plus output 

bits. Then, when 1-term S-box linear approximations are used to deduce a linear approximation 
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of an overall cipher, the per round number of S-boxes for deriving the linear approximation is 

at least 1/2. 

Lemma 3.1 Let/, 2 ~ 1 ~ 2n, represent the number of input bits plus output bits in a linear 

approximation of an S-box. Assume no two input bits of an S-box come from the same S-box in 

the previous round, and all S-boxes use a 1-term linear approximation of a specific 1 to derive 

the best possible cipher linear approximation. Then the best possible cipher linear approximation 

must involve 1/2 S-boxes on average per round. 

Proof Consider an S-box in the r-th round. Since each input bit or output bit of an S-box 

connects to a different S-box in the previous or next round, based on assumption, the number 

of involved S-boxes in the previous and the next round must be at least I· 

Since we are considering a possible best cipher linear approximation, if a scenario in which the 

number of involved S-boxes in the previous and next round is 1 exists, then the theorem is 

proven. 

Figure 3.2 shows one of this kind of scenario for n = 8 and 1 = 4. In this figure, the highlighted 

short lines represent the applied bits of S-boxes involved in the derivation of a cipher linear 

approximation. Since four bits of each involved S-box are used for the derivation of the cipher 

linear approximation, 4-term S-box linear approximations are used in this scenario. Obviously, 

the per round number of S-boxes involved in the cipher linear approximation is 2. Similarly, 

it can easily be verified that a linear approximation involving 1/2 S-boxes per round can be 

constructed for any value of I· 0 

Now for a given value of/, bound the linear approximation probability of an S-box by 

(3.10) 

where 77i(/) = IPi(/)-1/21 with pi(/) representing the probability of the 1-term linear expression 

for the i-th S-box of the linear approximation and 77(/) = IPeb) -1/21 with Peb) representing 

the probability of the best 1-term linear expression of any S-box in the network. 

Subsequently, based on Theorem 3.1 we have 

6 6 

"lL = 26
-

1 II "lib) ~ 26
-

1 II "7(/) = 1/2(277(1)r'/2·R, (3.11) 
i=1 i=1 
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Figure 3.2: One possible best linear path when using 4-term linear approximations 

where rn = IPL - 1/21 and R is the number of rounds in the SPN. According to (3.11), to 

prevent a cryptanalyst from using some specific 1-term linear expressions to obtain a linear 

approximation with a higher probability, one could establish the relationship 

(3.12) 

for all 2 ~ /1,/2 ~ 2n. Constraint (3.12) embodies the trade-off between the 8 and Pi factors 

in deriving p L and, assuming that a suitably small value for 17(2) can be found, should lead to 

a smaller value of PL, than condition (3.7). However, to get the bound for the probability of 

the best linear approximation as small as possible, only putting constraint (3.12) on an S-box 

is not enough. In the context of an 8-round SPN consisting of 8 x 8 S-boxes, when a constraint 

similar to (3.12) is adopted to select S-boxes, using the relation 

(3.13) 

as the constraint put on S-boxes leads to the tightest bound on the probability of the best linear 

approximation, as the following discussion shows. 

In our experimentations for selecting S-boxes, with either the constraint (3.12) or 

(3.14) 
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the minimum 2ry(2) achieved is the same value of 12 x ~~~ - 11 = 7/64. In the experiment, 

we use random numbers to generate the outputs of an S-box. Every time a random number 

is generated, it is checked whether this number can be the value of an S-box output that 

corresponds to the current S-box input so that all of the S-box output values selected so far 

satisfy our design citerion. Since the minimum 2ry(2) achieved is the same value of 7/64, the 

probability of the best possible cipher linear approximation which is derived from an SPN 

consisting of S-boxes satisfying (3.14) must not be greater than that of the possible best cipher 

linear approximation which is derived from an SPN consisting of S-boxes satisfying (3.12). In 

other words, (3.14) sets a tighter bound on the probability of the best linear approximation 

than (3.12). 

To compare the constraint of (3.13) with that of (3.14), the probability of the best possible linear 

approximation of cipher needs to be calculated. When the constraint (3.13) is put on S-boxes, 

the minimum 2ry(2) achieved through experiment was 12 x ~~~ -11 = 1/8. For an 8-round SPN, 

under condition (3.13) and (3.14) the equivalent number of 2-term S-box linear approximations 

for deriving a best linear approximation are 7.333 and 6.8333, respectively, where equivalent 

number of 2-term linear approximation means that a best 1-term S-box linear approximation 

is equivalent to 2h best 2-term S-box linear approximation. Hence, under condition (3.13) 

the best probability is 12 x ~- 11 7·333 = (k) 7·333 = 2.386 x 10-7 , and under condition (3.14) 

it is 12 x ~~~- 116·833 = (J4 ) 6·833 = 2.707 x 10-7• Since 2.386 x 10-7 < 2.707 x 10-7, the 

constraint (3.13) can be used to set a tighter bound on the probability of the best cipher linear 

approximation than (3.14). 

Noticing that constraint (3.12) is the loosest among the similar constraints and the minimum 

2ry(2) achievable is li41, we have actually considered all the possible best linear approximations 

under all similar constraints. Therefore we conclude that relation (3.13) provides the tightest 

bound. on the probability of the best linear approximation. 

In Figure 3.3 we give the algorithm for an 8-round cipher to compute the equivalent number of 

2-term S-box linear approximations involved in the best possible cipher linear approximation 

based on constraint (3.13). In this algorithm, the equivalent number of S-boxes involved in a 

cipher linear approximation of an R-round SPN is calculated, and only the best possible cipher 
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Initialize kmin = R; 
For all [n1, n2, ... , nR] E {1, 2, ... , 8}R do 

k = ~(n1 + nR) 
For r = 2 to R - 1 do 

n +-- nr-1 + nr+l 
if (n > 4) n = 4 
k = 2nr/n + k 

if k < kmin then kmin = k 
output: kmin 

Figure 3.3: Algorithm for computing the equivalent number of 2-term S-boxes 

linear approximations are taken into account, i.e., assuming any involved S-box in the (r -1)-th 

or (r + 1)-th round offers a bit to any involved S-box in the r-th round. During the calculation, 

we use nr to denote the number of S-boxes in the r-th round which are involved in a linear 

approximation of the overall cipher, and k = 1/2(nl + nR) is the equivalent number of S-boxes 

in the first and last round. 

According to algorithm of Figure 3.3, for an 8-round SPN, with constraint (3.14) the smallest 

equivalent number of 2-term S-boxes involved in a linear approximation is 6.833. For example, 

one scenario is that from the 1st to 8-th round, the number of S-boxes is 1, 1, 1, 2, 3, 2, 1, and 

1, respectively. 

Let us calculate the number of known plaintexts required in the basic linear attack. As men-

tioned above, under condition (3.13) the equivalent number of 2-term linear expressions involved 

in the best linear approximation of an 8-round SPN is 22/3 (i.e., 7.333). Therefore according 

to (3.11), for an 8-round SPN the greatest value of IPL- 1/21 is 1/2(277(2))2213. This signifies 

that in the basic linear attack the number of plaintexts required to deduce one equivalent bit 

of key is at least 4/(277(2)) 44/ 3• From the results of our experiments, 8 x 8 S-boxes satisfying 

(3.13) with 21](2) = 1/8 can be achieved. Hence, if an 8-round SPN is constructed using 8 x 8 

S-boxes satisfying (3.13) with 277(2) = 1/8, it requires at least 246 known plaintexts to deduce 

one equivalent key bit using the basic linear attack. 

In contrast, in [12], (3.7) is used to bound the probability of a linear expression of an S-box, and 

the value of the minimum 277(2) is assumed to be 12 x 96/256- 11 = 1/4. Since the minimum 

number of S-boxes involved in a cipher linear approximation is 8, the resulting IPL - 1/21 is 
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8 x 8 S-box 
). ry(2) under condition (3.14) % ry(2) under condition (3.13) % 
0 7/128 2.65 1/16 0.004 
1 7/128 3.90 1/16 0.267 

Table 3.1: Proportion of S-boxes satisfying nonlinearity requirement selected from S-boxes 
having diffusion order >. 

1/2(2ry(2))8 = 217 and the number of required plaintexts in a basic linear attack could be as 

few as 234 . 

3.3.2 Diffusion Order Requirement 

S-boxes with a high diffusion order can enhance the ability of an SPN to resist differential 

cryptanalysis [3]. Letting N represent the block size of an SPN, n represent the size of an S

box, M represent the number of S-boxes used in each round where M = N jn, and IT represent 

the set of permutations for which no two outputs of an S-box are connected to one S-box in 

the next round, according to Theorem 1 in [12], for an R-round SPN which uses a permutation 

1r E IT, where R is a multiple of 4 and M 2 n, the probability of an (R-1)-round characteristic 

satisfies 

(3.15) 

where all S-boxes satisfy diffusion order >. and p0 represents the maximum S-box XOR pair 

probability. The maximum>. found in [12] for 8 x 8 S-boxes is >. = 2. 

By using the depth-first-search algorithm in [12], 8 x 8 S-boxes are examined for their nonlinearity 

property and diffusion order. It is determined that it is not difficult to find S-boxes with 

diffusion order of 1 which satisfy the suggested nonlinearity requirement with a small value 

of 2ry(2). Some results are illustrated in Table 3.1. It is clear that S-boxes which satisfy the 

nonlinearity requirement of either (3.13) or (3.14) and at the same time have a good diffusion 

property can be found. 

3.4 Conclusion 

Based on the observation that the number of S-boxes for deriving an overall linear approximation 

is on average related to the number of input plus output bits of each involved S-box linear 
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approximation, the restriction on the probability of an S-box linear approximation with more 

input plus output bits is relaxed. Thus S-boxes whose fewer-term linear approximations are 

poorer are found. As a result, the ability to resist linear cryptanalysis of an SPN that is 

constructed from these S-boxes is improved remarkably. 

To thwart differential cryptanalysis, it is desirable that S-boxes satisfy a relatively high diffusion 

order. S-boxes that satisfy our suggested nonlinearity requirement can be selected from the S

boxes with diffusion order of 1. Thus, the newS-box design criterion suggested in this chapter 

would help us to obtain good S-boxes which enable an SPN to be stronger in resisting linear 

cryptanalysis while still having properties suitable for resisting differential cryptanalysis. 
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Chapter 4 

Linear Transformation Design 

In this chapter, a new linear transformation is proposed as the method of interconnection 

between rounds of S-boxes. It is shown that when the linear transformation is adopted in an 

SPN, the average number of equivalent 2-term S-boxes per round involved in a cipher linear 

approximation has a lower bound of 1.5. 

4.1 Rearranging Permutations 

As was mentioned in the previous chapter, a substitution-permutation network is vulnerable to 

the attack of linear cryptanalysis. In a basic SPN, any two rounds of S-boxes are connected by 

a bit permutation such that no two input bits of an S-box come from the same S-box in the 

previous round. To improve an SPN against linear cryptanalysis, one possible method might be 

to rearrange the permutation for each round, according to the probabilities of all of the linear 

approximations derived up to the previous round. 

To test the feasibility of the method, we only considered the approximations that are derived 

using only 2-term linear approximations and assumed that the S-boxes to which the output 

bits in the (r - 1)-th round are connected in the r-th round are decided before arranging the 

permutation of the bits within each S-box but which bit of these output bits in the (r- 1)-th 

round will connect to which bit of the input bits of the S-box is to be decided. The connections 

between these output bits in the (r -1)-th round and these input bits of the S-box are decided 

in this way: if an output bit is included in the linear approximation which is the k-th best 

among the linear approximations each of which includes one of the output bits in the (r -1)-th 

26 



round, it is connected to the input bit which is included in the S-box linear approximation 

which is the k-th worst among all of the 2-term S-box linear approximations of the S-box. For 

example, suppose bits it, i2, ... , is in the (r- I)-round are connected to the bits }t, }2, ... , }s 

of an 8 x 8 S-box in the next round, it is for bit it that the relatively best linear approximation 

exists, and it is for input bit Jt that the relatively worst 2-term linear approximation exists. 

Then bit i1 is connected to bit ]I. 

However, the results of our simulation experiments demonstrate that this method is not effective. 

For instance, in an SPN which is constructed with 8 x 8 S-boxes satisfying the nonlinearity 

criterion 

( 4.1) 

proposed in Chapter 3, the following result was derived: after designing the bit permutation, 

the value of I2PL- 11 of the best cipher linear approximation is 1.697 X w-8 ; while in theory 

I2PL- 11 is bounded by I2PL -11 s (7 /64) 6
•
833 = 2.7073 X w-7 in Chapter 3, where PL denotes 

the probability of a cipher linear approximation as in Chapter 3. It should also be noted that 

a problem with this approach is that a changing permutation is hard to implement. When a 

changing permutation is implemented, the permutations in different rounds may be different 

from each other, so for an R-round SPN, (R-1) different permutations need to be implemented. 

For the VLSI implementeation of an SPN, certainly this kind of implemenation is hard to do, 

because too many wirings have to be arranged. 

To strengthen an SPN against linear attack without augmenting the number of rounds, an 

effective way is to use a linear transformation other than a permutation between rounds of 

S-boxes. In this chapter we introduce a linear transformation that is intended to be used in 

an SPN that contains 16 4 x 4 S-boxes in each round. The use of the linear transformation 

results in the average number of equivalent 2-term S-boxes per round involved in a cipher linear 

approximation having a lower bound of 1.5 which is an improvement over straightforward lower 

bound of 1. 
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4.2 Motivation for the use of 4 x 4 S-boxes 

As the linear transformation is designed to be used in an SPN consisting of 4 x 4 S-boxes, 

before the linear transformation is discussed, we would like to give the motivation for designing 

a linear transformation that is to be used in an SPN consisting of 4 x 4 S-boxes. 

Many cryptographic applications require a single chip implementation of a cryptographic al-

gorithm. To make it as easy as possible for an LSI logic designer to realize the design on a 

single chip, the minimum number of logic gates required to implement an SPN needs to be 

small. Decreasing the minimum number of logic gates in an SPN motivated us to study SPNs 

consisting of smallS-boxes. The reason that smallS-boxes can reduce the number of logic gates 

is given below. 

In hardware, an S-box is usually implemented as a set of boolean functions instead of a table 

lookup. Ann X n S-box is a function that maps n input bits (x1, x2, ... xn) onto n output bits 

(Yl, Y2, ... , Yn). Each output bit, y;, can be represented as a Boolean expression of the input 

bits, i.e., y; can be represented as one or more minterms that are combined using a logic OR 

operation, where a minterm includes all of input bits or their complements which are ANDed 

together. 

For example, if y; can be expressed in terms of inputs (x1, x2, x3) as follows: 

Xl X2 X3 Yl Y2 Y3 

0 0 0 1 1 0 
1 0 0 0 1 1 
0 1 0 0 0 1 
1 1 0 1 0 0 
0 0 1 0 1 1 
1 0 1 1 0 1 
0 1 1 1 0 1 
1 1 1 0 1 0 

denotes the logical OR operation. 

It is easy to find that, for an 8 x 8 S-box, the Boolean expression for an output bit y; may 

include at most 28 8-bit minterms, but for 4 X 4 S-box, an output bit y; can include at most 
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24 4-bit minterms. Also, considering the cryptographic properties of S-boxes,it is usually true 

that the bigger the size of an S-box the more the minterms included in the Boolean expression 

for an output bit. Therefore it is important to use small S-boxes to reduce the number of logic 

gates needed in the implementation of an SPN. 

In the process of exploiting the properties of smallS-boxes, 3 x 3 and 4 x 4 S-boxes were both 

studied. After searching all 3 x 3 S-boxes, we found that the minimum 2ry(2) that a 3 x 3 S-box 

can reach is 0.5. Since the value of 0.5 for 2ry(2) appears to introduce a very high requirement 

on the number of rounds or the linear transformation of an SPN, we feel that 3 X 3 S-boxes are 

not suitable to be adopted for use in an SPN. 

However, for 4 x 4 S-boxes, the situation is different. 4 x 4 S-boxes that satisfy diffusion order 

of 1 and meanwhile satisfy our new nonlinear criterion proposed in Chapter 3 with 2ry(2) = 1/4 

can be found. This property of 4 x 4 S-boxes provides us with the confidence that 4 x 4 S-boxes 

are promising candidates for efficient, secure SPNs. Thus we have studied the structure of an 

SPN that are constructed from 4 x 4 S-boxes and have specifically focused on developing an 

appropriate linear transformation to be used to efficiently interconnect rounds of S-boxes. 

4.3 Equivalent Number of 2-term S-boxes 

The concept of an equivalent 2-term S-box is critical to our description, so we should begin 

with a careful analysis of this concept. 

In our substitution-permutation network, the S-boxes are selected such that they satisfy two 

criteria: 1) For the differential property, the diffusion order of an S-box is 1; 2) For the nonlinear 

property, 2ryi ( 1) satisfies 

2 ·( ) < { j2 X 1
6
6 - 1J = 1/4; r = 2 

71' 1 - J2 x 1~- 1J = 1/2; 3 ~ 1 ~ 2n 
(4.2) 

where 1 is the number of input plus output bits included in a linear approximation of an S-box. 

Note that ( 4.2) is similar to (3.12). Although it is looser, it is selected so that ry(2) can be 

small. How to select these S-boxes is discussed in the previous chapter. 

By rule (4.2) and the trivial relation of (1/2f = 1/4, we define that: 
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• If an S-box for which 1 = 2 is involved in a linear approximation, then for this S-box the 

equivalent number of 2-term S-boxes is 1; 

• If an S-box for which 1 ?: 3 is used in a linear approximation, then for this S-box the equivalent 

number of 2-term S-boxes is 0.5. 

In this way, we shall use the equivalent number of 2-term S-boxes involved in a best linear 

approximation to measure the level of the security of an SPN in thwarting linear cryptanal

ysis. The greater the total number of equivalent 2-term S-boxes involved in the best linear 

approximation, the stronger an SPN is in resisting linear cryptanalysis. 

4.4 A Review of Previously Proposed Linear Transformations 

A permutation can be viewed as a special kind of linear transformation. The use of a permu

tation in an SPN is not able to eliminate the cases where in each round only one 2-term S-box 

is involved in a linear approximation. In other words, in each round only one 2-term linear 

expression of an S-box is involved in a linear approximation. Thus, for an SPN that employs 

permutations between rounds of S-boxes, to set a lower bound for the equivalent number of 

2-term S-boxes involved in a linear approximation, the bound should never be greater than 1. 

The use of other linear transformations to interconnect rounds of S-boxes can increase the 

number of equivalent 2-term S-boxes involved in a linear approximation. The use of linear 

transformation in an SPN is first suggested by the authors in [12], in which the authors designed 

a linear transformation that makes at least 1.5 S-boxes in each round be involved in a linear 

approximation. Later, the authors in [32] proposed another linear transformation, with which 

the average per round number of S-boxes involved in a linear approximation is 2. Both of 

these two linear transformations strongly improve an SPN's resistance to linear cryptanalysis. 

However, when an SPN is constructed from S-boxes that satisfy relation (4.2 ), these two linear 

transformations give no advantage. 

The linear transformation proposed in [12] is defined by V = 11'[L(U)], where V = [V1 , V2, 

... , VN] is the vector of input bits of a round of S-boxes, U = [Ut, U2 , ... , UN] is the vector 

of bits from the previous round output, 71' is a permutation for which no two outputs of an 
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Figure 4.1: Ayoub's Permutation 

S-box are connected to oneS-box in the next round, and L(u) = [L1(U), ... , LN(U)], where 

L;(.U) = U1 E9 U2 E9 ... EBUi-1 E9Ui+1 E9 ... E9 UN. When an SPN is combined with this linear 

transformation and the sort of 4 x 4 S-boxes that satisfy relation ( 4. 2), the lower bound for the 

equivalent number of 2-term S-boxes can not exceed 1. This means it is possible that the per 

round number of equivalent 2-term S-boxes involved in a linear approximation can be 1. 

We give an example to illustrate this conclusion. In the definition of the linear transformation, 

1r is any kind of permutation for which no two output bits of an S-box are connected to one 

S-box in the next round. Hence Ayoub's permutation [2] satisfies this condition and can be used 

in the linear transformation. Ayoub's permutation for a 64-bit network is illustrated in Figure 

4.1 and is described as follows: the output bits in the first bit positions of the 16 S-boxes in this 

round are successively connected to the input bits of the first 4 S-boxes in the next round, the 

output bits in the second bit positions of the 16 S-boxes in this round are successively connected 

to the input bits of the second 4 S-boxes in the next round, ... , and so on. 

Suppose we use the highlighted linear path to achieve a linear approximation. In accordance 

with the definition of the linear transformation, we immediately have these relations: 8~ 1 = 
' 

81,1 E9 Q, 8~,2 = 82,1 E9 Q, 8~, 1 = 81,2 E9 Q, and 8~,2 = 82,2 E9 Q, where Q = U1 E9 U2 E9 ... E9 

UN -1 EBU N = 81,1 E9 81,2 EB81,3EB 81,4 E9 ... E9 816,1 E9 816,2 EB816,3 EB816,4, with 8;,j representing 
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the j-th output bit of the i-th S-box in the previous round and s;,j representing the j-th input 

bit of the ·i-th S-box in the next round. Combining these expressions together, we have 

(4.3) 

Also, according to the connections of Figure 4.1, we get 

( 4.4) 

By relations (4.3) and (4.4), it is clear that a linear approximation that involves S-boxes S 1, S2, 

S~, s; in every two rounds exists. Since for each of these 4 8-boxes, a 3-term linear expression is 

used, the per round number of equivalent 2-term S-boxes involved in the linear approximation 

is 1. 

We now consider the linear transformation presented in (32] and described by 

m 

s;,1 = EB sk,j tB S;,j (4.5) 
k=l 

where m represents the number of S-boxes in one round of an SPN, s;,j denotes the j-th 

input bit of i-th S-box in one round, and Sk,j refers to the j-th output bit of k-th S-box in 

the previous round. For an SPN that consists of 4 X 4 S-boxes satisfying our design criteria, 

this linear transformation can only guarantee that the per round number of equivalent 2-term 

S-boxes involved in a linear approximation is not less than 1 as shown in the following lemma. 

Lemma 4.1 Under the linear transformation represented by (4.5), the per round number of 

equivalent 2-term S-boxes involved in a linear approximation can be 1. 

Proof Without loss of generality, suppose a cryptanalyst adopts S-boxes 81 and 82 to find 

a linear path, as 8~,1 = tBr=l Sk,l tB81,1, s;,l = tBr=l 8k,l tBS2,1, 8~,2 = tBr=l Sk,2 tB81,2, and 

8;,2 = EBr=l 8k,2 EB82,2· It follows that 8~,1 EB 8~,2 EB8;,1 EB 8;,2 = 81,1 EB 81,2 EB82,1 EB 82,2· Thus 

in every round each of S-boxes S1 and S2 contributes 4 bits to a linear path. As stated above, 

for an S-box that offers a 4-term linear expression to a linear path, its equivalent number of 

2-term S-boxes is 0.5. Hence in this case the per round number of equivalent 2-term S-boxes is 

1. 0 
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We now propose a linear transformation which based on the S-box property of ( 4.2) can be used 

to guarantee a better bound on the average number of equivalent 2-term S-box approximations 

per round. 

4.5 Linear Transformation Design 

In this section, our linear transformation shall be described in detail. In order to make the 

description clear, it is important to define some notational conventions first. 

From now on, we will use S;,j to denote the j-th output bit of i-th S-box in one round, and s;.j 

to denote the j-th input bit of i-th S-box in the next round, where 1 :::; i, j :::; m, and m is the 

number of S-boxes in one round. For example, while S1,2 represents output bit 2 of S-box Sl 

in round r, S~,2 represents input bit 2 of S-box S1 in round r + 1. 

As well, we separate the 16 S-boxes in one round into 4 groups, each of which is a combination 

of 4 S-boxes, and we refer each group as a partition. Partition i includes 4 S-boxes Sk, where 

k = 4(i- 1) + j, 1:::; j :::; 4. For example, partition 2 comprises of S5, S6, S7, and S8. 

Moreover, the notation Q~ is defined to denote the XOR value of the k-th bits of all the S-boxes 

in partition i and j. For example, Qj1 represents the XOR of the 3rd bit of the S-boxes in 

partition 4 and in partition 1, i.e., Qj1 = S13,3EB S14,3EB S15,3 EB 816,3 EB81,3EB 82,3 EB 83,3 EB84,3 

= EBf~13S;,3 EBt=l S;,3. 

By now all the notational conventions have been discussed. The designed linear transformation 

is expressed in Table 4.1. In Table 4.1, i E {1, 2, 3, 4}, j E {5, 6, 7, 8}, k E {9, 10, 11, 12}, and l 

E {13, 14, 15, 16}. For example, S~, 1 = QFEBSl,l = EB~=l S;,1 EBS1,1, and S~ 1 ,2 = Q~2 EBS(ll-8),2 

= EB~=l S;,2 EBS3,2, 

In the proof of the theorem that under this linear transformation the per round number of 

equivalent 2-term S-boxes involved in a linear transformation is not less than 1.5, the inverse 

linear transformation is used. The inverse linear transformation can be trivially deduced from 

the original one and its expression is exactly the same as the original. 

Lemma 4.2 The inverse linear transformation is the same as original. 
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Partition 1 2 3 4 

I S-boxes S;, 1 ~ i ~ 4 Si, 5 ~ j ~ 8 sk,9 ~ k ~ 12 S1, 13 ~ l ~ 16 
1 Qt'~ EB S;,1 Qf~ EB Sj,l Qf4 EB sk,l Qf"~ EB St,1 

Bit 2 Q~4 EB s(i+8) 2 Q~"~ EB s(j+8l 2 Q~"L. EB srk-8).2 Q~"L. EB s(l-8) 2 

3 Q;f1 EB 8(i+l2),3 Q5s EB 8ri+4l 3 Q5s EB 8rk-4).3 Q;f1 EB 8(/-12}3 

4 Q~s EB 8(i+4)4 Q4
1 EB 8(j-4J4 Q~1 EB 8ck+4),4 Q~s EB 8(1-4).4 

Table 4.1: Linear Transformation 

Proof (Sketch): If we prove that the expression for 8;,j is same as for 8;,j, the lemma is proven. 

Without loss of generality, we prove that the expression for 8~,3 is same as for 81,3· A similar 

approach can be taken for all other values of i and j, 

As defined in the linear transformation, 8~ 3 is expressed by 
' 

(4.6) 

I I I I I I I I 41 I 

Also, 8 13,3 , S14,3 , 8 15,3 , 8 16,3 , S2,3 , S3,3 , and 84,3 are defined as: S13,3 = Q3 EB 81,3, 8 14,3 = 

41 I 41 I 41 1 41 I 41 
Q3 EB 82,3, 815,3 = Q3 EB 83,3, 816,3 = Q3 EB 84,3, 82,3 = Q3 EB 814,3, 83,3 = Q3 EB 815,3, and 

I 41 
84,3 = Q3 EB 816,3· 

Thus, 

Now let us define 

Then 

I.e., 

(4.7) 
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Comparing the form of Qj1 with that of Q~41 , and 81,3 with 8~,3 , we conclude that the expression 

for 81,3 is exactly the same as for 8~,3· 0 

We now consider developing a theorem which shows when an SPN adopts the linear transfor

mation of Table 4.1 the average per round number of equivalent 2-term S-boxes involved in a 

cipher linear approximation is at least 1.5 (except for the first and last round). The theorem 

is going to be proven by showing that the following statements are true and then combining 

them: 

(i) If only one S-box in one round is involved in an overall linear approximation, then in either 

the next round or previous round the number of S-boxes involved in the linear approximation 

must be at least 7; 

(ii) If 2 S-boxes in one round are involved in the derivation of a linear approximation and at 

least one of them contributes a 'Y-term, 'Y > 2, linear expression to the linear approximation, 

then in the previous or next round there must be at least 4 S-boxes involved in the linear 

approximation; 

(iii) If 2 S-boxes in one round are involved in the derivation of a linear approximation and each 

of them offers a 2-term linear expression to the linear approximation, then for this round the 

number of equivalent 2-term S-boxes is 2; 

(iv) If 2 S-boxes in round r are involved in the derivation of a linear approximation such that 

4 S-boxes in the previous round are involved, then each of the 4 S-boxes in round r - 1 must 

only offer one output bit for the derivation of the linear approximation; 

(v) If 3 or more S-boxes in one round are involved in the derivation of a linear approximation, 

then for this round the number of equivalent 2-term S-boxes is at least 1.5. 

Statements (iii) and (v) are trivially obvious. So we should only focus on arguments for state

ments (i), (ii) and (iv). 

Lemma 4.3 If one S-box in one round is involved in the derivation of a linear approximation, 

then the number of involved S-boxes in the previous round must be at least 7. 

Proof Without loss of generality, suppose S-box 81 in one round is involved in the derivation 
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of an overall linear approximation. Then the 4 input bits of the S-box are: 

and 

Since (1) each S~ i 1 ~ i ~ 4 consists of 7 bits from different 7 S-boxes and (2) when i -:f. j, 
' 

1 ~ i, j ~ 4, the bits included in S~,i are different from the bits included in Si,j (i.e., they can 

not cancel each other), no matter how many input bits of 81 are involved in the deduction of a 

linear approximation, at least 7 bits which come from 7 different S-boxes in the previous round 

will be included in the linear approximation. This means that at least 7 S-boxes in the previous 

round will be involved in a linear approximation. Similar results can be shown for any S-box 

Sk, 2 ~ k ~ 16. 0 

Statement (i) is now proven. We turn our attention to the proof of statement (ii). When several 

S-boxes in one round are involved in a linear approximation, some of their input and output 

bits will take part in the derivation of the linear approximation. On these involved bits, we 

have Lemma 4.4 and 4.5. 

Lemma 4.4 Among the involved input bits in one round, if there exists one bit such that its 

bit position is different from that of all of the other bits, then the number of involved S-boxes in 

the previous round must be at least 7. 

Proof Without loss of generality, suppose S~ 1 is used in the derivation of a linear approxima-
' 

tion, but none of S£ 1, 2 ~ i ~ 16, are. 
' 
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By the definition of the linear transformation, 

81,1 = QF $ 81,1 
= 82,1 67 83,1 67 84,1 67 8s,1 67 86,1 67 81,1 67 8s,l· 

Since none of 8~ 1, 8~ 1 ... , 816 1 is involved in the derivation of the linear approximation, any 
' ' ' 

one of 82,1, 83,1, 84,1, 85,1, 86,1, 87,1, 8s,1 which constitutes 8~, 1 can not be cancelled during 

the derivation of the linear approximation. This implies that 7 S-boxes 82, 83, 84, 85, 86, 87, 

and 88 in the previous round must be involved in the linear approximation. 0 

Lemma 4.5 If 2 S-boxes in one round are involved in a linear approximation, then in the 

previous round the possible number of involved S-boxes is 2, 4, 6, or greater than or equal to 7. 

Proof The proof of the lemma is done by considering 2 cases: Case 1: 2 involved S-boxes in one 

round are in the same partition; and Case 2: 2 involved S-boxes belong to 2 different partitions. 

For case 2, there are 6 subcases to be considered: 

Case 2.1: 2 involved S-boxes are in partitions 1 and 2; 

Case 2.2: 2 involved S-boxes are in partitions 1 and 3; 

Case 2.3: 2 involved S-boxes are in partitions 1 and 4; 

Case 2.4: 2 involved S-boxes are in partitions 2 and 3; 

Case 2.5: 2 involved S-boxes are in partitions 2 and 4; 

Case 2.6: 2 involved S-boxes are in partitions 3 and 4; 

Case 1: Without loss of generality, assume that 2 S-boxes are in partition 1 and these 2 S-boxes 

are 811 and 821
• 

By the definition of the linear transformation, we immediately have 
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8j,4 = Q~3 EB 8s,4, 

and 

According to Lemma 4.4, if 8i i and 82 i are not used in the derivation of a linear transformation 
' ' 

simultaneously, the number of involved S-boxes in the previous round must be at least 7. When 

8~ i and 8; i appear in the derivation of a linear approximation at the same time, the number 
' ' 

of involved S-boxes in the previous round must be even. This is proved as follows: 

Let 81 i and 82 i be used in the derivation of a linear approximation. It is not hard to see that, 
' ' 

the XORed value of these 2 bits will generate 2 bits that belong to 2 different S-boxes, and 

when i is varied, the resulting 2 bits will change to belong to 2 other S-boxes. For example, 

8i,1 EB 82,1 = 81,1 EB 82,1 and 8b EB 82,2 = 89,2 EB 810,2· Obviously, 81,1, 82,1, 89,2, and 810,2 

belong to 4 different S-boxes in the previous round. 

This implies that when 8i i and 82 i are used in a linear approximation at the same time, the 
' ' 

possible number of involved S-boxes in the previous round is 2 x 1, 2 x 2, 2 x 3, or 2 x 4, 

depending on whether 1, 2, 3, or 4 values of i are ir;tvolved. 

Summarizing the above arguments, we have proven that the lemma is true for case 1. 

Case 2.1: SupposeS-boxes 8i' and 8j' are from partitions 1 and 2, respectively. 

In accordance with the definition of the linear transformation, it follows that: 
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and 

8},4 = Q~1 EB 8(j-4),4· 

Since i E {1, 2, 3, 4}, i + 8 E {9, 10, 11, 12}, j E {5, 6, 7, 8}, and j + 8 E {13, 14, 15, 16}, it is 

easy to see that the 2 bits involved in 8~, 1 EB 8},1 i.e., 8i,l and 8j,l will be different from that 

yielded from 8b EB 8},2 i.e., 8(i+8),2 and 8(j+8),2· So, when 8:,1 EB 8},1 or 8b EB 8},2 is used in the 

derivation of a linear approximation, there are 2 S-boxes in the previous round to be involved 

in the linear approximation, and when 8:,1 EB 8},1 and 8:,2 EB 8},2 are used in the derivation of 

the linear approximation, there are 4 S-boxes in the previous round to be involved in the linear 

approximation. 

If at least one of 8~ 3 , 8: 4 , 81'· 3 and 81
1
· 4 is used in the derivation of a linear approximation, since 

' ' ' ' 
neither 8:,3 and 8},3 have common component bits nor do 8f,4 and 8},4 , any one of 7 bits that 

constitutes S~ 3 , 8~ 4 , 8
1
'· 3 or 81~ 4 can not be cancelled during the derivation. Hence at least 7 

' ' ' ' 
S-boxes in the previous round will be involved in the linear approximation. 

Combining Lemma 4.4 and the above arguments, we have shown that, when 2 S-boxes from 

partition 1 and 2 are involved in a linear approximation, the number of involved S-boxes in the 

previous round must be 2, 4, or greater than or equal to 7. 

Case 2.2: For this case, assume 8i' belongs to partition 1 and 8k1 belongs to partition 3. 
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In the light of the definition of the linear transformation, we have 

and 

(4.8) 

Since, QF has no common term with Q14 and neither does Q~4 with Q~2 , Q~ 1 with Q§3 , and 

Q~3 with Q41 , the combination of S-boxes Si' and Sk' must cause at least 14 S-boxes in the 

previous round to be involved in a linear approximation. Therefore the lemma is true in this 

case. 

It is simple to verify cases 2.3, 2.4 and 2.6 using the same argument as for case 2.1, and case 

2.5 using the argument of case 2.2. Hence, the lemma is proven. 0 

Lemma 4.6 If 2 S-boxes in round r are involved in the derivation of a linear approximation 

such that 4 S-boxes in the previous round are involved, then each of the 4 S-boxes in round r- 1 

must only offer one output bit for the derivation of the linear approximation. 

Proof. In the proof of Lemma 4.5, we see that if the number of involved S-boxes in the round 

r- 1 is 4, then the bits offered by 2 S-boxes in round r must appear in pairs in terms of their 
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bit positions, i.e., one involved bit of oneS-box must have the same bit position of one involved 

bit of another S-box. Moreover, suppose Si and Sj in round r are involved in the derivation of 

a linear approximation. According to the definition of the linear transformation, it is not hard 

to see that, S~,u EB S},u either produces 14 bits or produces 2 bits, where u E {1, 2, 3, 4}. 

If 14 bits are produced, then these 14 bits can not be cancelled by other bits since the bit 

positions of these 14 bits are different from those of other bits generated by Si,v EB S},v, where 

vi= u. This means there will be at least 14 S-boxes in round r- 1 to be used in the derivation 

of a linear approximation. It is assumed that 4 S-boxes in round r- 1 are involved in a linear 

approximation, thus any Si u EEl S
1
'· u must produce only 2 bits. 

' ' 

Also, by the definition of the linear transformation, when u i= v, the 2 S-boxes that connect to 

the 2 bits generated from Si,u EB S},u will be different from the 2 S-boxes that connect to the 2 

bits yielded from Si v EB S
1
l v· 

' ' 

So, only when each of 2 S-boxes in round r offers 2 input bits for the derivation of a linear 

approximation, the number of involved S-boxes in the round r- 1 can be 4. 

Correspondingly, the number of the total bits generated by 2 terms that are in the form of 

Si,u EB S},u is 4. These 4 bits are connected to the 4 S-boxes in round r - 1, each of which 

connects to one of the 4 bits. Therefore we can equivalently say that the 4 S-boxes in round 

r - 1 only offers one output bit for the derivation of the linear approximation. 0 

As we shall see in the proof of Theorem 4.1, combining Lemmas 4.5 and 4.7 together confirms 

statement (ii). Now we give Lemma 4.7 before our statement and proof of Theorem 4.1. 

Lemma 4. 7 If 2 S-boxes in round r are involved in a linear approximation such that only 2 

S-boxes in the previous round are involved, then each of these 2 S-boxes in round r must only 

offer an input bit for the derivation of the linear approximation. 

Proof By Lemma 4.4, if the number of involved S-boxes in the previous round is 2, then the 

bits offered by 2 S-boxes in round r must appear in pairs with respect to their bit positions. 

Moreover, suppose Si and Sj in round r are involved in the derivation of a linear approximation. 

According to the definition of the linear transformation, it is easy to see that, if Si u EB S
1
'· u or 

' ' 
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Si,v ED S},v can produce 2 bits, when u =I= v, the 2 S-boxes that connect to the 2 bits generated 

from Si,u ED S},u will be different from the 2 S-boxes that connect to the 2 bits yielded from 

Si,v ED S},v, where u, v E {1, 2, 3, 4}. Thus, only when each of 2 S-boxes in round r offers 1 input 

bit for the derivation of a linear approximation, the number of involved S-boxes in the previous 

round can be 2. D 

Until now we have proved the lemmas with regard to the number of involved S-boxes in the 

previous round. By noticing Lemma 4.2 which states that the inverse linear transformation is 

exactly the same as the original one, all the arguments for the proof of the number of involved 

S-boxes in the previous round can be applied to the number of involved S-boxes in the next 

round. So the number of involved S-boxes in the next round satisfies the same rules as that in 

the previous round. 

Theorem 4.1 When an SPN adopts the designed linear transformation of Table 4-1, the av

erage per round number of equivalent 2-term S-boxes involved in a linear approximation is at 

least 1.5 (except for the first and last rmmd). 

Proof We shall prove the theorem by combining 3 cases. 

Case 1: Suppose one S-box in one round is involved in a linear approximation. 

According to Lemma 4.3 and the equivalence of the linear transformation and its inverse, the 

number of involved S-boxes in either the previous or next round must be at least 7. Hence we 

only need to consider 2 consecutive rounds. Since there are at least (1 + 7) involved S-boxes 

in 2 rounds, and for any S-box its number of equivalent 2-term S-boxes is at least 0.5, the per 

round number of equivalent 2-term S-boxes is 2:: (l+7Jxo.s = 2.0. Hence, the theorem is true for 

this case. 

Case 2: Suppose 2 S-boxes in one round are involved in a linear approximation. 

By Lemma 4.6, in this scenario the number of involved S-boxes in the previous or next round 

must be 2, 4, 6, or not less than 7. 

(i) Suppose the number of involved S-boxes in either the previous round or the next round is 

· 2, as in Lemma 4.7. Each of the 2 S-boxes in this round must offer only one input bit and one 
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output bit to the derivation of the linear approximation. Thus, for each of these 2 S-boxes its 

equivalent number of 2-term S-boxes is 1. Consequently, for this round the per round number 

of equivalent 2-term S-boxes is 2. 

(ii) Suppose the number of S-boxes in round r is 2, the number of S-boxes in round r - 1 is 

4, and the number of S-boxes in round r- 2 is 2. Then by Lemma 4.6, each of the 4 S-boxes 

in round r - 1 must offer only one input bit and one output bit to the derivation of the linear 

approximation. This means for these 4 S-boxes, the equivalent number of 2-term S-boxes for 

each is 1. Meanwhile, for every S-box in round r or r - 2, its equivalent number of 2-term 

S-boxes is 0.5. Hence for this 3 rounds, the per round number of equivalent 2-term S-boxes is 

4xlt0.5x4 _ 2 3 - . 

(iii) Suppose the number of S-boxes in round r is 2, the number of S-boxes in round r - 1 is 

4, and the number of S-boxes in round r - 2 is 3 or more. In this scenario, we only need to 

calculate the per round number of equivalent 2-term S-boxes for rounds r and r - 1. For each 

of the (2 + 4) S~boxes in round r and r- 1, its number of equivalent 2-term S-boxes is at least 

0.5. So the per round number of equivalent 2-term S-boxes is at least (2+4Jx
0·5 = 1.5. 

By Lemma 4.2, the inverse linear transformation is exactly same as original. All the arguments 

for (ii) and (iii) are applicable when S-boxes appear in reverse order. So, combining all of these 

cases, it is not hard to see that, no matter what round (except the first and the last round) 2 

S-boxes appear in, the per round number of equivalent 2-term S-boxes for a section of linear 

path related to these 2 S-boxes is never less than 1.5. 

Case 3: Suppose 3 or moreS-boxes in one round are involved in a linear approximation. Since 

for any S-box its equivalent number of 2-term S-boxes is not less than 0.5, the per round number 

of equivalent 2-term S-boxes for this round is ~ 3 x 0.5 = 1.5. 

When the per round number of equivalent 2-term S-boxes involved in a linear approximation 

is calculated, the above 3 cases should be considered together. By joining the 3 cases together, 

the theorem follows. 0 
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4.6 Effectiveness of the Linear Transformation 

In this section the effectiveness of the designed linear transformation is considered. 

Suppose a cryptanalyst uses basic linear cryptanalysis (algorithm 1 in [16]) to attack an 12-

round SPN that employs the designed linear transformation. According to [16] the approximate 

number of known plaintexts required to guess a correct equivalent key bit with a success rate of 

97.7% is NL = IPL- 1/21-2
, with IPL- 1/21 = 1/2 rr1=1 I2Pi -11, where 8 is the total number 

of S-boxes involved in a linear approximation. 

According to the definition 2T]i(/) = l2p;(/) - 11, where 1 is the number of bits included in 

a linear approximation of an S-box, and the definition for the equivalent number of 2-term 

S-boxes, IPL - 1/21 can be bounded by IPL- 1/21 :$ 1/2(21](2))0', where a is the equivalent 

number of 2-term S-boxes involved in a linear approximation and 17(2) is upper bound on 1Ji(2). 

On the basis of Theorem 4.1, for an 12 round SPN, the number of equivalent 2-term S-boxes 

involved in a linear approximation is at least (10 x 1.5+2 X 1), where 10 refers to the number of 

rounds excluding the first and last rounds, 1.5 is the bound for the average per round number 

of equivalent 2-term S-boxes in the middle rounds, and 1 is the bound for the first and last 

rounds. Thus NL = IPL- 1/21-2 ~ [1/2(21](2))ut2 ~ [1/2(1/4)(lOxl.S+2xl)j2 = 270 . A 12 

round SPN that adopts the linear transformation has 270 known plaintext-ciphertext pairs 

required for the basic linear attack. Given that only 264 plaintexts are available, it is clear 

that such a cipher is secure. For comparison, a cipher which uses a permutation or the linear 

transformation of (4.5) with S-boxes that satisfy the nonlinearity requirement of (4.2), as few 

as 250 known plaintext/ciphertext pairs are required, by the conclusions about the per round 

number of equivalent 2-term S-boxes in Section 4.4. Therefore the linear transformation of 

Table 4.1 is very effective in strengthening an SPN against linear cryptanalysis. 

4. 7 Conclusion 

In this chapter we proposed a novel linear transformation for the interconnection of S-boxes. 

The linear transformation is designed to be used in an SPN that consists of 16 4 X 4 S-boxes in 

each round. By utilizing the linear transformation, the per round number of equivalent 2-term 
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S-boxes involved in an overall linear approximation is raised to at least 1.5. As well, combining 

this lower bound on the per round number of equivalent 2-term S-boxes involved in a cipher 

linear approximation and new S-box nonlinear properties as in ( 4.2) gives a new higher lower 

bound on the complexity of linear cryptanalysis. 
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Chapter 5 

Security Against Differential 
Cryptanalysis 

In Chapter 4, to resist linear cryptanalysis, we proposed a new linear transformation, and 

proved that by using the linear transformation and a new nonlinearity constraint the per round 

number of equivalent 2-term S-boxes involved in a linear approximation is at least 1.5. Another 

powerful attack on block ciphers is differential cryptanalysis. In this chapter, the security 

against differential cryptanalysis for an SPN that adopts the linear transformation of Table 

4.1 is discussed. It is established that, when the linear transformation is used and S-boxes are 

selected which satisfy a diffusion order of 1, the average number of S-boxes involved per round 

in a differential characteristic is at least 3. 

5.1 Average Number of S-boxes Involved in a One-round 
Characteristic 

One powerful attack on DES-like ciphers is the method of differential cryptanalysis introduced 

by Biham and Shamir [3]. This is a chosen-plaintext attack. In the attack on an R-round block 

cipher, an (R- 1)-round differential characteristic can be used, which describes the correlation 

between the input and output differences for consecutive (R-1) rounds. Suppose two messages, 

M' and M", are input to one round of an SPN at different times, we use the notation of b..M to 

represent the bit-wise XOR difference of the two messages, i.e., b..M = M' $ M". An r-round 

characteristic is defined as a series of differential pairs: Or= {(b..Ul,b..Vl), ... , (b..Ur, b..Vr)}, 

where b..Ui and b. Vi refer to the input and output difference of a particular round i, respectively. 
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The probability of a one-round differential characteristic is defined to be the conditional prob-

ability that, given some particular difference in the inputs to the round, some particular differ-

ence in the outputs of that round is achieved. Assume that the inputs arc independent between 

rounds. This assumption is satisfied if the round keys are mutually independent. Then, since 

an r-round characteristic can be viewed as the concatenation of r one-round characteristics, 

the probability of an r-round characteristic is obtained by multiplying the r probabilities of 

one-round characteristics. 

Let p(~U;,~V;) represent the probability of the i-th round pair, and let Pnr represent the 

probability of an r-round characteristic. Then Pnr = ITi=l p(~U;, ~ V;) . For an R-round SPN, 

the number of chosen plaintext-ciphertext pairs required for differential cryptanalysis can be 

approximated by N D = - 1- [3], where pnR_1 is the probability of the best (R- 1)-round 
Pf!R-1 

characteristic. 

Assume the average number of S-boxes involved in a one-round characteristic that constitutes 

an (R-1)-round characteristic is na, and the maximumS-box XOR pair probability is p0 , where 

Po = ~ , with Mffi rep~esenting the maximum entry in the XOR distribution tables of then x n 

S-boxes used in the SPN under consideration. Then the number of chosen plaintext/ciphertext 

pairs required in the attack, N D, is given by 

1 
Nn > (R ) . - (Po) -1 ·na 

(5.1) 

In the context of an R-round SPN, p0 may be viewed as a constant because all of the S-boxes · 

used in SPN s can be selected such that they satisfy the same criteria. Hence na is the sole 

factor that affects the value of N D. 

Later in this chapter, we focus on the discussion of the bound for na, the average number of 

S-boxes involved in a one-round characteristic. 

5.2 Selection of S-boxes 

As in the previous chapter, we are still considering the 64-bit substitution-permutation network 

consisting of 4 X 4 S-boxes. As proposed in Chapter 4, the combining S-boxes are selected such 

that they satisfy two criteria: 1) For the differential property, the diffusion order of an S-box is 
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>. = 1, where diffusion order is described in Chapter 3; 2) For the nonlinearity property, 2ry('y), 

defined in Chapter 3, satisfies (4.2). 

5.3 Strength of Previously Proposed Linear Transformations 

In this section, we shall analyse the average number of S-boxes involved in a one-round charac

teristic of an SPN for which one of former linear transformations is applied as the interconnection 

between rounds of S-boxes. 

Lemma 5.1 If an SPN is constructed such that: 1) it uses the kind of permutation where each 

of the outputs of an S-box go to different S-boxes in the next round, 2) the number of S-boxes 

in each round eqtwls the size of an S-box and 3) the diffusion order of all S-boxes is>.= 1, then 

the average number of S-boxes involved in a one-round characteristic can be 1. 5. 

Proof The proof of the lemma is done by considering the case illustrated in Figure 5.1. In Figure 

5.1, all of the S-boxes satisfy >. = 1, the bold lines represent paths of bit changes of S-boxes. 

It can be seen that in every 4 rounds there are 6 S-boxes involved in an iterative differential 

characteristic, thus the average number of S-boxes involved in a one-round characteristic is 1.5. 

D 

Lemma 5.2 If an SPN uses Ayoub's permutation and uses S-boxes for which >. = 1, then the 

average number of S-boxes involved in a one-round characteristic can be 2.0. 

Proof We prove by giving an example. In Figure 5.2, all of the S-boxes satisfy >. = 1, and the 

bold lines represent paths of bit changes of S-boxes. The bold lines thus constitute the path of 

a differential characteristic. For this characteristic, in each round, there are 2 S-boxes involved. 

Thus in this scenario the average number of S-boxes involved in a one-round characteristic is 

2.0. D 

The linear transformation suggested in [12] is defined by V = 1r[L(u)], where V = [V1, V2, ... , l/;v] 

is the vector of input bits of a round of S-boxes, U = [U1, U2, ... , UN] is the vector of bits from 
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Figure 5.1: A characteristic in an SPN using permutation 

the previous round output, 1r is a permutation for which no two outputs of an S-box are con

nected to one S-box in the next round, and L(u) = [L1 (U), ... , LN(U)], where Li(U) = U1 

tBU2 (£) Ui-1 tBUi+1 ... u N. 

Lemma 5.3 When an SPN is combined with the linear transformation in {12} and uses 4 x 4 

S-boxes that have diffusion order ). = 1, the lower bound for the average number of S-boxes 

involved in a one-round characteristic can not be expected to exceed 2. 

Proof If we can give a scenario where the average number of S-boxes involved in a one-round 

characteristic is 2, the lemma is proven. 

In the definition of the linear transformation, 1r is any permutation for which no two output 

bits of an S-box are connected to oneS-box in the next round. Hence, Ayoub's permutation [2] 

satisfies this condition and can be used in the linear transformation, where Ayoub's permutation 

is illustrated in Figure 5.2. 

Suppose we use the bold path representing bit changes to achieve a differential characteristic. In 

accordance with the definition of the linear transformation, we immediately have these relations: 

8~,1 = 81,1 (£) Q, 8~,2 = 82,1 (£) Q, 8;,1 = 81,2 (£) Q, and 8;,2 = 82,2 (£) Q, where Q = u1 (£) u2 (£) ... 

tBU N -1 tBU N = 81,1 tB81,2 (£) 81,3 tB81,4tB ... 816,1 (£) 816,2 (£)816,3 (£) 816,4, where 8i,j represents 
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an output bit of an S-box in one round, and s;,j represents an input bit of an S-box in the next 

round. 

Assume that ~S1,1 = 1, ~S1,2 = 1, ~S2,1 = 1 and ~S2,2 = 1. Then ~Q = ~U1 EB~U2 EB ... EB 

~UN = ~S1 1 EB~S1 2 EB ... EB~S2 1 EB ~S2 2 EB ... EB ~S16 3 EB S16 4 = 1 EB 1 EB ... EB 1 EB 1EB 
' ' ' ' ' ' 

... EB 0 EB 0 = 0. 

Consequently, ~Sl, 1 = ~S1,1 EB ~Q = 1, ~S~,2 = ~S2,1 EB ~Q = 1, ~S~, 1 = ~S1,2 EB~Q = 1, 

and ~S~,2 = ~S2,2 EB~Q = 1. Similarly, according to the connections of the highlighted lines 

in Figure 5.2, when ~S1,1 = 1, and ~Ss,1 = 1, we have ~S~, 1 = ~S1,1 and ~s;, 1 = ~S.5,1· 

By these difference expressions, it is clear that a differential characteristic that involves S-boxes 

S1, S2, S1', S5' in every two rounds exists. Hence, in this case the average number of S-boxes 

involved in a one-round characteristic is 4.0/2 = 2.0. Notice that the average number of S-boxes 

involved in a one-round chatacteistic could be fractional. 0 

The linear transformation presented in [32] can be described by 

m 

s~,j = EB sk,j EB si,j (5.2) 
k=l 

where m represents the number of S-boxes in one round of an SPN, Si,j denotes the j-th input 

bit of the i-th S-box in one round, and Sk,j refers to the j-th output bit of the k-th S-box in 

the previous round. For an SPN that consists of S-boxes satisfying diffusion order of 1, this 

linear transformation can not be expected to have the lower bound for the average number of 

S-boxes involved in a one-round characteristic to be greater than 2.0. 

Lemma 5.4 By usmg the linear transformation represented by (5.2) and S-boxes satisfying 

>. = 1, the average number of S-boxes involved in a one-round characteristic can be 2.0. 

Proof. Without loss of generality, suppose a cryptanalyst adopts S-boxes S1 and S2 to obtain 

a differential characteristic. First we consider the difference path in the first round. From the 

definition of the linear transformation, we have 
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Figure 5.2: A differential characteristic in an SPN using permutation 

and 

It follows that 

and 

Letting .6.81,1 = .6.81,2 = .6.82,1 = .6.82,2 = 1, and .6.8k,1 = .6.8k,2 = 0 fork~ 3, then 

EBr=1.6.8k,1 = 1 EB 1 EB 0 EB ... EB 0 = 0, 
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and 

Hence 

and 

Now consider the difference path in the next round. Similarly, letting .6.81,1 = .6.82,1 = 1, then 

Hence, 

and 

Thus in every roundS-boxes 81 and 82 can be involved in the differential characteristic, and in 

this case the average number of S-boxes involved in an one-round characteristic is 4.0/2 = 2.0. 

0 

We have now completed the analysis of the strength of previous proposed linear transformation 

against differential cryptanalysis and will now turn our attention to the analysis of the linear 

transformation proposed in Chapter 4. 
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5.4 Lower Bound on the Number of S-boxes 

We shall prove a theorem which demonstrates that by using our linear transformation the lower 

bound for the average number of S-boxes involved in a one-round characteristic is 3. The 

detailed description of the linear transformation is given Chapter 4. The theorem is going to 

be proven by showing that the following statements are true and then combining them. 

(i) If one S-box in one round is involved in a differential characteristic, then the number of 

involved S-boxes in the next round must be at least 7; 

(ii) If 2 S-boxes in one round are involved in a differential characteristic, and at least one of 

them has 2 or more outputs involved, then in the next round the possible number of involved 

S-boxes is 4, 6, or greater than or equal to 7; 

(iii) If 4 S-boxes in one round are involved in a differential characteristic, and at least one of 

them has 2 or more inputs involved in the characteristic, then the number of involved S-boxes 

in the previous round can not be 2. 

Lemma 5.5 If one S-box in one round is involved in a differential characteristic, then the 

number of involved S-boxes in the next round must be 7. 

Proof Without loss of generality, suppose S-box 51 is involved in a differential characteristic. 

Then, by the definition of the linear transformation, the 7 bits in the next round each of which 

contains 81,1 in its component bits are: 

5~,1 = QF 67 5i,1 

where 2 ::; i ::; 8, and the notation of Q~ is defined in the definition of the linear transformation 

in Chapter 4. 

The 7 bits in the next round, each of which contains 81,2 in its components, are: 

5:,2 = Q~2 
67 5(i-s),2 

where 10 ::; i ::; 16. 

The 7 bits in the next round, each of which contains 81,3 in its component bits, are: 

5b = Qj1 
67 5(i+12),3 
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where 1 :::; i :::; 4 and 

where 14 :::; i :::; 16. 

And the 7 bits in the next round, each of which contains St,4 in its component bits, are: 

where 6 :::; i :::; 8 and 

where 9 :::; i :::; 12. 

From these expressions, we obtain (1) when b.St,j = 1, the 7 bits that include St,j will be 

changed, and (2) the 7 bits that include St,j and the 7 bits that include St,k where k i= j, do 

not have common terms. Hence, when b.St,j = 1 and b.St,k = 1, where k i= j, these 2 sets of 7 

bits will change independently without interfering with each other. 

Since it is assumed that S1 is involved in a characteristic, this means that b.St,j = 1, for at 

least one value of j, j E {1, 2, 3, 4}. Thus at least 7 bits that include St,j will change. By the 

definition of the transformation, these 7 bits belong to 7 different S-boxes. Hence at least 7 

S-boxes in the next round will be involved in the characteristic. D 

Lemma 5.6 If, in one round for a specific k, only one b.Si,k is involved in a characteristic 

(i.e. b.Si,k = 1}, but none of other b.Sj,k is involved (i.e. b.Sj,k = 0), where 1 :::; i,j :::; 16, 

i i= j, 1 :::; k ~ 4, then the number of involved S-boxes in the next round must be at least 7 . 

Proof Without loss of generality, suppose b.S1,1 = 1, but b.Sj,l = 0, 2 ~ j ~ 16. 

By the definition of the linear transformation, there are 7 bits that include 81,1 as their com

ponent bits, they are 

where 2 :::; j :::; 8. 
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Also, based on the expression QF = 81,1 EB 82,1 EB 83,1 EB 81,1 EB 5s,1 EB 56,1 EB 57,1 EB 5s,1 defined 

in the linear transformatiom and the assumption that .6.81,1 = 1 and b..5j,1 = 0, 2 ~ j ~ 16, 

these expressions immediately follow: 

and 

b..Qf2 = b..S1,1 EB b..S2,1 EB b..S3,1 EB b..S4,1 EB b..Ss,l EB b..S6,1 EB b..S7,1 EB b..Ss,l 

= 1EB0EBOEB0EB0EBOEB0EB0 

= 1, 

b..5j,l = b..QF EB b..5j,l' 

= 1 

where 2 ~ j ~ 8. Thus all of the 7 bits 5j,1, 2 ~ j ~ 8 are changed, i.e. b..5j,1 = 1, and these 

7 bits belong to 7 different S-boxes in the next round, according to the definition of the linear 

transformation. 

In addition, if the bits 5;,t, 1 :::::; i :::::; 16, 1 :::::; l :::::; 4, other than 5;,k, 1 :::::; i :::::; 16, 1 :::::; k :::::; 4, where 

l -:f:. k, in this round are involved in a characteristic, since bit k of an S-box can not cancel bit l, 

the number of involved S-boxes in the next round will not decrease. So in the next round the 

number of S-boxes is at least 7. 0 

Lemma 5. 7 If 2 S-boxes in one round are involved in a differential characteristic, and at least 

one of them has 2 or more outputs involved, then in the next round the possible number of 

involved S-boxes is 4, 6, or greater than or equal to 7. 

Proof The proof of the lemma is done by considering 2 cases: (1) the 2 involved S-boxes in 

one round are in the same partition; and (2) the 2 involved S-boxes belong to two different 

partitions. 

For case 2, there are 6 subcases to be considered: 

Case 2.1: 2 involved S-boxes are in partition 1 and 2; 

Case 2.2: 2 involved S-boxes are in partition 1 and 3; 
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Case 2.3: 2 involved S-boxes are in partition 1 and 4; 

Case 2.4: 2 involved S-boxes are in partition 2 and 3; 

Case 2.5: 2 involved S-boxes are in partition 2 and 4; 

Case 2.6: 2 involved S-boxes are in partition 3 and 4. 

Case 1: Without loss of generality, let us assume that the 2 involved S-boxes are in partition 1 

and these 2 S-boxes are 81 and 82. 

According to Lemma 5.6, if D.Sl,i = 1 and D.S2,i = 1, where 1 ~ i ~ 4, do not appear in a 

characteristic simultaneously, the number of involved S-boxes in the next round must be at 

least 7. 

Besides, by the definition of the linear transformation, we have 

where 1 ~ i ~ 8, 

where 9 ~ i ~ 16, 

where 1 ~ i ~ 4, 

where 13 ~ i ~ 16, 

where 5 ~ i ~ 8, and 

where 9 ~ i ~ 12. 
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Since "EB" operation is linear, all of these expressions can be changed directly into difference 

form. Hence, 

where 1 S i S 8, 

where 9 s i s 16, 

where 1 S i S 4, 

where 13 S i S 16, 

where 5 siS 8, and 

where 9 s i s 12. 

Based on these difference expressions, we obtain: 

• when f!J..81 1 = 1 and f!J..82 1 = 1 are used in a characteristic, then f!J..8'1 1 = 1 , , , 

and t!J..8~ 1 = 1, implying S-boxes 81 and 82 in the next round are involved in the , 

characteristic; 

• when 6.81,2 = 1 and 6.82,2 = 1 are used, then 6.89,2 = 1 and 6.8~ 0 ,2 = 1, implying 

S-boxes 89 and 810 in the next round are involved in the characteristic; 

• when t!J..81,3 = 1 and f!J..82,3 = 1 are used in a characteristic, then t!J..8b,3 = 1 and 

t!J..8i4,3 = 1, implying S-boxes 813 and 814 in the next round are involved in the 

characteristic; 
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• when ~81,4 = 1 and ~82,4 = 1 are employed in a characteristic, then b-8~,4 = 1 

and ~8~,4 = 1, implying S-boxes 85 and 86 in the next round are involved in the 

characteristic. 

Thus, when S-boxes 81 and 82 have 2 or more outputs of the same position involved in a 

characteristic, the number of S-boxes involved in the next round must be 4, 6, or 8. 

Summarizing the above arguments, we have proven the lemma is true for case 1. 

Case 2.1: Without loss of generality, assume S-boxes 81 and 85 in this round are involved in 

a characteristic. By the definition of the linear transformation and the similar deduction as in 

case 1, it follows that: 

where 1 ~ i ~ 8, 

where 9 ~ i ~ 16, 

where 1 ~ i ~ 4, 

where 13 ~ i ~ 16, 

where 5 ~ i ~ 8, 

where 9 ~ i ~ 12, 
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where 5 ~ i ~ 8, 

where 9 ~ i ~ 12, 

where 1 ~ i ~ 4, and 

where 13 ~ i ~ 16. 

From these expressions, it is clearly demonstrated that: 

• when ~81 1 = 1 and ~85 1 = 1 are used in a characteristic, then ~8'1 1 = 1 
' ' ' 

and ~8~ 1 = 1, implying S-boxes 81 and 85 in the next round are involved in the 
' 

characteristic; 

• when ~81,2 = 1 and ~85,2 = 1 are employed in a characteristic, then ~89,2 = 1 

and ~8b,2 = 1, implying S-boxes 89 and 813 in the next round are involved in the 

characteristic; 

• when ~81,3 = 1 and ~85,3 = 1 are used in a characteristic, then ~81,3 = 1, 

~82,3 = 1, ~8~,3 = 1, ~84,3 = 1, ~814 ,3 = 1, ~815,3 = 1, ~816,3 = 1, ~8~.3 = 1, 

~86,3 = 1, ~87,3 = 1, ~88,3 = 1, ~810 ,3 = 1, ~81 1 ,3 = 1, and ~8b,3 = 1, implying 

14 S-boxes- 81, 82, 83, 84, 814, 815, 816, 85, 86, 87, 88, 810, 811 and 812- in 

the next round are involved in the characteristic; 

• when ~81 4 = 1 and ~85 4 = 1 are used in a characteristic, then ~82' 4 = 1 , 
' ' ' 

~87 4 = 1, ~88' 4 = 1, ~89' 4 = 1, ~810 4 = 1, ~81 1 4 = 1, and ~8b 4 = 1, implying 
' ' ' ' ' ' 

14 S-boxes- 82, 83 , 84, 813, 814, 815, 816, 86, 87, 88 ,89, 810, 811 , and 812 

- in the next round are involved in the characteristic. 

Thus when S-boxes 81 and 85 have 2 or more outputs of the same position involved in a 

characteristic, the number of involved S-boxes in the next round must be 4 , or at least 14. 
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By combining Lemma 5.6 and the above arguments, Lemma 5. 7 is true for this case. 

Case 2.2: Without loss of generality, let us assume 81 and 89 in this round are involved in a 

characteristic. 

In light of the definition of the linear transformation and the deduction as in Case 1 or 2.1, we 

have 

where 1 :::; i :::; 8, 

where 9 :::; i :::; 16, 

where 1 :::; i :::; 4, 

where 13 :::; i :::; 16, 

where 5 :::; i :::; 8, 

where 9 :::; i :::; 12, 

where 9 s i s 16, 

where 1 :::; i :::; 8, 
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where 5 ~ i ~ 8, 

where 9 ~ i ~ 12, 

where 1 ~ i ~ 4, and 

where 13 ~ i ~ 16. 

Obseving these expressions, we immediately know: 

• when .6.81,1 = 1 and .6.89,1 = 1 are used in a characteristic, then .6.8~, 1 = 1, 

.6.8~ 1 = 1, .6.84 1 = 1, .6.8~ 1 = 1, .6.8~ 1 = 1, .6.8~ 1 = 1, .6.88 1 = 1, .6.8~ 0 1 = 1, 
' ' ' ' ' ' ' 

.6.8~ 11 = 1, .6.8b 1 = 1, .6.8~31 = 1, .6.8~41 = 1, .6.8~ 5 1 = 1, and .6.8~ 6 1 = 1, 
' ' ' ' ' ' 

implying 14 S-boxes - 82, 83, 84, 85, 86, 87, 88, 810, 811, 812, 813, 814, 815, 

and 816 - in the next round are involved in the characteristic; 

• when .6.81 2 = 1 and .6.89 2 = 1 are used in a characteristic, then .6.82' 2 = 1, , , , 

.6.83' 2 = 1, .6.84 2 = 1, .6.85' 2 = 1, .6.86' 2 = 1, .6.87' 2 = 1, .6.88' 2 = 1, .6.8~ 0 2 = 1, 
' ' ' ' ' ' ' 

.6.8~ 1 2 = 1, .6.81 2 2 = 1, .6.8ia 2 = 1, .6.814 2 = 1, .6.815 2 = 1, and .6.816 2 = 1, 
' ' ' ' ' ' 

implying 14 S-boxes - 82, 83, 84, 85, 86, 87, 88, 810, 811, 812, 813, 814, 815, 

and 816 - in the next round are involved in the characteristic; 

• when .6.81,3 = 1 and .6.89,3 = 1 are used in a characteristic, then .6.81,3 = 

1, ~S~ 3 = 1, 6.83 3 = 1, 6.84 3 = 1, 6.8~4 3 = 1, 6.Si5 3 = 1, ~Si6 3 = 1, 6.Sfi 3 = 
' ' ' ' ' ' ' 

1, .6.8~,3 = 1, .6.88,3 = 1, .6.8~,3 = 1, .6.810,3 . = 1, .6.811,3 = 1, and .6.8b,3 = 1, 

implying 14 S-boxes - 81, 82, 83, 84, 814, 815, 816, 86, 87, 88, 89, 810, 811, 

and 812 - in the next round are involved in the characteristic; 

• when .6.81,4 = 1 and .6.89,4 = 1 are used in a characteristic, then .6.8L4 = 

1, .6.8~ 4 = 1, .6.83' 4 = 1, .6.84 4 = 1, .6.8~44 = 1, .6.8~5 4 = 1, .6.8~6 4 = 1, .6.86' 4 = 1, 
' ' , ' ' ' ' 

.6.8~ 4 = 1, .6.88 4 = 1, .6.8~ 4 = 1, .6.810 4 = 1, .6.811 4 = 1, and .6.8b 4 = 1 , implying 
' ' ' ' ' ' 
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14 S-boxes - S1, S2, S3, S4, S14, S15, S16, S6, S7, S8, S9, S10 , Sll, and S12 -

in the next round are involved in the characteristic. 

Hence when S-boxes S1 and S9 have 2 or more outputs of the same position involved in a 

characteristic, the number of S-boxes involved in the next round must be at least 14. 

Based on these arguments and Lemma 5.6, Lemma 5.7 is proven for this case. 

It is not hard to show that Cases 2.3, 2.4, and 2.6 follow the same argument as case 2.1, and 

case 2.5 follows the argument of case 2.2. Hence, the lemma is proven. 0 

Lemma 5.8 If 2 S-boxes in round r are involved in a characteristic and they cause 4 S-boxes 

in the next round to be involved, then each of the 4 S-boxes in round r + 1 must only have one 

input bit involved in the characteristic. 

Proof Suppose S-boxes Si and Sj in a round are involved in a characteristic. As the number 

of involved S-boxes in the next round is 4, by Lemma 5.6, D.S;,k = 1 and D.Sj,k = 1, where 

k E {1, 2, 3, 4}, must appear simultaneously. Moreover, by the definition of the linear transfor

mation, when S;,k and Sj,k use a different QJ:n defined in the linear transformation, where mn 

denotes a combined partition number, D.S;,k = 1 and D.Sj,k = 1 will respectively cause 7 bits 

that belong to 7 different S-boxes to be changed, and the 7 bits changed by D.S;,k = 1 can not 

be cancelled by the bits changed by either D.S;,z = 1 or D.Sj,l = 1, where l =/:: k. Thus when 

the number of involved S-boxes in the next round is 4, D.S;,k = 1 and D.Sj,k = 1 must appear 

simultaneously, and S;,k and Sj,k must be involved in the same Qf:n. 

When S;,k and Sj,k are involved in the same Qf:n, and D.S;,k = 1 and D.Sj,k = 1 are simultane

ously satisfied, D.Qf:n = 1 EB 1 EB 0 EB 0 EB 0 EB 0 EB 0 EB 0 = 0. Thus D.S;,k = 1 and D.Sj,k = 1 will 

cause only 2 bits which belong to 2 different S-boxes to be changed. 

On the other hand, by the definition of the linear transformation, if ,6.Si,k = 1 and ,6.Sj,k = 1 

cause 2 bits that belong to 2 different S-boxes to be changed, when k is varied, the 2 bits 

changed will correspondingly belong to 2 otherS-boxes. 

It is assumed that the number of involved S-boxes in the next round is 4. Based on the above 

reasons, this case happens when 2 pairs of D.S;,k = 1 and D.Sj,k = 1 occur, and in this case 
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each of the 4 involved S-boxes in the next round has one input involved m the differential 

characteristic. D 

Lemma 5.9 If 4 S-boxes in one round are involved in a characteristic, and at least one of them 

have 2 or more inputs involved in the characteristic, then the number of involved S-boxes in the 

previous round can not be 2. 

Proof We prove the lemma by contradiction. Suppose the number of involved S-boxes in the 

previous round is 2. By Lemma 5.8, each of the 4 involved S-boxes in this round must have 

only one input involved in the characteristic. This is contradicting to the premise in the lemma 

that at least one of 4 S-boxes has 2 or more inputs involved in the characteristic. D 

Until now we have proved the lemmas with regard to the number of involved S-boxes in the next 

round. By noticing Lemma 4.2 in Chapter 4 which states that the inverse linear transformation 

is exactly the same as the original one, all the arguments for the proof of the number of S-boxes 

in the next round can be applied to the number of S-boxes in the previous round. Thus the 

number of involved S-boxes in the previous round satisfies the same rules as that in the next 

round. 

Theorem 5.1 When an SPN consists of the linear transformation of Table ..f.l and the S

boxes satisfying diffusion order A = 1, the average number of S-boxes involved in a one-round 

characteristic is 3 (except for the first and the last round}. 

Proof We shall prove the theorem by considering 3 cases. 

Case 1: Suppose one S-box in one round is involved in a characteristic. 

According to Lemma 5.5, the number of involved S-boxes in either the previous or next round 

must be at least 7. Hence we only need to consider 2 adjacent rounds. Since there are at 

least (1 + 7) involved S-boxes in 2 rounds, the average number for a one-round characteristic is 

(1 + 7)/2 = 4. Hence, in this case the theorem is true. 

Case 2: Suppose 2 S-boxes in one round are involved in a differential characteristic. 

Since the S-boxes satisfy diffusion order of 1, at least either 2:: 2 inputs or ;::: 2 outputs of an 

S-box are involved in a characteristic. By Lemma 5.7, either in the previous round or in the 
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next round the number of involved S-boxes is 4, 6, or not less than 7 (except if this round is 

the first or the last round). 

Moreover, by Lemma 5.9, when 4 S-boxes in one round are involved in a characteristic, the 

number of involved S-boxes in the next and previous round can not be both 2 simultaneously. 

Hence when 2 S-boxes in one round are involved in a characteristic, the smallest value of average 

number of S-boxes involved in a one-round characteristic is (2 + 4)/2 = 3. 

Case 3: Suppose 3 or more S-boxes in one round are involved in a characteristic. 

In this case the average number of involved S-boxes contributed by this round is at least 3. 

When the average number of S-boxes involved in a one-round characteristic is computed, the 

above 3 cases should all be considered, and the theorem follows. D 

5.5 Effectiveness in Thwarting Differential Cryptanalysis 

In selecting 4 x 4 S-boxes to construct an SPN, S-boxes that satisfy (1) the nonlinearity property 

of equation (4.2), (2) for the differential property, diffusion order of>.= 1, and (3) the maximum 

S-box XOR pair probability ps = 4/16 = 1/4, can be found by random searching. 

Suppose a cryptanalyst uses differential cryptanalysis [3] to attack an 12-round SPN that em

ploys the linear transformation and the specified kind of 4 x 4 S-boxes. According to formula 

(5.1) and Theorem 5.1, 

= 1 =2~ 
(1/ 4)[(12-2)-1]·3+2x2 

(5.3) 

where 12 refers to the number of rounds of an SPN, (12 -1)- 2 refers to the number of rounds 

in an (R- 1)-round characteristic minus the first and last rounds, the first and last rounds 

are assumed to have 2 S-boxes involved in characteristic because of Lemma 5.5, and 3 is the 

lower bound for the average number of S-boxes involved in a one-round characteristic for the 

remaining rounds. 

An 12-round SPN that utilizes the linear transformation has 262 chosen plaintext-ciphertext 

pairs required for differential cryptanalysis. For a block size of 64, this is clearly a reasonable 

level of complexity to declare the cipher secure. For comparison, a cipher which uses a permu-

64 



tation such as Ayoub's permutation of Figure 4.1 with S-boxes that do not satisfy>.= 1, as few 

as 224 chosen plaintext/ciphertext pairs are required; if the S-boxes satisfy>. = 1, the SPN has 

the maximum lower bound of 248 . Therefore the linear transformation of Table 4.1 effectively 

improves an SPN's resistance to differential cryptanalysis. 

5.6 Conclusion 

In this chapter we analysed the strength of the novel linear transformation against differential 

cryptanalysis. We proved that when an SPN is constructed from the linear transformation and 

4 x 4 S-boxes that satisfy diffusion order of 1, the average number of S-boxes involved in a 

one-round characteristic is at least 3. By utilizing the linear transformation, a 12-round SPN 

has 262 chosen plaintext-ciphertext pairs required for differential cryptanalysis. 

From the results in this and the previous chapters, it is demonstrated that the linear transforma

tion has the advantage in increasing the resistance of an SPN to thwart both linear cryptanalysis 

and differential cryptanalysis. 
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Chapter 6 

Implementation of an SPN using an 
FPGA 

In previous chapters, newS-box selection criteria and a linear transformation for S-box inter-

connection are proposed. To check the complexity of the digital hardware implementation of 

the SPN constructed from this kind of S-box and linear transformation, this chapter deals with 

the implementation of our SPN using a Field Programmable Gate Array (FPGA). The FPGA 

product selected for the implementation is a Xilinx logic cell array. 

6.1 Background 

In this section, we give some basic knowledge about the Xilinx logic cell array and VHSIC 

Hardware Description Language (VHDL) used to specify the design. 

6.1.1 Xilinx Logic Cell Array 

The field-programmable gate array {FPGA)1 is a relatively new type of digital component for 

the construction of electronic systems. Many FPGA chips are prefabricated as an array of 

identical functional blocks along with an interconnection network, and as the name implies, 

their functionality can be configured in the field, that is, at the point of application. The 

particular function of each block and the connections between blocks are programmed by the 

user. 
1This subsection is based on reference [21) 
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Figure 6.1: The Structure of Xilinx Logic Cell Array 

Xilinx's proprietary logic cell array (LCA) architecture [29] is similar to that of other gate 

arrays, with an interior array of configurable logic blocks and a perimeter of input/output 

blocks. Horizontal and vertical routing channels run between the rows and columns of the logic 

blocks, and between the logic blocks and input/output blocks. 

The programming method for LCA is based on CMOS static RAM technology: the function 

of logic blocks and the interconnection of signal paths are decided by the RAM cells that are 

scattered over the entire chip. The RAM cells linked together form a long shift register, and the 

programming is done by shifting in strings of ones and zeroes to configure the fu,nction of the 

chip. The configuration program is loaded automatically from an external memory on power-up 

or on command, or is programmed by a microprocessor as a part of system initialization [29]. 

In the design of the SPN, we target the XC4000 FPGA devices. The XC4000 series of pro-

grammable gate arrays is Xilinx's third generation static-memory-based FPGA architecture. 

As with the earlier XC2000 and XC3000 families, as shown in Figure 6.1 [14], the structure is 

based on three major configurable components: an array of configurable logic blocks (CLBs), 

a surrounding ring of input/output blocks (lOBs), and programmable interconnect resources. 

The core of the device is a matrix of identical configurable logic blocks embedded in routing 
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resources. Figure 6.2 [21] is a block diagram of the principal elements within the XC4000 

CLB. Each CLB includes three combinational function generators, two flip-flops, and their 

interconnect logic. Thirteen CLB inputs and four CLB outputs connect the function generators 

and flip-flops with the programmable interconnect lines surrounding the block. Four separate 

signals are supplied to each of two lookup-table-based function generators (F' and G'). A third 

function generator (H') can realize any Boolean function of its three inputs: the function F' 

and G' and a third input from outside the block (H1). 

The two storage elements in the CLB are edge-triggered D-type flip-flops with common clock 

(K) and clock enable (EC) inputs, a third common input (S/R) that can be programmed as 

either an asynchronous set or reset signal, and programmable clock polarity. 

The flexibility and symmetry of the CLB structure is advantageous for the placement and 

routing of a given application. Inputs, outputs, and the functions themselves can arbitrarily 

exchange positions within a CLB during placement and routing operations. 

The perimeter of the Logic Cell Array is constituted by user programmable Input/Output 

Blocks. lOBs establish the connections between external package pins and the internal logic 

(see Figure 6.3 [21]). Each lOB controls one package pin and can be specified for input, output, 

or bi-directional signals. 

An input signal can be routed to an input register that can be configured as either an edge

triggered flip-flop or a level-sensitive transparent latch. The optional delay on the data input 

to the register is used to compensate for the delay on a clock signal that first runs through 

a global buffer before reaching the lOB, without requiring any hold time on the data at the 

external pin. 

An output signal can go directly to the pin or be registered in an edge-triggered flip-flop. The 

programmable output buffer controlled by an output enable signal allows three-state outputs 

or bi-directional pins. The output (0) and output enable (OE) signals are invertible, and the 

slew rate control is used to minimize power bus transients when switching non-critical signals. 

Pull-up and pull-down resistors can be programmed to tie unused pins to V cc or ground to 

probihit unnecessary power consumption. The clocks to the input and output registers are 
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separate, and can be inverted, allowing either falling-edge or rising-edge triggered flip-flops. As 

with the CLB's registers, the input and output registers can be set or clear whenever the global 

RESET net is active. 

The flexibility of the LCA is due to programmable routing resources that permit the inter-

connect of any two points on the chip. All internal connections are based on metal segments 

and programmable switching points. Programmable switch matrices implement the necessary 

connections between selected metal segments and block pins. There are three main types of 

interconnect, distinguished by the relative length of their segments: single-length lines, double

length lines, and long lines. 

The single-length lines are a grid of horizontal and vertical lines that cross at a "switch matrix" 

between each block. Double-length lines bypass two CLBs before entering a switch matrix, 

providing efficient implementation of intermediate length interconnections. Long lines pass the 

entire breadth or length of the chip, and are intended primarily for high fan-out control signals. 

With a programmable "splitter switch" at its center, each vertical long line can be used as 

two separate routing channels that each run half the height of the chip. This hierarchy of 
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interconnection resources facilitates an efficient implementation of a given application. 

6.1.2 VHDL 

VHDL is an extensively used language for hardware description, built on the programming 

language ADA. It is used as the method to provide the input description for a number of 

commerically available computer-aided design systems. 

A VHDL design entity (component, circuit, or system) consists of an external part (entity name 

and interface) and an internal part (entity implementation). After the external interface to an 

entity is specified, that entity can be used by other entities in a design. This concept of internal 

and external views is the core of a VHDL view of system design. 

An entity is determined, with respect to other entities, by its interface and implementation. 

Several implementations or architectures can exist for one entity. Alternate architectures of an 

entity can be selectively used in a design without changing the rest of the design. An entity 

defined in a design can be reused in other designs, and libraries of entities can be developed for 

use by the entities of many designs. 

A VHDL design entity has defined input, output, or input/output ports that are wired to 

neighbouring systems. An entity itself consists of interconnected entities, processes, and exist

ing components, all which perform their tasks concurrently. Each entity architecture defines one 

implementation of the entity's function. An architecture is described by VHDL constructs such 

as arithmetic, signal assignment, or component instantiation statements. In VHDL, indepen

dent processes model sequential systems, such as counters, and combinational systems, such as 

AND or XOR gates. Processes can define and instantiate subdesigns. Processes communicate 

with the rest of the architecture by signals and port values. A signal has a source, one or more 

destinations, and a user-defined type. 

A variety of constructs are used in VHDL to write design descriptions. With VHDL, digital 

systems of varying complexity (systems, boards, chips, modules) can be specified at varying 

levels of abstaction. VHDL language constructs can be split into categories by their level of 

abstraction. Three typical levels of abstractions are: behavioral, dataflow, and structural. 
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ENTITY count3 IS 
port ( elk, clr _bar : in stdJogic: 

q_abc : out stdJogic_vector ( 2 DOWNTO 0) ) ; 
END count3; 

ARCHITECTURE behavioural OF COUNT3 IS 
Signal internaLcount : stdJogic_vector ( 2 downto 0 ) := "000"; 

BEGIN . 

counting : process ( elk, clr _bar) 
begin 

if clr _bar = '0' THEN 
internaLcount <= "000" 

- - clear the counter; 
elsif elk = '0' and clk'event THEN 

internaLcount <= internaLcount + "001"; 
- - keep counting; 

end if; 
END process counting; 

q_abc <= internaLcount; 
END behavioural; 

Figure 6.4: A VHDL description of a 3-bit counter 

A behavioral description is the most abstract. It describes a design in an algorithmic form 

without caring about the detail as to how the design is to be implemented. A dataflow de

scription models a design in the view of data flowing through the design from input to output. 

Operations are specified in terms of a set of data transformations, which are expressed as con-

current statements. A structural description is the most detailed. It defines a design with a list 

of components and their interconnections. A structural description is achieved by component 

instantiations right down to the gate-level. 

VHDL itself is a large language, and learning all of it can be a very large task. In Figure 6.4, we 

give a sample behavioural description of a 3-bit counter, just to illustrate the kinds of capabilities 

VHDL provides. It is also worth to point out that only a subset of VHDL is synthesisable. 

The entity declarations declare the external characteristics of a component- that is, the way it 

looks to the outside world. The architecture specifications define the internal operation. Note 

the similarity of the nature of a VHDL program to other programming languages. 
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6.1.3 Xilinx Synopsys Interface Program 

In the implementation of our SPN using FPGA, the Xilinx Synopsys Interface (X SJTM) pro

gram is used as the design automation environment. 

The XSl design tool kit enables the user to use either the Synopsys FPGA Compiler or Design 

Compiler synthesis tool to implement Xilinx FPGA designs. The Synopsys FPGA Compiler and 

Design Compiler are High-level Design Automation (HLDA) tools. They create and optimize 

circuit designs from hardware descriptions written in VHDL or Verilog HDL. 

For the Design Compiler, the following features are supplied (30]: 

• Optimizes flip-flops and latches in the input/output block (IOB) 

• Optimizes 3-state buffers in the lOB 

• Enables one-hot state machines 

• Uses the configurable logic block ( CLB) Clock Enable pin automatically 

For the FPGA Compiler, additional features are provided [30], such as: 

• Optimizes logic to the XC4000 family CLB and IOB architectures 

• Reports area and timing by device architecture, for example, CLB, lOB, and 3-state buffer 

XSI supports both functional and timing simulation. The functional simulation may be used 

to debug the logic in a source design before implementing an FPGA. The timing simulation is 

used to verify the timing and functionality of the circuit after fitting a design into an FPGA. 

By using VHDL and the XSI design tool kit, the Xilinx implementation flow for a design can be 

simply described as in Figure 6.5. The design process starts with an VHDL description of the 

desired circuit functions and ends with a BIT file, a binary file that contains the configuration 

data for the design, and an LCA file, which can be used for back-annotation and simulation, 

where DC-shell, Design Analyzer and XMake are programs residing in the XSI. 
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Design Analyzer 

Figure 6.5: Design Flow Using VHDL 

6.2 Architecture and Organization of SPN 

The SPN algorithm is implemented as in Figure 6.6. It is a 12-round 64-bit block cipher with a 

64-bit key, where each round consists of a layer of 16 4 X 4 S-boxes and a linear transformation. 

Keying the network is accomplished by XORing each bit of the 64-bit input to each round 

with a corresponding bit of the 64-bit cipher key and XORing each bit of the output from 

the last round with a corresponding bit of the same 64-bit key. Notice that we added a linear 

transformation in the last round to reduce the complexity of the circuit with no impact on 

security. 

The 4 X 4 S-boxes used in the SPN satisfy two criteria: 1) For the differential property, the 

diffusion order of an S-box is 1; 2) For the the nonlinearity property, 277(/), defined in Chapter 

3, satisfies ( 4.2). 

Figure 6.7 shows the structure of the SPN. It consists of two main parts: a control unit and a 

data path. Five input signals and one output signal are used to control the operation of the 

control unit, and a 32-bit data bus is responsible for inputting/outputting data used for both 

data and keys from/to external devices. The operation of the logic control signals of Figure 6.7 

will be outlined in Section 6.2.2. 
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The complete VHDL description of the SPN is given in [31]. 

6.2.1 Datapath 

Figure 6.8 shows the main data paths of the SPN for encryption. The encryption process starts 

with the 64-bit key to be loaded into 64 D flip-flops by loading from 32-bit data inputs twice. 

With each load half of the key, key _l or key _2, is clocked into 32 of the 64 D flip-flops dedicated 

to the key. After the key is loaded, since at this time the multiplexers Muxl and Mux2 select 

data_l and data_2 as inputs, respectively, the 64-bit data is written into 64 D flip-flops dedicated 

to data in two 32-bit loads. Once data_l and data_2 are loaded into D flip-flops, Muxl and 

Mux2 select feed_l and feed.2 as inputs, respectively. Later on, after every one clock period, 

feed_l and feed.2 are clocked into the corresponding D flip-flops. During each clock period, 

one round of SPN operation which consists of the substitution and linear transformation is 

performed, where S-boxes are implementated as 4 4-bit boolean functions. After feed_l and 

feed.2 are clocked into the D flip-flops 12 times, the encryption operation of 12-round SPN is 

completed. The 64-bit ciphertext, which includes the 32-bit outpuLl and the 32-bit output.2, 

is then read onto the data bus in 2 32-bit reads. The encryption is then complete. 

In our design, either decryption and encryption can be done in the same chip. The overall data 

paths of the SPN are organized as in Figure 6.9. The signal Mode determines the working mode 

of the design. When Mode="l", the chip enters encryption mode. While Mode="O", the chip 

enters decryption mode. The decryption process is similar to that of encryption. The difference 

is the selection of S-boxes and the operational order of S-boxes and linear transformation. The 

S-box mappings used in the design are listed in Appendix A. 

6.2.2 Control Unit Design of SPN 

The diagram of control unit is depicted in Figure 6:10. At the left side of the diagram are the 

inputs to the control unit, and at the right side are the names of the controlled components 

which reside in the data path part of the SPN. 

The control unit is designed to operate in this way: When the chip begins encryption or 

decryption, Clr_bar must be set low for one fourth Clock signal to clear all the counters. Then 
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Figure 6.6: SPN Algorithm when Implemented 
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DataJn is given 4 pulses to generate one pulse for each of ClockO, Clockl, Clock2, and Clock3, 

successively. Thus the key bits, including key_l and key_2, and the data bits, including data_l 

and data_2, are clocked into the 32-bit registers of DO, Dl, D2, and D3, respectively. After 4 

pulses issued on DataJn, pin 02 of Counter3 is high, letting Muxl and Mux2 select feed_l and 

feed_2 as inputs, respectively. Counter2(1) is used to guarantee that it is at least 1 Clock cycle 

after data_2 is clocked into D3 before Clock can connect to Clock2 and Clock3. 

Once Clock connects to Clock2 and Clock3, after every Clock period feed_l and feed_2 are 

clocked into D2 and D3 respectively. The SPN is constructed to have 12 rounds. Thus when 

Clock has generated 12 pulses on Clock2 and Clock3 as counted by Counter4, Clock is discon

nected from Clock2 and Clock3, and at the same time signal Encrypt_over is set to high. 

When EncrypLover becomes high, Data_out is given 2 pulses by the external circuitry. During 

the first pulse, Mux3 selects outpuLl as the input, and the output buffer is enabled to connect 

to the data bus. Thus the first half of the 64-bit ciphertext is sent out. For the second pulse, 

Mux3 selects output.2 as the input and the second half of the 64-bit ciphertext is sent out on 

the data bus. One complete cycle of encryption is then finished. 

It is worthwhile to point out that, after Data_out is given 2 pulses, pin 01 of Counter2(2) is 

high, and inter _clr is low. Hence all the counters will be reset, in preparation for the next 

encryption. 

The encryption time can be calculated in this way. Let Tencryption represent the total time for one 

encryption operation, tdata_in represent the length of one pulse on dataJn, and tclock represent 

the length of one Clock cycle, then 12.5tclock + 4tdata_in < Tencryption < 13.5tclock + 4tdata_in, 

with no consideration of the propagation delays. 

6.3 Simulation Results 

A design should be tested by downloading the configuration bitstream of the design's BIT file 

into an FPGA chip. Since our intent was to just verify the concept, our design is verified by 

doing a detailed timing simulation based on Xilinx provided timing paramaters. 

The timing simulation report of the design is given in the graph of the following two pages. As 
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can be seen from the waveforms, in this example encryption and decryption are both tested. 

At first, key CD4ADB6B367279C9 is loaded in and the plaintext AD5A9AAE6ACEEAEB 

is loaded and encrypted, yielding the ciphertext 925Al81D0892ECEB. At the second time, 

the key CD4ADB6B367279C9 is loaded and the ciphertext 925Al81D0892ECEB is decrypted, 

obtaining the plaintext AD5A9AAE6ACEEAEB. Obviously, encryption and decryption both 

are performed correctly. Also, actually different circuit modules are involved in encryption and 

decryption, it is extremely unlikely that some faults in the circuit of the SPN can be cancelled in 

the encryption and decryption. Hence the functionality of the design is illustrated and verified. 

The encryption speed is mainly determined by how fast the circuit can be clocked by Clock. 

Based on our tests, at a clock cycle of lOOns for Clock, data can be encrypted and decrypted 

correctly, and lOOns is enough for the length of one datajn pulse. Thus, one encryption time 

is about Tencryption = 13tclock + 4tdata-in = 13 X 100 + 4 X 100 = 1700ns, and the encryption 

rate is 64 x 1.L = 37.6Mbps. 

6.4 Complexity of the Design 

The information given about the design is extracted from the report file "chip.rpt", which is 

generated by running the XMake command. Although the number of used CLBs is close to 

limit, according to the used numbers of the F, G, and H function generators, we can see that the 

structure of our SPN is not complicated. Also, since the design just occupied a small portion 

of the provided pins, it could have been designed with 64-bit 1/0. 

6.5 Conclusion 

By using VHDL, our substitution-permutation network is demonstrated that the SPN can be 

easily implemented. We have verified that the design can be fitted into an XC4013PQ160-5 

device. Though there are some drawbacks with the current implementation, e.g., (1) the same 

key is applied to every round, and (2) key loading is needed for every encryption or decryption. 

However, since the purpose of our hardware design and simulation is "proof-of-concept" in 

nature, these minor deficiencies are not of concern. It is likely with VLSI technology our SPN 

algorithm can be implemented more efficiently as part of a larger circuit. Hence it is realistic 
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PPR RESULTS FOR DESIGN CHIP 
No. Used Max Available %Used 

Occupied CLBs 541 576 93% 
Bonded I/0 Pins 38 129 29% 
F and G Function Generators (*) 730 1152 63% 
H Function Generators 157 576 27% 
CLB Flip Flops 107 1152 9% 
lOB Input Flip Flops 32 192 16% 
lOB Output Flip Flops 0 192 0% 
3-State Buffers 64 1248 5% 
3-State Half Longlines 64 96 66% 
Edge Decode Inputs 0 288 0% 
Edge Decode Half Longlines 0 32 0% 
CLB Fast Carry Logic 4 576 0% 

to put our SPN in practical use. 
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Chapter 7 

Conclusions 

The target set for the design of a block cipher is that the cipher is not only cryptographically 

strong but also simply implemented in software, hardware or both. This thesis has presented 

work which strongly promotes the attainment of the target. 

7.1 Summary .of the Thesis 

An SPN consists of a number of rounds of substitutions (S-boxes) which are connected by 

S-Box interconnection layers. As a block cipher, an SPN is also vulnerable to two powerful 

cryptanalysis techniques of block ciphers: linear cryptanalysis and differential cryptanalysis. 

In linear cryptanalysis probable linear approximations of a cipher are used to determine key bits. 

The probable linear approximations of a cipher are obtained by exploiting the linear properties 

of the S-boxes and the structure of the cipher. To strengthen an SPN in thwarting linear 

cryptanalysis, the design of S-boxes is considered. A newS-box design criterion is consequently 

suggested by noticing the characteristic of the basic SPN structure implying that a larger

term linear approximation of an S-box causes moreS-boxes to be involved in a probable linear 

approximation of a cipher. When a basic SPN is constructed from the S-boxes that satisfy the 

new criterion, the capacity of the SPN to resist linear cryptanalysis is enhanced. 

To improve the resistance of a basic SPN to linear cryptanalysis, we investigated one approach 

which involves the rearrangement of the permutation for each round. Based on our computa

tional experiments, the method is not effective and was rejected. 
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SmallS-boxes are easier to implement in hardware than large S-boxes. After checking the linear 

properties of small S-boxes, 4 x 4 S-boxes were selected to be adopted in the SPN that would 

be implemented in hardware. The thesis then focuses on the investigation of this kind of SPN. 

Previously proposed linear transformations provide no advantage in resisting linear cryptanal

ysis when used in an SPN with the 4 x 4 S-boxes that satisfy our new design criterion. A new 

linear transformation is proposed such that an SPN constructed from the linear transformation 

and the 4 x 4 S-boxes is remarkably improved in resisting linear cryptanalysis and differential 

cryptanalysis. 

An important part of the thesis is the implementation of the SPN which consists of our new 

linear transformation and the 4 x 4 S-boxes satisfying our new design criterion. FPGAs are 

used to investigate the implementation of the SPN. The simulation results demonstrate that 

the digital hardware implementation of the SPN is practical and not complicated. 

7.2 Future Work 

To consider an SPN for practical use, some further research work should be pursued. 

Key scheduling, one of the three components of an SPN, is not studied in the thesis. A simple 

but secure key scheduling algorithm needs to be put forward in future designs. Methods are 

needed to prove the security of a key scheduling algorithm. 

For practical applications, an SPN constructed from 8 x 8 S-boxes appears only suitable to be 

implemented in software. The main reason is that 8 x 8 S-boxes are not complicated to be 

realized in software by lookup-table method but are difficult to be implemented in hardware 

by using Boolean functions. Our new criterion for the design of S-boxes greatly raises the 

nonlinearity of fewer-term probable linear approximations of an 8 x 8 S-box. The existing 

linear transformations can not realize fully the advantage of the 8 x 8 S-boxes. A corresponding 

new linear transformation may be investigated. 

An SPN consisting of 4 X 4 S-boxes is intended to be implemented in hardware. Implementing 

an SPN using FPGA is the first step to check the complexity of the hardware implementation. 

To see the actual complexity of the hardware design of an SPN, a VLSI implementation could 
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also be investigated. 

The goal of SPN designers is to put the SPN into practical use and even to replace DES with 

the SPN. The results presented in this thesis strongly expedite the achievement of the goal, 

although some further research work needs to be conducted. 
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Appendix A 
SUBSTITUTION BOX VALUES 

Note: In the implementation ofthe SPN, the following 16 S-boxes are usedfor encryption. 
The corresponding 16 inverse S-boxes used for decryption can be trivially obtained. 

Substitution Box # 1 
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

.J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. 
Output: 3 15 0 12 8 5 13 10 6 9 11 2 1 14 7 4 

Substitution Box # 2 
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

.J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. 
Output: 10 5 3 8 15 12 9 7 13 0 4 14 1 6 2 11 

Substitution Box# 3 
Input: 0 1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 

.J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. 
Output: 9 14 5 0 6 11 15 12 2 13 8 3 1 7 4 10 

Substitution Box# 4 
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

.J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. 
Output: 2 13 11 0 7 4 1 15 5 8 12 6 9 14 10 3 

Substitution Box # 5 
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

.J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. 
Output: 6 13 8 14 3 7 4 10 5 0 11 9 15 12 2 

Substitution Box# 6 
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

.J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. 
Output: 11 8 7 13 14 5 1 6 12 2 9 4 0 15 10 3 

Substitution Box # 7 
Input: 0 1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 

.J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. 
Output: 13 3 11 5 6 12 8 15 1 4 2 14 10 9 7 0 

Substitution Box # 8 
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
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Output: 10 15 12 3 9 0 7 13 4 2 8 14 5 11 6 

Substitution Box # 9 
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, 
Output: 3 0 15 5 6 13 9 14 4 1 0 1 12 8 7 2 11 

Substitution Box# 10 
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, 
Output: 5 11 3 13 I4 4 0 7 9 I2 IO 6 2 1 I5 8 

Substitution Box # 11 
Input: 0 1 2 3 4 5 6 7 8 9 1 0 I1 12 13 I4 15 

,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, 
Output: 6 I3 9 2 I5 8 3 5 I 4 7 I4 I2 11 I 0 0 

Substitution Box # 12 
Input: 0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 I5 

,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, 
Output: I4 5 10 7 0 11 13 9 12 15 6 4 3 2 8 

Substitution Box # 13 
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, 
Output: 8 2 5 12 7 4 9 15 3 14 0 11 1 0 I3 6 1 

Substitution Box# 14 
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, 
Output: 0 13 9 14 15 6 3 8 5 II I 0 7 2 I2 4 I 

Substitution Box# 15 
Input: 0 I 2 3 4 5 6 7 8 9 IO 1I I2 I3 14 I5 

,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, 
Output: 4 9 3 I5 13 I4 8 I 2 5 I2 6 II 0 7 I 0 

Substitution Box # 16 
Input: 0 I 2 3 4 5 6 7 8 9 10 I1 I2 13 I4 15 

,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, 
Output: 7 8 10 I 9 3 6 15 0 I3 12 2 5 14 II 4 
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