

1+1 Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de !'edition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre reference
ISBN: 978-0-494-42087-4
Our file Notre reference
ISBN: 978-0-494-42087-4

L'auteur a accorde une licence non exclusive
permettant a Ia Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I' Internet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
etlou autres formats.

L'auteur conserve Ia propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni Ia these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient indus dans Ia pagination,
il n'y aura aucun contenu manquant.

St. John's

Design and Implementation of an Advanced
Substitution-Permutation Encryption Network

by

@Jianhong Xu

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the requirements for

the degree of Master of Engineering

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

August, 1997

Newfoundland Canada

Abstract

To solve the problems of data security in modern electronic communication environments

and applications, researchers have been placing much effort on the design of efficient and se­

cure ciphers. Substitution-permutation encryption networks (SPNs) are an important class of

private-key block ciphers. The objective of this thesis is to develop an advanced substitution­

permutation encryption network that not only is efficiently secure but also can be simply im­

plemented in both hardware and software.

Two of the most powerful attacks are linear cryptanalysis and differential cryptanalysis. After

investigating the application of linear cryptanalysis to an SPN, a new nonlinearity criterion for

the design of S-boxes is presented. S-boxes satisfying this criterion strengthen the ability of

an SPN to frustrate linear cryptanalysis. As well, we propose a novel linear transformation as

the method of interconnection between rounds of S-boxes. The use of the linear transformation

increases the resistance of an SPN to both linear cryptanalysis and differential cryptanalysis.

Finally, we implement an SPN which consists of our new linear transformation and 4 x 4 S-boxes

satisfyingour new design criterion by using a Field Programmable Gate Array (FPGA). The

simulation results confirm that the digital hardware implementation of the SPN is practical

and not complicated.

Dedication

To my parents

11

Acknowledgments

I would like to especially thank my supervisor, Dr. Howard Heys, whose wisdom, enthusiasm,

and patience in instructing me throughout the course of this thesis will never be forgotten.

I also gratefully acknowledge the financial support of the Faculty of Engineering and Applied

Science of Memorial University of Newfoundland.

lll

Contents

Abstract

Dedication

Acknowledgements

Table of Contents

List of Figures

List of Tables

Notation

1 Introduction

1.1 Motivation for the Research

1.2 Outline of the Thesis

2 Background

2.1 Substitution-Permutation Network

2.1.1

2.1.2

2.1.3

S-box

S-box Interconnection

Keying the Network .

iv

ii

iii

iv

vii

ix

X

1

3

4

5

5

6

8

9

2.2 Other Block Ciphers . 10

2.3 Cryptanalysis Techniques . 11

2.3.1 Differential Cryptanalysis . 12

2.3.2 Linear Cryptanalysis . 13

3 8 x 8 S-box Design 15

3.1 Introduction . 15

3.2 Background .

3.3 S-box Design Constraints

. 16

. 18

3.3.1 Nonlinearity Requirement 18

3.3.2 Diffusion Order Requirement . 24

3.4 Conclusion . 24

4 Linear Transformation Design 26

4.1 Rearranging Permutations 26

4.2 Motivation for the use of 4 X 4 S-boxes . 28

4.3 Equivalent Number of 2-term S-boxes 29

4.4 A Review of Previously Proposed Linear Transformations 30

4.5 Linear Transformation Design . 33

4.6 Effectiveness of the Linear Transformation . 44

4. 7 Conclusion . 44

5 Security Against Differential Cryptanalysis 46

5.1 Average Number of S-boxes Involved in a One-round Characteristic 46

5.2 Selection of S-boxes . 47

v

5.3 Strength of Previously Proposed Linear Transformations 48

5.4 Lower Bound on the Number of S-boxes . 53

5.5 Effectiveness in Thwarting Differential Cryptanalysis 64

5.6 Conclusion . 65

6 Implementation of an SPN using an FPG A 66

6.1 Background . 66

6.1.1 Xilinx Logic Cell Array . 66

6.1.2 VHDL 71

6.1.3 Xilinx Synopsys Interface Program . 73

6.2 Architecture and Organization of SPN . 74

6.2.1 Datapath . 75

6.2.2 Control Unit Design of SPN . 75

6.3 Simulation Results . 79

6.4 Complexity of the Design . 82

6.5 Conclusion . 82

7 Conclusions 84

7.1 Summary of the Thesis. 84

7.2 Future Work . 85

References 87

Appendix A 90

VI

List of Figures

1.1 A General Cryptographic System . 2

2.1 One Round of A DES-like Cipher .

2.2 One Round of A Basic SPN

2.3 An S-box Example . .

6

7

7

2.4 Two Keying Methods . 10

3.1 SPN with N = 16, n = 4, and R = 3

3.2 One possible best linear path when using 4-term linear approximations .

3.3 Algorithm for computing the equivalent number of 2-term S-boxes ...

16

21

23

4.1 Ayoub's Permutation . 31

5.1 A characteristic in an SPN using permutation . 49

5.2 A differential characteristic in an SPN using permutation 51

6.1 The Structure of Xilinx Logic Cell Array . 67

6.2 Configuration Logic Block

6.3 Input/Output Block ...

69

70

6.4 A VHDL description of a 3-bit counter . 72

6.5 Design Flow Using VHDL . 74

Vll

6.6 SPN Algorithm when Implemented . 76

6.7 SPN Organization . 76

6.8 Data Paths for Encryption. 77

6.9 Detailed Data paths of the SPN . 77

6.10 Control Unit of SPN . 78

viii

List of Tables

3.1 Proportion of S-boxes satisfying nonlinearity requirement selected from S-boxes

having diffusion order .A • . • 24

4.1 Linear Transformation . 34

ix

NOTATION

Variables and Mathematical Conventions

N

n

R

r

s

p =[pi P2···PN]

c = [C1 C2 ••• c N 1

K = [Kt K2 ... Kr]

A.

wt(U)

~U = U'EBU"

Cipher block size

Bijective S-box input/output size

Number of substitution rounds in cipher

Substitution round number

A substitution box (S-box)

Plaintext vector

Ciphertext vector

Cipher key vector

Diffusion order

Hamming weight of vector U

Exclusive-OR (XOR) of bits Ui and Vj

XOR difference of two values, U' and U'' ,

ofvector U

X

Chapter 1

Introduction

Every day, millions of people use telephones, fax machines, and computer networks to exchange

information. Electronic communication is now an unavoidable component of modern life. En­

suring communications security appears to be more and more important. As cryptography

is seen as the only effective means of ensuring security in communications and in computer

systems, increased research effort is now being applied to the area of cryptography.

Cryptography is the science of techniques which make information unintelligible and unmodifi­

able by outsiders and still comprehensible or verifiable by the intended receiver. A cryptographic

system or cryptosystem is referred to as any system which applies methods of cryptography to

transform data and restore data. A general cryptosystem is shown in Figure 1.1. Encryption is

a special computation that operates on messages, converting them into a representation that is

in unintelligible form. The original message is called plaintext and the transformed represen­

tation is called ciphertext. Decryption is used to reverse the process of encryption: it accepts

ciphertext as input and yields the corresponding plaintext. Both encryption and decryption

are controlled by a key, which is a parameter to the process. It should be beyond the means

of the eavesdropper, who has no access to the key of the receiver, to obtain the plaintext from

the ciphertext.

There are two general forms of cryptographic algorithms or ciphers: private-key and public-key.

In a private-key cipher, the same key is used to encrypt and decrypt data. (In Figure 1.1, the

sender's key (key 1) and the receiver's key (key 2) are secret and identical). In a public-key

cipher the mathematically related but different keys are used for encryption and decryption.

1

Sender Receiver

Figure 1.1: A General Cryptographic System

One key is kept secret and is only known to its owner, whereas the other key is made publicly

known. In Figure 1.1, key 1 is different from key 2. The intended receiver can make his key

1 public for all those who want to send him messages and keep his key 2 secret in order to

decrypt his messages.

Private-key ciphers can be divided into two categories. Ciphers that operate on the plaintext

a single bit at a time are called stream ciphers; ciphers that operate on the plaintext in blocks

of bits are called block ciphers.

In this thesis, we examine substitution-permutation networks or SPNs, which are a class of

private-key block ciphers. Shannon [24] proposed using the concepts of "confusion" and "diffu­

sion" to create a mixing transformation, which uniformly distributes the redundant statistical

properties of the plaintext over the set of all possible ciphertexts. "Confusion" means that

the relationship between input and output is mathematically complex. "Diffusion" involves

spreading local effects in input across all output bits. The SPN architecture first proposed by

Feistel [9] is directly based on the principles of confusion and diffusion. A basic SPN uses small

substitutions, called S-boxes, to achieve confusion, and permutations to achieve diffusion.

As the results of the thesis, we first proposed a new nonlinearity criterion for the design of S­

boxes. S-boxes satisfying this criterion and the diffusion order requirement improve remarkably

the ability of an SPN to resist linear cryptanalysis and differential cryptanalysis. Secondly,

we designed a new linear transformation as the method of interconnection between rounds

of S-boxes. When the linear transformation is adopted in an SPN, the ability of an SPN to

resist linear cryptanalysis and differential cryptanalysis is strengthened noticeably. Finally, we

2

implemented an SPN constructed from our new 4 x 4 S-boxes and our novel linear transformation

using a Field Programmable Gate Array (FPGA). The information about the complexity of the

FPGA implementation shows that the digital hardware implementeation of our SPN is practical

and not complicated.

1.1 Motivation for the Research

Designing efficient, secure ciphers that keep pace with modern electronic communication envi­

ronments and applications motivated us to do this research. The Data Encryption Standard

(DES) [17], which has been by far the most popular private-key block cipher used, will soon

be unusable for securing modern electronic communications due to its inadequacies. The size

of the keyspace, 256 , is too small to be secure with the speed of today's computer hardware.

According to Wiener's design [28], a $1,000,000 machine could search the entire key space in

about 3.5 hours. Also, the secrecy surrounding the design of the DES algorithm has caused

suspicion that the National Security Agency embedded a "trapdoor" into the cryptosysytem

and prevented any simple modifications or extensions of the algorithm. To date, no ciphers

have been well enough developed such that they would convincingly be able to face the chal­

lenge of modern electronic technology and replace DES. The National Institute of Standards

and Technology (NIST) is currently calling for cipher proposals [7].

An SPN is a simple yet efficient implementation of a block cipher. Each round of a basic SPN

consists of a layer of n x n S-boxes and a permutation which connects two adjacent layers of

S-boxes. The simplicity of its structure is advantageous as it allows us to analyze its strength

against various kinds of cryptanalysis and then to effectively improve the cipher. As well, since

in an SPN, substitutions and permutations are operated on the whole block of the messages

(unlike DES which operates on half a block at a time), intuitively an SPN is more efficiently

secure in enciphering a message. That is, an SPN with a small number of rounds of operation

should attain a great security. These two basic properties of an SPN give us confidence to select

an SPN as the object of study that can reasonably be designed to meet the security needs of

modern electronic communications.

3

1.2 Outline of the Thesis

This thesis is organized as follows:

• Chapter 2 provides an introduction to the substitution-permutation encryption network.

Some techniques of cryptanalysis related to this thesis are also introduced.

• Chapter 3 presents a new criterion for the design of 8 X 8 S-boxes.

• Chapter 4 introduces a novel linear transformation and shows its ability in helping an

SPN against linear cryptanalysis.

• Chapter 5 examines the capacity of the linear transformation in thwarting differential

cryptanalysis.

• Chapter 6 discusses the implementation of our SPN using a Field Programmable Gate

Array (FPGA).

• Chapter 7 provides a summary of the thesis and proposals for future work.

4

Chapter 2

Background

In this chapter, the basic knowledge necessary for understanding the substitution-permutation

network is presented. Some cryptanalysis techniques related to this thesis are also introduced.

As well, previous research related to the design of the substitution-permutation network is

reviewed.

2.1 Substitution-Permutation Network

The detailed architectures for block ciphers based on Shannon's [24] concept of "confusion"

and "diffusion" were first designed by Feistel [9] and Feistel, Notz, and Smith [10]. One of the

block cipher architectures became the network structure for substitution-permutation networks

(SPN), and the other became that for DES-like ciphers.

Both an SPN and a DES-like cipher are product ciphers, which iteratively perform simple basic

cryptographic operations on the data for a number of rounds. The main difference between

the SPN architecture and the DES-like architecture is that an SPN performs substitutions and

permutations on the whole block of data, while a DES-like cipher performs these operations on

only half the block at a time.

One round of a DES-like cipher is illustrated in Figure 2.1. The round operation of round r

can be described as follows:

Rr+l = f(Rr, Kr) EB Lr
Lr+l = Rr

(2.1)

where Lr is the left half-block of data, Rr is the right half block of data, Kr is the key bits

5

l

l
Lr+l

Round function
f

Rr+l

Figure 2.1: One Round of A DES-like Cipher

Kr

associated with round r, and f is a function that executes the substitutions and transposition

(or permutation).

One round of a basic SPN is shown in Figure 2.2. Each round consists of a layer of substitutions

on small sub-blocks and a bit position transposition (permutation). Each of the substitutions

is referred as an S-box. As the study in the design of the SPN has been furthered, it has been

shown that the permutation can be viewed more generally as a linear transformation [12]. In

this thesis, we shall use the S-box interconnection layer to refer to both the permutation and

the linear transformation. We shall still refer to these networks as SPNs even though the S-box

interconnection layer could be a linear transformation which is not a permutation. Keying the

SPN is omitted in Figure 2.2.

Generally, the SPN can be viewed as consisting of three components: S-boxes, S-box intercon-

nections, and key scheduling. We shall elaborate on the notion of these three components.

2.1.1 S-box

In general, an m x n S-box substitutes an n-bit output block for an m-bit input block. The

S-boxes of the SPN must be symmetric (size n x n) and invertible so that an SPN performs a

one-to-one mapping and the ciphertext is decryptable. Ann x n symmetric S-box can be viewed

6

0----t---1

Figure 2.2: One Round of A Basic SPN

S-box

2-to-4

decoder

1

I I

:Permutation 1 __________ J

IN

00
01

10
11

OUT
10

00
11
01

4-to-2

encoder

Figure 2.3: An S-box Example

0

1--r---- 0

as formed by sandwiching a permutation between a decoder and a corresponding encoder. It

supplies 2n internal terminals that can be connected in 2n! different ways. Hence, there are a

total of 2n! S-boxes of size n x n. A 2 x 2 symmetric S-box is depicted in Figure 2.3.

In an SPN only the S-boxes can be designed to be nonlinear. A nonlinear S-box implies that

for the S-box there does not exist a mod-2 linear combination of input bits such that for all

possible input vectors it can be equal to a particular mod-2 linear combination of output bits.

The cryptographic strength of an SPN relies highly on the strength of the S-boxes. As a result,

the design and analysis of S-boxes has been a topic of considerable interest in the cryptographic

community.

Kam and Davida [13] proposed the completeness criterion, which requires that each output bit

7

of an S-box or cipher depends on every input bit. Webster and Tavares [27] suggested the strict

avalanche criterion (SAC) for the design of S-boxes. An S-box satisfies SAC if, over all possible

input vectors, inverting input bit i causes output bit j to be changed with a probability of 1/2

for all i and j. Adams and Tavares [1] proposed a design procedure for the S-boxes which satisfy

(i) bijection, (ii) nonlinearity, (iii) strict avalanche criterion, and (iv) output bit independence.

(Output bit independence ensures that over all possible input vectors any pair of two output

bits are not equal to each other significantly more, or significantly less, than half the time.)

According to O'Connor's analysis [5], this procedure becomes impractical as the size of an S-box

increases.

Dawson and Tavares [6] extended the work of Forn§ [11] in applying information theory to

S-box design. They suggest selecting S-boxes such that (i) the mutual information between a

subset of output bits and any subset of input and/or output bits is minimal, and (ii) the mutual

information between a subset of output bit changes and any subset of changes of input and/or

output bits is minimal.

Nyberg [20] proposed using bent functions to construct highly nonlinear S-boxes. Unfortunately,

the bent functions must be modified to achieve other cryptographically desirable properties such

as balance, and there is no known effective way to do so. (Balance implies that the bit which

is a Boolean function of input bits takes on the values 0 and 1 equally.)

Heys and Tavares [12] stated that (i) large S-boxes are more likely to have high nonlinearity

than small S-boxes, and (ii) S-boxes with good diffusion of bit changes increase resistance to

differential cryptanalysis. An S-box posseses good diffusion if a one bit input change causes

several output bits to change.

While so much research has been conducted into the design of S-boxes, the design of S-boxes that

can be easily implemented in hardware and simultaneously have provably good cryptography

properties has been largely neglected.

2.1.2 S-box Interconnection

A basic SPN uses permutations as S-box interconnections. A permutation essentially involves

reordering the bits in the data. Compared with the work on the design of S-boxes, less work

8

has done on the design of S-box interconnections.

In [13], Kam and Davida presented a permutation design approach to achieve the completeness

property of an SPN. In [2], Ayoub extended the work of Kam and Davida and suggested a class

of cryptographically equivalent permutations (CEP) such that (i) the same permutation is used

in every round ofan SPN, and (ii) the completeness of an SPN can be achieved in the minimum

number of rounds. To date Ayoub's permutations seem to be the most practical permutations

to employ in an SPN.

Generally, in a linear transformation every output bit is a mod-2 linear combination of some

or all of the input bits. A permutation can be viewed as a special case of a linear transforma­

tion. Linear transformations used as interconnections in an SPN must be invertible to make

decryption feasible.

In [12], Heys and Tavares first suggested using linear transformations between rounds of S­

boxes to intensify the quick diffusion of bits and increase the resistance to differential and

linear cryptanalysis. In [32], the authors extended the work in [12] and suggested an improved

linear transformation which is more effective in resisting differential and linear cryptanalysis.

2.1.3 Keying the Network

In an SPN, two methods (see Figure 2.4) can be used in keying an S-box:

• Selection Keying: one or more of the sub-key bits are used to select which of the S-box

mappings is to be used.

• XOR Keying: the data bits are XORed with the sub-key bits before entering an S-box.

For an SPN using XOR keying, the key must be XORed after last round as well as at the inputs

to each round. The reason that the key must be XORed after the last round is that, only after

the output of the last round is XORed with the key, the input of the S-boxes in the last round

is unknown, so that the last round is a valid round.

During encryption a cipher key is picked for the operation such that it is only known to the

sender and receiver. The sub-keys for rounds of an SPN are derived from this cipher key. A

9

Sub-key

bit

n

0 0 0

n x n S-box 2

-------­n

Selection Keying

. . .

n

},
0 0 0 J

'-

ffi
't'

n x n S-box

XORKeying

Figure 2.4: Two Keying Methods

different round may have a different sub-key. Determination of the sub-keys from the cipher

key is done by a key scheduling algorithm. For an SPN, decryption is accomplished by passing

the data in reverse direction through the network. Correspondingly, for decryption, the key

schedule must be applied in reverse to encryption.

A key scheduling algorithm easily implemented for an SPN is to apply the cipher key to each

round as the sub-key of the round. The security of such a simple key schedule scheme has never

been determined.

In this thesis, we will not consider the design of the key scheduling algorithm.

2.2 Other Block Ciphers

To date many block ciphers have been proposed. Some of the most notable ones are FEAL,

IDEA, and RC5.

FEAL [25] developed by Shimizu and Miyaguchi is a block cipher similar to DES. It uses a

64-bit data block and a 64-bit key. The basic design principle is to use stronger round functions

to reduce the number of rounds, making the algorithm run faster.

IDEA [15] is proposed by Lai and Massey. It is a block cipher which operates on 64-bit

plaintexts. The length of the key is 128 bit. The design idea of the cipher is to use the

10

operations from three different algebraic groups to achieve the efficient mixing transformation.

The three algebraic groups are: XOR, addition modulo 216 , and multiplication modulo 216 + 1.

RC5 [22, 23] is a block algorithm designed by Ron Rivest and analyzed by RSA Laboratories.

RC5 is in fact a family of algorithms and has three parameters: block size, key size, and number

of rounds. Three operations are adopted in the cipher: XOR, addition, and rotation. Since

these operations are generally found on most processors, RC5 is expected to be a very fast,

secure cipher, easily implemented in software.

2.3 Cryptanalysis Techniques

A cryptosystem is said to be compromised via cryptanalysis if it is possible to recover the

plaintext of a message from the ciphertext without knowledge of the key used in the encryption

algorithm or if it is possible to derive the key from a set of available ciphertexts or plain­

text/ciphertext pairs. It is usually assumed that in cryptanalysis the cryptanalyst knows the

details of the cryptosystem. Since a one-time pad cipher is the only scheme that can be proven

to be unconditionally secure [26], in modern cryptology a cipher is considered to be unbreakable

if the cipher is computationally secure. A cryptosystem is computationally secure if the best

known algorithm for breaking it requires an unreasonably large amount of computing time with

available resources.

An attack refers to an intended cryptanalysis. There are three general types of cryptanalytic

attacks of block ciphers: (1) ciphertext only, (2) known plaintext, and (3) chosen plaintext. In

a ciphertext only attack, the cryptanalyst only posseses some ciphertexts. A known plaintext

attack assumes that the cryptanalyst obtains the plaintexts corresponding to some known

ciphertexts. A chosen plaintext attack is more powerful than a known plaintext attack. In

this attack, the cryptanalyst can use some chosen plaintexts to obtain the desired ciphertexts.

The exhaustive key search attack tries every possible key to break a cipher. Ciphers are consid­

ered theoretically secure against a particular attack if the attack has a computational complexity

that is at least as large as an exhaustive key search. Besides the exhaustive key search attack,

the two notable and most powerful attacks against block ciphers are differential cryptanalysis

and linear cryptanalysis.

11

2.3.1 Differential Cryptanalysis

Biham and Shamir [3] discovered the technique of differential cryptanalysis to attack block

ciphers. With this method they have attacked a number of block ciphers such as DES [3] and

FEAL [4].

Differential cryptanalysis is a chosen plaintext attack which examines the bitwise XORs of

pairs of plaintexts and the XORs of the corresponding pairs of ciphertexts. The XOR of a

pair of plaintexts is particularly chosen such that a specified sequence of XORs through the

rounds of encryption will occur with a relatively high probability. An r-round characteristic

is defined to be a sequence of r pairs of input and output XOR differences each of which

corresponds to one round. Differential cryptanalysis of an R-round block cipher relies on the

existence of highly probable (R- 1)-round characteristics. Whether this kind of characteristic

exists in a block cipher depends heavily on the properties of the S-boxes. S-boxes that have

a significantly non-uniform distribution of S-box difference pairs would help the occurrence of

highly probable characteristics, where an S-box XOR difference pair refers to an input XOR

and the corresponding output XOR of the S-box.

Differential cryptanalysis of a DES-like cipher which uses XOR keying is applied in this way:

according to the structure of the cipher, the input to the last round and the input XOR values

of the S-boxes in the last round can be directly obtained from the ciphertext. The output

XOR values of some targeted S-boxes in the last round can be derived with a probability in

the light of a characteristic. When a pair of the input and output differences of an S-box is

known, the possible input values of the S-box are known. The possible sub-keys associated

with each targeted S-box can consequently be achieved with a particular probability by using

the knowledge of input to the last round and the possible input values to the S-box, where the

sub-key of an S-box consists of those cipher key bits applied to the S-box. Precisely, with each

plaintext pair, for each targeted S-box a set of bit-strings is achieved each member of which

is a possible sub-key of the S-box, and among the set of these bit-strings, one bit-string is the

correct sub-key of the S-box. By trying a number of plaintext pairs which have a specified XOR

difference, a number of these kinds of sets of bit strings are obtained. Since a characteristic

ideally occurs with a relatively high probability, the bit-string that is the correct sub-key of the

12

S-box should appear in these sets many more times than other bit-strings. The bit-string that

appears in these sets most frequently is thus deduced as the correct sub-key of the S-box. One

characteristic may involve a number of S-boxes in the last round and the key bits associated

with these S-boxes can be deduced simultaneously using the characteristic. After using one or

more characteristics, most of cipher key bits will be located. The rest of the cipher key bits

may be easily located by using exhaustive key search.

Differential cryptanalysis of DES-like ciphers can be applied in a similar way to attack a basic

SPN which uses XOR Keying. The difference between differential cryptanalysis of DES-like

ciphers and that of a basic SPN is that differential cryptanalysis of a basic SPN locates the key

bits XORed to the output instead of the key bits XORed to the input of the S-boxes in the last

round. Also, differential cryptanalysis of a basic SPN uses the deterministic knowledge of the

output of the last round and of the output XOR differences of the S-boxes in the last round,

and the probabilistic knowledge of the input XOR differences of the S-boxes in the last round,

to decide the sub-keys of the targeted S-boxes.

Heys and Tavares [12] found that linear transformations and S-boxes with good diffusion prop­

erties lower the probablility of the best probable (R- 1)-round characteristic of an R-round

SPN and increase resistance to differential cryptanalysis.

2.3.2 Linear Cryptanalysis

Matsui [16] presented the method of linear cryptanalysis to attack DES. The attack determines

key bits by using a probable linear approximation of plaintext, ciphertext, and key bits which

are likely to be satisfied. This is a known plaintext attack.

In the linear cryptanalysis of DES, the probable linear approximations of S-boxes are first

investigated. Once a best probable linear approximation of an S-box is known, a best probable

linear expression of a round can be obtained by using the knowledge of the round function.

A probable linear expression of a round consists of the input, output, and sub-key bits of the

round. After applying the best probable linear approximations of one round to a number of

rounds and combining them, a probable cipher linear approximation can be achieved which

consists of only plaintext, ciphertext, and key bits. Linear cryptanalysis then uses this kind of

13

probable linear approximation to locate the key bits using a hypothesis testing approach.

O'Connor [5] stated that as the size of an S-box gets larger the best probable linear approxi-

mation of the S-box tends to be worse and a cipher is more resistant to linear cryptanalysis.

According to Nyberg's definition [19], the nonlinearity of an n x n bijective S-box is defined as

the minimum nonlinearity of all non-zero linear combinations of output functions:

n

N L(S) = min N L(E9 Wd;)
W1 , .•• ,Wn E{O,l },allW; #0 i=l

(2.2)

where fi represents the n-input function of the i-th output of the S-box, and the nonlinearity

of ann-input boolean function, f : {0, 1 }n -t {0, 1 }, is defined as the Hamming distance to the

nearest affine function:

n

N L(f) = min #{Xif(X) # E9 Uixi EB V}
Ul, ... ,U,.,VE{O,l} i=l

(2.3)

where X is ann-bit vector, i.e. X= [x1,x2, ... ,xn] with x; E {0, 1}, 1 ~ i ~ n.

Linear cryptanalysis can also be used to attack an SPN. ·To improve an SPN against linear

cryptanalysis, Heys and Tavares [12] claimed that (i) large, randomly selected S-boxes are very

likely to have high nonlinearity and (ii) the use of an appropriate linear transformation between

rounds for the S-box interconnections increases the resistance to linear cryptanalysis.

14

Chapter 3

8 x 8 S-box Design

In this chapter, a new nonlinearity criterion for the design of 8 X 8 S-boxes is proposed. S-boxes

satisfying this criterion and the diffusion criterion improve remarkably the ability of an SPN to

resist linear cryptanalysis and differential cryptanalysis.

3.1 Introduction

A basic substitution-permutation encryption network consisting of a number of rounds of S­

boxes connected by bit permutations is a straightforward implementation of a private-key block

cipher [9]. The SPN structure is directly based on the concepts of "confusion " and "diffusion"

introduced by Shannon [24]. Letting N represent the block size of a basic SPN composed of

R rounds of n x n S-boxes, a simple example of an SPN with N = 16, n = 4, and R = 3 is

illustrated in Figure 3.1. We assume that keying the network is realized by XORing the key

bits with the data bits before each round of substitution and after the last round. The key bits

associated with each round are derived from the cipher key according to some key scheduling

algorithm. In this chapter we will consider an SPN with a block size of N = 64 using 8 X 8

S-boxes and whose interconnections are permutations where no two outputs of an S-box go to

the same S-box in next round.

Like other block ciphers, an SPN is susceptible to linear cryptanalysis and differential crypt­

analysis. Linear cryptanalysis suggested by Matsui [16] is a known-plaintext attack which uses

some plaintext ciphertext pairs to break the cipher. Differential cryptanalysis, introduced by

Biham and Shamir [3], is a chosen plaintext attack which examines the changes in ciphertext

15

Figure 3.1: SPN with N = 16, n = 4, and R = 3

in response to controlled changes in the input. To attack an SPN, linear cryptanalysis is done

by using knowledge of a highly probable linear approximation, while differential cryptanalysis

is implemented by finding a highly probable differential characteristic. Both a highly probable

linear approximation and a highly probable characteristic are achieved by exploiting the local

properties of the network, specifically the S-box properties. Thus the design of S-boxes is crucial

to the strength of an SPN.

In this chapter, a new S-box design criterion is proposed. S-boxes satisfying this criterion and

the diffusion criterion [12] improve the ability of an SPN to resist linear cryptanalysis and

differential cryptanalysis.

3.2 Background

In the application of linear cryptanalysis to SPN, the best r-round linear approximation of the

form

P;l EB P;2 EB • · • EB P;, EB Cit EB Ch EB • • • EB Cjp = Kk1 EB Kk2 EB • · · EB Kk-r (3.1)

is of interest. This linear approximation is derived by combining a number of probable linear

expressions of S-boxes from different rounds such that any intermediate terms (i.e., terms that

are not plaintext, ciphertext, or key terms) are eliminated. The linear approximation of each

16

round which holds with some probability is obtained by using the knowledge of the linear

approximations of S-boxes. As we will see later, when the linear approximations of S-boxes

hold with small value of IPi- 1/21, where Pi denotes the probability of a linear approximation

of an S-box, the overall cipher linear approximation will be satisfied with a small value of

IPL - 1/21, which is inversely proportional to the number of plaintexts required to attack an

SPN using a basic linear attack, where p L represents the probability of the overall cipher linear

approximation. Thus the nonlinearty property of an S-box needs to be considered in the context

of linear cryptanalysis.

Definition 3.1 [16]: For a given n x n S-box, S, N S(a, f3) is defined as the number of inputs to

S, where a mod-2 linear combination of the input bits specified by vector a is equal to a mod-2

linear combination of output bits specified by vector f3. In particular,

n-i n-i

N S (a, f3) = # {X I X E { 0, 1 } n, (ffi a [i] · X [i] = ffi f3 [i] · S (X)) } (3.2)
i=O i=O

where the symbol x[i] represents the i-th bit of vector x, s(x) is the output of the S-box corre­

sponding to input x, and EJ7f,;;-0ia[i]· x[i] = EJ7f,;;-0if3[i]· s(x) is referred to as a linear approximation

of an S-box.

For some {a, /3}, the probability p of a linear approximation of an S-box is defined as p =

N S(a, f3) /2n. When IP - 1/21 is small, then the linear expression defined by {a, f3} is a poor

approximation of the S-box.

For an R-round SPN, differential cryptanalysis is dependent on the existence of a highly

probable (R- 1)-round characteristic. An r-round characteristic is a list of difference pairs

{ (~Ui, ~VI), ... , (~Ur, ~Vr)}, where (~Ui, ~Vi) represents the input XOR value and output

XOR value in round i respectively, and ~Ui =~Vi-i, 2 ~ i ~ r, and ~Ui is the plaintext

XOR difference. The existence of a highly probable (R- 1)-round characteristic is determined

by two factors [12]: (1) the distribution of an S-box XOR difference pairs (~x, ~y), where ~x

is the bit-wise input XOR difference of 2 input vectors, Xi and x2, (i.e., ~x = Xi El7 x2), and

~y is output XOR difference of an S-box, (i.e., ~y = s(xl) El7 s(x2)), and (2) the diffusion of

bit changes in the network.

17

Definition 3.2 [12]: An S-box satisfies a diffusion order of A, A 2: 0, if, for wt (~x) > 0,

(") { A+1-wt(~x) ,wt(~x)<A+1
wt I..J..y > 0 , wt(~x) 2: A + 1 (3.3)

where ~x and ~y denote the input XOR difference and the corresponding output XOR differ­

ence of an S-box respectively, and wt (-)refers to the Hamming weight of the specified argument.

The diffusion order of an S-box is used to measure how many output bits can be changed while

some of the input bits are changed, and it requires that the total number of changed input and

output bits exceeds some assigned bound.

3.3 S-box Design Constraints

In this section, constraints on S-boxes that are good at strengthening an SPN against linear

cryptanalysis and differential cryptanalysis are proposed.

3.3.1 Nonlinearity Requirement

In the linear cryptanalysis of an SPN, a cryptanalyst is interested in finding a linear approxima-

tion which is deduced by combining a number of probable linear approximations of the involved

S-boxes. Suppose there are 8 S-boxes involved in the derivation of a linear approximation of

the overall cipher, and the probable linear expression of the i-th S-box holds with probability

Pi· Also suppose that the key bits XORed to the data bits prior to entering the S-boxes are

independent and uniformly random and consequently the inputs to the S-boxes involved in the

derivation of the cipher linear approximation are independent and uniformly random. Then

according to Lemma 3 in [16] the cipher linear approximation holds with probability

fJ

PL = 1/2 + 2fJ-l fi(Pi -1/2). (3.4)
i=l

Also, it is shown in [16] that for a basic linear attack (algorithm 1) the number of known

plaintexts required to guess the equivalent of a key bit (i.e. the right side of equation (3.1)) is

approximately N L, where

(3.5)

18

By rewriting (3.4) as
8

PL = 1/2 + 1/2 II (2pi- 1), (3.6)
i=l

it is evident that PL, the probability of a linear approximation, is decided by two parameters:

(1) 8, the number of S-boxes involved in the derivation of the linear approximation, and (2) Pi,

the probability with which the linear expression of the i-th S-box is satisfied.

In [12], iPL - 1/21 was bounded by considering 8 and !Pi - 1/21 separately, without noticing

that indirectly there exists a relationship beween 8 and Pi. That is, when the probability of a

probable linear expression of an S-box was bounded, no matter how many input and output

bits are include in the linear expression, the probability Pi was bounded with the same relation

!Pi - 1/21 :::; !Pc - 1/21 (3.7)

where Pc represents the probability of the best linear approximation and it can be described by

(3.8)

where n is the size of an S-box and N Lmin is the lowest nonlinearity of any S-box in the cipher,

i.e., for all S-boxes

(3.9)

For a basic SPN, the permutation between two layers of S-boxes is usually arranged in this

way: no two input bits of an S-box come from the same S-box in the previous round. Hence,

intuitively, when a linear expression of an S-box includes more input and output bits, more S-

boxes in the previous round and the next round will be caused to be involved in the derivation

of a linear approximation of the overall cipher.

After studying the nature of the S-box interconnections in a basic SPN, it is not hard to see

that, if a linear approximation of the overall cipher is obtained by combining the S-box linear

approximations which include the same number of input plus output bits, the average number

of S-boxes per round involved in the derivation of the linear approximation of the cipher is

proportional to the number of input plus output bits which are included in each S-box linear

approximation. Mathematically, let '' 2 ~ 'Y ~ 2n, represent the number of input plus output

bits. Then, when 1-term S-box linear approximations are used to deduce a linear approximation

19

of an overall cipher, the per round number of S-boxes for deriving the linear approximation is

at least 1/2.

Lemma 3.1 Let/, 2 ~ 1 ~ 2n, represent the number of input bits plus output bits in a linear

approximation of an S-box. Assume no two input bits of an S-box come from the same S-box in

the previous round, and all S-boxes use a 1-term linear approximation of a specific 1 to derive

the best possible cipher linear approximation. Then the best possible cipher linear approximation

must involve 1/2 S-boxes on average per round.

Proof Consider an S-box in the r-th round. Since each input bit or output bit of an S-box

connects to a different S-box in the previous or next round, based on assumption, the number

of involved S-boxes in the previous and the next round must be at least I·

Since we are considering a possible best cipher linear approximation, if a scenario in which the

number of involved S-boxes in the previous and next round is 1 exists, then the theorem is

proven.

Figure 3.2 shows one of this kind of scenario for n = 8 and 1 = 4. In this figure, the highlighted

short lines represent the applied bits of S-boxes involved in the derivation of a cipher linear

approximation. Since four bits of each involved S-box are used for the derivation of the cipher

linear approximation, 4-term S-box linear approximations are used in this scenario. Obviously,

the per round number of S-boxes involved in the cipher linear approximation is 2. Similarly,

it can easily be verified that a linear approximation involving 1/2 S-boxes per round can be

constructed for any value of I· 0

Now for a given value of/, bound the linear approximation probability of an S-box by

(3.10)

where 77i(/) = IPi(/)-1/21 with pi(/) representing the probability of the 1-term linear expression

for the i-th S-box of the linear approximation and 77(/) = IPeb) -1/21 with Peb) representing

the probability of the best 1-term linear expression of any S-box in the network.

Subsequently, based on Theorem 3.1 we have

6 6

"lL = 26
-

1 II "lib) ~ 26
-

1 II "7(/) = 1/2(277(1)r'/2·R, (3.11)
i=1 i=1

20

s s s

s

s s s

Figure 3.2: One possible best linear path when using 4-term linear approximations

where rn = IPL - 1/21 and R is the number of rounds in the SPN. According to (3.11), to

prevent a cryptanalyst from using some specific 1-term linear expressions to obtain a linear

approximation with a higher probability, one could establish the relationship

(3.12)

for all 2 ~ /1,/2 ~ 2n. Constraint (3.12) embodies the trade-off between the 8 and Pi factors

in deriving p L and, assuming that a suitably small value for 17(2) can be found, should lead to

a smaller value of PL, than condition (3.7). However, to get the bound for the probability of

the best linear approximation as small as possible, only putting constraint (3.12) on an S-box

is not enough. In the context of an 8-round SPN consisting of 8 x 8 S-boxes, when a constraint

similar to (3.12) is adopted to select S-boxes, using the relation

(3.13)

as the constraint put on S-boxes leads to the tightest bound on the probability of the best linear

approximation, as the following discussion shows.

In our experimentations for selecting S-boxes, with either the constraint (3.12) or

(3.14)

21

the minimum 2ry(2) achieved is the same value of 12 x ~~~ - 11 = 7/64. In the experiment,

we use random numbers to generate the outputs of an S-box. Every time a random number

is generated, it is checked whether this number can be the value of an S-box output that

corresponds to the current S-box input so that all of the S-box output values selected so far

satisfy our design citerion. Since the minimum 2ry(2) achieved is the same value of 7/64, the

probability of the best possible cipher linear approximation which is derived from an SPN

consisting of S-boxes satisfying (3.14) must not be greater than that of the possible best cipher

linear approximation which is derived from an SPN consisting of S-boxes satisfying (3.12). In

other words, (3.14) sets a tighter bound on the probability of the best linear approximation

than (3.12).

To compare the constraint of (3.13) with that of (3.14), the probability of the best possible linear

approximation of cipher needs to be calculated. When the constraint (3.13) is put on S-boxes,

the minimum 2ry(2) achieved through experiment was 12 x ~~~ -11 = 1/8. For an 8-round SPN,

under condition (3.13) and (3.14) the equivalent number of 2-term S-box linear approximations

for deriving a best linear approximation are 7.333 and 6.8333, respectively, where equivalent

number of 2-term linear approximation means that a best 1-term S-box linear approximation

is equivalent to 2h best 2-term S-box linear approximation. Hence, under condition (3.13)

the best probability is 12 x ~- 11 7·333 = (k) 7·333 = 2.386 x 10-7 , and under condition (3.14)

it is 12 x ~~~- 116·833 = (J4) 6·833 = 2.707 x 10-7• Since 2.386 x 10-7 < 2.707 x 10-7, the

constraint (3.13) can be used to set a tighter bound on the probability of the best cipher linear

approximation than (3.14).

Noticing that constraint (3.12) is the loosest among the similar constraints and the minimum

2ry(2) achievable is li41, we have actually considered all the possible best linear approximations

under all similar constraints. Therefore we conclude that relation (3.13) provides the tightest

bound. on the probability of the best linear approximation.

In Figure 3.3 we give the algorithm for an 8-round cipher to compute the equivalent number of

2-term S-box linear approximations involved in the best possible cipher linear approximation

based on constraint (3.13). In this algorithm, the equivalent number of S-boxes involved in a

cipher linear approximation of an R-round SPN is calculated, and only the best possible cipher

22

Initialize kmin = R;
For all [n1, n2, ... , nR] E {1, 2, ... , 8}R do

k = ~(n1 + nR)
For r = 2 to R - 1 do

n +-- nr-1 + nr+l
if (n > 4) n = 4
k = 2nr/n + k

if k < kmin then kmin = k
output: kmin

Figure 3.3: Algorithm for computing the equivalent number of 2-term S-boxes

linear approximations are taken into account, i.e., assuming any involved S-box in the (r -1)-th

or (r + 1)-th round offers a bit to any involved S-box in the r-th round. During the calculation,

we use nr to denote the number of S-boxes in the r-th round which are involved in a linear

approximation of the overall cipher, and k = 1/2(nl + nR) is the equivalent number of S-boxes

in the first and last round.

According to algorithm of Figure 3.3, for an 8-round SPN, with constraint (3.14) the smallest

equivalent number of 2-term S-boxes involved in a linear approximation is 6.833. For example,

one scenario is that from the 1st to 8-th round, the number of S-boxes is 1, 1, 1, 2, 3, 2, 1, and

1, respectively.

Let us calculate the number of known plaintexts required in the basic linear attack. As men-

tioned above, under condition (3.13) the equivalent number of 2-term linear expressions involved

in the best linear approximation of an 8-round SPN is 22/3 (i.e., 7.333). Therefore according

to (3.11), for an 8-round SPN the greatest value of IPL- 1/21 is 1/2(277(2))2213. This signifies

that in the basic linear attack the number of plaintexts required to deduce one equivalent bit

of key is at least 4/(277(2)) 44/ 3• From the results of our experiments, 8 x 8 S-boxes satisfying

(3.13) with 21](2) = 1/8 can be achieved. Hence, if an 8-round SPN is constructed using 8 x 8

S-boxes satisfying (3.13) with 277(2) = 1/8, it requires at least 246 known plaintexts to deduce

one equivalent key bit using the basic linear attack.

In contrast, in [12], (3.7) is used to bound the probability of a linear expression of an S-box, and

the value of the minimum 277(2) is assumed to be 12 x 96/256- 11 = 1/4. Since the minimum

number of S-boxes involved in a cipher linear approximation is 8, the resulting IPL - 1/21 is

23

8 x 8 S-box
). ry(2) under condition (3.14) % ry(2) under condition (3.13) %
0 7/128 2.65 1/16 0.004
1 7/128 3.90 1/16 0.267

Table 3.1: Proportion of S-boxes satisfying nonlinearity requirement selected from S-boxes
having diffusion order >.

1/2(2ry(2))8 = 217 and the number of required plaintexts in a basic linear attack could be as

few as 234 .

3.3.2 Diffusion Order Requirement

S-boxes with a high diffusion order can enhance the ability of an SPN to resist differential

cryptanalysis [3]. Letting N represent the block size of an SPN, n represent the size of an S­

box, M represent the number of S-boxes used in each round where M = N jn, and IT represent

the set of permutations for which no two outputs of an S-box are connected to one S-box in

the next round, according to Theorem 1 in [12], for an R-round SPN which uses a permutation

1r E IT, where R is a multiple of 4 and M 2 n, the probability of an (R-1)-round characteristic

satisfies

(3.15)

where all S-boxes satisfy diffusion order >. and p0 represents the maximum S-box XOR pair

probability. The maximum>. found in [12] for 8 x 8 S-boxes is >. = 2.

By using the depth-first-search algorithm in [12], 8 x 8 S-boxes are examined for their nonlinearity

property and diffusion order. It is determined that it is not difficult to find S-boxes with

diffusion order of 1 which satisfy the suggested nonlinearity requirement with a small value

of 2ry(2). Some results are illustrated in Table 3.1. It is clear that S-boxes which satisfy the

nonlinearity requirement of either (3.13) or (3.14) and at the same time have a good diffusion

property can be found.

3.4 Conclusion

Based on the observation that the number of S-boxes for deriving an overall linear approximation

is on average related to the number of input plus output bits of each involved S-box linear

24

approximation, the restriction on the probability of an S-box linear approximation with more

input plus output bits is relaxed. Thus S-boxes whose fewer-term linear approximations are

poorer are found. As a result, the ability to resist linear cryptanalysis of an SPN that is

constructed from these S-boxes is improved remarkably.

To thwart differential cryptanalysis, it is desirable that S-boxes satisfy a relatively high diffusion

order. S-boxes that satisfy our suggested nonlinearity requirement can be selected from the S­

boxes with diffusion order of 1. Thus, the newS-box design criterion suggested in this chapter

would help us to obtain good S-boxes which enable an SPN to be stronger in resisting linear

cryptanalysis while still having properties suitable for resisting differential cryptanalysis.

25

Chapter 4

Linear Transformation Design

In this chapter, a new linear transformation is proposed as the method of interconnection

between rounds of S-boxes. It is shown that when the linear transformation is adopted in an

SPN, the average number of equivalent 2-term S-boxes per round involved in a cipher linear

approximation has a lower bound of 1.5.

4.1 Rearranging Permutations

As was mentioned in the previous chapter, a substitution-permutation network is vulnerable to

the attack of linear cryptanalysis. In a basic SPN, any two rounds of S-boxes are connected by

a bit permutation such that no two input bits of an S-box come from the same S-box in the

previous round. To improve an SPN against linear cryptanalysis, one possible method might be

to rearrange the permutation for each round, according to the probabilities of all of the linear

approximations derived up to the previous round.

To test the feasibility of the method, we only considered the approximations that are derived

using only 2-term linear approximations and assumed that the S-boxes to which the output

bits in the (r - 1)-th round are connected in the r-th round are decided before arranging the

permutation of the bits within each S-box but which bit of these output bits in the (r- 1)-th

round will connect to which bit of the input bits of the S-box is to be decided. The connections

between these output bits in the (r -1)-th round and these input bits of the S-box are decided

in this way: if an output bit is included in the linear approximation which is the k-th best

among the linear approximations each of which includes one of the output bits in the (r -1)-th

26

round, it is connected to the input bit which is included in the S-box linear approximation

which is the k-th worst among all of the 2-term S-box linear approximations of the S-box. For

example, suppose bits it, i2, ... , is in the (r- I)-round are connected to the bits }t, }2, ... , }s

of an 8 x 8 S-box in the next round, it is for bit it that the relatively best linear approximation

exists, and it is for input bit Jt that the relatively worst 2-term linear approximation exists.

Then bit i1 is connected to bit]I.

However, the results of our simulation experiments demonstrate that this method is not effective.

For instance, in an SPN which is constructed with 8 x 8 S-boxes satisfying the nonlinearity

criterion

(4.1)

proposed in Chapter 3, the following result was derived: after designing the bit permutation,

the value of I2PL- 11 of the best cipher linear approximation is 1.697 X w-8 ; while in theory

I2PL- 11 is bounded by I2PL -11 s (7 /64) 6
•
833 = 2.7073 X w-7 in Chapter 3, where PL denotes

the probability of a cipher linear approximation as in Chapter 3. It should also be noted that

a problem with this approach is that a changing permutation is hard to implement. When a

changing permutation is implemented, the permutations in different rounds may be different

from each other, so for an R-round SPN, (R-1) different permutations need to be implemented.

For the VLSI implementeation of an SPN, certainly this kind of implemenation is hard to do,

because too many wirings have to be arranged.

To strengthen an SPN against linear attack without augmenting the number of rounds, an

effective way is to use a linear transformation other than a permutation between rounds of

S-boxes. In this chapter we introduce a linear transformation that is intended to be used in

an SPN that contains 16 4 x 4 S-boxes in each round. The use of the linear transformation

results in the average number of equivalent 2-term S-boxes per round involved in a cipher linear

approximation having a lower bound of 1.5 which is an improvement over straightforward lower

bound of 1.

27

4.2 Motivation for the use of 4 x 4 S-boxes

As the linear transformation is designed to be used in an SPN consisting of 4 x 4 S-boxes,

before the linear transformation is discussed, we would like to give the motivation for designing

a linear transformation that is to be used in an SPN consisting of 4 x 4 S-boxes.

Many cryptographic applications require a single chip implementation of a cryptographic al-

gorithm. To make it as easy as possible for an LSI logic designer to realize the design on a

single chip, the minimum number of logic gates required to implement an SPN needs to be

small. Decreasing the minimum number of logic gates in an SPN motivated us to study SPNs

consisting of smallS-boxes. The reason that smallS-boxes can reduce the number of logic gates

is given below.

In hardware, an S-box is usually implemented as a set of boolean functions instead of a table

lookup. Ann X n S-box is a function that maps n input bits (x1, x2, ... xn) onto n output bits

(Yl, Y2, ... , Yn). Each output bit, y;, can be represented as a Boolean expression of the input

bits, i.e., y; can be represented as one or more minterms that are combined using a logic OR

operation, where a minterm includes all of input bits or their complements which are ANDed

together.

For example, if y; can be expressed in terms of inputs (x1, x2, x3) as follows:

Xl X2 X3 Yl Y2 Y3

0 0 0 1 1 0
1 0 0 0 1 1
0 1 0 0 0 1
1 1 0 1 0 0
0 0 1 0 1 1
1 0 1 1 0 1
0 1 1 1 0 1
1 1 1 0 1 0

denotes the logical OR operation.

It is easy to find that, for an 8 x 8 S-box, the Boolean expression for an output bit y; may

include at most 28 8-bit minterms, but for 4 X 4 S-box, an output bit y; can include at most

28

24 4-bit minterms. Also, considering the cryptographic properties of S-boxes,it is usually true

that the bigger the size of an S-box the more the minterms included in the Boolean expression

for an output bit. Therefore it is important to use small S-boxes to reduce the number of logic

gates needed in the implementation of an SPN.

In the process of exploiting the properties of smallS-boxes, 3 x 3 and 4 x 4 S-boxes were both

studied. After searching all 3 x 3 S-boxes, we found that the minimum 2ry(2) that a 3 x 3 S-box

can reach is 0.5. Since the value of 0.5 for 2ry(2) appears to introduce a very high requirement

on the number of rounds or the linear transformation of an SPN, we feel that 3 X 3 S-boxes are

not suitable to be adopted for use in an SPN.

However, for 4 x 4 S-boxes, the situation is different. 4 x 4 S-boxes that satisfy diffusion order

of 1 and meanwhile satisfy our new nonlinear criterion proposed in Chapter 3 with 2ry(2) = 1/4

can be found. This property of 4 x 4 S-boxes provides us with the confidence that 4 x 4 S-boxes

are promising candidates for efficient, secure SPNs. Thus we have studied the structure of an

SPN that are constructed from 4 x 4 S-boxes and have specifically focused on developing an

appropriate linear transformation to be used to efficiently interconnect rounds of S-boxes.

4.3 Equivalent Number of 2-term S-boxes

The concept of an equivalent 2-term S-box is critical to our description, so we should begin

with a careful analysis of this concept.

In our substitution-permutation network, the S-boxes are selected such that they satisfy two

criteria: 1) For the differential property, the diffusion order of an S-box is 1; 2) For the nonlinear

property, 2ryi (1) satisfies

2 ·() < { j2 X 1
6
6 - 1J = 1/4; r = 2

71' 1 - J2 x 1~- 1J = 1/2; 3 ~ 1 ~ 2n
(4.2)

where 1 is the number of input plus output bits included in a linear approximation of an S-box.

Note that (4.2) is similar to (3.12). Although it is looser, it is selected so that ry(2) can be

small. How to select these S-boxes is discussed in the previous chapter.

By rule (4.2) and the trivial relation of (1/2f = 1/4, we define that:

29

• If an S-box for which 1 = 2 is involved in a linear approximation, then for this S-box the

equivalent number of 2-term S-boxes is 1;

• If an S-box for which 1 ?: 3 is used in a linear approximation, then for this S-box the equivalent

number of 2-term S-boxes is 0.5.

In this way, we shall use the equivalent number of 2-term S-boxes involved in a best linear

approximation to measure the level of the security of an SPN in thwarting linear cryptanal­

ysis. The greater the total number of equivalent 2-term S-boxes involved in the best linear

approximation, the stronger an SPN is in resisting linear cryptanalysis.

4.4 A Review of Previously Proposed Linear Transformations

A permutation can be viewed as a special kind of linear transformation. The use of a permu­

tation in an SPN is not able to eliminate the cases where in each round only one 2-term S-box

is involved in a linear approximation. In other words, in each round only one 2-term linear

expression of an S-box is involved in a linear approximation. Thus, for an SPN that employs

permutations between rounds of S-boxes, to set a lower bound for the equivalent number of

2-term S-boxes involved in a linear approximation, the bound should never be greater than 1.

The use of other linear transformations to interconnect rounds of S-boxes can increase the

number of equivalent 2-term S-boxes involved in a linear approximation. The use of linear

transformation in an SPN is first suggested by the authors in [12], in which the authors designed

a linear transformation that makes at least 1.5 S-boxes in each round be involved in a linear

approximation. Later, the authors in [32] proposed another linear transformation, with which

the average per round number of S-boxes involved in a linear approximation is 2. Both of

these two linear transformations strongly improve an SPN's resistance to linear cryptanalysis.

However, when an SPN is constructed from S-boxes that satisfy relation (4.2), these two linear

transformations give no advantage.

The linear transformation proposed in [12] is defined by V = 11'[L(U)], where V = [V1 , V2,

... , VN] is the vector of input bits of a round of S-boxes, U = [Ut, U2 , ... , UN] is the vector

of bits from the previous round output, 71' is a permutation for which no two outputs of an

30

Figure 4.1: Ayoub's Permutation

S-box are connected to oneS-box in the next round, and L(u) = [L1(U), ... , LN(U)], where

L;(.U) = U1 E9 U2 E9 ... EBUi-1 E9Ui+1 E9 ... E9 UN. When an SPN is combined with this linear

transformation and the sort of 4 x 4 S-boxes that satisfy relation (4. 2), the lower bound for the

equivalent number of 2-term S-boxes can not exceed 1. This means it is possible that the per

round number of equivalent 2-term S-boxes involved in a linear approximation can be 1.

We give an example to illustrate this conclusion. In the definition of the linear transformation,

1r is any kind of permutation for which no two output bits of an S-box are connected to one

S-box in the next round. Hence Ayoub's permutation [2] satisfies this condition and can be used

in the linear transformation. Ayoub's permutation for a 64-bit network is illustrated in Figure

4.1 and is described as follows: the output bits in the first bit positions of the 16 S-boxes in this

round are successively connected to the input bits of the first 4 S-boxes in the next round, the

output bits in the second bit positions of the 16 S-boxes in this round are successively connected

to the input bits of the second 4 S-boxes in the next round, ... , and so on.

Suppose we use the highlighted linear path to achieve a linear approximation. In accordance

with the definition of the linear transformation, we immediately have these relations: 8~ 1 =
'

81,1 E9 Q, 8~,2 = 82,1 E9 Q, 8~, 1 = 81,2 E9 Q, and 8~,2 = 82,2 E9 Q, where Q = U1 E9 U2 E9 ... E9

UN -1 EBU N = 81,1 E9 81,2 EB81,3EB 81,4 E9 ... E9 816,1 E9 816,2 EB816,3 EB816,4, with 8;,j representing

31

the j-th output bit of the i-th S-box in the previous round and s;,j representing the j-th input

bit of the ·i-th S-box in the next round. Combining these expressions together, we have

(4.3)

Also, according to the connections of Figure 4.1, we get

(4.4)

By relations (4.3) and (4.4), it is clear that a linear approximation that involves S-boxes S 1, S2,

S~, s; in every two rounds exists. Since for each of these 4 8-boxes, a 3-term linear expression is

used, the per round number of equivalent 2-term S-boxes involved in the linear approximation

is 1.

We now consider the linear transformation presented in (32] and described by

m

s;,1 = EB sk,j tB S;,j (4.5)
k=l

where m represents the number of S-boxes in one round of an SPN, s;,j denotes the j-th

input bit of i-th S-box in one round, and Sk,j refers to the j-th output bit of k-th S-box in

the previous round. For an SPN that consists of 4 X 4 S-boxes satisfying our design criteria,

this linear transformation can only guarantee that the per round number of equivalent 2-term

S-boxes involved in a linear approximation is not less than 1 as shown in the following lemma.

Lemma 4.1 Under the linear transformation represented by (4.5), the per round number of

equivalent 2-term S-boxes involved in a linear approximation can be 1.

Proof Without loss of generality, suppose a cryptanalyst adopts S-boxes 81 and 82 to find

a linear path, as 8~,1 = tBr=l Sk,l tB81,1, s;,l = tBr=l 8k,l tBS2,1, 8~,2 = tBr=l Sk,2 tB81,2, and

8;,2 = EBr=l 8k,2 EB82,2· It follows that 8~,1 EB 8~,2 EB8;,1 EB 8;,2 = 81,1 EB 81,2 EB82,1 EB 82,2· Thus

in every round each of S-boxes S1 and S2 contributes 4 bits to a linear path. As stated above,

for an S-box that offers a 4-term linear expression to a linear path, its equivalent number of

2-term S-boxes is 0.5. Hence in this case the per round number of equivalent 2-term S-boxes is

1. 0

32

We now propose a linear transformation which based on the S-box property of (4.2) can be used

to guarantee a better bound on the average number of equivalent 2-term S-box approximations

per round.

4.5 Linear Transformation Design

In this section, our linear transformation shall be described in detail. In order to make the

description clear, it is important to define some notational conventions first.

From now on, we will use S;,j to denote the j-th output bit of i-th S-box in one round, and s;.j

to denote the j-th input bit of i-th S-box in the next round, where 1 :::; i, j :::; m, and m is the

number of S-boxes in one round. For example, while S1,2 represents output bit 2 of S-box Sl

in round r, S~,2 represents input bit 2 of S-box S1 in round r + 1.

As well, we separate the 16 S-boxes in one round into 4 groups, each of which is a combination

of 4 S-boxes, and we refer each group as a partition. Partition i includes 4 S-boxes Sk, where

k = 4(i- 1) + j, 1:::; j :::; 4. For example, partition 2 comprises of S5, S6, S7, and S8.

Moreover, the notation Q~ is defined to denote the XOR value of the k-th bits of all the S-boxes

in partition i and j. For example, Qj1 represents the XOR of the 3rd bit of the S-boxes in

partition 4 and in partition 1, i.e., Qj1 = S13,3EB S14,3EB S15,3 EB 816,3 EB81,3EB 82,3 EB 83,3 EB84,3

= EBf~13S;,3 EBt=l S;,3.

By now all the notational conventions have been discussed. The designed linear transformation

is expressed in Table 4.1. In Table 4.1, i E {1, 2, 3, 4}, j E {5, 6, 7, 8}, k E {9, 10, 11, 12}, and l

E {13, 14, 15, 16}. For example, S~, 1 = QFEBSl,l = EB~=l S;,1 EBS1,1, and S~ 1 ,2 = Q~2 EBS(ll-8),2

= EB~=l S;,2 EBS3,2,

In the proof of the theorem that under this linear transformation the per round number of

equivalent 2-term S-boxes involved in a linear transformation is not less than 1.5, the inverse

linear transformation is used. The inverse linear transformation can be trivially deduced from

the original one and its expression is exactly the same as the original.

Lemma 4.2 The inverse linear transformation is the same as original.

33

Partition 1 2 3 4

I S-boxes S;, 1 ~ i ~ 4 Si, 5 ~ j ~ 8 sk,9 ~ k ~ 12 S1, 13 ~ l ~ 16
1 Qt'~ EB S;,1 Qf~ EB Sj,l Qf4 EB sk,l Qf"~ EB St,1

Bit 2 Q~4 EB s(i+8) 2 Q~"~ EB s(j+8l 2 Q~"L. EB srk-8).2 Q~"L. EB s(l-8) 2

3 Q;f1 EB 8(i+l2),3 Q5s EB 8ri+4l 3 Q5s EB 8rk-4).3 Q;f1 EB 8(/-12}3

4 Q~s EB 8(i+4)4 Q4
1 EB 8(j-4J4 Q~1 EB 8ck+4),4 Q~s EB 8(1-4).4

Table 4.1: Linear Transformation

Proof (Sketch): If we prove that the expression for 8;,j is same as for 8;,j, the lemma is proven.

Without loss of generality, we prove that the expression for 8~,3 is same as for 81,3· A similar

approach can be taken for all other values of i and j,

As defined in the linear transformation, 8~ 3 is expressed by
'

(4.6)

I I I I I I I I 41 I

Also, 8 13,3 , S14,3 , 8 15,3 , 8 16,3 , S2,3 , S3,3 , and 84,3 are defined as: S13,3 = Q3 EB 81,3, 8 14,3 =

41 I 41 I 41 1 41 I 41
Q3 EB 82,3, 815,3 = Q3 EB 83,3, 816,3 = Q3 EB 84,3, 82,3 = Q3 EB 814,3, 83,3 = Q3 EB 815,3, and

I 41
84,3 = Q3 EB 816,3·

Thus,

Now let us define

Then

I.e.,

(4.7)

34

Comparing the form of Qj1 with that of Q~41 , and 81,3 with 8~,3 , we conclude that the expression

for 81,3 is exactly the same as for 8~,3· 0

We now consider developing a theorem which shows when an SPN adopts the linear transfor­

mation of Table 4.1 the average per round number of equivalent 2-term S-boxes involved in a

cipher linear approximation is at least 1.5 (except for the first and last round). The theorem

is going to be proven by showing that the following statements are true and then combining

them:

(i) If only one S-box in one round is involved in an overall linear approximation, then in either

the next round or previous round the number of S-boxes involved in the linear approximation

must be at least 7;

(ii) If 2 S-boxes in one round are involved in the derivation of a linear approximation and at

least one of them contributes a 'Y-term, 'Y > 2, linear expression to the linear approximation,

then in the previous or next round there must be at least 4 S-boxes involved in the linear

approximation;

(iii) If 2 S-boxes in one round are involved in the derivation of a linear approximation and each

of them offers a 2-term linear expression to the linear approximation, then for this round the

number of equivalent 2-term S-boxes is 2;

(iv) If 2 S-boxes in round r are involved in the derivation of a linear approximation such that

4 S-boxes in the previous round are involved, then each of the 4 S-boxes in round r - 1 must

only offer one output bit for the derivation of the linear approximation;

(v) If 3 or more S-boxes in one round are involved in the derivation of a linear approximation,

then for this round the number of equivalent 2-term S-boxes is at least 1.5.

Statements (iii) and (v) are trivially obvious. So we should only focus on arguments for state­

ments (i), (ii) and (iv).

Lemma 4.3 If one S-box in one round is involved in the derivation of a linear approximation,

then the number of involved S-boxes in the previous round must be at least 7.

Proof Without loss of generality, suppose S-box 81 in one round is involved in the derivation

35

of an overall linear approximation. Then the 4 input bits of the S-box are:

and

Since (1) each S~ i 1 ~ i ~ 4 consists of 7 bits from different 7 S-boxes and (2) when i -:f. j,
'

1 ~ i, j ~ 4, the bits included in S~,i are different from the bits included in Si,j (i.e., they can

not cancel each other), no matter how many input bits of 81 are involved in the deduction of a

linear approximation, at least 7 bits which come from 7 different S-boxes in the previous round

will be included in the linear approximation. This means that at least 7 S-boxes in the previous

round will be involved in a linear approximation. Similar results can be shown for any S-box

Sk, 2 ~ k ~ 16. 0

Statement (i) is now proven. We turn our attention to the proof of statement (ii). When several

S-boxes in one round are involved in a linear approximation, some of their input and output

bits will take part in the derivation of the linear approximation. On these involved bits, we

have Lemma 4.4 and 4.5.

Lemma 4.4 Among the involved input bits in one round, if there exists one bit such that its

bit position is different from that of all of the other bits, then the number of involved S-boxes in

the previous round must be at least 7.

Proof Without loss of generality, suppose S~ 1 is used in the derivation of a linear approxima-
'

tion, but none of S£ 1, 2 ~ i ~ 16, are.
'

36

By the definition of the linear transformation,

81,1 = QF $ 81,1
= 82,1 67 83,1 67 84,1 67 8s,1 67 86,1 67 81,1 67 8s,l·

Since none of 8~ 1, 8~ 1 ... , 816 1 is involved in the derivation of the linear approximation, any
' ' '

one of 82,1, 83,1, 84,1, 85,1, 86,1, 87,1, 8s,1 which constitutes 8~, 1 can not be cancelled during

the derivation of the linear approximation. This implies that 7 S-boxes 82, 83, 84, 85, 86, 87,

and 88 in the previous round must be involved in the linear approximation. 0

Lemma 4.5 If 2 S-boxes in one round are involved in a linear approximation, then in the

previous round the possible number of involved S-boxes is 2, 4, 6, or greater than or equal to 7.

Proof The proof of the lemma is done by considering 2 cases: Case 1: 2 involved S-boxes in one

round are in the same partition; and Case 2: 2 involved S-boxes belong to 2 different partitions.

For case 2, there are 6 subcases to be considered:

Case 2.1: 2 involved S-boxes are in partitions 1 and 2;

Case 2.2: 2 involved S-boxes are in partitions 1 and 3;

Case 2.3: 2 involved S-boxes are in partitions 1 and 4;

Case 2.4: 2 involved S-boxes are in partitions 2 and 3;

Case 2.5: 2 involved S-boxes are in partitions 2 and 4;

Case 2.6: 2 involved S-boxes are in partitions 3 and 4;

Case 1: Without loss of generality, assume that 2 S-boxes are in partition 1 and these 2 S-boxes

are 811 and 821
•

By the definition of the linear transformation, we immediately have

37

8j,4 = Q~3 EB 8s,4,

and

According to Lemma 4.4, if 8i i and 82 i are not used in the derivation of a linear transformation
' '

simultaneously, the number of involved S-boxes in the previous round must be at least 7. When

8~ i and 8; i appear in the derivation of a linear approximation at the same time, the number
' '

of involved S-boxes in the previous round must be even. This is proved as follows:

Let 81 i and 82 i be used in the derivation of a linear approximation. It is not hard to see that,
' '

the XORed value of these 2 bits will generate 2 bits that belong to 2 different S-boxes, and

when i is varied, the resulting 2 bits will change to belong to 2 other S-boxes. For example,

8i,1 EB 82,1 = 81,1 EB 82,1 and 8b EB 82,2 = 89,2 EB 810,2· Obviously, 81,1, 82,1, 89,2, and 810,2

belong to 4 different S-boxes in the previous round.

This implies that when 8i i and 82 i are used in a linear approximation at the same time, the
' '

possible number of involved S-boxes in the previous round is 2 x 1, 2 x 2, 2 x 3, or 2 x 4,

depending on whether 1, 2, 3, or 4 values of i are ir;tvolved.

Summarizing the above arguments, we have proven that the lemma is true for case 1.

Case 2.1: SupposeS-boxes 8i' and 8j' are from partitions 1 and 2, respectively.

In accordance with the definition of the linear transformation, it follows that:

38

and

8},4 = Q~1 EB 8(j-4),4·

Since i E {1, 2, 3, 4}, i + 8 E {9, 10, 11, 12}, j E {5, 6, 7, 8}, and j + 8 E {13, 14, 15, 16}, it is

easy to see that the 2 bits involved in 8~, 1 EB 8},1 i.e., 8i,l and 8j,l will be different from that

yielded from 8b EB 8},2 i.e., 8(i+8),2 and 8(j+8),2· So, when 8:,1 EB 8},1 or 8b EB 8},2 is used in the

derivation of a linear approximation, there are 2 S-boxes in the previous round to be involved

in the linear approximation, and when 8:,1 EB 8},1 and 8:,2 EB 8},2 are used in the derivation of

the linear approximation, there are 4 S-boxes in the previous round to be involved in the linear

approximation.

If at least one of 8~ 3 , 8: 4 , 81'· 3 and 81
1
· 4 is used in the derivation of a linear approximation, since

' ' ' '
neither 8:,3 and 8},3 have common component bits nor do 8f,4 and 8},4 , any one of 7 bits that

constitutes S~ 3 , 8~ 4 , 8
1
'· 3 or 81~ 4 can not be cancelled during the derivation. Hence at least 7

' ' ' '
S-boxes in the previous round will be involved in the linear approximation.

Combining Lemma 4.4 and the above arguments, we have shown that, when 2 S-boxes from

partition 1 and 2 are involved in a linear approximation, the number of involved S-boxes in the

previous round must be 2, 4, or greater than or equal to 7.

Case 2.2: For this case, assume 8i' belongs to partition 1 and 8k1 belongs to partition 3.

39

In the light of the definition of the linear transformation, we have

and

(4.8)

Since, QF has no common term with Q14 and neither does Q~4 with Q~2 , Q~ 1 with Q§3 , and

Q~3 with Q41 , the combination of S-boxes Si' and Sk' must cause at least 14 S-boxes in the

previous round to be involved in a linear approximation. Therefore the lemma is true in this

case.

It is simple to verify cases 2.3, 2.4 and 2.6 using the same argument as for case 2.1, and case

2.5 using the argument of case 2.2. Hence, the lemma is proven. 0

Lemma 4.6 If 2 S-boxes in round r are involved in the derivation of a linear approximation

such that 4 S-boxes in the previous round are involved, then each of the 4 S-boxes in round r- 1

must only offer one output bit for the derivation of the linear approximation.

Proof. In the proof of Lemma 4.5, we see that if the number of involved S-boxes in the round

r- 1 is 4, then the bits offered by 2 S-boxes in round r must appear in pairs in terms of their

40

bit positions, i.e., one involved bit of oneS-box must have the same bit position of one involved

bit of another S-box. Moreover, suppose Si and Sj in round r are involved in the derivation of

a linear approximation. According to the definition of the linear transformation, it is not hard

to see that, S~,u EB S},u either produces 14 bits or produces 2 bits, where u E {1, 2, 3, 4}.

If 14 bits are produced, then these 14 bits can not be cancelled by other bits since the bit

positions of these 14 bits are different from those of other bits generated by Si,v EB S},v, where

vi= u. This means there will be at least 14 S-boxes in round r- 1 to be used in the derivation

of a linear approximation. It is assumed that 4 S-boxes in round r- 1 are involved in a linear

approximation, thus any Si u EEl S
1
'· u must produce only 2 bits.

' '

Also, by the definition of the linear transformation, when u i= v, the 2 S-boxes that connect to

the 2 bits generated from Si,u EB S},u will be different from the 2 S-boxes that connect to the 2

bits yielded from Si v EB S
1
l v·

' '

So, only when each of 2 S-boxes in round r offers 2 input bits for the derivation of a linear

approximation, the number of involved S-boxes in the round r- 1 can be 4.

Correspondingly, the number of the total bits generated by 2 terms that are in the form of

Si,u EB S},u is 4. These 4 bits are connected to the 4 S-boxes in round r - 1, each of which

connects to one of the 4 bits. Therefore we can equivalently say that the 4 S-boxes in round

r - 1 only offers one output bit for the derivation of the linear approximation. 0

As we shall see in the proof of Theorem 4.1, combining Lemmas 4.5 and 4.7 together confirms

statement (ii). Now we give Lemma 4.7 before our statement and proof of Theorem 4.1.

Lemma 4. 7 If 2 S-boxes in round r are involved in a linear approximation such that only 2

S-boxes in the previous round are involved, then each of these 2 S-boxes in round r must only

offer an input bit for the derivation of the linear approximation.

Proof By Lemma 4.4, if the number of involved S-boxes in the previous round is 2, then the

bits offered by 2 S-boxes in round r must appear in pairs with respect to their bit positions.

Moreover, suppose Si and Sj in round r are involved in the derivation of a linear approximation.

According to the definition of the linear transformation, it is easy to see that, if Si u EB S
1
'· u or

' '

41

Si,v ED S},v can produce 2 bits, when u =I= v, the 2 S-boxes that connect to the 2 bits generated

from Si,u ED S},u will be different from the 2 S-boxes that connect to the 2 bits yielded from

Si,v ED S},v, where u, v E {1, 2, 3, 4}. Thus, only when each of 2 S-boxes in round r offers 1 input

bit for the derivation of a linear approximation, the number of involved S-boxes in the previous

round can be 2. D

Until now we have proved the lemmas with regard to the number of involved S-boxes in the

previous round. By noticing Lemma 4.2 which states that the inverse linear transformation is

exactly the same as the original one, all the arguments for the proof of the number of involved

S-boxes in the previous round can be applied to the number of involved S-boxes in the next

round. So the number of involved S-boxes in the next round satisfies the same rules as that in

the previous round.

Theorem 4.1 When an SPN adopts the designed linear transformation of Table 4-1, the av­

erage per round number of equivalent 2-term S-boxes involved in a linear approximation is at

least 1.5 (except for the first and last rmmd).

Proof We shall prove the theorem by combining 3 cases.

Case 1: Suppose one S-box in one round is involved in a linear approximation.

According to Lemma 4.3 and the equivalence of the linear transformation and its inverse, the

number of involved S-boxes in either the previous or next round must be at least 7. Hence we

only need to consider 2 consecutive rounds. Since there are at least (1 + 7) involved S-boxes

in 2 rounds, and for any S-box its number of equivalent 2-term S-boxes is at least 0.5, the per

round number of equivalent 2-term S-boxes is 2:: (l+7Jxo.s = 2.0. Hence, the theorem is true for

this case.

Case 2: Suppose 2 S-boxes in one round are involved in a linear approximation.

By Lemma 4.6, in this scenario the number of involved S-boxes in the previous or next round

must be 2, 4, 6, or not less than 7.

(i) Suppose the number of involved S-boxes in either the previous round or the next round is

· 2, as in Lemma 4.7. Each of the 2 S-boxes in this round must offer only one input bit and one

42

output bit to the derivation of the linear approximation. Thus, for each of these 2 S-boxes its

equivalent number of 2-term S-boxes is 1. Consequently, for this round the per round number

of equivalent 2-term S-boxes is 2.

(ii) Suppose the number of S-boxes in round r is 2, the number of S-boxes in round r - 1 is

4, and the number of S-boxes in round r- 2 is 2. Then by Lemma 4.6, each of the 4 S-boxes

in round r - 1 must offer only one input bit and one output bit to the derivation of the linear

approximation. This means for these 4 S-boxes, the equivalent number of 2-term S-boxes for

each is 1. Meanwhile, for every S-box in round r or r - 2, its equivalent number of 2-term

S-boxes is 0.5. Hence for this 3 rounds, the per round number of equivalent 2-term S-boxes is

4xlt0.5x4 _ 2 3 - .

(iii) Suppose the number of S-boxes in round r is 2, the number of S-boxes in round r - 1 is

4, and the number of S-boxes in round r - 2 is 3 or more. In this scenario, we only need to

calculate the per round number of equivalent 2-term S-boxes for rounds r and r - 1. For each

of the (2 + 4) S~boxes in round r and r- 1, its number of equivalent 2-term S-boxes is at least

0.5. So the per round number of equivalent 2-term S-boxes is at least (2+4Jx
0·5 = 1.5.

By Lemma 4.2, the inverse linear transformation is exactly same as original. All the arguments

for (ii) and (iii) are applicable when S-boxes appear in reverse order. So, combining all of these

cases, it is not hard to see that, no matter what round (except the first and the last round) 2

S-boxes appear in, the per round number of equivalent 2-term S-boxes for a section of linear

path related to these 2 S-boxes is never less than 1.5.

Case 3: Suppose 3 or moreS-boxes in one round are involved in a linear approximation. Since

for any S-box its equivalent number of 2-term S-boxes is not less than 0.5, the per round number

of equivalent 2-term S-boxes for this round is ~ 3 x 0.5 = 1.5.

When the per round number of equivalent 2-term S-boxes involved in a linear approximation

is calculated, the above 3 cases should be considered together. By joining the 3 cases together,

the theorem follows. 0

43

4.6 Effectiveness of the Linear Transformation

In this section the effectiveness of the designed linear transformation is considered.

Suppose a cryptanalyst uses basic linear cryptanalysis (algorithm 1 in [16]) to attack an 12-

round SPN that employs the designed linear transformation. According to [16] the approximate

number of known plaintexts required to guess a correct equivalent key bit with a success rate of

97.7% is NL = IPL- 1/21-2
, with IPL- 1/21 = 1/2 rr1=1 I2Pi -11, where 8 is the total number

of S-boxes involved in a linear approximation.

According to the definition 2T]i(/) = l2p;(/) - 11, where 1 is the number of bits included in

a linear approximation of an S-box, and the definition for the equivalent number of 2-term

S-boxes, IPL - 1/21 can be bounded by IPL- 1/21 :$ 1/2(21](2))0', where a is the equivalent

number of 2-term S-boxes involved in a linear approximation and 17(2) is upper bound on 1Ji(2).

On the basis of Theorem 4.1, for an 12 round SPN, the number of equivalent 2-term S-boxes

involved in a linear approximation is at least (10 x 1.5+2 X 1), where 10 refers to the number of

rounds excluding the first and last rounds, 1.5 is the bound for the average per round number

of equivalent 2-term S-boxes in the middle rounds, and 1 is the bound for the first and last

rounds. Thus NL = IPL- 1/21-2 ~ [1/2(21](2))ut2 ~ [1/2(1/4)(lOxl.S+2xl)j2 = 270 . A 12

round SPN that adopts the linear transformation has 270 known plaintext-ciphertext pairs

required for the basic linear attack. Given that only 264 plaintexts are available, it is clear

that such a cipher is secure. For comparison, a cipher which uses a permutation or the linear

transformation of (4.5) with S-boxes that satisfy the nonlinearity requirement of (4.2), as few

as 250 known plaintext/ciphertext pairs are required, by the conclusions about the per round

number of equivalent 2-term S-boxes in Section 4.4. Therefore the linear transformation of

Table 4.1 is very effective in strengthening an SPN against linear cryptanalysis.

4. 7 Conclusion

In this chapter we proposed a novel linear transformation for the interconnection of S-boxes.

The linear transformation is designed to be used in an SPN that consists of 16 4 X 4 S-boxes in

each round. By utilizing the linear transformation, the per round number of equivalent 2-term

44

S-boxes involved in an overall linear approximation is raised to at least 1.5. As well, combining

this lower bound on the per round number of equivalent 2-term S-boxes involved in a cipher

linear approximation and new S-box nonlinear properties as in (4.2) gives a new higher lower

bound on the complexity of linear cryptanalysis.

45

Chapter 5

Security Against Differential
Cryptanalysis

In Chapter 4, to resist linear cryptanalysis, we proposed a new linear transformation, and

proved that by using the linear transformation and a new nonlinearity constraint the per round

number of equivalent 2-term S-boxes involved in a linear approximation is at least 1.5. Another

powerful attack on block ciphers is differential cryptanalysis. In this chapter, the security

against differential cryptanalysis for an SPN that adopts the linear transformation of Table

4.1 is discussed. It is established that, when the linear transformation is used and S-boxes are

selected which satisfy a diffusion order of 1, the average number of S-boxes involved per round

in a differential characteristic is at least 3.

5.1 Average Number of S-boxes Involved in a One-round
Characteristic

One powerful attack on DES-like ciphers is the method of differential cryptanalysis introduced

by Biham and Shamir [3]. This is a chosen-plaintext attack. In the attack on an R-round block

cipher, an (R- 1)-round differential characteristic can be used, which describes the correlation

between the input and output differences for consecutive (R-1) rounds. Suppose two messages,

M' and M", are input to one round of an SPN at different times, we use the notation of b..M to

represent the bit-wise XOR difference of the two messages, i.e., b..M = M' $ M". An r-round

characteristic is defined as a series of differential pairs: Or= {(b..Ul,b..Vl), ... , (b..Ur, b..Vr)},

where b..Ui and b. Vi refer to the input and output difference of a particular round i, respectively.

46

The probability of a one-round differential characteristic is defined to be the conditional prob-

ability that, given some particular difference in the inputs to the round, some particular differ-

ence in the outputs of that round is achieved. Assume that the inputs arc independent between

rounds. This assumption is satisfied if the round keys are mutually independent. Then, since

an r-round characteristic can be viewed as the concatenation of r one-round characteristics,

the probability of an r-round characteristic is obtained by multiplying the r probabilities of

one-round characteristics.

Let p(~U;,~V;) represent the probability of the i-th round pair, and let Pnr represent the

probability of an r-round characteristic. Then Pnr = ITi=l p(~U;, ~ V;) . For an R-round SPN,

the number of chosen plaintext-ciphertext pairs required for differential cryptanalysis can be

approximated by N D = - 1- [3], where pnR_1 is the probability of the best (R- 1)-round
Pf!R-1

characteristic.

Assume the average number of S-boxes involved in a one-round characteristic that constitutes

an (R-1)-round characteristic is na, and the maximumS-box XOR pair probability is p0 , where

Po = ~ , with Mffi rep~esenting the maximum entry in the XOR distribution tables of then x n

S-boxes used in the SPN under consideration. Then the number of chosen plaintext/ciphertext

pairs required in the attack, N D, is given by

1
Nn > (R) . - (Po) -1 ·na

(5.1)

In the context of an R-round SPN, p0 may be viewed as a constant because all of the S-boxes ·

used in SPN s can be selected such that they satisfy the same criteria. Hence na is the sole

factor that affects the value of N D.

Later in this chapter, we focus on the discussion of the bound for na, the average number of

S-boxes involved in a one-round characteristic.

5.2 Selection of S-boxes

As in the previous chapter, we are still considering the 64-bit substitution-permutation network

consisting of 4 X 4 S-boxes. As proposed in Chapter 4, the combining S-boxes are selected such

that they satisfy two criteria: 1) For the differential property, the diffusion order of an S-box is

47

>. = 1, where diffusion order is described in Chapter 3; 2) For the nonlinearity property, 2ry('y),

defined in Chapter 3, satisfies (4.2).

5.3 Strength of Previously Proposed Linear Transformations

In this section, we shall analyse the average number of S-boxes involved in a one-round charac­

teristic of an SPN for which one of former linear transformations is applied as the interconnection

between rounds of S-boxes.

Lemma 5.1 If an SPN is constructed such that: 1) it uses the kind of permutation where each

of the outputs of an S-box go to different S-boxes in the next round, 2) the number of S-boxes

in each round eqtwls the size of an S-box and 3) the diffusion order of all S-boxes is>.= 1, then

the average number of S-boxes involved in a one-round characteristic can be 1. 5.

Proof The proof of the lemma is done by considering the case illustrated in Figure 5.1. In Figure

5.1, all of the S-boxes satisfy >. = 1, the bold lines represent paths of bit changes of S-boxes.

It can be seen that in every 4 rounds there are 6 S-boxes involved in an iterative differential

characteristic, thus the average number of S-boxes involved in a one-round characteristic is 1.5.

D

Lemma 5.2 If an SPN uses Ayoub's permutation and uses S-boxes for which >. = 1, then the

average number of S-boxes involved in a one-round characteristic can be 2.0.

Proof We prove by giving an example. In Figure 5.2, all of the S-boxes satisfy >. = 1, and the

bold lines represent paths of bit changes of S-boxes. The bold lines thus constitute the path of

a differential characteristic. For this characteristic, in each round, there are 2 S-boxes involved.

Thus in this scenario the average number of S-boxes involved in a one-round characteristic is

2.0. D

The linear transformation suggested in [12] is defined by V = 1r[L(u)], where V = [V1, V2, ... , l/;v]

is the vector of input bits of a round of S-boxes, U = [U1, U2, ... , UN] is the vector of bits from

48

Figure 5.1: A characteristic in an SPN using permutation

the previous round output, 1r is a permutation for which no two outputs of an S-box are con­

nected to one S-box in the next round, and L(u) = [L1 (U), ... , LN(U)], where Li(U) = U1

tBU2 (£) Ui-1 tBUi+1 ... u N.

Lemma 5.3 When an SPN is combined with the linear transformation in {12} and uses 4 x 4

S-boxes that have diffusion order). = 1, the lower bound for the average number of S-boxes

involved in a one-round characteristic can not be expected to exceed 2.

Proof If we can give a scenario where the average number of S-boxes involved in a one-round

characteristic is 2, the lemma is proven.

In the definition of the linear transformation, 1r is any permutation for which no two output

bits of an S-box are connected to oneS-box in the next round. Hence, Ayoub's permutation [2]

satisfies this condition and can be used in the linear transformation, where Ayoub's permutation

is illustrated in Figure 5.2.

Suppose we use the bold path representing bit changes to achieve a differential characteristic. In

accordance with the definition of the linear transformation, we immediately have these relations:

8~,1 = 81,1 (£) Q, 8~,2 = 82,1 (£) Q, 8;,1 = 81,2 (£) Q, and 8;,2 = 82,2 (£) Q, where Q = u1 (£) u2 (£) ...

tBU N -1 tBU N = 81,1 tB81,2 (£) 81,3 tB81,4tB ... 816,1 (£) 816,2 (£)816,3 (£) 816,4, where 8i,j represents

49

an output bit of an S-box in one round, and s;,j represents an input bit of an S-box in the next

round.

Assume that ~S1,1 = 1, ~S1,2 = 1, ~S2,1 = 1 and ~S2,2 = 1. Then ~Q = ~U1 EB~U2 EB ... EB

~UN = ~S1 1 EB~S1 2 EB ... EB~S2 1 EB ~S2 2 EB ... EB ~S16 3 EB S16 4 = 1 EB 1 EB ... EB 1 EB 1EB
' ' ' ' ' '

... EB 0 EB 0 = 0.

Consequently, ~Sl, 1 = ~S1,1 EB ~Q = 1, ~S~,2 = ~S2,1 EB ~Q = 1, ~S~, 1 = ~S1,2 EB~Q = 1,

and ~S~,2 = ~S2,2 EB~Q = 1. Similarly, according to the connections of the highlighted lines

in Figure 5.2, when ~S1,1 = 1, and ~Ss,1 = 1, we have ~S~, 1 = ~S1,1 and ~s;, 1 = ~S.5,1·

By these difference expressions, it is clear that a differential characteristic that involves S-boxes

S1, S2, S1', S5' in every two rounds exists. Hence, in this case the average number of S-boxes

involved in a one-round characteristic is 4.0/2 = 2.0. Notice that the average number of S-boxes

involved in a one-round chatacteistic could be fractional. 0

The linear transformation presented in [32] can be described by

m

s~,j = EB sk,j EB si,j (5.2)
k=l

where m represents the number of S-boxes in one round of an SPN, Si,j denotes the j-th input

bit of the i-th S-box in one round, and Sk,j refers to the j-th output bit of the k-th S-box in

the previous round. For an SPN that consists of S-boxes satisfying diffusion order of 1, this

linear transformation can not be expected to have the lower bound for the average number of

S-boxes involved in a one-round characteristic to be greater than 2.0.

Lemma 5.4 By usmg the linear transformation represented by (5.2) and S-boxes satisfying

>. = 1, the average number of S-boxes involved in a one-round characteristic can be 2.0.

Proof. Without loss of generality, suppose a cryptanalyst adopts S-boxes S1 and S2 to obtain

a differential characteristic. First we consider the difference path in the first round. From the

definition of the linear transformation, we have

50

Figure 5.2: A differential characteristic in an SPN using permutation

and

It follows that

and

Letting .6.81,1 = .6.81,2 = .6.82,1 = .6.82,2 = 1, and .6.8k,1 = .6.8k,2 = 0 fork~ 3, then

EBr=1.6.8k,1 = 1 EB 1 EB 0 EB ... EB 0 = 0,

51

and

Hence

and

Now consider the difference path in the next round. Similarly, letting .6.81,1 = .6.82,1 = 1, then

Hence,

and

Thus in every roundS-boxes 81 and 82 can be involved in the differential characteristic, and in

this case the average number of S-boxes involved in an one-round characteristic is 4.0/2 = 2.0.

0

We have now completed the analysis of the strength of previous proposed linear transformation

against differential cryptanalysis and will now turn our attention to the analysis of the linear

transformation proposed in Chapter 4.

52

5.4 Lower Bound on the Number of S-boxes

We shall prove a theorem which demonstrates that by using our linear transformation the lower

bound for the average number of S-boxes involved in a one-round characteristic is 3. The

detailed description of the linear transformation is given Chapter 4. The theorem is going to

be proven by showing that the following statements are true and then combining them.

(i) If one S-box in one round is involved in a differential characteristic, then the number of

involved S-boxes in the next round must be at least 7;

(ii) If 2 S-boxes in one round are involved in a differential characteristic, and at least one of

them has 2 or more outputs involved, then in the next round the possible number of involved

S-boxes is 4, 6, or greater than or equal to 7;

(iii) If 4 S-boxes in one round are involved in a differential characteristic, and at least one of

them has 2 or more inputs involved in the characteristic, then the number of involved S-boxes

in the previous round can not be 2.

Lemma 5.5 If one S-box in one round is involved in a differential characteristic, then the

number of involved S-boxes in the next round must be 7.

Proof Without loss of generality, suppose S-box 51 is involved in a differential characteristic.

Then, by the definition of the linear transformation, the 7 bits in the next round each of which

contains 81,1 in its component bits are:

5~,1 = QF 67 5i,1

where 2 ::; i ::; 8, and the notation of Q~ is defined in the definition of the linear transformation

in Chapter 4.

The 7 bits in the next round, each of which contains 81,2 in its components, are:

5:,2 = Q~2
67 5(i-s),2

where 10 ::; i ::; 16.

The 7 bits in the next round, each of which contains 81,3 in its component bits, are:

5b = Qj1
67 5(i+12),3

53

where 1 :::; i :::; 4 and

where 14 :::; i :::; 16.

And the 7 bits in the next round, each of which contains St,4 in its component bits, are:

where 6 :::; i :::; 8 and

where 9 :::; i :::; 12.

From these expressions, we obtain (1) when b.St,j = 1, the 7 bits that include St,j will be

changed, and (2) the 7 bits that include St,j and the 7 bits that include St,k where k i= j, do

not have common terms. Hence, when b.St,j = 1 and b.St,k = 1, where k i= j, these 2 sets of 7

bits will change independently without interfering with each other.

Since it is assumed that S1 is involved in a characteristic, this means that b.St,j = 1, for at

least one value of j, j E {1, 2, 3, 4}. Thus at least 7 bits that include St,j will change. By the

definition of the transformation, these 7 bits belong to 7 different S-boxes. Hence at least 7

S-boxes in the next round will be involved in the characteristic. D

Lemma 5.6 If, in one round for a specific k, only one b.Si,k is involved in a characteristic

(i.e. b.Si,k = 1}, but none of other b.Sj,k is involved (i.e. b.Sj,k = 0), where 1 :::; i,j :::; 16,

i i= j, 1 :::; k ~ 4, then the number of involved S-boxes in the next round must be at least 7 .

Proof Without loss of generality, suppose b.S1,1 = 1, but b.Sj,l = 0, 2 ~ j ~ 16.

By the definition of the linear transformation, there are 7 bits that include 81,1 as their com­

ponent bits, they are

where 2 :::; j :::; 8.

54

Also, based on the expression QF = 81,1 EB 82,1 EB 83,1 EB 81,1 EB 5s,1 EB 56,1 EB 57,1 EB 5s,1 defined

in the linear transformatiom and the assumption that .6.81,1 = 1 and b..5j,1 = 0, 2 ~ j ~ 16,

these expressions immediately follow:

and

b..Qf2 = b..S1,1 EB b..S2,1 EB b..S3,1 EB b..S4,1 EB b..Ss,l EB b..S6,1 EB b..S7,1 EB b..Ss,l

= 1EB0EBOEB0EB0EBOEB0EB0

= 1,

b..5j,l = b..QF EB b..5j,l'

= 1

where 2 ~ j ~ 8. Thus all of the 7 bits 5j,1, 2 ~ j ~ 8 are changed, i.e. b..5j,1 = 1, and these

7 bits belong to 7 different S-boxes in the next round, according to the definition of the linear

transformation.

In addition, if the bits 5;,t, 1 :::::; i :::::; 16, 1 :::::; l :::::; 4, other than 5;,k, 1 :::::; i :::::; 16, 1 :::::; k :::::; 4, where

l -:f:. k, in this round are involved in a characteristic, since bit k of an S-box can not cancel bit l,

the number of involved S-boxes in the next round will not decrease. So in the next round the

number of S-boxes is at least 7. 0

Lemma 5. 7 If 2 S-boxes in one round are involved in a differential characteristic, and at least

one of them has 2 or more outputs involved, then in the next round the possible number of

involved S-boxes is 4, 6, or greater than or equal to 7.

Proof The proof of the lemma is done by considering 2 cases: (1) the 2 involved S-boxes in

one round are in the same partition; and (2) the 2 involved S-boxes belong to two different

partitions.

For case 2, there are 6 subcases to be considered:

Case 2.1: 2 involved S-boxes are in partition 1 and 2;

Case 2.2: 2 involved S-boxes are in partition 1 and 3;

55

Case 2.3: 2 involved S-boxes are in partition 1 and 4;

Case 2.4: 2 involved S-boxes are in partition 2 and 3;

Case 2.5: 2 involved S-boxes are in partition 2 and 4;

Case 2.6: 2 involved S-boxes are in partition 3 and 4.

Case 1: Without loss of generality, let us assume that the 2 involved S-boxes are in partition 1

and these 2 S-boxes are 81 and 82.

According to Lemma 5.6, if D.Sl,i = 1 and D.S2,i = 1, where 1 ~ i ~ 4, do not appear in a

characteristic simultaneously, the number of involved S-boxes in the next round must be at

least 7.

Besides, by the definition of the linear transformation, we have

where 1 ~ i ~ 8,

where 9 ~ i ~ 16,

where 1 ~ i ~ 4,

where 13 ~ i ~ 16,

where 5 ~ i ~ 8, and

where 9 ~ i ~ 12.

56

Since "EB" operation is linear, all of these expressions can be changed directly into difference

form. Hence,

where 1 S i S 8,

where 9 s i s 16,

where 1 S i S 4,

where 13 S i S 16,

where 5 siS 8, and

where 9 s i s 12.

Based on these difference expressions, we obtain:

• when f!J..81 1 = 1 and f!J..82 1 = 1 are used in a characteristic, then f!J..8'1 1 = 1 , , ,

and t!J..8~ 1 = 1, implying S-boxes 81 and 82 in the next round are involved in the ,

characteristic;

• when 6.81,2 = 1 and 6.82,2 = 1 are used, then 6.89,2 = 1 and 6.8~ 0 ,2 = 1, implying

S-boxes 89 and 810 in the next round are involved in the characteristic;

• when t!J..81,3 = 1 and f!J..82,3 = 1 are used in a characteristic, then t!J..8b,3 = 1 and

t!J..8i4,3 = 1, implying S-boxes 813 and 814 in the next round are involved in the

characteristic;

57

• when ~81,4 = 1 and ~82,4 = 1 are employed in a characteristic, then b-8~,4 = 1

and ~8~,4 = 1, implying S-boxes 85 and 86 in the next round are involved in the

characteristic.

Thus, when S-boxes 81 and 82 have 2 or more outputs of the same position involved in a

characteristic, the number of S-boxes involved in the next round must be 4, 6, or 8.

Summarizing the above arguments, we have proven the lemma is true for case 1.

Case 2.1: Without loss of generality, assume S-boxes 81 and 85 in this round are involved in

a characteristic. By the definition of the linear transformation and the similar deduction as in

case 1, it follows that:

where 1 ~ i ~ 8,

where 9 ~ i ~ 16,

where 1 ~ i ~ 4,

where 13 ~ i ~ 16,

where 5 ~ i ~ 8,

where 9 ~ i ~ 12,

58

where 5 ~ i ~ 8,

where 9 ~ i ~ 12,

where 1 ~ i ~ 4, and

where 13 ~ i ~ 16.

From these expressions, it is clearly demonstrated that:

• when ~81 1 = 1 and ~85 1 = 1 are used in a characteristic, then ~8'1 1 = 1
' ' '

and ~8~ 1 = 1, implying S-boxes 81 and 85 in the next round are involved in the
'

characteristic;

• when ~81,2 = 1 and ~85,2 = 1 are employed in a characteristic, then ~89,2 = 1

and ~8b,2 = 1, implying S-boxes 89 and 813 in the next round are involved in the

characteristic;

• when ~81,3 = 1 and ~85,3 = 1 are used in a characteristic, then ~81,3 = 1,

~82,3 = 1, ~8~,3 = 1, ~84,3 = 1, ~814 ,3 = 1, ~815,3 = 1, ~816,3 = 1, ~8~.3 = 1,

~86,3 = 1, ~87,3 = 1, ~88,3 = 1, ~810 ,3 = 1, ~81 1 ,3 = 1, and ~8b,3 = 1, implying

14 S-boxes- 81, 82, 83, 84, 814, 815, 816, 85, 86, 87, 88, 810, 811 and 812- in

the next round are involved in the characteristic;

• when ~81 4 = 1 and ~85 4 = 1 are used in a characteristic, then ~82' 4 = 1 ,
' ' '

~87 4 = 1, ~88' 4 = 1, ~89' 4 = 1, ~810 4 = 1, ~81 1 4 = 1, and ~8b 4 = 1, implying
' ' ' ' ' '

14 S-boxes- 82, 83 , 84, 813, 814, 815, 816, 86, 87, 88 ,89, 810, 811 , and 812

- in the next round are involved in the characteristic.

Thus when S-boxes 81 and 85 have 2 or more outputs of the same position involved in a

characteristic, the number of involved S-boxes in the next round must be 4 , or at least 14.

59

By combining Lemma 5.6 and the above arguments, Lemma 5. 7 is true for this case.

Case 2.2: Without loss of generality, let us assume 81 and 89 in this round are involved in a

characteristic.

In light of the definition of the linear transformation and the deduction as in Case 1 or 2.1, we

have

where 1 :::; i :::; 8,

where 9 :::; i :::; 16,

where 1 :::; i :::; 4,

where 13 :::; i :::; 16,

where 5 :::; i :::; 8,

where 9 :::; i :::; 12,

where 9 s i s 16,

where 1 :::; i :::; 8,

60

where 5 ~ i ~ 8,

where 9 ~ i ~ 12,

where 1 ~ i ~ 4, and

where 13 ~ i ~ 16.

Obseving these expressions, we immediately know:

• when .6.81,1 = 1 and .6.89,1 = 1 are used in a characteristic, then .6.8~, 1 = 1,

.6.8~ 1 = 1, .6.84 1 = 1, .6.8~ 1 = 1, .6.8~ 1 = 1, .6.8~ 1 = 1, .6.88 1 = 1, .6.8~ 0 1 = 1,
' ' ' ' ' ' '

.6.8~ 11 = 1, .6.8b 1 = 1, .6.8~31 = 1, .6.8~41 = 1, .6.8~ 5 1 = 1, and .6.8~ 6 1 = 1,
' ' ' ' ' '

implying 14 S-boxes - 82, 83, 84, 85, 86, 87, 88, 810, 811, 812, 813, 814, 815,

and 816 - in the next round are involved in the characteristic;

• when .6.81 2 = 1 and .6.89 2 = 1 are used in a characteristic, then .6.82' 2 = 1, , , ,

.6.83' 2 = 1, .6.84 2 = 1, .6.85' 2 = 1, .6.86' 2 = 1, .6.87' 2 = 1, .6.88' 2 = 1, .6.8~ 0 2 = 1,
' ' ' ' ' ' '

.6.8~ 1 2 = 1, .6.81 2 2 = 1, .6.8ia 2 = 1, .6.814 2 = 1, .6.815 2 = 1, and .6.816 2 = 1,
' ' ' ' ' '

implying 14 S-boxes - 82, 83, 84, 85, 86, 87, 88, 810, 811, 812, 813, 814, 815,

and 816 - in the next round are involved in the characteristic;

• when .6.81,3 = 1 and .6.89,3 = 1 are used in a characteristic, then .6.81,3 =

1, ~S~ 3 = 1, 6.83 3 = 1, 6.84 3 = 1, 6.8~4 3 = 1, 6.Si5 3 = 1, ~Si6 3 = 1, 6.Sfi 3 =
' ' ' ' ' ' '

1, .6.8~,3 = 1, .6.88,3 = 1, .6.8~,3 = 1, .6.810,3 . = 1, .6.811,3 = 1, and .6.8b,3 = 1,

implying 14 S-boxes - 81, 82, 83, 84, 814, 815, 816, 86, 87, 88, 89, 810, 811,

and 812 - in the next round are involved in the characteristic;

• when .6.81,4 = 1 and .6.89,4 = 1 are used in a characteristic, then .6.8L4 =

1, .6.8~ 4 = 1, .6.83' 4 = 1, .6.84 4 = 1, .6.8~44 = 1, .6.8~5 4 = 1, .6.8~6 4 = 1, .6.86' 4 = 1,
' ' , ' ' ' '

.6.8~ 4 = 1, .6.88 4 = 1, .6.8~ 4 = 1, .6.810 4 = 1, .6.811 4 = 1, and .6.8b 4 = 1 , implying
' ' ' ' ' '

61

14 S-boxes - S1, S2, S3, S4, S14, S15, S16, S6, S7, S8, S9, S10 , Sll, and S12 -

in the next round are involved in the characteristic.

Hence when S-boxes S1 and S9 have 2 or more outputs of the same position involved in a

characteristic, the number of S-boxes involved in the next round must be at least 14.

Based on these arguments and Lemma 5.6, Lemma 5.7 is proven for this case.

It is not hard to show that Cases 2.3, 2.4, and 2.6 follow the same argument as case 2.1, and

case 2.5 follows the argument of case 2.2. Hence, the lemma is proven. 0

Lemma 5.8 If 2 S-boxes in round r are involved in a characteristic and they cause 4 S-boxes

in the next round to be involved, then each of the 4 S-boxes in round r + 1 must only have one

input bit involved in the characteristic.

Proof Suppose S-boxes Si and Sj in a round are involved in a characteristic. As the number

of involved S-boxes in the next round is 4, by Lemma 5.6, D.S;,k = 1 and D.Sj,k = 1, where

k E {1, 2, 3, 4}, must appear simultaneously. Moreover, by the definition of the linear transfor­

mation, when S;,k and Sj,k use a different QJ:n defined in the linear transformation, where mn

denotes a combined partition number, D.S;,k = 1 and D.Sj,k = 1 will respectively cause 7 bits

that belong to 7 different S-boxes to be changed, and the 7 bits changed by D.S;,k = 1 can not

be cancelled by the bits changed by either D.S;,z = 1 or D.Sj,l = 1, where l =/:: k. Thus when

the number of involved S-boxes in the next round is 4, D.S;,k = 1 and D.Sj,k = 1 must appear

simultaneously, and S;,k and Sj,k must be involved in the same Qf:n.

When S;,k and Sj,k are involved in the same Qf:n, and D.S;,k = 1 and D.Sj,k = 1 are simultane­

ously satisfied, D.Qf:n = 1 EB 1 EB 0 EB 0 EB 0 EB 0 EB 0 EB 0 = 0. Thus D.S;,k = 1 and D.Sj,k = 1 will

cause only 2 bits which belong to 2 different S-boxes to be changed.

On the other hand, by the definition of the linear transformation, if ,6.Si,k = 1 and ,6.Sj,k = 1

cause 2 bits that belong to 2 different S-boxes to be changed, when k is varied, the 2 bits

changed will correspondingly belong to 2 otherS-boxes.

It is assumed that the number of involved S-boxes in the next round is 4. Based on the above

reasons, this case happens when 2 pairs of D.S;,k = 1 and D.Sj,k = 1 occur, and in this case

62

each of the 4 involved S-boxes in the next round has one input involved m the differential

characteristic. D

Lemma 5.9 If 4 S-boxes in one round are involved in a characteristic, and at least one of them

have 2 or more inputs involved in the characteristic, then the number of involved S-boxes in the

previous round can not be 2.

Proof We prove the lemma by contradiction. Suppose the number of involved S-boxes in the

previous round is 2. By Lemma 5.8, each of the 4 involved S-boxes in this round must have

only one input involved in the characteristic. This is contradicting to the premise in the lemma

that at least one of 4 S-boxes has 2 or more inputs involved in the characteristic. D

Until now we have proved the lemmas with regard to the number of involved S-boxes in the next

round. By noticing Lemma 4.2 in Chapter 4 which states that the inverse linear transformation

is exactly the same as the original one, all the arguments for the proof of the number of S-boxes

in the next round can be applied to the number of S-boxes in the previous round. Thus the

number of involved S-boxes in the previous round satisfies the same rules as that in the next

round.

Theorem 5.1 When an SPN consists of the linear transformation of Table ..f.l and the S­

boxes satisfying diffusion order A = 1, the average number of S-boxes involved in a one-round

characteristic is 3 (except for the first and the last round}.

Proof We shall prove the theorem by considering 3 cases.

Case 1: Suppose one S-box in one round is involved in a characteristic.

According to Lemma 5.5, the number of involved S-boxes in either the previous or next round

must be at least 7. Hence we only need to consider 2 adjacent rounds. Since there are at

least (1 + 7) involved S-boxes in 2 rounds, the average number for a one-round characteristic is

(1 + 7)/2 = 4. Hence, in this case the theorem is true.

Case 2: Suppose 2 S-boxes in one round are involved in a differential characteristic.

Since the S-boxes satisfy diffusion order of 1, at least either 2:: 2 inputs or ;::: 2 outputs of an

S-box are involved in a characteristic. By Lemma 5.7, either in the previous round or in the

63

next round the number of involved S-boxes is 4, 6, or not less than 7 (except if this round is

the first or the last round).

Moreover, by Lemma 5.9, when 4 S-boxes in one round are involved in a characteristic, the

number of involved S-boxes in the next and previous round can not be both 2 simultaneously.

Hence when 2 S-boxes in one round are involved in a characteristic, the smallest value of average

number of S-boxes involved in a one-round characteristic is (2 + 4)/2 = 3.

Case 3: Suppose 3 or more S-boxes in one round are involved in a characteristic.

In this case the average number of involved S-boxes contributed by this round is at least 3.

When the average number of S-boxes involved in a one-round characteristic is computed, the

above 3 cases should all be considered, and the theorem follows. D

5.5 Effectiveness in Thwarting Differential Cryptanalysis

In selecting 4 x 4 S-boxes to construct an SPN, S-boxes that satisfy (1) the nonlinearity property

of equation (4.2), (2) for the differential property, diffusion order of>.= 1, and (3) the maximum

S-box XOR pair probability ps = 4/16 = 1/4, can be found by random searching.

Suppose a cryptanalyst uses differential cryptanalysis [3] to attack an 12-round SPN that em­

ploys the linear transformation and the specified kind of 4 x 4 S-boxes. According to formula

(5.1) and Theorem 5.1,

= 1 =2~
(1/ 4)[(12-2)-1]·3+2x2

(5.3)

where 12 refers to the number of rounds of an SPN, (12 -1)- 2 refers to the number of rounds

in an (R- 1)-round characteristic minus the first and last rounds, the first and last rounds

are assumed to have 2 S-boxes involved in characteristic because of Lemma 5.5, and 3 is the

lower bound for the average number of S-boxes involved in a one-round characteristic for the

remaining rounds.

An 12-round SPN that utilizes the linear transformation has 262 chosen plaintext-ciphertext

pairs required for differential cryptanalysis. For a block size of 64, this is clearly a reasonable

level of complexity to declare the cipher secure. For comparison, a cipher which uses a permu-

64

tation such as Ayoub's permutation of Figure 4.1 with S-boxes that do not satisfy>.= 1, as few

as 224 chosen plaintext/ciphertext pairs are required; if the S-boxes satisfy>. = 1, the SPN has

the maximum lower bound of 248 . Therefore the linear transformation of Table 4.1 effectively

improves an SPN's resistance to differential cryptanalysis.

5.6 Conclusion

In this chapter we analysed the strength of the novel linear transformation against differential

cryptanalysis. We proved that when an SPN is constructed from the linear transformation and

4 x 4 S-boxes that satisfy diffusion order of 1, the average number of S-boxes involved in a

one-round characteristic is at least 3. By utilizing the linear transformation, a 12-round SPN

has 262 chosen plaintext-ciphertext pairs required for differential cryptanalysis.

From the results in this and the previous chapters, it is demonstrated that the linear transforma­

tion has the advantage in increasing the resistance of an SPN to thwart both linear cryptanalysis

and differential cryptanalysis.

65

Chapter 6

Implementation of an SPN using an
FPGA

In previous chapters, newS-box selection criteria and a linear transformation for S-box inter-

connection are proposed. To check the complexity of the digital hardware implementation of

the SPN constructed from this kind of S-box and linear transformation, this chapter deals with

the implementation of our SPN using a Field Programmable Gate Array (FPGA). The FPGA

product selected for the implementation is a Xilinx logic cell array.

6.1 Background

In this section, we give some basic knowledge about the Xilinx logic cell array and VHSIC

Hardware Description Language (VHDL) used to specify the design.

6.1.1 Xilinx Logic Cell Array

The field-programmable gate array {FPGA)1 is a relatively new type of digital component for

the construction of electronic systems. Many FPGA chips are prefabricated as an array of

identical functional blocks along with an interconnection network, and as the name implies,

their functionality can be configured in the field, that is, at the point of application. The

particular function of each block and the connections between blocks are programmed by the

user.
1This subsection is based on reference [21)

66

Figure 6.1: The Structure of Xilinx Logic Cell Array

Xilinx's proprietary logic cell array (LCA) architecture [29] is similar to that of other gate

arrays, with an interior array of configurable logic blocks and a perimeter of input/output

blocks. Horizontal and vertical routing channels run between the rows and columns of the logic

blocks, and between the logic blocks and input/output blocks.

The programming method for LCA is based on CMOS static RAM technology: the function

of logic blocks and the interconnection of signal paths are decided by the RAM cells that are

scattered over the entire chip. The RAM cells linked together form a long shift register, and the

programming is done by shifting in strings of ones and zeroes to configure the fu,nction of the

chip. The configuration program is loaded automatically from an external memory on power-up

or on command, or is programmed by a microprocessor as a part of system initialization [29].

In the design of the SPN, we target the XC4000 FPGA devices. The XC4000 series of pro-

grammable gate arrays is Xilinx's third generation static-memory-based FPGA architecture.

As with the earlier XC2000 and XC3000 families, as shown in Figure 6.1 [14], the structure is

based on three major configurable components: an array of configurable logic blocks (CLBs),

a surrounding ring of input/output blocks (lOBs), and programmable interconnect resources.

The core of the device is a matrix of identical configurable logic blocks embedded in routing

67

resources. Figure 6.2 [21] is a block diagram of the principal elements within the XC4000

CLB. Each CLB includes three combinational function generators, two flip-flops, and their

interconnect logic. Thirteen CLB inputs and four CLB outputs connect the function generators

and flip-flops with the programmable interconnect lines surrounding the block. Four separate

signals are supplied to each of two lookup-table-based function generators (F' and G'). A third

function generator (H') can realize any Boolean function of its three inputs: the function F'

and G' and a third input from outside the block (H1).

The two storage elements in the CLB are edge-triggered D-type flip-flops with common clock

(K) and clock enable (EC) inputs, a third common input (S/R) that can be programmed as

either an asynchronous set or reset signal, and programmable clock polarity.

The flexibility and symmetry of the CLB structure is advantageous for the placement and

routing of a given application. Inputs, outputs, and the functions themselves can arbitrarily

exchange positions within a CLB during placement and routing operations.

The perimeter of the Logic Cell Array is constituted by user programmable Input/Output

Blocks. lOBs establish the connections between external package pins and the internal logic

(see Figure 6.3 [21]). Each lOB controls one package pin and can be specified for input, output,

or bi-directional signals.

An input signal can be routed to an input register that can be configured as either an edge­

triggered flip-flop or a level-sensitive transparent latch. The optional delay on the data input

to the register is used to compensate for the delay on a clock signal that first runs through

a global buffer before reaching the lOB, without requiring any hold time on the data at the

external pin.

An output signal can go directly to the pin or be registered in an edge-triggered flip-flop. The

programmable output buffer controlled by an output enable signal allows three-state outputs

or bi-directional pins. The output (0) and output enable (OE) signals are invertible, and the

slew rate control is used to minimize power bus transients when switching non-critical signals.

Pull-up and pull-down resistors can be programmed to tie unused pins to V cc or ground to

probihit unnecessary power consumption. The clocks to the input and output registers are

68

"Tj
o'Q"
>= t;
~

0)

t-.?

0
0
1:1
~

0)
c.o

aq
>= t;
ll'
oT-c;·
1:1
t"'
0 aq
(i"

to -0
(")

~

G4-
LOGIC

m- FUNcriON
OF

Gl-G4 G'
G z-

G I-

F 4-
LOGIC

F 3- FUNCTION
OF

Fl-F4
F'

F z-

Fl .-

K
(CL OCK)

I

Cl + C2 ·~ C3~ C4~

l HI DIN SIR l
I

EC

l -c:=
I S/R 1

~
1CONTROL ~ l

SD
,--- F'

G'
r-IH' rl>ft

D
Qf---

v
X

~ ~
v

'-- LOGIC

~ FUNCTION I I v EC

'-- OF F',G',

.----1
AND HI H ~ l- i

- ~· ~ CONTROL
X

Q

b--
DIN u SD

F' vft
D Qi----

1-- G'

YQ

~ ~
l>

~
--Pl lri)

EC
RD

~~
y

I,

I,

Input
Clock

Figure 6.3: Input/Output Block

Output
Buffer

Input
Buffer

Passive
Pull-Up,
Pull-Down

~
~

separate, and can be inverted, allowing either falling-edge or rising-edge triggered flip-flops. As

with the CLB's registers, the input and output registers can be set or clear whenever the global

RESET net is active.

The flexibility of the LCA is due to programmable routing resources that permit the inter-

connect of any two points on the chip. All internal connections are based on metal segments

and programmable switching points. Programmable switch matrices implement the necessary

connections between selected metal segments and block pins. There are three main types of

interconnect, distinguished by the relative length of their segments: single-length lines, double­

length lines, and long lines.

The single-length lines are a grid of horizontal and vertical lines that cross at a "switch matrix"

between each block. Double-length lines bypass two CLBs before entering a switch matrix,

providing efficient implementation of intermediate length interconnections. Long lines pass the

entire breadth or length of the chip, and are intended primarily for high fan-out control signals.

With a programmable "splitter switch" at its center, each vertical long line can be used as

two separate routing channels that each run half the height of the chip. This hierarchy of

70

interconnection resources facilitates an efficient implementation of a given application.

6.1.2 VHDL

VHDL is an extensively used language for hardware description, built on the programming

language ADA. It is used as the method to provide the input description for a number of

commerically available computer-aided design systems.

A VHDL design entity (component, circuit, or system) consists of an external part (entity name

and interface) and an internal part (entity implementation). After the external interface to an

entity is specified, that entity can be used by other entities in a design. This concept of internal

and external views is the core of a VHDL view of system design.

An entity is determined, with respect to other entities, by its interface and implementation.

Several implementations or architectures can exist for one entity. Alternate architectures of an

entity can be selectively used in a design without changing the rest of the design. An entity

defined in a design can be reused in other designs, and libraries of entities can be developed for

use by the entities of many designs.

A VHDL design entity has defined input, output, or input/output ports that are wired to

neighbouring systems. An entity itself consists of interconnected entities, processes, and exist­

ing components, all which perform their tasks concurrently. Each entity architecture defines one

implementation of the entity's function. An architecture is described by VHDL constructs such

as arithmetic, signal assignment, or component instantiation statements. In VHDL, indepen­

dent processes model sequential systems, such as counters, and combinational systems, such as

AND or XOR gates. Processes can define and instantiate subdesigns. Processes communicate

with the rest of the architecture by signals and port values. A signal has a source, one or more

destinations, and a user-defined type.

A variety of constructs are used in VHDL to write design descriptions. With VHDL, digital

systems of varying complexity (systems, boards, chips, modules) can be specified at varying

levels of abstaction. VHDL language constructs can be split into categories by their level of

abstraction. Three typical levels of abstractions are: behavioral, dataflow, and structural.

71

ENTITY count3 IS
port (elk, clr _bar : in stdJogic:

q_abc : out stdJogic_vector (2 DOWNTO 0)) ;
END count3;

ARCHITECTURE behavioural OF COUNT3 IS
Signal internaLcount : stdJogic_vector (2 downto 0) := "000";

BEGIN .

counting : process (elk, clr _bar)
begin

if clr _bar = '0' THEN
internaLcount <= "000"

- - clear the counter;
elsif elk = '0' and clk'event THEN

internaLcount <= internaLcount + "001";
- - keep counting;

end if;
END process counting;

q_abc <= internaLcount;
END behavioural;

Figure 6.4: A VHDL description of a 3-bit counter

A behavioral description is the most abstract. It describes a design in an algorithmic form

without caring about the detail as to how the design is to be implemented. A dataflow de­

scription models a design in the view of data flowing through the design from input to output.

Operations are specified in terms of a set of data transformations, which are expressed as con-

current statements. A structural description is the most detailed. It defines a design with a list

of components and their interconnections. A structural description is achieved by component

instantiations right down to the gate-level.

VHDL itself is a large language, and learning all of it can be a very large task. In Figure 6.4, we

give a sample behavioural description of a 3-bit counter, just to illustrate the kinds of capabilities

VHDL provides. It is also worth to point out that only a subset of VHDL is synthesisable.

The entity declarations declare the external characteristics of a component- that is, the way it

looks to the outside world. The architecture specifications define the internal operation. Note

the similarity of the nature of a VHDL program to other programming languages.

72

6.1.3 Xilinx Synopsys Interface Program

In the implementation of our SPN using FPGA, the Xilinx Synopsys Interface (X SJTM) pro­

gram is used as the design automation environment.

The XSl design tool kit enables the user to use either the Synopsys FPGA Compiler or Design

Compiler synthesis tool to implement Xilinx FPGA designs. The Synopsys FPGA Compiler and

Design Compiler are High-level Design Automation (HLDA) tools. They create and optimize

circuit designs from hardware descriptions written in VHDL or Verilog HDL.

For the Design Compiler, the following features are supplied (30]:

• Optimizes flip-flops and latches in the input/output block (IOB)

• Optimizes 3-state buffers in the lOB

• Enables one-hot state machines

• Uses the configurable logic block (CLB) Clock Enable pin automatically

For the FPGA Compiler, additional features are provided [30], such as:

• Optimizes logic to the XC4000 family CLB and IOB architectures

• Reports area and timing by device architecture, for example, CLB, lOB, and 3-state buffer

XSI supports both functional and timing simulation. The functional simulation may be used

to debug the logic in a source design before implementing an FPGA. The timing simulation is

used to verify the timing and functionality of the circuit after fitting a design into an FPGA.

By using VHDL and the XSI design tool kit, the Xilinx implementation flow for a design can be

simply described as in Figure 6.5. The design process starts with an VHDL description of the

desired circuit functions and ends with a BIT file, a binary file that contains the configuration

data for the design, and an LCA file, which can be used for back-annotation and simulation,

where DC-shell, Design Analyzer and XMake are programs residing in the XSI.

73

Design Analyzer

Figure 6.5: Design Flow Using VHDL

6.2 Architecture and Organization of SPN

The SPN algorithm is implemented as in Figure 6.6. It is a 12-round 64-bit block cipher with a

64-bit key, where each round consists of a layer of 16 4 X 4 S-boxes and a linear transformation.

Keying the network is accomplished by XORing each bit of the 64-bit input to each round

with a corresponding bit of the 64-bit cipher key and XORing each bit of the output from

the last round with a corresponding bit of the same 64-bit key. Notice that we added a linear

transformation in the last round to reduce the complexity of the circuit with no impact on

security.

The 4 X 4 S-boxes used in the SPN satisfy two criteria: 1) For the differential property, the

diffusion order of an S-box is 1; 2) For the the nonlinearity property, 277(/), defined in Chapter

3, satisfies (4.2).

Figure 6.7 shows the structure of the SPN. It consists of two main parts: a control unit and a

data path. Five input signals and one output signal are used to control the operation of the

control unit, and a 32-bit data bus is responsible for inputting/outputting data used for both

data and keys from/to external devices. The operation of the logic control signals of Figure 6.7

will be outlined in Section 6.2.2.

74

The complete VHDL description of the SPN is given in [31].

6.2.1 Datapath

Figure 6.8 shows the main data paths of the SPN for encryption. The encryption process starts

with the 64-bit key to be loaded into 64 D flip-flops by loading from 32-bit data inputs twice.

With each load half of the key, key _l or key _2, is clocked into 32 of the 64 D flip-flops dedicated

to the key. After the key is loaded, since at this time the multiplexers Muxl and Mux2 select

data_l and data_2 as inputs, respectively, the 64-bit data is written into 64 D flip-flops dedicated

to data in two 32-bit loads. Once data_l and data_2 are loaded into D flip-flops, Muxl and

Mux2 select feed_l and feed.2 as inputs, respectively. Later on, after every one clock period,

feed_l and feed.2 are clocked into the corresponding D flip-flops. During each clock period,

one round of SPN operation which consists of the substitution and linear transformation is

performed, where S-boxes are implementated as 4 4-bit boolean functions. After feed_l and

feed.2 are clocked into the D flip-flops 12 times, the encryption operation of 12-round SPN is

completed. The 64-bit ciphertext, which includes the 32-bit outpuLl and the 32-bit output.2,

is then read onto the data bus in 2 32-bit reads. The encryption is then complete.

In our design, either decryption and encryption can be done in the same chip. The overall data

paths of the SPN are organized as in Figure 6.9. The signal Mode determines the working mode

of the design. When Mode="l", the chip enters encryption mode. While Mode="O", the chip

enters decryption mode. The decryption process is similar to that of encryption. The difference

is the selection of S-boxes and the operational order of S-boxes and linear transformation. The

S-box mappings used in the design are listed in Appendix A.

6.2.2 Control Unit Design of SPN

The diagram of control unit is depicted in Figure 6:10. At the left side of the diagram are the

inputs to the control unit, and at the right side are the names of the controlled components

which reside in the data path part of the SPN.

The control unit is designed to operate in this way: When the chip begins encryption or

decryption, Clr_bar must be set low for one fourth Clock signal to clear all the counters. Then

75

64-bit plaintext
64-bit key

16 4x4 S-boxes

Linear transformation

16 4x4 S-boxes

Linear transformation

16 4x4 S-boxes

Linear transformation

64-bit ciphertext

Figure 6.6: SPN Algorithm when Implemented

3~ databus
'-l_)---

mode
mode

clockO DO

clock
clock! Dl

clock2
02

data_in clock3 Data Path Control 03

s I
Muxl

data_ out s2
Mux2

s3 Mux3

clr_bar
OE

Output buffer

encrypt_ over

Figure 6. 7: SPN Organization

76

16 4x4 S-boxes

linear transformation

32

feed_ I feed_2

Figure 6.8: Data Paths for Encryption

32-bit data bus

16 4x4 S-boxes

16 4x4 inverseS-boxes

32

Figure 6.9: Detailed Data paths of the SPN

77

--~ ~ode

~ ode ClockO 1 DO
I

I
I

I

Data in Counter3 02 r---:1\ Clockl : Dl
~ 01 F"" - I

clear Oo I

Clock2: D2
t----:1\ I

"lj
oq·
>::
'"!

I t_____; I
I

I
Clock3: D3

Lf\ Sl, S2: :
1

~uxl, Mux2
('!)

<::)) I "-J
......
0

Q
0

-J ~ (X)
'"!
0 ,_.

Lhr> Clock Counter2(1)

D-01
IZZZZi1 P"" Oo I<...L.U..L.J

I
-
clear

y ·-
d
2.

I <]--
ct- I

0,
en
""0 z

~ounter4
03 ~ :Encrypt 02 ~ -
~

I£LLLLJ 01 I - I clear Oo
I

? I

I

_over

I

S3 1 ~ux3

J I

I
~ I

I ata_out Counter2(2) r-
,-r-L-J

~
OE: Output ,..,..,..,..... p 01

IU..L.LLJ

:Buffer - Oo 1-clear ~ I

(

l__{___J S4: ~ux3
Clr_bar [)o inter_clr I
~ L__) I

I
ILLLLLJ I I

I I

D

- - _______ _!

DataJn is given 4 pulses to generate one pulse for each of ClockO, Clockl, Clock2, and Clock3,

successively. Thus the key bits, including key_l and key_2, and the data bits, including data_l

and data_2, are clocked into the 32-bit registers of DO, Dl, D2, and D3, respectively. After 4

pulses issued on DataJn, pin 02 of Counter3 is high, letting Muxl and Mux2 select feed_l and

feed_2 as inputs, respectively. Counter2(1) is used to guarantee that it is at least 1 Clock cycle

after data_2 is clocked into D3 before Clock can connect to Clock2 and Clock3.

Once Clock connects to Clock2 and Clock3, after every Clock period feed_l and feed_2 are

clocked into D2 and D3 respectively. The SPN is constructed to have 12 rounds. Thus when

Clock has generated 12 pulses on Clock2 and Clock3 as counted by Counter4, Clock is discon­

nected from Clock2 and Clock3, and at the same time signal Encrypt_over is set to high.

When EncrypLover becomes high, Data_out is given 2 pulses by the external circuitry. During

the first pulse, Mux3 selects outpuLl as the input, and the output buffer is enabled to connect

to the data bus. Thus the first half of the 64-bit ciphertext is sent out. For the second pulse,

Mux3 selects output.2 as the input and the second half of the 64-bit ciphertext is sent out on

the data bus. One complete cycle of encryption is then finished.

It is worthwhile to point out that, after Data_out is given 2 pulses, pin 01 of Counter2(2) is

high, and inter _clr is low. Hence all the counters will be reset, in preparation for the next

encryption.

The encryption time can be calculated in this way. Let Tencryption represent the total time for one

encryption operation, tdata_in represent the length of one pulse on dataJn, and tclock represent

the length of one Clock cycle, then 12.5tclock + 4tdata_in < Tencryption < 13.5tclock + 4tdata_in,

with no consideration of the propagation delays.

6.3 Simulation Results

A design should be tested by downloading the configuration bitstream of the design's BIT file

into an FPGA chip. Since our intent was to just verify the concept, our design is verified by

doing a detailed timing simulation based on Xilinx provided timing paramaters.

The timing simulation report of the design is given in the graph of the following two pages. As

79

20000 40000 60000
--------·-----t=='=='=='=='=~=='="=='=='=='==='=='=='=~=='=='=,--L--'-1 __l___j__j___l___L__j__j___L__C____i_l _l_____l___L_~ ___ _:_ _ _j_ ___ .l,.._._~' : -

~
I

.. ./MODE

.. ./GSR

r···· .. ./ENCRYPT _OVER !

~====~====~~~==~-~~~~========~--rrTr=~= T .. ./OATABUS(31 :0)

' f-- .. ./OATABUS(31)

L I .. ./OATABUS(30)

.. ./OATABUS(29)

.. ./OAT ABUS(28)

.. ./OAT ABUS(27)

.. ./OAT ABUS(26)

. . ./OAT ABUS(25)

.. ./OAT ABUS(24)

.. ./OATABUS(23)

.. ./OATABUS(22)

.. ./OATABUS(21)

.. ./OATABUS(20)

.. ./OATABUS(19)

.. ./OATABUS(18)

.. ./OATABUS(17)

.. ./OATABUS(16)

.. ./OATABUS(15)

.. ./OATABUS(14)

.. ./OATABUS(13)

.. ./OATABUS(12)

.. ./OATABUS(11)

.. ./OATABUS(10)

.. ./OAT ABUS(9)

.. ./OAT ABUS(8)

.. ./OAT ABUS(7)

.. ./OAT ABUS(6)

-··
~.,~ .

f===~

..,1/J I

--· ··--·

-

/vlsi2/projects/jianhong/CHIP_TB.mercury.10781.ow

21/3/1997 13:53:9 Page 1,1 of 2,1

40000 60000
I

.. ./DATABUS(6) ~ . ::0· ... ·

toATAsus<5> J·······rY~~~-~~:fff}f@diBI/~~~~~-~·ffal~l~~~-iW141 ~1 -J&J'%;~ ... ~@'~drH~%1~~ ~ ~-:0!£:%:{

- .. ./DATABUS(4)

.. ./DATABUS(3)

.. ./DATABUS(2)

.. ./DATABUS(1)

.. ./DATABUS(O)

.. ./DATA_OUT

.. ./DATA_IN

.. ./CLR_BAR

... /CLOCK

/vlsi2/projects/jianhong/CHIP_TB.mercury.10781.ow

21/3/1997 13:53:9 Page 2,1 of 2,1

can be seen from the waveforms, in this example encryption and decryption are both tested.

At first, key CD4ADB6B367279C9 is loaded in and the plaintext AD5A9AAE6ACEEAEB

is loaded and encrypted, yielding the ciphertext 925Al81D0892ECEB. At the second time,

the key CD4ADB6B367279C9 is loaded and the ciphertext 925Al81D0892ECEB is decrypted,

obtaining the plaintext AD5A9AAE6ACEEAEB. Obviously, encryption and decryption both

are performed correctly. Also, actually different circuit modules are involved in encryption and

decryption, it is extremely unlikely that some faults in the circuit of the SPN can be cancelled in

the encryption and decryption. Hence the functionality of the design is illustrated and verified.

The encryption speed is mainly determined by how fast the circuit can be clocked by Clock.

Based on our tests, at a clock cycle of lOOns for Clock, data can be encrypted and decrypted

correctly, and lOOns is enough for the length of one datajn pulse. Thus, one encryption time

is about Tencryption = 13tclock + 4tdata-in = 13 X 100 + 4 X 100 = 1700ns, and the encryption

rate is 64 x 1.L = 37.6Mbps.

6.4 Complexity of the Design

The information given about the design is extracted from the report file "chip.rpt", which is

generated by running the XMake command. Although the number of used CLBs is close to

limit, according to the used numbers of the F, G, and H function generators, we can see that the

structure of our SPN is not complicated. Also, since the design just occupied a small portion

of the provided pins, it could have been designed with 64-bit 1/0.

6.5 Conclusion

By using VHDL, our substitution-permutation network is demonstrated that the SPN can be

easily implemented. We have verified that the design can be fitted into an XC4013PQ160-5

device. Though there are some drawbacks with the current implementation, e.g., (1) the same

key is applied to every round, and (2) key loading is needed for every encryption or decryption.

However, since the purpose of our hardware design and simulation is "proof-of-concept" in

nature, these minor deficiencies are not of concern. It is likely with VLSI technology our SPN

algorithm can be implemented more efficiently as part of a larger circuit. Hence it is realistic

82

PPR RESULTS FOR DESIGN CHIP
No. Used Max Available %Used

Occupied CLBs 541 576 93%
Bonded I/0 Pins 38 129 29%
F and G Function Generators (*) 730 1152 63%
H Function Generators 157 576 27%
CLB Flip Flops 107 1152 9%
lOB Input Flip Flops 32 192 16%
lOB Output Flip Flops 0 192 0%
3-State Buffers 64 1248 5%
3-State Half Longlines 64 96 66%
Edge Decode Inputs 0 288 0%
Edge Decode Half Longlines 0 32 0%
CLB Fast Carry Logic 4 576 0%

to put our SPN in practical use.

83

Chapter 7

Conclusions

The target set for the design of a block cipher is that the cipher is not only cryptographically

strong but also simply implemented in software, hardware or both. This thesis has presented

work which strongly promotes the attainment of the target.

7.1 Summary .of the Thesis

An SPN consists of a number of rounds of substitutions (S-boxes) which are connected by

S-Box interconnection layers. As a block cipher, an SPN is also vulnerable to two powerful

cryptanalysis techniques of block ciphers: linear cryptanalysis and differential cryptanalysis.

In linear cryptanalysis probable linear approximations of a cipher are used to determine key bits.

The probable linear approximations of a cipher are obtained by exploiting the linear properties

of the S-boxes and the structure of the cipher. To strengthen an SPN in thwarting linear

cryptanalysis, the design of S-boxes is considered. A newS-box design criterion is consequently

suggested by noticing the characteristic of the basic SPN structure implying that a larger­

term linear approximation of an S-box causes moreS-boxes to be involved in a probable linear

approximation of a cipher. When a basic SPN is constructed from the S-boxes that satisfy the

new criterion, the capacity of the SPN to resist linear cryptanalysis is enhanced.

To improve the resistance of a basic SPN to linear cryptanalysis, we investigated one approach

which involves the rearrangement of the permutation for each round. Based on our computa­

tional experiments, the method is not effective and was rejected.

84

SmallS-boxes are easier to implement in hardware than large S-boxes. After checking the linear

properties of small S-boxes, 4 x 4 S-boxes were selected to be adopted in the SPN that would

be implemented in hardware. The thesis then focuses on the investigation of this kind of SPN.

Previously proposed linear transformations provide no advantage in resisting linear cryptanal­

ysis when used in an SPN with the 4 x 4 S-boxes that satisfy our new design criterion. A new

linear transformation is proposed such that an SPN constructed from the linear transformation

and the 4 x 4 S-boxes is remarkably improved in resisting linear cryptanalysis and differential

cryptanalysis.

An important part of the thesis is the implementation of the SPN which consists of our new

linear transformation and the 4 x 4 S-boxes satisfying our new design criterion. FPGAs are

used to investigate the implementation of the SPN. The simulation results demonstrate that

the digital hardware implementation of the SPN is practical and not complicated.

7.2 Future Work

To consider an SPN for practical use, some further research work should be pursued.

Key scheduling, one of the three components of an SPN, is not studied in the thesis. A simple

but secure key scheduling algorithm needs to be put forward in future designs. Methods are

needed to prove the security of a key scheduling algorithm.

For practical applications, an SPN constructed from 8 x 8 S-boxes appears only suitable to be

implemented in software. The main reason is that 8 x 8 S-boxes are not complicated to be

realized in software by lookup-table method but are difficult to be implemented in hardware

by using Boolean functions. Our new criterion for the design of S-boxes greatly raises the

nonlinearity of fewer-term probable linear approximations of an 8 x 8 S-box. The existing

linear transformations can not realize fully the advantage of the 8 x 8 S-boxes. A corresponding

new linear transformation may be investigated.

An SPN consisting of 4 X 4 S-boxes is intended to be implemented in hardware. Implementing

an SPN using FPGA is the first step to check the complexity of the hardware implementation.

To see the actual complexity of the hardware design of an SPN, a VLSI implementation could

85

also be investigated.

The goal of SPN designers is to put the SPN into practical use and even to replace DES with

the SPN. The results presented in this thesis strongly expedite the achievement of the goal,

although some further research work needs to be conducted.

86

Bibliography

[1] C. M. Adams and S. E. Tavares, "The structured design of cryptographically good

S-boxes," Journal of Cryptology, 3(1): 27-41, 1990.

[2] F. Ayoub, "The design of complete encryption networks using cryptographically

equivalent permutations," Computers and Security, 2:261-267, 1982.

[3] E. Biham and A.shamir, "Differential cryptanalysis of DES-like cryptosystems",

Journal of Cryptology, vol.4, no.1, pp. 3-72, 1991.

[4] E. Biham and A. Shmir, "Differential cryptanalysis of FEAL and N-Hash," Ad­

vances in Cryptology: Proceedings of EUROCRYPT'91, Springer-Verlag, Berlin,

pp. 1-16, 1991.

[5] L. O'Connor, "An analysis of product ciphers based on the properties of Boolean

Functions," PhD thesis, University of Waterloo, Waterloo, Ontario, 1992.

[6] M. H. Dawson and S. E. Tavares, "An expanded set of S-box design criteria based

on information theory and its relation to differential-like attacks," Advances in

Cryptology: Proceedings of Eurocrypt'91, pp. 352-367, Springer-verlag, Berlin, 1991.

[7] Department of Commerce, National Institute of Standards and Technology, "An­

nouncing development of a Federal information processing standard for advanced

encryption standard," published in the January 2, 1997 issue of the Federal Regis­

ter.

[8] D. L. Dietmeyer, "Logic design of digital systems", Allyn and Bacon, Inc, 1978.

87

[9] H. Feistel, "Cryptography and computer privacy", Scientific American, 228, pp.

15-23, 1973.

[10] H. Feistel, W. A. Notz, and J. L. Smith, "Some cryptographic techniques for

machine-to-machine data communications," Proceedings of the IEEE, vol. 63, nO.

11, pp. 1545-1554, 1975.

[11] R. Forre, "Methods and instruments for designing S-boxes," Journal of Cryptology,

2(3): 115-130, 1990.

[12] H. M. Heys and S. E. Tavares, "The design of substitution permutation network

ciphers resistant to cryptanalysis", Journal of Cryptology, vol.9, no. 1, pp. 1-19,

1996.

[13] J. B. Kam and G. I. Davida, "Structured design of substitution-permutation en­

cryption networks," IEEE Transaction on Computers, c-28, pp. 747-753, 1979.

[14] R. H. Katz, "Contemporary logic design ", The Benjamin/Cummings P1Lblishing

Company, Inc. , 1994.

[15] X. Lai and J. Massey, "A proposal for a new block encryption standard," Ad­

vances in Cryptology: Proceedings of EUROCRYPT'90, Springer-Verlag, pp. 389-

404, 1991.

[16] M. Matsui, "Linear cryptanalysis method for DES Cipher", Proceedings of Euro­

crypt'93, Springer-verlag, Berlin, pp. 386-397.

[17] National Bureau of Standards FIPS Publication 46, "Data Encryption Standard

(DES)", 1977.

[18] Z. Navabi, "VHDL analysis and modelling of digital systems", McGraw-Hill, Inc.

1993.

[19] K. Nyberg, "On the construction of highly nonlinear permutations," Advances in

Cryptology: Proceedings of EUROCRYPT'91, Springer-verlag, Berlin, pp. 1-16,

1991.

88

[20] K. Nyberg, "Perfect nonlinear S-boxes," Advances in cryptology: Proceedings of

EUROCRYPT'91, Springer-verlag, Berlin, pp. 378-386, 1991.

[21] J. V. Oldfield and R. C. Dorf, "Field programmable gate arrays", John Wiley &

Sons, Inc., 1995.

[22] R. L. Rivest, "The RC5 encryption algorithm," Dr. Dobb's Journal, Vol. 20, no.1,

pp. 146-148, Jan. 1995.

[23] R. L. Rivest, "The RC5 encryption algorithm," K. U. Leuven Workshop on Cryp­

tographic Algorithms, Springer-Verlag, 1995.

[24] C.E. Shannon, "Communication theory of secrecy systems", Bell systems Technical

Journal, vol. 28, pp.656-715, 1949.

[25] A. Shimizu and S. Miyaguchi, "Fast data encipherment algorithm FEAL," Trans­

actions of IEICE of Japan, vol. J70-D, no. 7, Jul87, pp. 1413-1423. (In Japanese.)

[26] D. R. Stinson, "Cryptography: theory and practice," CRC Press, Inc. 1995.

[27] A. F. Webster and S. E. Tavares, "On the design of S-boxes," Advances in Cryp­

tology: Proceedings of CRYPTO '85, pp. 523-534, Springer-Verlag, Berlin, 1985.

[28] M. J. Wiener, "Efficient DES key search," presented at CRYPT0'93, Santa Bar­

bara, Calif., August 1993.

[29] Xilinx, "The programmable gate array data book", Xilinx, Inc., 1989.

[30] Xilinx, "Synopsys(XSI) for FPGAs interface tutorial guide", Xilinx, Inc., October,

1995.

[31] J. Xu, "VHDL code for the design of an advanced substitution-permutation en­

cryption network," Report, Memorial University of Newfoundland, 1997.

[32] A. M. Youssef, S. E. Tavares, and H. M. Heys, "A new class of substitution­

permutation networks," presented at Workshop on Selected Areas in Cryptography

(SAC'96), Kingston, Ont., Aug., 1996.

89

Appendix A
SUBSTITUTION BOX VALUES

Note: In the implementation ofthe SPN, the following 16 S-boxes are usedfor encryption.
The corresponding 16 inverse S-boxes used for decryption can be trivially obtained.

Substitution Box # 1
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

.J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J..
Output: 3 15 0 12 8 5 13 10 6 9 11 2 1 14 7 4

Substitution Box # 2
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

.J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J..
Output: 10 5 3 8 15 12 9 7 13 0 4 14 1 6 2 11

Substitution Box# 3
Input: 0 1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15

.J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J..
Output: 9 14 5 0 6 11 15 12 2 13 8 3 1 7 4 10

Substitution Box# 4
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

.J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J..
Output: 2 13 11 0 7 4 1 15 5 8 12 6 9 14 10 3

Substitution Box # 5
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

.J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J..
Output: 6 13 8 14 3 7 4 10 5 0 11 9 15 12 2

Substitution Box# 6
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

.J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J..
Output: 11 8 7 13 14 5 1 6 12 2 9 4 0 15 10 3

Substitution Box # 7
Input: 0 1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15

.J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J.. .J..
Output: 13 3 11 5 6 12 8 15 1 4 2 14 10 9 7 0

Substitution Box # 8
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

90

Output: 10 15 12 3 9 0 7 13 4 2 8 14 5 11 6

Substitution Box # 9
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j,
Output: 3 0 15 5 6 13 9 14 4 1 0 1 12 8 7 2 11

Substitution Box# 10
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j,
Output: 5 11 3 13 I4 4 0 7 9 I2 IO 6 2 1 I5 8

Substitution Box # 11
Input: 0 1 2 3 4 5 6 7 8 9 1 0 I1 12 13 I4 15

,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j,
Output: 6 I3 9 2 I5 8 3 5 I 4 7 I4 I2 11 I 0 0

Substitution Box # 12
Input: 0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 I5

,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j,
Output: I4 5 10 7 0 11 13 9 12 15 6 4 3 2 8

Substitution Box # 13
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j,
Output: 8 2 5 12 7 4 9 15 3 14 0 11 1 0 I3 6 1

Substitution Box# 14
Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j,
Output: 0 13 9 14 15 6 3 8 5 II I 0 7 2 I2 4 I

Substitution Box# 15
Input: 0 I 2 3 4 5 6 7 8 9 IO 1I I2 I3 14 I5

,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j,
Output: 4 9 3 I5 13 I4 8 I 2 5 I2 6 II 0 7 I 0

Substitution Box # 16
Input: 0 I 2 3 4 5 6 7 8 9 10 I1 I2 13 I4 15

,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j, ,j,
Output: 7 8 10 I 9 3 6 15 0 I3 12 2 5 14 II 4

9I

