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Abstract

Gas injection is one of the most widely applied enhanced oil recovery methods. Exist-
ing analytical solutions to gas injection processes are based on the standard fractional
flow assumption of a constant flow rate. Realistically, most reservoirs are operated
with constant injection and production pressures where the total volumetric flux varies
with time. An analytical model for the gas injection process with constant pressure
boundaries and a numerical compositional model are developed in this thesis.

By using the standard fractional flow analysis, the Riemann problem associated with
the ternary gas injection process is solved. Based on the solution of the eigenvalue and
elementary waves, the time dependent total flux, pressure distribution, and satura-
tion profile with constant pressure boundaries are directly calculated by applying the
approach developed by Johansen and James (2012). The analysis of the ternary gas
injection problem provides the fundamental method for systems with higher numbers
of components.

The solution from the two-dimensional numerical model interprets the effects from
the component property and heterogeneity in the reservoir to the displacement per-
formance. The analytical solution is compared with the numerical solution. It shows
that the grid block refinement plays a significant role in the behaviour of the numeri-
cal solution. By studying both the analytical and numerical methods, agreement and

disparity of solutions between the two approaches can be investigated.
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Chapter 1

Introduction

1.1 Enhanced Oil Recovery

Enhanced Oil Recovery (EOR) is a method to recover additional oil or gas by injecting
fluids that are not initially contained in the reservoir (Lake, 1989). Production from
a reservoir is normally driven by pressure depletion along with gas cap or aquifer in
early production life. Secondary stage recovery by water flooding or gas injection may
be implemented for the purpose of maintaining reservoir pressure.The purpose of ter-
tiary recovery is to maximize the recovery of the residual reservoir fluid. Normally an
EOR process is applied as a secondary or tertiary displacement method (Lake, 1989).
A variety of EOR methods have been developed and commercially applied in fields
during the past decades. Most EOR methods have the features of improvement in
residual oil recovery, however they are more expensive in comparison to conventional
production operations. Therefore, early evaluation work including reservoir simula-
tion and laboratory experiments play an important role in EOR project planning.

Existing EOR methods include: polymer flooding, alkaline injection, gas injection,



COy injection and flue gas injection. Some of the methods, for example polymer

flooding, have been successfully implemented in many fields, while others have shown
limitations in performance or economics. Gas injection and flue gas injection have
been widely studied for potential applications due to their potential environmental
bhenefits. The feasibility of flue gas injection application in offshore Newfoundland,
Canada, has been studied by Thomas et al. (2010) using data from the White Rose

field screening study.

The application of an EOR method to a particular field can be suminarized as follows:
EOR method selection, geological studies, numerical modelling, economic analysis,
design of EOR process parameters and project implementation (Hite et al., 2004).
Increased demand for oil supplies necessitates increased research and development of
EOR processes. Modelling is one of the critical stages of EOR implementation, hence

the development of its theories and techniques play a key role.

1.2 Reservoir Simulation Methods

EOR processes can be modelled by a system of flow and property behaviour equations.
Essential low equations with simplified property correlations and assumptions can be
solved analytically and the solution obtained can show the major principles, driving
mechanisms, and relationships between parameters. However, due to the simplified
assumptions, the solutions will not accurately reflect all fluid and phase behaviours
occurring during the displacement process. If more complicated equations and corre-
lations are incorporated in the model system, the analytical approach will reach its
limit. When incorporating comprehensive aspects of an EOR process into the model,

for example phase density change, numerical modelling techniques are employed which



are extremely time consuming,.

A water flooding process can be modelled by using a black oil model in which oil and
water phases are treated as two immiscible components, where mass is considered to
be conserved for each phase. When we need to track each component within the fluid,
a compositional model can be used. A compositional model can be summarized as a
component based model in which the mass conservation equation is applied to each

single component. Mass conservation for a single component can be expressed as:
For an arbitrary control volume over At : Am(i) = qin(1) — Gout(7)

where Am(i) is the mass change of component i over a time period At, ¢;,(i) and
Gout (i) are the mass flow of component 7 into and out of the control volume, respec-
tively, over the same time period At. For an n-component displacement system, n - 1
mass conservation equations will lead to an n - 1 partial differential equation (PDE)
system to solve. The PDE system could either be a linear or a strongly coupled,
nonlinear system for which unknowns include: component concentration, pressure,
phase volume fraction (phase saturation), fluid and rock properties (including viscos-
ity, density, porosity etc.). A compositional simulator is a solver for the PDE system
with all unknowns and properties being updated at each time step. That solutions of
saturation profile, component concentration profile and pressure distribution etc. are

generated for evaluation and analysis.

1.3 Standard Fractional Flow Theory

Modelling of EOR processes and general reservoir simulation have two principles:

fractional flow theory and phase behaviour (Lake, 1989). Fractional flow theory was



first developed for a classic water-displacing-oil problem by Buckley and Leverett
(1941). The flux of water and oil phases are denoted as u,, and u, and total flux is

denoted as ur = u,, + u,. The assumptions of fractional flow theory are:

¢ One-dimensional medium

o Fluid and rock are incompressible

The displacement process is isothermal

Total flux ur is constant

The mass conservation equation and fractional flow function for the water phase are

written as:
05, Ouy
W 1.
¢ Ot + Oz 0 (1.1)
Uy
fw = 2 Uy = quw (12)
ur

Substituting Eq.1.2 into Eq.1.1 and taking the constant ur out of the partial derivative

term, we have:

95y Ofw _
ot T Y
After rearrangement:
BSH, __ur Bfw

The above equation can be transformed as:

O fu
IS

ox N ur
(E)Sw - —g{(

)a (1.4)

Eq.1.4, shows that for a fixed value of water saturation S, the traveling velocity %%

is equal to Efgs%' Since f,, as defined in Eq.1.2, is a function of Sy, the plot of

the f, curve can be shown in Fig.1.1 and ‘595& is therefore the slope of the tangent
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Figure 1.1: A typical fractional flow curve for water flooding

to the f,, curve. Moving from the left state of S, (left state of S, is the injection
water saturation, it normally equals 1 - S,,, where S,, is the residual oil saturation)
to the right state of S, (right state of S, is the initial water saturation, it is normally
the connate water saturation S,.), the propagation velocity of each saturation value
can be obtained by calculating the slope of the tangent at this saturation point on
the fractional flow curve. In Fig.1.1, if we trace from S, (left hand side of water
saturation) to Sk (right hand side of water saturation) along the f,, curve, there is a
point from which the slopes start to decrease. A shock will be needed at this point,
otherwise it leads to the unphysical solution of multiple saturation values existing at

one location.
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A shock is a jump or discontinuity between two points on the fractional flow curve.
A rarefaction is a continuous variation along the fractional flow curve. Upstream or
ahead of the shock, the slope of the tangent is equal to the shock slope as shown in
Fig.1.1. By using this equality condition, the shock point saturation can be deter-
mined using an iterative approach, or it can be determined graphically by constructing
a straight line from Sy tangent to the fractional flow curve as shown in Fig.1.1. Know-
ing the rarefaction, shock and the corresponding saturations, the solution of velocities
for each saturation can be constructed. A typical velocity solution is shown in Fig.1.2,
this analysis approach is known as fractional flow theory. The fractional flow theory
was developed from the classic water-oil displacement problem. It is also applicable
to other displacement problems including EOR processes. Assuming a constant flow
rate, ur, thie governing system of equations can be simplified and solved analytically

using the method of characteristics.



1.4 The IMPES Method

The acronym IMPES stands for ‘Implicit in Pressure and Explicit in Saturation’ as
introduced by Coats (1968) and has been generalized and applied in different models.
The water flooding problem from Section 1.3 is used as an example to introduce the

IMPES method. The mass conservation equation for the oil phase can be written as:

as, . Ou,
ot ox

¢ =0 (1.5)

Sum Eq.1.1 and Eq.1.5, we have:

0 0

(8w + S, oo \Uw 0) =0 1.6
657 (S0 o) + 5wy + 1) (16)
The water phase and oil phase occupy the entire pore volume, hence we have: S, +

S, = 1. The flux of water (u,) and oil (u,) can be expressed as functions of S,, and

p by using Darcy’s law:
. Kkrw(sw) @

Uy, ™ o (1.7)
_ Kkyo(1—Sy) Op
Up = T (1.8)

where k,.w and k.o are relative permeability of water and oil phase, p is the pressure
(we assume the capillary pressure is zero that the pressure of water phase and oil
phase are identical, p therefore is the pressure of the entire fluid in the pore volume).

Eq.1.6 can then be expressed as:

(S5, P + (S5, P =0 (1.9)



where 1 represents the time step. In the above expression, we treat the pressure as
an unknown and use the known quantity S7, for the flux calculation. The unknown

p™ ! can be solved from Eq.1.9. Eq.1.1 can be discretized as:

n+1 n
Sw - Sw uw,i—!—l - uw,i

PR T A

=0 (1.10)

"1 into the equation above, S™*! can be solved so that the pressure

By substituting p
and saturation are both obtained for the next time level. Eq.1.9 leads to an linear
equation system and the pressure unknown can be expressed as an unknown vec-
tor. This method of formulating the conservation equations and solving the pressure
unknowns is called the IMPES method. The fully implicit method is to treat both

saturation and pressure as unknowns in Eq.1.9 and use an iterative method to solve

the unknowns.

1.5 Problem Statement

The mathematical system of equations describing the fluid displacement process can
be solved analytically under certain simplified conditions. If one tries to model more
complex or realistic scenarios beyond the simplified cases outlined above, the limit of
analytical solutions is soon reached and numerical methods are required. The ana-
lytical method provides fundamental theories and direct analysis approaches for all
simulation work while numerical method provides the approach for complex and re-
alistic simulation scenarios. Development in both analytical and numerical methods

therefore are important modelling techniques.

As stated in the previous section, the fractional flow theory is based on the assumption

of constant total flux, ur. For most laboratory and real field gas injection operations,




fixed injection and production pressures are applied, hence the constant ugy assump-
tion is invalid. Under fixed pressure houndaries, uy will be a time dependent variable
as is the pressure distribution. Johansen and James (2012) developed the generalized
calculation and analysis approach for the fixed pressure boundaries (Referring to the
pre-print in Appendix.C). If ur is either constant or time dependent, the eigenvalue
solution and elementary wave structure remain the same for both conditions. Based
on the analysis of the three-component problem developed by Johansen and Winther
(1990), the eigenvalue and elementary wave solution are calculated. The solution to
the three-component problem with constant pressure boundaries, is provided by ap-

plying the generalized calculation method.

A two-dimensional numerical compositional model incorporating rock and fluid prop-
erties is developed. Based on the work by Nghiem et al. (1981), a modified pressure
and concentration solving scheme is applied. Rather than using an iterative method

\
\
|
|
for solving for pressure, a linear solver is used. A single point upstream scheme is used
to solve for concentrations. By studying both the analytical and numerical methods, ‘

|

agreement and disparity of solutions between the two approaches is investigated.

1.6 Thesis Outline

Chapter 1

The definition and basic categories of EOR processes are discussed in Chapter 1.The
development of the work in this thesis starts from classic fractional flow theory and
numerical compositional modelling. Fundamental methodology including sample ap-

plication of fractional flow theory to a water-oil displacement problem and the struc-

i
\
1.6.1 Chapter summary
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ture of a numerical compositional model is briefly discussed.

Chapter 2

Chapter 2 includes a review of the literature regarding application of fractional flow
theory, solution of the three-component*gas injection process, and the fractional flow
analysis for a multi-component problem with constant pressure boundaries. A litera-

ture review of the numerical compositional simulation method is also included.

Chapter 3

This chapter illustrates the construction of the solution of the three-component gas
injection problem under fixed pressure boundaries. Eigenvalues, elementary waves
and compositional paths with the standard fractional flow assumption are generated.
Based on the generated eigenvalue and elementary wave solution, the time dependent
total flux and pressure distribution are the calculated using the generalized approach
by Johansen and James (2012). This chapter describes the full analytical model for

three-component gas injection problem with constant pressure boundaries.

Chapter 4

In Chapter 4, a numerical compositional model is developed. Starting from the gov-
erning equation system, this chapter introduces the model structure, the method for
solving the equation system and fluid and rock property correlations. Chapter 4
also includes two case studies of three-component gas injection simulation in one-

dimensional and two-dimensional flow.

Chapter 5

Chapter 5 includes two case studies. The first case study uses different components to
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Phase behavior
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Figure 1.3: Research concept map

show how the component property affect the simulation solution and the second one
is a 2D simulation to discuss the effect from heterogeneity. A comparison between the
numerical and analytical solutions are also provided in this chapter which illustrates

the effect from numerical dispersion.

Chapter 6
This chapter concludes the work in this thesis and discusses recommendation for fu-

turc potential extension of the research.

1.6.2 Research concept map

A research concept map illustrates the knowledge structure associated with the re-
scarch topic. As shown in Fig.1.3, the rclationship between the key methods that

have been applied during the development of the research is presented. The concept
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map outlines the research path of this thesis. Starting from the fundamental methods,
including method of characteristic, fractional flow theory, conservation law etc., the
analytical model under constant pressure boundaries and a numerical compositional
model are developed. The solution of elementary waves is used to validate the nu-

merical model.

Prior to the analytical model developed in this thesis as shown in the concept map,
numerical simulation is the only approach to model the displacement process. The
work in this thesis fills the blank of the constant pressure boundary gas injection

modelling and provides the analysis approach for such displacement problem.




Chapter 2

Literature Review

2.1 Application of Fractional Flow Theory

The fractional flow theory developed by Buckley and Leverett (1941) describes a sim-
plified one-dimensional water flooding problem. The fractional flow function for the
water pliase is defined as the fraction of the displacing fluid flux and the total vol-
umetric flux. As an unique function of water phase saturation, the fractional flow
function can be plotted versus water saturation and shown as a fractional flow curve.
The expression of the travelling velocity for a fixed saturation is the derivative of the
fractional flow function with respect to water saturation. Knowing the propagation
velocities of the water saturations, the wave solution to the water flooding problem
can be constructed. However, a straight forward construction of the solution along the
fractional flow curve will lead to an unphysical water saturation distribution pattern
(multiple saturations at one location). Therefore, a shock is needed for the solution.
The approach to determine the shock point saturation on the fractional flow curve
and the effect from the viscosity ratio and capillary pressure are also provided in the

fractional flow theory development work. The fractional low theory has become one

13
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of the essential approaches in reservoir simulation and has been applied and extended

to many different types of displacement problems (Lake, 1989).

The extended application of the fractional flow theory to EOR processes has been
provided by several authors. Polymer flooding is one of the most widely applied EOR
methods with more complexity than water flooding. Pattonet al. (1971) applied the
fractional flow theory with the method of characteristics to a Hnear polymer flooding
problem and examines the numerical modelling solution against the developed analyt-
ical solution. By assuming that water viscosity is a function of polymer concentration
only, it is shown that two fractional flow curves correspond to each of the viscosity
values present. When constructing the wave solution using fractional flow theory, a
shock connects the two fractional flow curves corresponding to the two states of poly-
wer coucentration. Compared to the water flooding solution, Patton et al. (1971)
proved that the fractional flow theory could be applied to a three component case

(water, oil, polymer) with more shocks and constant states appearing in the solution.

The solution to the carbonated water Hooding problem is solved by Nevers et al.
(1964). The solution interprets the transferring of carbon dioxide within the phases
and the effect of viscosity reduction and swelling in the oil phase. Fractional flow
theory is also applied to alcohol displacement by Taber et al. (1961). Welge et al.
(1961) developed an analytical method for enriched gas displacement process. Shutler
and Boberg (1972) provide an analytical solution to steam flooding. A summary of
fractional flow theory applied to low-tension flooding, hot water flooding, and two

and three phase flow is provided by Pope (1980).
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2.2 The Riemann Problems for Gas Injection Mod-
elling

The conservation law with discontinuities and piecewise constant data is know as Rie-
mann problem. The mass conservation equations for used in fractional flow theory
to model EOR. processes yield a hyperbolic partial differential equation system. To
coustruct the solution of the hyperbolic system is to solve the associated Riemann
Problem where the injection fluid composition (or saturation) and the initial reservoir
fluid composition (or saturation) are the initial states. A water flooding problem can
be treated as a two-component problem, while other EOR processes can generally be
analyzed as three- or multi-component problems. The three-component system is a
typical problem that interprets significant features of the displacement mechanism yet
is sufficiently simple to be solved analytically. The sample calculation and case study
of the analytical model in this thesis will be using a three-component gas injection

system.

Johansen and Winther (1990) gave a comprehensive analysis of three- and four-
component Riemann problems. By defining the fractional flow function and choosing
the independent variables for the fractional flow function, the model for a three-
coupouent, two phase flow problemn was re-forimnulated to a simnplified form. The
expressions of the two associated eigenvalues and eigenvectors for the re-formulated
hyperbolic system were solved. They show that the elementary wave solution consists
of rarefaction waves, shock waves and linear waves. It was proved that the elemen-

tary waves connecting each of the states are unique solutions to the Riemann problem.

By applying a similar analysis approach, Johansen and Winther (1988, 1989) proved
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the solution and analysis for single and multi-component polymer flooding problems.
The single-component polymer flooding problem with one chemical component being
dissolved in the injected water was analyzed as a three-component Riemann problem.
They showed that there are two fractional flow curves associated with each of the
polymer concentration states with a shock wave connecting the two fractional flow

curves.

Based on the analysis of the Riemann problems for conservation law modelling, gas
injection process can be modelled by specifying each of the components to be the gas
and oil constituents. Orr (2007) provides the analysis and modelling techniques for

the gas injection process using both analytical and numerical methods.

2.3 Solution for Constant Pressure Boundaries

All fundamental work on the analysis of EOR process modelling problems is based
on the standard fractional flow theory with the assumption of a constant total volu-
metric flux. This assumption is invalid for displacement processes with fixed pressure
boundaries. In the case of constant pressure boundaries, the total flux and the pres-
sure distribution are time dependent. Johansen and James (2012) developed a method
for calculating the time dependent total flux, pressure distributions and breakthrough
time of each state. A fully analytical model for constant pressure boundaries displace-
ment can be developed instead of the conventional numerical method. In their work,
the elementary wave analysis of a general multi-component Riemann problem, and
the approach for calculating the time dependent total flux and pressure distribution
at different stages of breakthrough of elementary waves are provided. The saturation

(or concentration) propagation profile, under constant pressure boundaries, can be
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constructed using the calculated total flux at each point in time. Prior to this work,
the numerical method was the only approach to obtain a solutions to the constant

pressure boundary problem.

2.4 Numerical Compositional Simulation

2.4.1 The IMPES method

The IMPES formulation method is one of the principle methods used in numerical
simulation. Coats (1968) illustrates this formulation method to solve the pressure
and saturation unknowns for a black oil reservoir model. The IMPES method has
been generalized for an arbitrary number of components and it is still being applied
in various reservoir simulation models. An alternative approach is the fully implicit
method, in which the pressure and saturation are both treated as unknowns. The
unknowns are solved by using an iterative method, for example the Newton—Raphson
method. Comparing iterative methods, the fully implicit method is more time con-
suming compared to the IMPES method. But the fully implicit method is more stable

because due to the fact that the waves exhibit more smearing.

2.4.2 Numerical simulation using EOS based flash calculation

One of the major features of the gas injection process is the mass transfer of the com-
ponents within the phases. In order to model the gas injection process and track the
distribution of each component, a compositional model can be applied. A composi-
tional model is based on the mass conservation for each single component presented in
the fluid system containing the injection and initial reservoir components. The mass
transfer behaviour and fluid pressure, volume and temperature (PVT) properties can

be modelled using equation of state (EOS) based flash calculation, where we assume




the fluid system is in thermodynamic equilibrium.

The method of incorporating EOS based flash calculation into a compositional model
was introduced by Nghiem et al. (1981). The mass conservation equations were
formulated into the pressure equations for solving the pressure unknown using the
IMPES method. The updated pressures are used to calculate overall compositions
of each component. By performing a flash calculation on the updated pressure and
overall composition at each grid block using the Peng-Robinson EOS, the phase sat-
uration and PVT properties at each grid block are calculated. When all variables are
updated for the next time step, the calculation is again performed for that time step.
An iterative procedure for solving the pressure unknowns was introduced requiring the
assembly of the Jacobin matrix and also the convergence of solution. In the scheme of
finite different approxiination, a two-point upstream method is used for the purpose

of numerical stability.

The compositional model developed by Nghiem et al. (1981) provide a fundamental
method for the numerical compositional simulation using flash calculation. Various
compositional models have been developed including different features for the purpose

of representing a particular behaviour in different displacement scenarios.

2.4.3 Flow in heterogeneous media

A homogeneous medium is often assumed in simulation, hence the use of a single per-
meability value. However, real reservoir formations are heterogeneous. The porous
media properties vary with location and orientation. Permeability is one of the basic
reservoir parameters, and it is a function of the local pore size, grain size and deposi-

tional history. The heterogeneity of a reservoir is difficult to precisely define yet it has
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a significant effect on the displacement performance. The variation of permeability
will strongly affect the fluid flow path and component distribution within the reser-
voir. When numerical simulation is performed in heterogeneous media, dispersion
both from the numerical method and from the heterogeneity will occur and affect the

simulated displacement behaviour.

Law {1944) studied the horizons from a sandstone reservoir and shows the log-normal
reservoir permeability distribution. Lambert (1981) and Jensen et al. (1987) provide
the frame work of modelling permeability distribution and estimating the effective
permeability based on the statistical analysis. They concluded that the permeability
is not necessarily log-normally distributed. Arya et al. (1988) analyzes the effect from
heterogeneity on numerical simulation dispersion. Based on a two-dimensional ran-
domly distributed permeability numerical model, a miscible displacement was mod-

elled showing that variation in heterogeneity significantly affects dispersion.



Chapter 3

Analytical Model for the
Three-Component System with

Constant Pressure Boundaries

Existing analytical solutions to the gas injection problem are based on the assumption
of a constant volumetric flux. Injection processes operated under the constant injec-
tion and production pressures exhibit time variable volumetric flux for most real field
applications. In this thesis, the solution for a three-component linear gas injection
problem with constant pressure boundaries is provided by applying the generalized

approach developed by Johansen and James {2012).

Hence, we start with the formulation of the conservation equation system for the
three-component problem with constant total flux. The solution to the system of
conservation equations for a three-conmponent gas injection problem has two asso-
ciated eigenvalues. The two eigenvalues and elementary waves are identified using

the fractional flow theory with the constant total flux assumption. Based on the

20
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eigenvalue and elementary wave solution, we calculate the time dependent total flux,

breakthrough time of each elementary wave, saturation profile and pressure distribu-

tion with given constant pressure boundaries. The behaviour of the total flux, during
\
|

each elementary wave breakthrough, is interpreted from the solution.

A fully analytical model for the three-component gas injection problem is developed
instead of the conventional numerical method. Prior to this work, the numerical
method was the only possible approach to obtain the solutions for constant pres-
sure boundaries. This application for the three-component problem demonstrate the
fundamental calculation method that could be applied to the multi-component gas

injection problem.

3.1 Material Balance Equation

The essential equations behind reservoir simulators are derived from the basic ma-
terial balance equations. In general, the material balance equation is described as:
the net flow of the fluid equal to the volume change of the fluid within an arbitrary
fixed volume over the same time period. All the formulae or equations are derived for

one-dimensional flow. The following derivation refers to Lake (1989).
We define the ‘mass concentration’ w for an arbitrary fixed bulk volume V:
W= — (3.1)

where m; is the mass of component . The bulk volume is a porous medium in our

case, so the flowing fluid will not occupy the entire bulk volume. Therefore, the rate
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of change of mass is:

% //‘;de (3.2)

The net mass flowing into the voluiue V' per unit time is:

—//[S(V) F.7ds (3.3)

where F is the mass flux , 7 is the outer surface unit normal. Addition (injection) or

removal (production) of the fluid from V' can be expressed as:

/ / /V Gdv (3.4)

where ¢ is the mass injection or removal per unit time and unit bulk volume. According

to the mass conservation for V:

Sl =l s fflwr

Using the Divergence theorem and assuming zero source term (§ = 0), we have:

Ow —
//V(E 4 V- F)dv =0 (3.6)
%+V-F:o (3.7)

we can express w for component ¢ in terms of moles:

np
Y by Sii=1,...,nc (3.8)

J=1

where ¢ is porosity, p; is molar density of phase j, S; is saturation of phase j, ;;

is the mole fraction of component ¢ in phase j, nc is the number of components and
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np is the number of phases. The mass flux of component ¢ in phase j is denoted as

151-]- which can be expressed by y;;p;u;. We use Darcy’s law for the volumetric flux of

phase j: u;:
Yiipitj = YijA;VD; (3.9)
Kk.; .
Aj = J/)j;] =1,..,np (3.10)
Hj

where K is the reservoir permeability, A,; and p; are the relative permeability and
viscosity for each phase, and A is the phase mobility, respectively. Substituting Eq.3.8
and Eq.3.10 into Eq.3.7, and ignoring the gravity term, the resulting material balance

equation is:

o np np
p Zqﬁyum + V> (4357 V)] = 051 = 1, (3.11)
j=1

Eq.3.11 can be simplified for one-dimensional flow as:

np

0 & 8p .
E(Z@/ﬁﬂj Z YijAj D ] =0;2=1,...,nc (3.12)
j=1 j

The conservation equation expressed in Eq.3.12 will be simplified to the governing

equations for the analytical model.

3.2 Eigenvalue and Composition Path

The governing equations for the three-component problem are derived from the general
material balance equation. The eigenvalues and composition path solution are solved
for the three-component problem. The method used for solving the eigenvalue and
composition path solution and associated derivation is given by Johansen and Winther

(1990).
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3.2.1 Governing equations for the analytical model
3.2.1.1 Fractional flow function

From the expression of volumetric flux u; of phase j, the fractional flow function of

the corresponding phase f; is defined as:

Kknr; 9p
U; .

fi="d=t (3.13)
ur ur

ur = iliu]- (3.14)

j=1
where ur is the total volumetric flux of the entire lowing fluid. Based on the defi-
nition shown in Eq.3.13, the exact expression of the fractional flow function depends
on the relative permeability model used. In this chapter, we use the relative perme-
ability model developed by Brooks and Corey (1964) which states that the oil relative

permeability (k,,) and gas relative permeability (k.4) can be expressed as:

1-5-5,.\°
kro = (?) (3.15)

1- ch - Sor
S-S5, \

where S is the vapour phase saturation, S, is the critical gas saturation and S,, is the
residual oil saturation. If we set S.; and S, to be zero, the fractional flow function
for vapour phase is expressed as:

SQ

f=—asr (3.17)
82+ lju)



25

where M is the ratio between the oil phase viscosity (y,) and vapour phase viscosity

(11g) -

M="Hte (3.18)
g

3.2.1.2 Derivation of the governing equations

The analytical solution of Eq.3.12 requires certain assumptions as shown below:

No volume change upon mixing (ur is constant)
« Constant equilibrium ratio (K-value) for each component

o The phase and rock are incompressible (densities of the phases and rock are

constant)
« Diffusive effects are negligible
o Gravity term is negligible
e There are a maximum of two phases

o The saturations of residual oil, connate water and critical gas are zero

The governing equation is derived from Eq.3.12 by first writing Eq.3.12 in its dimen-

sionless form as:

a np a np
O—T(;ym%) + E[;(yimjfi)] =0 (3.19)

where 7 is the dimensionless time and ¢ is the dimensionless distance:

upt
= — 2
T oL (3.20)

(3.21)

~ 8
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If we denote the volume fraction of component 7 in phase j as ¢;;, we have the following
relation with mole fraction y;;:

PeiCi; = PiYij (3.22)

In the above equation, p.; is the molar density of component i. Substituting Eq.3.22

into Eq.3.19, the dimensionless conservatioun equation for two phase flow is given by:

oC; N OF,
or o0&

=0;i=1,...,nc (3.23)

where the overall volume fraction C; and overall fractional flow function F; for com-

ponent 7 are defined as:

np np
=1 i=1
and
np np
Fo=%cifi=> 1 (3.25)
i=1 i=1

It is shown in Eq.3.2.1.2 that C; is the summation of the volume fraction of each
component (Cj;) in phase j. Eq.3.25 shows that F; is the summation of the flux of
component 4 in each phase (f;;). By using volume fraction with component molar
density, the constant component molar density can be removed from Eq.3.19 which
further simplifies the equation. If the solution in terms of mole fraction is required,

it is easy to convert it back by using phase molar densities.

3.2.2 Eigenvalue solution

Solving the system of partial derivative equations defined by Eq.3.23 involves finding
the relationship between the parameters (i.e. how does each parameter change with
respect to the others). The method of characteristic is implemented to solve the

material balnce equation system introduced later in this chapter. We begin with the



features of a ternary system with constant equilibrium ratios or K-values.

3.2.2.1 Ternary system with constant K-values

A three-component system is normally represented using a ternary diagram. A single
point inside the ternary diagram represents a unique combination of the three com-
ponents. Normally the three components can be characterized as ‘heavy’, ‘medium’

and ‘light’ components.

The two phase region inside the ternary diagram is isolated by the ‘binodal curve’ that
consists of the liquid locus and the vapour locus. Composition combinations that have
the same equilibrium phase compositions will sit on a single straight line in the ternary
diagram that is called a ‘tie line’. A tie line is a significant structure that controls
the behaviour of ternary displacement. More precisely, two key tie lines determine
the solution behaviowr of the three-component problem: the injection tie line, and
the initial tie line. These are the tie lines upon which the injection composition and
initial composition rest. A termary diagram with constant K-values has the following

properties (proof of their properties will not be discussed here):

» Tie lines do not intersect inside the ternary diagram (each tie line can be

uniquely identified)

» Vapour and liquid loci are straight lines

Observing the linear behaviour of the phase envelope, the correlations for tie lines

can be obtained. Each straight line in a ternary diagram can be expressed as a linear



equation and as can an arbitrary tie line. A single tie line can be expressed as:

Co = p(n)Ch + b (3.26)

In the above equation, ¢ is the slope of the tie line and € is the interception with
C7 = 0 the boundary. The parameter that uniquely identifies a tie line is . This
could be the liquid phase composition (¢;;), or the vapour phase composition (¢;2) on

the tie line (‘1’and ‘2’ represent the liquid and the vapour phase, respectively).

The equilibrium liquid phase composition {c11) can be calculated using any composi-

tion (Cy,C3) lying on the same tie line using the following equations:

—b+ Vb2 — dac

= .2
C11 % (3 7)
where
Ky, — K3 K, — Ko
a =
Ky— Ky Ko—1
K, - K. K -1 1-K3 K1 — K
b: 1 301‘{' 1 Cg— 3 1 2
Ky — K K, —1 Ky— Ky Ky — 1
1— K;
C———KQ—K;;CI

With constant K-values, the phase envelope in a ternary diagram is bounded by
straight lines and the K-values of the intermediate component significantly affect the
phase envelope behaviour. As shown in Fig.3.1, with K}, = 2.5 and K3 = 0.05, the
four ternary phase diagrams are generated with different K-values of the intermediate
component (K3). The shape of the two phase region and direction of the tie lines
change significantly depending on the value of different K,. The direction of tie lines

directly lead to different driving mechanisms and miscibility development.
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c3 d:K, =18

c:K2=1.2

Figure 3.1: Phase envelop and tie lines behaviour with difference intermediate coni-
ponent K-value

If we have an initial composition in the liquid phase region and an injection compo-
sition in the vapour phase region, the composition path connecting the initial and
injection compositions has to cross the two phase region with constant K-values. Mis-

cibility in such a case is therefore meaningless.

According to the K-value of the intermediate component and the location of the initial
and injection compositions, the displacement can be categorized by different driving
mechanisms. In this chapter, we demonstrate the calculation using the following two

types of problems:

1. Condensing gas drive with a low volatility intermediate (LVI) component (K, <

1). We denote this type of problem as ‘LVI condensing .

2. Vapourizing gas drive with a high volatility intermediate (HVI) component

(K3 > 1). We denote this type of problem as ‘HVI vapourizing .



3.2.2.2 Method of characteristics

It can be shown that the overall fractional flow function F; can also be expressed in
the form of Eq.3.28:
Iy = an) Fi + ¢(n) (3.28)

Substituting Eq.3.26 and Eq.3.28 into Eq.3.23 and using chain rule we get:

da  do\ On da  do\ dn
(Cl dn * dﬁ) or * (Fl dn N dn) oc 0 (3.29)

601 (’)Fl 801 8F1 07] .

——— =0 3.30
o T aC, o oy oe (3.30)
The above equations can be shown in the form of;
ou ou
— + Alu)— =0 31
o Al g (331)
where
R 2R
Aw)=| %@ 7 (3.32)
Fi + ¢
C1 + €
1-K; Ky,—1
€ 22 2 (3.33)

T K — KK —Ks U
By solving the displacement problem discribed by Eq.3.23, we determine how the
compositions propagate and distribute along the displacement space with time. The
value of n determines a unique tie line, and C determines the unique point on the tie
line, hence 1 and C together can identify a unique point in the ternary space. For a

fixed Cy and 7 we have :

Lacy,  aCy
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an an
dn = —d —dé =0 3.3
1= r T ge (3.35)
Substituting Eq.3.34 and Eq.3.35 into Eq.3.31 leads to the following eigenvalue prob-

lem:

(3.36)

d€
A=—>2>
dr

The solution to Eq.3.36 gives the two eigenvalues:
8F1 F1 +e€

and Ay =

Ay = — L
! 8C1’ C1+6

The expression for A, can be further simplified to:

_ 4
'

Ay (3.39)

Substituting the two eigenvalues into Eq.3.36 leads to two corresponding eigenvectors,

e.g:

(3.40)

where the notation ¢ is the tie line eigenvector and nt is the non-tie line eigenvector.

The tie line eigenvector shows the change of 7 is zero which indicates that the prop-
agation occurs along a fixed tie line. As the composition varies along a tie line, its
propagation velocity is A;. The same explanation applies for the nontie-line eigenvec-
tor: when 7 is changing along a nontie-line eigenvector, the compositions propagate
with A,;. The compositions propagating along a nontie-line eigenvector are called the

nontie-line paths and they cross different tie lines.



3.2.3 Composition path

A ternary diagram is a composition space in which not all the compositions satisfy the
conservation equations. According to the eigenvalue solution, only the compositions
which vary along an eigenvector will appear in the solution. As stated previously, the
composition and the tie line parameter n can determine a unique point in a ternary
diagram, hence if the dependence of composition and 7 is known, the path along which
the conservation equation is valid is also known. The relationship between the com-
position and 7 along eigenvectors can be determined by integrating the eigenvectors.
The solutions to the conservation equations consist of the compositions that connect
the initial and injection compositions. These compositions are called the composition

path.

Integration of the eigenvectors shows that two types of composition paths exist in a
ternary diagram: the tie line path and the nontie-line path. Integration of the tie line
eigenvector is shown as a straight line that coincides with the tie line. By choosing
the liquid phase composition (c¢;1) for # and using the fractional flow function shown
as Eq.3.17, the integration of the nontie-line eigenvector with respect to the vapour

saturation (S) is expressed as:

0
C11 = €y

[0-8  1-K K-l [f-5"
F-S K —K. K —K3| f-§

AR (K — 1) 28 Kaml (g 1) /Sde (3.41)
SO

KKy Ki—-K3 (SOfO—Sf)+ K\ -k Ki—K3

* F—3 F_S
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where
S
9 S _ SO
[ ras ===+
S0 L+

Ll 1 11y L 0(L 4 1)y— L
+i[‘/§(M 1) {arctan(—S(MJrl) M)—arctan<S(M+l) M)} (3.42)
Var+ ) Vi i

& ln{ —,}7—7375+(1+ﬁ)5’2}

() L= s (L) (57

In the above equation, ¢, and S° are reference values on the nontie-line path and

f% is the corresponding reference fractional flow function. By using Eq.3.41, the

compositions along a nontie-line path can be calculated.

3.3 Elementary Wave Solution

The solution of the displacement problem cousists of different elementary waves (an el-
ementary wave is denoted as v;) connecting the injection vapour saturation (left state
of vapour saturation, denoted as Sy ) and the initial vapour saturation (right state of
vapour saturation, denoted as Sgi). The corresponding saturations that parametrize
the elementary waves are associated with either of the two eigenvalues. The ele-
mentary waves are separated by the key saturations, we denote the key saturation

separating v;,_; and v; as S;_;.

An elementary wave can either be a rarefaction wave or a shock wave. If v; is a
rarefaction wave, the eigenvalues along v; can be calculated using the saturations

from S;_; to S;. For a shock wave, the eigenvalue of this shock can be calculated by



applying the shock mass conservation expressed as:

RS- RS
! Cl(Si—l) - Cl(Si)’ o

N (3.43)

where N is the number of the elementary waves and v; is calculated using the overall

fractional flow function and composition of component 1.

In this chapter, two cases of the three-component problem will be evaluated. The
first is a LVI condensing case with Ko = 0.5. Condensing gas drive occurs when the
injection tie line lies to the right of the initial tie line as shown in Fig.3.2. For the
condensing gas drive case, the intermediate component condenses from the injected
vapour phase condenses into liquid phase during the displacement. The second is an
HVI vapourizing case with K> = 1.6. Vapourizing gas drive occurs when the injection
tie line lies to the left of the initial tie line as shown in Fig.3.3. For the vapouriz-
ing case, the intermediate component vapourizes from liquid phase into vapour phase

during the displacement.

The parameters utilized in the two case studies are summarized in Table.3.1. The
solutions for both cases are provided and we use the LVI condensing case for sample

calculations and detailed analysis.

3.3.1 Fractional flow analysis

Each of the composition points can propagate with either of the two eigenvalues. The
fractional flow analysis is used to determine with which eigenvalue the compositions
are propagating. Once the elementary wave is along a tie line path, it is associated

with a tie line eigenvalue. If the elementary wave is on a nontie-line path, it is as-




Table 3.1: Input data for analytical model sample solution

Parameter LVI condensing case | HVI vaporizing case
Injection composition (C1,Cq) (0.7,0.3) (0.9,0.1)
Initial composition (C}, C3) (0.2,0) (0.2,0.25)
K-Values (K, K2, K3) (2.5,0.5,0.05) (2.5,1.6,0.05)
Viscosity ratio po/pg 10
Injection pressure Pjy,; 15M Pa
Production pressure P, 14.9M Pa
Displacement Length L 1m
Permeability K 0.3D
Porosity ¢ 0.18
Residual oil saturation S, 0
Connate water saturation Sy, 0
Critical gas saturation S.4 0

sociated with a nontie-line eigenvalue. We trace the saturation from Sy to Sg and
identify the eigenvalue for each saturation value. While identifying eigenvalues, two

conditions must be satisfied which can be described as:

Velocity condition: The velocity (eigenvalue) within the two phase region
has to decrease monotonically for continuously varying saturation values traced from
downstream points to upstreain points on the compositiou path (Helfferich, 1981).

Entropy condition: The shock velocity (eigenvalue) must not be greater than

the upstream velocity, and must not be less than the down stream velocity (Lax, 1973).

The fractional flow analysis for the LVI condensing case can be separated into the

following parts:

(a) Identifying the two key tie lines
The two key tie lines are: i) the injection tie line on which the injection composition
point is located, and ii) the initial tie line on which the initial composition point is

located. The overall fractional flow curves along tlie injection and the initial tie lines
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Figure 3.2: Fractional flow analysis for LVI condensing case shown in the ternary
diagram

are shown in Fig.3.4. The two key tie lines are shown in Fig.3.2, the shocks and

rarefactions in the corresponding ternary diagram are also shown in Fig.3.2.

(b) The trailing shock

As shown in Fig.3.4, starting from the injection composition (point 1), a shock is
needed so as to not violate the velocity and entropy conditions. This shock is a jump
from point 1 in the vapour phase region to point 2 in the two phase region. The prop-
agation velocity of this shock is the slowest and it is called the tailing shock. The tie
line eigenvalue at point 2 is smaller than the leading shock velocity, hence the composi-

tion at point 2 propagates with two velocities which is shown as a constant state bank.

(c) Rarefaction along the injection tie line

The eigenvalue is the slope of the tangent to the fractional flow curve on a tie line
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Figure 3.3: Compositions and key tie lines for HVI vapourizing case

path. As shown in Fig.3.4, the slope of the tangent to the injection fractional flow
curve increases monotonically from point 2 to point 3, a rarefaction from point 2 to
point 3 is therefore allowed according to the velocity condition. Point 3 is the equal
eigenvalue point at which the tie line eigenvalue equals the nontie-line eigenvalue. The
equal eigenvalue point is the connecting point of a tie line path and a nontie-line path.
It is the point at which the composition path switches from the injection tie line to
the initial tie line. The second figure in figd.4 shows a closeup view of the dashed
region of point 2, 3 and 4. The tie line eigenvalues and nonite-line eigenvalues along
the injection tie line are shown in Fig.3.5 where points two and three are the same
points as the points two and three in Fig.3.4. It is shown in Fig.3.5 that the tie line

eigenvalue equals the nontie-line eigenvalue at point 3.

(d) A rarefaction along the nontie-line path
Point 4 in Fig.3.4 is the intersection of the nontie-line path and the initial tie line,

between point 3 and point 4 are the nontie-line eigenvalues on the nontie-line path. To
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Figure 3.5: Eigenvalues on the injection tie line

show the nontie-line eigenvalues on the fractional flow curve, we look at the geomet-
rical meaning of the nontie-line eigenvalue. The nontie-line eigenvalue, as provided
in Eq.3.38, can be expressed as the slope of a line between point (Cq, F}) and point
(—e¢, —€) on the fractional flow curve plot. By using the saturations from point 3 to
point 4, ¢;; along the nontie-line path can be calculated using Eq.3.41, hence Cy, F}
and ¢ can be calculated. Plotting the points (C1, F1) and (—¢, —¢) on the fractional
flow curve plot and connecting each (Cy, F1) to the corresponding (—e, —¢), the nontie-
line eigenvalues are shown in Fig.3.6 as the highlighted tangent envelope from point
3 to point 4. The points of (—e, —¢) are shown in Fig.3.7 (note: for clarity, not all
points are connected). Tracing along the nontie-line path direction shown in Fig.3.6,
the slope of the tangent is increasing, therefore, the rarefaction along the nontie-line

path satisfies the velocity condition.

(e) The leading shock
The nontie-line eigenvalue at point 4 is smaller than the leading shock velocity, hence

the composition at point 4 propagates with two velocities which is shown as a con-
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stant state bank. At point 4, the composition is located on the initial tie line. The
unique solution that satisfies the velocity condition is a shock connecting point 4 and
the initial composition point (point 5) as shown in Fig.3.4. The propagation velocity
of this shock is the fastest and it is called the leading shock. The fractional flow
analysis is completed for the LVI condensing case. From the injection composition
to the initial composition, the propagation velocities (eigenvalues) are monotonically

increasing.

The leading shock is is the displacement front connecting to the initial composition.
As shown in Fig.3.2, the intermediate component is becoming leaner along the nontie-
line path to the leading shock point (point 4), hence, the intermediate component is

condensed into the liquid phase along the nontie-line path.

3.3.2 Key saturations and elementary waves

As previously stated, each tie line can be uniquely identified by the equilibrium liquid
phase composition (c;;) associated with this tie line. The compositions which appear
in the solution located on the injection and initial tie lines and across the tie lines
along the non-tie line path. On the injection and initial tie line, ¢;; can be calculated

using Eq.3.27, and ¢;; along nontie-line path can be calculated using Eq.3.41.

The fractional flow analysis in the previous section shows that the elementary wave
solution for the LVI condensing case consists of two shock waves, two rarefaction
waves and a linear wave (the constant state bank). There are five key points (point
1 to point 5) in Fig.3.4 separating the elementary waves. Each of the key saturations

can be identified as following:
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Point 1 (S;): Referring to the fractional flow curve in Fig.3.4, point 1 is pure vapour

phase which is the left state of saturation (S;), by denoting the saturation at this

point to be Sy, we have: Sp = 5, = 1.

Point 2: At point 2, the shock velocity is equals to the tie line eigenvalue (i.e. the
slope of the line connecting point 1 and 2 is equals to the slope of the tangent to the
fractional flow curve at point 2). It can be calculated by solving the equation below,

and the saturation at point 2 is denoted as S;:

FI(SI) _ FI(SO)
C1(51) — C1(S)

= f1(S1) (3.44)

Point 3. Point 3 is the equal eigenvalue point, the saturation at point 3 is denoted

as Sy and can be obtained by solving:

FI(SQ) + ¢

(S e f1(S2) (3.45)

Point 4: The nontie-line path intersects the initial tie line at point 4, ¢;; on the
nontie-line path at this point is equals to ¢;; on the initial tie line. The saturation at

point 4 is denoted as S5 and can be calculated by solving the equation:

cy1(nontie-line path) = ¢p; (initial tie line) (3.46)

where c¢;; on the nontie-line path is a function of saturation expressed by Eq.3.41.

Point 5 (Sg): Point 5 is the right state of saturation (Sg) that is the pure liquid

phase. By denoting the saturation at point 5 as S4, we have: Sy = Sp = 0.




Table 3.2: Key saturations and eigenvalues for LVI condensing case

Elementary wave | Key saturation point | Saturation value | Eigenvalue
Trailing So(St) 1 0.1994
shock (v;) S 0.6768 0.1994
Rarefaction on 51 0.6768 0.1994
nontie-line path (vy) S 0.5747 0.4029
Rarefaction on Sy 0.5747 0.4029
initial tie line (v3) S3 0.2505 0.8416
Linear S 0.2505 0.8416
wave S 0.2505 0.8416
Leading S 0.2505 1.4833
shock (vy) S1(Sgr) 0 1.4833

All the key saturatious that separate the elenentary waves are identified. The eigen-
value of each elementary wave can be calculated using the saturation values along the
wave. Based on the fractional flow analysis, the trailing shock (v) is associated with
the tie line eigenvalue A, the rarefaction on the injection tie line (v3) is associated
with A, the rarefaction on the nontie-line path (vs) is associated with the nontie-line
eigenvalue A,; and the leading shock (v4) is associated with A;. Between the leading
edge of v3 and vy is the linear wave. The key saturations and the associated eigenval-

ues are summarized in Table.3.2.

The elementary wave solution is shown in Fig.3.8, where saturation is plotted versus
the corresponding eigenvalues. The elementary waves can be shown in terms of overall

composition of each component by using ¢y, S and K-values as shown in Fig.3.9.
The composition path presented in the ternary diagram is shown as Fig.3.10. The
numbered points in Fig.3.10 correspond to the points in Fig.3.4. Fig.3.10 clearly

shows the initial and injection tie lines, between which is the nontie-line path.

Following the same procedure, the key saturations and elementary waves are con-
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Figure 3.8: Elementary waves of saturation (LVI condensing case)

structed for the HVI vapourizing case. The key saturations and corresponding eigen-
values are summarized in Table.3.3. The solution of elementary waves and the com-

position path are shown from Fig.3.11 to Fig.3.13.

It should be noted that for the LVI condensing case, we use C4 to represent the
intermediate component. We use COy to represent the intermediate component for

the HVI vapourizing case as shown in the composition elementary wave solutions.
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Table 3.3: Key saturations and eigenvalues for HVI vapourizing case

Elementary wave | Key saturation point | Saturation value | Eigenvalue
Trailing So(SL) 1 0.1994
shock (v) St 0.6768 0.1994
Rarefaction on St 0.6768 0.1994
injection tie line (v9) So 0.5585 0.4490
Linear Sa 0.5585 0.4490
wave S 0.5585 1.1801
Rarefaction on Sa 0.5585 1.1801
nontie-line path (v3) Ss 0.3995 1.2537
Rarefaction on S3 0.3995 1.2537
initial tie line(vs) S4 0.3220 1.9501
Leading Sy 0.3220 1.9501
shock(vs) Ss(Sgr) 0 1.9501




Elementary wave solution (HVI vaporizing case)
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Figure 3.11: Elementary wave of saturation (HVI vaporizing case)

3.4 Total Flux Solution with Constant Pressure
Boundaries

Based on the elementary wave solution calculated in the previous two sections, the
time dependent wr, pressure distribution and saturation profiles can be calculated
with constant pressure boundaries by applying the approach developed by Johansen
and James (2012). It should be noted that the ‘propagation velocities’ calculated
in the previous section are not the real velocities, they are eigenvalues, the actual

propagation velocity is related to up as:

v i=1,..,N (3.47)
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Figure 3.12: Elementary wave of component concentration (HVI vaporizing case)
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where v; is the eigenvalue of wave i. The actual propagation velocity of v; is denoted
as V;. As ur is a function of time ¢, the actual velocity V; is also a time dependent

function.

3.4.1 The period before v, breaks through

Before vy breaks through, the saturations are all at S; ahead of the leading edge of
vg. Referring to the formula developed by Jolansen and James (2012) the total flux

can be calculated by:
o 2P
urlt) = 7pry ach

and breakthrough time of v4 can be calculated by:

(3.48)

AL? + 2BL
tora = —7 — (3.49)




The data required for the calculation are provided in Table.3.1 and the parameters

A, B, C are given by:

N 1

1
4= ZTZ (SR)ZE ~ M(Sk)

_ 1
A7 (Sg)
o 28pun(Sr)
o
The total mobility Ar is defined as:
Ay = KK,, N KK,
Ho Hg

and the functions r; and £; are defined as:

r. = U“i(Si—l) - ’U«;hl(Si_l)
o 'UN(SR)/\T(S,;_I)

L’—/—dS

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

It can be seen that for shocks £; = 0. In general, r; represents the ‘length’ of a

constant state bank and £; represents the ‘length’ of each rarefaction wave. The term

L, can take two forms for a three component problem, either the integration of the tie

line eigenvalue or the integration of the nontie-line eigenvalue. Prior to vy breaking



through, N =4 and Sp = S;. Hence we have the following expressions for r;:

_f1(S) -0
174(51{))\7‘(50)
ry = f1(S1) = f1(S1)
U4(SR))\T(51)
F1(S2)+¢(S2)
ry = Carisy — f1(52)
v3(Sr)Ar(S2)
Fl(S;})—Fl(SR) . F1(53)+E(S3)
T4 — C](Sg]-C](SR) Cl(A93)+f(53)
va(Sr)Ar(S3)
Expressions for £, are:
L =0
Sz 22 _l_ (253_352) 2
r /—dS / IASTAR +az 15
2= ) 2w 2+ L= 5)Par

SJ[EEMS_)]
Ls :/Mds
Ar

where M is viscosity ratio defined in section 3.2.1.1. It can be observed from the
elementary wave plot that 7, = 0 and r3 = 0 and that the integration of the shock

waves v) and vy are zero. For time 0 < ¢ < tpr4, ur can then be calculated using

Eq.3.48.
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Figure 3.14: Two scenarios of wave when 0 < t < tpr4

3.4.2 The period after v, breaks through, before the leading
edge of v3 breaks through

After the shock wave vy breaks through, vz becomes the leading wave ahead of which is
a constant state with Sy = S3. Before proceeding with the calculation, two scenarios

must be compared.

In Fig.3.14 (a), is the elementary wave solution we have for the LVI condensing case
having Sk = S;. By removing v, from (a), we have the wave (b) having S = S;. Let

Ur, be the total flux for (a) and ugy for (b) for 0 < ¢t < tpr4. We have:

_ Ap

Ura(t) = ————
g B+ ACut
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A
ury(t) = ——F
v/ BE + A,Cpt
At the period 0 < t < tpr4, (a) and (b) have different wave structures, ur,(t) and

urp(t) are therefore different for 0 <t < tpra.

As shown in Fig.3.15, x3, is the location of the leading edge of vs for (a) and x3y is
the location of the leading edge of v3 for (b). Prior to tpr4, () and (b) are travelling

at different velocities, x5, and x3 are therefore different at each point in time.

The propagation velocity of the leading edge of a wave is expressed as:

APUN(SR)
¢(Azn + B)

dxy _ U_TUN(SR) _

Pl (3.56)



Integration of the above equation gives:

Az} +2Bzy =Ct+c (3.57)

where ¢ is the integration constant. We first apply Eq.3.57 for case (b). When t = 0,
x3p = 0, then the integration constant ¢ = 0. Let 3, = 2’ at ¢ = tpr4, hence for
tpra <t < tprs we have:

Apz? + 2By’ = Cytpra (3.58)

Now apply Eq.3.57 for case (a) for tgra <t < tprs. Let 23, = z at t = tpr4. For

tera <t <tprs, (a) has the same A, B, C with (b), so we have:

Ab.’EZ + 2Bpx = CstTA +c (359)

Comparing Eq.3.58 and Eq.3.59, 2’ # z as discussed, so ¢ # 0 in Eq.3.59. The differ-

ence between the two scenarios can be explained as following:

Case (b): parameters A, B,C become Ay, By, Cp from ¢t = 0 to t = tpr3, hence if
we trace t back to t = 0 with Ay, By, Oy, 234 is zero and the integration constant c is

therefore zero for 0 <t < tpr3s .

Case (a): parameters A, B, C become A, B, Cy, only for the time period tprq <t <
tpr3s, hence if we trace ¢ back to t = 0 with A, By, C}, 23, will not be zero and the

integration constant c is therefore not zero for tpry <t < tprs.

This also can be explained as: from ¢ = tpra4, (a) and (b) are both having A =

Ay, B = By, C = (C, but they have a different total flux history before ¢ = tpr4. For
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(a) to use Ay, By, Cp for tprs < t < tpra, the difference in historical accumulation
of travelled distance with (b) can be adjusted by the integration constant c. This
integration constant will be needed whenever we apply Eq.3.48 for a time period after

the breakthrough of the trailing edge of the leading wave.

The integration constant can be evaluated simply by substituting z3, = z and ¢t =

tpra into Eq.3.59. The location of any saturation point S on v;, at any time ¢, is

given by:
(¥ S .
2(S,t) = - fb )\Il(t);z -1, N (3.60)
where U(t) is given as:
t
U (t) :/qut (3.61)
0

Using Eq.3.60, z(Ss,tpra) can be calculated:

(S
x(Ss,tpra) = 216 /qut

where ur for 0 <t < tpr4 is known from the previous section. Now ur for tpry <
t < tprs and the breakthrough time of v3 (tpr3) can be calculated by using Eq.3.48

with the integration constant c:

AL? +2BL — ¢
tprs = = (3.62)

_ Ap
VB2 +A(Ct +0)

ur(t) (3.63)

The parameters A, B and C need to be updated for the new wave structure with

Sp=953and N =3.
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3.4.3 The period when v; is continuously breaking through

We denote the time period 0 < t < tpr4 as t;, the total flux for ¢; as up, tpra <
t < tprs as tp, with uyp as the total flux for i3, and time period tprp <t < tpr3 as
ty and upsy as the total flux for ¢5. The common feature of the wave structure for ¢;
and t, is a constant saturation continuously breaking through the outlet end. During
t3, the saturation values along vs are continuously breaking through. The calculation

here can be expressed as:

¢[L* — (S, tpr,n)?)

QLUN(S)(tS - tBT,N) (364)

UT(tS) =

S
_ O[L? = z(S, tern)? | & Y " un(S)
ts =tprn + QAPUN(S)2 ;T{UN(S) + ; C;+ / p ds (365)

Sn-1

where tg is the breakthrough time of an arbitrary S on vy and z(S,tpry) is the
location of S at tpr . By using Eq.3.64 with Eq.3.65, tg is calculated using the
location of .S at the breakthrough time of the previous value of S. In other words,
the calculation here is an application of Eq.3.64 in an iterative way (i.e. (S, Tpr,n)

and tpr v are updated while each S is breaking through).
The calculation procedure can be described as the following steps:

(1) First we break vs into discrete saturation values: S(1),5(2),...,5(n — 1),S(n),
starting from S(1) = S5 to S(n) = S,.

(2) The value of ur at tpr3 (denoted as ur(tprs)) is known.

(3) Calculate the location of S(2) at tgrs (denoted as x(S(2),tpr3)) using Eq.3.61,

then tg2) and up(tsiz)) can be calculated using Eq.3.65 and Eq.3.64, respectively.
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Figure 3.16: Calculation method illustration for breaking through of rarefaction wave

When calculating z(S(2),tpr3), ¥(tprs) needs to be calculated as:

tBT,4 tpr,3
.’I?(S(Q),tBT,g) = U—S(%)- (/ UTldt + / Ungt) (366)
0 tBT.4

(4) The waves continue to advance until S(2) breaks through as shown in Fig.3.16

(b). To calculate 2:(.S(3),ts(2)), ¥(ts(2)) needs to be updated as:

tBT,4 ipT,3 ts(2)
3(5(3
l(S(3),tS(2)) = 23%)) (/ UTldt + / ’U,ngt + / UTdt)
0 tBT4 tpT3

The integration of ur over the two points of tgr4 and fg;) can be calculated by the

numerical integration method of the trapezoidal rule:

ts(2)

[ur(tsrs) + ur(ts)lltse) — tersl
9

’LLTdt =

tpT,3



After calculating 2(S(3), ts(2)) using Eq.3.60, t53) can be obtained using Eq.3.65:

. 5(3)
O[L? — 2(S,ts)?] | & : v4(S)

L " ; ds
tsi = tsto + “p g | Sres(SG3) + 3L+ S/ "

and ur(tss)) is calculated as:

wr(ts) = 2 = 25@) tse)’]
TS 9 Lus(S(3))(ts () — ts(z)

(5) The same procedure can be performed for the following saturations until S(n).
After the calculation for S(n), we have tg) = tprz, V(tsm)) is still need to be

updated:

ts(n) tpr2

U(tsm) = /qutI /qut
0 0

3.4.4 The period when v, is continuously breaking through

After the trailing edge of vz breaks through, v, will continuously break through and
the calculation procedure will be the same as the calculation for vz, but now we
have N = 2. During the calculation of urg , the nontie-line eigenvalue is a rather
complicated function of S, so integration of v§ can also be performed numerically. For
wave vy, the tie line eigenvalue is relatively simple to calculate. After breakthrough
of the trailing edge of vs, uy will remain constant, since there is only a single vapour

phase flowing.

3.4.5 Sample solution

Based on the procedure outlined in the previous sections, the time dependent global
flux and the locations of all waves can be generated for each time period. Fig.3.17

shows the total flux solution for the LVI condensing case.




As shown in Fig.3.17, due to the different features of each elementary wave, ur has a
different behaviour at each time period. It can be seen from the saturation profile that
the less viscous vapour phase is increasing in the displacement space, while the more
viscous liquid phase is being displaced. Generally, the whole fluid system within the
displacement space is flowing more easily. As observed in Fig.3.17, ur is increasing

with timne, but with a changing rate at different time periods.

As up is known at each point in time, the location of all saturation values at each
corresponding point in time can be calculated using Eq.3.60. The wave locations at
the time before vy breaks through, ¢ = 0.5¢p74, t = tprs and ¢t = tpro are calculated
and shown in Fig.3.18. The advancement of the saturation wave is now able to be

observed, as is the breakthrough of each elementary wave.

By using the same analysis approach, the key saturations and elementary wave for
the HVT vapourizing case can be obtained. The key saturations are summarized in
Table.3.3 and the elementary waves and the composition path are shown in Fig.3.11
and Fig.3.13. The time dependent ur for the HVI vaporizing drive case is shown
in Fig.3.19 and the location at different points in time is shown in Fig.3.20. The
calculated ur at the breakthrough time of each elementary wave for both cases are

summarized in Table.3.4.

3.5 Pressure Gradient Calculation

From the expression of wurp:

Uur = —/\T% (367)
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Figure 3.17: Time dependent ur solution for LVI condensing drive case

Table 3.4: Total flux solution summary

LVI condensing HYVI vapourizing

tpra (8) 3212 2148.9
ur (1074 m/s) 0.51 0.7559
tnTa 47286 2725.7
wr 0.7588 1.036
* BT - 2803.3
ur B 1.1699
tpT.2 67143 1655.6
ur 1.6982 1.5892
tpT.1 8750.5 1655.6
ur 2.9977 2.9981

x 10

* tpr. is the breakthrough time of the leading edge
of the constant state bank for HVI vapourizing case
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Figure 3.18: Locations at different times for LVI condensing drive case
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Figure 3.19: Time dependent up solution for HVI vaporizing drive case
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Figure 3.20: Locations at different times for HVI vaporizing drive case

The integration of the above equation will give the relationship of uy and the pressure

difference:
T
dz

[ (3.68)

P1 — P2 = ur

If we let p; to be the known pressure at the inlet, then the pressure at any location at
a given point in time can be calculated using Eq.3.68. The calculation can be gener-
ally classified into two types: i) location on the elementary waves and ii) location on
the constant state banks. The approach of the pressure gradient calculation is shown

by a sample solution calculation at £ = 0.5tpr4 for LVI condensing case.

First we show the calculation of a location on an elementary wave. As shown in
Fig.3.21, we have an arbitrary point S on v3. The location of this point is zg and
we need to calculate the pressure at this location pgs. The wave between p;,; and pg,

consists of three constant states, two complete waves, and a segment of v from S, to
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Figure 3.21: Pressure calculation for locations on rarefaction waves

S. If we denote the leading edge of v; to be z; and the trailing edge as y;, referring

to Fig.3.21 and applying Eq.3.68, p,s can be expressed as:

(3.69)

0 Ydr  “tde de e Yo “d;c]
Pzs = Dinj — uT

SR SR SR R e v
Y1 xry Y2 T2 Y3

For shock waves we have z; = y;, and for waves that are connected with a zero length
constant bank we have y; = x;,_,. Hence the expression above can be simplified and

rearranged to:

Ty 5 D
zs — Dinj t .
Pos = Pinj — ur({) ZAT(S ) (3.70)
Applying the definition of r; in Eq.3.54, we have:
3 1 2 / S)
Pus = Pinj — ur(D)2(S,8) D ri+ —= > L; ds) (3.71)
i=1 v3(5) 15
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Table 3.5: Pressure calculation summary for LVI condensing case

Point Location (m) | Pressure (kPa)
Inlet point 0 15000
Trailing shock (v1) 0.06 14999.3
Leading edge of vq 0.12 14997.4
Leading edge of vs 0.25 14988.1
Leading shock (v4) 0.44 14968.7
Outlet point 1 14900

Note that for calculating vy(Sg) in 75, N and Sg should correspond to the point
we are calculating, hence for S we should use v3(.S). All other similar points on the
remaining waves can be calculated using Eq.3.71. For locations on a constant bank
as shown in Fig.3.22, it can be derived through the same procedure, and it is given

as:

3 3
z(vs, t T, — x(U3, T
Pze = Pinj — up(t) | Y _rix(vs,t) + (s )ZQ + 2o~ 2(vy, 1) (3.72)
i=1 us(S) o Ar
where z(vs, ﬂ is the location of the leading edge of vz and for the calculation of r;,
vy = v3 and S = S;. For the location on a constant state bauk between the leading

wave and the outlet end such as z/, in Fig.3.22, it is simple to calculate using the

sressure difference between z/. and the outlet pressure, which is given as:
C )

Up
/rc = Pout T — (L — é 3.73
p Pout )\T(SR) ( z ) ( )

For z, uy = vs and Sgp = S;. By calculating the pressure at each location from
the inlet to the outlet, the pressure gradient at { = 0.5tpr 4 can be constructed, as
shown in Fig,3.23. The pressures and corresponding locations at several key points

are sumimarized in Table.3.5.
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Chapter 4

Numerical Model with Constant

Pressure Boundaires

4.1 Governing Equations

The goal of the numerical compositional simulations is to simulate the displacement
process that most closely capture reality. In order to capture the behaviour of the
reservoir fluid and porous media, we incorporate the correlations and a flash calcula-
tion procedure into the math model. The viscosities, capillary pressure, porosity and
rock compressibility are modelled by the correlations. The phase molar densities are
calculated by the flash procedure. The basic conservation laws express that the net
mass flow of the fluid into the control volume is equal to the change of the mass of the
fluid. The compositional model is based on the mass conservation for each component
within the fluid system. We define the overall mole composition of each component

as:

(PoSo + PgSg)zi = YoiPoSo + YgiPgSg: i =1,...,nc (4.1)

66
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where y,; and y,; are the equilibrium liquid and vapour phase mole compositions.
The liquid and vapour phase saturations are Sy and S, and pg and p, are the molar
densities. The total number of components in the fluid system is defined as nc. We

also have:
p()SO
=——F--V=1-1L (4.2)
PoSo + Py Sy
where L and V' are the liquid phase and vapour phase mole fractions, respectively.

Once again we use the material balance equation from Eq.3.12 for each component in

one-dimensional flow:

0 9, P, 0 Op )
g[(j)(pgsg + poSo)zi] = %(yoi/\oa) + —x(ygi/\ga—;); t=1,...,nc (4.3)
Py = Do + Dego (44)

where J; is defined as Eq.3.10 and z; is the overall mole concentration of component .
The pressure of the oil phase (p,) and the gas phase (py) are related by the capillary

pressure between the two phases (pego).-

The remaining equations needed to solve the system come from the phase equilibrium
constraint. Throughout the displacement process we assume that at each location we
are at the thermodynamic equilibrium condition. For such an equilibrium system we
have:

fig = f,—,o;i =1,..,nc (4.5)

where ﬁ-g, fio are fugacities of each component for the gas and oil phase. The con-
straints of equal fugacity on each component in all phases are calculated using the
flash calculation performed using the pressure and overall composition at each loca-

tion. The system consists of the equations and constraints above and the unknowns
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of phase saturation. Once the saturations for next time step are solved, the phase
mole fraction, pressure, overall composition and equilibrium phase compositions for

next time step can then be solved.

4.2 Fluid and Rock Parameters

The correlation used in the model is introduced in this section. It should be noted

that all symbols utilized refer to the original literature.

4.2.1 Relative permeability

The widely-used capillary pressure model developed by Brooks and Corey (1964) as
shown in Eq.3.15 and Eq.3.16 is applied in the numerical model to obtain values for

relative permeabilities.

4.2.2 Capillary pressure

The Brooks-Corey model is used for modelling the capillary pressure (F,). It gives:

P, = p.(S5)"3 (4.6)
* Sw - Swr
Sy = . (4.7)

where S, is the residual saturation of the wetting phase and p, is the entry capillary
pressure. The entry capillary pressure (p,) is the initial value of the capillary pressure
and the atmosphere pressure of 14.69 psi is used for pe. The rock pore size distribution
index () reflects the rock property effect on capillary pressure. We assume A = 0.56

to approximate the pore size distribution index of a average reservoir sandstone.
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4.2.3 Gas viscosity

Chung (1984, 1988) proposed the method for pure gas viscosity prediction as:

F(MT)'/?
= 40.785(2/43) (4.8)
F, =1 —0.2756w + 0.059035u + k (4.9)
O, = [A(T*)™B] + Clexp(—DT*)] + Elexp(—FT*)) (4.10)

where p is the viscosity of a pure gas component (cp), M is the molecular weight
(g/mnol), T is temperature (°K), V, is the critical volume {cm3/mol), T* = 1.22593T,,
T, is the reduced temperature. In the expression for F,, w is the acentric factor and
k is a special correction for highly polar substances, in this case k is zero. The con-
stants in €2, are A = 1.16145, B = 0.14874, C' = 0.52487,D = 0.77320, £ = 2.1617

and I’ = 2.43787.

After the viscosity of each of the pure components have been calculated, the method

by Wilke (1950) is used to calculate the gas mixture viscosity. Wilke (1950) proposed:

Z Yjlti
ILLm = n . (4'11)
=1 zlyj¢ij
Jj=

[ G/ )P (M /M) 0P

S (T TACE )

where y; is the mole fraction of each component and n is total number of components

in the vapour phase.




4.2.4 Oil viscosity

A real oil sample contains a large number of hydrocarbon components and non-

hydrocarbon components. The model proposed by Elsharkawy (2003) is:

po = T P (Y24 )" (GL)* (Gm)*(Gh)™ (4.13)

where a7 = 2248.089447,0, = —1.27846,a; = 0.117425,a4 = 13.191727, a5 =
—0.32428, ag = 0.066623, a7 = 0.655418, and ~.7, is specific gravity for C7+ com-
ponents. The mole fraction of the light component group, the intermediate compo-
nent group and the heavier component group are Gp, G,, and Gy, respectively. The
temperature (T') is in °F" and pressure (P) is in psi. Apply this model to the three-
component system, the mole fraction of the three components corresponds to Gy, G,

and Gy, respectively.

4.2.5 Porosity

A porosity model derived from rock compressibility is used:

¢ = ¢o[l + ep(P — Fo)] (4.14)

where ¢ is porosity, cp is rock compressibility in Pa—!, B, is the reference pressure in
) y ) p

Pa and ¢q is porosity at the reference pressure P.

4.2.6 Equation of state

A general flash calculation procedure is used with the Peng-Robinson equation of
state (PR EOS). The detailed flash procedure and the PR EOS will be provided in

Appendix.A.
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Figure 4.1: Model calculation procedure

4.3 Model Structure

The commonly used IMPES method is used for solving the governing equations. The
calculation procedure flow is illustrated in Fig.4.1. The calculation begins when t = 0
and continue until ¢ equals the specified termination time (f..q). After specifying all
input parameters, the model will perform the calculation and update all variables.
The associated data can be generally classified into sections including: rock property
data, fluid property data, condition (i.e. pressure and temperature) data and grid
block data, etc. The data structure for the model that illustrates the relationship

between the data groups is shown in Fig.4.2.



It is illustrated in Fig.4.2 that the main variables include the overall composition
and gas phase pressure. By using the flash calculation and correlations, the variables
including the molar densities, saturations, phase compositions, viscosities and porosity
are obtained. The grid block data controls the performance and configurations of the

simulation process.

4.3.1 Method of solving pressure
4.3.1.1 Pressure equation

The gas phase pressure is used as the primary variable, hence the following ‘pressure’
refers to the gas phase pressure (i.e. p is p,). Using Eq.4.3 for each component we

have:
ne nc nc

Zzi = l’zyoi = lvzygi - 17 1= ]-a ey TC (415)
i=1 i=1 i=1

After summation of Eq. 4.3 we obtain:

1o} Opo 0 Opgy

0
— S, oSo) = —(Ao——) + — (A j—— 4.16
Substituting p, by p, using Eq. 4.4, and defining o as:
a = PoSo + pPySy (4.17)

we get the pressure equation:

0 _ 0 a(p = P o) 0 8p
?9—t[¢a] = %[Ao%] + %(/\95_;) (4.18)




Figure 4.2: Model data structure



4.3.1.2 Discretization of pressure equation

Starting from the left hand side of Eq.4.18:

0 0¢ Op Oa Op
— =0 — 4.19
519 = 5 T 5t (1.19)
From Eq. 4.14 it can be shown that:
¢
—8; = ¢oCp (4.20)
oo ap, Opy
— = (So—— -— 4.21
8}) (SO ap + Sg ap) ( )
The time discretization is:
op _p"-p"
—_— = 4.22
ot At ( )

where n stands for time step. The molar density of the gas and the oil phase can be
expressed as:
=0,9 (4.23)

P; e J
' Z,RT’

hence, the molar density derivative term in Eq. 4.21 can be expressed as:

Opy - 1 pd%

Firoozabadi et al. (1988) provided a detailed method for calculation of the compress-
ibility derivative term in the above equation. This is shown in Appendix.A. The
centre point finite difference method is used to discretize the partial derivatives. This
method uses the parameters in the block centre to represent the whole block. An
one-dimensional flow is used to show the niodelling scheme as is shown in Fig.4.3. A

two-dimensional scenario will be shown in a later section. In Fig.4.3, the potential
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Figure 4.3: 1D blocks scheme

flow direction is set from left to right, where dz is the distance between each block

node. For block i, the right hand side of Eq.4.18 can be written as:

p?—:_ll - prgn( 17:-1) - p;H_l +p("lgo(szn)

()‘oi+% A.’L‘
A, P?—H - pcgo(Sin) - p?j-ll + pCHU(Szn—l) )L (425)
ol—g Az Az
n+1 n+1 n+1 n+1
ntl el 1
T e e
2 Azx 9173 Ax Az

where A, 1 is the mobility of either phase across the interface between block : — 1 and

i and A,_1 is the mobility across block 7 and ¢ + 1. The mobility is calculated using

the upstream approximation in Eq.3.10:

Kk (SI
Al = —( l)pi—l» )\i+
2 Ui—1

Kk (57)

Uy

4

N=

We first assume a homogeneous medium, therefore we have a single permeability K.
When dealing with the heterogeneous cases, the permeability will be up scaled for the
interface between blocks.This will be further discussed in the two-dimensional case

modelling section.

Substituting Eq.4.19 to Eq.4.25 into Eq.4.18, we have the pressure equation in the



76

following form of:

0<Z> Yy
(a + ¢ ) TAr
(/\ . p?rll ]%go(sﬁ;_]) n+1 + prgo<5n)
o Az (4.26)

p;H_l - pr:go(Sin) n+1 + ngo(S ) 1

B /\Oi_% Aa: )A—x
n+1 __ n+l n+1 n-+1 1
+(/\ lpl+1 P ‘/\;.l_pl — P 1) ’ Z:L .,N
9tz Az gt Az Az

It should be noted that Eq.4.26 only contains one unknown, p™*! . If we have a total
of N grid blocks, we will have a system of N equations to solve. By rearranging

Eq.4.26, we obtain the pressure equation in the form of:
api + bt +epll = Fyi=1., N (4.27)

where

a; = (/\oi—% + Agi—%)/A‘wz

b; = —(/\oz'—% + )‘gi—% + ’\oi—% + /\gi—% + Ei)/A$2

Ci = (/\oi+§ + /\gi+%)/A$2

Fi == _/\oz —pcgo(S:l 1) (/\01'-0-% + /\oi«%)p‘?go(s‘?) - /\""‘""%pcgo(sﬁkl) + Eip?
¢

£ = (a 8_+¢ )/At

Eq.4.27 represents a linear system of pressure equations. This can be directly solved by

assembling a tridiagonal matrix. The unknown vector is defined as (py, p2, ...pN—1, PN)-




The pressure equation coeflicient matrix is shown as:

by D1 Fy — aipg
ay by e P2 Fy
- : (4.28)
an-1 by eno1| | Py Fnoa
ay by PN Fy —enpyia

In this case, the fixed boundary pressure condition is used. In the equation above, pg
represents the constant injection pressure and py,; represents the production pres-
sure, specified as boundary conditions. By solving Eq.4.28, the pressure at each node

can be updated simultaneously for the next time step.

4.3.2 Method of solving for composition

From the original pressure equation Eq.4.18, it also can be shown that:

(6a)"! = (g)" + At[%(&ﬁ%) + %(Agg—i)] (4.29)

where the term (éa)"*! can be calculated by using the newly solved pressure in
Eq.4.29. The conservation equation for each component is used to calculate the overall
composition of each component. Eq.4.3 can be written as:

(¢a)n+lzgt+1 _ (¢a)1z Z,Ln _ 8 a(p _ pcgo) a ap

At a(ym”\o I ) + %(ygi/\g%); 1=1,..,nc

For simplicity, the right hand side of the composition equation is expressed in partial
differential form, where 7 in the equation stands for component index. This equation

is repeated for each grid block. Rearranging the equation above, we get the following



composition equation:

n.,n O(p—pPego
nt+l _ (qba) zy + At[}%(yoi/\o'%) + %(yglx\ggg)]

% (Gt (4.30)

The overall composition of each component can be calculated using Eq.4.30. The
upstream values of phase composition y, and y, inside partial depreciative terms are

used and the term (da)"™! is as calculated by Eq.4.29.

We use a single point upstream method to calculate the flux across the block interface

that y,(or y,) at block i — 1 is used to calculated the flux at the location of ¢ — 1/2.

4.3.3 Solving for saturation, phase composition and density

The pressure and overall compositions calculated from the previous two sections are
the input values at the next time step. By using the updated pressure and overall
compositions, the saturation, composition and phase molar densities at the next time

step are calculated from the flash calculation.

The flash calculation is based on the constraints of isothermal phase equilibrium as
expressed by Eq.4.5. During the iteration process, the equilibrium constant K-values
are obtained which satisfy Eq.4.5. The vapour and liquid mole fractions and phase
compositions are also obtained. From Eq.4.2, the phase saturation can be calculated.
Phase molar densities are obtained from the EOS calculation. Note that if a single
phase (either S, or S, =1) is predicted, the value of the overall composition (z;) is

used for y, or y, in the calculation.
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Figure 4.4: 2D grid block scheme

4.4 Upgrading to a Two-dimensional Model

4.4.1 Grid block arrangement

The displacement for a two-dimensional model can be decomposed into two directions
(z and y directions) assuming the flow is in a horizontal plane and gravity is negligi-
ble. A typical grid block configuration used in this thesis is shown in Fig.4.4. For a
single block, for example block 2, the flow will be related to the four adjacent blocks:

block 0,1, 3, 4. It should be noted that block 2 is an arbitrary non-boundary block.

Assuming a flow direction as indicated by the arrows in Fig.4.4 and applyving the

IMPES formulation in both directions, we have:
Up,0-2 — Up2—4 + Ug0-2 — Ug -4 = Up1-2 — Up2-3 + Ug1-2 — Uga_3 =0 (4.31)

where u is defined as:

/\-8—p or /\Op

5 7 5 (4.32)



a: Grid block numbering b: Coefficient matrix

Figure 4.5: Grid block numbering and coefficient matrix

and A is as defined in Eqs.3.10. From Eqs.4.31 we have:
Up_o — Uo_gq4 + Uj_2 — Up_3 = 0 (433)

By substituting A into Eq.4.33, the pressure equation can be obtained. Rearranging
Eq.4.33, we have the pressure equation in the form of :

a,kp?ii—ll’j) + bkp?ii;‘l_l) + Ckp?i:; + dkp?i;Ll) + ekp(”;ill,j) =Fg k=1,..,N (4.34)

Once again, N is the total number of grid blocks. The pressure equation for the
2D case will define a different linear system. Using the example of, a 5 x 5 grid
configuration as shown in Fig.4.5 (a), the constant coeflicient matrix will be a 25 x
25 matrix as shown in Fig.4.5 (b). This example shows the exponential increase
in required calculations with any refinement of the grid block configuration. The
extension to a 2D model requires far greater computing resources as compared to the
1D case. After assembling the linear system, pressure can calculated. The calculation

scheme for updating the composition and other properties is similar to the 1D model.
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Figure 4.6: Boundary adjacent block treatment

4.4.2 Boundary treatment

Since a no flow boundary is applied, the boundary blocks will have the same pressure
as the adjacent inuer blocks. A five-spot configuration is shown in Fig.4.6, where
shadowed blocks are used as boundaries, inner blocks are the numbered flowing grid
blocks and the red blocks are the inlet and outlet block, respectively. As boundaries,
p1 is fixed at the injection pressure (pi;) and po is equal to po. The pressure equation

of block 2 can thus be write as:

(a2 + c)p5t" + daps ™ + eapi ™! = Fy — bypin; (4.35)

Eq.4.35 shows that for block 2 in Fig.4.6, the coefficient in front of p§** in the matrix
is actually ag + ¢ and a; is eliminated from the matrix shown in Fig.4.5. The same
manipulation can be applied to all inner blocks adjacent to the boundary blocks. Using

the no flow boundary condition, all iuner block pressures are solved as unknowns.



4.4.3 Permeability upscaling

In a heterogeneous displacement field, variation in permeability and other rock prop-
erties will affect the fluid flow directions and pressure distribution. The permeability
needs to be upscaled for approximating the flow across the adjacent block interface. A
harmonic average scheme is used for permeability upscaling. For two adjacent blocks,

1 and 2, the upscaled permeability can be calculated by:

2dx

m*:@+ﬂ
Ky Ko

(4.36)

4.4.4 Sample solution of 2D model

A sample water flooding case was simulated to verify the 2D model formulation. The
geological model SPE-10! was used as an example whicli is specified as a 60 x 220 x 85
grid block dimension shown in Fig.4.7. The first layer of the SPE-10 model is used
for the simulation. We take the logarithm of the permeabilities in the plot so that the
high values and the low values of permeability both can be identified clearly shown
in Fig.4.7(b). The permeabilities ranged from 0.003 mD to 4647 mD. The red circle
region in Fig.4.7(a) and the corresponding region in Fig.4.7(b) is a low permeability

region.

The water flooding process is simulated on a 60x 220x0.1(m) grid block configuration.
The sample solution for water saturation distribution is shown in Fig.4.8. The water
is injected from the left bottom block [block(1,1)] and produced at the right top
block [block(220,60)]. The figure illustratess that the water flows around the low
permeability region toward the outlet (shown as the blue dished eclipse region in

Fig.4.8).

'SPE 10th Comparative Solution Project Model 2
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Figure 4.7: SPE-10 grid model and permeability distribution
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Chapter 5

Numerical Model Validation and

Case Study

The solution from the numerical model can be validated by comparing it to the ana-
lytical solution. As discussed in the previous chapter, when we increase the number of
properties (for example viscosity, capillary pressure) that are modelled in the numer-
ical simulation, these properties and the numerical method will smear the solutions,
such they make shocks and each elementary wave are becoming identical. To verify the
solution from numerical model, a comparison with the analytical solution is required.

From the comparison, features of the displacement are expected to be revealed.

5.1 Numerical Model Validation

The nuimerical model can be validated by comparing the solution to the analytical
solution. The analytical solution of the LVI condensing case from Chapter 3 is used
for the comparison. We simplify the numerical model such that constant K-values are

used and the property correlations are ignored. For both the analytical solution and
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Table 5.1: Input data for comparison

Parameter Numerical model | Analytical model
Injection composition Cy=07,Cy=03
Initial composition Ci1=02,C=0
Constant K-values K, =25 Ky, =0.5, K3 =0.05
Residual oil saturaition Sor =0
Connate water saturation Swe =10
Critical gas saturation Seg=10
Grid block number 50, 300, 1000 —
Length ln —
Time step/grid size ﬁ—;‘ =0.1 —

the numerical solution, we use a constant total flux condition. The input data for the

comparison is shown in Table.5.1.

The comparison of the saturation profile is shown in Fig.5.1. The nuinerical solution
using 50 grid blocks shows that the leading shock is smeared. It is shown that the
leading shock from the analytical solution has a velocity of 1.48 and the leading edge
of the numerical solution using 50 grid blocks has a velocity of 1.64. As the grid
block number is increased to 300, a relatively sharp leading shock can be identified,
however, vp and v3 (the wave notation refers to the elementary wave solution for LVI
condensing case in Fig.3.8 in Chapter 3) can not be identified. When we use 1000
grid blocks, the solution shows quite a sharp leading shock and each of the elementary
waves can be identified. By refining the grid blocks from 50 to 1000, it shows that
the numerical solution approaches the analytical solution. The comparison of the

components profile also interprets the same behaviour as shown in Fig.5.2.
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Figurc 5.1: Saturation profile comparison

5.2 Case Study

5.2.1 Case study 1: 1-D ternary system injection
5.2.1.1 Preview

The most significant mechanisms for the gas injection process are component be-
haviour and transfer among phases. The performance of the composition based simu-
lation system is also directly related to the properties of the components. This study
uses two sets of ternary systems, C1, CO,, C10 and C1, C4, C10 to demonstrate how
different components affect the displacement performance. Carbon dioxide (COj)
plays a critical role for flue gas injection processes. By choosing CO; and comparing
this with normal gas injection, the advantages of flue gas injection can be presented.
All parameters are kept the same for both cases, the only variation is to the critical

propertics of CO5 and C4. Valucs for all the paramecters arc listed in Table.5.2.

Since the capillary pressure will smear the solution, we ignore the capillary pressure.
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All properties’ correlations are incorporated with the exception of capillary pressure.
The accuracy of the results depends on the applicability of the correlations, the nu-
merical method stability and the limitation of assumptions. In this case study, a
ternary composition of C1, CO9(C4) and C10 are used with the purpose of represent-
ing ‘light’, ‘medium’ and ‘heavy’ groups of components. As some of the correlations
are developed based on real oil samples containing higher number of components, the
correlations are not entirely suitable for a simple three-component system. However,
these correlations will capture the trend and major effect of a particular property.

This will be discussed below.

The viscosity correlation of Eq.4.13 is expressed in terms of the mole fraction of ‘light’,
‘medium’ and ‘heavy’ groups and the specific gravity of the C7+ group, hence in this
case study, each of the three components are used to represent the three groups. A
normal rock compressibility, cp = 9.1x 107 (Pa™'), and reference porosity of 0.18 is
used. For the purpose of simplicity, residual oil saturation, connate water saturation

and critical gas saturation are set at zero for both case studies.

In each case study, a fixed pressure boundary condition is applied. The fixed injection
and production pressures are in accordance with real injection processes and are kept
above the bubble point. Keeping the pressures above the liquid phase bubble point

will insure there is only a single liquid phase present.

5.2.1.2 Results and conclusion

The saturation sclutions and the concentration profile of each component, for both
cases, are shown in Fig.5.3. From the comparison of saturation, it can be observed

that CO, has a relatively higher vapour phase saturation within the displaced space




Table 5.2: Case 1 input data

Injection composition C1 =0.7, COx(C4)=0.2
Initial composition C1 =0.25, CO,(C4)=0.05
Injection pressure Pyj = 15MPa

Production pressure Py = 14M Pa
Temperature T = 400K
Permeability K =03D

Reference Porosity ¢ = 0.18

Rock compressibility ep=91x10"%pa=")

Pore index 0.54
Residual oil saturaition S,r=0
Connate water saturation Swe =0
Critical gas saturation Seg =0

and it hias a slightly higher recovery than the C4 system. The composition path in the
ternary diagram is shown in Fig.5.4. It can be shown that different components lead
to different tie line directions and distributions. Using the same pressure boundaries
and temperature, a different two-phase region and tie line directions will give two

different displacement types, and hence different miscibility development trends.

5.2.2 Case study 2: 2-D ternary system injection
5.2.2.1 Preview

In one-dimensional flow a uniform permeability was used and all fluids advanced in a
single direction. In a real situation, reservoirs are heterogeneous. The heterogeneous
porous media will lead to variations in the fluid flow path. The high perineable areas
will generally make fluid move relatively fast while low permeable areas will slow down
the fluid or even restrain the flowing fluid. This difference in permeability and also
variations in viscosity will produce a fingering flow pattern. Due to fingering flow,
components will be distributed irregularly which will cause the composition at some
locations to be miscible. The variation of the porous media permeabilities, therefore,

has a significant effect on reservoir fluid miscibility development. The model devel-
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Figure 5.4: Composition path solutions

oped in this thesis does not capture behaviour of the miscible gas injection process,
Lhowever a two dimensional simulation will show how the permeability variation affects

component distribution and the flow path of the fluid.

The 2D simulation is conducted using a 50 x 50 x 0.02(m) grid setting. Using a
quarter five-spot injection configuration, the injection cell is located at left bottom
corner (0, 0) block and the production cell is located at right top corner (50, 50) block.
For the first run, to simulate heterogeneity in the reservoir, the permeability distribu-
tion is generated using the built-in random number generation function in Matlab®.
The generated permeability ranged from 3.87D to 0.11D. The normalized permeabil-
ity distribution map is shown in Fig.5.3 (a). In case study 2, a system of C1,CO,

and C101is used. The input data for the random permeability case is shown in Tab.5.3.

To demonstrate how heterogeneity is affecting fluid flow, a single rectangular low
permeability region is set up in the second run while the rest of the flowing area

remains a uniform higher permeability. This is shown in Fig.5.7 (a), where the high



Table 5.3: Case 2 input data
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Injection composition (first ru) C1=05,C0,=04
Injection composition (second run ) | C1 =0.7, CO; = 0.2
Initial composition C1=0.25, CO, =0.05
Injection pressure Pip; = 15M Pa
Production pressure Pyro = 10M Pa
Temperature T = 400K
Reference Porosity ¢ =0.18
Rock compressibility cp=91x10"%pa 1)
Pore index 0.54
Residual oil saturaition Sor =0
Connate water saturation Swe =10
Critical gas saturation Seg =0

permeability region has a permeability of K = 2D and low permeability region has a
permeability of K = 0.2D. Between the low permeability and the high permeability
regions, there is a gradually increasing transition with intermediate permeabilities.
Injection composition is changed and other input parameters are kept same for both

rumns.

5.2.2.2 Results and conclusion

For the first run, the simulation is terminated at ¢ = 3.2h. Fig.5.5 (b) shows the
corresponding pressure distribution. Fig.5.6 (a) shows the profile solutions for the
random permeability run. The displacing vapour phase distribution shows the finger-
ing fronts. Beginning from the injection point, the injected vapour fluid diffuses into
various directious due to the variation in permeability. The injection fluid begins to
merge toward the outlet point from all directions. In Fig.5.6 (b), C1 moves at the dis-
placing vapour phase edges. It can be shown from the CO; profile in Fig.5.6 (¢), that
COs is more concentrated within the vapour phase and propagates more slowly than
the other components. The component C10 mostly exists within the initial oil phase,

as shown in Fig.5.6 (d); C10 becomes increasingly enriched toward the displacement



edges.

The solution using a randomly distributed permeability confirms that the hetero-
geneity of the displacement, area is affecting the fluid flow pattern. Unlike the one-
dimensional flow case, the component profile features (shocks and rarefaction) are
determined by both the component phase behaviour and heterogeneity. In order to
show exactly how a single heterogeneous region affects the local fluid flow in this
random permeability field, a second run is conducted. This case uses a rectangu-
lar heterogeneous region as shown in Fig.5.7(a), and the simulation is terminated at
t = 8.39h. The corresponding pressure distribution and the vapour phase profile is

shown in Fig.5.7 (b) and 5.8 (a).

This solution clearly shows that when the injected phase is flowing from a relatively
high permeability region and encounters a low permeability region, the fluid tends
to avoid flowing though the low permeability region. The Huid flows more easily
among the high permeability blocks, hence the fluid flow around the low permeability
region is faster than the fAuid flowing into the low permeability region. The fluid
will flow through the low permeability region more slowly than the other region due
to the difference in the permeabilities. In order words, the fluid will not enter the
rectangular region if the rectangular region is not permeable such as a shale layer or
sealed fault. The same features are shown for the components distributions in Fig.5.8
(b), (¢) and (d). In Fig.5.9, from ¢t = 8.39h to ¢ = 12.46A, the flowing trend of CO,

can be clearly seen where the dashed rectangular area is the low permeability region.
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(a) Permeability setup (mD) (b) Pressure distribution (MPa)
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Chapter 6

Conclusion and Recommendations

6.1 Conclusion

The application of the calculation method for constant pressure boundaries to a three-
component gas injection problem enables the direct calculation of the total volumetric
flux, pressure distribution, saturation and concentration distribution at each specified
time. The results illustrate that for different period of displacement, the global flux
has a unique relationship with tiine when each elementary wave breaks through and

also global flux is a continuous variable.

The results further show that the viscosity of the phases and the fraction of each phase
will determine whether the total flux will be continuously increasing or decreasing.
Throughout the calculation procedure, it is shown how the eigenvalue, viscosity ratio
and otlier parameters affect the fluid flow rate and displacement performance from a
mathematical point of view. Simulating such conditions of constant pressure bound-
aries is only possible using a numerical method of either an IMPES or a fully explicit

formulation, both of which require large computation times. The analytical approach
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provides the exact solution to the problem without the issues associated with numer-

ical dispersion of numerical methods.

The development of the numerical compositional model results in a stable solution
by using a single point upstream composition scheme. The simulation uses inter-
polation to determine the effect of viscosity variation and component properties on
displacement performance. The results of the 2D case study demonstrate the effect of
heterogeneity on the fluid distribution and the resulting fingering flow pattern. This
modelling also provides the application of certain existing property correlations into

the compositional model in terms of formulation.

A comparison of numerical solution to the analytical solution validates the numerical
model. The comparison shows how the numerical solution converges to the analytical
solution by refining the grid blocks. The analytical method provides an approach for
simple problem calculation and fundamental theory. This can also be applied to the
validation of the numerical method. Innovation and development of both analytical

and numerical methods plays a important role for reservoir simulation.

6.2 Recommendations

The approach provided developed by Johansen and James (2012) is based on a gener-
alized multi-component Riemann problem. The gas injection process and other EOR
processes can be treated as two-, four- or multi-component problems. Based on the
elementary wave solution of a four or multi-component problem, the calculation can
be conducted in a straight forward way similar to the procedure shown in this thesis.

In the aspect of streamline simulation using fixed pressure boundaries, the approach
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by Johansen and James (2012) enables the application of fractional flow analysis along
each flowing line. This extension in the streamline simulation method will provide a

novel approach to analyze streamline behaviour.

This thesis complete the three component gas injection modelling with constant pres-
sure boundaries. For future work, the wave analysis and calculation can be performed
for a four- or multi-component problem. With more shocks and rarefactions present,

the calculation will capture the flux behaviour for each of the elementary wave.
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Appendix A

Flash Calculation Package

The inputs for each component to the flash calculation package are: the critical pres-
sure (P.), the critical temperature (T.), the acentric factor (w), the pressure (P), the
temperature (T') and the overall mole fraction (2). The flash calculation procedure

has the following steps.

(1) Calculate the initial K-values
The initial approximation of the K-value of each component is calculated by using

the Wilson (1969) equation:

K. — exp(5.37(1 —I—P:i)(l ) (A.1)

where T is the reduced temperature and P, is the reduced pressure defined as:

T, =T/T,; P.= P/P, (A.2)

(2) Calculate the phase mole fraction and phase compositions
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The Rachford-Rice (1952) equation is expressed as:

e Zi(Ki - ]_)
2T AR =)

i=1

(A.3)

where F,, is the vapour phase mole fraction and nc is the number of components. The
initial approximated K-values and the overall compositions of the components are used
in the Rachford-Rice equation and F, is solved by using the Newton method. The
liquid phase composition (z;) and vapour phase composition (y;) can be calculated
by substituting F, into the following equations:

23

F(K;—1)+1 (A4)

xI; =

Yi = Ki.'lfi (A5)

(3) Solve the compressibility factor
The equation of state proposed by Peng and Robinson (1976) is expressed in terms

of the compressibility factor (Z):

Z3 - (1-B)Z?+(A-3B>-2B)Z — (AB—-B?*-B% =0 (A.6)
where
aP bP
A RT?’ RT (A7)
and
a = 0.457235a R*T?/ P, (A.8)
b= 0.077796RT,/ P. (A.9)

a = (1+m(l—/T)) (A.10)
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m = 0.37464 + 1.54226w — 0.26992w? (A.11)

where P is the pressure, T is the temperature, R is the universal gas constant, w is
the acentric factor. The parameter A, B for either the vapour phase or the liquid

phase are calculated using the mixing rule as:

nc nc

A = ZZx (1 — ki) AsAy (A.12)
i=1y=1

AV - Zzyzy] - 7J AiAj (A]-B)
t=1j5=1

By = Zl'iBi (A.14)

where Ay and Bp are the parameters for the liquid phase, Ay and By are the pa-
rameters for the vapour phase. The binary interaction coefficient &;; is assumed to be
zero. The parameter A; and B; are calculated for each component using Eq.A.7.

The compressibility equation (Eq.A.6) can be set up for the liquid and vapour phases
that the compressibility factor of the liquid phase (Z;) and for the vapour phase (Zy/)

can be solved, respectively.

(4) Calculate the fugacity
The Peng-Robinson equations of state in terms of fugacity and fugacity coeflicient is

expressed as:

fi _ B
In=5 = Ings = 55 (Z — 1) = In(Z — Bu)

An  Bi 2 Zm + (1 +V2)B,,
Zy] i7)n| ]
2\/23 B Amj f Z ~(1-+vV2)B,

(A.16)
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where f; is the component fugacity, ¢; is the component fugacity coefficient, A, B,
are parameter for either the vapour or liquid phase and Z,, is the phase compress-
ibility factor. The component fugacity and fugacity coefficient can be solved for both

the liquid phase (f;, ¢1;) and the vapour phase ( fv;, ¢v;).

(5) Check the equal-fugacity constraint, update K-values
The constraint for the two-phase equilibrium condition is that the fugacity of each

component of each phase is equal:

fLi = fVle = ]-a .., NC (A].?)

To check whether the K-values, phase compositions and phase mole fraction satisty

the constraint, the constraint condition can be checked by:

i(;—L —1)* < Tol (A.18)
i=1 JVi

where Tol is the convergence tolerance. We use 1 x 1078 as the tolerance. If Eq.A.18

is not satisfied, the K-values are updated:
K = Ki(f1i/ f:) (A.19)

where [ is the iteration level. The calculation returns to step (2) by using the up-
dated K-values. The procedure [step (2) to step (5)] is repeated until the tolerance is
satisfied (Eq.A.18).

(6) Calculation the molar density and the compressibility factor derivative

term
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The molar density of the liquid phase (p;) and the vapour phase (py) can be calculated

by:
P P

- = A2
Z.RT' "V = Z RT (A.20)

oL

The derivative of the compressibility factor with respect to pressure in Eq.4.24 can

be calculated by using the method provided by Flroozabadl et al. (1988):

0z a B-2Z2 b N

ge _ Ty (2 21
oP 7o ) Rr D) (A-21)
D=37*>-2(B+1-2B)Z — (B*+2B% + 2B — A) (A.22)
N=-Z?+ (2B +4B+2)Z - (3B* +2 - A) (A.23)

where Eq.A.21 to Eq.A.23 are set up bot the the liquid and the vapour phases.

(7) Calculate the saturation

The saturation of the liquid phase (S,) and the vapour phase (S;) are calculated by:

PL(FV - 1)
S, = A.24
Fypy — Fypr — pv ( )

S,=1-5, (A.25)



Appendix B

Source Code: 2D Compositional

Simulator

B.1 Main Code
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- Modeling immeascible displacement process

- Ingoring capillary pressure, gravity term

~ IMPES formulation for fixed inlet and outlet pressures

- Set for rectangle heterogenous region

- 3ingle point upstream concentration scheme

- Code is set for corner five-spot injection configeration
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63

64

65

66

87

68

69

70

71

72

73

74

Do s s s s s e e Samn be PV constanta o s o s s e e

s luid PVT propevties, 7L, COX, C10 system

Pc=[4.599%10"6 7.38x10%6 2.11%x1076];:Critical pressurae (Pa}

Tc=[190.56 304.19 617.7];%

w=[0.0115 0.2276 0.4823]; %A~

erntyio

Ve=[0.0986 0.0940 0.6]%1000;%Crit

M=[16.043 44 142.285];

dipole=[0 0 0];®Viscosity

T=400; %

p_ref=20992230; % sovosity correlation

R=8.314; %t

speci_gravity_c7=0.7;%8pecific gravity of of 07+

2.

surel

porosity_ref=0.18;"
cp=0.921%x10"(=8); FRook comprs
Thel heterogencus region

hetero_1=13;

hetero_h=18;

Fhet heterogenou

hetero dim=[16 14];

Tiniti

lity

K=ones (grid_y+2,grid_ x+2) xK; 3D

K(hetro_dim(l) :hetro_dim(1l) +hetero_1, ...
hetero_dim(2) :hetero_dim(2)+hetero_h)=K_hetero;

K_temp (1, :, :)=K;

K_temp=smooth3 (smooth3 (K_temp));

for i=l:grid_y+2
for j=l:grid_x+2

K(i, j)y=K_temp(1l,1i,]);

end

{(psi)




78

79

80

81

82

83

84

86

37

88

89

90

91

92

93

94

96

97

98

99

100

101

102

103

104

105

106

<

p=ones (grid_y+2,grid_x+2) ;v

z=ones (grid_y+2,grid_x+2,nc);toverali moiat concentrab

ratlon

sg=zeros (grid_y+2,grid_x+2);%vapo

so=zeros (grid_y+2,grid_x+2); 51l phase saturation

density_o=zeros(grid_y+2, grid_x+2);%n

density_g=zeros(grid_y+2,grid_x+2);%melar
ddensity_g=zeros (grid_y+2,grid_x+2); ide
ddensity_o=zeros (grid_y+2,grid_x+2); %=

x=zeros (grid_y+2,grid_x+2,nc);%flashed oil

y=zeros (grid_y+2,grid_x+2,nc); ifl A vapoer phase composition
X=zeros (grid_y+2,grid_x+2,nc);%true oLl phasae conposition

Y=zeros (grid_y+2,grid_x+2,nc); %t

e compesition

vo=zeros (grid_y+2,grid x+2);%>il viscosity

vg=zeros (grid_y+2,grid_x+2);svagor viscosity

Feolver coefficients
alpha=zeros(grid_y+2,grid_x+2);
delta=zeros(grid_y+2,grid_x+2);
a=zeros(l,grid_xxgrid_y);
b=zeros (l,grid_x*grid_y);
c=zeros(l,grid_xxgrid_y);
d=zeros (1,grid_x=*grid_y);
e=zeros (1,grid_x=*grid_y);

F=zeros(1l,grid_x=*grid_y);

S e o o s e T
FInitislize pressure and composition
p(l:grid_y+2,1:grid_x+2)=p_init;
z{(:,:,1)=z_init (1);
z{:,:,2)=2z_1init (2);
z{(:,:,3)=z_1init (3);

p(2,1)=p_inj;

LT VAT L BN L5 em e e o s s o




108

109
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111

112

113

114
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116

117

1138

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

z{(2,1,1)=z_inj(1);
z{2,1,2)=z_1inj(2);
z{(2,1,3)=z_inj(3);
p(grid_y+1,grid_x+2)=p_prod;
$Initialization tlash

for i=1l:grid_y+2

for j=l:grid_x+2

[ddensity_o (i, j) ddensity_g(i, j) density_g(i, j) ...

density_o (i, 3J) so(i,J) sg(i,j) x(i,3,

D) oy, 3,0 1=.0

function_flash(nc,p(i, J), T,z (i, J,:),Pc,Tc,w,Swc);

end

Finitialize viscosities
for i=1:grid_x+2
for j=l:grid_y+2

vg (i, jy=...

function_gasviscosity(Tc,w,M,Vec,dipole, ¥ (1, 3, :),T,nc);

vo(i,j)=...
function_oilviscosity(T,p (i, J),X(i, J,

end

Finitiatizce porosity
porosity=porosity_refx (l+cp*{(p-p_ref));

Finitialire relative Dermus

kro=((1l-sg-Sor)/(1-Scg-Sor)) ."2;

krg=((sg-Scqg)/ (1-Scg-Sor)) ."2;

Finttialize directional permes Ty

1), speci_gravity_c7);

Kx=(dx) ./ (dx./K(2:grid_y+1, 1:grid_x+1)+dx./K(2:grid_y+1,2:grid_x+2));

Ky=(dy)./(dy./K(l:grid_y+1,2:grid_x+1)+dy./K(2:grid_y+2,2:grid_x+1));

(Tnitialize dire

Tox=Kx.x (kro{(2:grid_y+1,1l:grid_x+1)) ./vo;




Tgx=Kx.+* (krg(2:grid_y+1,l:grid_x+1)) ./vg;
130 Toy=Ky.=* (kro(l:grid_y+1,2:grid_x+1))./vo;
140 Tgy=Ky.x(krg(l:grid_y+1,2:grid_x+1))./vg;
LAl Gt kA R Sk ko Ak kR kA E ok ke kb ok ok a h F Rk kb ko k F b R Rk P & kR Kk h o K
142 % I3
LA Tk A A A A K A kb ok k ke ok & kR ko R R Rk bk ik ke bk kR Rk ek Kk kR ok kA k ke ke R kK
144 BoSet countoer
145 counter=0;
146 loor
147 while sg(49,49)<0.45
148 BCalonlate matrix coefficient
149 for i=l:grid_y
150 for j=1l:grid_x
151 alpha{i+l, j+l)=density_o(i+1l, j+1)*so(i+1l, j+1)+...
152 density_g(i+1, j+1) +#sg(i+1, j+1);
153 dporosity=porosity_ref«cp; Sdi{porosity) /dp
154 delta(i+1, j+1)=(alpha (i+1, j+1) ...
155 dporosity+porosity (1+1, j+1) x(so(i+1,J+1) ...
156 ddensity_o(i+1l, j+1)+sg(i+1, J+1) ...
157 ddensity_g(i+1,J+1))) /dt; sdialphasphi) /dt
158 end
159 end
160 for i=l:grid_y
161 for j=l:grid_x
162
163 a(grid_x* (i-1)+3)= (Tgy(i, J) +Toy(i, J))/dy"2;
164 b(grid_x* (i-1)+3)= (Tgx (i, ) +Tox (i, J))/dx"2;
165 c(grid_x* (i-1)+3)=(-Tgx (i, j+1)-Tgx (i, 3))/dx"2+...
166 (-Tgy (i+1,3)-Tgy (i, J))/dy"2+(-Tox (i, j+1)—-...
167 Tox (i, 3))/dx"2+(-Toy (i+1,3)-Toy (i, J))/dy"2-...
168 delta(i+1, j+1);

|



169

171
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177

178
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180

181

182

183

184

186

187

188

189

190

191

192

193

194

195

196

197

198

199

d(grid_xx(i-1)+3)= (Tgx (i, j+1)+Tox (i, j+1))/dx"2;

e(grid_x*(i-1)+j)= (Tgy(i+l, ) +Toy (i+l,3))/dy"2;

F(grid_x* (i-1)+j)=-delta(i+l, j+1)*p(i+1l,j+1);

end
end
Ehulld ceof matrix
mn=grid_x=*grid_y;
c(l:grid_x)=c(l:grid_x)+a(l:grid_x);
c(mn-grid_x+1:mn)=c(mn-grid_x+1:mn)+e (mn-grid_x+1:mn);
c(grid_x+1l:grid_x:grid_x*grid_y-grid_x+1)=...
c(grid_x+1l:grid_x:grid_x+grid_y-grid_x+1)+...
b(grid_x+l:grid_x:grid_x*grid_y-grid_x+1);
clgrid_x:grid_x:grid_x*grid_y-grid_x)=...
c(grid_x:grid_x:grid_x*grid_y-grid x)+...
d(grid_x:grid_x:grid_x*grid_y-grid_x);
aa=sparse(l:mn,l:mn,c(l:mn),mn,mn);
bb=sparse(l:mn-grid_x,grid_x+l:mn,e(l:mn-grid_x),mn,mn) ;
cc=sparse(grid_x+l:mn,l:mn-grid_x,a(grid_x+1l:mn),mn,mn);
dd=sparse(l:mn-1,2:mn,d(l:mn-1),mn,mn);
ee=sparse(2:mn, l:mn-1,b(2:mn), mn,mn) ;
A=aa+tbb+cc+dd+ee;
A(grid_x:grid_x:mn-grid_x,grid_x+1l:grid_x:mn-grid_x+1)=0;
A(grid_x+l:grid_x:mn-grid_x+1,grid_x:grid_x:mn-grid_x)=0;
F(1)=F(1)-b(1l)«p_inj;

F(grid_x=grid_y)=F(grid_x=*grid_y)-d(grid_x=*grid_y)*p_prod;

u=A\F"';
for i=l:grid_y

for j=l:grid_x

116
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205
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215

216
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224

225
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227

228
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p(i+1l, j+1)=u(grid_x=* (i-1)+3);
and

end

p(l,2:grid_x+1)=p(2,2:grid_x+1);
p(grid_y+2,2:grid_x+1)=p(grid_y+1,2:grid_x+1);
p(3:grid _y+1,1)y=p{(3:grid_y+1,2);
p(2:grid_y,grid_x+2)=p(2:grid_y,grid_x+1);
po=p;

Tet true phage composit

for i=l:grid y+2
for j=l:grid_x+2
X1, 4, :0)=x(i,3,:);
Y(i,3d,:)=y(i,3,:);
if so(i, j)==1
X(i,3,:)=2z(i,3,:);
end
if sg(i, jr==1
Y(i,3,:)=z(i,3,:);
end
end

end

FCalculate composition
for i=l:grid_y
for j=l:grid_x
phase_flux=(Tgx (i, j+1) * ((p (i+1, J+1+1)-p(i+1, j+1))/dx)—~...

Tgx (i, 3)* ((p{(i+1, J+1)-p(i+1, 3))/dx)+
Tox (i, j+1)* {({po{i+l, j+1+1)-po(i+l, j+1))/dx)—...
Tox (1, 3)* ((po(i+1, j+1)-po (i+1, J)) /dx)) /dx+
(Tgy (i+1, J) * ((p (1+1+1, 3+1) -p (i+1, j+1)) /dy) -...

Tgy (i, J)« ((p(i+1, J+1)-p (i, J+1))/dy)+




231

232

238

239

240

241

242

243

245

246

247

248

249

end

FMNormal i

end

Toy (i+1, 3) * ((po (1+1+1, j+1) -po (i+1, 3+1)) /dy)—. ..

Toy (i, )+ ((po(i+1l, j+1)-po(i, J+1))/dy)) /dy;

component_flux(i, j,l:nc)=(Y(i+1l, j+1,1l:nc)«Tgx (i, j+1l}y*...

((p(i+l, J+1+1)-p(i+1, 3+1))/dx)—. ..

Y(i+l,3,1:nc)+Tgx (i, 3)* ((p(i+1, 3+1) -p(i+1, ) /dx)+...

X(i+1,3+1,1:nc)+Tox (i, j+1)*...
((po(i+1, j+1+1) -po(i+1l,j+1))/dx)—...
X{i+1l, 3, l:nc)«Tox (i, j) ~ ((po(i+l, j+1)~-...
po(i+l, 3))/dx))/dx+. ..
(Y (i+1, J+1,1:nc)+«Tgy (i+1,3)*...
((p(i+1+1,+1)-p(i+1, §+1)) /dy) ...
Y(i,3+1,1:nc)+Tgy (i, 3)*« ((p(i+1, j+1)-p (i, j+1))/dy)+
X(1i+1,J+1,1l:nc) *Toy (i+1l, j)*...
((po(i+1+1, j+1)-po(i+l, j+1))/dy)—...
X(i,3+1,1:nc)*Toy (i, j) *...
((po(it+l, j+1)-po (i, J+1))/dy)) /dy;

for ic=l:nc

z(i+1, j+1,ic)=(component_flux (i, j, ic) ...

dt+porosity (i+l, j+1) xalpha (i+1, j+1)*xz (i+1, j+1,1c)) /...

(porosity (i+l, j+1) xalpha(i+1l, j+1) +phase_fluxxdt) ;

end

e composition

for i=l:grid_y+2

end

for

end

J=l:grid_x+2
sumz=sum(z{i, j,1:nc));

z(i,j,l:nc)=z(i, j,1l:nc)/sumz;
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292

sReget no fiow bhoundaries

for ic=1l:nc
z(1l,2:g9rid_x+1,ic)=z(2,2:grid_x+1,1ic);
z{(grid_y+2,2:grid_x+1,ic)=z(grid_y+1,2:grid_x+1,ic);
z(3:grid_y+1,1,ic)=z(3:grid_y+1,2,1ic);
z(2:grid_y,grid_x+2,ic)=z(2:grid_y,grid_x+1,ic);
end
fvlash procedure using new pressure a
for i=l:grid_y+2
for j=l:grid_x+2
[ddensity_o(i,J) ddensity_g(i, j) density_g(i, J)
density_o (i, ) so(i,J) sg(i, ) x(i,3,:) y(i,3,:)1...
=function_flash(nc,p(i, J),T,z(i,3,:),Pc,Tc,w,Swc);
end
end
sUndate vaviables

porosity=porosity_ref* (l+cp* (p-p_ref));

kro=

((l-sg-Sor)/ (1-Scg-Sor)) ."2;

krg={((sg-Scqg)/ (1-Scg-Sor)) ."2;

for

i=l:grid_x+2
for J=l:grid_y+2
vg (i, )=...
function_gasviscosity(Tc,w,M,Vc,dipole, Y (i, 3,:),T,nc);
vo(i,j)=...
function_oilviscosity(T,p(i,3),X(1i,3,:),...
speci_gravity_c7);

end

i=1:grid_y+1

for j=l:grid_x
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297

298

299

300

301

302

303

304

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

end
2 e e e e e e e e T €] (3 OO -
SGet simulation bime

i=1

for

if p(i, j+1)>p(i+1, j+1)
Toy (i, §) =Ky (i, ) xkro (i, j+1)./vo;
Tgy (1, §)=Ky (i, J) *krg (i, j+1)./vg;

end

if p(i, J+1)<p(i+1, 3+1)
Toy (i, 3)=Ky (i, J) *kro (i+1, j+1) ./vo;

Tgy (i, J)=Ky (i, j) rkrg (i+1, j+1) ./vg;

rgrid_y

J=l:grid_x+1
if p(i+l, J)2p(i+1, j+1)
Tox (i, J)=Kx (i, j) *kro(i+1,3j)./vo;
Tgx (i, j)=Kx (i, ) +krg(i+l, J)./vg;
end
1if p(i+l, J)<p (i+1, j+1)
Tox (i, §)=Kx (i, j) rkro(i+1l, j+1)./vo;

Tgx (i, §)=Kx (i, 3) *krg(i+1, §+1) ./vg;

end

time_elapsed=counter+dt;

%ii‘("}k’l\'*?‘-*‘:{'-\“kv‘c*‘?%kk‘k“k*-}&i‘lA'A-k-}‘k"’.k‘!‘k‘k'}7"*.*:)\"k"k‘f?“:i‘i)\')«*?"f%kx'i'}l""v‘!\'k'x'in'ﬂ’k*"*)\"x'k

i

Tod kR KNk i bk k R ko kb k Kk Kk Ktk gk kK k ok Rk kK Rk ko ok b ok kK ko gk & Kok e e 9k k Kk ko i bk ok Rk kW bk kK

End of

main
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FHUBGHFEERREGREEEEENE Punc

% -Function inpub:

% no- namber of componsnt

ptAR S el

T - tempearaturs

% z :

& ) -~

% W

¢ W -

% Swo - oonnate water saturation

“Function outpulb

% density
% phace compesitions

e saturations

function [ddensityo ddensityg densityg densityo so sg x yl=...

function_flash(nc,P,T,z,Pc, Tc,w, Swc)

error=1;
$5et tolorence

Tol=1+x10"(-8);

L PR OROS

$Initia

for i=l:nc
Tr(i)=T/Tc(i);
ac(i)=0.4574xR"2+Tc (1)"2/Pc(i);
m(i)=0.37464+1.54226+w(i)-0.26992+w (1) "2;
if w(i)>0.4;

m{i)=0.3796+1.485+w(1)-0.1644xw (i) "2+0.01667+w(i)"3;

Lon flash HEREHEEIFEF SRR SRR EEES
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30

31

46

47

48

57

58

59
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end
alpha(i)=(1+4m(i) *(1-Tr(i)"0.3))"2;
a(i)=ac(i)+alpha(i);
b(i)=0.0778*RxTc (i) /Pc(i);
A(i)=a (i) «P/(R«T)"2;
B(i)=b (i) +P/ (R«T);

end

Yipitial approximation of Ke-valueas

for i=l:nc
K(i)=(Pc(i)/P) xexp(5.37x (1+w(i)) x(1-Tc(i)/T));

end

flash starts

while (error>Tol)

s of vaper volume

Fv=0.9;

Fvold=0;

while (abs (Fv-Fvold):>Tol)
Fvold=Fv;

h=0;

for i=1:nc
h=h+z (1) » (K(1)-1) /(Fv= (K(i)-1)+1);
dh=dh-z (1)« (K(1)-1) "2/ (Fv« (K(1)-1)+1)"2;
end
Fv=Fvold—-h/dh;
end
Fraloulate PROECS component parameters
for i=l:nc
x(i)=z (1) / (Fv* (K{i)-1)+1);
y(1)=K(1)»x(i);

and
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74

76

77

78

79
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81

82
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84

86

87

88

89

90

BL=0;
BV=0;
AL=0;
AV=0;
roalcudate minturs DO parameters

for i=1l:nc
for k=1l:nc
Aij(i,k)=(l-bina(i,k) )+ (A(1)*+A(k))"0.5;
AL=AL+x (i) ~x (k) *Aij (i, k);
AV=AV+y (1) »y (k) »A1] (1, k) ;
end

end

4
[®]
-

i=l:nc
BL=BL+x (1) *B (i) ;
BV=BV+y (1) *B(1i);

end

Foublico equatlon paransters

all=-(1-BL); a2l=(AL-2+BL-3%xBL"2); a3l=- (AL BL-BL"2-BL"3);
alV=-(1-BV); a2V=(AV-2+xBV-3xBV"2)}; al3V=- (AV+«BV-BV"2-BV"3);
rL=roots ([l all a2L a3L]);
rV=roots ([l alV a2V a3V]);
Fohoose real rocts
ZL=min (rL) ;
ZV=max (rV) ;
XxA=zeros (1, nc);
yA=zeros (l,nc});
for i=l:nc

for j=l:nc

XA (1)=xA (1) +x () *Aij (i, 3);

YA (1) =yA (1) +y (J)*Ai3 (L, 3);

123
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PhiL{i)=exp((B(i)/BL)*(ZL-1)-1log(ZL-BL)-...
(AL/ (2%*sqrt (2) *BL) ) * (=B (1) /BL+ {(2/AL) *xA{i)) ...
log ((ZL+ (1+sqgrt (2))*BL) / (ZL+ (1-sqgrt (2)) *xBL)));
fL(i)=x (1) *PxPhiL (i) ;
PhiV (i)=exp ((B (i) /BV)+ (ZV-1) ~log (ZV-BV)—. ..
(AV/ (2%sgrt (2) *BV) ) » (=B (1) /BV+ (2/AV) »yA (1)) ...

log ((ZV+ (1+sgrt (2) ) «BV) / (ZV+ (1-sgrt (2)) »BV) ) ) ;

fv(i)=y (i) P*PhiV (i) ;

end

temp=0;

"for i=l:nc
temp=temp+ (fL(1)/fV(i)-1)"~2;
K(i1)=K(1) *(fL(1)/£V (1)) ;

end

error=temp;

ar density
VL=ZL*R*T/P;

VV=ZVxRxT/P;

DL=3+ZL"2-2% (BL+1-UxBL) 2L+ (WxBL"2-UxBL"2-UxBL+AL) ;
NL=(1-U) *Z2L"2+ (-2*W*BL+2*UxBL+U) «ZL+ (3*W*BL"2+2*WxBL+AL) ;
DV=3%ZV"2-2% (BV+1-U*BV) «ZV+ (WxBV"2-U«BV"2-UxBV+AV) ;
NV=(1-U) *ZV"2+ (-2*WxBV+2«UxBV+U) *ZV+ (3*WxBV"2+2*WxBV+AV) ;
dZL=(AL/P) = ( (BL-ZL) /DL) + (BL/P) = (NL/DL) ;

dZV=(AV/P) » ( (BV-2ZV) /DV) + (BV/P) * (NV/DV) ;

ddensityo={(1/(R+«+T*ZL) ) (1-(P/2L) »dZL) ;

124
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137

138

139

ddensityg= (1/(R+*T*2ZV) ) * (1-(P/2V) *dZV) ;
densityo=1/vL;

densityg=1/vV;

Lt vapor Liguid

if Fv<0

so=1-Swc;

aes, ger d and satures

if Fv>0 && Fv<l
so=densityg* (Fv-1)/ (Fvxdensityg-Fv+densityo-densityqg);
end

sg=l-s0-Sw¢;

2,

~Fricl of fun
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Abstract

Solutions of Riemann problems have been used to describe the linear, incompressible, fluid
displacement in a porous medium under constant total volumetric flux conditions without
dispersion. These solutions of the governing hyperbolic system of conservation laws are composed
of a series of shock waves and smooth rarefaction waves. Realistically, reservoirs are often
produced under constant pressure boundaries with constant injection well pressures and constant
production well pressures. In this paper we extend solutions of Riemann problems for constant
flux conditions to solutions of the associated Riemann problem for constant pressure boundaries.
This is done by deriving explicit closed form expressions for the volumetric flux as a function of
time. The construction is carried out in an algorithmic fashion by considering each wave betore
and after the wave breaks through at the outlet end. Expressions for the time of breakthrough for
each wave are also derived, together with the pressure distribution between inlet and outlet at any
time. Generalized formulas for time dependent boundary conditions are also shown to follow
easily from the constant pressure boundary case. Finally in this paper, we present two
watertlooding cases and one polymer flooding case for constant pressure boundaries to
demonstrate and exemplify the main results of the paper. In particular, it is demonstrated that the
constant flux solution cannot be used as approximations for constant pressure boundaries cases, as

the change in volumetric flux over time in such cases is very significant.

Key words: Riemann problems; constant pressure boundaries; analytical

solutions

EOR: Enhanced Qil Recovery



1. Introduction

Consider a hyperbolic system of conservation laws such as an n-component, two
phase model for one dimensional flow in porous media subject to standard
fractional flow assumptions (incompressible flow with negligible dispersion and

no volume change upon mixing). If F =F(u,...,u, ) is the fractional flux

function for component i, and u=[u,,...,u, _,] represents the overall volume
fractions of the fluid components (Z u, =1), the conservation of mass model
1

under consideration may be written as
F
¢i[ui+a[.(u)]+UTL=O;i=1,...,n—1 , (1.1)
ot Ox

where a(u) is volume fraction of the stagnant part of component i, €.g. caused

by adsorption on the rock surface. Furthermore, ¢ is porosity and U, is the total
volumetric flux. If we have two phases, F =fi, +(1- )y, and
u, = su, +(1-s),, where u,is volume fraction of component i in phase j, s is
saturation of phase 1 and f =U, /U, is the fractional flow function of phase 1.

The model can be reformulated as
@JrﬁA(u)a—":o , (1.2)
o ¢ ox

where A(u) is the (n—1)x(n—1) Jacobian of F =[F(u),...,F, (u)] with real
eigenvalues A,..,4,_, (since we assume the system in equation (1.2) is

hyperbolic).

A Riemann problem for (1.2) is an initial/boundary value problem with constant

states

wO,H)=u" ;t>0

u(x,0)=u®;:0<x<L

(1.3)



where L is the length of the 1D medium. For the cases when the total volumetric

flux U, is constant in both t and x, some Riemann problems of the form (1.2),
(1.3) have known solutions, as reviewed below. However, if the pressures at the
boundaries p, = p(0,¢); p,, = p(L,t) are kept constant, U, will no longer be

constant as a function of ¢. Therefore, the known Riemann problem solutions no

longer hold true.
The main result of this paper is to prove the following

Theorem
If the solution of a Riemann problem of the form, (1.2), (1.3) is known in the case

of U, being a given constant in both x and t, the associated Riemann problem

with initial/boundary conditions

u(0,n)=u" ;t>0
u(x,0)=u® ;0<x<L
p(L,t)=pm" ;3620

also has a solution which can be determined directly from the existing solution for

constant U .

For constant pressure boundaries, the volumetric flux will be constant as a

function of x because of the incompressibility assumption, however U, =U,(¢)

will be time dependent.

The proof of the above Theorem is constructive through the design of an

analytical algorithm for construction of the function U, =U_(t). The proof is

given in Section 2,

The constant volumetric flux solution consists of a sequence of self -similar waves

(i.e. waves that can be described as a function of & =x/¢) connecting the two

L R - . .
states @ ,u" , in such a way that the overall wave velocity increases from u" to

u®. Each of these elementary waves belongs to one of the eigenvalues

Ayend, =x/t either as a Rarefaction wave (smooth) or a Shock wave



(including contact discontinuity). Any two adjacent waves are separated by a
constant state. The solution of the associated problem with constant pressure
boundaries and the constant flow rate solution are congruent in the sense that
either solution at a given time can be obtained from the other. However, self-
similarity of the solution holds true only for the constant volumetric flux case. The
sequence of elementary waves is illustrated in Figure 1, where also the

nomenclature used in this paper is defined.

V. V, —
s a—\z/c Sk =W
v St

Sict

S =8

\

Xi1 Vi X;

Fig. | Elementary Waves

We assume that each wave can be defined by the parameter s (e.g. phase 1

saturation). The leading edge of the wave v, is x; and the trailing edge is y,. For
shocks, x, =y,. Also, it is possible to have x_, =y,, such as in the Buckley

Leverett solution for waterflooding, where a shock has the same velocity as the

leading edge of the trailing rarefaction wave.

Any two waves v, , v, are separated by a constant state s, . Consider the case
where v, is a rarefaction wave, parameterized by s. We do not assume that the
system is strictly hyperbolic, hence A, —A, may change sign for any pair of

eigenvalues. Hence, we cannot assume that the elementary waves correspond one
by one to a sequence of increasing eigenvalues. Instead, for rarefaction waves,

v,(s)= A, (s) for some k.If v, is a shock, it must satisfy the Rankine-Hugoniot

condition (shock mass conservation) for each component, which in particular

means it will satisfy

v, =,

,. sk=1,..,n—1 (1.5)
[,]



where [-] represents a jump from one side of the shock to the other. In our

. . . . U
notation, the actual propagation velocity of a wave v, is V,=—Fv. If

1

U . .
—Lv ;i=1,...,Nrepresents the solution of the constant flux Riemann problem

i

connecting u*,u", the solution of the constant pressure boundary solution is

represented by UTT(t)vi d=1L..,N.

In brief, this paper assumes we know the solution (unique or not) of a multi-
component Riemann problem subject to the assumption of constant volumetric

flux U, . The main result of the paper is to determine the function U,(¢) for the

case of constant pressure boundaries for the same Riemann problem.

Following the construction of U,(t) we also obtain closed form expressions for

the time when a particular wave breaks through at the outlet end. Furthermore,

we determine the pressure distribution p(x,t) atany time tin 0<x< L.

In addition to being useful in interpretation of core flood experiments with
constant pressure boundaries, the generalization in this paper also offers new
applications in numerical simulation. For example, streamline simulation is
frequently used by the oil industry to compute fluid flow in reservoirs between
injectors and producers (Bratvedt et al., 1996; Thiele et al., 2010). In such
simulations, the pressure distribution is first solved from an elliptic equation
subject to simplifying assumptions. Subsequently, streamlines are generated from
the pressures and finally, the fluid flow between injectors and producers can be
calculated analytically along streamlines, provided that the Riemann problem at
hand has a known solution. The popularity of this approach is primarily because
of considerable time savings compared to conventional simulations. Previously,
streamline simulations using solutions of Riemann problems along streamlines
could only be performed for cases of constant flow rates. A more common way to
operate wells is by keeping flowing wellbore pressures constant. The solutions

derived in this paper therefore widen the applicability of streamline simulation.




Riemann problem solutions can also be used as building blocks for the
construction of numerical methods which can be used with general boundary
conditions. Examples of this are the Random Choice Method, Chorin (1976),
Concus, Proskurowski (1979), Glimm (1965) and Godunov’s Method, Godunov
(1959).

Global solutions for many hyperbolic Riemann problems have yet to be found. A
general theory for local existence and uniqueness of solutions of Riemann
problems is described in Glimm, (1959), Lax (1957) and Smoller (1982) under the
condition of strict hyperbolicity (distinct eigenvalues of the Jacobian A4 ).
However, flow phenomena in porous media are typically not strictly hyperbolic.
The most well-known Riemann problem pertinent to the oil industry is the
Buckley-Leverett theory for water injection in an oil reservoir, Buckley, Leverett
(1941), and also Welge (1952). It is a single hyperbolic equation modeling
conservation of water, the conservation of the oil being taken care of through the

assumption of constant volumetric flux U, both in space and time. The

generalization of this theory to constant pressure boundaries is described in

Section 2 of this paper.

The first non-strictly hyperbolic multi component problem appearing in the
literature with a complete global solution seems to be for single phase (water)
flow with dissolved components that adsorb on the rock in a non-linear and
coupled fashion, Rhee et al. (1970). The adsorption causes a chromatographic

separation of the individual components.

A global solution of a non-strictly hyperbolic system modeling polymer flooding
with non-linear adsorption was presented in Johansen and Winther (1988). Here,
the water phase contains dissolved polymer for the purpose of increasing the
water viscosity to enhance sweep efficiency. Again, this was for constant
volumetric flux in space and time. An example using this solution with constant

pressure boundaries is presented in Section 3 of this paper.

A system with multiple adsorbing polymer components with decoupled
adsorption was presented in Johansen and Winther (1989). This was generalized

to a coupled adsorption model in Dahl et al. (1992). A system describing four



component, two phase flow with components partitioning between the two phases
was analyzed in Johansen et al. (2005) and Wang et al. (2005). A comprehensive

discussion and analysis of this is also presented in Orr (2007).

In all of the above citations, the assumption of constant U, in space and time is

essential. The theory presented in this paper therefore generalizes the results of the

above citations.

Three cases are used in Section 3 to demonstrate the constant pressure boundary
multicomponent extension of Riemann problem solutions; case 1a) waterflooding

with viscosity ratio u,/u, =02, case 1b) waterflooding with z /p =20 and

case 2) polymer flooding with a single polymer component residing in the
aqueous phase. This constant pressure multicomponent extension is particularly
important as many actual oil fields are operated under constant wellbore
pressures, and being a generalised analytical solution, it can be readily adapted

and used for better predicting production rates.

2. The Algorithm for determination of the volumetric

flux U,(r) for constant pressure boundaries

We will without ambiguity, since eigenvalues (A ) do not appear directly in this

section, let 4, =K Z (k,; / p2;) denote total mobility, where K is permeability, £,

J=
phase relative permeability and 4, phase viscosity. We assume, in this section,
constant pressure boundaries; p, = p(0,t); p,, = p(L,t) . Satisfying mass
conservation and the assumption of constant flow rate, U, is constant as a
function of x but not ¢. We obtain using Darcy’s law

op t dx
U,=—, —=>Ap=U,|\— ;Ap=p, — . 21
T ax Ap T'([/L- P pm poul ( )



Let t,, be the time when the leading edge of a wave v, is breaking through at

the outlet end x= L.

2.1. The Case t < tux

We first derive explicit expressions for the velocity, U,(t), before the fastest wave

breaks through at the outlet end, and the time when this breakthrough occurs,
. ( . s U, :
ter y - Letting \P(r) = IU, (r)dr and using x=[V;(t)dt={ 7Tv,-dt , we first consider
0 0 0

the pressure drop over a rarefaction wave v; and change integration variable using

PO V()

dx(s) =
0= 2@

0}, O] oy
)ﬁﬂ'r ¢ ’A—lllr (22)

Obviously, if the wave is a shock, this integral is zero since. We, therefore, define

[O if wave i is a shock

: e ———— 2. 3
i [ J b if wave i is a rarefaction &2

LB

We can now write equation (2.1) as

%, 3 - 24
[Z[M,-.) j'ms N =

where the first term on the right hand side covers integration over the constant
states, except the part corresponding to the constant initial state (s*), which is
covered by the third term. Given the leading edge of the wave, x; and the trailing
edge, y,, we can relate the velocity of the leading edge (dx/dt) and the velocity
of the trailing edge of the shock (dy/dt) to the propagation velocity of the wave,
V(s):



dy, dx, .
L=V (s, ==L =V_ (s, ji=1,..N-1
dt l( 1—1) dt l—|( l-l)

V) L, )

If we define constants, £, = =
R o IR N € o)

b By

dx, dx,
Since x,, =y, =x,=0at 1=0,
Yi=BxXy 5 X = Xy
Hence,

Yi~ X _ _ B—a.,

M) o T )

N

Substituting this into equation (2.4), we obtain

N
7;'XN+
1

A”:U{ ﬂT(s }

YO < g
e

The position of the leading edge of the wave is given by x,,

pressure difference is therefore

Ap=U,[4x, + B]

N N 1 L
A=>r g — ; B= =
2w 2. 55)

=a,, ;i=L.,N-1 ; =0

(2.5)

, equation (2.5) implies that

(2.6)

2.7)

(2.8)

(2.9)

:—l}—J;L)vN(sR). The

(2.10)

2.11)

Using equation (2.10), the velocity of the leading edge of the wave becomes

ﬂ :ﬂvN(sR) _ Ava(sR)
dt ¢ #(Ax, + B)

(2.12)




Integration of the separable ordinary differential equation (2.12) gives

Ax}, +2Bx, =Ct (2.13)
where
C=2Av,(s")/ ¢ . (2.14)

Accepting only the positive root in equation (2.13), the location of the leading

edge of the fastest wave is given by

-B+ \/B2 +4ACt

()= p ' (2.15)

We can now determine U (t) explicitly from (2.10):

Ap

B +4ACt (2.16)

Ur(t):

By substituting x, = Zin equation (2.13) we find an explicit expression for the

break through time of wave v, :

AL’ +2BL
Lgry = - c 2.17)

Finally, the pressure at the leading edge of the fastest wave, before this wave

breaks through at time ¢, , is calculated as

£ U,
PvO=p,+U; | Z(s_) AN

Nl

(L-xy(1) . (2.18)

The pressure at any location can then be calculated backwards (from outlet

towards the inlet) using equation (2.9).

The above applies to <., , i.e. before the break through of the leading wave.
We next describe how U, (1) is calculated for ¢, , <t<t,. ., i.e. after the break

through of the leading wave.




2.2. The Case tun ststarns

If the fastest wave is a shock v, with a constant saturation state, s,_,, separating

vy from v, the velocity, U, (1), for ¢, , <t<t.. . is calculated exactly as in

already know ‘P(¢) for t<t,, . If the first wave is a rarefaction, the calculation

of U,(¢) is as described below.

Let s between s, =s”®

and s,_, be arbitrary but fixed. Let x(s,f,,,) be the
location of s at time ¢, , , i.€. the time when v, breaks through with its leading
edge at x=L. Also, let ¢_ be the time when s arrives atx = L. This is illustrated

in Figure 2.

section 2.1, simply by removing v, and putting s* =s,_ . This is because we
|
|
'r.N

x(s;tBT’N) X=X

Fig. 2 Example of a Rarefaction Wave at Breakthrough

Let ¢ be a time between £,y and ¢, and let 5 be the value of s at x=L at

t=7.Fort<t,



D)=L w(@) (2.19)
and
N —1 B ]
m yimxg YOS O il
=Ux(t j— 2.20
- ’DL G 8B T b A0 ] v
giving
UT(T)_ - . . (2.21)
Z Xy, Xs,0)| £ vi(ds |
S wO|E ) A
or
U ()= 2 — ., 0
s | 10 el Vi (s)ds
x(s,t){ém‘w (s)[,é ,-+S~%———M_(_s) ](;
where r, is given by equation (2.8). We also have
dx(E,T)_ - VN(S)
Z =U,(7) ;o (2.23)
Combining equation (2.22) with equation (2.23), we get
50,51 L = Apv (s) (2.24)
dt N N-1 S U0 (s)ds
N&ny = 270

which, when integrated between f,, , and 7 letting f — ¢, can be written as

2 -—
¢ [X(S,tBT,N ) R ] e 20pvy (‘2-1[% tBT,N]

Zri vy(s)+ Z‘?:%

i=1 i=1

(2.25)

12



Here, t;; , 1s known from equation (2.17) and

VN—(S)‘I’(tBT,N) . (2.26)

x(s,tgr y) =
Hence, ¢, can be calculated from

¢[X(S,fBT N)Z—LzJ N Nl T Viv(s)ds
. . q. ML AL el N
2Ava(s)2 ,-Zzz'rl VN(S)+,§ l+5'[ Ar(s) ( )

L=tgrn+

N-1

The corresponding value for U, () is given by

) 2 g2
UT(’;) _ ¢[X(~§a’BT,N) L] (2.28)

- 2Lvy(s)e, — rBT,N)

for t >ty . For t=t,, , itis easy to see that U, in equation (2.28) approaches
the value of U, given by equation (2.9),i.e. U, is continuous , however, not

differentiable at t =1, .

The procedure then can be summarized as follows: We can calculate the time t

when s breaks through at x = L from equation (2.27) for any s on the rarefaction

wave v,.. Once this time is known, the corresponding value of U, (t)is given by

equation (2.28).

2.3. The Case > tyry,

When the entire leading wave v, has passed x =L, as described in sections 2.1
and 2.2, the procedure can be repeated by removing v, from the wave train and
starting over again with s, =s, ,. The computational procedure is, therefore,

complete for the case when Ap is fixed.

The special case when U, is constant in both x and ¢ (as the solution for

constant flux in both x and ¢) can be treated by using

13



xy = Ly (5% (2.29)
¢
in equation (2.10), i.e.
* * UT R
Ap(t)y=U,[4't+B]; 4 =A7VN(S ) . (2.30)

Equation (2.16) reduces to

Ap(0)

7 (2.31)

Up =4

The procedure for calculating Ap(¢) for the other cases is straightforward.

2.4. Generalisation

The above derivation for a fixed Ap can easily be generalized to the situation

where Ap(t)is given as a function of time. Denoting
t
D)= [Ap(r)dr (2.32)
0

it is easily seen that (as in section 2.2)

(1) = —B+,/B +4ACD(¢) 2.33)

A

and

Ap(1)

Ur(t)zm

(2.34)

The time to break through of v, (S,) is then found from

14



AI’ +2BL
D(ty )= — (2.35)

and similarly for the other cases.

3. Constant Pressure Boundary Case Studies

In the oil industry, The Buckley-Leverett solution (1941) is synonymous with
fractional flow theory where an immiscible fluid displaces another in one-
dimensional flow in a porous medium. Physically, fractional flow theory describes
the linear displacement of one phase by another immiscible phase where there is a
front described by a shock or sudden change in concentration, In its simplest form
it describes one component displacing another immiscible component in one
dimension in the absence of diffusive and compressible flow, i.e. water displacing
oil (Buckley and Leverett, (1941), Welge (1952)). Mathematically, the Buckley-
Leverett equation is a first order hyperbolic partial differential conservation
equation in time and space. The solution is composed of a leading shock and a

trailing rarefaction wave.

Two case studies are developed in this section illustrating the use and
effectiveness of the generalized constant pressure fixed boundary Riemann
problem. The first illustration is a simple waterflooding case where in a) the

viscosity of the water is greater than that of oil, with 4 /u =0.2 and in b) the oil
viscosity is greater than the water viscosity with g, /. =20. The second case is a

polymer flooding case where the viscosity of the water phase is linearly dependent
on the concentration of polymer added. The parameters used in the case studies
are outlined in the Table 1. The core is one meter long with 18% porosity and a
permeability of one Darcy. There is a Ap= 500 psi (34.1 MPa) pressure drop

across the core that is initially at 25% water saturation as connate water

s¥=s,.=0.25 and 75% oil saturation. The displacing water saturates to 70%



leaving 30% residual oil saturation (s =1-s,=0.7). We use normalized

saturations, i.e.

§=——r—— 3.1
I_SOY_SWC ( )

Table 1 Parameters Used in the Constant Pressure Boundary Cases

Waterflooding Polymer Flooding
Case 1a Case Ib Case 2
Parameter P>y iy << p, ‘ui}‘ =}
1y (cP) 10 1 . (c)=p +200c
Ho (cP) 2 20 8
Lo/t 0.2 20
¢ 0.18
L (m) 1
Pin(MPa) 21.0
paut (Mpa) 170
S, 0.30
S 0.25
K(m®) 1x 10"
2
-5, —s
k. k,=08| —2 o | —g (1-s)’
l - ch - Sar
2
S, =5,
k., k, =02 v v | =g s
1 - SH‘L‘ - SO"

3.1. Waterflooding

In case 1a) a more viscous water displaces a less viscous oil. In case 1b) a less
viscous water displaces a more viscous oil. The viscosity ratio of oil to water

varies a factor 100 between the two cases.

The Riemann problem is

?ﬁ.*.&@:()

ot ¢ ox (3-2)

st=1-s5,=07 3.3)



st=s5,=025 . (3.9)

The fractional flow of a phase is defined from the mobility of the phase (4 ) with

respect to the total mobility as:

A
§)=—= 35
J18) A+ A, (3-3)
where phase mobility is
P (3.6)
7]

where k_ is relative permeability (see Table 1). We use the illustration in Figure 3

to depict the two waves (N=2) constituting the solution, in accordance with Figure

1. Here, v, is a rarefaction wave and v, is a shock wave.

V] Va

-

< NN

#

st=] -850 §,=38§ §,=8§R=g

we

Fig. 3 Depiction of a Two Wave Riemann Problem

The intermediate state s* = 0.69 is calculated by constructing the tangent from the

point (s*,0) to the graph of f, Figure a). The propagation velocities are denoted
¥, and V,, respectively. The rarefaction wave is from (s*,1) to (s*, f(s")). The

shock wave is a jump from (s*, f(s")) to (s%,0).

f
1O
/
v
0 X
K=y 5 sb=f.y5 10

Fig. 4 The Intermediate Saturation (s") is determined from the tangent of the fractional flow curve

17



Table 2 Wave Descriptions

Wiave Propapation Velociey
U
Rarefaction v, = f'(s) el 4 =?TVI (3.8)
N rloR | U
Shock v, :f(sz—fk(s) 39 | Vs =?Tv2 (3.10)
-5

The function F =U,(¢)f /¢ is shown in Figure 5.

1S e T———y

Case 1b

F,, (x 109

Radisual Ol Saeuvation

§ 0.8
8,
Fig. 5 Fractional Flow Functions for the Waterflooding Cases 1a) x, / K4, =0.2and 1b)
/1, =20 at0.3 (e ), 0.5 (== —), 0.7 (===== ), and 0.9 ( ) of the breakthrough time

Using the data given above, we get from (2.3)

—,_—j-%l-mg:m 3.11
%® i

=0 (3.12)
and from (2.8)
— ﬂl_ao ﬂl—al = Vi (SO) V,—-V, =0 3.13
TG A ARG ARG .
Therefore,
C=@v2=1.02x1ospa ;  Ap=34.1MPa (3.19)

18




L

B= =2.50x10°Pa-s/m (3.15)
Ar(sz)
1 1 10 2

A=—9 ————=486x10"Pa-s/m* . (3.16)
Vs (s")

The corresponding water saturation profiles are shown in Figure 6. The high water
saturation s~ for case la is physically realistic where a much lower mobility ratio
(dominated by u, /u,) will result in better sweep efficiency, i.e. higher water

saturation behind the flood front.

$' =0.69

=4
o

" =0.43

Water Saturation (s,)
o o
& w

e
W

o
b
N

0.0 0.2 0.4 06 08 1.0
Length (m)

Fig. 6 Saturation Profiles for the Waterflooding Cases 1a) 4, /1, = 0.2and 1b) g, /u, =20 at
0.3 (sreenee , 0.5 (=— =), 0.7 (=====) ), and 0.9 (

) of the Breakthrough Time

The time to breakthrough of the shock is determined from equation (2.17). In the
mobility controlled case 1a, the break through time is 523 s whereas it is only 228
s for the mobility unstable case 1b where the water (displacing) viscosity is much

less than the oil viscosity (displaced).

For any given s>s,¢>1t,, (rarefaction wave, post shock breakthrough), U, (¢)

is calculated from (2.27), (2.28) which become, respectively,

¢[x(s,tBT)2—L2J £ £7(s)ds
2Apv} A

(3.17)

L=ty =

19




¢|:x(s,t”)2 —Lz]

U ()= (3.18)

2f7(s)t; —ar)
The total volumetric flux as functions of time are shown for both waterflooding
cases in Figure 7. The following explanation also makes reference to the water
saturation profiles depicted in Figure 6. The total velocity decreases non-linearly
for case la as expected due to the increasing amount of water with high viscosity
in the porous medium. After breakthrough, the total velocity is almost constant
owing to the uniform 70% water saturation. The opposite is observed for case 1b
where the much lower viscosity displacing water saturates less pore volume at
breakthrough. As the amount of low viscosity water continues to increase after

breakthrough so does the total velocity.

15 ettt + e ettt st

w—Case 1ar Py 2P Po Po/ iy =02, by, =523

E ¢ Case la: Breakthrough time =523 5

2%10 =e Case 1b: @, <<y, Mo/ 1, =20, b, = 2285

: ' ‘m Caselb: Breakthrough time = 22B s

-1

o
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Fig. 7 Total Velocities for Waterflooding Cases 1a) g, /g2, =02 (—=) & 1b) 1, /g1, = 20(==~=")

Figure 7 also shows that the variation in velocity is very significant and nonlinear,
thereby completely ruling out the use of classical fractional flow theory for

constant pressure boundaries.

The front position at any given ¢ < ¢,,1s calculated from (2.15) and shown as a

function of time in Figure 8 for both waterflooding cases.
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3.2. Polymer Flooding

The polymer flooding case demonstrates the constant pressure boundary solution
for multi-component systems. Physically, polymer may be added to the water to
increase its viscosity to overcome an adverse mobility ratio. The parameters used

for the polymer case are shown in Table 1.

If ¢ is polymer concentration in the aqueous phase, we use a linear dependence of

aqueous phase viscosity on polymer concentration,
(€)= 42 +200c¢ (3.19)

which, with the data in Table 1, gives

5

M

i i (3.20)
5% +(0.5+100c)(1—s)*

f(s,0)=

An adsorption isotherm of the form shown in Figure 9 and given by eqtn. (3.21)

is used,

0.2¢

U =1 o0

(3.21)
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The Riemann problem is

¢@+Ur(t)af(5»c) _0 |
! (3.22)
52 e aten s v, L g
’ - (3.23)
st=5,=07 ; s5=025
e e (3.24)

This Riemann problem was analysed by Johansen and Winther (1988). The

solution is composed of three waves. The slowest wave is a rarefaction (v,)
corresponding to the eigenvalue of /0s. The middle wave (v,)is a shock
corresponding to the eigenvalue f/ (s+ a'(c)) and the fastest wave is a shock (v;)
corresponding to the eigenvalue df /s . This wave train is shown in Figure 9.

| 4] Vs V3

(st ¢t) s, S (s, &)

Fig. 9 Wave Train of Three Waves of Varying Velocity

Denoting

PO GV

R (3.25)

the wave descriptions are summarized in Table 3 and refer to Figure10.

Table 3 Wave Descriptions, Polymer Case.

Propagation Velocity

‘ U
Rarefaction v, =0f(s,¢)/0s V,= —;fv,
L
U
Shock V2=M:1.01 V,=—Lv,
5+, ¢
R R R
29 - ) U
Shock VS:f(S~ ¢) fR(S ¢ ):1.37 V3=7TV3
S, — 5

The waves are separated by two constant states s, =0.693 and s5,=0.514. |
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The construction of the solution is shown in Figure 11: Starting at (s*,1), the
rarefaction wave ends where the tangent to the graph of f(,c") passes through
the point (—h,,,0). This point of tangency defines s,. From this point, the shock
v, jumps to the graph of f(s,c®) with a velocity equal to the tangent slope. This
point on f(s,c") defines s,. The shock v, is similar to the shock in the Buckley-

Leverett case, joining the two points (s,, £(s,,c*)) and (s, f(5,,¢%)).
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<&
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02 oo 0.2 04 0.6 0.8 1.0
Saturation

Fig. 11 Fractional Flow Function for the Polymer Case

The saturation profiles composed of the three waves are shown in Figure 12.
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Comparing the right and left fractional flow curves and the slope of the tangents
in Figure 11, we see that the right shock is travelling more quickly than the left
shock, i.e. the pure water-oil shock is advancing through the porous media faster
than the increased viscosity polymer water. This is confirmed when compared to
the initial higher total flux shown in Figure 13 that decreases as the water-oil
interface advances through the porous media. Both, shock wave v; and shock
wave v, decelerate as they move through the porous medium (Figure 11) as does
the total flux (Figure 13).
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Fig. 13 Fractional Flow Functions for the Polymer Case 2) at Saturation Profiles for the Polymer
Case 2) at 0.3 (eoeeeeee ), 0.5 (== —), 0.7 (===== ), and 0.9 ( ) of the Breakthrough Time for
¢“=0.01 (black) and ¢* = 0 (grey)
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The integrals in (2.3) are <, =¥, =0 since waves 2 and 3 are shocks, and

g = jaf(”)/as s =2.27x10° Pa-s/ m
7 /l,(sc)

For the coefficients 4,B,C in (2.11),(2.14) we find

1 1 1

4= (1__)27( W) TS
=ﬁ (3.26)
C=20pv, 14 ,

where the values for the two shock after their respective breakthrough are shown

in Table 4.

Table 4 Integration Coefticients for the Two Polymer Cases

lntégmtion After First Shock -~ After Second Shock
Coefficient . Breakthrough. ~ Breakthrough

C 1.35 x 10° 5.80 x 10’
The time to breakthrough of the first shock is then determined by (2.17). It is

found to be 179 s and the position of the front as a function of time is shown in
Figure 14. The shock position at any time before breakthrough of the first shock is
given by (2.15), and we then determine U, (¢) before breakthrough by (2.16).

Dimensionless Flood Front, x;

Fig. 14 Position of the Flood Front (Shock Wave v3) before Breakthrough for the Polymer Case 2
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After v, has broken through at x = L the procedure is identical to the waterflood

cases with ¢ = const. = c¢" (since v, then is gone) and therefore a description here
3 g p

1s redundant.

A numerical simulation of the polymer case was also carried out using a first
order upstream method with implicit treatment of pressure and explicit treatment
of saturation. Figure 15 shows the variation in numerical versus analytically
computed total volumetric flux results. The simulations were performed with 20,
50, and 200 grid blocks As Fig. 15 indicates, a reasonable resolution of Ur (t) 1s
obtained using 200 grid blocks but it requires 4x the calculation time. Of course,
the difference being that the numerical method needed to calculate the pressure
and saturation at every time step up to breakthrough unlike the analytical solution

which can calculate the time to breakthrough directly.
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2.0
0 200 400 600 800 1000

Time (s)

Fig. 15 Total Volumetric Flux: Before v, the Pure Water-Oil Shock (===); Before v, the
Polymer-Oil Shock (s  « «); and Afier v, the Polymer-Water Rarefaction (— —) including the

Numerical Solutions for 20 (blue: =), 50 (red: —), and 200 (grey: ) Grid Blocks
The pressure profile from injection to production end at any time before v, has

broken through was also calculated analytically using (2.18). Figure 16 shows

the pressure profile for 0.3, 0.5 and 0.9 of the breakthrough time for wave v, . As

expected, the pressure profile changes at the shock front as it progresses through
the porous medium. This type of calculation can be of great importance in

miscible tending gas injection processes, since the phase behaviour at the
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displacement front controls the residual oil saturation. Such gas injection
processes can also be modeled at constant pressure boundaries through the results

presented in this paper.
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Fig. 16 Pressure Profiles for the Polymer Case 2 (including Saturation Profiles for Reference) at
0.3 (+++++9, 0.5 (— —), and 0.9 (

) of the Breakthrough Times of Wave v;

4. Conclusions

Existing solutions to global Riemann problems with constant volumetric flux have
been extended to constant pressure boundaries with variable flux. The derivation
mathematically describes the explicit behaviour before the first wave breaks
through, between waves and post breakthrough of the trailing rarefaction waves.
Expressions for the position of any state in any wave, the overall flux and time for
that specific wave to break through are also derived. The pressure distribution
between inlet and outlet ends at any time is also calculated analytically. The
application of the constant pressure boundary solution is illustrated with three
examples to fully explore the fact that results can be obtained for a non-constant
flux condition. This is especially significant for describing behaviour under

constant injection and well flowing conditions as more often used in industry.
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