
CENTRE FOR NEWFOlf.lo'DLA!'ID STL'DIES

TOTAL OF 10 PAGES ONLY
MAY BE XFROXF.O

(Withool Autbor'sl,crmwlon)

1+1 Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de !'edition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

AVIS:

Your file Votre reference
ISBN: 0-612-99046-X
Our file Notre reference
ISBN: 0-612-99046-X

L'auteur a accorde une licence non exclusive
permettant a Ia Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I' Internet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

L'auteur conserve Ia propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni Ia these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

IMPLEMENTATION ANALYSIS OF BLOCK

CIPHER COMPONENTS AND STRUCTURES

St. John's

by

© Lu Xiao

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

December 2003

Newfoundland

Abstract

This thesis analyzes the implementation and performance characterization of sym

metric key block ciphers. In particular, we study block ciphers which consist of

Substitution-boxes (S-boxes) and Maximum Distance Separable (MDS) mappings.

New mechanisms are proposed to evaluate the performance of block ciphers in terms

of complexity and security for both hardware and software implementations. Con

figured with parameterized components, many cipher cases are derived from two

cipher structures, a nested Substitution-Permutation Network (SPN) and a class of

Feistel networks. In our study of each case, the hardware complexity and speed are

evaluated by considering a gate network consisting of one- or two-input logic gates,

which is suitable for an Application-Specific Integrated Circuit (ASIC) realization.

The software complexity (in terms of both speed and memory requirements) is eval

uated through table lookup implementations, which is a classical approach used for

fast software implementations. The results of the complexity evaluation are verified

with implementations using 0.18 p,m and 0.35 p,m CMOS technologies for hardware

and C/C++ compilers for software. Cipher security, in the form of resistance to

differential and linear attacks, is used to normalize the performance in the analy

sis. Because the discussed structures are similar to many existing ciphers such as

the Advanced Encryption Standard (AES) and Camellia, this mechanism enables us

i

to study the efficiency of existing and new ciphers through a wide comparison of

security, performance, and implementation methods.

In addition to differential and linear cryptanalysis, we also examine integral, eX

tended Sparse Linearization (XSL), and power attacks that may be applied to block

ciphers. The XSL attack is discussed with respect to its effectiveness on the various

studied cipher structures. Finally, a simple power analysis attack is implemented

on Camellia's key schedule in the circumstance where the processor leaks Hamming

weight information and the influence of the attack on the design of key schedules is

explored.

ii

Acknowledgments

First of all, I am deeply indebted to my supervisor, Dr. Howard M. Heys, for his

guidance, encouragement, and patience in every part of this work. It is my fortune

to be his student and as a supervisor he has done everything he could to benefit my

work.

I am very grateful to Dr. Ramachandran Venkatesan and Dr. Theodore S. Norvell,

for being my supervisor committee members, giving time and support all along, and

teaching me courses. I would also like to thank Dr. Paul Gillard and Dr. John

Robinson for teaching me courses.

I am grateful for this study opportunity provided by the Faculty of Engineering

and Applied Science. Particularly, thanks to Dr. M.R. Haddara, Dr. Ray Gosine,

and Moya Crocker in the Associate Dean Office who have helped me a lot during my

graduate studies. The financial support granted by the School of Graduate Studies

is highly appreciated.

I am also grateful to my wonderful colleagues and friends in the Computer Engi

neering Research Laboratories for their help and the good times, particularly Reza

Shahidi who arranges the lab activities so pleasantly. In addition, I would like to

thank Nolan White in the Department of Computer Science for his help during the

utilization of VLSI CAD tools.

iii

An important thank you goes to my dear wife, Kai Zhang, for her sincere love

and trust in this adventure.

Finally, I would like to thank my parents and sister in China, whose support and

encouragement throughout my studies have always been of great help.

iv

Contents

Abstract

Acknowledgments

Table of Contents

List of Tables

List of Figures

1 Introduction

1.1 Motivation .

1.2 Thesis Outline .

2 Background of Cryptography

2.1 Encryption and Cryptosystems

2.2 Block Ciphers

2.2.1 Product Ciphers

2.2.2 Cipher Components .

2.2.3 Cipher Structures .

2.2.4 Examples

v

i

iii

v

X

..
Xll

1

2

5

7

7

9

10

11

14

17

2.3 Cryptanalysis 22

2.3.1 Differential Cryptanalysis 23

2.3.2 Linear Cryptanalysis 26

2.3.3 Integral Cryptanalysis 30

2.3.4 Implementation Attacks 32

2.3.5 Other Attacks 34

2.4 Block Cipher Implementations . 34

2.4.1 Hardware Implementations . 34

2.4.2 Software Implementations 38

2.5 Summary I I I 0 I I I I I I I I I 39

3 Hardware Design and Analysis of Block Cipher Components 40

3.1 Optimized MDS Mappings for Hardware 42

3.1.1 MDS Mappings 42

3.1.2 Bit-Parallel Multipliers . 43

3.1.3 Complexity of MDS Mappings . 45

3.1.4 Three Types of Matrices . 45

3.1.5 The Optimization Method 46

3.1.6 MDS Search Results 48

3.1.7 Synthesis Results . . 51

3.2 General Hardware Model of Invertible S-boxes 53

3.2.1 Biham's Method to Simplify S-box Circuits 53

3.2.2 Decoder-Switch-Encoder Model 53

3.2.3 S-box Complexity 59

3.3 Efficient AES Encryption Implementations 61

vi

3.3.1 Design I .

3.3.2 Design II .

3.3.3 Implementation Results

63

64

67

3.4 Summary 68

4 Hardware Performance Characterization of Cipher Structures 70

4.1 Studied Cipher Structures 71

4.1.1 Nested SPNs ...

4.1.2 A Class of Feistel Networks

4.2 Comparison of Hardware Performance

4.2.1 Performance Measures

4.2.2 Hardware Performance of Nested SPNs

4.2.3 Hardware Performance of Feistel Networks

4.2.4 Synthesis Results

71

76

78

78

81

86

89

4.3 Summary 90

5 Software Performance Characterization of Cipher Structures 92

5.1 Table Lookup Implementations

5.1.1 Cases with 8 x 8 S-boxes

5.1.2 Cases with 4 x 4 S-boxes

5.2 Software Performance Comparison.

5.2.1 Time Performance Metric

5.2.2 Comparison of Nested SPNs

5.2.3 Comparison of Feistel Networks

5.2.4 Experimental Results .

5.3 Alternative Implementations .

vii

93

94

96

98

98

99

102

105

107

5.3.1 Bitslice Implementations

5.3.2 Power Implementations.

5.3.3 General Comparison of Methods.

5.4 Summary

6 Applicability of XSL Attacks

6.1 Introduction to XSL Attacks .

6.2 Effectiveness of the Attack ..

6.3 Applicability to Cipher Structures .

6.4 Summary

7 Simple Power Attacks on Cipher Key Schedules

7.1 Camellia's 128-Bit Key Schedule .

7.2 Hamming Weight Attack

7.2.1 Basic Power Leakage Model

7.2.2

7.2.3

7.2.4

7.2.5

Requirements for the Attack .

Attack Against Camellia Subkey Generation

Attack Against the Derivation of K A

Extension to 192-Bit and 256-Bit Key Schedules .

107

109

111

111

113

114

118

119

124

125

126

128

128

130

131

133

135

7.3 Two Variants of the Attack with Robustness to Measurement Errors. 136

7.3.1 Noisy Power Leakage Model 137

7.3.2 Attack Variant 1 Robust Against Small Noise 138

7.3.3 Attack Variant 2 Robust Against Wide Range of Noise 139

7.4 General Susceptibility Evaluation

7.5 Countermeasures

7.6 Summary

viii

141

143

144

8 Conclusions

8.1 Contributions

8.2 Recommendations for Future Research

References

A MDS Searching Results

B Matrices Used for AES Design II

ix

146

146

149

151

166

168

List of Tables

2.1 Mapping Table of a 4x4 S-box (in hexadecimal) ..

2.2 Several Published AES Hardware Implementations

2.3 Software Implementations on Different Platforms

3.1 Four Choices for MDS Search

3.2 MDS Search Results

3.3 Synthesis Results of Non-Involution MDS Mappings .

3.4 Synthesis Results of Involution MDS Mappings

3.5 Truth Table of a 2n xn Encoder .

3.6 Synthesis Results of 8 x 8 S-boxes

13

37

38

47

49

52

52

58

60

3.7 Gate Counts oflnvertible S-boxes in the Decoder-Switch-Encoder Model 62

3.8 Gate Delays of Invertible S-boxes in the Decoder-Switch-Encoder Model 62

3.9 Gate Counts and Delays of Operations in AES Design I . 63

3.10 Gate Counts and Delays of Operations in AES Design II 65

4.1 128-bit Nested SPNs of 4r Rounds . . 75

4.2 128-bit Feistel Networks of 4r Rounds . 78

4.3 Complexity and Universal Performance Estimation of One Round of

128-bit Nested Involution SPNs in Hardware 83

X

4.4 Complexity and Universal Performance Estimation of One Round of

128-bit Feistel Networks in Hardware 87

5.1 Software Performance of 128-bit Nested SPNs 100

5.2 Software Performance of 128-bit Feistel Networks 104

5.3 Experimental Results of 32-bit Implementations of Nested SPNs 106

5.4 Experimental Results of Two Real Ciphers 106

5.5 Comparison of Software Methods Used in MDS Codes. 111

6.1 Mapping Table of a 2 x 2 S-box 114

6.2 Maximum Number of Rounds for a Toy Cipher to Satisfy XSL Working

Condition

6.3 Evaluated Susceptibility to the XSL Attack

7.1 Experimental Attack Results with 104 Samples of 128-Bit Camellia

119

123

Cipher Keys . 135

7.2 Processing Times of Attack Variant 1 on a Pill 933MHz Computer 139

7.3 Susceptibility Evaluation for Several Block Ciphers . . . 142

A.1 Search Results of MDS Codes Optimized For Encryption 167

A.2 Search Results of Involution MDS Codes 167

xi

List of Figures

2.1 General Model of Cryptosystem 8

2.2 A 4 x 4 Bit Permutation 12

2.3 A 4x4 S-box 0 ••••• 14

2.4 A Substitution-Permutation Network 15

2.5 A Feistel Network . 16

2.6 Function F of DES 18

2.7 Function F of Camellia . 21

2.8 Active Status of the State in the AES First Round 31

2.9 Active Status of the State in the AES Second Round 32

3.1 A General Hardware Structure of Invertible S-boxes 54

3.2 The Circuit of a 4 x 4 Invertible S-box 55

3.3 Algorithm to Determine Decoder AND-Gate Count 56

3.4 Gate Count Upper Bounds of S-boxes . 61

3.5 Delay Upper Bounds of S-boxes . 61

3.6 AES Encryption Implementations 64

3.7 Linear Transformations in AES Design II . 65

3.8 Performance Comparison of AES Designs . 67

3.9 Synthesis of AES Round Structure 0 ••• 68

xii

4.1 Basic 2-level Nested SPN (4 Rounds)

4.2 A Class of the Round Function . . .

4.3 Universal Performance Comparison of Nested SPNs

4.4 Weighted Performance Comparison of Nested SPNs

4.5 Universal Performance Comparison of Feistel Networks

4.6 Weighted Performance Comparison of Feistel Networks

5.1 Software Performance Comparison of Nested SPNs ..

5.2 Software Performance Comparison of Feistel Networks.

6.1 A Simple Example

7.1 Camellia's 128-bit Key Schedule .

7.2 An Example of Camellia Subkey Generation

7.3 A Nested EDST Approach

xiii

72

77

85

85

88

88

101

104

114

127

132

141

Chapter 1

Introduction

With the rapid development of computer and communication networks, the exchange

of information is becoming more and more important for newly emerging applications

such as electronic commerce and online database inquiry. For these applications,

privacy of customer information must be protected. Since most public networks are

open to malicious attackers, network security arises as a promising and significant

research subject, especially as the Internet and wireless communication become a

considerable part of human life.

Encryption technology is the core part of network security. The security and effi

ciency of encryption algorithms influence the performance of protected data services

directly. Various space-consuming applications (e.g., teleconferencing and video on

demand) are being implemented in broadband data networks, occupying much more

bandwidth than traditional tasks. Currently, significant effort is being devoted to

the throughput increase of network equipment such as routers and switches. As a vi

tal part of secure communications, the encryption technology must now meet higher

speed requirements.

Since the Data Encryption Standard (DES) [1] was proposed, block ciphers have

1

been playing a very important role in data encryption services because of their ad

vantages:

• Fast speeds in both software and hardware

• Short lengths of cipher keys

• Well studied cipher components and structures

When a block cipher is used for secure communication, the key used for the cipher

is shared secretly by the sender and the receiver. The key is often exchanged using

public key cryptography as suggested in IEEE Standard 1363 [2).

1.1 Motivation

In 1977, the U.S. National Bureau of Standards published DES as a recommended

algorithm for symmetric key block encryption. Until recently, DES had dominated

in many security services. However, the current hardware technology and distributed

computing make brute-force exhaustive key search attacks faster and cheaper. As

a result, the security of DES is increasingly inadequate. For example, given a pair

of plaintext and ciphertext, the key used for DES encryption could be found by

exhaustive search using dedicated cracking hardware within 56 hours in 1998 [3) or

distributed computation through the Internet within 22 hours in 1999 [4). With a

56-bit key, DES is not secure enough due to its small number of possible keys (i.e.,

256).

The Advanced Encryption Standard (AES) has been developed by the U.S. Na

tional Institute of Standards and Technology (NIST), as a symmetric key block

cipher solution to efficiently provide enough security through the use of a larger key.

2

In January 1997, NIST called for algorithms as possible candidates as symmetric key

block ciphers. The candidates needed to support at least a block size of 128 bits

and key sizes of 128, 192, and 256 bits. Fifteen candidates were publicly tested and

evaluated. Rijndael [5] was finally selected as the AES in October 2000.

As a 3-year project, the New European Schemes for Signature, Integrity, and

Encryption (NESSIE) initiative also launched open calls for algorithms in the field

of symmetric key block ciphers in 2000. Like the AES project, NESSIE's main

objective is to offer cryptographic primitives with a higher security and efficiency

level than the existing primitives. The cipher Camellia [6] was included together

with AES into the NESSIE portfolio of 128-bit block ciphers in February 2003 [7].

Both the AES and NESSIE projects generated a great amount of activity in the

study of symmetric key block ciphers including algorithm designs, software imple

mentations, hardware implementations, and security evaluations.

Despite the need for efficient cipher designs, there has been no effort to develop

a general model for simultaneous evaluation of hardware performance and security.

It is not unusual that before a block cipher design is finalized, most analysis work is

focused on security and software speed. Hardware suitability is often overlooked at

this phase since it takes much time and energy to investigate the implementation of

a cipher in an Application-Specific Integrated Circuit (ASIC). Typically, only when

a block cipher is well established do researchers undertake hardware analysis. For

example, as one candidate for the Advanced Encryption Standard (AES), the cipher

RC6 [8] had attracted much academic interest before its hardware performance was

well studied and recognized to be poorer than other algorithms. As a result, many

block ciphers are inherently software-oriented and their hardware implementations

3

are neither fast nor compact1.

One of the main objectives of this work is to investigate block ciphers suitable for

hardware implementation and seek methods to implement efficient and secure block

ciphers in hardware. We begin with the study of the design, implementation, and

hardware complexity of basic cipher components. Then, a mechanism is presented

to analyze different configurations of block cipher structures. The analysis integrates

the hardware complexity, efficiency, and security evaluation into several performance

measures. This mechanism will be utilized to discover the best secure cryptographic

configurations that are hardware-oriented. Our hardware implementation will be

concentrated on Application Specific Integrated Circuit (ASIC) design in order to

facilitate superior performance over other targeted hardware environments such as

Field-Programmable Gate Arrays (FPGAs) 2 .

Following the hardware analysis, similar performance characterization can also

be applied to software implementations. As a fast development technique across

platforms, the table lookup approach has been selected to implement block ciphers,

for example in [5, 9, 10]. Thus, a software performance metric is defined to integrate

the security provided by cipher structures and the efficiency evaluated from corre-

sponding table lookup implementations. The performance measured by this metric

helps us to study the software efficiency and security of cipher structures on the same

basis.

In addition to performance characterization, this thesis considers other facets of

1 DES is a notable exception and many operations used by DES are more oriented to hardware,
e.g., bit permutations and small S-boxes.

2With increasing gate densities and speeds, FPGAs are also used in many cryptographic ap
plications. Due to a large variety of architectures, however, it is difficult to perform a meaningful
hardware characterization for general FPGA implementations.

4

block cipher study which may influence the security of cipher structures or implemen

tation. Specifically, we examine the two recently introduced cryptanalysis techniques

of eXtended Sparse Linearization (XSL) and simple power attacks.

We believe that this work enhances the association between engineering and cryp

tography, and makes a significant contribution to the implementation and perfor

mance analysis of potential cryptographic structures.

1.2 Thesis Outline

Chapter 2 provides the cryptography background which is relevant to this thesis. A

short but self-contained introduction is given on Shannon's product cipher, cipher

components, structures, and examples. Differential and linear cryptanalysis are de

veloped as the most fundamental tools for security consideration. Another attack,

integral cryptanalysis, is illustrated using AES as the targeted cipher. The cipher

implementation techniques are also briefly introduced.

Chapter 3 discusses the design and hardware implementation analysis of basic

cipher components including MDS mappings and invertible S-boxes. The proposed

S-box model and MDS implementation methods are used for two efficient AES hard

ware designs.

Chapter 4 proposes many SPN and Feistel cipher cases with different configura

tions of parameterized S-boxes and MDS mappings. Several metrics are defined to

integrate hardware complexity and security evaluations. The hardware performance

characterization is then undertaken on the basis of these metrics.

Chapter 5 compares the software performance of cipher cases proposed in Chap

ter 4. The table lookup implementation is used for performance evaluation, while

5

other implementation methods are briefly discussed and compared.

Chapter 6 investigates the effectiveness of an XSL attack [11], which was proposed

in 2002 but has not yet been proved to be practical. In this chapter, a straightforward

method is presented to evaluate the susceptibility of a block cipher to this potential

attack.

Chapter 7 investigates the simple power analysis applied to a block cipher key

schedule. Specifically, we apply the attack to the key schedule of Camellia. It is

shown that such an attack works well even with measurement errors when the pro

cessor running Camellia leaks the Hamming weight of intermediate data. A general

susceptibility evaluation and possible countermeasures are also suggested.

Chapter 8 draws conclusions and identifies future research directions.

6

Chapter 2

Background of Cryptography

This chapter introduces the basic design concepts, typical examples, and security of

block ciphers, which are relevant to the contents later in this thesis. To consider the

security of a block cipher, three fundamental attacks on block ciphers are illustrated

briefly. More details can be obtained from appropriate literature, such as [9, 12, 13,

14] which contain a complete expose of cryptography.

2.1 Encryption and Cryptosystems

Encryption is the mapping from the original message, called the plaintext, to a ran

dom looking message, called the ciphertext. During the mapping, a specific data set,

called the key, determines the relation between them. The key should be randomly

selected information that is hard to deduce. As the inverse of encryption, decryption

restores the plaintext from the ciphertext with knowledge of the key. The keys

used for encryption and decryption may be different. Without the knowledge of the

decryption key, decryption should be infeasible.

7

v,
Insecure

v,
Message

Encryption :n. Decryption

~
Message

algorithm
channel

algorithm

t t
Encryption Decryption

keyKe keyKa

Figure 2.1: General Model of Cryptosystem

In a cryptosystem, encrypted information is transferred through an insecure chan-

nel as shown in Figure 2.1. In symmetric key ciphers, such as DES [1] , the encryption

key Ke and the decryption key Kd are the same and should be kept secret; while

in asymmetric key ciphers, such as RSA [15], one of the two keys is made publicly

available and the other key cannot be derived from this public key through feasible

computation.

Both symmetric and asymmetric key cryptography are widely used in data net-

works. Since one's public key can be used by others for encryption and authenti

cation, asymmetric key cryptography (thus also called public key cryptography) is

more suitable for network security applications such as key distribution and digital

signatures. Although the cipher key needs to be securely distributed, symmetric key

cryptography has two significant advantages:

• High Encryption Speed: The speed of a symmetric key cipher is much faster

than an asymmetric key cipher. According to RSA Laboratories [16], DES is

generally at least 100 times as fast in software and between 1,000 and 10,000

times as fast in hardware as RSA, depending on the implementation.

8

• Short Key Length: A symmetric key cipher can obtain enough security with

a much shorter key. Based on current technology, a key of 128 bits is secure

enough for recently proposed symmetric key ciphers. However, RSA requires

a key size of at least 1,024 bits for current applications, which is not desirable

for some bandwidth or memory restricted environments such as a smart card

system.

The low performance of asymmetric key cryptography is due to the large arithmetic

operations involved. For example, the RSA and Diffie-Hellman [17] algorithms calcu

late exponentials modulo a large prime and elliptic curve cryptography [18] multiplies

two variables in large finite fields. These operations are inefficient in both software

and hardware compared with the small components used in symmetric key ciphers.

As a result, symmetric key cryptography is widely used in security applications which

require high throughputs and/or small memory. Its most obvious application is con

fidentiality, which has a message encrypted so that the message can only be known

by the sender and receiver.

2.2 Block Ciphers

According to the size of plaintext and ciphertext units, a symmetric key encryption

algorithm can also be classified as a block cipher or a stream cipher. A block cipher

encrypts the plaintext of a fixed bit length to the corresponding ciphertext of the

same length. A block cipher with ann-bit block length is also called ann-bit block

cipher. The cipher key is another block of bits with its own length. For security

considerations, recently proposed block ciphers typically have a block size of 128 bits

and a key size of 128 bits or more.

9

A stream cipher encrypts the plaintext in small units, usually bit by bit. The

plaintext is combined with a bit sequence, called the keystream, to generate the

ciphertext typically by bit-wise eXclusive-OR (XOR) operations. Stream ciphers

can be designed to be very fast. Alternatively, a block cipher can be used as a

stream cipher by selecting feedback modes (e.g., the Cipher Feedback and Output

Feedback modes [14]), where the block cipher works as a keystream generator.

2.2.1 Product Ciphers

As introduced by C.E. Shannon in [19), the security of a block cipher can be generated

by combining individual cipher steps appropriately into their "product". A product

cipher usually iterates similar cipher operations for a certain number of rounds. The

cipher key is expanded to a number of subkeys by a key schedule and the subkeys are

mixed with data blocks in different rounds typically using bit-wise XOR operations.

In a product cipher, diffusion and confusion are two fundamental methods to

frustrate statistical and mathematical attacks. The method of diffusion involves

the dissipation of the redundancy that may be exploited by attackers into statistics

across the entire block so that it is difficult for a meaningful recognition of patterns.

The method of confusion is to complicate the mathematical relation between the

ciphertext, plaintext, and key information so that the key is hard to derive even if

plenty of ciphertexts are analyzed. The Substitution-Permutation Network (SPNjl

and the Feistel network are two typical architectures used to achieve this [12). Each

cipher architecture is a well organized configuration of cipher components, which are

simple cipher operations.

1 For historical reasons, these ciphers are referred to as Substitution-Permutation Networks al
though the permutation layer is now typically replaced by an invertible linear transformation layer
to improve resistance to differential and linear cryptanalysis [20].

10

2.2.2 Cipher Components

An m x n cipher component performs a simple mapping from an m-bit input to

an n-bit output. A component is either linear or nonlinear. The most important

nonlinear component is the Substitution-box (8-box). A typical linear component is a

linear transformation involving the XOR of a subset of input bits to produce output

bits.

Linear Transformations

A linear transformation enhances diffusion of a cipher. In a linear transformation

from m-bit input X= (xm-b · · ·, x 0) ton-bit output Y = (Yn- 1 , · · ·, y0), each output

bit Yi can be expressed as an affine function of the input:

(2.1)

where "EB" denotes an XOR operation and ai,m-1 , · · ·, ai,o, bi are binary constants.

As a result, the linear transformation can be expressed as

Y=AXEBB (2.2)

where X andY are m-tuple and n-tuple representations of X andY, respectively, A

is an m x n binary matrix, and B is a binary m-tuple. Corresponding to the location

of Yi in Y, the i-th row of A consists of ai,m-b · · ·, ai,O and the i-th element of B is

bi.

The iterated structure of a purely linear transformation does not provide more

security since the composition of multiple linear transformations is still linear. That

11

is,

\ I

' v \ I\ I
\ I \ I
'('I

1\ 1\
I \I \

I A \
I I \ \

I I \

Y3 Y2 Y1 Yo

Figure 2.2: A 4 x 4 Bit Permutation

where A3 = A2A1 and 83 = A2B1 EBB2. However, the linear transformation is efficient

and used to scramble the output bits of different S-boxes. By doing so, statistical

relations among the plaintext, the ciphertext, and the key become complicated and

difficult for attackers to analyze.

A bit permutation is a very simple linear transformation and used in many ciphers

such as DES. For a bit permutation expressed in form of (2.2), A has only one nonzero

element in each row and B = 0. As illustrated in Figure 2.2, a bit permutation can

be easily implemented by wiring input bits and output bits.

Recently, some techniques in coding theory have been absorbed into the de

sign of linear transformations, e.g., the usage of Reed-Solomon codes in the cipher

SHARK [21]. Thus, the input and output of a linear transformation are often ex

pressed as vectors of symbols in finite fields [22]. To measure the avalanche effect of

a linear transformation, the branch number of a linear transformation is defined [23]

12

as:

B = min{H(X) + H(Y)}
X;l:O

(2.3)

where H(X) and H(Y) denote the number of nonzero symbols in X andY, respec

tively. It is proved that a Maximum Distance Separable (MDS} [24) mapping has

an optimal branch number B equal to m + 1, which is highly diffusive and effec

tive in providing resistance to differential and linear attacks, as will be discussed in

Section 2.3.

S-boxes

An S-box performs a nonlinear transformation in which the output bits cannot be

expressed as affine functions. An S-box is invertible if a one-to-one mapping is

performed. One important security measure of an S-box is nonlinearity, evaluated by

the minimum Hamming distance from any linear combination of output bit functions

to an affine function [20). Figure 2.3 and Table 2.1 show an example 4x4 S-box taken

from the first row of the first DES S-box. This S-box is obviously invertible and its

nonlinearity can be shown to be 2. The permutation shown in Figure 2.2 cannot be

used as an S-box because its nonlinearity is 0.

Table 2.1: Mapping Table of a 4x4 S-box (in hexadecimal)

x 3x 2X1X0 0 1 2 3 4 5 6 7 8 9 A B c D E F

Y3Y2Y1Yo E 4 D 1 2 F B 8 3 A 6 c 5 9 0 7

Since S-boxes are the most typical components to provide confusion, many criteria

and construction methods have been developed (e.g., in [20, 25, 26, 27, 28]). Different

S-boxes in a cipher can have different mappings or one mapping can be used for all

S-boxes in a cipher.

13

Other Components

S-box

Y3 Y2 Y1 Yo

Figure 2.3: A 4 x 4 8-box

Many other components are also used in block ciphers. They include addition, data

dependent rotation, multiplication modulo 232 , etc.. These components are not of

direct relevance to structures considered in this thesis because they are not as widely

studied and accepted as 8-boxes and linear transformations in cipher design.

2.2.3 Cipher Structures

In this section, we consider the two best known structures for block ciphers.

Substitution Permutation Networks

During encryption using an 8PN cipher, as Figure 2.4 illustrates, the input data of

each round is typically mixed with subkey bits before entering the 8-boxes. Each

8-box performs a nonlinear mapping on small sub-blocks thus creating confusion in

the data. The outputs of 8-boxes are modified by a linear transformation whose

purpose is to generate a diffusion of statistical effects in the data. The decryption

is composed of the inverse linear transformations, the inverse 8-boxes, and the key

14

mixtures in reverse order to encryption. To maintain similar dataflow in encryption

and decryption, SPN s typically omit the linear transformation in the last round of

encryption.

Plaintext

Round 1

Roood 2-R-2{ ••• ••• • •• •••

RoundR-1

RoundR

Ciphertext

Figure 2.4: A Substitution-Permutation Network

For any input X, a function f(X) is an involution if f(J(X)) =X [29]. If the

S-box layer and the linear transformation in Figure 2.3 are involutions, both the

encryption and decryption operations can be performed by the same SPN except for

small changes in the key schedule in the case of XOR key mixing. We refer to such

a cipher as an involution SPN, of which the ciphers Anubis [30] and Khazad [31] are

examples.

15

Feistel Networks

As the other typical architecture of block ciphers, the Feistel network has been widely

used and studied. In each round i of a Feistel network as shown in Figure 2.5, the

right half of the round input (denoted as Xi) goes through function F parameterized

by sub key Ki. Also called the round function, F often consists of key mixture, S

boxes, and a linear transformation. The output ofF, denoted as Yi, is XORed with

the left half of the round input. The round output is the swapped result of Xi and

plaintext

iterated

I I

~
Figure 2.5: A Feistel Network

One advantage of a Feistel cipher is that, even ifF is not invertible, the same

cipher structure of Figure 2.5 can be used for both encryption and decryption with

the appropriate modification to the key schedule.

16

2.2.4 Examples

Recent initiatives in cryptography have focussed on the development of new block

cipher standards. As the successor of DES, the SPN cipher Rijndael [5] was selected

by the U.S. National Institute of Standards and Technology as the Advanced En

cryption Standard (AES) [32] in October 2000. As a Feistel network proposed in [6],

Camellia was included together with AES into the NESSIE portfolio of 128-bit block

ciphers in February 2003 [7]. Consequently, AES and Camellia are two important

examples of ciphers that are expected to be widely used in cryptographic applications

of the future.

Data Encryption Standard

Proposed in the 1970s, DES [1] is a Feistel cipher with a block size of 64 bits and

a key size of 56 bits. DES conforms to the general Feistel structure illustrated in

Figure 2.5 except for an initial permutation at the beginning and its inverse at the

end of the cipher. After the plaintext passes through the initial permutation, the

64-bit permuted result splits to two 32-bit halves and enters a Feistel network of 16

rounds. In each round, the function F processes 32-bit Xi with subkey Ki of 48

bits. Within the function F as Figure 2.6 shows, a bit permutation expands Xi to

48 bits, which are then XORed with subkey Ki. The result after subkey mixture

forms the inputs of 8 parallel 6 x 4 S-boxes (81 to 88). The outputs of S-boxes are

concatenated and pass through another bit permutation to form Yi.

The key schedule of DES consists of two 28-bit rotating registers and two bit

permutations PC1 and PC2. The key passes through PC1 to form the initial con

tents stored in the two registers. In each round, the two registers are rotated left

independently for 1 or 2 bits. The rotated results are concatenated and pass through

17

X; (32 bits)

32x48 Bit Expansion

32x32 Bit Permutation

Y; (32 bits)

Figure 2.6: Function F of DES

PC2 to get one sub key Ki.

Advanced Encryption Standard

AES [32] is a 128-bit SPN cipher using keys with sizes of 128, 196, and 256 bits.

With larger block and key sizes, AES is believed to be much more secure than DES.

The number of rounds R depends on the key size, e.g., R = 10 when the key size is

128 bits.

At the beginning of the cipher, the 128-bit plaintext is stored in a two-dimensional

array of bytes called the State and denoted by { A.i,j}, 0 ~ i, j ~ 3 . There are four

sequential steps in each round of the cipher. Each step takes data from the State as

the input and stores the result in the State as the output. These four steps are [32]:

• ByteSub: This is a layer of parallel 8 x 8 S-boxes. Each byte enters an S

box independently. All AES S-boxes perform the same invertible mapping

which consists of multiplicative inversion over GF(28) followed by an affine

18

transformation.

• ShijtRow: This is a byte-wise cyclic shifting in each row of the State. The

shift offset of each round is fixed but different from one row to another. The

updated State { .A~,j} can be expressed as:

• MixColumn: Each column performs an MDS mapping, which can be imple-

mented by matrix multiplication over GF(28):

).~ . ,J 02 03 01 01 .Ao · ,J

).~ . ,J 01 02 03 01 .A1 · ,J
-

).~ . ,J 01 01 02 03 .A2 · ,J

).~ . ,J 03 01 01 02 .A3 · ,J

• AddRoundKey: In this operation, a 128-bit subkey is mixed with the State.

Each column of the State is XORed with one 4-byte word of the subkey.

It should be noted that AES still follows the general SPN structure illustrated in

Figure 2.4. AES has an initial AddRoundKey before the first round. ShiftRow and

MixColumn are linear and can be expressed together in the form of (2.2) where A is

a 128 x 128 binary matrix and B = 0. Such a combined linear transformation has a

branch number B of 5. MixColumn is replaced with another AddRoundKey in the last

round. Therefore, AES can be described in the form of Figure 2.4 by considering the

round structure as AddRoundK ey, ByteSub, and a linear transformation composed

of ShiftRow and MixColumn.

19

The AE8 key schedule expands the cipher key into enough subkeys, which are

sequentially stored in an array W[] of 4-byte words. The first Nk words of W[] are

initialized as the cipher key, where Nk is the word length of the cipher key. Then, the

next Nk words are derived from the current Nk known words using a sliding window

approach. Many operations such as substitution, rotation, and constant padding are

performed during the derivation.

Camellia

Camellia is a 128-bit Feistel-like cipher using keys with sizes of 128, 196, and 256

bits. A general round structure, as shown in Figure 2.5, is iterated for 18 times when

128 bit keys are used or 24 times when 192 or 256 bit keys are used.

The round function F of Camellia is illustrated in Figure 2.7. First, the 64-

bit Xi is XORed with subkey Ki· The data mixed with the subkey then enters a

layer of parallel 8 x 8 8-boxes. Camellia uses four invertible mappings for 8-boxes,

denoted by St, 82 , 83 , and 84 . A linear transformation follows the 8-box layer, which

is implemented by XORs as shown in the figure. Note that the branch number B of

this linear transformation is 5 [6].

Two functions called F L and F L -l are inserted into the Feistel network every

6 rounds. These two functions perform simple logic operations with two subkeys

required and are linear when the subkeys are fixed. There are also two 128-bit key

mixtures using XORs, located at the beginning and the end of the cipher, respec

tively. The key schedule, which will be discussed in detail in Chapter 7, expands all

subkeys using a structure similar to encryption.

20

xi (64 bits)

Key mixture (XOR) +-Ki (64 bits)
~--~--~--------~

8 8 8 8 8 8 8 8

Yi (64 bits)

Figure 2.7: Function F of Camellia

Other Block Ciphers

In addition to DES, AES, and Camellia, many other block ciphers have been proposed

with different cryptographic properties.

Serpent [33] and RC6 [8] were two AES candidates but not selected in the last

round of competition. As an SPN cipher of 32 rounds, Serpent uses 8 different 4 x 4

mappings for S-boxes, while a certain mapping is used for all S-boxes in the same

round. Serpent is fast in hardware and its structure is optimized for a bitslicing

implementation [34] in software. RC6 is based on the cipher RC5 [35], which uses

21

data-dependent rotations and integer additions for encryption. RC6 also uses integer

multiplications.

The block ciphers SHARK [21] and Square [36] include many features adopted

by AES. SHARK is a 64-bit SPN cipher with an MDS mapping based on a Reed

Solomon code. Square is a 128-bit SPN cipher like AES. As one significant difference

from AES, the linear transformation of Square does not have cyclic shifting for each

row. Instead, the byte >..i,j in the State is changed to Aj,i·

Hierocrypt [37], Anubis [30], Khazad [31], and MISTY [38] were all submitted to

NESSIE for evaluation. Hierocrypt has a 2-level nested SPN structure which will be

introduced in detail in Chapter 4. Anubis and Khazad are both involution ciphers

which perform the same operations in encryption and decryption with only slight

changes in the key schedule. Except for the involution feature, Anubis and Khazad

are very similar to AES and SHARK, respectively. MISTY is a nested Feistel network

with a block size of 64 bits.

2.3 Cryptanalysis

As the art of breaking ciphers, cryptanalysis is a valuable tool in finding the potential

drawbacks in current ciphers and developing practical design principles. Differential

cryptanalysis [39] and linear cryptanalysis [40] are two of the most powerful crypt

analytic techniques applied to block ciphers. They first concentrated on DES-like

cryptosystems and are now used as general tools for security evaluation. Integral

cryptanalysis was first applied on the cipher Square and became well known for its

application to AES as described in [5]. Implementation attacks exploit the statistics

existing in power, timing, and other measurable physical factors.

22

2.3.1 Differential Cryptanalysis

Differential cryptanalysis is a chosen-plaintext attack introduced by E. Biham and

A. Shamir in CRYPT0'90 [39]. A chosen-plaintext attack needs access to the en

cryption machinery so that attacks can get the ciphertext corresponding to a selected

plaintext.

For a system with block input and output, if two outputs Yt and Y2 correspond

to two inputs xl and x2, respectively, then the input difference2 is:

and the output difference is:

where "EB" represents bit-wise XOR. Among all possible input pairs with a differ

ence of L1X, only a subset of output pairs lead to the specified difference of L1Y. A

mapping from an input difference L1X to an output difference L1Y is called a differ

ential. The probability that a differential (L1X, L1Y) occurs is called the differential

probability and denoted by Pv:

Pv = prob{Yt EB Y2 = L1Y I xl EB x2 = L1X}.

Differential cryptanalysis works with the notion that the key mixture applied to the

input pair (i.e., XORing key K with inputs) does not affect the differential statistics.

Assuming X~ and X~ represent two inputs to a system with a key mixture added at

20ther differences are also defined, e.g., the difference calculated from modulo subtraction [41]
but in the context of ciphers we shall examine, the given difference definition is the most useful.

23

the beginning so that

we have

L1X' = X~ EB X~ = (X1 EB K) EB (X2 EB K) = L1X .

The attack begins with seeking the highly likely differential of a system. For

example, in an SPN cipher of R rounds, an attacker hopes to find a differential from

some plaintext difference to some output difference of the (R-1)-th round, which

occurs with a significant Pv. With this differential, the attacker can decrypt the

corresponding ciphertexts one round with all possible subkey candidates of the last

round to determine possible inputs to the last round. By checking for which subkey

candidate the output difference of the differential holds for the calculated outputs of

the (R-1)-th round most frequently, the valid subkey candidate of the last round

can be distinguished.

Once the last subkey is distinguished, it is straightforward for the attacker to use

the same technique to determine key bits from the (R -1)-th round, the (R- 2)

th round, etc.. To thwart such an attack, cipher designers construct ciphers so

that there are no large differential probabilities. To achieve this, no highly likely

differential characteristics should exist in the cipher. A differential characteristic of

1 rounds is a sequence denoted as (L1Zo, L1Z1 , · · ·, L1Zi, · · ·, L1Zy), where L1Z0 is the

input difference of the first round, L1Zy is the output difference of the last round,

and L1Zi is the output difference of the i-th round and also the input of the (i+1)-th

round, 0 <i <"(. Denote Pd as the probability that such a differential characteristic

24

holds. In practice, the number of chosen plaintext pairs required by differential

cryptanalysis, Nv, can be approximated by

in order to attack "! + 1 rounds of the cipher [42]. The number of plaintexts required

by the attack is used to indicate the workload since both the processing time and

memory requirement can be deduced from this number.

An S-box is active if it is involved in the differential characteristic in the attack.

Considering all S-boxes, {Si}, in a cipher, their maximum differential probability Ps

is defined [39] as:

If a total of na active S-boxes exist in the differential characteristic used for the

attack, then

A linear transformation with a large branch number can ensure a large value of na,

thus, making the upper bound of Pd even smaller. A small Pd is desirable because

of its reciprocal relation to the workload given by the number of plaintexts N D·

Based on the basic differential attacks, many more advanced attacking tech

niques have been proposed and may lead to more significant results. The method

to use differentials instead of characteristics for security evaluation has been pre

sented in [41], which helps to understand the provable security of the cipher. High

25

order differential cryptanalysis can be applied to the block ciphers with low nonlin

ear degrees [43]. 'fruncated differential cryptanalysis [44] uses differentials with only

part of the ciphertext bits involved in the output differences. Impossible differential

cryptanalysis [45] examines the non-existence of differences in order to distinguish

the correct key guess.

2.3.2 Linear Cryptanalysis

Linear cryptanalysis, introduced by M. Matsui in EUROCRYPT'93 [40], is mainly

applicable as a known-plaintext attack, which assumes that the attacker has access

to enough existent plaintext-ciphertext pairs. Linear cryptanalysis exploits the linear

relationship between plaintext bits and ciphertext bits, and can be used to statisti-

cally determine subkey bits in the last round. Subsequently, the other subkeys can

be determined in the same way with less workload.

The basic idea of this method is to find a linear approximation expression of

the cipher algorithm. The method begins with a statistical linear path between

the input and output bits of an S-box. Then, the path is spread to the entire

cipher structure. By cancelling the common terms, a linear approximation expression

without any intermediate bits will be obtained. For an n-bit cipher with input

X = (xn-1, Xn-2, · · ·, xo), output Y = (Yn-1, Yn-2, ···,Yo) and an m-bit cipher key

K = (km-b km_2 , • • ·, ko), the final effective linear expression [40] is of the form:

x· IT\ x· ···IT\ x· IT\ y· IT\ y· .. ·IT\ y· = kz EB kz .. · EB kz (2.4) •1 = •2 = >a = 31 = 32 = Jb 1 2 c

If the bit variables in (2.4) are selected randomly, then the probability that (2.4)

26

holds, denoted by PL, should be 1/2. However, since Y is obtained by encrypting X

with fixed K, the values in these bit locations are not totally random. A cryptanalyst

would hope that (2.4) holds with probability PL which is not equal to 1/2. The linear

probability bias £, given by £ = IP- 1/21, indicates the effectiveness of the linear

approximation. The larger the bias c is, the better linear attacking performs. Once

a good linear expression is statistically found, we obtain the equivalent of one bit of

information about K.

Since the right side of (2.4) is fixed to be either 0 or 1, the attack can derive more

key bits by statistically testing each key candidate. To attack an SPN cipher of R

rounds, for example, an attacker hopes to find a linear expression consisting of bit

variables of the plaintext and output of the (R-1)-th round. Then the corresponding

ciphertexts are decrypted one round with all possible candidates of the last round

subkey. By checking for which subkey candidate the linear expression holds true

with a probability bias c significantly different than 1/2, the attacker can distinguish

the valid subkey candidate from others. Once the last subkey is distinguished, it is

straightforward to determine subkey bits of other rounds.

In order to perform an accurate statistical test, substantial plaintext-ciphertext

pairs need to be processed. We take the complexity of cryptanalysis to be indicated

by the data amount required by the attack. It is shown by Matsui [40] that the

number of plaintext-ciphertext pairs required by linear cryptanalysis, NL, can be

approximated by

To thwart these two attacks, cipher designers construct ciphers so that there is

no large bias c different from 1/2 for the probability that a linear expression holds.

27

To achieve this, no highly likely linear characteristics should exist in the cipher.

Since any linear approximation of a data block or vector can be regarded as its inner

product with a masking bit vector over GF(2), a linear characteristic of 'Y rounds is

a sequence of masking values denoted as (FZ0, rzb · · ·, rzi, · · ·, FZ7), where FZ0
is the masking value for the first round input, r Z7 is that for the last round output,

and rzi is that for the i-th round output and also the (i+1)-th round input.

An S-box is active if it is involved in the linear characteristic in the attack.

Considering all 8-boxes, {Si}, in a cipher, their maximum linear probability3 is

defined [40] as:

Qs 6 m~ max (2xprob{ X· FX = Si(X) · FY}- 1)2
t FY#O,FX

where "·" denotes a bit-wise inner product and r X and FY denote masking variables.

A linear approximation is established by combining appropriate S-box linear ap-

proximation expressions into a linear characteristic with the following Piling-Up

Lemma.

Theorem 2.1 (Piling-Up Lemma [40]): Let ui , 1 ~ i ~ n, be independent random

variables whose values are 0 with probability Pi or 1 with probability 1 -Pi. Then the

probability that u1 E9 u2 · · · E9 Un = 0 is

n

1/2 + 2n-l II (Pi - 1/2) ·
i=l

3 The terminology used here is the same as defined in [6, 38, 46] although it should be noted that
it does not represent a true probability.

28

Hence, the bias of u 1 E9 u2 · · · E9 Un = 0 is

where £i = IPi - 1/21.

n

£ = 2n-1 II £i

i=l

The Piling-Up Lemma is useful for approximating the overall linear probability.

As a result, we can define a linear characteristic probability Pl with upper bound:

where na is the number of activeS-boxes in the linear characteristic used for attack-

ing. Thus, it can be shown that the workload now is also expressed as

A linear transformation with a large branch number is often used to diffuse S-box

outputs and thus increase the value of na. As a result, the workload of the attack is

enlarged.

The maximum probability of a linear characteristic is the primitive way to eval-

nate the resistance of a block cipher to linear cryptanalysis. Sometimes, a linear

attack can be improved because different linear characteristics with the same linear

approximation as shown in (2.4) can be combined to form a linear hull [47] with

a higher probability. To understand provable security against a linear attack, it is

desirable to estimate the expected probability of a linear hull. A method to seek the

upper bound of such a probability has been suggested for SPNs in [48]. The basic

linear attack can also be modified to utilize multiple linear approximations [49] or

29

nonlinear approximations [50].

Similar to each other as examined in [51, 52], both differential cryptanalysis

and linear cryptanalysis begin with statistical recognition of specific cipher struc

tures. For each attack, the maximum probability of any characteristics is calculated

straightforwardly and used widely for security evaluation of proposed ciphers. The

best linear approximation or differential characteristic can be searched for using the

method presented in [53]. Provable security, in terms of the maximum probability of

differentials or linear hulls, is a more accurate measure, but is generally difficult to

compute or intractable to determine the required probabilities. As a result, consid

ering the provable security of block ciphers in the context of differential and linear

cryptanalysis appears to be generally impractical.

In this thesis, all 4 x 4 S-boxes are assumed to satisfy p8 , qs ::; 2-2 and all 8 x 8

S-boxes are assumed to satisfy p8 ,q8 ::; 2-6 • Many proposed ciphers such as Ser

pent [33], AES, Hierocrypt [37, 54], and Camellia have S-boxes satisfying these re

quirements; others such as Anubis [30] and Khazad [31] have slightly higher Ps and

qs.

2.3.3 Integral Cryptanalysis

Integral cryptanalysis [55] is a chosen-plaintext attack first proposed by the authors

of the cipher Square [36]. This attack exploits the effect of balancing caused by

invertible components used in the cipher.

To attack AES using integral cryptanalysis as presented in [5], a special set of

256 plaintexts can be selected such that each plaintext has one distinct value at

one common byte location and has the same values at the other 15 byte locations.

The byte location with all different values is called active. Figure 2.8 shows a set of

30

plaintexts with an active byte located at the right bottom of the State (denoted by

"A" in the figure). It should be noted that AES substitution and key mixture does

not change the status of the active byte in the State. ShiftRow shifts the active byte

to the left bottom and MixColumn propagates the active status to all the 4 bytes in

current column.

A

A

A

A A A

Plaintext & after ByteSub after ShiftRow after MixColumn

Figure 2.8: Active Status of the State in the AES First Round

Figure 2.9 illustrates the status change occurring in the second round. ShiftRow

shifts the bytes in the active column to each column of the State because of a different

byte offset per row. After MixColumn, all the bytes are active. The State keeps the

same active status until MixColumn of the third round. However, each byte after

MixColumn in the third round is the XOR sum of the products of active bytes and

constants. Such an XOR sum is not active but has a property called balancing. That

is, the 256 values at this location corresponding to the 256 plaintexts can be XORed

to get 0 as the result. Such a balancing property is compromised by ByteSub of the

fourth round.

For AES of 4 rounds, an attacker collects the ciphertexts associated with the

above 256 plaintexts of the same set. Assuming a 32-bit partial key associated with

one column of the State is known for the last subkey, 4 bytes at the beginning of the

fourth round can be restored. By checking whether the balancing property exists

31

A A A A A A

A A A A A A

A A A A A A

A A A A A A

after ByteSub after ShiftRow after MixColumn

Figure 2.9: Active Status of the State in the AES Second Round

for all 256 restored values at the same byte locations, the valid 32-bit partial key

candidate of the last round can be distinguished. This procedure can be repeated

for other 32-bit partial subkeys associated with other columns of the State until all

128 bits of the last subkey are deduced.

The above attack against 4 rounds of AES can be extended up to 7 rounds

by processing more sets of plaintexts and guessing more partial key candidates in

different rounds [5]. Further, high order integral cryptanalysis and its application to

block ciphers have been discussed in [55].

2.3.4 Implementation Attacks

During a cipher implementation execution, some physical information may be leaked

to the external environment. If the leakage information can be measured by the at

tacker, an implementation attack (also called a side-channel attack) may be launched.

These types of attacks are usually targeted to smart-card solutions because it is rel

atively easy to model their relation between internal circuits and physical leakage.

The attack based on power analysis was first introduced by P. Kocher et al. to

deduce the key of DES from tamper-resistant devices [56]. To measure the power

32

reconfigured once produced. With a relatively longer development time, ASICs con

tain far more gates and run much faster than FPGAs. When manufactured in a

large volume, an ASIC has a very low product cost. Therefore, this type of circuit

is desirable for widely-used applications with high performance requirement.

Cryptographic hardware can be optimized for area requirement or throughput by

choosing different design methods:

• Round iterated design: A round structure of the cipher is implemented and

used in an iterative fashion to produce the encrypted output. The additional

logic is needed to switch the data for input, iteration, and output. Such a

design has the smallest area requirement but produces the lowest throughput.

• Pipelined design: A task is partitioned into several sequential stages, which

have roughly equal delays. Registers are used to separate the adjacent stages

and temporarily store the intermediate data and control signals, which enable

each stage to work independently. A stage may contain one or several rounds

of the cipher. Pipelining within one round is sometimes possible but limited

due to large delay discrepancies of cipher components.

• Loop unrolled design: Several sequential rounds are implemented as a single

combinational logic. Since the redundancy between rounds can be further

reduced by CAD tools, such a design is faster than an iterated design but

requires more area.

• Block parallel design: The design contains several independent encryption

blocks. An 1/0 port controller assigns the input data to each block and assem

bles the encrypted data for output.

35

It should be noted that, although producing high throughputs, the pipelined design

and parallel design can only be used when non-feedback block cipher modes are

used. They cannot be used for example to implement the Cipher Block Chaining or

Cipher Feedback modes [14]. During logic synthesis, an optimization strategy can

be specified to give area or delay a higher priority.

Several implementation cases are listed, in which different implementation meth

ods and technologies were used.

DES

DES has been implemented commercially by many hardware developers. As are

cent case, Helion Technology claimed a hybrid DES design, which was an iterated

structure of 2-round loop unrolling core [63]. The ASIC design in 0.18 Jlm CMOS

technology has a throughput of 1.25 Gbits/s with less than 6,000 gates, while the

FPGA design using a VirtexE-8 chip has a throughput of 526 Mbits/s with 855 LUTs

(i.e., Lookup Tables).

AES

Many hardware implementations had been performed since the AES project was

announced. Table 2.2 lists some typical published results. A round iterated design

in an ASIC is significantly faster than that in an FPGA. However, when a chip with

large area capacity is used, a fully pipelined AES implementation in FPGA can also

run very fast.

36

Table 2.2: Several Published AES Hardware Implementations

lmplementors Throughput Area Design Technology
(Gbitsjs) Method

B. Weeks et al. [64] 0.443 46mm:.~ iterated ASIC, 0.5 pm
5.163 471 mm.: pipelined

T. Ichikawa et al. [65] 1.95 612K gates iterated ASIC, 0.35 pm
H. Kuo et al. [66] 1.82 3.96 mm:.~ iterated
Helion Tech. [63] 2 27K gates iterated ASIC, 0.18 pm

25 n.a. pipelined

0.300 5.3K CLBs loop unrolling
A. Elbirt et al. [67] (2-round) FPGA, Vertex

1.938 llK CLBs pipelined XCV1000-
(5-round) BG560-4

K. Gaj et al. [68] 0.332 2.9K CLBs iterated

CLBs: Configurable Logic Blocks

Camellia

Three types of implementations were presented by Camellia's authors in [10]. Type 1

used a fully loop unrolling design optimized for throughput and achieved a through

put of 1.17 Gbits/s in 0.35 J.tm CMOS technology, about 40% slower than AES

implemented using the same methodology. The area requirement of the Camellia

implementation of this type is 272,819 gates, which is about 55% less than the AES

counterpart. Optimized for logic area, the ASIC implementation of Type 2 used a

round iterated structure and achieved a throughput of 220 Mbitsjs with a gate count

of 11,350. Targeted on FPGA XC4000XL series, Type 3 was also a round iterated

design and achieved a throughput of 122 Mbits/s with 874 CLBs.

37

2.4.2 Software Implementations

During software development, many factors need to be considered, such as the pro

cessor word size, the operating system, the software language, and the compiler.

Many cryptographic operations include bit permutations and finite field mathemat-

ics, which are hard to be coded directly. In this case, a set of tables are usually

generated in the memory to store the computation results based on different inputs

as indices. As a result, these time-consuming operations can be realized as fast

as memory access. Especially when the machine has a large word size (e.g., 32 or

64 bits), several operations caused by the change at the same small sub-block can

be combined into one table lookup. This table lookup method is used in the fast

implementations of DES [9], AES [5], and Camellia [10].

Table 2.3: Software Implementations on Different Platforms
(Selected from Tables 30 and 31 in [69])

II Ciphers II Pill, MS I PIV, Linux I Alpha, OSFl I Mac II
DES 62/ 62 61/ 61 37/37 60/ 59
AES 23/23 24/ 25 17/ 17 29/ 28

Camellia 37/37 64/63 36/35 31/ 31

Each entry: # cycles per byte for encryption/ decryption

Table 2.3 lists the implementation results of the three ciphers of interest on dif

ferent platforms measured by NESSIE [69]. The encryption and decryption times

are indicated as the numbers of clock cycles per byte of output produced.

38

2.5 Summary

This chapter reviewed the basic design concepts of block ciphers as well as their

security and implementations. The security of a block cipher is usually evaluated

with respect to cryptanalysis. Several types of cryptanalysis have been introduced

with emphasis on differential and linear attacks, which are the most well-known and

fundamental attacks applied to block ciphers. The technology used for cipher imple

mentations was briefly described with results of typical published cases presented.

39

Chapter 3

Hardware Design and Analysis of Block

Cipher Components

Both S-boxes and MDS mappings are widely used components in current block cipher

design. An MDS mapping can be performed through multiplications and additions

over a finite field. In finite field arithmetic [22] with base 2, additions are bit-wise

XORs, and multiplications can be calculated as polynomial multiplications modulo

an irreducible polynomial. The MDS mapping used in AES encryption is imple

mented efficiently by several applications of "xtime" [5] (i.e., one-bit left shifting

followed by addition with the irreducible polynomial). However, this method only

suits the case that all entries in the generation matrix have both low Hamming

weights and small magnitudes.

As typically the only nonlinear components in a block cipher, S-boxes must be

designed to promote high security. As a result, each bit of an S-box output is

a complicated Boolean function of input bits with a high algebraic order, which

makes it difficult to optimize or evaluate the complexity of S-boxes generally in

40

hardware1. We propose an efficient hardware model of invertible S-boxes through

the logic minimization of a decoder-switch-encoder circuit. By use of this model,

a good upper bound of the minimum hardware complexity can be deduced for the

S-boxes used in SPNs and some Feistel networks (e.g., Camellia [6]). The model can

be used as a technique for the construction of S-boxes in hardware so that the space

and time complexities are low.

In our work, we take the conventional approach that the space complexity of a

hardware implementation is evaluated by the number of 2-input gates and bit-wise

inverters; the time complexity is evaluated by the gate delay as measured by the

number of traversed layers in the gate network. As a general complexity evaluation,

these measures are not exactly proportional to the real area and delay in a synthesized

VLSI design because logic synthesis involves technology-dependent optimization and

maps a general design to different sets of cells based on targeted technologies. For

example, a 2-input XOR gate is typically larger in area and delay than a 2-input

AND gate in most technologies. As well, it is assumed that the overhead caused by

routing after logic minimization can be ignored. Although routing affects the perfor

mance in a place-and-routed implementation, it is difficult to estimate its complexity

accurately before synthesis into the targeted technology.

From previous FPGA and ASIC implementations of block ciphers, such as those

listed in [70], it is well established that S-boxes normally contribute to most of a

cipher's area requirement and delay. Although linear components such as MDS

mappings are known to be much more efficient than 8-boxes, it is important for cipher

designers to characterize hardware properties of both S-boxes and MDS mappings

on the same basis as is done through the analysis in this chapter.

1Some special cases with algebraic structure as in the AES S-box can be efficiently optimized.

41

The content of this chapter is also presented in [71].

3.1 Optimized MDS Mappings for Hardware

3.1.1 MDS Mappings

A linear code over Galois field GF(2n) is denoted as an (l, k, d)-code, where l is

the symbol length of the encoded message, k is the symbol length of the original

message, and d is the minimal symbol distance between any two encoded messages.

An (l, k, d)-code is MDS if d = l-k+l. A (2k, k, k+l)-code with generation matrix

g = [IIC], where C is a k x k matrix and I is an identity matrix, determines an MDS

mapping from the input X to the output Y through matrix multiplication over a

finite field as follows:

fM : X t-t Y = C · X (3.1)

where

ck-1,k-1

X= ' Y= ' C=

Xo Yo Co,k-1 Co,o

Each entry in X, Y, and Cis an element in GF(2n).

For a linear transformation, the branch number was defined in (2.3) as the mini

mum number of nonzero elements in the input and output when the input elements

are not all zero. It is desirable that a linear transformation has a high branch number

when it is used after a layer of S-boxes in a block cipher, in order for there to be low

probabilities for differential and linear characteristics [39, 40]. A mapping based on

42

a (2k, k, k+l)-code has an optimal branch number of k+l.

3.1.2 Bit-Parallel Multipliers

An MDS mapping can be regarded as matrix multiplication in a finite field. Since

the generation matrix is constant, each element in the encoded message is the XOR

of several outputs of constant multipliers. As basic operators, bit-parallel multipliers

given in a standard base [72, 73] are selected in this research. A constant multiplier

can be written as a function from an element A to an element B over GF(2n) as

follows:

fe : A f-+ B = C · A (3.2)

where C is the constant element in GF(2n). The expression in binary polynomial

form is given as

bn-1Xn-1 + · · · + bo = (cn-1Xn-1 + · · · + co)(an-1Xn-1 + · · · + ao) mod P(x) (3.3)

where P(x) denotes the irreducible polynomial of degree n for the field. An n x n

binary matrix :Fe is associated with this constant multiplier such that:

bn-1 an-1

bn-2
=:Fe x

an-2
(3.4)

bo ao

43

where

fn-1,n-1 fn-1,0

:Fe=

fo,n-1 fo,o

and Ai E { 0, 1}, 0 ~ i, j ~ n -1. The entries in each column of :Fe are determined

by

fn-1,jXn- 1 + · · · + fo,j = xi(Cn-1Xn-1 +···+co) mod P(x). (3.5)

Since :Fe is constant, it is trivial to implement a constant bit-parallel multiplier by

bit-wise XOR operations. For example, considering a constant multiplier to perform

B = 19H x A over GF(28) where "H" indicates hexadecimal format and P(x) =

x8 + x4 + x3 + x + 1, we get the binary product matrix :F19H and the corresponding

Boolean expressions for all bit outputs as the following:

0 0 0 1 1 0 0 0 b7 = a4 Ef)a3

0 0 0 0 1 1 0 0 b6 = a3 EB a2

1 0 0 0 0 1 1 0 b5 = a7 EB a2 EB a1

1 1 0 0 0 0 1 1 b4 = a7 EB a6 E9 a1 E9 ao
:F19H = :::::}

0 1 1 1 1 0 0 1 b3 = a6 E9 a5 E9 a4 E9 a3 E9 ao

1 0 1 0 0 1 0 0 b2 = a7 EB a5 E9 a2

0 1 0 1 0 0 1 0 b1 = a6 E9 a4 E9 a1

0 0 1 1 0 0 0 1 bo = a5 E9 a4 E9 ao

If we define w(:Fe) as the count of nonzero entries in :Fe and wi(:Fe) as the

count of nonzero entries in row i of :Fe, the number of 2-input XOR gates used

for the multiplier is upper bounded by w(:Fe) -n and the delay of gate levels is

44

m~{ flog2 Wi (Fe) l}.
z

3.1.3 Complexity of MDS Mappings

An MDS mapping has been defined in (3.1) where each entry Ci,j of matrix C is

associated with a product matrix Fci,;. Replacing each Ci,j in matrix C with Fci,j

as a submatrix, we get an nk x nk binary matrix Fe as the following:

Fe=

Fco,k-1 Fco,o

Because Y is the matrix product of Fe and X, the MDS mapping can be straightfor

wardly implemented by a number of XOR gates. The gate count of 2-input XORs is

upper bounded by

GMvs = w(Fe)- nk (3.6)

and the delay is upper bounded by

(3.7)

where 0:::; i:::; n-1.

3.1.4 Three Types of Matrices

In the search of optimized MDS mappings in the next section, we will use three types

of matrices which suit different applications. When an exhaustive matrix search is

impractical, we will limit the search scope to one of the following three matrix types.

45

• Circulant matrices: Given k elements a 0, ... , ak-b a circulant matrix A is

constructed with each entry Ai,j = a(i+j) mod k. The probability that a circulant

matrix is suitable for an MDS mapping C is much higher than that of a normal

square matrix [36].

• Hadamard matrices: Given k elements ao, ... , ak-b a Hadamard matrix A

is constructed with each entry Ai,j = aiEej. Each Hadamard matrix A over a

finite field has the following properties: A2 = 1·'I where 1 is a constant. When

1 = 1, A is an involution matrix. An involution MDS mapping is required by

an involution SPN.

• Cauchy matrices: Given 2k elements ao, ... , ak-1, f3o, ... , f3k-b a Cauchy ma

trix A is constructed with each entry Ai,j = 1/ (ai EB ,83). Any Cauchy ma

trix is MDS when a 0 , ••• , ak_1 are distinct, ,80 , ..• , .Bk-1 are distinct, and

ai =f:. ,83 for all i, j [24]. Although a Cauchy matrix can be conveniently used

as matrix C for an MDS mapping, the relation between selected coefficients

(i.e., a 0 , ... , ak_1, ,80 , ... , .Bk-1) and corresponding MDS complexity is not as

straightforward as in the former two matrix types. Therefore, it is difficult to

select coefficients to construct a Cauchy matrix that can be efficiently imple

mented in hardware.

3.1.5 The Optimization Method

The hardware complexity of an MDS mapping is determined directly by matrix C.

In order to improve hardware performance, matrix C should be designed to produce

low hardware complexity. However, not every matrix with low complexity is suitable

as an MDS mapping. The mapping associated with matrix C can be tested using the

46

following theorem:

Theorem 3.1 [24]: An (l, k, d)-code with generation matrix g = [IIC] is MDS if,

and only if, every square submatrix of C is nonsingular.

To minimize gate count and delay in hardware, we want to find an MDS mapping

based on a (2k, k, k+1)-code over GF(2n) with low Hamming weights of w(Fc) and

wi(Fc). Theorem 3.1 provides us a way to determine whether a matrix candidate is

MDS. Theoretically, the optimal MDS mapping can always be determined through

an exhaustive search of all matrix candidates of C. However, such a search is compu-

tationally impractical when k and n get large. In this case, it is reasonable to focus

the search on some subsets of candidates which are likely to yield MDS mappings.

The search scope can thus be limited to circulant, Hadamard, and Cauchy matrices.

Table 3.1: Four Choices for MDS Search

II Search Options II # of Candidates I Applicable Cases II
Exhaustive 2k"n small k, n

Circulant Matrices 2/Cn large k, n
Hadamard Matrices 2":n large k, n as well as involution

Cauchy Matrices 2:.:/Cn hard to find MDS mappings
in other matrix categories

Table 3.1 describes four choices for the MDS search. We adopt an appropriate

searching method based on the number of candidates to be tested and the required

MDS features (involution or not). If computation permits, exhaustive search is pre-

ferred. When an exhaustive search is impractical, a search in circulant matrices may

be performed for non-involution MDS mappings or a search in Hadamard matrices

may be performed for MDS mappings which are involutions. Since only a subset

of MDS mappings can be derived from circulant, Hadamard, or Cauchy matrices,

47

only exhaustive search over all possible matrices (and therefore all MDS mappings)

is guaranteed to find a truly optimized MDS mapping. However for large k and n,

searching over a subset of MDS mappings is the best that can be achieved. The

objective is to find the candidate with the MDS property and a low hardware cost.

The hardware "cost" could be gate count, delay, or both. Sometimes, no candidates

in the sets of circulant and Hadamard matrices pass the MDS test. In this case, the

optimal mapping will be determined through a search of Cauchy matrices, where

each candidate is deterministically MDS.

Once a candidate is proved to be MDS (or involution MDS), those remaining

candidates with higher hardware cost can be ignored narrowing the search space.

The results generated in this searching method can be used for the hardware char

acterization of ciphers with MDS mappings of a specified size.

It is noted that w(Fc) - nk just indicates the upper bound of XORs in the

circuit. Two greedy methods introduced in [73] can be applied to the MDS matrix

multiplication in order to further reduce redundancy in the circuit. However, the

improvement of using greedy methods is not significant when w(Fc) is already low.

3.1.6 MDS Search Results

We have implemented a search for the best MDS mappings of various sizes. Dur

ing the search, gate reduction is given higher priority than delay reduction because

the delay difference among mappings is generally not evident. The optimal2 non-

involution MDS mappings for bit-parallel implementations for various sizes of MDS

2Here "optimal" means "locally optimal" when the MDS mapping is constrained to a particular
matrix category.

48

mappings are given in Table 3.2. As in AES, SPNs using these optimal MDS map-

pings are more efficient in encryption than decryption. In Table 3.2, the average

weight is determined by computing the number of matrix entries and dividing by

two. That is, it represents the average number of ones in a matrix across all nk x nk

matrices. These average weight values are included to show how effective the opti

mization work is for each MDS category.

Table 3.2: MDS Search Results

MDS Galois P(x) Average Involution w(Fc) Delay Matrix
Field Weight (#layers) Type

(4,2,3) GF(22) 7H 8 No 9 2 exhaustive
(4,2,3) GF(24) 13 H 32 No 17 2 exhaustive
(4,2,3) GF(21S) llD H 128 No 35 3 exhaustive
(8,4,5) GF(24) 13 H 128 No 76 3 circulant
(8,4,5) GF(21S) llD H 512 No 164 3 circulant

(16,8,9) GF(24) 13 H 512T No 464 4 Cauchy
(16, 8, 9) GF(21S) llD H 2048 No 784 4 circulant

(4,2,3) GF(2:t) 7H 8 Yes 11 2 exhaustive
(4,2,3) GF(24) 13 H 32 Yes 21 2 exhaustive
(4,2,3) GF(211) llD H 128 Yes 48 3 exhaustive
(8,4,5) GF(24) 13 H 128 Yes 88 3 Hadamard
(8, 4, 5) GF(211) llD H 512 Yes 200 4 Hadamard

(16, 8, 9) GF(24) 13 H 512T Yes 544 5 Cauchy
(16, 8, 9) GF(211) llD H 2048 Yes 928 5 Hadamard

t: Most randomly generated matrices are not MDS due to a small field and the
requirement of a large branch number.

The optimal involution MDS mappings in terms of our complexity analysis are

also given in Table 3.2. Since the MDS test of Theorem 3.1 is computationally

intensive, an involution test will be performed first to eliminate wrong candidates.

In [29], an algebraic construction of an involution MDS mapping based on Cauchy

matrices is described. This known MDS mapping is used to eliminate remaining

49

candidates that produce higher complexity and therefore reduce search space before

a better mapping is found.

The categories in Table 3.2 correspond to many MDS mappings in real ciphers

(although there are minor differences in finite field selection). For example, Square,

AES, and Hierocrypt at the lower level have non-involution MDS mappings based on

(8, 4, 5)-codes over GF(28) [32, 36, 37]. SHARK has an non-involution MDS mapping

based on (16, 8, 9)-codes over GF(28) [21]. Hierocrypt at the higher level has two

choices of non-involution MDS mappings, based on (8, 4, 5)-codes over GF(24) and

GF(232), respectively [37]. Anubis has an involution MDS mapping based on an

(8, 4, 5)-code over GF(28) [30]. Khazad has an involution MDS mapping based on

a (16, 8, 9)-code over GF(28) [31]. None these ciphers have MDS mappings with

complexity as low as their corresponding cases listed in the tables. The mappings

of AES, Anubis, and Khazad have MDS mappings that are close to the optimal

cases in terms of gate counts (i.e., w(Fc) = 184,216, and 1296, respectively), while

Hierocrypt's MDS mappings have high complexity, similar to the average gate counts.

As Table 3.2 indicates, the involution MDS mappings are not as efficient as non

involution MDS mappings after optimization. However, the performance difference

between them is quite small. When used in an SPN, the involution MDS mapping

produces equally optimized performance for both encryption and decryption. When

an SPN uses a non-involution MDS mapping optimized only for encryption, the

inverse MDS mapping used in decryption has a higher complexity. For example, the

MDS mapping used in AES decryption has w(Fc) = 472 and, hence, needs more

gates in hardware than the MDS mapping used for encryption which has w(Fc) =

184. When a non-involution MDS mapping is optimized for both encryption and

decryption, the overall hardware cost is similar to an optimized involution MDS

50

mappmg.

3.1.7 Synthesis Results

We implemented the optimized MDS mappings in hardware using both 0.18 J.Lm

and 0.35 J.Lm CMOS technologies. Synopsys Design Compiler was used for synthesis

and the default optimization strategy gave the space concern a higher priority [74].

TSMC's cell library was targeted to 0.18 J.lm technology, where a specific area size

was reported after synthesis. The cell library lsL10k.db was targeted to 0.35 J.lm

technology, where the area was reported in the number of equivalent NAND gates.

Tables 3.3 and 3.4 show the synthesis results of optimized MDS mappings listed in

Table 3.2. The synthesis circuits of these MDS mappings produce space complexities

with roughly the same trends as shown in Table 3.2. Because some cells in the

target libraries have more than 2 inputs, the ratio between experimental values and

the corresponding estimates vary slightly when the fields and minimum distances of

MDS mappings are both small. This variance becomes insignificant as the complexity

of an MDS mapping increases. The delay time of an MDS mapping may be larger

than its estimate when the circuit becomes larger (e.g., mappings based on (16, 8,

9)-codes when using 0.35 J.lm CMOS), which is due to technology related wiring

overhead and optimization strategy.

51

Table 3.3: Synthesis Results of Non-Involution MDS Mappings

MDS Hamming Gate .1811m CMOS .3511m CMOS
Weight Delay Area Delay Areal Delay

(11m2) (ns) (ns)

(4, 2, 3), GF(22) 9 2 105.7 0.80 12 2.25
(4, 2, 3), GF(24) 17 2 260.2 0.42 28 2.25
(4, 2, 3), GF(28) 35 3 544.8 0.42 57 2.25
(8, 4, 5), GF(24) 76 3 1549.0 1.30 153 3.62
(8, 4, 5), GF(2!S) 164 3 3659.0 1.33 375 3.51
(16, 8, 9), GF(24) 464 4 8863.0 2.01 844 8.59
(16, 8, 9), GF(2!S) 784 4 17376.4 2.01 1636 9.49

t : #equivalent NANDs

Table 3.4: Synthesis Results of Involution MDS Mappings

MDS Hamming Gate .1811m CMOS .3511m CMOS
Weight Delay Area Delay Areal Delay

(11m2) (ns) (ns)
(4, 2, 3), GF(22) 11 2 113.8 1.59 12 3.44
(4, 2, 3), GF(24) 21 2 280.5 0.95 27 2.43
(4, 2, 3), GF(21l) 48 3 703.3 1.10 63 3.85
(8, 4, 5), GF(24) 88 3 1687.2 1.70 174 3.77
(8, 4, 5), GF(21l) 200 4 4260.8 1.33 398 6.34
(16, 8, 9), GF(24) 544 5 9371.2 2.64 891 11.45
(16, 8, 9), GF(28) 928 5 19559.6 2.36 1850 10.96

t : #equivalent NANDs

52

3.2 General Hardware Model of Invertible S-boxes

3.2.1 Biham's Method to Simplify S-box Circuits

In [34], a method of generating a Boolean function through nested multiplexing is

introduced to optimize gate circuits for the 6 x 4 S-boxes in DES implementations.

Consider that a Boolean function f(a, b, c) with three input bits a, b, and c can be

written as

f(a, b, c)= JI(a, b)· c + h(a, b)· c

where fi(a, b) and h(a, b) are two Boolean functions and"+" denotes OR. If h(a, b)=

!I(a, b) EB h(a, b), then

f(a, b, c) = h(a, b) EB (h(a, b)· c) .

Similarly, a Boolean function with an input of 4 bits can be regarded as a multiplexor

using one input bit to select two boolean functions determined by the other three

input bits. This procedure is repeated until a Boolean function has 6 input bits. A

6x4 DES S-box contains four of these 6-bit Boolean functions. This general approach

can be taken for any sizeS-box and works well for optimization of smallS-boxes such

as the 4 x 4 S-boxes in Serpent [33]. However, in the case of general invertible 8 x 8

S-boxes used by many ciphers, this method can be improved upon, as we shall see.

3.2.2 Decoder-Switch-Encoder Model

In this section, we derive a general hardware model of n x n invertible S-boxes by

simplification of a decoder-switch-encoder structure. Using this model, the upper

53

bounds of optimized gate counts and delays for S-boxes can be deduced.

lo Yo Do
It nx2n
• decoder •

Yt 2nxn Ot
switch encoder •

•
• •

ln-l y2"-l Dn-l
t·-

Figure 3.1: A General Hardware Structure of Invertible S-boxes

As shown in Figure 3.1, the n x 2n decoder outputs 2n distinct minterms from

then-bitS-box input. The switch is a wiring area composed of 2n wires. Each wire

connects an input port Xi to an output port Yj, O~i,j ~ 2n-1. Since the S-box is

invertible, only one input port is connected to an output port. Although the wiring

scheme embodies the S-box mapping, the switch does not cost any gates. The output

of the switch is encoded through a 2n xn encoder, which produces then-bit output

of the S-box. A detailed example is presented in Figure 3.2, which is chosen for DES

(the first row of the first S-box with the mapping shown in Table 2.1).

Decoder

The nx2n decoder is implemented by n NOT gates and a number of AND gates. The

NOT gates generate complementary variables of n inputs. The AND gates produce

all 2n minterms from n binary inputs and their complements.

The most straightforward approach is to generate every minterm separately,

which costs 2n · (n- 1) 2-input AND gates plus n bit-wise NOT gates, and a delay

of flog2 n l + 1 gate levels. This approach can be improved by eliminating redundant

54

-ri·ri-·-~-·~-·-·-·-·-
1) c c) c

~--·-·-·-·-·-·-· decoder

••• Y1Yo

·-·-·-:..;:_·-·~

I

I

~--·-·-·-·-·-·-·-·-·· encoder -·-·-·-·-·-·-·-·-·-·

Figure 3.2: The Circuit of a 4 x 4 Invertible S-box

55

Oo

AND gates in the circuit. The gate count of the optimized circuit can be generated

using a dynamic programming method.

for i +-- 0 to n - 1 do
D(i, i) +-- 0

for step +-- 1 to n - 1 do
for i +-- 0 to n - 1 - step do

j = i +step
D(i,j) +-- oo
for k +-- i to j - 1 do

temp= D(i, k) + D(k + 1,j) + 2i-i+l
if temp< D(i,j) then D(i,j) +--temp

return D(O, n- 1)

Figure 3.3: Algorithm to Determine Decoder AND-Gate Count

Consider the dynamic programming algorithm in Figure 3.3, used to compute the

minimum number of AND gates in the decoder. Let D(i, j) be the minimal number

of 2-input AND gates used for generating all possible minterms composed of literals

Ii, · · ·, Ii and their complements. Thus, D(i,j) = 0 when i = j. If we know two

optimal results of subproblems, say D(i,k) and D(k + 1,j) where i:::::; k < j, all

minterms for h · · · , Ii can be obtained by using AND gates to connect two different

minterms in the subproblems, respectively. Since the number of these pairs is 2i-i+l,

this solution needs D(i, k) + D(k + 1, j) + 2i-i+l AND gates in total. The algorithm

of Figure 3.3 can be easily modified to determine the actual gate network used for

the decoder. When n = 2k, it can be shown that the number of 2-input AND gates

and bit-wise NOT gates in the decoder is given by

k

Gnec(n) = n L 22i-i + n.
i=l

56

(3.8)

The delay, in terms of the number of gate levels, of the decoder is

Encoder

The 2n x n binary encoder can be implemented using a number of 2-input OR gates.

Table 3.5 gives the truth table of a 16 X 4 binary encoder. Each output signal oi is

the OR of the 2n-l input signals that produce "1" in column Oi in the truth table;

this is denoted as Oi = L: Yk. If we separately construct circuits for these output

signals, it would cost n · (2n-l -1) 2-input OR gates and a delay of n-1 gate levels.

Fortunately, most OR gates can be saved if the same intermediate ORed signals are

reused.

Considering that the OR is done in a dynamic programming method, some sub

problems used in calculating Oi are also used in calculating Oi if i > j > 0. For exam

ple, as shown in Table 3.5, the task of calculating On-l includes the subproblems of

calculating the OR from Y5.2n-3 to Y6.2n-3_1 and calculating the OR from Y6.2n-3 to

Y2n_1 . These two subproblems are also included in the calculation of On-3 and On-2,

respectively. As a result, the OR gates needed to solve the recurrent subproblems

can be saved. Actually, in the procedure of calculating Oi, only the subproblem of

calculating the OR from Y2i to Y2iH_1 has to be solved because all other 2n-i-l_1

subproblems have been solved in the procedures of calculating On-b · · ·, Oi+l· In

this sense, we need 2i-1 OR gates for the subproblem that has not been solved and

2n-i-1 -1 OR gates to OR the results of all 2n-i-l subproblems. In total, the count

57

Table 3.5: Truth Table of a 2n x n Encoder

Input Output Input Output
yk 03 02 01 Oo yk On-1 On-2 On-3 ...
Yo 0 0 0 0 Yo,···, Y2n-a_1 0 0 0 ...
y1 0 0 0 1
y2 0 0 1 0 Y2n-a,···,Y2n-2_1 0 0 1 ...
y3 0 0 1 1
y4 0 1 0 0 Y2n-2, • • • , Y3·2n-3_1 0 1 0 ...
Ys 0 1 0 1
y6 0 1 1 0 Y3.2n-a, • • ·, Y2n-1_1 0 1 1 ...
y7 0 1 1 1
Ys 1 0 0 0 Y2n-l, · · · , Ys.2n-a-1 1 0 0 ...
Yg 1 0 0 1
Yw 1 0 1 0 Ys.2n-a, · · · , Y6·2n-3_1 1 0 1 ...
Yu 1 0 1 1
Yi2 1 1 0 0 Y6·2n-3' ' • • 'Y7·2n-3_1 1 1 0 ...
Yi3 1 1 0 1
Yi4 1 1 1 0 Y7·2n-3' • • • 'Y2n-1 1 1 1 ...
Y1s 1 1 1 1

(a) n = 4 (b) n ~ 4

58

of OR gates for the encoder is

n-1

GEnc(n) = L[(2i- 1) + (2n-i-l- 1)] = 2n+1 - 2n- 2 (3.9)
i=O

which is less than n(2n-l- 1) for n > 2 and the gate delay is

DEnc(n) = n- 1

which is the same as the delay before simplification.

3.2.3 S-box Complexity

Based on the analysis of the decoder-switch-encoder structure, the hardware com

plexity of invertible S-boxes is estimated. Since 8 x 8 S-boxes are very popular in

current block ciphers (e.g., AES [32], Hierocrypt [37], and Camellia [6]), let us exam

ine the usability of this model in this case. According to (3.8) and (3.9), the upper

bound of the optimal gate count for an 8 x 8 invertible S-box is 806, while the gate

count before logic minimization is 2816.

Through experimental simplifications using the Synopsys logic synthesis tool [74],

we realized 8x8 invertible S-boxes with a count of equivalent gates close to 800 when

the target library was lsL10k.db, as shown in Table 3.6. In addition to the S-boxes

of AES and Hierocrypt, we also implemented 10 randomly generated 8-boxes with

p8 , q8 ~ 2-4 • In this table, the average cell count is 548 and the average equivalent

gate count is 777. Since a small part of cells in the library have more than 2 inputs,

the average of gates used for an 8 x 8 S-box is between 548 and 777 when only gates

with 1 or 2 inputs are used. Such a result is quite close to the upper bound derived

59

Table 3.6: Synthesis Results of 8 x 8 S-boxes
(RS-1,· · ·,10: randomly generated S-boxes with p8 , q8 ~ 2-4)

S-box #cells Area Delay (ns)
(# equivalent gates)

AES 510 752 18.14
Hierocrypt 555 784 15.85

RS-1 563 785 18.31
RS-2 531 765 17.72
RS-3 567 788 16.43
RS-4 525 759 17.93
RS-5 571 784 17.24
RS-6 557 775 16.32
RS-7 538 780 16.44
RS-8 553 779 17.29
RS-9 552 775 14.83
RS-10 550 793 17.57

from our model when n = 8.

When considering the implementation of an S-box with our model, the upper

bound of the gate count increases exponentially with the S-box size n, as shown in

Figure 3.4. Simultaneously, the upper bound of delay increases linearly, as shown in

Figure 3.5. In these two figures, the S-box optimization model described in [34] and

presented in Section 2 is used as the reference and the decoder-switch-encoder model

is labelled DSE. When the size of an S-box is less than 6, the delay of the two models

are similar and the gate count of the reference model is slightly lower. As the size of

the S-box increases, the decoder-switch-encoder model costs less in both gate count

and delay. The details of gate counts and delays are listed in Table 3.7 and Table 3.8.

Given the fact that about half the gates used in the reference model are XOR gates

which are typically more expensive in hardware in area and delay than NOT, AND,

and OR gates, the decoder-switch-encoder model would appear to be more useful

60

for hardware design, both as an indication of the upper bound on the optimal S-box

complexity and as a general methodology for implementing an invertible S-box.

... c
:I
0
0
.!
Ill

CJ

1000000

100000

10000

1000

100

10

4 5 6 7 8 9 10 11 12 13 14 15 16

Sizen

I_.__ DSE Model --Reference Modell

Figure 3.4: Gate Count Upper Bounds of S-boxes

35r---------------------------~

30+---------------------------~

25+---------------------~------;

20+---------------~F-------~~

15+---------~~~~-=~--------;

10+-~~~~~----------------~

5~~------------------------~

0+-~~-r~~--r-~,--r~-,--~

4 5 6 7 8 9 10 11 12 13 14 15 16

Sizen

I_.__ DSE Model --Reference Modell

Figure 3.5: Delay Upper Bounds of S-boxes

3.3 Efficient AES Encryption Implementations

Since AES was selected to succeed DES, it is of great significance to characterize the

implementation of AES in hardware. As introduced in Section 2.2.4, each round of

61

Table 3.7: Gate Counts of Invertible S-boxes in the Decoder-Switch-Encoder Model

II S-box Size ll4x41 6x6 I 8x8 I10x10 l12x12 l14x14 l16x16 II
NOT# 4 6 8 10 12 14 16
AND# 24 88 304 1120 4272 16712 66144
OR# 22 114 494 2026 8166 32738 131038

Gate Count 50 208 806 3156 12450 49464 197198
Reference Count 36 192 1020 5112 24564 114672 524268

Table 3.8: Gate Delays of Invertible S-boxes in the Decoder-Switch-Encoder Model

II S-box Size ll4x4 I 6x6 l8x8 I10x10 l12x12 l14x14 l16x16 II
NOT 1 1 1 1 1 1 1
AND 2 3 3 4 4 4 4
OR 3 5 7 9 11 13 15

Delay 6 9 11 14 16 18 20
Reference Delay 6 10 14 18 22 26 30

AES contains the following operations to the State (i.e., the intermediate data stored

in a two dimensional array) [32]: (1) a layer of 8 x 8 S-boxes called ByteSub, (2) a

byte-wise cyclic shift per row called ShiftRow, (3) an MDS mapping based on an (8, 4,

5)-code per column called MixColumn, and (4) the round key mixing through XORs.

The MDS mapping is defined over GF(28) and the S-box performs the equivalent of

multiplicative inverse over GF(28) followed by a bit-wise affine operation.

With parallelS-boxes implemented through table lookups, a hardware design is

proposed in [66]. Adhering to the structure of the algorithm specification of [32] as

in Figure 3.6(a), this design achieves a throughput of 1.82 Gbits/s in 0.18 f-Lm CMOS

technology, where each S-box costs about 2200 gates. Since some operations over

the composite field GF((24) 2) [22] are more compact than over GF(28), an efficient

AES design with a low gate count in composite field arithmetic is proposed in [75].

A cryptographic core (i.e., essentially one round mainly consisting of 16 S-boxes and

62

the MDS mapping layer) in [75] only costs about 4000 gates and a delay of 240 gate

levels [76] for the full cipher is expected in theory.

3.3.1 Design I

Following the normal encryption dataflow, labelled as Design I in Figure 3.6(a), we

apply the discussed S-box model and MDS bit-parallel implementation method to

ByteSub and MixColumn, respectively. After the first round key K 0 is added to

the plaintext, the State goes through an iterative round structure. Regardless of

its mathematical definition, ByteSub is implemented as a layer of 16 parallel 8 x 8

S-boxes using the decoder-switch-encoder model. Then, the State iteratively pro-

ceeds through ShiftRow, MixColumn, and the addition with round key Kr. ShiftRow

is implemented through wiring without any gates needed. Four bit-parallel MDS

mappings perform MixColumn for the 4 columns. As listed in Table 3.9, we get an

iterative core circuit of one round which costs 13456 gates and produces a delay of

15 gate levels per round. Because the MDS mappings are omitted in the last round,

the AES encryption of 10 rounds produces a delay of 148 gate levels, a significant

improvement over the delay of 240 gate levels in the design of [75]. The design needs

far fewer gates than that in [66].

Table 3.9: Gate Counts and Delays of Operations in AES Design I

II Operations II ByteSub I MixColumn I Key Addition I Total per Round II
Gate Count 12896 432 128 13456 II

Delay (gate levels) 11 3 1 15 II

63

(a) Design I (b) Design II

Figure 3.6: AES Encryption Implementations

3.3.2 Design II

As shown in Figure 3.6(b), labelled as Design II, we get a more compact circuit

through hybrid operations over GF(28) and its equivalent composite field GF((24) 2).

The polynomial P1(y) = y4 + y + 1 is used to define GF(24) and the polynomial

P2(x) = x2 + x + 09H is used to define GF((24)2). Such a composite field is the same

as in the implementation proposed in [75] for ease of comparison. The conversion

from GF(28) to GF((24) 2) is denoted as T(·), and its inverse is r-1(-).

It has been recognized that the multiplicative inverse over GF((2m)n) can have

a much lower complexity than the equivalent inverse over GF(2mn) [73, 77]. As an

example, the equivalent ByteSub over GF((24) 2) costs less than one fifth of the gate

64

Affine Function

ShiftRow

Mix Column

TO

(a) LTl

Affine Function

ShiftRow

(b) LT2

Figure 3.7: Linear Transformations in AES Design II

count of a general invertible S-box based on the upper bound of 806 in the decoder-

switch-encoderS-box model. However, the subfield-based operation is normally slow.

In the implementation of Figure 3.6(b), the inverse over the composite field costs a

gate delay of 14 (as deduced from [72, 73, 75, 76]). Given additional overhead for field

conversion and ByteSub's affine function, the ByteSub instance has a much longer

delay path than in the implementation of Design I. To mitigate this problem, we can

incorporate all linear operations into LT1 in the first nine rounds and LT2 in the last

round as shown in Figure 3.7, resulting in a delay of 202 gate levels for encryption.

The number of gates used in the iterative core circuit is slightly (about 3%) less than

in [75]. The detailed gate counts and delays for Design II components are listed in

Table 3.10.

Table 3.10: Gate Counts and Delays of Operations in AES Design II

Operations 16xinversion LT1 LT2 Key Total
over GF((24) 2) TO Addition per Round
[72, 73, 75, 76]

Gate Count 2384 792 304 208 128 3816
Delay (gate levels) 14 5 3 3 1 20

In order to mathematically represent LT1 and LT2, we denote the input State as

65

{Ui,j} and the output State as {Vi,j}, where i denotes the row index and j denotes

the column index of an element in the State. The binary coefficients of Ui,j and

Vi,j in their polynomial expressions can be written as two 32-bit tuples Ui,j and Vi,j,

respectively. LT1 can be expressed as

Vo · ,J :Fio2 :Fio3 FL01 FL01 Uo· ,J T(63H)

v1 · FL01 FLo2 FLo3 FLo1 U1,j-1 T(63H) ,J

+ (3.10)
v2 · ,J FLo1 FL01 FL02 FLo3 U2,j-2 T(63H)

v3 · ,J FLo3 :FL01 :FL01 :FL02 U3,j-3 T(63H)

In above equation, :FLab :FL02, and :FLo3 are 8 x 8 submatrices derived from the

following expression:

(3.11)

where :Foi is the product matrix associated with 01H, 02H, or 03H in GF(28) and

matrix FA is associated with the affine function A(·) inside ByteSub (i.e., A(X) =

:FA · X+ 63H). :FT is the 8 x 8 transformation matrix associated with T(·)(i.e.,

T(Ui,j) = :FT · Ui,j)· Its inverse is :F:;,1.

Similarly, LT2 is a function defined as

Vo · ,J Uo · ,J 63H

vl,j
=(FA· Fi1)

U1,j-1 63H
+ (3.12)

v2 · ,J U2,j-2 63H

v3 · ,J U3,j-3 63H

Once we know the matrices :FT, :F LOi, and the result of :FA · :Fi 1 (as listed in the

66

Appendix), the gate networks consisting of XORs can be straightforwardly derived

for LT1 and LT2. The greedy method I described in [73] is used to reduce redundancy

in the gate network, where small modifications are made in order to avoid the increase

of delay.

3.3.3 Implementation Results

Figure 3.8 compares the estimated performance of the two designs of Figure 3.6 with

respect to the implementation in [75]. Design I uses the MDS mapping implemen

tation method and S-box model discussed in Sections 3.1 and 3.2 directly (while

"Design I (Ref.)" uses the reference model in [34] for the 8-boxes). In Design II, the

method discussed in previous section is used to deduce the linear transformations

LT1 and LT2. As Figure 3.8 shows, Design II gains a delay reduction of 16% and a

slight reduction in the number of gates compared with the implementation of [75].

Design I is a much faster implementation with about three times as many gates.

500% ,_...------------------·---·-·--.. ,

Figure 3.8: Performance Comparison of AES Designs

67

400000
1

350000

300000

250000

Area 200000
(l'm2)

150000

100000

50000

0
0

~ _
'-- --

5 10

Delay(ns)

15

1-+-Design I -Design II I

--

Figure 3.9: Synthesis of AES Round Structure

20

The round structures of the two AES designs have been coded in VHDL and syn

thesized using Synopsys Design Compiler and TSMC's 0.18 pm CMOS cell library.

Setting constraints to tradeoff area and delay during synthesis, we get the charac-

teristic curves shown in Figure 3.9. The two end points of each curve represent the

synthesis results with smallest delay and smallest area. In line with our performance

evaluation, Design I can lead to an iterative cipher architecture with a throughput

up to 4 Gbits/s (i.e., the smallest round critical path is 3.04 ns). On the other hand,

Design II is useful for an area-restricted or pipelined application because of its small

area requirement.

3.4 Summary

We have presented a mechanism to select the MDS mappings for optimal hardware

implementation of a block cipher. The optimized MDS mapping straightforwardly

leads to a compact and fast implementation at the gate level. As well, a general

68

model of invertible S-boxes was proposed and the upper bounds of the minimal

hardware complexity were deduced through systematic logic minimization. Since

S-boxes and MDS mappings are both widely used cipher components, the discussed

design, optimization, and hardware complexity evaluation provide an analytical basis

for studying the hardware performance of block ciphers. As an example, two effi

cient hardware designs of AES encryption were considered with regards to different

tradeoffs between gate count and delay, and their synthesis results were presented.

69

Chapter 4

Hardware Performance Characterization

of Cipher Structures

In this chapter, we present a general framework for evaluating the hardware perfor

mance characteristics of block cipher structures composed of S-boxes and Maximum

Distance Separable (MDS) mappings. In particular, we examine nested Substitution

Permutation Networks (SPNs) and Feistel networks with round functions composed

of S-boxes and MDS mappings. Within each cipher structure, many cases are con

sidered based on two types of S-boxes (i.e., 4x4 and 8x8) and parameterized MDS

mappings. In our study of each case, the hardware complexity and performance are

analyzed. Cipher security, in the form of resistance to differential, linear, and integral

attacks, is used to determine the minimum number of rounds required for a partic

ular parameterized structure. Because the discussed structures are similar to many

existing ciphers (e.g., AES, Camellia, Hierocrypt, and Anubis), the analysis provides

a meaningful mechanism for seeking efficient ciphers through a wide comparison of

performance, complexity, and security. The content of this chapter is also presented

in [78].

70

4.1 Studied Cipher Structures

4.1.1 Nested SPNs

The concept of a nested SPN was first introduced in [37). In a nested SPN, S-boxes

may be viewed at different levels: each S-box at a higher level is actually a small

SPN at the lower level. In this chapter, we examine nested SPNs which have the

following properties:

• The structure contains just two levels of SPNs. A higher level S-box consists

of a lower level SPN; a lower level S-box is an actual 4 x 4 or 8 x 8 S-box.

• The linear transformation layers in both levels are based on MDS codes, de

noted as MD S H for the higher level and MD S L for the lower level.

• The subkey mixture occurs directly before each layer of actual (i.e., lower

level) S-boxes. One additional subkey mixture is used to replace the linear

transformation at the end of the cipher structure. The subkey bits are mixed

with data bits by XOR operations.

• A "round" refers to the combination of the subkey mixture, lower-level S-box

layer, and subsequent MDSL or MDSH linear transformation.

As Figure 4.1 shows, MD S L is an MDS mapping from a (2mb mb m1 + 1)-code

over GF(2n1), while MDSH is an MDS mapping from a (2m2, m2, m2 + 1)-code over

GF(2n2). The variables m~, m2 , n~, and n2 represent parameter choices for a nested

SPN.

In the most straightforward case, the output of each S-box forms one source sym

bol for the MDS mapping, and each encoded symbol forms the input of a subsequent

71

1st higher level
-- S-box (ll2 bits) ·
: n,bits

:0···0
1,------, ! I MDSL I •
!0···0
L-----------

~-----------,

:0···0: I I

! I MDSL I! •
!0···0! L __________ J

(~-1)-th higher level m2-th higher level
r-- S-box (n2 bits) -1 1-- S-box (ll2 bits) -1
I I 1 I

!0 ... 0::0 ... 0! l
1 :: 1 Roundl

e e :1 MDSL 1: :1 MDSL 1:
I 1 1 I

L~-~~-~~J l~-~~-~~j]Round 2

MDSn I

MDSL: based on a (2m~o m~o m1+ 1)-code over OF(2"')
MDSH: based on a (2mz, mz, ~+I)-code over GF(2"")

Figure 4.1: Basic 2-level Nested SPN (4 Rounds)

S-box at the same level. So the size of an S-box is n 1 bits at the lower level and

n2 bits at the higher level. This leads to n2 = n1 m1. Thus, the block size of the

SPN is n1m1m2. For example, the 128-bit block cipher Hierocrypt (Type I) [37] is

described as the iteration of such a 4-round structure where n 1 = 8, n2 = 32, and

At each level of a nested SPN, the branch number of the MDS layer determines

the minimum number of active S-boxes in differential or linear cryptanalysis. For 4

rounds of a nested SPN, an activeS-box at the higher level contains at least m 1 + 1

activeS-boxes at the lower level. Since there are at least m2 + 1 activeS-boxes at the

higher level, the minimum number of active lower-levelS-boxes is (m1 + 1)(m2 + 1).

Therefore, the security against differential and linear attacks is evaluated as the

following:

72

Theorem 4.1 (deduced from [5, 21, 36, 37]): With the assumption that all 8-box ap

proximations involved in linear and differential cryptanalysis are independent, for 4r

rounds of a nested SPN the maximum differential characteristic probability {denoted

by Pd) is upper bounded by p~(m1 +l)(m2 +l) and the maximum linear characteristic

probability {denoted by 11) is upper bounded by q~(m1 +l)(m2+1).

To attack a cipher using differential cryptanalysis, the number of chosen plain

texts is expected to be in the order of 1/ Pd. Similarly, for linear cryptanalysis, the

number of known plaintexts is expected to be in the order of 1/ Pz. Hence, the upper

bounds of Pd and 11 provided in Theorem 4.1 indicate the lower bounds of required

workload for attacking 4r+1 rounds of the cipher based on a 4r round characteristic.

The basic operations in MDS codes are multiplications and additions in finite

fields. When n 2 is large, operations over GF(2n2) are inefficient and M DSH can be

costly in computation. An alternative method to obtain the same branch number is to

concatenate several parallel MDS codes over a smaller finite field. The concatenated

codes may be designed to facilitate a bitslice implementation.

Theorem 4.2 [37]: An MDS mapping defined by a (2m, m, m + 1)-code over the nl

bit symbol set can be constructed by concatenating l mappings defined by a (2m, m, m+

1)-code over then-bit symbol set, where l can be any positive integer.

For the example illustrated by Figure 4.1, since n 2 = m 1nt, the mapping MDSH

over GF(2n2) can be implemented with m 1 parallel MDS mappings over GF(2n1). In

this case, the basic MD S H layer is denoted as 1 x (2m2, m2, m2 + 1) over G F (2m1 n 1),

and its simplified, parallelized M DSH layer is denoted as l x (2m2, m2, m2 + 1) over

GF(2n2) where, for example, we can have l = m 1 and n2 = n 1 . Since m 1n 1 may

be factored in other ways, other simplifications are also possible. Hence, we can

73

consider that the general relation n 2l = m1 n1 can be used to determine different

cases of M DSH defined by the values of the symbol size, n 2 , or the number of

parallel MDS mappings, l. A similar approach can also be applied to the M DSL

layer. However, restrictions on values of n and m must be considered for designing

a (2m,m,m+ 1)-code over GF(2n) such that 2m~2n+l in order that it is possible

to construct an MDS code [24].

The 128-bit ciphers Square, AES, and Anubis can be regarded as the iterations

of 4-round nested SPNs where n1 = n2 = 8 and m1 = m2 = 4. The parameters of

Hierocrypt (Type II) are selected as n 1 = 8, n2 = 4, and m1 = m2 = 4.

A set of nested SPNs can be generated with appropriate configurations of pa

rameterized MDSL, MDSH, and S-boxes. As Theorem 4.2 illustrates, the MDS

mapping defined over a large Galois field can be simplified using several mappings

in a smaller Galois field. Table 4.1 lists the cases of nested SPNs in 12 categories

(labelled as N1 to N12) defined by the S-boxes and M DS£. Thus, the cases within

a category only differ in the simplification of MD S H. Each case can be regarded as

4r rounds of a 128-bit cipher where r is an integer, except that no particular key

schedule has been defined. Due to the difficulty of finding optimized MDS mappings,

the cases with a Galois field larger than GF(28) are not considered. The values of

Pd and P, represent the maximum differential and linear characteristic probabilities

for 4r rounds evaluated by Theorem 4.1.

In relation to real ciphers, case N4-a includes Square, AES, and Anubis. Type II

of Hierocrypt belongs to case N4-b with a simplified M DSH over GF(24). Similar

to SHARK and Khazad, case N8 is a one-level SPN. However, SHARK and Khazad

are 64-bit ciphers because their MDS mappings are based on a (16, 8, 9)-code over

GF(28).

74

Table 4.1: 128-bit Nested SPNs of 4r Rounds

Case S-box MDSL: MDSH: Pd,Pt
size l1x(2m1, m1, m1+l) over GF(2n1) l2x(2m2,m2,m2+l) over GF(2n2)

N1-a 8x8 8x(4, 2, 3) over GF(211) 2x(16, 8, 9) over GF(211)
2 -1o~r

N1-b 4x(16, 8, 9) over GF(2")
N2-a 8x8 16x(4, 2, 3) over GF(24) 2x(16, 8, 9) over GF(2ts) 2 -10~r

N2-b 4x(16, 8, 9) over GF(2")
N3-a 8x8 32x(4, 2, 3) over GF(22) 2x(16, 8, 9) over GF{211) 2 -lli2r

N3-b 4x(16, 8, 9) over GF(2")
N4-a 8x8 4x(8, 4, 5) over GF{211) 4x(8, 4, 5) over GF(21:S) 2 -loUr

N4-b 8x(8, 4, 5) over GF(2")
N5-a 8x8 8x(8, 4, 5) over GF(2") 4x(8, 4, 5) over GF(2") 2 -10ur

N5-b 8x{8, 4, 5) over GF(24)

N6-a 8x8 2x(16, 8, 9) over GF(2ts) 8x(4, 2, 3) over GF(2ts) 2 -10~r

N6-b 16x(4, 2, 3) over GF(2")
N7-a 8x8 4x(16, 8, 9) over GF(2") 8x(4, 2, 3) over GF(2") 2 -1o:.:r

N7-b 16x(4, 2, 3) over GF(24)

N7-c 32x(4, 2, 3) over GF(2"')
N8 8x8 1x(32, 16, 17) over GF(2") same as MDSL 2 -~U4r

N9 4x4 16x(4, 2, 3) over GF(24) 1x(32, 16, 17) over GF(2ts) 2 -lU~r

N10 4x4 32x{ 4, 2, 3) over GF{2~) 1x(32, 16, 17) over GF(2") 2 -1u:.:r

Nll-a 4x4 8x(8, 4, 5) over GF(24) 2x(16, 8, 9) over GF(211)
2 -~ur

Nll-b 4x(16, 8, 9) over GF(2")
N12-a 4x4 4x(16, 8, 9) over GF(24) 4x(8, 4, 5) over GF(2ts) 2 -~ur

N12-b 8x(8, 4, 5) over GF(2")

75

In theory, a maximum characteristic probability less than 2-128 indicates that the

cipher is secure enough when only one characteristic is used for an attack. However,

it is possible that several characteristics are combined to improved the attack as

discussed in [41, 47]. As a result, it is still desirable that the maximum characteristic

probability is much less than 2-128 . In the same sense, composite 8 x 8 8-boxes at

the higher level of N9 and NlO cannot gain exactly the same security as 8 x 8 8-boxes

used for Nl to N8, although the two types of ciphers may have the same maximum

characteristic probabilities.

4.1.2 A Class of Feistel Networks

Figure 4.2 illustrates one particular class of round function F used for Feistel net

works (as shown in Figure 2.5). Such a round function can be regarded as an SPN

of one round with a size equal to half of the cipher block size. The round function

includes one layer of key mixture with Ki (i.e., bit-wise XOR of Xi and Ki), one

layer of invertible1 8-boxes for substitution, and an MDS mapping layer as a linear

transformation. If the MDS mapping layer is constructed through concatenation

of several small MDS mappings, it is necessary to include a permutation of MDS

symbols in the linear transformation in order to ensure the avalanche effect.

In a Feistel network whose round function has an invertible linear transformation

appended to a layer of 8-boxes, it is proved in (46) that the number of active 8-

boxes in any differential or linear characteristic of 4r rounds is lower bounded by

r x B + Lr /2 J, where B is the branch number of the linear transformation and r is

an integer. For an MDS layer based on m symbols, B = m + 1. Therefore, we get:

1 Invertible S-boxes are used so that a bijective round function can be constructed, which achieves
the given upper bounds of maximal differential and linear probabilities faster in rounds than a
general round function (79].

76

X;
·-·-·-·-·-·-·-·-· ·-·-·-·-·-·-·-··

I

~--,---------~
.t- K;

Figure 4.2: A Class of the Round Function

Theorem 4.3 (deduced from [46]): For4r rounds of a Feistel cipher with the round

function of Figure 4.2, the maximum differential characteristic probability Pd and

maximum linear characteristic probability Pz are upper bounded by p~x(m+l)+Lr/2J and

q~x(m+l)+Lr/2J, respectively.

To construct a typical128-bit cipher, a Feistel network of this class has a 64-bit

round function which contains sixteen 4 x 4 or eight 8 x 8 parallel S-boxes followed

by an MDS mapping layer. As listed in Table 4.2, six categories (labelled as Fl to

F6) of these 128-bit Feistel networks can be generated. To ensure a good avalanche

effect, an appropriate fixed permutation of MDS symbols after the MDS mapping is

expected, which does not cost any gates.

77

Table 4.2: 128-bit Feistel Networks of 4r Rounds

Case S-box MDS Pd, P,
size lx(2m,m,m-!-1) over GF(2n)

F1-a 8x8 4x(4,2,3) over GF(28) 2-6(3r+L2J)

F1-b 8 x (4, 2, 3) over GF(24)

F1-c 16 x (4, 2, 3) over GF(2:.!)
F2-a 8x8 2 x (8, 4, 5) over GF(28) 2-6(5r+L2J)

F2-b 4x(8,4,5) over GF(24)

F3-a 8x8 1 x (16, 8, 9) over GF(28) 2-6(9r+L2J)

F3-b 2 x (16, 8, 9) over GF(24)

F4-a 4x4 4x(4,2,3) over GF(28) 2-2(3r+L2J)

F4-b 8 x (4, 2, 3) over GF(24)

F4-c 16 x (4, 2, 3) over G F(2:.!)
F5-a 4x4 2 x (8, 4, 5) over GF(2t1) 2 -:.!tor+L·:iJJ

F5-b 4 x (8, 4, 5) over GF(24)

F6-a 4x4 1 x (16, 8, 9) over GF(28) 2 -:.!t~o~r+L·:iJJ

F6-b 2 x (16, 8, 9) over GF(24)

4.2 Comparison of Hardware Performance

4.2.1 Performance Measures

It is normally hard to compare hardware performance among different block ciphers.

The main problems are: (1) each implementation represents a tradeoff between area

and delay, (2) the specific hardware cost of a gate network is dependent on the target

technology, and (3) ciphers may contain different security margins.

For the first problem, the classical delay-area product is used to evaluate the

hardware complexity universally. The typical methods used in the hardware imple

mentation of a block cipher include a round iterated design, a pipelined design, a

loop-unrolled design, and a block parallel design [70]. For a given cipher, the delay

area product is kept roughly unchanged across the different design methods (except

78

for a loop-unrolled design), assuming the control overhead for parallelism can be ig

nored. If a round iterated design is regarded as a reference, a k-block parallel design

using several round iterated implementations will cost about k times the number of

gates and result in about 1/k of the average time to produce an encrypted block.

The same situation occurs in a pipelined design when each stage performs one or

several rounds of the cipher. For loop unrolling, when k rounds are unrolled, it can

be understood as removing the registers betweens rounds in a pipelined design of k

rounds and then laying these rounds out. Using CAD tools to minimize such a large

combinational circuit, its gate count is more than an iterative design but possibly

much less than a pipelined design. By doing so, the encryption time for one block

is reduced. Loop unrolling usually results in low performance in the sense of the

delay-area product.

For the second problem, a universal way is to assume that all gates have the

same hardware cost (73]. Thus, the gate count and delay of all components are

deduced from the upper bound of typical implementations. Such an approach leads

to a measure of complexity which is technology-independent. However, in a certain

target VLSI technology, the hardware costs of different gates may not be similar. In

this case, it is possible to estimate the overall area (respectively, delay) by summing

weighted gate counts (respectively, weighted gate layers traversed). The weights

are proportional to the size of a gate (respectively, delay) and can be calculated by

statistical comparison of hardware among gates based on a target technology. The

hardware complexity is then evaluated by weighted area Aw and weighted delay Dw:

Aw= G(u) x Wa(u) (4.1)
gate type u

79

Dw= D(u) x Wn(u). (4.2)
gate type u

Associated with gate type u, G(u) and Wa(u) return the gate count and weight of

each gate. In the critical path of the circuit, D(u) and Wn(u) return the number of

traversed gate layers and weight of each layer associated with gate type u.

For the problem caused by different security margins, we use a rule-of-thumb to

determine resistance to differential and linear cryptanalysis. For differential crypt

analysis, the number of chosen plaintext pairs to attack a cipher is expected to be

in the order of 1/ Pd, where Pd is the maximum differential characteristic probabil

ity determined by Theorems 4.1 and 4.3. Similarly, to attack a cipher using linear

cryptanalysis, the number of known plaintexts is expected to be in the order of 1/ Pt,

where P, is the maximum linear characteristic probability.

Based on above considerations, we define three hardware performance metrics rJ8 ,

rJt, and rJ to measure the space, time, and overall performance, respectively. The

three metrics integrate security and complexity and are defined as follows:

rJs
log2 1/ P

(4.3) - # of rounds x Aw per round

'f}t
log2 1/ P

(4.4) # of rounds x Dw per round

rJ
log2 1/P

(4.5) - # of rounds x (Aw x Dw per round)

where P = Pd for hardware performance in relation to differential attacks and P =

P, in relation to linear attacks. The probability Pd/ P, represents the maximum

differential/linear characteristic probability for the number of rounds specified in the

denominator. In each expression, the numerator is essentially a security measure in

bits and the denominator is a complexity measure. Since we assume that the S-boxes

80

in the three discussed cipher structures satisfy Ps = qs, the values of log2 1/ Pd and

log2 1/ P, are the same. For the nested SPNs and Feistel networks discussed in Section

2, log2 1/ P is a linear function of the number of rounds. Therefore, the values of

'f/s, 'f/t, and rJ indicate how much security is expected to be obtained for a specific

hardware cost, regardless of the number of rounds in a cipher.

Targeted to the same design method, "'s shows the security contribution provided

by each area unit; "'t shows the security contribution provided by each delay unit.

For a fast implementation such as a pipelined or parallel design, a high "'s means

that many independent blocks can be processed simultaneously. For a round iterated

design, a high 'f/t means that the encryption time for a block is small. More generally,

using the classical delay-area product as its denominator, rJ indicates the performance

integrating both the delay and area complexities.

The cases that we compare in the following sections are generated as 128-bit

block ciphers defined by the nested SPN and Feistel networks. To calculate the

gate count and number of gate layers per round, we consider the construction of

the combinational circuits of the round structure with S-box and MDS mapping

components which can produce high efficiencies in hardware. The hardware design

and optimization of these components are described in Chapter 3. The detailed data

used in the complexity estimation which is to be used for determining performance

will be presented in this chapter.

4.2.2 Hardware Performance of Nested SPNs

From the viewpoint of implementation, a nested SPN follows the iterative dataflow

of key addition, an S-box layer, and an MDS mapping layer (either MDSL or

MDSH). Since S-boxes cost the most hardware complexity, a 128-bit multiplexor

81

selects M DSL and M DSH dynamically such that only one layer of S-boxes is needed

in a round iterated design. So assuming a round iterated implementation, the round

circuit used for each case in Table 4.1 includes a 128-bit key addition, one layer of

S-boxes, MDSL, MDSH, and a 128-bit multiplexor2 • The 128-bit multiplexor can

be implemented by 385 NAND gates (i.e., y = x1 · c + x2 • c where c is the select

signal and "+" denotes OR).

In hardware, the complexity of S-boxes are evaluated through the simplification

results deduced from an encoder-switch-decoder model as proposed in Section 3.2. In

this model, S-boxes are composed of low complexity gates (ANDs, ORs, and NOTs).

A 4 x 4 S-box can be implemented using 50 gates and produces a delay of 6 gate

layers; an 8x8 S-box can be implemented using 806 gates and produces a delay of 11

gate layers. Involution MDS codes [30] are found by searching Hadamard matrices

and have been optimized for hardware, as has been done in Section 3.1. MDS codes

are implemented using XORs. Using these results, the complexity of each 128-bit

2-level nested SPN is evaluated for each round.

When Wc(u) = Wv(u) = 1 for any gate type u (i.e., all gates are assumed to have

the same hardware complexity), we can sum the number of gates as the universal

hardware area of a round structure. The calculation of the universal delay per

round assumes the highest delay of MDSL and MDSH. Table 4.3lists the evaluated

hardware complexity of S-boxes, MDS mappings, and round structures. The area and

delay per round are then used in (4.3), (4.4), and (4.5) and the resultant performance

measures 1]8 , 1Jt, and 1J are also listed in Table 4.3.

Although each individual value in Table 4.3 cannot be perfectly accurate, the

comparison of the performance measures does enable us to distinguish the cases

2MDS Multiplexing is not necessary for N8.

82

Table 4.3: Complexity and Universal Performance Estimation of One Round of 128-
bit Nested Involution SPNs in Hardware

Case S-boxes MDSL MDSn Round Total 'f/s 'f/t 'fJ 'f/r

(universal)
Gate#- XOR#- XOR#- Gate#- (lo-~ (lo-4) (lo-6)

-Delay -Delay -Delay -Delay

N1-a 12896- 11 256-3 1728-5 15393- 19 2.63 2.13 1.38 3.42
N1-b 12896- 11 256-3 2048-5 15713- 19 2.58 2.13 1.36 3.35
N2-a 12896- 11 208-2 1728-5 15345- 19 2.64 2.13 1.39 3.43
N2-b 12896- 11 208-2 2048-5 15665- 19 2.59 2.13 1.36 3.36
N3-a 12896- 11 224-2 1728-5 15361- 19 2.64 2.13 1.39 3.43
N3-b 12896- 11 224-2 2048-5 15681- 19 2.58 2.13 1.36 3.36
N4-a 12896- 11 672-4 672-4 14753- 18 2.54 2.08 1.41 3.77
N4-b 12896- 11 672-4 576-3 14657- 18 2.56 2.08 1.42 3.79
N5-a 12896- 11 576-3 672-4 14657- 18 2.56 2.08 1.42 3.79
N5-b 12896- 11 576-3 576-3 14561- 17 2.58 2.21 1.51 4.04
N6-a 12896- 11 1728- 5 256-3 15393- 19 2.63 2.13 1.38 3.42
N6-b 12896- 11 1728- 5 208-2 15345- 19 2.64 2.13 1.39 3.43
N7-a 12896- 11 2048-5 256-3 15713- 19 2.58 2.13 1.36 3.35
N7-b 12896- 11 2048- 5 208-2 15665- 19 2.59 2.13 1.36 3.36
N7-c 12896- 11 2048-5 224-2 15681- 19 2.58 2.13 1.36 3.36
N8 12896- 11 8064-6 8064-6 21088- 18 2.42 2.83 1.34 2.63

N9 1600- 6 208-2 8064-6 10257- 15 2.49 1.70 1.66 6.50
N10 1600-6 224-2 8064-6 10401- 15 2.45 1.70 1.63 6.41

N11-a 1600- 6 576-3 1728- 5 4417- 14 5.09 1.61 3.64 16.2
N11-b 1600- 6 576-3 2048- 5 4737- 14 4.75 1.61 3.39 15.1
N12-a 1600- 6 2048- 5 672-4 4833- 14 4.66 1.61 3.33 14.8
N12-b 1600-6 2048- 5 576-3 4737- 14 4.75 1.61 3.39 15.1

83

which are more efficient in hardware.

Figure 4.3 shows the tendency of the universal performance comparison (i.e.,

W0 (u) = 1, Wv(u) = 1). In an ASIC design, XOR gates are more expensive

than other gates such as NOT, AND, and OR gates. Figure 4.4 shows a weighted

performance comparison when Wa(XOR) = Wv(XOR) = 2 and weight for others is

one. The two figures follow the similar tendency in performance comparison:

• The size of the S-box largely determines space and time performances. Using

smallS-boxes tends to cost less hardware area, but more delay than using large

S-boxes. Given fixed chip area, the cipher cases using smallS-boxes are more

advantageous for parallelism as their higher "'s values show.

• Many SPN structures (N1-N10, Nll-N12) are essentially equivalent with re

spect to their hardware performance. Hence, it is wise for a cipher designer to

consider those structures which can facilitate software implementation.

• When the symbol size is 8 bits or less, the simplification of MDS mappings

through concatenation does not significantly improve the performance when

the MDS mappings have been selected to be optimized for hardware. For

example, Case N4-b in Table 4.1 does not gain a much higher improvement in

hardware than Case N4-a.

• When m1 or m2 are very high, the MDS mapping determined by m 1 or m 2 (e.g.,

M DSn in cases of N9 and NlO) will cost much more hardware and overwhelm

S-box costs, which degrades the cipher performance.

• As a cipher of Case N4-a, AES is very suitable for a round iterated design.

However, its suitability for pipelined or parallel implementations is not as high

84

18
Ill 16 !!
:I 14 Ill ra 12 CD
::& 10 CD u

8 c ra
E 6 ..
~ 4
CD

2 D.

0

8.00

m 1.oo
; 6.00

"' :1 5.00

B 4.oo
c
"' E a.oo .. .g 2.00

:. 1.00

0.00

1J xl04

1],X103

Figure 4.3: Universal Performance Comparison of Nested SPNs

Figure 4.4: Weighted Performance Comparison of Nested SPNs

85

as cipher cases using 4 x 4 S-boxes such as cases of Nll and N12.

The above conclusions are based on hardware complexity and security against

differential and linear attacks. For some other attacks such as the integral attack,

the effectiveness significantly decreases after a certain number of rounds. In this

circumstance, a performance metric of the round structure is defined as:

1
Tfr = · Aw x Dw per round

Since the security in bits to resist these attacks increases very rapidly in the number

of rounds, with a trend much steeper than differential and linear attacks as more

rounds are appended, we take a fixed number of rounds (e.g., about 8 for the integral

attack on AES) as enough for the security. The comparison of round performance is

also included in Figures 4.3 and 4.4. It is obvious that the nested SPNs with small

S-boxes and modest sized MD S L and MD S H have significantly better performance

in relation to the integral attack than other cases.

4.2.3 Hardware Performance of Feistel Networks

The Feistel network discussed in this section is limited to the class described in

Section 4.1, which has an SPN-like round function. As listed in Table 4.2, the cases

of the same category only differ in the simplification of the MDS mapping. The

hardware of one round of the Feistel network includes a 64-bit key addition layer, an

S-box layer, an MDS mapping layer, and a 64-bit XOR after the round function (as

shown in Figure 4.2). The key addition costs 64 XOR gates and a delay of one gate

level. The XOR after the round function has the same hardware complexity as the

key addition.

86

Table 4.4: Complexity and Universal Performance Estimation of One Round of 128-
bit Feistel Networks in Hardware

Case S-boxes MDS Round Total 'f/s "'t "' (universal)
Gate # - Delay XOR #-Delay Gate # - Delay (lo-3) (lo-4)

F1-a 6448-11 76-3 6652- 16 0.79 0.33 0.49
F1-b 6448-11 72-2 6648- 15 0.79 0.35 0.53
F1-c 6448-11 80-2 6656- 15 0.79 0.35 0.53
F2-a 6448-11 264-3 6840- 16 1.21 0.52 0.75
F2-b 6448-11 240-3 6816- 16 1.21 0.52 0.76
F3-a 6448- 11 720-4 7296- 17 1.95 0.84 1.15
F3-b 6448- 11 864-4 7440- 17 1.92 0.84 1.13

F4-a 800-6 76-3 1004- 11 1.74 0.16 1.58
F4-b 800-6 72-2 1000- 10 1.75 0.18 1.75
F4-c 800-6 80-2 1008- 10 1.74 0.18 1.74
F5-a 800-6 264-3 1192- 11 2.31 0.25 2.10
F5-b 800-6 240-3 1168- 11 2.35 0.25 2.14
F6-a 800-6 720-4 1648- 12 2.88 0.40 2.40
F6-b 800-6 864-4 1792- 12 2.65 0.40 2.21

As shown in Figures 4.5 and 4.6, both the universal (Wc(u) = 1, Wn(u) = 1 for

any gate type u) and weighted (i.e., Wc(XOR) = 2, Wn(XOR) = 2 and We= 1,

W n = 1 for all other gate types) performance comparisons indicate:

• It is useful to pick an MDS mapping that has a large branch number (i.e.,

m+1). The cases with such an MD8 mapping have significantly higher values

in all three performance measures.

• With high "'t values, the cases with 8 x 8 8-boxes demonstrate high perfor-

mance in non-pipelined and non-parallel implementations. With high"' values,

the cases with 4 x 4 8-boxes demonstrate high performance in pipelined and

parallel implementations because many independent blocks can be processed

simultaneously.

87

3.5

f 3
:I
: 2.5

::& 2

§
Ia 1.5

e 1
-@
:. 0.5

0

Figure 4.5: Universal Performance Comparison of Feistel Networks

2.00

1.80
Ul
! 1.80
::s

=
1.40

Gl 1.20 ::&
Gl 1.00 u c

0.80 Ia

~ 0.80

Gl 0.40
a. 0.20

0.00

,.
Figure 4.6: Weighted Performance Comparison of Feistel Networks

Camellia is a 128-bit Feistel cipher with a 64-bit round function which consists of

eight 8x8 invertible S-boxes and a linear transformation. Hence, Camellia is similar

to Feistel networks that we discussed but does not use an MDS mapping. The branch

number of the Camellia linear transformation is 5. An efficient implementation of

such a linear transformation costs 176 two-input XOR gates and a delay of 3 gate

layers in universal comparison. Thus, Camellia has universal performance similar to

Case F2-a which has 264 XOR gates and a delay of 3 gate layers (see Table 4.4).

88

Compared with the case F3-a, Camellia has a slightly more compact round structure

(i.e., about 5% less in gate count than Case F3-a). However, each round of Camellia

contributes much less to the security. Eleven rounds of F3-a provides equivalent

security to nineteen rounds of Camellia. Further calculation shows that the overall

hardware universal performance 'f/ of F3-a is about 50% higher than that of Camellia.

The weighted performance comparison follows a similar trend.

4.2.4 Synthesis Results

The above performance analysis is based on theoretical evaluation of hardware com-

plexity. The usability of these analytical results can be verified when VLSI technol-

ogy is targeted. To avoid arduous work on synthesizing each cipher case, we did a

high level synthesis of each component used in Tables 4.1 and 4.2. The components

are coded in VHDL and synthesized with Synopsys Design Compiler. Two CMOS

libraries3 were used where most standard cells have one or two bit-wise inputs.

During synthesis, if the minimum area (respectively, delay) is set as the main

constraint\ the numbers of equivalent gates (respectively, critical delay time) of 8x8

S-boxes are close to their estimates in Tables 4.3 and 4.4. The gates and delays

of 4 x 4 S-boxes are slightly less than their estimates because it is much easier for

CAD tools to simplify smaller S-boxes. This effect indicates that the performance

advantage of using small S-boxes as shown in Figures 4.3 to 4.6 is significant and

slightly understated.

Since the MDS mapping is implemented in XOR gates, the areas and delays

3lsL10k.db and TSMC's 0.18 p,m CMOS library are targeted separately.
4When other constraints are set, the absolute values of area and delay will vary, but their

comparison follows a similar trend.

89

closely follow the proportional relation of their estimates in Tables 4.3 and 4.4. Be

cause XOR gates are larger and slower than other gate types, synthesis tools may

replace them with other gates such as NXORs during optimization. Nevertheless,

the delays and numbers of equivalent gates imply that a weight of 2 is reasonable

for an XOR gate. This effect makes the cases with large MDS mapping worse in

weighted performance, e.g., the cases in N8 to N12, F5, and F6.

This problem is encountered in the realizations where a large percent of XORs

are used. The weighted performance shown in Figures 4.4 and 4.6 are thus more

useful for a closer comparison than the universal method.

4.3 Summary

In this chapter we have considered two cipher structures composed of S-boxes and

MDS mappings. Various cipher cases were generated from these structures with

different component configurations. Their security and complexity were examined

and integrated into performance metrics.

In hardware, the discussed cipher cases using large S-boxes are suitable for non

pipelined and non-parallel applications where delay is the main design criterion. In

pipelined and parallel applications, the cipher cases using smallS-boxes produce high

performance. Further, appropriate selection of an MDS mapping layer is important

for security against differential and linear attacks. With little change in the linear

transformation, a suggestion was made to improve Camellia in terms of security and

hardware efficiency.

For a Feistel network, more rounds are needed to be secure against differential

and linear attacks. Compared with Feistel networks, the nested SPNs generally have

90

higher hardware performance. When the same S-boxes are used, a nested SPN tends

to be more efficient in hardware to resist differential and linear attacks. Considering

the threat of integral attacks, nested SPNs with smaller S-boxes are preferred.

Analogous with a nested SPN, MISTY [38] can be regarded as a nested Feistel

network. Using provable security as the security measure, it will be interesting future

work to compare the hardware performance between these two nested structures with

similar performance metrics defined in Section 4.2.

91

Chapter 5

Software Performance Characterization of

Cipher Structures

This chapter analyzes the software performance of cipher structures. The cipher

structures studied are still nested SPNs and the class of Feistel networks analyzed

in the previous chapter. Similar to the hardware performance metrics previously

introduced, a novel performance metric is presented which allows us to consider

the performance of a cipher structure as the combination of security and software

efficiency. The parameterized cases of 128-bit block ciphers are studied. The software

efficiency is mainly evaluated through a table-lookup implementation, where the

number of table lookups is used as the time measure and the table size required

is the space measure. A table-lookup implementation method is selected because

it is usually efficient and such a method makes it possible to compare performance

generally across different cipher configurations and different computing platforms.

The efficiencies of other implementations (e.g., bitslicing, xtime [5], and power-index

exchange) are also briefly examined. The content of this chapter is also presented

in [80].

92

5.1 Table Lookup Implementations

The table lookup approach incorporates the S-boxes and the linear transformation

into a table that is then accessed to perform both operations. This approach has

been used for fast implementations of DES [9], AES [5], and Camellia [10]. Using this

approach, the two cipher structures discussed in the former chapter can be imple

mented efficiently in software through table lookups, logic operations (e.g., XORs),

and rotations. This chapter analyzes the efficiency of such fast implementations so

that the memory and computational cost for a cipher case can be estimated. Inde

pendent of the targeted machine, the space complexity is evaluated as memory used

for tables and the time complexity is evaluated by the number of table lookups.

The table lookup approach is chosen for analysis because it is normally faster

and more general than other implementation approaches. A table lookup operation

involves the reading of data from memory and also encompasses other operations

necessary for indexing such as rotation and masking. Although the number of clock

cycles to implement different operations is machine dependent, using the number of

lookups and the size of the tables is suitable for determining a rough estimate of the

time and space complexity of an efficient software implementation.

Larger tables require large data structures, and depending on the memory orga

nization of the computer used, might require longer access times than smaller tables.

This connection between the space and time complexities exists but becomes negligi

ble when the tables that we compare are not far different in size. On the other hand,

smaller tables may have indices with bit lengths less than 8 bits. In this case, shifting

and masking are typically required for each lookup, which costs additional processing

time. In this chapter, it is assumed that each table lookup requires the same access

93

time. The effect on lookup times caused by different table sizes, as will be examined

in the experimental results of particular cipher cases, does not significantly affect our

performance comparison.

In software, regardless of the implementation approach, the S-box layer is typ

ically done by table lookups. An MDS mapping based on a (2m, m, m + 1)-code

conceptually performs a matrix multiplication over a Galois field, which requires m 2

modular multiplications and m(m -1) XORs on words that are of the size of Galois

field elements. To bypass costly multiplications, we enlarge the S-box table such

that the MDS mapping work is included in the table lookups. This is the essence

of the table lookup implementation. According to the size of the S-boxes and the

type of MDS mappings, any cipher case may select appropriate methods as follows

to generate lookup tables.

5.1.1 Cases with 8 x 8 S-boxes

The dataflow of a round in these cases involves the keyed input entering 8x8 S-boxes

followed by l mappings based on a (2m, m, m+1)-code over GF(28). (The case of two

concatenated mappings over GF(24) will be discussed later.) To represent the op-

erations mathematically, we denote the input, output, subkey, and MDS generation

matrix as {Ai}, {Ei}, {Ki}, and {Ci,j}, respectively, each containing 8-bit elements.

Thus, the key mixture, S-box layer, and MDS mapping are expressed together as:

Eo Co,o Co,1 Co,m-1 S(Ao EI7 Ko)

E1 C1,0 C1,1 C1,m-1 S(A1 EI7 K1)
(5.1) -

Em-1 Cm-10
'

Cm-1,1 Cm-1,m-1 S(Am-1 EI7 Km-1)

94

Denoting the keyed input as Bi = Ai E9 Ki, (5.1) is equivalent to:

Eo Co,o Com-1
'

E1 C1,0
x S(Bo) E9 · · · E9

C1,m-1

Em-1 Cm-10
'

Cm-1,m-1

Hence, we may generate m tables as the following:

Co,j x S(-)

c1,j X S(-)

Cm-1,j X S(-)

X S(Bm-1). (5.2)

(5.3)

where 0:::;; j:::;; m-1. The output of several S-boxes followed by the MDS mapping

may then be generated using:

(5.4)

Each fetch from the table Tj[·] accepts an 8-bit input as the index and produces

an 8m-bit output from the indexed entry. It takes 256m2 bytes of memory to store

these m tables. Given a processor with a word size of w bits, implementation of (5.4)

needs mr8m/wllookups and (m-l)r8m/wl XORs. In cases where the word size w

is larger than the size of a table index, the preparation of a table lookup input will

95

generally need a rotation and masking (bit-wise AND) within a word.

When the size of an MDS field is smaller than the size of the S-boxes, we can

consider an MDS mapping layer of more than one MDS mapping (i.e., the adjacent

S-box output bits may pass through different mappings). The table Ti[·] is then es

tablished through concatenation. Each entry of Ti[·] consists of concatenated results

from different MDS mappings. The result from one mapping corresponds to a specific

subset of the table lookup output. For example, considering 8 x 8 S-boxes followed

by 2 x (2m, m, m + 1) over GF(24), each coefficient Cii in (5.1) can be regarded as

concatenation of two 4-bit coefficients c;i and c;~ from two MDS mappings, so that

cij = c;j II c;~' where " II " denotes concatenation. Then we generate m tables as:

c~ .xs'(·) II c; .xs"(·) ,J ,J

7j[·] =
c~,j x s'(-) II c~,j x s" (·)

(5.5)

where 0 :::; j :::; m - 1, s' (·) and s" (·) represent 4 output bits of an S-box, and

s (-) = s' (.)II s" (.). When these concatenated tables { Tj [.]} are used in (5.4)' the

size of tables and the number of lookups and XORs are the same as for the tables

required in (5.3).

5.1.2 Cases with 4 x 4 S-boxes

In constrained environments such as smart cards, cipher cases using 4 x 4 S-boxes

cost much less memory for table storage than those using 8 x 8 S-boxes. We can

use the same method described by (5.2) and (5.4) to generate a set of small tables.

96

Since the variables Bi and Ei in (5.2) and (5.4) are now 4 bits, each fetch from the

table Ti[·] accepts a 4-bit input as the index and produces a 4m-bit output from the

indexed entry. It takes 8m2 bytes of memory to store these m tables since each table

requires 16·m·4/8 = 8m bytes. Such an implementation needs mr4m/wllookups

and (m-1) r 4m/w 1 XORs.

When memory is not constrained, a modified method can be used to reduce the

number of table lookups by a factor of 2. To implement a cipher case with 4 x 4

S-boxes, each table 7j[·] in (5.4) has an index of 4 bits. We can combine two tables

into one, represented by T'i, whose index is 8 bits. As a result, (5.4) is transformed

to:

(5.6)

Em-1

where Bi and Ei are representing 4-bit values. For each 8-bit input XII Y composed

of 2 concatenated 4-bit values, X andY, the table performs:

where 0 ~ j ~ m/2- 1. It takes 64m2 bytes of memory to store these m/2 tables.

The implementation of (5.6) needs (m/2)f4m/wllookups and (m/2-l)f4m/wl

XORs.

The method expressed by (5.6) should also be chosen for the cases where the

symbol length of an MDS mapping is larger than the S-box size. For example, the

inputs of two adjacent 4x4 S-boxes followed by an MDS mapping over GF(28) have

97

to be combined as an 8-bit index to a table of 256 elements.

5.2 Software Performance Comparison

It is normally hard to compare software performance among different block ciphers.

The main difficulties are: (1) each cipher has its own security margin, (2) each

implementation method represents a tradeoff between memory and speed, (3) the

number of clock cycles required by one operation is determined by the platform,

and (4) one specific instruction set may facilitate some operation combinations (e.g.,

DSP processors can do multiplication and accumulation using one single instruction).

Considering the above difficulties, in order to get around the last three problems, we

select the table lookup approach as a general and efficient method to implement all

the cipher cases. Moreover, a meaningful study of the performance of ciphers should

make comparisons between ciphers in consideration of a consistent security level.

5.2.1 Time Performance Metric

In software, the memory used for table storage is independent of the number of

rounds. Since the memory can be easily allocated in many computers1 , the tradeoff

between space and time is not as important as that in hardware. Therefore, instead

of defining three metrics for space, time, and overall performance as in the previous

chapter, we care more about the time performance in software. To compare the time

used for a given cipher to achieve a certain amount of security, we define the time

performance measure "l(w) with respect to differential and linear attacks, where w is

1The smart card is an exception where memory is restricted.

98

the processor word size:

log2 1/ P
7J(w) = (# of rounds) x (# of table lookups per round)

(5.7)

The numerator of (5.7) indicates the security of the cipher for the specified num-

her of rounds, where we use a heuristic approach to determine resistance to differ-

ential and linear cryptanalysis. For differential cryptanalysis, the number of chosen

plaintexts to attack a cipher is expected to be in the order of 1/ P, where P is

the maximum differential characteristic probability Pd determined by Theorems 4.1

and 4.3; the number of known plaintexts required by linear cryptanalysis is expected

to be in the order of 1/ P, where Pis the maximum linear characteristic probability

P, of the cipher. For the nested SPNs and Feistel networks discussed in Chapter 4,

log2 1/ P is a linear function of the number of rounds for both differential and linear

cryptanalysis. Therefore, the value of 7J(w) indicates how much security is expected

to be obtained within a unit running time (i.e., time for one table lookup), regardless

of the number of rounds in a cipher.

Note that one table lookup has associated with it the setup of an index (e.g.,

one rotation and one masking operation) and a post-lookup XOR. Among these

operations, the table lookup would normally require the most clock cycles in most

processors. Hence, we use the table lookups as a barometer for the number of oper-

ations required to implement the cipher.

5.2.2 Comparison of Nested SPNs

In the previous chapter, Table 4.1 lists the cases of nested SPNs in 12 categories

(labelled as N1 to N12) defined by the S-boxes and M DSL. The values of Pd and P,

99

Table 5.1: Software Performance of 128-bit Nested SPNs

of table lookups
Case Table size per 4 rounds 'Y/(8) 'Y/(32) 'Y/(64)

(KBytes) 8-bit 32-bit 64-bit
N1-a,b 17 320 96 64 0.51 1.69 2.53
N2-a,b 17 320 96 64 0.51 1.69 2.53
N3-a,b 17 320 96 64 0.51 1.69 2.53
N4-a,b 8T 256 64 64 0.59 2.34 2.34
N5-a,b 8T 256 64 64 0.59 2.34 2.34
N6-a,b 17 320 96 64 0.51 1.69 2.53
N7-a,b,c 17 320 96 64 0.51 1.69 2.53
N8 64 1024 256 128 0.20 0.80 1.59
N9 64.03125 576 192 128 0.18 0.53 0.80
N10 64.03125 576 192 128 0.18 0.53 0.80
Nll-a 16.125 384 128 96 0.23 0.70 0.94
Nll-b 0.625 384 128 128 0.23 0.70 0.70
N12-a 4.5 384 96 96 0.23 0.94 0.94
N12-b 0.625 384 128 128 0.23 0.70 0.70

t : By use of the same mapping in M DSL and M DSn, half of the table size can be saved.

represent the differential and linear characteristic probabilities for 4r rounds evalu-

ated by Theorem 4.1 and used asP in (5.7) to determine Tf(w)· Table 5.1 lists the

table size (i.e., the sum of sizes of tables required for M DSL and M DSn rounds)

and the number of table lookups for 4 rounds for each cipher case. The table sizes

listed in this table represent a minimum requirement and can only be achieved when

an S-box does not differ from the corresponding S-box in another MDS mapping in

the same layer (although S-boxes may be different within the domain of one MDS

mapping). As a result, only one table as in (5.4) is required for each of the M DSL

and MDSH layers.

For each case using 4 x 4 S-boxes, the tables with 4-bit indices are created as

shown in (5.4) or (5.5) when the MDS mapping is chosen over GF(24) or GF(22), re-

spectively. However, as explained in Section 5.1.2, the performance can be improved

100

by using 8-bit indices in the lookup as in (5.6) at the expense of more memory. For

example, case N11-b can be implemented using 8-bit indices thereby doubling the

efficiency but requiring 8 times the memory to store the lookup tables for both the

M DSL and M DSH rounds. When GF(28) is chosen for the MDS mapping, the

length of table indices has to be 8 bits. The number of table lookups is used in the

calculation of the denominator in (5.7).

3
Ill

; 2.5
Ill

I 2
:::IE

8 1.5
c
I'CI e
.g
Gl 0.5
D.

0

Figure 5.1: Software Performance Comparison of Nested SPNs

The table also includes the performance "7(w) for each case. The implementation

performance on three types of processors (i.e., w = 8, 32, 64) is considered. The

implementation on an 8-bit processor is suitable for smart cards, where the memory

size is constrained. The implementations on 32-bit and 64-bit processors are suitable

for applications on general purpose computers and workstations. The values of 7J(w}

are also presented in Figure 5.1. By comparing these measures, it is possible to

distinguish the cases which are more efficient in software and the following general

conclusions can be made:

101

• The implementation performance is improved when the word size of the proces

sor increases, although in some cases there is no difference in the performance

on a 32-bit or 64-bit processor.

• The cases with larger S-boxes (N1, · · ·, N8) have better performance but cost

more memory to store the lookup tables.

• The cases with the same S-box size (N1, · · ·, N8 and N9, · · ·, N12) share similar

performance although their memory requirements can vary significantly (as

shown in Table 5.1).

• Cases N4 and N5 have the best, or close to the best, performance for all word

sizes.

• As an example of N4-a, AES has very good performance. M DSL and M DSH

in AES are based on the same (8,4,5) code. Therefore, half of the table size

can be saved. Its byte-wise cyclic shifts (ShiftRow), before the MDS mapping,

can be easily realized by taking the data from a modified byte location in the

State as the index for a table lookup. Since the indirect addressing mode is

supported by most processors, such a cyclic shift does not need to be coded

separately in a table lookup implementation.

5.2.3 Comparison of Feistel Networks

The Feistel network discussed in this section is limited to the class described in

Section 4.1, which has an SPN-like round function. The 128-bit cipher cases of this

class have been listed in Table 4.2, which have 64-bit round functions consisting of

sixteen 4 x 4 or eight 8 x 8 parallel S-boxes followed by an MDS mapping layer. To

102

ensure a good avalanche effect, an appropriate fixed permutation of MDS symbols

after the MDS mapping is expected, which may cost a small amount of additional

processing time. The cases of the same category in Table 4.2 only differ in the

simplification of the MDS mapping. The performance comparison details are given

in Table 5.2, where table lookups use 4-bit indices when 4 x 4 S-boxes are used in

a cipher case. A summary of the performance measure 'f/(w) is also illustrated in

Figure 5.2. The following conclusions can be drawn:

• An MDS mapping that has a large branch number (i.e., m+l) results in good

performance for implementations on computers supporting a large word size

(e.g., comparing 'f/(S} and 'f/(64) in cases F3-a and F3-b).

• Although they require more memory, the cases with 8x8 S-boxes demonstrate

higher performance.

• For the cases with 4x4 S-boxes, we can trade off memory and time requirements

by choosing the element size of the MDS mapping. Using small Galois fields

for the MDS codes, cases F4-b, F4-c, and F5-b can be used for some memory

constrained applications. However, their performance is not as high as the

counterparts using large Galois fields (e.g., F4-a and F5-a) for a word size

larger than 8.

• Compared with nested SPN networks, the Feistel networks discussed here need

less memory but result in a lower performance.

Camellia uses 8 x 8 S-boxes and a linear transformation that is not MDS-based

with branch number 5. (An MDS-based linear transformation would have a branch

number of 9.) Hence, a simplified Camellia structure (without FL/FL-1 functions)

103

Table 5.2: Software Performance of 128-bit Feistel Networks

of table lookups
Case Table size per round 11(8) 11(32) 11(64)

(KBytes) 8-bit 32-bit 64-bit

F1-a,b,c 1 16 8 8 0.33 0.66 0.66
F2-a,b 4 32 8 8 0.26 1.03 1.03
F3-a,b 16 64 16 8 0.22 0.89 1.78

F4-a 1 16 8 8 0.11 0.22 0.22
F4-b,c 0.03125 16 16 16 0.11 0.11 0.11
F5-a 4 32 8 8 0.09 0.34 0.34
F5-b 0.125 32 16 16 0.09 0.17 0.17
F6-a 16 64 16 8 0.07 0.30 0.59
F6-b 0.5 64 16 16 0.07 0.30 0.30

2
II)

1.8 l!!
::s 1.6
II)

1.4 I'll
Cl)

:E 1.2

B
c 0.8 I'll

E 0.6

-@ 0.4
Cl) 0.2

Q.
0

.....
~ ~ ~ 0 ~ "9 ~ "9 l(.

It <f If If ~ ~ .;.
4:

Figure 5.2: Software Performance Comparison of Feistel Networks

104

produces a security level equivalent to F2-a,b in Table 4.2. A fast Camellia imple

mentation using table lookups was introduced in [10], which incorporates the linear

transformation and 8-boxes into several tables with 8-bit indices and 64-bit entries.

In this method, a simplified Camellia has the equivalent number of table lookups

to 18-round F3-a,b. As a result, Camellia uses tables as large as F3-a,b, while its

performance is lower than both F2-a,b and F3-a,b on 32-bit processors and equal to

F2-a,b but lower than F3-a,b on 64-bit processors.

5.2.4 Experimental Results

The performance comparison above is based on the assumption that the number of

lookups is a good time measure for table lookup implementations. We implemented

typical SPN cipher cases from Table 4.1 in "C" using the MS Visual C++ 6.0 compiler

and determined the throughput for each implementation on an Intel Pentium III

933MHz computer. The throughput is measured by encrypting a data file containing

millions of plaintexts. It is expected that the throughput will vary inversely to the

number of lookups, considering throughput to be defined as:

h h block length t roug put= ______ ___;;;_ ___ _
processing time for each block

As shown in Table 5.3, the expected trend in throughput can be observed in the

implementations when the number of rounds are set to the same value, especially in

the compiler optimized version. When the table index is 8 bits, the byte permuta

tion after the lookup operations (e.g., the concatenation of parallel MDS mappings

discussed in Theorem 4.2) can be easily done by reordering the table lookup inputs

for next round. When the table index is 4 bits as in Nll-b, bit manipulation within

105

bytes costs more processing time. This cost is compensated by the use of small ta

bles, which can be easily cached during the program run. The bottom two rows of

Table 5.3 lists the results of our 10-round AES implementation and reference code

in ANSI C2.0 [81], respectively.

Table 5.3: Experimental Results of 32-bit Implementations of Nested SPNs

Case # Throughput (Mbitsjs) #lookups Comments
rounds non-optimized optimized (4 rounds)

N1-a 32 18.16 45.65 96 similar to N2, N3, N6, N7
N4-a 32 22.58 60.86 64 similar to 32-round AES
N8 32 10.49 17.02 256 with uniform round
Nll-b 32 16.06 36.21 128 similar to Nl2-b
N4-a 10 68.38 155.91 64 10-round AES (our code)
N4-a 10 119.51 120.64 64 reference AES code

Table 5.4: Experimental Results of Two Real Ciphers

Cipher Throughput (Mbitsjs) #lookups
non-optimized optimized

AES 32.7 55.3 160
(10 rounds, 32-bit)

Simplified Camellia 20.1 72.5 288
(18 rounds, 32-bit)

Simplified Camellia 35.2 87.3 144
(18 rounds, 64-bit)

The experimental throughput results for AES and Camellia using the GNU C++

compiler on a 64-bit Alpha machine (COMPAQ AlphaServer DSlO) are listed in Ta

ble 5.4. The 32-bit implementations of AES and Camellia are tested on this machine

by using 32-bit data type arrays to store lookup tables and 32-bit operations for

XORs. Before optimization, the throughput and the inverse of estimated number of

lookups follow the same trend. After optimization, the 32-bit Camellia implementa

tion is largely improved and close to its 64-bit implementation. With the smallest

106

number of lookups, the 64-bit simplified Camellia is still the fastest after optimiza

tion. It should be noted that such software comparison of Table 5.4 is purely based

on software throughput. When security is considered simultaneously as shown in

Figures 5.1 and 5.2, AES has a higher performance (as a typical SPN corresponding

to N4-a) than Camellia. This reflects the fact that the Camellia cipher has a lower

security margin than the AES cipher. Note that it is not meaningful to compare the

numbers in Table 5.3 to Table 5.4 as the implementation platforms are different.

5.3 Alternative Implementations

Besides the table lookup approach, a block cipher can be implemented in other ways

based on its structure. We briefly discuss these alternatives without a full expose of

their characterization because they apply to specialized circumstances rather than

having general application.

5.3.1 Bitslice Implementations

For some cipher cases, a bitslice software implementation derived from the gate level

circuit may be more efficient in parallelized applications [34]. A bitslice design is

suitable for the cases whose synthesized circuits are compact. A w-bit processor

can be regarded as w bit-processors in parallel. The gate level network circuit is

described with instructions in software. Each bit in hardware corresponds to a word

in software and each word is the concatenation of bits belonging to w separate blocks.

Given enough registers in a processor, the memory requirement is negligible since no

table lookups are necessary. Typically, the bitslice technique can be applied in three

ways:

107

(a) Parallel blocks: This is the classic bitslice implementation. A total of w plain

text blocks are reorganized so that the bits at the same bit positions of different

original blocks are now collected in one register. The number of registers re

quired to store these blocks is equal to the block size of the cipher. Then,

all registers are used as signals to a gate network deduced from a hardware

implementation. Each gate in the network corresponds to a logic operation

in software. The output signals, w bits each, are converted to their original

format as w ciphertext blocks. Whether a cipher case discussed in this chapter

is suitable for bitslice implementation can be determined from its space per

formance value 'f/s in hardware, which was investigated in Chapter 4. When

'f/s is high, a compact gate network can be used. The gate count of the circuit

determines the number of instructions used in the bitslice software. Thus, a

high 'f/s indicates a small number of clock cycles in software.

(b) Bitslice cipher: Serpent [33) is an example of an internal bitslice implementa

tion. In Serpent, each 128-bit block is expressed as four 32-bit words after a

bit permutation. 8-boxes in each round can be regarded as 32 sets of parallel

and identical 4 x 4 gate networks. A word is the collection of 32 bit signals,

each corresponding to its own set of gate networks at the same locations. The

other cipher operations can also be easily expressed by words. At the end of

encryption, the bits of the four output words are permuted to form a 128-bit

block.

(c) Within special linear operations: It has been shown that several parallel MDS

mappings can be concatenated into one big mapping. When the number of

parallel MDS mappings in each round, denoted by w', is at least 8, there is a

108

more subtle bitslice method within the round structure, as used in Hierocrypt 's

MDS mapping [37]. The linear expression of each output bit is extended to the

expression of words, whose size is w' bits. The input and output bit variables

are replaced with word variables, each including w' adjacent bits. Such a

method works for any concatenated linear transformation with a convenient

number of parallel sets. This parallel structure within a specific operation

avoids the overhead caused by the block representation transformation between

the standard form and bitslice parallel form as required in (a).

5.3.2 Power Implementations

Although the table lookup method is very efficient, the memory required for table

storage is usually too large for a smart card, which has a restricted memory size.

Hence, it is desirable to utilize a fast implementation for a smart card application

that does not require large tables. Because an S-box just requires a small array, the

main concern is then how to perform MDS mappings with low memory cost.

Defined as 1-bit left shift followed by bit-wise XOR with an appropriate irre

ducible polynomial in [5], the xtime operation can be used to perform multiplications

for the MDS mapping. The operation xtime has no table lookups and the matrix

multiplication is easier when all coefficients meet two requirements: (1) low Ham

ming weights and (2) low value. It is easy to find an MDS mapping satisfying these

two requirements. When an SPN uses this mapping, however, the mapping's inverse

used for decryption does not necessarily satisfy the two conditions and many more

operations are therefore needed, making decryption much slower than encryption.

As we know, any element in a finite field can be expressed by both its power

representation and its polynomial representation. As a result, the multiplication of

109

two elements can be realized by index addition on their power representations (22].

Here we examine the software efficiency when this approach is used for cipher imple

mentations on a processor. Note that this approach cannot be used for AES which

has its MDS mapping based on an irreducible but not primitive polynomial.

Suppose poly(·) returns the polynomial representation of a GF(2n) element from

the index of power representation and its inverse function is denoted as pow(·). We

know that

Y = C ·X= poly((pow(C) + pow(X)) mod (2n-l))

when C =/::. 0, X =/::. 0, and where Y is in polynomial representation. If the processor

records the carry bit c for n-bit addition pow(C) +pow(X), the modulo operation

can be bypassed:

Y = C ·X= poly((pow(C) + pow(X)) +c) .

Using this method to perform the MDS mapping after substitution, C indicates one

coefficient in MDS generation matrix C. Each coefficient C in C is constant and

nonzero. Denote pow(C) as Cpow· If X is the output of ann x n S-box S(-) with

input Z, substitutionS(-) can be merged into the above operations:

Y = C ·X= poly(Cpow + pow(S(Z)) +c) .

Therefore, each multiplication over Galois fields costs two additions and two table

lookups. The two tables for poly(·) and pow(S(Z)) need 2n+1 bytes in total. It can

be seen that the nature of the coefficients in generation matrix C does not affect the

speed of multiplication. If the coefficients inC are randomly selected, this method

110

is more efficient than the xtime method and, hence, does provide better balance

between the speeds of encryption and decryption.

5.3.3 General Comparison of Methods

Table 5.5 gives a general comparison of the software implementation methods dis-

cussed in this section.

Table 5.5: Comparison of Software Methods Used in MDS Codes

MDS coefficents S-box/MDS
Method Speed Memory Universal affect affect operations

speed memory merged?
Table lookups fast large yes no no yes

Bitslice parameter- none noT yes no no
dependent

Power slow small yes+ no* no yes

xtime slow none yes yes no no

t : the number of parallel sets should be compatible with machine operand sizes.
+ : the polynomial to define the finite field must be primitive.
* : it can make a small difference depending on how many coefficients are ls in C.

5.4 Summary

We have considered the software performance of two cipher structures composed

of S-boxes and MDS mappings. Various cipher cases were generated from these

structures with different component configurations. Table lookup implementations

were used to evaluate the software efficiency of the various cases. A performance

metric was defined to capture the security and efficiency simultaneously. With the

111

tendency similar to hardware performance, cases using 8 x 8 S-boxes are faster than

cases using 4x4 S-boxes and nested SPNs are more efficient in obtaining security than

Feistel networks. Specifically, AES and Camellia were analyzed in terms of software

performance, and some interesting performance features were noted and confirmed

through experimental results. Three other software implementation methods that are

applicable in special circumstances were also discussed and their general advantages

and disadvantages were listed.

112

Chapter 6

Applicability of XSL Attacks

Many comparisons of security, complexity, and performance have been made in the

previous chapters among block ciphers composed of 4 x 4 and 8 x 8 S-boxes. The

security estimate is based on differential, linear, and integral cryptanalysis. Recently,

it has been found that many block ciphers can be described by overdefined systems

of quadratic equations. Although solving Multivariate Quadratic (MQ) equations is

NP-hard, it is observed in [82, 83] that the complexity could be subexponential if the

equations are overdefined. As a result, the complexity evaluations claimed in [11, 84]

to break AES and Serpent by solving an overdefined set of quadratic equations are

lower than in an exhaustive search. Since the computation is too large, neither

the two ciphers nor their simplified variants with a reduced number of rounds have

been practically attacked as of now. However, for cipher designers, the potential

attack may be a security concern because efficient algorithms to solve overdefined

MQ equations could be found in the future.

In this chapter, while we do not study the details of the attack, some proper

ties are discussed based on a toy cipher example presented in [11]. Moreover, a

method to evaluate a cipher's susceptibility to this attack is proposed with results

113

applied to several currently proposed block ciphers and a newS-box design criterion

is presented.

6.1 Introduction to XSL Attacks

A block cipher can be sometimes described by a system of MQ equations. The

equations involve bit values of input, output, key, and intermediate data. When the

unknown bit values are not more than the equations, it is possible to get the key

bits as part of the equation system solution. For example, Figure 6.1 shows a very

simple partial encryption system1 from a 2-bit plaintext (x1 , x0) to a 2-bit ciphertext

(zt, z0). The S-box performs substitution as shown in Table 6.1. A 2-bit key (kt, ko)

is mixed with the S-box output (y1, y0) by XORs.

S-box

Zt Zo

Figure 6.1: A Simple Example

Table 6.1: Mapping Table of a 2 x 2 S-box

Input x1xo 0 1 2 3
Output Y1Yo 3 2 0 1

1Such a trivial toy system is, of course, trivial to break and is simply for illustration purposes.

114

The 8-box in Figure 6.1 can be described by the equations over GF(2) as shown

in (6.1).

1 = xo + Xt +Yo

0 = XoXl + XoYo

0 = Xo + XoXt + XoYt (6.1)

0 = XoXt + XtYo

0 = XtYl

1 = Xo + Xt + XoXt + YoYt

We denote r as the number of possible linearly independent quadratic equations for

an S-box and denote t as the number of different terms (including "1") in these

equations. In this case, r = 7 and t = 11. An equation system is overdefined if r

is much larger than the size of the 8-box, e.g., 2 bits in this example. Two other

equations can be written for key mixture:

{
zo = xo + ko

Zt = Xt + kt
(6.2)

If a plaintext and its ciphertext are obtained, we can easily determine the key

(k1 , k0) by solving the equation system consisting of (6.1) and (6.2), i.e., 4 unknown

variables y1, y0 , k1, and k0 with 9 equations. When the quadratic equation sys-

tern becomes larger and contains many more unknown variables, however, it will be

hard to get the solution. In fact, solving systems of MQ equations is an NP-hard

problem [82].

It has been observed that the complexity to find the solution drops significantly

115

if the equations are overdefined. Moreover, if the equations are sparse, the com

plexity could be further reduced. Three algorithms have been proposed to solve

overdefined MQ problems. They are relinearization [82], XL [85], and XSL [11] al

gorithms. Based on relinearization and XL algorithms, XSL stands for "eXtended

Sparse Linearization" or "multiply(X) by Selected monomials and Linearization".

The XSL attack on a block cipher begins with the initial equations for each n x n

S-box, which has r equations and t terms. Based on these equations derived from

S-boxes, a system of equations is then written for the whole cipher. Assuming at

least one pair of plaintext and ciphertext is known, the intermediate bits and key bits

are unknown variables to be solved in these equations. Each equation of an S-box

is multiplied by all possible terms for all subsets of ({3 - 1) other S-boxes, where

the parameter {3 is a positive integer selected during the attack. Then, each term of

high degree is considered as a new variable and Gaussian elimination is performed.

It is assumed that at least one univariant equation (i.e., with only one unknown

variable but the equation contains the powers of the variable in this case) can be

generated through Gaussian elimination [85]. Such an equation can be solved with

Berlekamp's algorithm [86]. With the results of possible univariable equations, the

former equation systems can be simplified and a similar process can be repeated until

all variables are determined.

To perform a general XSL attack (the first XSL attack in [11]), one working

condition has to be satisfied. Denote T as the number of terms in the equations and

T' as the number of terms that can be multiplied by one original bit variable and still

belong to the set of T terms. Denote Free as the number of linearly independent

equations that are newly generated. In [11], the working condition of XSL attacks is

116

given as
Free 1

T-T' >

and the complexity of the attack is evaluated by

(6.3)

t-r
~ ~ (--)wf3 ·(Block Size)wf3 ·(Number of rounds)2wf3 (6.4)

n

where the coefficient w is the exponent associated with the complexity of Gaussian

elimination. Typically, w = 3. An improved method presented in [87] can lead w to

be no more than 2.376. This upper bound of w is used in the complexity evaluation

of (6.4).

Applying the XSL attack on AES of 128-bit blocks and 256-bit keys, the expected

workload is Tw ~ 2298 , which is higher than that for an exhaustive search. Further, a

new cipher BES is defined in [84] which uses simple algebraic operations over GF(28).

It has been shown in [84] that AES can be regarded as a special case of BES. As

a result, by describing AES in its BES equivalent form, an extremely sparse and

overdefined multivariant quadratic systems can be constructed over GF(28). In this

approach, it is expected that even AES of 128-bit keys may also be vulnerable with

the estimated complexity Tw ::::::::: 287 [11, 84]. The complexity to break Serpent using

a key of 256 bits is evaluated as Tw ~ 2210 [11]. For each attack, the value of (J must

be large enough to ensure that Free> T- T'. However, a small increase of (J (even

1 or 2) results in a much larger workload.

117

6.2 Effectiveness of the Attack

Since the XSL attack has not yet been demonstrated to work as claimed by its

authors, it is still unclear whether it should be regarded as a serious security threat.

Some skepticism of this attack has been raised in the cryptology community [88, 89].

It appears that the XSL attack could be applied in theory to break AES and

Serpent. However, two main issues have to be noted when effectiveness is scrutinized.

Firstly, the working condition stipulated in (6.3) is necessary but not sufficient for the

success of the attack. Secondly, a sub-exponential (or even polynomial) complexity

is largely based on the conjecture that (3 grows very slowly (or is even constant) when

the number of rounds or the block size increases.

Due to the difficulty in undertaking the massive computation, the effectiveness

of an attack is typically based on the simulation of simplified versions of targeted

ciphers. For example, differential and linear attacks are well believed to work because

the expected complexity can be demonstrated well on DES with a reduced number

of rounds [39, 40]. Until now, the only achievable simulation of the XSL attack on

a block cipher came from the Appendix of [90]. A "toy" cipher is targeted for the

simulated attack, which is an SPN composed of 3 x 3 S-boxes. Each round of the

cipher contains round key XORing, a layer of parallel S-boxes, and bit permutation.

Applying XSL to the toy cipher with different block sizes and numbers of rounds,

the working condition is satisfied within a reasonably small number of rounds. The

results from [90] are presented2 in Table 6.2.

For each case in Table 6.2, it is emphasized in [11, 90] that the number of rounds

does not cause the complexity to increase exponentially. When the block size of the

2The complexity is calculated by Tw where w = 2.376.

118

Table 6.2: Maximum Number of Rounds for a Toy Cipher to Satisfy XSL Working
Condition

II # S-boxes/round I Block size # rounds I Complexity

II : I ~~.
toy cipher is fixed (6, 12, or 24 bits), the values of{::_<;;, appear to "either converge to

a fixed value, or they decrease very slowly" [90] as the number of rounds increases.

However, a trend different from such an optimistic conjecture seems to be overlooked.

When the block size of the cipher increases, the maximum number of rounds for which

the working condition is satisfied decreases. As a result, it is not surprising that the

working condition cannot be satisfied for even one round of the toy cipher with a

large block size, e.g., on the order of 128 bits. More extensive simulation will be

necessary to understand the effectiveness of the attack when applied to realistically

sized block ciphers.

6.3 Applicability to Cipher Structures

More research is required to clearly understand the actual complexity of XSL attacks.

Even so, it is wise for a cipher designer to evaluate the potential security threat from

this attack. As a necessary requirement to launch an XSL attack, the S-box must

be able to be described by overdefined MQ equations. Based on this concept, we

propose a new criterion to S-box design which is more straightforward and applicable

than the security contribution r suggested in [11).

For an nxn S-box with input X= (xn-1, · · ·, xo) and output Y = (Yn-1, ···,Yo),

the total number of possible terms {1, Xn-b ···,Yo, Xn-1Xn-2, · · ·, Y1Yo} in a quadratic

119

expression is: t = n(2n-1)+2n+1 = 2n2+n+l. Denote { c0 , · · ·, Ct-1} as the binary

coefficients associated with the t terms in any possible quadratic equation. For

each possible X, 0 ~X~ 2n -1, we calculate the values of the t terms and denote

them by {ax,o, · · · ,ax,t-1}· Then we can write 2n equations to form a system with

{co,···, Ct-d as the unknown:

ao,o ao,1 ao,t-1 co 0

a1,o a1,1 a1,t-1 C1 0
- (6.5)

a2n-1,0 a2n-1,1 a2n-1,t-1 Ct-1 0

Each possible nonzero solution of { c0 , · · · , Ct-d will form a quadratic expression of

the S-box. Denote A as the matrix composed of ai,j, 0 ~i~ 2n-1 and 0 ~j~ t-1,

in (6.5). We have the rank of A, denoted as R(A), bounded by

R(A) < min(2n, t)

< min(2n, 2n2 + n + 1) .

When n ~ 6, R(A) ~ 2n < t. Assuming the S-box is such that R(A) = 2n, we

get the expressions of the 2n terms' coefficients c0 , • • ·, c2n_1 by Gaussian elimination

on (6.5). Without loss of generality, we suppose they are the first 2n terms:

co boo
'

bo 1
'

C1 b1 0
'

bll
' -

C2n-1 b2n-1 0
'

b2n-11
'

120

where the binary constants b0 ,0 , • • ·, b2n_1,t_2n_1 are calculated from Gaussian elimi

nation. Thus, (t- 2n) independent vectors are obtained to express all solutions:

co boo
'

bo 1
'

+ .. ·+Ct-1 0 (6.6)

0 1 0

Ct-1 0 0 1

Therefore, (t- 2n) linearly independent quadratic equations can be written for the

8-box when R(A) = 2n. More generally, when R(A) :::;; t, the number of independent

quadratic equations written for the 8-box is t- R(A). If t- R(A) > n, the system

is overdefined.

When n > 6, R(A) :::;; t < 2n. If the 8-box is randomly generated, it can be

shown that the possibility that R(A) = t is very high. When R(A) = t, there is

no nontrivial solution for (6.5) (i.e., { c0 , ... , Ct-1} must be all zeros). Therefore, the

X8L attack cannot be launched. When R(A) < t, the X8L is possible depending on

the security contribution [11]:

In this case, r = t- R(A). We get

r = (R(A))rR~A>l .
n

121

It should be noted that r = (t/n)rt/nl when R(A) = t. In this case, the complexity

evaluation is meaningless because the attack definitely fails due to nonexistence of

quadratic expressions for 8-boxes. Therefore, the security contribution provided

in [11] is not a straightforward way to evaluate the susceptibility of a cipher to the

attack. Thus, we give an easy approach to evaluate the potential susceptibility of an

8-box to the X8L attack as the following:

(a) Calculate matrix A given the mapping table of the 8-box.

(b) Calculate the rank of matrix A, R(A).

(c) Compare R(A) with t. If R(A) =t, the cipher is resistant to the XSL attack.

Otherwise, the difference between t and R(A) shows how susceptible the cipher

may be to the XSL attack.

The resistance to the X8L attack comes from the difficulty to describe 8-boxes

using quadratic equations. This approach can be used by cipher designers to ensure

that, even if the X8L algorithm becomes practical, the cipher is still immune to this

attack. It is important to note that ciphers based on 4 x 4 8-boxes cannot be easily

made immune because R(A) :::; 2n < t when n = 4, while for 8 x 8 8-boxes this is

possible.

Table 6.3 shows the evaluated resistance of several block ciphers including 10

randomly generated 8 x 8 8-boxes. The 8-boxes of AE8, Camellia, Hierocrypt-3,

and MISTY have similar algebraic structures which are power operations over finite

fields. Such a structure has been proved (e.g., as in [91]) to be able to enhance

the resistance to differential and linear attacks. The power operation can also be

simplified by the equivalent operations in the composite field although the advantage

in circuit synthesis is not as significant as expected (as shown in Chapter 3). For the

122

Table 6.3: Evaluated Susceptibility to the XSL Attack

Cipher S-box Ps qs t-R(A) Algebraic Comments
size n structure

Serpent 4 2-2 2-2 21 random susceptible
AES

Camellia 8 2-6 2-6 39 power over G F susceptible
Hierocrypt-3
Hierocrypt 8 2-5.42 2-5.01:~ 23 unknown susceptible
MISTY S7 7 2 ·6 2 -6 21 power over G F susceptible
MISTY S9 9 2-!S 2-!S 36 power over G F susceptible

Anubis 8 2 ·5 2 ·;i.!S;i 0 random immune
Khazad
RS-1,9T 8 2-4.ti!S 2 -4 0 random immune

RS-2,3,5,6t 8 2 -4.42 2 -4 0 random immune
RS-4,7,8,10T 8 2-4.1Y 2 -4 0 random immune

t : RS-1,· · ·,10 are randomly generated by computer.

same reason, these S-boxes might be prone to be attacked based on some algebraic

methods and the XSL attack encourages more attempts in this direction. On the

other hand, S-boxes with this algebraic structure are only a very small subset of all

possible bijective mappings. It is very easy to generate S-boxes randomly with the

full rank of matrix A. Therefore, it is necessary to consider the full rank of matrix A

as a criterion for future S-box selection, when other criteria have been satisfied.

It should be noted that even if susceptibility is observed by this method, the suc

cess of an XSL attack is still based on the reasonableness of the complexity evaluated

in [11]. The XSL attack cannot work on the ciphers proved to be immune in this

method even if its complexity is implied to be low by the analysis in [11].

123

6.4 Summary

This chapter briefly discussed the effectiveness of XSL attacks and their applicability

to block ciphers. An approach was proposed to check the immunity of an S-box to

this attack. It has been shown that ciphers using 8 x 8 S-boxes can be easily designed

to be immune to this attack while it is hard for ciphers using 4 x 4 S-boxes. The

potential susceptibility of several block ciphers to XSL attacks was also analyzed

using this approach.

124

Chapter 7

Simple Power Attacks on Cipher Key

Schedules

This chapter explores a potential vulnerability when a block cipher is implemented in

an 8-bit smart card environment. Introduced in [56], power analysis exploits the fact

that the power consumption of some cryptographic implementations is dependent on

the intermediate data values. It is indicated in [92] that many smart card processors

demonstrate a roughly linear relation between the Hamming weight of the data and

the power consumed at the associated clock cycle. The Hamming weight attacks

against the key schedules of DES and AES were discussed in [93, 94]. It was shown

in [94] that an AES cipher key could be deduced given accurate leakage information

of Hamming weights and a pair of plaintext and ciphertext. The susceptibility of

NESSIE candidates to power attacks was theoretically evaluated in [95], which mainly

focused on differential power analysis and gave Camellia a high rank among others.

In this chapter, we apply a simple power analysis to Camellia's key schedule as a

typical example and demonstrate that the attack works even if leakage information

bears noise and distortion. Using the same typical leakage model, our attack on

125

Camellia runs faster than the attack on AES presented in [94] and does not require

any pair of plaintext and ciphertext. More generally, a method is proposed to evalu

ate how vulnerable a block cipher is toward similar attacks. The countermeasures in

terms of both design rationale and implementation are also suggested. The content

of this chapter is also presented in [96].

7.1 Camellia's 128-Bit Key Schedule

The attack described in this chapter is focused on Camellia's 128-bit key schedule [6].

The attacking technique to be discussed can be easily modified for the 192- and 256-

bit key schedules.

Camellia's 128-bit key schedule expands 26 subkeys of 64 bits from the original

key KL and another derived key KA of 128 bits. Each subkey can be obtained as one

half of KL or KA after they are left rotated for a specific number of bits. This number

can be 0, 15, 30 (only for KA), 45, 60, 77 (only for KL), 94, or 111, depending on the

round number. During encryption or decryption, 18 sub keys are used for the round

function in the 18 rounds. The other 8 subkeys are used for pre-, post-whitening and

the F L-, F L - 1-functions.

KA is derived from the original key KL through a Feistel network. As shown

in Figure 7.1, KL is the input of such a network. The left half is the input to the

same round function as in encryption. The round function can be divided into 3

steps: (1) a 64-bit constant, denoted as Ei for round i, is XORed with the input,

(2) the S-function performs byte-wise bijective substitution, and (3) the P-function

performs a linear transformation. The output of the round function is XORed with

the right half of the round input. The two halves are then swapped. This Feistel

126

structure is iterated for a total of 4 rounds for the 128-bit key schedule. Note that

the intermediate result after 2 rounds is XORed with KL to form the next round

input. To ease the description of the attack in later sections, each 64-bit block in

Figure 7.1 is labelled as 7i, 0 ~i ~17 .

• To •
$£1 T2

S-function T3

P-function T4
/ ' - S.7
-• a:>L; T6

To Ts

S-function T1
P-function Ts

f ' ...__ ~./

c I Ts

I ®KL I
T9 ® To= Ts •

$£3 Tto
S-function Tu
P-function T12 f

' ~./

- -• 6:>14 Tt4 Ts
S-function Tts
P-function T16 ,

' _":::...1

I I
_t

Figure 7.1: Camellia's 128-bit Key Schedule

127

7.2 Hamming Weight Attack

The Hamming weight attack exploits the relation between data and its Hamming

weight derived by examining a power trace. If the Hamming weight can be captured

from a poorly designed cryptographic device, we can use it to eliminate those data

candidates failing to meet this relation. Given a Hamming weight of h for a particular

byte, there are (~) byte values consistent with this weight. Hence, as deduced

in [57, 94], the number of byte values consistent with a Hamming weight is expected

to be

() ()

2

8 8 8 1 8
Lprob{H = h} = L 256 ~ 50.27.
h=O h h=O h

(7.1)

Thus, to attack a block cipher with 128-bit key running on an 8-bit processor, the

leakage of Hamming weight information for each key byte straightforwardly enables

attackers to reduce the possible key space from 2128 to 50.2716 ~ 290·43 • However,

depending on the nature of a block cipher, the outcome of a Hamming weight attack

could be much simpler than this reduced workload if many intermediate values are

derived from a small subset of key or subkey bits. For example, the attack presented

in this chapter exploits the redundancy in the key schedule of Camellia and is able

to determine all key bits without knowledge of any plaintext and ciphertext pair.

The complexity of our attack is very low, e.g., a processing time of 5 ms on a Pill

computer.

7.2.1 Basic Power Leakage Model

A popular power leakage model was proposed in [92] with two assumptions. One

assumption is that the processor leaks the Hamming weights of data being processed.

128

For example, for an XOR operation on bytes such as Z = X ED Y, information of

the Hamming weights of X, Y, and Z can be derived by examining the processor

power consumption. It is also assumed that the power consumed by the processor

demonstrates a linear relation to the Hamming weight of the processed data. As

defined in [92], the power consumption at a specific time j is

Power[j] = c · H[j] + L + n (7.2)

where H[j] is the Hamming weight at time j, L is the additive constant portion in

the power trace, c represents the incremental amount of power caused by each extra

1 in the Hamming weight, and n is a random variable with zero mean representing

noise.

In the basic model of this chapter, we need not restrict the Hamming weight

power relation to be linear. Instead, we simply assume that the power consumption

monotonically varies in relation to the change of the Hamming weight of processed

data. Hence, the power consumption is

Power[j] = f(H[j]) + L + n (7.3)

where f(·) is a monotonically increasing or decreasing function. We also assume that

the influence of L and n can both be ignored by offsetting and averaging over several

similar power traces. Therefore, the Hamming weight can be reliably quantized from

Power[j]. Our attack discussed in this section is based on this basic model.

The transition count information of Hamming weight is not considered in this

attack because the Hamming weight difference possibly measured between two se

quential clock cycles is determined by the order of the code, which depends on coding

129

styles as well as the key schedule specification.

7.2.2 Requirements for the Attack

In general, in order to launch a Hamming weight attack, the following prerequisites

have to be satisfied.

• Access to the power consumption. The attacker needs to collect the power

consumption traces from the cryptographic device. A typical approach is to

sample the current through a small resistor, which is inserted between external

power or ground and its corresponding pin on the smart card.

• Ability to identify the clock cycles for individual steps in the key schedule. For

example, if the attacker knows the implementation well (e.g., a former em

ployee), the timing information can be easily determined. Alternatively, a

general method is suggested in [93] to distinguish the periods used for the key

schedule from periods associated with data processing. The basic idea is to ex

ecute the protocol many times on several smart cards, each with different user

information. Then, statistical analysis is performed to identify those clock cy

cles in which the same card behaves similarly with various data to be encrypted

but different cards behave differently even if the same data is encrypted. These

clock cycles are assumed to be used for the key schedule. Within these peri

ods, the attacker can identify the clock cycles for specific operations based on

features of the key schedule.

• Monotonic relation between power and Hamming weight. The power consumed

by the attacked device has to be at least a monotonic function of the Hamming

weight of the processed data as indicated in (7.3), if not a linear function.

130

• One pair of plaintext and ciphertext. The Hamming weight attack is expected

to reduce the key space to a small subset. The cipher key is then distinguished

by checking which of the remaining keys can be used to encrypt the plain

text to the expected ciphertext. As shown later for Camellia, when enough

Hamming weights can be collected, we can deduce all key bits with certainty

without requiring a plaintext encryption and in this case, this requirement is

not necessary.

7.2.3 Attack Against Camellia Subkey Generation

Our attack on Camellia is implemented through two steps. The first step exploits

the rotational relations between KL and the resultant subkeys; the second step will

exploit relations in the derivation of KA from K£. Several64-bit subkeys are derived

from KL through left rotation for a certain number of bit positions (denoted by

"<<<"). Since attackers can only check the Hamming weight of each byte, the

rotation offsets (15, 45, 60, 77, 94, 111) provide information determined by the

equivalent shift in byte-oriented bit positions as given by the remainder when the

rotation offset is divided by 8. Hence rotation offsets (15, 45, 60, 77, 94, 111) are

equivalent to bit-position shifts of (7, 5, 4, 5, 6, 7). The resulting bit shifts (7, 5, 4,

5, 6, 7) to the left are equivalent to bit shifts (1, 3, 4, 3, 2, 1) to the right.

As shown in Figure 7.2, each rotation of KL gives a chance to consider bits with a

different byte partition due to the shift of bit-positions with bytes. Assuming 8m+4

adjacent bits of KL are unknown, up to 5m Hamming weights1 collected through

power measurement during subkey generation can be used to validate candidates for

1m Hamming weights from KL and up to 4m from 4 rotations of KL giving bit shifts of 7, 6,
5, and 4. Because the left half of (KL <<< 60) is not present in subkeys, the number of collected
Hamming weights is between 4m and 5m according to the location of the (8m+4)-bit chunk.

131

KL[0, ... ,7)

Figure 7.2: An Example of Camellia Subkey Generation
(gray bits: assumed (8m+4)-bit chunk where m=2)

these key bits. In general, the value of m indicates a tradeoff between speed and

effectiveness. A large m causes a long searching time, while a small m may not

provide enough Hamming weight checks to significantly reduce the key space (e.g.,

5 checks on 12 bits when m= 1 vs. 10 checks on 20 bits when m=2).

In order to increase the attacking speed, a dynamic pruning method is used in-

stead of exhaustive search over all 8m+4 bits. Firstly, the left-most 12-bit chunk

of the 8m+4 bits under investigation is examined. It is expected that most 12-bit

candidates cannot meet the 5 Hamming weights2 of bytes obtained by different byte

partitions of KL during subkey generation. Since the required Hamming weights are

known by an attacker, those invalid candidates are discarded. For each of the result

ing candidates for these 12 bits, the next adjacent 8 bits in (8m + 4)-bit chunk are

examined in terms of Hamming weights newly obtained by different byte partitions

among the current candidate and these 8 unknown bits. If these hypothetical Ham-

ming weights match values obtained from power measurements, the corresponding

2If any byte derived from rotating these 12 bits is located at the left half of (KL <<< 60), one
Hamming weight is not available from measurement.

132

8 bit candidates are concatenated to the current 12-bit candidate to form a larger

partial key candidate of 20 bits. In the same way, the next adjacent 8 bits keep being

examined until the whole set of (8m+4)-bit partial key candidates are determined.

In our attack, KL is divided into 4 overlapped parts KL[124rvl27,0rv3l], KL[28rv63],

K£[60"'951, and K£[92"'1271 so that they can be processed quickly and independently.

Each part produces a number of 36-bit candidates (i.e., m = 4). Any four candidates

from these four parts can be joined into one KL guess when their overlapped bits

are consistent. When this procedure is applied to Camellia's key schedule with 20

randomly generated cipher keys, an average of about 238 candidates of the full KL

pass this step. We could use an exhaustive search on these 238 candidates to find the

key, but there is another way to uniquely determine the key as we shall see in the

next section.

7.2.4 Attack Against the Derivation of KA

In this section, we examine the second step in the attack, which gains more key

information from the steps involved in the derivation of key KA· Although the

structure to derive KA has a very good avalanche effect as well as non-linearity, it

can be easily broken using a Hamming weight attack.

In the first round illustrated in Figure 7.1, each byte of KL's left half (denoted

as T0), is XORed with constant E 1. The result is denoted as T2 • The following

S-function is byte-wise substitution. These two steps are expressed as

T2 - To EB Et

T3 S(T2) .

133

If we still use KL[124..vl27,0"'31) and KL[28..v63) separately to prune partial key space as

described in Section 7.2.3, two more Hamming weight checks for each hypotheti

cal byte can be performed by comparing the Hamming weights in T2 and T3 with

the corresponding values from measurement. Each output byte of the P-function

(T4 = P(T3)) depends on at least 5 input bytes. To continue the candidate pruning,

we combine any two candidates of KL[I24..vl27,0"'31) and KL[28..v63) with consistent over

lapped bit values to form 8 byte guesses of KL's left half KL[o,_,631, denoted as T~. The

output of round function with input T~ is denoted as T~. If T~ = T0 , then T~ = T4 .

Because the Hamming weight per byte in T4 is known, another 8 Hamming weight

checks can be performed to examine each T~. In most cases, only 1 or 2 possible

candidates of the left half of KL can pass this step.

For each T~ remaining, the right half of KL (denoted as T1) is guessed. The

second Feistel round in Figure 7.1 is expressed as

T1 - S(T6)

Ts - P(T1) .

Similarly to the left half guess, K£[60,_,951 and K£[92,_,127] can be considered separately

to prune the partial key space by using three more Hamming weight checks for each

byte in n rv T7. Then, any two candidates of KL[64..v99) and KL[96..vl28,0..v3) with

consistent overlapped bit values are combined to form a candidate of KL's right half

K£[64,_,1271, denoted as T;. The output of the round function with input T~ E9 T~ is

denoted as T~. If T~ =To and T; = T1 , then T~ = Ts. Thus, another 8 Hamming

134

weight checks can be performed to validate each T~ candidate.

It is unlikely that a wrong guess T~ of KL's left half leads to a candidate T; that

can pass all of the above Hamming weight checks. Even when such a case happens,

similar Hamming weight checks can be continued with T9 to T17 so that the original

key is identified uniquely. The attack could also stop at any point and a brute force

search would be executed on remaining key candidates.

We applied this attack to Camellia's 128-bit key schedule with 10,000 randomly

generated sample keys. The experimental results listed in Table 7.1 show that 2

rounds of Hamming weight checks in KA's derivation is enough for unique key iden-

tification in most cases. It takes less than 5 ms to compute the possible key candi-

date(s) using a Pill 933MHz computer with 512MB memory.

Table 7.1: Experimental Attack Results with 104 Samples of 128-Bit Camellia Cipher
Keys

Scope of HW checks To"' T1 To"' Ts To"' Tg To"' T10
in KA's derivation
Percentage of cases 14.04% 97.49% 99.98% 100%
with unique key identification
Ave. # of spurious keys 5.3588 0.0264 0.0002 0

7.2.5 Extension to 192-Bit and 256-Bit Key Schedules

When the key size is 192 or 256 bits, KL is the first 128 key bits. The remainder

of the key is denoted as KR, which is also rotated to generate subkeys. For 192-bit

keys, KR's right 64 bits are padded with the complement of its left 64 bits. The

input of KA's derivation is changed from KL to KL EB KR. Another derived key KB

is obtained through two rounds of Camellia's encryption structure with KA EB KR as

input.

135

Similar to the attack against the 128-bit key schedule but in the reverse direction,

the attack begins with the last round of the Feistel structures used to derive K A

and KB. Combined with Hamming weight checks during the rotations used in the

generation of subkeys, a small number of KA and KB candidates are expected to

pass the test. For each combination of remaining KA and KB candidates, a unique

KR candidate can be determined so that only the 128-bit KL needs to be deduced

using a method similar to what has been shown in the previous section. It is highly

unlikely for wrong guesses of KA and KB to deduce KL and KR to pass Hamming

weight checks.

7.3 Two Variants of the Attack with Robustness

to Measurement Errors

A Hamming weight attack is normally fast and easy to implement when all required

Hamming weights are measured accurately. However, in real circumstances, imper

fect measurement cannot be always avoided. An attacker could attempt to mitigate

the measurement noise using some statistical methods (e.g., averaging) in order to

keep measurement accuracy at a satisfactory level. The attack described in the

previous section is not error-tolerant. As a result, a spurious key or no key could

be recognized as the correct key when measurement noise is high enough to cause

errors in the determination of Hamming weights. Two modified attacks are thus

given to tolerate errors. We first present a model which incorporates errors into the

determination of Hamming weights.

136

7.3.1 Noisy Power Leakage Model

Denote h[j] as the Hamming weight quantized from the power trace at time j in

this model. Since J(-) in 7.3 is not always linear and averaging over power traces

may not be feasible to eliminate the effect of noise, the error during quantization

needs to be considered. A number of wrong captures of clock cycles may also occur.

This could be caused by imperfect understanding of timing information about the

implementation such that the Hamming weight processed by an unrelated instruction

may be wrongly recognized. We assume that power measurement noise can result

in a Hamming weight quantization error of ±1. Then, the real Hamming weight

obtained from measurement equipment is modelled as

{H[j] + 1,H[j]-1}

h[j]= rand([O, ... 'HmaxD

H[j]

with prob = Pcx

with prob = Pf3

with prob = 1-Pa- Pf3

(7.4)

where Pcx is the probability that h[j] is wrongly quantized as its adjacent Hamming

weight and Pf3 is the probability that the result is uniformly randomly taken due

to wrong recognition of clock cycles. When Pa = Pf3 = 0, the leakage model is

equivalent to the basic model in Section 7.2.1.

It should be noted that the power consumption of some smart cards does not

monotonically change with the Hamming weight of the data. For the two types

of smart cards examined in [97], the power consumption regions of the data with

adjacent Hamming weights are partly overlapping. The quantization errors due to

these overlapped regions can be modelled using Pa =f:. 0 even though the required

monotonic relation is not perfectly maintained. Thus, the cryptographic applications

137

on the smart card types examined in [97] are also susceptible to the attack variants

described in this section.

7.3.2 Attack Variant 1 Robust Against Small Noise

The "small" noise mentioned here means that its effect is only able to cause an error

no more than 1 on the measured Hamming weight. Such type of noise suits the

power leakage model given by (7.4) where P!i = 0. To tolerate these small errors,

the only modification in the attack is to change the method of Hamming weight

checks. Instead of considering whether the two Hamming weights from a candidate

byte partition and measurement (denoted by h' and h, respectively) are the same in

order to determine the viability of the candidate, a candidate byte remains viable if

ih' - hi :::; 1.

Since the current Hamming weight comparison is looser than equality checking, a

wrong key guess is more likely to pass the test. This attack variant costs more time

and memory because a wrong key guess may need more checks to be eliminated.

However, Camellia's KA derivation provides checks up to T17 and these can all be

used to eliminate wrong keys. For a randomly generated key KL3 , the processing

times used to perform the attack are listed in Table 7.2. During the listed time

periods with different error rates Pa, Hamming weight checks are performed until

only the correct key remains. Note that when Pa is high, the processing time is

short. This is because when the small measurement errors occur more frequently, it

is more likely for candidate Hamming weight h' passing the current Hamming weight

comparison to be farther from the Hamming weight of the actual key, thus, more

3The first randomly generated key is used as KL which is {D7, 13, E8, 80, 5F, FD, E3, 9E, lB,
C6, CF, 4D, F4, C7, 66, EF} in hexadecimal.

138

likely for its associated key guess to fail in next Hamming weight comparison.

Table 7.2: Processing Times of Attack Variant 1 on a Pill 933MHz Computer

Error rate POl 1 0.8 0.6 0.4 0.2 0
Processing time 13 mins 45 mins 7.2 hours 2.2 days ';:::j7 days ';:::j70 days

As shown in Table 7.2 for P01 = 0, this attack variant has a processing time that

is much longer than the original attack discussed in Section 7.2 which works with the

assumption of no measurement errors. Thus, using this variant would not be good

unless the effect of small noise is unavoidable (i.e., P01 =I 0).

7.3.3 Attack Variant 2 Robust Against Wide Range of Noise

Attack variant 1 overcomes the effects of small errors in Hamming weight measure-

ment whether frequently happening or not. However, in some systems a wide range

of noise may occur due to wrong recognition of clock cycles associated with Ham-

ming weight measurements. When a clock cycle is wrongly recognized, h may be

any integer among [0, Hmax] dependent on the data processed at that moment. The

occurrence of this type of error is reflected in a nonzero value for P13 in (7.4). In this

circumstance, attack variant 1 could lead to a correct byte failing a check and being

eliminated and eventually to determination of an incorrect key. Attack variant 2,

however, can be employed to attack the key schedule when a wide range of noise is

unavoidable, i.e., P13 > 0.

Instead of dynamically pruning key guesses through a local Hamming weight

comparison, a weighted comparison scheme is applied. Each Hamming weight check

139

now returns a weight w which measures the difference between h' and h:

w=W[Ih' -hi].

The entry value of array W[·] depends on the error distribution and drops to 0 as the

index rises (e.g., in our experiment, W[O] = 5, W[l] = 2, W[2] = · · · = W[Hmax] = 0).

Let Sw denote the sum of returned values from n Hamming weight comparisons for

the bytes of a partial key candidate. When a candidate partial key is true, it is

expected that

n

Sw = L W[lh:- hi I]~ (l-Pa-Pf3) · n · W[O] + Pa · n · W[l] (7.5)
i=l

when W[2] = · · · = W[Hmax] = 0. Thus, the probability of the following inequality

being true is quite high:

(7.6)

when n is large enough and 0 ~ 7J ~ 1. A smaller 7J makes (7 .6) more likely to be true,

but allows more spurious partial keys to pass the test.

If all of the left half of K L is hypothesized to calculate Sw, the processing time

for an exhaustive search in 264 candidates will be formidable. Therefore, we use a

nested approach illustrated in Figure 7.3, which we label as EDST as indicated in

the figure caption. The left half of KL is divided into 3 parts. The weight sum Sw

is calculated for each candidate partial key. Given a specific 7], the candidates will

be discarded if inequity in (7.6) cannot be satisfied. The remaining candidates are

sorted according to Sw and only A candidates with high Sw will be stored to form

140

larger candidate partial keys. Within affordable computation, the attack prefers a

small value of 1J and a large value of A so that the correct candidate will not be lost

due to errors.

'--y-----J L-y---J '--y-----J

I EDST I I EDST I I EDST I
'------- _______ /

v
I EDST I occ:::=::=::::::: (Any right half guess assumes the left half is known)

'--y-----J L-y---J '--y-----J
I EDST I I EDST I I EDST I

Figure 7.3: A Nested EDST Approach
(E: Evaluate Sw for each candidate; D: Discard if not satisfying (7.6);

S: Sort remaining candidates by Sw; T: Truncate and keep first .X candidates.)

In the experiment to attack Camellia's key schedule with 20 randomly generated

keys as samples, the EDST approach has been run for 2, 3, and 8 byte candidate

partial keys with 1J = 0.5, 0.7, and 0.8, respectively. The percentages of small noise

and wide ranging noise are both 10% (i.e., Pa = P13 = 0.1). When A= 256, 30% of

keys can be uniquely identified in an average time of 74 hours; 45% of keys will be

uniquely identified with more processing time when A= 512.

7.4 General Susceptibility Evaluation

The Hamming weight attack and its variants described in this chapter also work for

the key schedule of some other ciphers. Two main measures are of interest for this

attack: (1) the size of targeted partial key space (denoted by n) that the attack

141

Table 7.3: Susceptibility Evaluation for Several Block Ciphers

II Ciphers II 101 I ~ I Comments II
AES 24U 4.4 mainly exploit EB
Camellia 28m+4 ~ 6.22 exploiting rotation only
DES 2!!m+!! ~8 exploit rotation
IDEA 21:Sm+t> ~ 6.5 exploit rotation
SAFER++ 2!!m+!! ~ 24 exploit rotation and byte-wise addition
SHACAL-0 2;1:.! 3.75 EB without rotation

hypothesize 1 byte in each word
SHACAL-1 264 ~ 3.5 EB with rotation

hypothesize 2 bytes in each word

begins with and (2) the average number of Hamming weight checks per byte in the

targeted partial key space, denoted as ~· An attacker hopes to find a scenario to

reduce the candidates in !l. A small !l implies a low workload for exhaustive search

within !l. A high~ leads to a small number of valid candidates left after attacking.

Assuming the operations in the key schedule to be independent of each other, the

number of candidates left per byte is expected to be 256(5~5~7)e. This implies that

when ~ > 3.41, it is possible to reduce the number of valid partial key candidates

close to one. In a real attack, ~ has to be much larger than 3.41 because most

operations are correlated (such as the fixed rotations of Camellia). For the attack in

Section 7.2, l!ll = 236 , ~=6.22.

Table 7.3 shows the susceptibility of DES, IDEA, SAFER++ [98], AES (deduced

from [94]), SHACAL-0 and SHACAL-1 [99] toward similar attacks. The values of

l!ll and~ listed in this table are based on our assessment of values that can lead to

a real attack. It is possible that more efficient attacking scenarios exist with more

desirable 101 and~· No evident vulnerability to the attack from the key schedules of

MISTY1 [38], Khazad [31], SHACAL-2 [99], and RC6 [8] are observed.

142

For a general Hamming weight attack as described in Section 7.2.3, a low value

of 101 is desirable in order to search partial keys promptly (ideally, m= 1 for ciphers

listed in Table 7.3). In some cases, however, it is convenient to choose a larger !l to

facilitate attacking based on the nature of the key schedule as in Section 7.2.4.

7.5 Countermeasures

Hamming weight attacks, like other simple power attacks, work well only on sus

ceptible cryptographic devices. Most countermeasures require additional operations

and diminish performance. From the viewpoint of a cipher designer, a key schedule

is resistant to a Hamming weight attack in nature if a good avalanche effect exists

from the cipher key to subkeys as well as from one subkey to another. As a result, a

very large n (ideally the whole key space) has to be hypothesized to get a value of e
high enough for key identification. From the viewpoint of a system designer, a 16- or

32-bit smart card implementation is desirable because a larger word size decreases

the number of possible Hamming weight checks and makes measurement harder and

less accurate. Alternatively, a more resistant CMOS technology proposed in [100]

can be used for smart cards if applicable. The power consumed by these types of

circuits does not depend on the data being processed.

To provide resistance to a cipher already designed on 8-bit smart cards, the

following countermeasures can be selected during implementation:

• Data masking. The approach of masking operations with random content is

widely used to frustrate power analysis (e.g., in [101, 102, 103]). For example,

Z = XE9Y can be implemented with Z = ((XE9R)E9Y)E9R. The random data

R enlarges l!ll to 28 1!11. Although the number of Hamming weight checks rises

143

from 3 to 6 in the operation including masking, the Hamming weight checks

per byte in the targeted partial key space only changes to (~ · log2 l!1l/8 +

3)/(log2 l!1l/8 + 1).

• Operation Randomization. Some operations in key schedules are commutative

and distributive, e.g., (X EB Y) <<< 1 = (Y <<< 1) EB (X <<< 1). It is

hard for attackers to recognize the proper clock cycles from power traces if the

program switches these equivalent operations randomly or data-dependently

(e.g., reverse order of EB and <<< when X is odd). Thus, the measurement

Hamming weight h could be unrelated to candidate Hamming weight h' due to

wrong clock cycle recognition, which makes Pf3 larger. However, it is noted in

many references (e.g., [102] and [104]) that neither reordering the instruction

sequence nor adding delay between instructions guarantees safety if the attacker

can run the protocols many times.

7.6 Summary

Camellia has a key schedule with high agility. KA's derivation brings nonlinear

properties into subkeys and gains more resistance to slide and related-key attacks.

However, rotations used to generate subkeys provide enough information about KL

to compromise the key if Hamming weight information is available from power mea

surements. Further, the fact that KL is used as the input of KA's derivation struc

ture provides attackers with enough information to launch a Hamming weight attack

to uniquely identify the key. The Feistel structure of KA's derivation gives many

chances to verify the hypothesis. The two attack variants in Section 7.3 exploited

this redundancy to gain robustness in the presence of errors in the Hamming weight

144

measurements. Consequently, when Camellia is implemented in the device with

Hamming weight leakage, it is very important for implementors to consider appro

priate countermeasures as discussed in Section 7.5. Many other ciphers can be shown

to be susceptible to similar attacks and we proposed two measures to evaluate the

susceptibility of a block cipher to such attacks.

145

Chapter 8

Conclusions

8.1 Contributions

This thesis analyzes the implementation, performance, and security of block ciphers.

The main contributions of this research include the following:

Design and Analysis of Cipher Components

MDS mappings optimized for bit parallel hardware design are searched for in different

finite fields (GF(22), GF(24), GF(28)). With different sizes and branch numbers,

the resultant involution and non-involution MDS mappings provide many choices

for a cipher designer to select. The decoder-switch-encoder model is proposed for

invertible S-boxes and its hardware complexity is deduced after circuit simplification.

The complexity evaluation is justified with synthesis realization targeted to 0.18 p,m

and 0.35 f-Lm CMOS technologies.

Two AES hardware designs are implemented in hardware with different tradeoff

of area and delay. The shortest round delay is 3.04 ns, which can lead to a very

high throughput of up to 4 Gbits/s. By comparing the two designs, the effectiveness

146

of using composite finite field mathematics to realize the AES S-box (as suggested

in [75, 77]) is examined and comments are given based on the ASIC synthesis result.

The direct design (Design I) is a fast realization for non-feedback usage of AES. The

subfield design (Design II) gives a better result with regards to the tradeoff between

area and delay. Both area and delay are better than for the design of Rudra et al. [75]

using the same complexity evaluation method.

Performance Characterization of Cipher Structures

The research provides mechanisms to compare cipher structures in terms of hardware

and software performance before time-consuming realizations. Since the security is

integrated into the performance measures, such mechanisms facilitate good under

standing of efficiency and security at an early stage of a block cipher's design. Hence,

the connection between cipher design and implementation is enhanced significantly.

The hardware complexity of cipher structures is evaluated on the basis of the

complexity of components. Cipher security, in the form of resistance to differential

and linear attacks, is used to normalize the performance in the analysis. By defining

a set of metrics, the performance comparison is applied to cipher cases with different

configurations of parameterized S-boxes and MDS mappings. Because the discussed

structures are similar to many existing ciphers such as AES and Camellia, the anal

ysis provides a meaningful mechanism for seeking efficient ciphers through a wide

comparison of security, performance, and implementation methods.

Similarly, the software performance is compared for the cipher cases that have

been considered. The software complexity is evaluated using a table lookup imple

mentation, which is general and used for many block ciphers as fast implementations.

The accuracy of the complexity evaluation is confirmed by coding typical cipher cases

147

on a PHI PC and an Alpha machine. The alternative software implementation meth

ods are also generally compared.

Alternative Attacks on Block Ciphers

Differential and linear cryptanalysis are the most fundamental methods used by block

cipher designers for security evaluation. However, other attacks on block ciphers are

also considered in this work.

The XSL attack brings a new concept of security concern into cipher design.

Although its complexity was conjectured with a very attractive outcome, an XSL

attack has not been practically applied to break AES or any other published block

cipher with even one round. Based on simulation results presented by its authors,

the effectiveness of XSL attacks is considered. We proposed a method to check and

ensure the immunity of a block cipher even if an XSL attack can be practiced.

The vulnerability of Camellia's key schedule to simple power analysis is observed

and an attack is implemented for the first time. Further, two attack variants are also

developed with robustness in the presence of measurement errors. Countermeasures

and a general susceptibility evaluation method are suggested for implementation.

The discussion of the XSL attack in this thesis suggests new directions of S-box

design and security evaluation. The Hamming weight attack is illustrated in detail so

that the implementers can understand the possible threat and make efforts to avoid

it.

148

8.2 Recommendations for Future Research

According to the results and experience obtained in this work, the following future

research can be suggested:

• A model has been proposed to analyze hardware complexity of invertible S

boxes. The dynamic programming method can be used to reduce the redun

dancy of the decoder because the mapping table is invertible. It would be

desirable to relate more cryptographic properties (e.g., nonlinearity, algebraic

order, and resistance against attacks) to hardware complexity.

• The performance metrics have been defined as the integration of complexity /ef

ficiency and security. In Chapters 4 and 5, we use the maximum characteristic

probabilities Pd and Pz to deduce the resistance of a block cipher against dif

ferential and linear attacks, respectively. It is possible to use more advanced

tools (such as in [41, 47, 105, 106]) for security evaluation. For example, in

practice characteristics are combined to produce a differential used in a differ

ential attack, where a differential probability can be higher than a characteristic

probability. Similarly, a linear hull is used in a linear attack and the resultant

workload can be expressed by the probability of the linear hull. However, new

techniques are required to relate these advanced evaluation methods to the

number of rounds for a cipher.

• In Chapter 6, it has been observed through experiment that a randomly gen

erated S-box is very likely to be immune to an XSL attack. However, its

probability is hard to calculate due to the complicated structure of matrix A

in (6.5). It would be attractive to develop a theoretical method to determine

149

this probability as has been done with the probability that a randomly gen

erated 8-box gains high resistance to differential and linear attacks [107, 108].

A further step is to design an 8-box with optimal properties with respect to

the immunity to X8L attacks and security to differential and linear attacks. A

more significant and challenging task is to determine the veracity of the XSL

attack.

• A simple power analysis attack has been described in Chapter 7 which works

well on Camelllia's smart-card solution if the processor leaks Hamming weight

information. The simulated results show that the two variants are robust to

measurement errors. An actual attack using data measured from a smart-card

reader is required for further proof of the practicality of the attack.

150

References

[1] National Institute of Standards and Technology, "FIPS 46-3 Data Encryption

Standard (DES)," Available at csrc .nist .gov/publications/fips.

[2] "IEEE standard specifications for public-key cryptography," in IEEE Standard

Documents- 1363, 2000.

[3] Electronic Frontier Foundation Press Release. Available at www. eff . org/

Privacy/Crypto_misc/DESCracker.

[4] RSA's DES Challenge Ill. Available at www. rsasecurity. com/rsalabs/

challenges.

[5] J. Daemen and V. Rijmen, "AES proposal: Rijndael," 1999. Available at

csrc.nist.gov/encryption/aes/rijndael.

[6] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and

T. Tokita, "Camellia: a 128-bit block cipher suitable for multiple platforms

design and analysis," in Proceedings of Selected Areas in Cryptography - SAC

2000, vol. 2012 of Lecture Notes in Computer Science, pp. 39-56, Springer

Verlag, 2001.

151

[7] New European Schemes for Signatures Integrity and Encryption (NESSIE)

website. Available at www. cosic. esat .kuleuven. ac. be/nessie.

[8] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin, "The RC6 block

cipher," August 2002. Available at www. rsasecuri ty. com/rsalabs/rc6.

[9] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in

C {2nd Edition). John Wiley & Sons, 1995.

[10] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and

T. Tokita, "Camellia: A 128-bit block cipher suitable for multiple platforms

(NESSIE submission)," 2000. Available at www.cosic.esat.kuleuven.ac.

be/nessie.

[11] N. Courtois and J. Pieprzyk, "Cryptanalysis of block ciphers with overdefined

systems of equations," in Proceedings of Advances in Cryptology- ASIA CRYPT

2002, vol. 2501 of Lecture Notes in Computer Science, pp. 267-287, Springer

Verlag, 2002.

[12] D. R. Stinson, Cryptography Theory and Practice (2nd Edition). Chapman &

Hall/CRC, 2002.

[13] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, The Handbook of

Applied Cryptography. CRC Press, 1996.

[14] W. Stallings, Cryptography and Network Security: Principles and Practice (2nd

Edition). Prentice Hall, 1998.

[15] R. L. Rivest, A. Shamir, and L. M. Adleman, "A method for obtaining digital

152

signatures and public-key cryptosystems," m CACM, vol. 21, pp. 120-126,

1978.

[16] RSA Laboratories' Frequently Asked Questions About Today's Cryptogra

phy (Version 4.1). Available at http: I /www. rsasecurity. com/rsalabs/faq/

3-1-2. html.

[17] W. Diffie and M. E. Hellman, "New directions in cryptography," in IEEE

Transactions on Information Theory, vol. IT-22, pp. 644-654, November 1976.

[18] A. J. Menezes, Elliptic Curve Public Key Cryptosystems. Kluwer, 1993.

[19] C. E. Shannon, "Communication theory of secrecy systems," in Bell System

Technical Journal, vol. 28, pp. 656-715, 1949.

[20] H. M. Heys and S. E. Tavares, "Substitution-permutation networks resistant to

differential and linear cryptanalysis," in Journal of Cryptology, vol. 9, pp. 1-19,

1996.

[21] V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, and E. D. Win, "The cipher

SHARK," in Proceedings of Fast Software Encryption - FSE'96, vol. 1039 of

Lecture Notes in Computer Science, pp. 99-112, Springer-Verlag, 1997.

[22] R. Lidl and H. Niederreiter, Finite Fields, Volume 20 of Encyclopaedia of

Mathematics and its Applications. Reading, Massachusetts: Addison-Wesley,

1983.

[23] J. Daemen, Cipher and Hash Function Design Strategies Based on Linear and

Differential Cryptanalysis. PhD thesis, Katholieke Universiteit Leuven, 1995.

153

[24] F. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes. Ams

terdam: North-Holland, 1977.

[25] C. M. Adams and S. E. Tavares, "The structured design of cryptographically

good S-boxes," in Journal of Cryptology, vol. 3, pp. 27-41, 1990.

[26] W. Meier and 0. Staffelbach, "Nonlinearity criteria for cryptographic func

tions," in Proceedings of Advances in Cryptology- EUROCRYPT'89, vol. 434

of Lecture Notes in Computer Science, pp. 549-562, Springer-Verlag, 1990.

[27] K. Nyberg, "Perfect nonlinear S-boxes," in Proceedings of Advances in Cryp

tology - EUROCRYPT'91, vol. 547 of Lecture Notes in Computer Science,

pp. 378-386, Springer-Verlag, 1991.

[28] J. Daemen, R. Govaerts, and J. Vandewalle, "Correlation matrices," in Pro

ceedings of Fast Software Encryption - FSE'94, vol. 1008 of Lecture Notes in

Computer Science, pp. 275-285, Springer-Verlag, 1995.

[29] A. Youssef, S. Mister, and S. Tavares, "On the design of linear transformations

for substitution-permutation encryption networks," in Proceedings of Selected

Areas in Cryptography- SAC'97, 1997.

[30] P. Barreto and V. Rijmen, "The Anubis block cipher," in First Open NESSIE

Workshop, Leuven, November 2000. Available at www. cosic. esat .kuleuven.

ac. be/nessie.

[31] P. Barreto and V. Rijmen, "The Khazad legacy-level block cipher," in First

Open NESSIE Workshop, Leuven, November 2000. Available at www. cosic.

esat.kuleuven.ac.be/nessie.

154

[32] National Institute of Standards and Technology, "FIPS 197 Advanced En

cryption Standard (AES)," Available at csrc .nist .gov/publications/fips.

[33] R. Anderson, E. Biham, and L. Knudsen, "Serpent: A proposal for the

Advanced Encryption Standard." . Available at www. cl. cam. ac. uk;-r j a14/

serpent . html.

[34] E. Biham, "A fast new DES implementation in software," in Proceedings of

Fast Software Encryption - FSE'97, vol. 1267 of Lecture Notes in Computer

Science, pp. 260-272, Springer-Verlag, 1997.

[35] R. L. Rivest, "The RC5 encryption algorithm," in Proceedings of Fast Software

Encryption- FSE'94, vol. 1008 of Lecture Notes in Computer Science, pp. 86-

96, Springer-Verlag, 1995.

[36] J. Daemen, L. Knudsen, and V. Rijmen, "The block cipher Square," in Pro

ceedings of Fast Software Encryption - FSE'97, vol. 1267 of Lecture Notes in

Computer Science, pp. 54-68, Springer-Verlag, 1997.

[37] K. Ohkuma, H. Muratani, F. Sarro, and S. Kawamura, "The block cipher

Hierocrypt," in Proceedings of Selected Areas in Cryptography - SAC 2000,

vol. 2012 of Lecture Notes in Computer Science, pp. 72-88, Springer-Verlag,

2001.

[38] M. Matsui, "New block encryption algorithm MISTY," in Proceedings of Fast

Software Encryption- FSE'97, vol. 1267 of Lecture Notes in Computer Science,

pp. 54-68, Springer-Verlag, 1997.

155

[39] E. Biham and A. Shamir, "Differential cryptanalysis of DES-like cryptosys

tems," in Proceedings of Advances in Cryptology - CRYPTO '90, vol. 537 of

Lecture Notes in Computer Science, pp. 2-21, Springer-Verlag, 1991.

[40] M. Matsui, "Linear cryptanalysis method for DES cipher," in Proceedings of

Advances in Cryptology- EUROCRYPT'93, vol. 765 of Lecture Notes in Com

puter Science, pp. 386-397, Springer-Verlag, 1994.

[41] X. Lai, J. L. Massey, and S. Murphy, "Markov ciphers and differential crypt

analysis," in Proceedings of Advances in Cryptology- CRYPT0'91, vol. 547 of

Lecture Notes in Computer Science, pp. 17-38, Springer-Verlag, 1991.

(42] H. M. Heys, "A tutorial on linear and differential cryptanalysis," in Cryptologia,

vol. XXVI, pp. 189-221, 2002.

[43] X. Lai, "Higher order derivatives and differential dryptanalysis," in Proceed

ings of Symposium on Communication, Coding and Cryptography in honour of

James L. Massey on the occasion of his 60-th birthday, Monte-Verita, Ascona,

Switzerland, 1994.

(44] L. R. Knudsen, "Thuncated and higher order differentials," in Proceedings of

Fast Software Encryption - FSE'94, vol. 1008 of Lecture Notes in Computer

Science, pp. 196-211, Springer-Verlag, 1995.

[45] E. Biham, A. Biryukov, and A. Shamir, "Cryptanalysis of Skipjack reduced to

31 rounds using impossible differentials," in Proceedings of Advances in Cryp

tology - EUROCRYPT'99, vol. 1592 of Lecture Notes in Computer Science,

pp. 12-23, Springer-Verlag, 1999.

156

[46] M. Kanda, "Practical security evaluation against differential and linear attacks

for Feistel ciphers with SPN round function," in Proceedings of Selected Areas

in Cryptography- SAC 2000, vol. 2012 of Lecture Notes in Computer Science,

pp. 324-338, Springer-Verlag, 2001.

[47] K. Nyberg, "Linear approximation of block ciphers," in Proceedings of Ad

vances in Cryptology - EUROCRYPT'94, vol. 950 of Lecture Notes in Com

puter Science, pp. 439-444, Springer-Verlag, 1995.

[48] L. Keliher, H. Meijer, and S. Tavares, "New method for upper bounding the

maximum average linear hull probability for SPNs," in Proceedings of Advances

in Cryptology - EUROCRYPT 2001, vol. 2045 of Lecture Notes in Computer

Science, pp. 420--436, Springer-Verlag, 2001.

[49] B. S. Kaliski Jr. and M. Robshaw, "Linear cryptanalysis using multiple approx

imations," in Proceedings of Advances in Cryptology - CRYPTO '94, vol. 839

of Lecture Notes in Computer Science, pp. 26-39, Springer-Verlag, 1994.

[50] L. R. Knudsen and M. Robshaw, "Non-linear approximations in linear crypt

analysis," in Proceedings of Advances in Cryptology - EUROCRYPT'96,

vol. 1070 of Lecture Notes in Computer Science, pp. 224-236, Springer-Verlag,

1996.

[51] E. Biham, "On matsui's linear cryptanalysis," in Proceedings of Advances in

Cryptology - EUROCRYPT'94, vol. 950 of Lecture Notes in Computer Science,

pp. 398-412, Springer-Verlag, 1995.

157

[52] F. Chabaud and S. Vaudenay, "Links between differential and linear cryptanal

ysis," in Proceedings of Advances in Cryptology - EUROCRYPT'94, vol. 950

of Lecture Notes in Computer Science, pp. 356-365, Springer-Verlag, 1995.

[53] M. Matsui, "On correlation between the order of S-boxes and the strength of

DES," in Proceedings of Advances in Cryptology - EUROCRYPT'94, vol. 950

of Lecture Notes in Computer Science, pp. 366-375, Springer-Verlag, 1995.

[54] Toshiba Corporation, "Security evaluation: Hierocrypt-3." NESSIE Algorithm

Submission, 2000. Available at www. cosic. esat. kuleuven. ac. be/nessie.

[55] L. R. Knudsen and D. Wagner, "Integral cryptanalysis (extended abstract),"

in Proceedings of Fast Software Encryption - FSE 2002, vol. 2365 of Lecture

Notes in Computer Science, pp. 112-127, Springer-Verlag, 2002.

[56] P. Kocher, J. Jaffe, and B. Jun, "Differential power analysis," in Proceedings of

Advances in Cryptology- CRYPT0'99, vol. 1666 of Lecture Notes in Computer

Science, pp. 388-397, Springer-Verlag, 1999.

[57] T. Messerges, E. Dabbish, and R. Sloan, "Examining smart-card security under

the threat of power analysis attacks," in IEEE Transactions on Computers,

vol. 51, pp. 541-552, April 2002.

[58] P. Kocher, "Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems," in Proceedings of Advances in Cryptology- CRYPT0'96,

vol. 1109 of Lecture Notes in Computer Science, pp. 104-113, Springer-Verlag,

1996.

[59] H. Handschuh and H. M. Heys, "A timing attack on RC5," in Proceedings

158

of Selected Areas in Cryptography - SAC'98, vol. 1556 of Lecture Notes in

Computer Science, pp. 306-318, Springer-Verlag, 1999.

[60] E. Biham and A. Shamir, "Differential fault analysis of secret key cryptosys

tems," in Proceedings of Advances in Cryptology - CRYPTO '97, vol. 1294 of

Lecture Notes in Computer Science, pp. 513-525, Springer-Verlag, 1997.

[61] E. Biham, "New types of cryptanalytic attacks using related keys," in Journal

of Cryptology, vol. 7, pp. 229-246, 1994.

[62] A. Biryukov and D. Wagner, "Slide attacks," in Proceedings of Fast Software

Encryption- FSE'99, vol. 1636 of Lecture Notes in Computer Science, pp. 245-

259, Springer-Verlag, 1999.

[63] Helion Technology Technical Report, 2003. Available at www .heliontech. com.

[64] B. Weeks, M. Bean, T. Rozylowicz, and C. Ficke, "Hardware performance

simulations of round 2 Advanced Encryption Standard algorithms," in National

Security Agency white paper, 2000. Available at www .nist .gov/aes.

[65] T. Ichikawa, T. Kasuya, and M. Matsui, "Hardware evaluation of the aes fi

nalists," in Proceedings of 3rd AES conference, pp. 279-285, 2000.

[66] H. Kuo and I. Verbauwhede, "Architectural optimization for a 1.82gbits/sec

VLSI implementation of the AES Rijndael algorithm," in Proceedings of Cryp

tographic Hardware and Embedded Systems- CHES 2001, vol. 2162 of Lecture

Notes in Computer Science, pp. 51-64, Springer-Verlag, 2001.

159

[67] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, "An FPGA implementa

tion and performance evaluation of the AES block cipher candidate algorithm

finalists," in Proceedings of 3rd AES conference, pp. 13-27, 2000.

[68] K. Gaj and P. Chodowiec, "Comparison of the hardware performance of the

AES candidates using reconfigurable hardware," in Proceedings of 3rd AES

conference, pp. 40-56, 2000.

[69] B. Preneel, B. V. Rompay, S. Ors, A. Biryukov, L. Granboulan, E. Dottax,

M. Dichtl, M. Schafheutle, P. Serf, S. Pyka, E. Biham, E. Barkan, Dunkel

man, J. Stolin, M. Ciet, J.-J. Quisquater, F. Sica, H.Raddum, and M. Parker,

"Performance of optimized implementations of the NESSIE primitives," tech.

rep., NESSIE, February 2003. Available at www.cosic.esat.kuleuven.ac.

be/nessie.

[70] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, and

E. Roback, "Report on the development of the Advanced Encryption Stan

dard (AES)," tech. rep., U.S. National Institute of Standards and Technology

(NIST), October 2000. Available at csrc .nist .gov/encryption/aes.

[71] L. Xiao and H. M. Heys, "Hardware design and analysis of block cipher com

ponents," in Proceedings of the 5th International Conference on Information

Security and Cryptology- ICISC 2002, vol. 2587 of Lecture Notes in Computer

Science, pp. 164-181, Springer-Verlag, 2003.

[72] E. Mastrovito, "VLSI design for multiplication over finite fields GF(2m),"

in Proceedings of Applied Algebra, Algebraic Algorithms and Error-Correcting

160

Codes- AAECC-6, val. 357 of Lecture Notes in Computer Science, pp. 297-309,

Springer-Verlag, 1989.

[73] C. Paar, Efficient VLSI Architectures for Bit-Parallel Computation in Galois

Fields. PhD thesis, University of Essen, Germany, 1994.

[74] Online Documentation on Synopsys Design Compiler, v2000.05 ed.

[75] A. Rudra, P. Dubey, C. Jutla, V. Kumar, J. Rao, and P. Rohatgi, "Efficient Ri

jndael encryption implementation with composite field arithmetic," in Proceed

ings of Cryptographic Hardware and Embedded Systems- CHES 2001, val. 2162

of Lecture Notes in Computer Science, pp. 171-184, Springer-Verlag, 2001.

[76] A. Rudra. Personal Communication.

[77] V. Rijmen, "Efficient implementation of the Rijndael S-box." Available at

www.esat.kuleuven.ac.be/-rijmen/rijndael.

[78] L. Xiao and H. M. Heys, "Hardware performance characterization of block

cipher structures," in Proceedings of Cryptographers' Track RSA Conference

2003, val. 2612 of Lecture Notes in Computer Science, pp. 176-192, Springer

Verlag, 2003.

[79] M. Kanda, Y. Takashima, T. Matsumoto, K. Aoki, and K. Ohta, "Strategy for

constructing fast round functions with practical security against differential

and linear cryptanalysis," in Proceedings of Selected Areas in Cryptography -

SAC'98, val. 1556 of Lecture Notes in Computer Science, pp. 264-279, Springer

Verlag, 1999.

161

[80) L. Xiao and H. M. Heys, "Software performance characterization of block cipher

structures," 2003. Submitted to IEEE Transactions on Computers.

[81) P. Barreto and V. Rijmen, "AES reference code in ANSI C." Available at

www.esat.kuleuven.ac.be/-rijmen/rijndael/.

[82) A. Kipnis and A. Shamir, "Cryptanalysis of the HFE public key cryptosystem

by relinearization," in Proceedings of Advances in Cryptology - CRYPTO '99,

vol. 1666 of Lecture Notes in Computer Science, pp. 19-30, Springer-Verlag,

1999.

[83) A. K. Lenstra and A. Shamir, "Analysis and optimization of the TWINKLE

factoring device," in Proceedings of Advances in Cryptology - EUROCRYPT

2000, vol. 1807 of Lecture Notes in Computer Science, pp. 35-52, Springer

Verlag, 2000.

[84) S. Murphy and M. J. Robshaw, "Essential algebraic structure within the AES,"

in Proceedings of Advances in Cryptology - CRYPTO 2002, vol. 2442 of Lecture

Notes in Computer Science, pp. 1-16, Springer-Verlag, 2002.

[85) N. Courtois, A. Klimov, J. Patarin, and A. Shamir, "Efficient algorithms for

solving overdefined systems of multivariate polynomial equations," in Proceed

ings of Advances in Cryptology - EUROCRYPT 2000, vol. 1807 of Lecture

Notes in Computer Science, pp. 392-407, Springer-Verlag, 2000.

[86) E. R. Berlekamp, Algebraic Coding Theory, ch. Factoring Polynomials over

Fnite Fields. New York: McGraw-Hill, 1968.

162

[87] D. Coppersmith and S. Winograd, "Matrix multiplication via arithmetic pro

gressions," in Journal of Symbolic Computation, vol. 9, pp. 251-280, 1990.

[88] B. Schneier, "More on AES cryptanalysis." Crypto-Gram Newsletter, available

at www. counterpane. com/crypto-gram-0210 .html, October 2002.

[89] T. Moh, "On the Courtois-Pieprzyk's attack on Rijndael." Available at www.

usdsi. com/aes .html, September 2002.

[90] N. Courtois and J. Pieprzyk, "Cryptanalysis of block ciphers with overdefined

systems of equations (preliminary version)," 2002. Available at eprint. iacr.

org/2002/044.

[91] K. Nyberg, "Differential uniform mappings for cryptography," in Proceedings

of Advances in Cryptology - EUROCRYPT'93, vol. 765 of Lecture Notes in

Computer Science, pp. 55-64, Springer-Verlag, 1994.

[92] T. S. Messerges, "Using second-order power analysis to attack DPA resistant

software," in Proceedings of Cryptographic Hardware and Embedded Systems

- CHES 2000, vol. 1965 of Lecture Notes in Computer Science, pp. 238-251,

Springer-Verlag, 2000.

[93] E. Biham and A. Shamir, "Power analysis of the key scheduling of the AES

candidates," in Second Advanced Encryption Standard (AES) Candidate Con

ference, Rome, Italy, 1999.

[94] S. Mangard, "A Simple Power-Analysis (SPA) attack on implementations of

the AES key expansion," in Proceedings of the 5th International Conference on

163

Information Security and Cryptology - ICISC2002, vol. 2587 of Lecture Notes

in Computer Science, pp. 343-358, Springer-Verlag, 2002.

[95] E. Oswald and B. Preneel, "A theoretical evaluation of some NESSIE candi

dates regarding their susceptibility towards power analysis attacks," Technical

report, Katholieke Universiteit Leuven, Dept. ESAT, October 2002.

[96] L. Xiao and H. M. Heys, "A simple power analysis attack against the key sched

ule of the Camellia block cipher," 2003. Submitted to Information Processing

Letters.

[97] M.-L. Akkar, R. Bevan, P. Dischamp, and D. Moyart, "Power analysis, what

is now possible ... ," in Proceedings of Advances in Cryptology - ASIACRYPT

2000, vol. 1976 of Lecture Notes in Computer Science, pp. 489-502, Springer

Verlag, 2000.

[98] NESSIE Archive, "SAFER++ submission," 2000. Available at www. cosic.

esat.kuleuven.ac.be/nessie.

[99] H. Handschuh and D. Naccache, "SHACAL," 2000. Available at www. cosic.

esat.kuleuven.ac.be/nessie.

[100] K. Tiri, M. Akmal, and I. Verbauwhede, "A dynamic and differential CMOS

logic with signal independent power consumption to withstand differential

power analysis on smart cards," in Proceedings of the 28th European Solid

State Circuits Conference, Florence, Italy, September 2002.

[101] L. Goubin and J. Patarin, "DES and differential power analysis," in Proceedings

164

of Cryptographic Hardware and Embedded Systems - CHES'99, vol. 1717 of

Lecture Notes in Computer Science, pp. 158-172, Springer-Verlag, 1999.

[102] S. Chari, C. Jutla, , J. R. Rao, and P. Rohatgi, "A cautionary note regarding

evaluation of AES candidates on smart-cards," in Proceedings of the 2nd AES

Candidate Conference, March 1999.

[103] T. S. Messerges, "Securing the AES finalists against power analysis attacks,"

in Proceedings of Fast Software Encryption - FSE 2000, vol. 1978 of Lecture

Notes in Computer Science, pp. 150-164, Springer-Verlag, 2000.

[104] R. Anderson and M. Kuhn, "Tamper resistance- a cautionary note," in Pro

ceedings of the 2nd USENIX Workshop Electronic Commerce, pp. 1-11, 1996.

[105] K. Nyberg and L. R. Knudsen, "Provable security against differential crypt

analysis," in Journal of Cryptology, vol. 8, pp. 27-37, 1995.

[106] M. Matsui, "New structure of block ciphers with provable security against

differential and linear cryptanalysis," in Proceedings of Fast Software Encryp

tion - FSE'96, vol. 1039 of Lecture Notes in Computer Science, pp. 205-218,

Springer-Verlag, 1996.

[107] L. O'Connor, "On the distribution of characteristics in bijective mappings," in

Proceedings of Advances in Cryptology- EUROCRYPT'93, vol. 765 of Lecture

Notes in Computer Science, pp. 36Q-370, Springer-Verlag, 1994.

[108] L. O'Connor, "Properties of linear approximation tables," in Proceedings of

Fast Software Encryption - FSE'94, vol. 1008 of Lecture Notes in Computer

Science, pp. 131-136, Springer-Verlag, 1995.

165

Appendix A

MDS Searching Results

This appendix contains the search results for the most efficient MDS in hardware

for specific parameters. The hardware complexities are measured by the Hamming

weights of the product matrices associated with the MDS generation matrices. The

maximum delay is determined from the row with the maximum Hamming weight.

To simplify the expression of circulant, Hadamard, and Cauchy matrices, the

following three functions are defined for the representation from tuples to square

matrices { Ai,j }, 0 :::; i, j :::; k- 1:

{ Ai,j} = cir(ao, · · · , ak-1) if Ai,j = a(i+i) mod k

{ Ai,i} = had(ao, · · · , ak-1) if Ai,i = aiEM

{Ai,j} = cauchy((ao, · · ·, ak-1), (f3o, · · ·, f3k-1)) if Ai,j = 1/(ai E9 {3i)·

A normal matrix can be written as { {Ao,l, · · ·, Ao,k-d, · · ·, {Ak-1,1. · · ·, Ak-l,k-d }.

By doing so, the MDS searching results can be straightforwardly presented in Ta

bles A.1 and A.2.

166

Table A.1: Search Results of MDS Codes Optimized For Encryption

MDS Galois w(Fe) Delay w(Fe-1) Delay Fe Example
Field Fe Fcl (may not be unique)

(4,2,3) GF(2~) 9 2 12 2 { {1,1 },{1,2}}
(4,2,3) GF(24) 17 2 46 3 { {1,1 },{1,2}}
(4,2,3) GF(21S) 35 3 182 4 { {1,1},{1,2}}
(8,4,5) GF(24) 76 3 168 4 cir(1, 1, 4, 9)
(8,4,5) GF(21S) 164 3 460 5 cir(1, 1, 2, 71)
(16,8,9) GF(24) 464 4 600 5 had(1,9,13,6,2,12,10,8)T
(16, 8, 9) GF(21l) 784 4 2256 6 cir(1,1,2,142,71,16,1, 70)

t : equivalent to cauchy((O, 3, 5, 6, 8, 11, 13, 14), (1, 2, 4, 7, 9, 10, 12, 15))

Table A.2: Search Results of Involution MDS Codes

MDS Galois w(Fe) Delay Fe Example
Field (may not be unique)

(4,2,3) GF(2:.~) 11 2 { {2,1},{2,2}}
(4, 2, 3) GF(24) 21 2 {{4,1},{2,4}}
(4, 2, 3) GF(21l) 48 3 { {142,1},{70,142}}
(8, 4, 5) GF(24) 88 3 had(1, 4, 9, 13)
(8, 4, 5) GF(21S) 200 4 had(1, 2, 140, 142)
(16,8,9) GF(24) 544 5 had(2,4,8,5,12,3,10,15)
(16,8,9) GF(21S) 928 5 had(1,2,142, 70, 71,4,143,6)

167

Appendix B

Matrices Used for AES Design II

The following five matrices are derived from the mathematical representation of the

two linear transformations, LT1 and LT2, in the AES Design II of Section 3.3. A

network of XOR gates can be generated easily with knowledge of these matrices.

1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

1 0 1 0 1 1 0 0 0 1 0 1 0 1 0 0

1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0

0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1
:FT - :f'LOt=

1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0

0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0

1 1 0 1 1 1 0 1 0 0 0 1 0 1 0 0

168

1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 1

1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1

0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0

0 1 1 1 0 1 1 0 0 1 0 1 0 0 1 1
FL02 FL03=

0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0

1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0

0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0

0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1

1 0 0 0 0 1 1 0

1 1 0 1 0 0 0 0

1 0 0 0 1 1 1 0

FA ·Fi1
0 1 1 1 1 0 1 1

-
0 0 0 0 0 1 0 1

0 1 0 1 1 0 0 1

1 0 0 0 1 1 1 1

0 1 1 0 0 1 0 1

169

consumption, a small resistor is usually inserted in series with the power or ground

input of the device. Simple power analysis directly examines the relation between

the measured power trace and cryptography operations. As a more sophisticated

attack, differential power analysis uses the statistics over a long period of power

consumption trace to distinguish the correct key guess.

Two types of power leakage have been observed and analyzed in [57], which exist

in smart cards due to different internal circuits. The Hamming weight information

may be leaked when the majority of the current is used to discharge the equivalent

capacitor associated with the data bus. The transition count information (i.e., Ham

ming weight difference between the previous and current data values) may be leaked

when the majority of the current is used to switch the gates driven by the data bus.

In addition to power analysis attack, attacks based on timing information leakage

were introduced in [58] to break Diffie-Hellman, RSA, DSS, and other asymmetric

key cipher implementations. A timing attack exploits the fact that different inputs

require slightly different amounts of processing time. Some block ciphers may also

be liable to this attack if the data dependent operations are used without protection.

For example, the data-dependent rotations of block cipher RC5 have been exploited

for a timing attack in [59]. As another type of attack suggested in [60], differential

fault analysis recovers the hidden secret key stored in a smart card by investigating

the malfunction induced by the attacker.

It should be noted that appropriate countermeasures can be selected to frustrate

many potential implementation attacks. However, these countermeasures typically

cause system performance to be lowered.

33

2.3.5 Other Attacks

Although most security evaluations are focused on linear, differential, and sometimes

integral cryptanalysis, other statistical attacks still need to be considered by a cipher

designer. For example, both the related key attack [61] and the slide attack [62]

exploit the regularity of a key schedule, and their complexities are independent of

the number of rounds.

2.4 Block Cipher Irnplementations

When a cipher is implemented, the complexity is embodied by the area and delay

measured in hardware and by the memory and clock cycles measured in software.

One block cipher can be implemented using different approaches due to a variety

of development platforms, technologies, and implementors' experience. This sec

tion lists some published implementations of DES, AES, and Camellia as specific

examples.

2.4.1 Hardware Implementations

In hardware, ciphers are normally implemented into two major VLSI devices: Field

Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits

(A SICs). An FPGA is an integrated circuit chip consisting of a large two-dimensional

array of small function units, which can be programmed. The circuits can be re

configured within the array by changing the connection status between the units.

Therefore, FPGAs are flexible and easy to develop. An FPGA implementation is

considerably faster than software implementations and its product cost is low for

small volume manufacture. An ASIC is a full- or semi-custom chip and cannot be

34

