IMPLEMENTATION ANALYSIS OF BLOCK CIPHER
COMPONENTS AND STRUCTURES

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

{ Without Awthor's Permission)

LU XIAD

Library and
Archives Canada

Bibliotheque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-612-99046-X
Our file Notre référence
ISBN: 0-612-99046-X
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la these ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

IMPLEMENTATION ANALYSIS OF BLOCK
CIPHER COMPONENTS AND STRUCTURES

(© Lu Xiao

A thesis submitted to the
School of Graduate Studies
in partial fulfilment of the
requirements for the degree of
Doctor of Philosophy

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

December 2003

St. John’s Newfoundland

Abstract

This thesis analyzes the implementation and performance characterization of sym-
metric key block ciphers. In particular, we study block ciphers which consist of
Substitution-boxes (S-boxes) and Maximum Distance Separable (MDS) mappings.
New mechanisms are proposed to evaluate the performance of block ciphers in terms
of complexity and security for both hardware and software implementations. Con-
figured with parameterized components, many cipher cases are derived from two
cipher structures, a nested Substitution-Permutation Network (SPN) and a class of
Feistel networks. In our study of each case, the hardware complexity and speed are
evaluated by considering a gate network consisting of one- or two-input logic gates,
which is suitable for an Application-Specific Integrated Circuit (ASIC) realization.
The software complexity (in terms of both speed and memory requirements) is eval-
uated through table lookup implementations, which is a classical approach used for
fast software implementations. The results of the complexity evaluation are verified
with implementations using 0.18 ym and 0.35 um CMOS technologies for hardware
and C/C++ compilers for software. Cipher security, in the form of resistance to
differential and linear attacks, is used to normalize the performance in the analy-
sis. Because the discussed structures are similar to many existing ciphers such as

the Advanced Encryption Standard (AES) and Camellia, this mechanism enables us

to study the efficiency of existing and new ciphers through a wide comparison of
security, performance, and implementation methods.

In addition to differential and linear cryptanalysis, we also examine integral, eX-
tended Sparse Linearization (XSL), and power attacks that may be applied to block
ciphers. The XSL attack is discussed with respect to its effectiveness on the various
studied cipher structures. Finally, a simple power analysis attack is implemented
on Camellia’s key schedule in the circumstance where the processor leaks Hamming
weight information and the influence of the attack on the design of key schedules is

explored.

ii

Acknowledgments

First of all, I am deeply indebted to my supervisor, Dr. Howard M. Heys, for his
guidance, encouragement, and patience in every part of this work. It is my fortune
to be his student and as a supervisor he has done everything he could to benefit my
work.

I am very grateful to Dr. Ramachandran Venkatesan and Dr. Theodore S. Norvell,
for being my supervisor committee members, giving time and support all along, and
teaching me courses. I would also like to thank Dr. Paul Gillard and Dr. John
Robinson for teaching me courses.

I am grateful for this study opportunity provided by the Faculty of Engineering
and Applied Science. Particularly, thanks to Dr. M.R. Haddara, Dr. Ray Gosine,
and Moya Crocker in the Associate Dean Office who have helped me a lot during my
graduate studies. The financial support granted by the School of Graduate Studies
is highly appreciated.

I am also grateful to my wonderful colleagues and friends in the Computer Engi-
neering Research Laboratories for their help and the good times, particularly Reza
Shahidi who arranges the lab activities so pleasantly. In addition, I would like to
thank Nolan White in the Department of Computer Science for his help during the
utilization of VLSI CAD tools.

iii

An important thank you goes to my dear wife, Kai Zhang, for her sincere love
and trust in this adventure.
Finally, I would like to thank my parents and sister in China, whose support and

encouragement throughout my studies have always been of great help.

iv

Contents

Abstract
Acknowledgments
Table of Contents
List of Tables
List of Figures

1 Introduction

1.1 Motivation

1.2 Thesis Outline . .

.............................

.............................

2 Background of Cryptography

2.1 Encryption and Cryptosystems

2.2 Block Ciphers . .

.............................

2.2.1 Product Ciphers

2.2.2 Cipher Components.

2.2.3 Cipher Structureso

2.2.4 Examples

iii

xii

10
11
14
17

2.3 Cryptanalysis 22
2.3.1 Differential Cryptanalysis 23
2.3.2 Linear Cryptanalysis 26
2.3.3 Integral Cryptanalysis 30
2.3.4 Implementation Attacks 32
23,5 Other Attacks 34

2.4 Block Cipher Implementations 34
2.4.1 Hardware Implementations 34
2.4.2 Software Implementations 38

2.5 SUMMATY . . . v v v v e e e e e e e e e e e e e 39

3 Hardware Design and Analysis of Block Cipher Components 40

3.1 Optimized MDS Mappings for Hardware 42
3.1.1 MDS Mappings i e 42
3.1.2 Bit-Parallel Multipliers 43
3.1.3 Complexity of MDS Mappings 45
3.14 Three Types of Matrices 45
3.1.5 The Optimization Method 46
3.1.6 MDS Search Results 48
3.1.7 SynthesisResults 51

3.2 General Hardware Model of Invertible S-boxes 53
3.2.1 Biham’s Method to Simplify S-box Circuits 53
3.2.2 Decoder-Switch-Encoder Model 53
3.2.3 S-box Complexity 59

3.3 Efficient AES Encryption Implementations 61

vi

331 Designl
332 DesignlIl.
3.3.3 Implementation Results

34 Summary e e e

Hardware Performance Characterization of Cipher Structures

4.1 Studied Cipher Structures
411 Nested SPNs
4.1.2 A Class of Feistel Networks

4.2 Comparison of Hardware Performance
4.2.1 Performance Measures
4.2.2 Hardware Performance of Nested SPNs
4.2.3 Hardware Performance of Feistel Networks
424 SynthesisResults

4.3 Summary e e e

Software Performance Characterization of Cipher Structures

5.1 Table Lookup Implementations
5.1.1 Cases with 8x8 S-boxes
5.1.2 Cases with 4x4 S-boxes

5.2 Software Performance Comparison
5.2.1 Time Performance Metric
5.2.2 Comparison of Nested SPNs
5.2.3 Comparison of Feistel Networks
5.2.4 Experimental Results

5.3 Alternative Implementations

vii

5.3.1 Bitslice Implementations
5.3.2 Power Implementations
5.3.3 General Comparison of Methods

5.4 Summary e e e

Applicability of XSL Attacks

6.1 Introduction to XSL Attacks
6.2 Effectiveness of the Attack
6.3 Applicability to Cipher Structures

6.4 Summary e

Simple Power Attacks on Cipher Key Schedules

7.1 Camellia’s 128-Bit Key Schedule

7.2 Hamming Weight Attack
7.2.1 Basic Power Leakage Model
7.2.2 Requirements for the Attack
7.2.3 Attack Against Camellia Subkey Generation
7.2.4 Attack Against the Derivationof K4
7.2.5 Extension to 192-Bit and 256-Bit Key Schedules

7.3 Two Variants of the Attack with Robustness to Measurement Errors .
7.3.1 Noisy Power Leakage Model
7.3.2 Attack Variant 1 Robust Against Small Noise
7.3.3 Attack Variant 2 Robust Against Wide Range of Noise

7.4 General Susceptibility Evaluation

7.5 Countermeasureso

7.6 SUMMATY o o e e e e e e e e

136

8 Conclusions

8.1 Contributions

8.2 Recommendations for Future Research

References

A MDS Searching Results

B Matrices Used for AES Design I1

ix

146
146
149

151

166

168

List

2.1
2.2
2.3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
4.1
4.2
4.3

of Tables

Mapping Table of a 4x4 S-box (in hexadecimal) 13
Several Published AES Hardware Implementations 37
Software Implementations on Different Platforms 38
Four Choices for MDS Search 47
MDS Search Results L. 49
Synthesis Results of Non-Involution MDS Mappings 52
Synthesis Results of Involution MDS Mappings 52
Truth Table of a 2" xn Encoder 58
Synthesis Results of 8x8 S-boxes 60
Gate Counts of Invertible S-boxes in the Decoder-Switch-Encoder Model 62

Gate Delays of Invertible S-boxes in the Decoder-Switch-Encoder Model 62

Gate Counts and Delays of Operations in AES Design I 63
Gate Counts and Delays of Operations in AES Design IT 65
128-bit Nested SPNs of 4r Rounds 75
128-bit Feistel Networks of 4r Rounds 78

Complexity and Universal Performance Estimation of One Round of

128-bit Nested Involution SPNs in Hardware 83

4.4 Complexity and Universal Performance Estimation of One Round of
128-bit Feistel Networks in Hardware 87
5.1 Software Performance of 128-bit Nested SPNs 100
5.2 Software Performance of 128-bit Feistel Networks 104
5.3 Experimental Results of 32-bit Implementations of Nested SPNs . . . 106
5.4 Experimental Results of Two Real Ciphers 106
5.5 Comparison of Software Methods Used in MDS Codes 111
6.1 Mapping Tableof a 2x2S-box 114
6.2 Maximum Number of Rounds for a Toy Cipher to Satisfy XSL Working
Condition 119
6.3 Evaluated Susceptibility to the XSL Attack 123
7.1 Experimental Attack Results with 10* Samples of 128-Bit Camellia
Cipher Keys 135
7.2 Processing Times of Attack Variant 1 on a PIII 933MHz Computer . 139
7.3 Susceptibility Evaluation for Several Block Ciphers 142
A.1 Search Results of MDS Codes Optimized For Encryption 167
A.2 Search Results of Involution MDS Codes 167

xi

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

General Model of Cryptosystem 8
A 4x4 Bit Permutation 0000 12
AdXx4S-box 14
A Substitution-Permutation Network 15
A Feistel Network L 16
Function Fof DES 18
Function F of Camellia 21
Active Status of the State in the AES First Round 31
Active Status of the State in the AES Second Round 32
A General Hardware Structure of Invertible S-boxes 54
The Circuit of a 4x4 Invertible S-box 55
Algorithm to Determine Decoder AND-Gate Count 56
Gate Count Upper Bounds of S-boxes 61
Delay Upper Bounds of S-boxes 61
AES Encryption Implementations 64
Linear Transformations in AES Design IT 65
Performance Comparison of AES Designs 67
Synthesis of AES Round Structure 68

xii

4.1
4.2
4.3
44
4.5
4.6
5.1
5.2
6.1
7.1
7.2
7.3

Basic 2-level Nested SPN (4 Rounds) 72

A Class of the Round Function 77
Universal Performance Comparison of Nested SPNs 85
Weighted Performance Comparison of Nested SPNs 85
Universal Performance Comparison of Feistel Networks 88
Weighted Performance Comparison of Feistel Networks 88
Software Performance Comparison of Nested SPNs 101
Software Performance Comparison of Feistel Networks 104
A Simple Example 114
Camellia’s 128-bit Key Schedule 127
An Example of Camellia Subkey Generation 132
A Nested EDST Approach 141

xiii

Chapter 1

Introduction

With the rapid development of computer and communication networks, the exchange
of information is becoming more and more important for newly emerging applications
such as electronic commerce and online database inquiry. For these applications,
privacy of customer information must be protected. Since most public networks are
open to malicious attackers, network security arises as a promising and significant
research subject, especially as the Internet and wireless communication become a
considerable part of human life.

Encryption technology is the core part of network security. The security and efhi-
ciency of encryption algorithms influence the performance of protected data services
directly. Various space-consuming applications (e.g., teleconferencing and video on
demand) are being implemented in broadband data networks, occupying much more
bandwidth than traditional tasks. Currently, significant effort is being devoted to
the throughput increase of network equipment such as routers and switches. As a vi-
tal part of secure communications, the encryption technology must now meet higher
speed requirements.

Since the Data Encryption Standard (DES) [1] was proposed, block ciphers have

been playing a very important role in data encryption services because of their ad-

vantages:
e Fast speeds in both software and hardware
e Short lengths of cipher keys
e Well studied cipher components and structures

When a block cipher is used for secure communication, the key used for the cipher
is shared secretly by the sender and the receiver. The key is often exchanged using

public key cryptography as suggested in IEEE Standard 1363 [2].

1.1 Motivation

In 1977, the U.S. National Bureau of Standards published DES as a recommended
algorithm for symmetric key block encryption. Until recently, DES had dominated
in many security services. However, the current hardware technology and distributed
computing make brute-force exhaustive key search attacks faster and cheaper. As
a result, the security of DES is increasingly inadequate. For example, given a pair
of plaintext and ciphertext, the key used for DES encryption could be found by
exhaustive search using dedicated cracking hardware within 56 hours in 1998 [3] or
distributed computation through the Internet within 22 hours in 1999 [4]. With a
56-bit key, DES is not secure enough due to its small number of possible keys (i.e.,
256),

The Advanced Encryption Standard (AES) has been developed by the U.S. Na-
tional Institute of Standards and Technology (NIST), as a symmetric key block

cipher solution to efficiently provide enough security through the use of a larger key.

2

In January 1997, NIST called for algorithms as possible candidates as symmetric key
block ciphers. The candidates needed to support at least a block size of 128 bits
and key sizes of 128, 192, and 256 bits. Fifteen candidates were publicly tested and
evaluated. Rijndael [5] was finally selected as the AES in October 2000.

As a 3-year project, the New European Schemes for Signature, Integrity, and
Encryption (NESSIE) initiative also launched open calls for algorithms in the field
of symmetric key block ciphers in 2000. Like the AES project, NESSIE’s main
objective is to offer cryptographic primitives with a higher security and efficiency
level than the existing primitives. The cipher Camellia [6] was included together
with AES into the NESSIE portfolio of 128-bit block ciphers in February 2003 [7].

Both the AES and NESSIE projects generated a great amount of activity in the
study of symmetric key block ciphers including algorithm designs, software imple-
mentations, hardware implementations, and security evaluations.

Despite the need for efficient cipher designs, there has been no effort to develop
a general model for simultaneous evaluation of hardware performance and security.
It is not unusual that before a block cipher design is finalized, most analysis work is
focused on security and software speed. Hardware suitability is often overlooked at
this phase since it takes much time and energy to investigate the implementation of
a cipher in an Application-Specific Integrated Circuit (ASIC). Typically, only when
a block cipher is well established do researchers undertake hardware analysis. For
example, as one candidate for the Advanced Encryption Standard (AES), the cipher
RC6 [8] had attracted much academic interest before its hardware performance was
well studied and recognized to be poorer than other algorithms. As a result, many

block ciphers are inherently software-oriented and their hardware implementations

are neither fast nor compa.ctl.

One of the main objectives of this work is to investigate block ciphers suitable for
hardware implementation and seek methods to implement efficient and secure block
ciphers in hardware. We begin with the study of the design, implementation, and
hardware complexity of basic cipher components. Then, a mechanism is presented
to analyze different configurations of block cipher structures. The analysis integrates
the hardware complexity, efficiency, and security evaluation into several performance
measures. This mechanism will be utilized to discover the best secure cryptographic
configurations that are hardware-oriented. Our hardware implementation will be
concentrated on Application Specific Integrated Circuit (ASIC) design in order to
facilitate superior performance over other targeted hardware environments such as
Field-Programmable Gate Arrays (FPGAs)2.

Following the hardware analysis, similar performance characterization can also
be applied to software implementations. As a fast development technique across
platforms, the table lookup approach has been selected to implement block ciphers,
for example in [5, 9, 10]. Thus, a software performance metric is defined to integrate
the security provided by cipher structures and the efficiency evaluated from corre-
sponding table lookup implementations. The performance measured by this metric
helps us to study the software efficiency and security of cipher structures on the same
basis.

In addition to performance characterization, this thesis considers other facets of

IDES is a notable exception and many operations used by DES are more oriented to hardware,
e.g., bit permutations and small S-boxes.

2With increasing gate densities and speeds, FPGAs are also used in many cryptographic ap-
plications. Due to a large variety of architectures, however, it is difficult to perform a meaningful
hardware characterization for general FPGA implementations.

block cipher study which may influence the security of cipher structures or implemen-
tation. Specifically, we examine the two recently introduced cryptanalysis techniques
of eXtended Sparse Linearization (XSL) and simple power attacks.

We believe that this work enhances the association between engineering and cryp-
tography, and makes a significant contribution to the implementation and perfor-

mance analysis of potential cryptographic structures.

1.2 Thesis Outline

Chapter 2 provides the cryptography background which is relevant to this thesis. A
short but self-contained introduction is given on Shannon’s product cipher, cipher
components, structures, and examples. Differential and linear cryptanalysis are de-
veloped as the most fundamental tools for security consideration. Another attack,
integral cryptanalysis, is illustrated using AES as the targeted cipher. The cipher
implementation techniques are also briefly introduced.

Chapter 3 discusses the design and hardware implementation analysis of basic
cipher components including MDS mappings and invertible S-boxes. The proposed
S-box model and MDS implementation methods are used for two efficient AES hard-
ware designs.

Chapter 4 proposes many SPN and Feistel cipher cases with different configura-
tions of parameterized S-boxes and MDS mappings. Several metrics are defined to
integrate hardware complexity and security evaluations. The hardware performance
characterization is then undertaken on the basis of these metrics.

Chapter 5 compares the software performance of cipher cases proposed in Chap-

ter 4. The table lookup implementation is used for performance evaluation, while

other implementation methods are briefly discussed and compared.

Chapter 6 investigates the effectiveness of an XSL attack [11], which was proposed
in 2002 but has not yet been proved to be practical. In this chapter, a straightforward
method is presented to evaluate the susceptibility of a block cipher to this potential
attack.

Chapter 7 investigates the simple power analysis applied to a block cipher key
schedule. Specifically, we apply the attack to the key schedule of Camellia. It is
shown that such an attack works well even with measurement errors when the pro-
cessor running Camellia leaks the Hamming weight of intermediate data. A general
susceptibility evaluation and possible countermeasures are also suggested.

Chapter 8 draws conclusions and identifies future research directions.

Chapter 2

Background of Cryptography

This chapter introduces the basic design concepts, typical examples, and security of
block ciphers, which are relevant to the contents later in this thesis. To consider the
security of a block cipher, three fundamental attacks on block ciphers are illustrated
briefly. More details can be obtained from appropriate literature, such as [9, 12, 13,

14] which contain a complete exposé of cryptography.

2.1 Encryption and Cryptosystems

Encryption is the mapping from the original message, called the plaintext, to a ran-
dom looking message, called the ciphertert. During the mapping, a specific data set,
called the key, determines the relation between them. The key should be randomly-
selected information that is hard to deduce. As the inverse of encryption, decryption
restores the plaintext from the ciphertext with knowledge of the key. The keys
used for encryption and decryption may be different. Without the knowledge of the

decryption key, decryption should be infeasible.

Message Encryption Insecure : Decryption Message
. o .

algorithm algorithm

channel

Encryption

Decryption
key K,

key Kd

Figure 2.1: General Model of Cryptosystem

In a cryptosystem, encrypted information is transferred through an insecure chan-
nel as shown in Figure 2.1. In symmetric key ciphers, such as DES [1] , the encryption
key K. and the decryption key K4 are the same and should be kept secret; while
in asymmetric key ciphers, such as RSA [15], one of the two keys is made publicly
available and the other key cannot be derived from this public key through feasible
computation.

Both symmetric and asymmetric key cryptography are widely used in data net-
works. Since one’s public key can be used by others for encryption and authenti-
cation, asymmetric key cryptography (thus also called public key cryptography) is
more suitable for network security applications such as key distribution and digital
signatures. Although the cipher key needs to be securely distributed, symmetric key

cryptography has two significant advantages:

e High Encryption Speed: The speed of a symmetric key cipher is much faster
than an asymmetric key cipher. According to RSA Laboratories [16], DES is
generally at least 100 times as fast in software and between 1,000 and 10,000

times as fast in hardware as RSA, depending on the implementation.

e Short Key Length: A symmetric key cipher can obtain enough security with
a much shorter key. Based on current technology, a key of 128 bits is secure
enough for recently proposed symmetric key ciphers. However, RSA requires
a key size of at least 1,024 bits for current applications, which is not desirable
for some bandwidth or memory restricted environments such as a smart card

system.

The low performance of asymmetric key cryptography is due to the large arithmetic
operations involved. For example, the RSA and Diffie-Hellman [17] algorithms calcu-
late exponentials modulo a large prime and elliptic curve cryptography [18] multiplies
two variables in large finite fields. These operations are inefficient in both software
and hardware compared with the small components used in symmetric key ciphers.
As a result, symmetric key cryptography is widely used in security applications which
require high throughputs and/or small memory. Its most obvious application is con-
fidentiality, which has a message encrypted so that the message can only be known

by the sender and receiver.

2.2 Block Ciphers

According to the size of plaintext and ciphertext units, a symmetric key encryption
algorithm can also be classified as a block cipher or a stream cipher. A block cipher
encrypts the plaintext of a fixed bit length to the corresponding ciphertext of the
same length. A block cipher with an n-bit block length is also called an n-bit block
cipher. The cipher key is another block of bits with its own length. For security
considerations, recently proposed block ciphers typically have a block size of 128 bits

and a key size of 128 bits or more.

A stream cipher encrypts the plaintext in small units, usually bit by bit. The
plaintext is combined with a bit sequence, called the keystream, to generate the
ciphertext typically by bit-wise eXclusive-OR (XOR) operations. Stream ciphers
can be designed to be very fast. Alternatively, a block cipher can be used as a
stream cipher by selecting feedback modes (e.g., the Cipher Feedback and Output

Feedback modes [14]), where the block cipher works as a keystream generator.

2.2.1 Product Ciphers

As introduced by C.E. Shannon in [19], the security of a block cipher can be generated
by combining individual cipher steps appropriately into their “product”. A product
cipher usually iterates similar cipher operations for a certain number of rounds. The
cipher key is expanded to a number of subkeys by a key schedule and the subkeys are
mixed with data blocks in different rounds typically using bit-wise XOR operations.

In a product cipher, diffusion and confusion are two fundamental methods to
frustrate statistical and mathematical attacks. The method of diffusion involves
the dissipation of the redundancy that may be exploited by attackers into statistics
across the entire block so that it is difficult for a meaningful recognition of patterns.
The method of confusion is to complicate the mathematical relation between the
ciphertext, plaintext, and key information so that the key is hard to derive even if
plenty of ciphertexts are analyzed. The Substitution-Permutation Network (SPN)!
and the Feistel network are two typical architectures used to achieve this [12]. Each
cipher architecture is a well organized configuration of cipher components, which are

simple cipher operations.

1For historical reasons, these ciphers are referred to as Substitution-Permutation Networks al-
though the permutation layer is now typically replaced by an invertible linear transformation layer
to improve resistance to differential and linear cryptanalysis [20].

10

2.2.2 Cipher Components

An m xn cipher component performs a simple mapping from an m-bit input to
an n-bit output. A component is either linear or nonlinear. The most important
nonlinear component is the Substitution-bozx (S-box). A typical linear component is a
linear transformation involving the XOR of a subset of input bits to produce output

bits.

Linear Transformations

A linear transformation enhances diffusion of a cipher. In a linear transformation
from m-bit input X = (2,1, -+, Zo) to n-bit output Y = (yn—-1,- -, %o), each output

bit y; can be expressed as an affine function of the input:

Yi = Qim-1Tm-1 D D a; 0o B b; (2.1)

where “®” denotes an XOR operation and a;m—1,: -, a0, b; are binary constants.

As a result, the linear transformation can be expressed as

V=AX¥oB (2.2)

where X and) are m-tuple and n-tuple representations of X and Y, respectively, .4
is an m x n binary matrix, and B is a binary m-tuple. Corresponding to the location
of y; in Y, the i-th row of A consists of a;,—1,--+,a;0 and the i-th element of B is
b;.

The iterated structure of a purely linear transformation does not provide more

security since the composition of multiple linear transformations is still linear. That

11

X3 X2 X1 Xo

Figure 2.2: A 4x4 Bit Permutation

is,

Ao(A1 X & By) & By = AsX @ B3

where A3z = AyA; and B; = Ay,B:®B,. However, the linear transformation is efficient
and used to scramble the output bits of different S-boxes. By doing so, statistical
relations among the plaintext, the ciphertext, and the key become complicated and
difficult for attackers to analyze.

A bit permutation is a very simple linear transformation and used in many ciphers
such as DES. For a bit permutation expressed in form of (2.2), .A has only one nonzero
element in each row and B = 0. As illustrated in Figure 2.2, a bit permutation can
be easily implemented by wiring input bits and output bits.

Recently, some techniques in coding theory have been absorbed into the de-
sign of linear transformations, e.g., the usage of Reed-Solomon codes in the cipher
SHARK [21]. Thus, the input and output of a linear transformation are often ex-
pressed as vectors of symbols in finite fields [22]. To measure the avalanche effect of

a linear transformation, the branch number of a linear transformation is defined [23]

12

as:

B = min{H(X) + H(Y)} (2.3)

where H(X) and H()) denote the number of nonzero symbols in X and), respec-
tively. It is proved that a Mazimum Distance Separable (MDS) [24] mapping has
an optimal branch number B equal to m + 1, which is highly diffusive and effec-
tive in providing resistance to differential and linear attacks, as will be discussed in

Section 2.3.

S-boxes

An S-box performs a nonlinear transformation in which the output bits cannot be
expressed as affine functions. An S-box is invertible if a one-to-one mapping is
performed. One important security measure of an S-box is nonlinearity, evaluated by
the minimum Hamming distance from any linear combination of output bit functions
to an affine function [20]. Figure 2.3 and Table 2.1 show an example 4x4 S-box taken
from the first row of the first DES S-box. This S-box is obviously invertible and its
nonlinearity can be shown to be 2. The permutation shown in Figure 2.2 cannot be

used as an S-box because its nonlinearity is 0.

Table 2.1: Mapping Table of a 4x4 S-box (in hexadecimal)

ysyotito [E|4|D|1|2|F|B|8|3|A|6|C|5|9]|0]|7

Since S-boxes are the most typical components to provide confusion, many criteria
and construction methods have been developed (e.g., in [20, 25, 26, 27, 28]). Different
S-boxes in a cipher can have different mappings or one mapping can be used for all

S-boxes in a cipher.

13

X3 X2 X1 Xpo

S-box
YYVY
Y3 Y2 Y1 Yo

Figure 2.3: A 4x4 S-box

Other Components

Many other components are also used in block ciphers. They include addition, data
dependent rotation, multiplication modulo 232, etc.. These components are not of
direct relevance to structures considered in this thesis because they are not as widely

studied and accepted as S-boxes and linear transformations in cipher design.

2.2.3 Cipher Structures

In this section, we consider the two best known structures for block ciphers.

Substitution Permutation Networks

During encryption using an SPN cipher, as Figure 2.4 illustrates, the input data of
each round is typically mixed with subkey bits before entering the S-boxes. Each
S-box performs a nonlinear mapping on small sub-blocks thus creating confusion in
the data. The outputs of S-boxes are modified by a linear transformation whose
purpose is to generate a diffusion of statistical effects in the data. The decryption

is composed of the inverse linear transformations, the inverse S-boxes, and the key

14

mixtures in reverse order to encryption. To maintain similar dataflow in encryption
and decryption, SPNs typically omit the linear transformation in the last round of

encryption.

Plaintext

[1--11 [1--11 oo [1--11
Key Mixture

|II"II (-1 Iiﬁ: ‘
Round 1 | S-box | | S-box | see S-box
|II"Il JNERAA 1T

Linear Transformation

Round2~R-2{ oo L (X X (X X
P N N AR L1
Key Mixture
({11 [f--11 [1--11
Round R-1 < S-box S-box oo S-box

Linear Transformation

B I 2 | N

Key Mixture
[[--11 (111 | KRN
Round R < I S-box S-box oo S-box

[1--11 [1--11 [1--11
Key Mixture

NI 11

Ciphertext

Figure 2.4: A Substitution-Permutation Network

For any input X, a function f(X) is an snvolution if f(f(X)) = X [29]. If the
S-box layer and the linear transformation in Figure 2.3 are involutions, both the
encryption and decryption operations can be performed by the same SPN except for
small changes in the key schedule in the case of XOR key mixing. We refer to such
a cipher as an involution SPN, of which the ciphers Anubis [30] and Khazad [31] are

examples.

15

Feistel Networks

As the other typical architecture of block ciphers, the Feistel network has been widely
used and studied. In each round ¢ of a Feistel network as shown in Figure 2.5, the
right half of the round input (denoted as X;) goes through function F' parameterized
by subkey K;. Also called the round function, F often consists of key mixture, S-
boxes, and a linear transformation. The output of F, denoted as Y;, is XORed with
the left half of the round input. The round output is the swapped result of X; and

Xi-1 @Y.

plaintext

iterated < ;

ciphertext

L |]

Figure 2.5: A Feistel Network

One advantage of a Feistel cipher is that, even if F' is not invertible, the same
cipher structure of Figure 2.5 can be used for both encryption and decryption with

the appropriate modification to the key schedule.

16

2.2.4 Examples

Recent initiatives in cryptography have focussed on the development of new block
cipher standards. As the successor of DES, the SPN cipher Rijndael [5] was selected
by the U.S. National Institute of Standards and Technology as the Advanced En-
cryption Standard (AES) [32] in October 2000. As a Feistel network proposed in [6],
Camellia was included together with AES into the NESSIE portfolio of 128-bit block
ciphers in February 2003 [7]. Consequently, AES and Camellia are two important
examples of ciphers that are expected to be widely used in cryptographic applications

of the future.

Data Encryption Standard

Proposed in the 1970s, DES [1] is a Feistel cipher with a block size of 64 bits and
a key size of 56 bits. DES conforms to the general Feistel structure illustrated in
Figure 2.5 except for an initial permutation at the beginning and its inverse at the
end of the cipher. After the plaintext passes through the initial permutation, the
64-bit permuted result splits to two 32-bit halves and enters a Feistel network of 16
rounds. In each round, the function F' processes 32-bit X; with subkey K; of 48
bits. Within the function F' as Figure 2.6 shows, a bit permutation expands X; to
48 bits, which are then XORed with subkey K;. The result after subkey mixture
forms the inputs of 8 parallel 6 x 4 S-boxes (S; to Sg). The outputs of S-boxes are
concatenated and pass through another bit permutation to form Y;.

The key schedule of DES consists of two 28-bit rotating registers and two bit
permutations PC1 and PC2. The key passes through PC1 to form the initial con-
tents stored in the two registers. In each round, the two registers are rotated left

independently for 1 or 2 bits. The rotated results are concatenated and pass through

17

X; (32 bits)

v

32x48 Bit Expansion

K; (48 bits)

[T L T
S S, hd i hd S7 Sg
[TIT1 L LI

A
32x32 Bit Permutation

v

Y; (32 bits)

Figure 2.6: Function F' of DES

PC2 to get one subkey K;.

Advanced Encryption Standard

AES [32] is a 128-bit SPN cipher using keys with sizes of 128, 196, and 256 bits.
With larger block and key sizes, AES is believed to be much more secure than DES.
The number of rounds R depends on the key size, e.g., R = 10 when the key size is
128 bits.

At the beginning of the cipher, the 128-bit plaintext is stored in a two-dimensional
array of bytes called the State and denoted by {);;}, 0 < 4,5 < 3. There are four
sequential steps in each round of the cipher. Each step takes data from the State as

the input and stores the result in the State as the output. These four steps are [32]:

e ByteSub: This is a layer of parallel 8 x 8 S-boxes. Each byte enters an S-
box independently. All AES S-boxes perform the same invertible mapping

which consists of multiplicative inversion over GF(28) followed by an affine

18

transformation.

e ShiftRow: This is a byte-wise cyclic shifting in each row of the State. The
shift offset of each round is fixed but different from one row to another. The

updated State {);;} can be expressed as:
(/\2,07 A;,la A2,27 /\;,3) = (/\i,i mod 4; /\i,(i+1) mod 4>)‘i,(i+2) mod 4))\i,(i+3) mod 4)-

o MixColumn: Each column performs an MDS mapping, which can be imple-

mented by matrix multiplication over GF(28):

(3, (02 03 01 o1 [Aoy)

M, 01 02 03 01 | [Xy
Yy 01 01 02 03 | [Xy

\ X,/ \03 0101 02)\ Ny)

e AddRoundKey: In this operation, a 128-bit subkey is mixed with the State.
Each column of the State is XORed with one 4-byte word of the subkey.

It should be noted that AES still follows the general SPN structure illustrated in
Figure 2.4. AES has an initial AddRoundKey before the first round. ShiftRow and
MizColumn are linear and can be expressed together in the form of (2.2) where A is
a 128 x 128 binary matrix and B = 0. Such a combined linear transformation has a
branch number B of 5. MizColumn is replaced with another AddRoundKey in the last
round. Therefore, AES can be described in the form of Figure 2.4 by considering the
round structure as AddRoundKey, ByteSub, and a linear transformation composed

of ShiftRow and MixColumn.

19

The AES key schedule expands the cipher key into enough subkeys, which are
sequentially stored in an array W[] of 4-byte words. The first N}, words of W[| are
initialized as the cipher key, where Ny is the word length of the cipher key. Then, the
next N, words are derived from the current N, known words using a sliding window
approach. Many operations such as substitution, rotation, and constant padding are

performed during the derivation.

Camellia

Camellia is a 128-bit Feistel-like cipher using keys with sizes of 128, 196, and 256
bits. A general round structure, as shown in Figure 2.5, is iterated for 18 times when
128 bit keys are used or 24 times when 192 or 256 bit keys are used.

The round function F' of Camellia is illustrated in Figure 2.7. First, the 64-
bit X; is XORed with subkey K;. The data mixed with the subkey then enters a
layer of parallel 8 x 8 S-boxes. Camellia uses four invertible mappings for S-boxes,
denoted by Sy, Sy, S3, and Sy. A linear transformation follows the S-box layer, which
is implemented by XORs as shown in the figure. Note that the branch number B of
this linear transformation is 5 [6].

Two functions called FIL and FL™! are inserted into the Feistel network every
6 rounds. These two functions perform simple logic operations with two subkeys
required and are linear when the subkeys are fixed. There are also two 128-bit key
mixtures using XORs, located at the beginning and the end of the cipher, respec-
tively. The key schedule, which will be discussed in detail in Chapter 7, expands all

subkeys using a structure similar to encryption.

20

X; (64 bits)

v

| Keymixture (XOR) [€—K; (64 bits)

48 48 48 48 4s 48 s 4s
Sl S2fl S5 || Safl S2 | S5 Sa || Si

18 I8 18 18 18 18 18 18
De
A7 v
D .
O
B
9.3
> 4
>
> 4
»D
>0 4
")
B
X
O &
A7
Se—ri
%3
A 4
Y) 4
»d
3
— g
Y; (64 bits)

Figure 2.7: Function F' of Camellia

Other Block Ciphers

In addition to DES, AES, and Camellia, many other block ciphers have been proposed
with different cryptographic properties.

Serpent [33] and RC6 [8] were two AES candidates but not selected in the last
round of competition. As an SPN cipher of 32 rounds, Serpent uses 8 different 4 x4
mappings for S-boxes, while a certain mapping is used for all S-boxes in the same
round. Serpent is fast in hardware and its structure is optimized for a bitslicing

implementation [34] in software. RC6 is based on the cipher RC5 [35], which uses

21

data-dependent rotations and integer additions for encryption. RC6 also uses integer
multiplications.

The block ciphers SHARK [21] and Square [36] include many features adopted
by AES. SHARK is a 64-bit SPN cipher with an MDS mapping based on a Reed-
Solomon code. Square is a 128-bit SPN cipher like AES. As one significant difference
from AES, the linear transformation of Square does not have cyclic shifting for each
row. Instead, the byte A; ; in the State is changed to A;;.

Hierocrypt [37], Anubis [30], Khazad [31], and MISTY [38] were all submitted to
NESSIE for evaluation. Hierocrypt has a 2-level nested SPN structure which will be
introduced in detail in Chapter 4. Anubis and Khazad are both involution ciphers
which perform the same operations in encryption and decryption with only slight
changes in the key schedule. Except for the involution feature, Anubis and Khazad
are very similar to AES and SHARK, respectively. MISTY is a nested Feistel network
with a block size of 64 bits.

2.3 Cryptanalysis

As the art of breaking ciphers, cryptanalysis is a valuable tool in finding the potential
drawbacks in current ciphers and developing practical design principles. Differential
cryptanalysis [39] and linear cryptanalysis [40] are two of the most powerful crypt-
analytic techniques applied to block ciphers. They first concentrated on DES-like
cryptosystems and are now used as general tools for security evaluation. Integral
cryptanalysis was first applied on the cipher Square and became well known for its
application to AES as described in [5]. Implementation attacks exploit the statistics

existing in power, timing, and other measurable physical factors.

22

2.3.1 Differential Cryptanalysis

Differential cryptanalysis is a chosen-plaintext attack introduced by E. Biham and
A. Shamir in CRYPTO’90 [39]. A chosen-plaintext attack needs access to the en-
cryption machinery so that attacks can get the ciphertext corresponding to a selected
plaintext.

For a system with block input and output, if two outputs Y; and Y5 correspond

to two inputs X; and X,, respectively, then the input difference? is:

AX =X, 0 X,

and the output difference is:

AY =Y, 0Y;

where “@” represents bit-wise XOR. Among all possible input pairs with a differ-
ence of AX, only a subset of output pairs lead to the specified difference of AY. A
mapping from an input difference AX to an output difference AY is called a differ-
ential. The probability that a differential (AX, AY) occurs is called the differential

probability and denoted by Pp:

Pp=prob{V1 @Y, =AY | X; ® Xo = AX }.

Differential cryptanalysis works with the notion that the key mixture applied to the
input pair (i.e., XORing key K with inputs) does not affect the differential statistics.

Assuming X and X} represent two inputs to a system with a key mixture added at

2Qther differences are also defined, e.g., the difference calculated from modulo subtraction [41]
but in the context of ciphers we shall examine, the given difference definition is the most useful.

23

the beginning so that

X; = 10K

X, = X,0K

we have

AX' = X[@ Xy = (X1 0 K)® (X, @ K) = AX .

The attack begins with seeking the highly likely differential of a system. For
example, in an SPN cipher of R rounds, an attacker hopes to find a differential from
some plaintext difference to some output difference of the (R—1)-th round, which
occurs with a significant Pp. With this differential, the attacker can decrypt the
corresponding ciphertexts one round with all possible subkey candidates of the last
round to determine possible inputs to the last round. By checking for which subkey
candidate the output difference of the differential holds for the calculated outputs of
the (R—1)-th round most frequently, the valid subkey candidate of the last round
can be distinguished.

Once the last subkey is distinguished, it is straightforward for the attacker to use
the same technique to determine key bits from the (R—1)-th round, the (R—2)-
th round, etc.. To thwart such an attack, cipher designers construct ciphers so
that there are no large differential probabilities. To achieve this, no highly likely
differential characteristics should exist in the cipher. A differential characteristic of
- rounds is a sequence denoted as (AZy, AZy,---,AZ;,---,AZ,), where AZj is the
input difference of the first round, AZ, is the output difference of the last round,
and AZ; is the output difference of the i-th round and also the input of the (i+1)-th

round, 0 <% <. Denote P; as the probability that such a differential characteristic

24

holds. In practice, the number of chosen plaintext pairs required by differential

cryptanalysis, Np, can be approximated by
N, D~ 1 / Pd

in order to attack v+ 1 rounds of the cipher [42]. The number of plaintexts required
by the attack is used to indicate the workload since both the processing time and
memory requirement can be deduced from this number.

An S-box is active if it is involved in the differential characteristic in the attack.
Considering all S-boxes, {S;}, in a cipher, their maximum differential probability p,

is defined [39] as:

A
bs = max
(2

A)I{I;lé%?cAyprob{Si(X)@Si(X@AX) =AY }.

If a total of n, active S-boxes exist in the differential characteristic used for the
attack, then

Py <pge .

A linear transformation with a large branch number can ensure a large value of n,,
thus, making the upper bound of P; even smaller. A small P; is desirable because
of its reciprocal relation to the workload given by the number of plaintexts Np.
Based on the basic differential attacks, many more advanced attacking tech-
niques have been proposed and may lead to more significant results. The method
to use differentials instead of characteristics for security evaluation has been pre-

sented in [41], which helps to understand the provable security of the cipher. High

25

order differential cryptanalysis can be applied to the block ciphers with low nonlin-
ear degrees [43]. Truncated differential cryptanalysis [44] uses differentials with only
part of the ciphertext bits involved in the output differences. Impossible differential
cryptanalysis [45] examines the non-existence of differences in order to distinguish

the correct key guess.

2.3.2 Linear Cryptanalysis

Linear cryptanalysis, introduced by M. Matsui in EUROCRYPT’93 [40], is mainly
applicable as a known-plaintext attack, which assumes that the attacker has access
to enough existent plaintext-ciphertext pairs. Linear cryptanalysis exploits the linear
relationship between plaintext bits and ciphertext bits, and can be used to statisti-
cally determine subkey bits in the last round. Subsequently, the other subkeys can
be determined in the same way with less workload.

The basic idea of this method is to find a linear approximation expression of
the cipher algorithm. The method begins with a statistical linear path between
the input and output bits of an S-box. Then, the path is spread to the entire
cipher structure. By cancelling the common terms, a linear approximation expression
without any intermediate bits will be obtained. For an n-bit cipher with input
X = (Tp-1,Zn-2, "+, %0), output ¥ = (Yn—1,Yn-2, " ,Y0) and an m-bit cipher key

K = (km-1,km—2, "+, ko), the final effective linear expression [40] is of the form:

Ty PTiy - DX, DY, PYjp - BYyj, = ki, ks, - Dk, (2.4)

where 0 < 41,99, ,%4,J1,J2, "y Jp <n—1and 0 < Iy, lg,---,l. <m —1.

If the bit variables in (2.4) are selected randomly, then the probability that (2.4)

26

holds, denoted by Pr, should be 1/2. However, since Y is obtained by encrypting X
with fixed K, the values in these bit locations are not totally random. A cryptanalyst
would hope that (2.4) holds with probability Pp, which is not equal to 1/2. The linear
probability bias €, given by € = |p — 1/2|, indicates the effectiveness of the linear
approximation. The larger the bias ¢ is, the better linear attacking performs. Once
a good linear expression is statistically found, we obtain the equivalent of one bit of
information about K.

Since the right side of (2.4) is fixed to be either 0 or 1, the attack can derive more
key bits by statistically testing each key candidate. To attack an SPN cipher of R
rounds, for example, an attacker hopes to find a linear expression consisting of bit
variables of the plaintext and output of the (R—1)-th round. Then the corresponding
ciphertexts are decrypted one round with all possible candidates of the last round
subkey. By checking for which subkey candidate the linear expression holds true
with a probability bias e significantly different than 1/2, the attacker can distinguish
the valid subkey candidate from others. Once the last subkey is distinguished, it is
straightforward to determine subkey bits of other rounds.

In order to perform an accurate statistical test, substantial plaintext-ciphertext
pairs need to be processed. We take the complexity of cryptanalysis to be indicated
by the data amount required by the attack. It is shown by Matsui [40] that the
number of plaintext-ciphertext pairs required by linear cryptanalysis, Ny, can be
approximated by

Ny ~1/(2¢)? .

To thwart these two attacks, cipher designers construct ciphers so that there is

no large bias € different from 1/2 for the probability that a linear expression holds.

27

To achieve this, no highly likely linear characteristics should exist in the cipher.
Since any linear approximation of a data block or vector can be regarded as its inner
product with a masking bit vector over GF(2), a linear characteristic of v rounds is
a sequence of masking values denoted as (I"Zy, I'Zy,---,I'Z;,---,I'Z,), where I'Zy
is the masking value for the first round input, I'Z, is that for the last round output,
and I'Z; is that for the i-th round output and also the (i41)-th round input.

An S-box is active if it is involved in the linear characteristic in the attack.
Considering all S-boxes, {S;}, in a cipher, their maximum linear probability® is
defined [40] as:

A . = S.(X) - —-1)?
qs—m?,xmglégﬁx(prrob{X rx=5(X)-rry}-1

where “-” denotes a bit-wise inner product and I'X and I'Y denote masking variables.
A linear approximation is established by combining appropriate S-box linear ap-
proximation expressions into a linear characteristic with the following Piling-Up

Lemma.

Theorem 2.1 (Piling-Up Lemma [40]): Let u; , 1 <1 < n, be independent random
variables whose values are 0 with probability p; or 1 with probability 1 — p;. Then the

probability that uy ®ug--- D u, =0 is

1/2+2"! In](pi —-1/2).

3The terminology used here is the same as defined in [6, 38, 46] although it should be noted that
it does not represent a true probability.

28

Hence, the bias of uy ®ug--- Du, =0 s

n
e=2""]e:
i1

where g; = |p; — 1/2].

The Piling-Up Lemma is useful for approximating the overall linear probability.

As a result, we can define a linear characteristic probability P, with upper bound:
P <qe

where n, is the number of active S-boxes in the linear characteristic used for attack-

ing. Thus, it can be shown that the workload now is also expressed as

A linear transformation with a large branch number is often used to diffuse S-box
outputs and thus increase the value of n,. As a result, the workload of the attack is
enlarged.

The maximum probability of a linear characteristic is the primitive way to eval-
uate the resistance of a block cipher to linear cryptanalysis. Sometimes, a linear
attack can be improved because different linear characteristics with the same linear
approximation as shown in (2.4) can be combined to form a linear hull [47] with
a higher probability. To understand provable security against a linear attack, it is
desirable to estimate the expected probability of a linear hull. A method to seek the
upper bound of such a probability has been suggested for SPNs in [48]. The basic

linear attack can also be modified to utilize multiple linear approximations [49] or

29

nonlinear approximations [50].

Similar to each other as examined in [51, 52], both differential cryptanalysis
and linear cryptanalysis begin with statistical recognition of specific cipher struc-
tures. For each attack, the maximum probability of any characteristics is calculated
straightforwardly and used widely for security evaluation of proposed ciphers. The
best linear approximation or differential characteristic can be searched for using the
method presented in [53]. Provable security, in terms of the maximum probability of
differentials or linear hulls, is a more accurate measure, but is generally difficult to
compute or intractable to determine the required probabilities. As a result, consid-
ering the provable security of block ciphers in the context of differential and linear
cryptanalysis appears to be generally impractical.

In this thesis, all 4x4 S-boxes are assumed to satisfy p,q, < 272 and all 8 x 8
S-boxes are assumed to satisfy p,,qs < 276. Many proposed ciphers such as Ser-
pent [33], AES, Hierocrypt [37, 54], and Camellia have S-boxes satisfying these re-

quirements; others such as Anubis [30] and Khazad [31] have slightly higher p, and

ds.

2.3.3 Integral Cryptanalysis

Integral cryptanalysis [55] is a chosen-plaintext attack first proposed by the authors
of the cipher Square [36]. This attack exploits the effect of balancing caused by
invertible components used in the cipher.

To attack AES using integral cryptanalysis as presented in [5], a special set of
256 plaintexts can be selected such that each plaintext has one distinct value at
one common byte location and has the same values at the other 15 byte locations.

The byte location with all different values is called active. Figure 2.8 shows a set of

30

plaintexts with an active byte located at the right bottom of the State (denoted by
“A” in the figure). It should be noted that AES substitution and key mixture does
not change the status of the active byte in the State. ShiftRow shifts the active byte
to the left bottom and MizColumn propagates the active status to all the 4 bytes in

current column.

A
A
A
A

A A

Plaintext & after ByteSub after ShiftRow after MixColumn

Figure 2.8: Active Status of the State in the AES First Round

Figure 2.9 illustrates the status change occurring in the second round. ShiftRow
shifts the bytes in the active column to each column of the State because of a different
byte offset per row. After MizColumn, all the bytes are active. The State keeps the
same active status until MixColumn of the third round. However, each byte after
MizColumn in the third round is the XOR sum of the products of active bytes and
constants. Such an XOR sum is not active but has a property called balancing. That
is, the 256 values at this location corresponding to the 256 plaintexts can be XORed
to get 0 as the result. Such a balancing property is compromised by ByteSub of the
fourth round.

For AES of 4 rounds, an attacker collects the ciphertexts associated with the
above 256 plaintexts of the same set. Assuming a 32-bit partial key associated with
one column of the State is known for the last subkey, 4 bytes at the beginning of the

fourth round can be restored. By checking whether the balancing property exists

31

A A A|lA|JA A
A A A|lAlA|A
A A A[lA|A A
A A AJAJA A
after ByteSub after ShiftRow after MixColumn

Figure 2.9: Active Status of the State in the AES Second Round

for all 256 restored values at the same byte locations, the valid 32-bit partial key
candidate of the last round can be distinguished. This procedure can be repeated
for other 32-bit partial subkeys associated with other columns of the State until all
128 bits of the last subkey are deduced.

The above attack against 4 rounds of AES can be extended up to 7 rounds
by processing more sets of plaintexts and guessing more partial key candidates in
different rounds [5|. Further, high order integral cryptanalysis and its application to

block ciphers have been discussed in [55].

2.3.4 Implementation Attacks

During a cipher implementation execution, some physical information may be leaked
to the external environment. If the leakage information can be measured by the at-
tacker, an implementation attack (also called a side-channel attack) may be launched.
These types of attacks are usually targeted to smart-card solutions because it is rel-
atively easy to model their relation between internal circuits and physical leakage.
The attack based on power analysis was first introduced by P. Kocher et al. to

deduce the key of DES from tamper-resistant devices [56]. To measure the power

32

reconfigured once produced. With a relatively longer development time, ASICs con-
tain far more gates and run much faster than FPGAs. When manufactured in a
large volume, an ASIC has a very low product cost. Therefore, this type of circuit
is desirable for widely-used applications with high performance requirement.
Cryptographic hardware can be optimized for area requirement or throughput by

choosing different design methods:

e Round iterated design: A round structure of the cipher is implemented and
used in an iterative fashion to produce the encrypted output. The additional
logic is needed to switch the data for input, iteration, and output. Such a

design has the smallest area requirement but produces the lowest throughput.

o Pipelined design: A task is partitioned into several sequential stages, which
have roughly equal delays. Registers are used to separate the adjacent stages
and temporarily store the intermediate data and control signals, which enable
each stage to work independently. A stage may contain one or several rounds
of the cipher. Pipelining within one round is sometimes possible but limited

due to large delay discrepancies of cipher components.

e Loop unrolled design: Several sequential rounds are implemented as a single
combinational logic. Since the redundancy between rounds can be further
reduced by CAD tools, such a design is faster than an iterated design but

requires more area.

e Block parallel design: The design contains several independent encryption
blocks. An I/O port controller assigns the input data to each block and assem-

bles the encrypted data for output.

35

It should be noted that, although producing high throughputs, the pipelined design
and parallel design can only be used when non-feedback block cipher modes are
used. They cannot be used for example to implement the Cipher Block Chaining or
Cipher Feedback modes [14]. During logic synthesis, an optimization strategy can
be specified to give area or delay a higher priority.

Several implementation cases are listed, in which different implementation meth-

ods and technologies were used.

DES

DES has been implemented commercially by many hardware developers. As a re-
cent case, Helion Technology claimed a hybrid DES design, which was an iterated
structure of 2-round loop unrolling core [63]. The ASIC design in 0.18 pm CMOS
technology has a throughput of 1.25 Gbits/s with less than 6,000 gates, while the
FPGA design using a VirtexE-8 chip has a throughput of 526 Mbits/s with 855 LUTs
(i.e., Lookup Tables).

AES

Many hardware implementations had been performed since the AES project was
announced. Table 2.2 lists some typical published results. A round iterated design
in an ASIC is significantly faster than that in an FPGA. However, when a chip with
large area capacity is used, a fully pipelined AES implementation in FPGA can also

run very fast.

36

Table 2.2: Several Published AES Hardware Implementations

Implementors Throughput Area Design Technology
(Gbits/s) Method
B. Weeks et al. [64] 0.443 46 mm? iterated ASIC, 0.5 pm
5.163 471 mm? pipelined
T. Ichikawa et al. [65] 1.95 612K gates iterated ASIC, 0.35 um
H. Kuo et al. [66] 1.82 3.96 mm?* iterated
Helion Tech. [63] 2 27K gates iterated ASIC, 0.18 pm
25 n.a. pipelined
0.300 5.3K CLBs | loop unrolling
A. Elbirt et al. [67] (2-round) FPGA, Vertex
1.938 11K CLBs pipelined XCV1000-
(5-round) BG560-4
K. Gaj et al. [68] 0.332 2.9K CLBs iterated

CLBs: Configurable Logic Blocks

Camellia

Three types of implementations were presented by Camellia’s authors in [10]. Type 1
used a fully loop unrolling design optimized for throughput and achieved a through-
put of 1.17 Gbits/s in 0.35 yum CMOS technology, about 40% slower than AES
implemented using the same methodology. The area requirement of the Camellia
implementation of this type is 272,819 gates, which is about 55% less than the AES
counterpart. Optimized for logic area, the ASIC implementation of Type 2 used a
round iterated structure and achieved a throughput of 220 Mbits/s with a gate count
of 11,350. Targeted on FPGA XC4000XL series, Type 3 was also a round iterated
design and achieved a throughput of 122 Mbits/s with 874 CLBs.

37

2.4.2 Software Implementations

During software development, many factors need to be considered, such as the pro-
cessor word size, the operating system, the software language, and the compiler.
Many cryptographic operations include bit permutations and finite field mathemat-
ics, which are hard to be coded directly. In this case, a set of tables are usually
generated in the memory to store the computation results based on different inputs
as indices. As a result, these time-consuming operations can be realized as fast
as memory access. Especially when the machine has a large word size (e.g., 32 or
64 bits), several operations caused by the change at the same small sub-block can
be combined into one table lookup. This table lookup method is used in the fast
implementations of DES [9], AES [5], and Camellia [10].

Table 2.3: Software Implementations on Different Platforms
(Selected from Tables 30 and 31 in [69])

Ciphers | PIII, MS | PIV, Linux | Alpha, OSF1 | Mac
DES 62/ 62 61/ 61 37/ 37 60/ 59
AES 23/ 23 24/ 25 17/ 17 29/ 28

Camellia || 37/ 37 64/ 63 36/ 35 31/ 31

Each entry: # cycles per byte for encryption/decryption

Table 2.3 lists the implementation results of the three ciphers of interest on dif-
ferent platforms measured by NESSIE [69]. The encryption and decryption times

are indicated as the numbers of clock cycles per byte of output produced.

38

2.5 Summary

This chapter reviewed the basic design concepts of block ciphers as well as their
security and implementations. The security of a block cipher is usually evaluated
with respect to cryptanalysis. Several types of cryptanalysis have been introduced
with emphasis on differential and linear attacks, which are the most well-known and
fundamental attacks applied to block ciphers. The technology used for cipher imple-

mentations was briefly described with results of typical published cases presented.

39

Chapter 3

Hardware Design and Analysis of Block

Cipher Components

Both S-boxes and MDS mappings are widely used components in current block cipher
design. An MDS mapping can be performed through multiplications and additions
over a finite field. In finite field arithmetic [22] with base 2, additions are bit-wise
XORs, and multiplications can be calculated as polynomial multiplications modulo
an irreducible polynomial. The MDS mapping used in AES encryption is imple-
mented efficiently by several applications of “aztime” [5] (i.e., one-bit left shifting
followed by addition with the irreducible polynomial). However, this method only
suits the case that all entries in the generation matrix have both low Hamming
weights and small magnitudes.

As typically the only nonlinear components in a block cipher, S-boxes must be
designed to promote high security. As a result, each bit of an S-box output is
a complicated Boolean function of input bits with a high algebraic order, which

makes it difficult to optimize or evaluate the complexity of S-boxes generally in

40

hardware!

. We propose an efficient hardware model of invertible S-boxes through
the logic minimization of a decoder-switch-encoder circuit. By use of this model,
a good upper bound of the minimum hardware complexity can be deduced for the
S-boxes used in SPNs and some Feistel networks (e.g., Camellia [6]). The model can
be used as a technique for the construction of S-boxes in hardware so that the space
and time complexities are low.

In our work, we take the conventional approach that the space complexity of a
hardware implementation is evaluated by the number of 2-input gates and bit-wise
inverters; the time complexity is evaluated by the gate delay as measured by the
number of traversed layers in the gate network. As a general complexity evaluation,
these measures are not exactly proportional to the real area and delay in a synthesized
VLSI design because logic synthesis involves technology-dependent optimization and
maps a general design to different sets of cells based on targeted technologies. For
example, a 2-input XOR gate is typically larger in area and delay than a 2-input
AND gate in most technologies. As well, it is assumed that the overhead caused by
routing after logic minimization can be ignored. Although routing affects the perfor-
mance in a place-and-routed implementation, it is difficult to estimate its complexity
accurately before synthesis into the targeted technology.

From previous FPGA and ASIC implementations of block ciphers, such as those
listed in [70], it is well established that S-boxes normally contribute to most of a
cipher’s area requirement and delay. Although linear components such as MDS
mappings are known to be much more efficient than S-boxes, it is important for cipher
designers to characterize hardware properties of both S-boxes and MDS mappings

on the same basis as is done through the analysis in this chapter.

1Some special cases with algebraic structure as in the AES S-box can be efficiently optimized.

41

The content of this chapter is also presented in [71].

3.1 Optimized MDS Mappings for Hardware

3.1.1 MDS Mappings

A linear code over Galois field GF(2") is denoted as an (I,k,d)-code, where [is
the symbol length of the encoded message, k is the symbol length of the original
message, and d is the minimal symbol distance between any two encoded messages.
An (I,k,d)-code is MDS if d = l—k+1. A (2k, k, k+1)-code with generation matrix
G = [Z|C], where C is a kxk matrix and 7 is an identity matrix, determines an MDS
mapping from the input X to the output) through matrix multiplication over a

finite field as follows:

fu:X—>Y=C X (3.1)
where

Xk-1 Y1 Cr-14-1 --- Cik_10

Xo Yo Cok-1 ... Cop

Each entry in X,), and C is an element in GF(2").

For a linear transformation, the branch number was defined in (2.3) as the mini-
mum number of nonzero elements in the input and output when the input elements
are not all zero. It is desirable that a linear transformation has a high branch number
when it is used after a layer of S-boxes in a block cipher, in order for there to be low

probabilities for differential and linear characteristics [39, 40]. A mapping based on

42

a (2k, k, k+1)-code has an optimal branch number of k+1.

3.1.2 Bit-Parallel Multipliers

An MDS mapping can be regarded as matrix multiplication in a finite field. Since
the generation matrix is constant, each element in the encoded message is the XOR
ofb several outputs of constant multipliers. As basic operators, bit-parallel multipliers
given in a standard base [72, 73] are selected in this research. A constant multiplier
can be written as a function from an element A to an element B over GF(2") as
follows:

fo:A—»B=C-A (3.2)

where C' is the constant element in GF(2"). The expression in binary polynomial

form is given as
bp1™ V4 by = (cpo1Z™ T -+ o) (A1 + -+ - 4+ ag) mod P(z) (3.3)

where P(z) denotes the irreducible polynomial of degree n for the field. An nxn

binary matrix F¢ is associated with this constant multiplier such that:

(bn-1 \ (An_1 \

bn—2 Qp—-2

= fc X . (3.4)

) \w

43

where
fn—l,n—l fn—l,O

Fc =
fom-1 . foo
and f;; € {0,1},0 < ¢,j < n—1. The entries in each column of F¢ are determined
by
fac158" N4+ fo; =27 (nag™ Tt + -+ + ¢o) mod P(z). (3.5)

Since F¢ is constant, it is trivial to implement a constant bit-parallel multiplier by
bit-wise XOR operations. For example, considering a constant multiplier to perform
B = 19H x A over GF(2%) where “H” indicates hexadecimal format and P(z) =
28 + 2% + 2% + 2 + 1, we get the binary product matrix Fyog and the corresponding

Boolean expressions for all bit outputs as the following:

(00011000 [br=ada
000011O00O0 be = a3 P a
10000110 bs = ar P as P ax

Fron = 11000011 Ny by=ar@Pac@P a1 P ao |
01111001 bs=acPasPasPasPao
10100100 be =ar @ as P ax
010100T10 by = a5 D as D as

\00110001/) |bh=e:Bauba

If we define w(F¢) as the count of nonzero entries in F¢ and w;(F¢) as the
count of nonzero entries in row ¢ of F¢o, the number of 2-input XOR gates used

for the multiplier is upper bounded by w(Fc)—n and the delay of gate levels is

44

max{[log, wi(Fo)1}-

3.1.3 Complexity of MDS Mappings

An MDS mapping has been defined in (3.1) where each entry C;; of matrix C is
associated with a product matrix F¢, ;. Replacing each C;; in matrix C with Fg, ;

as a submatrix, we get an nkxnk binary matrix F¢ as the following:

fok-—l,k-—l s ka—l,o
Fe = :

.7:00’,0_1 v Feop

Because Y is the matrix product of F¢ and X, the MDS mapping can be straightfor-
wardly implemented by a number of XOR gates. The gate count of 2-input XORs is
upper bounded by

Gups = w(Fe) — nk (3.6)

and the delay is upper bounded by
Dups = max{[logy wi(Fc)1} (3.7)

where 0 <1 <n-—1.

3.1.4 Three Types of Matrices

In the search of optimized MDS mappings in the next section, we will use three types
of matrices which suit different applications. When an exhaustive matrix search is

impractical, we will limit the search scope to one of the following three matrix types.

45

e (Circulant matrices: Given k elements «y,...,ax_1, a circulant matrix A is
constructed with each entry A; ; = 0/(i4j) mod k- The probability that a circulant
matrix is suitable for an MDS mapping C is much higher than that of a normal

square matrix [36].

e Hadamard matrices: Given k elements «p,...,a,_1, a Hadamard matrix A
is constructed with each entry A;; = aig;. Each Hadamard matrix A over a
finite field has the following properties: A2 = ~-Z where 7 is a constant. When
v =1, A is an involution matrix. An involution MDS mapping is required by

an involution SPN.

e Cauchy matrices: Given 2k elements «y,...,ar_1, fo,. .-, Bk—1, & Cauchy ma-
trix A is constructed with each entry A;; = 1/(a;® ;). Any Cauchy ma-
trix is MDS when ay,...,ax_; are distinct, Bo,...,0k_1 are distinct, and
a; # fB; for all 4,7 [24]. Although a Cauchy matrix can be conveniently used
as matrix C for an MDS mapping, the relation between selected coefficients
(i.e., ag,..., k1,00, .,0k—1) and corresponding MDS complexity is not as
straightforward as in the former two matrix types. Therefore, it is difficult to
select coefficients to construct a Cauchy matrix that can be efficiently imple-

mented in hardware.

3.1.5 The Optimization Method

The hardware complexity of an MDS mapping is determined directly by matrix C.
In order to improve hardware performance, matrix C should be designed to produce
low hardware complexity. However, not every matrix with low complexity is suitable

as an MDS mapping. The mapping associated with matrix C can be tested using the

46

following theorem:

Theorem 3.1 [24]: An (I, k,d)-code with generation matrix G = [Z|C| is MDS if,

and only if, every square submatriz of C is nonsingular.

To minimize gate count and delay in hardware, we want to find an MDS mapping
based on a (2k, k,k+1)-code over GF(2") with low Hamming weights of w(F¢) and
w;(Fe). Theorem 3.1 provides us a way to determine whether a matrix candidate is
MDS. Theoretically, the optimal MDS mapping can always be determined through
an exhaustive search of all matrix candidates of C. However, such a search is compu-
tationally impractical when k£ and n get large. In this case, it is reasonable to focus
the search on some subsets of candidates which are likely to yield MDS mappings.

The search scope can thus be limited to circulant, Hadamard, and Cauchy matrices.

Table 3.1: Four Choices for MDS Search

[Search Options # of Candidates Applicable Cases
Exhaustive ok*n small k, n
Circulant Matrices 2Fn large k, n
Hadamard Matrices 2kmn large k, n as well as involution
Cauchy Matrices 22kn hard to find MDS mappings
in other matrix categories

Table 3.1 describes four choices for the MDS search. We adopt an appropriate
searching method based on the number of candidates to be tested and the required
MDS features (involution or not). If computation permits, exhaustive search is pre-
ferred. When an exhaustive search is impractical, a search in circulant matrices may
be performed for non-involution MDS mappings or a search in Hadamard matrices
may be performed for MDS mappings which are involutions. Since only a subset

of MDS mappings can be derived from circulant, Hadamard, or Cauchy matrices,

47

only exhaustive search over all possible matrices (and therefore all MDS mappings)
is guaranteed to find a truly optimized MDS mapping. However for large k and n,
searching over a subset of MDS mappings is the best that can be achieved. The
objective is to find the candidate with the MDS property and a low hardware cost.
The hardware “cost” could be gate count, delay, or both. Sometimes, no candidates
in the sets of circulant and Hadamard matrices pass the MDS test. In this case, the
optimal mapping will be determined through a search of Cauchy matrices, where
each candidate is deterministically MDS.

Once a candidate is proved to be MDS (or involution MDS), those remaining
candidates with higher hardware cost can be ignored narrowing the search space.
The results generated in this searching method can be used for the hardware char-
acterization of ciphers with MDS mappings of a specified size.

It is noted that w(F¢) — nk just indicates the upper bound of XORs in the
circuit. Two greedy methods introduced in [73] can be applied to the MDS matrix
multiplication in order to further reduce redundancy in the circuit. However, the

improvement of using greedy methods is not significant when w(F¢) is already low.

3.1.6 MDS Search Results

We have implemented a search for the best MDS mappings of various sizes. Dur-
ing the search, gate reduction is given higher priority than delay reduction because
the delay difference among mappings is generally not evident. The optimal? non-

involution MDS mappings for bit-parallel implementations for various sizes of MDS

2Here “optimal” means “locally optimal” when the MDS mapping is constrained to a particular
matrix category.

48

mappings are given in Table 3.2. As in AES, SPNs using these optimal MDS map-
pings are more efficient in encryption than decryption. In Table 3.2, the average
weight is determined by computing the number of matrix entries and dividing by
two. That is, it represents the average number of ones in a matrix across all nk x nk
matrices. These average weight values are included to show how effective the opti-

mization work is for each MDS category.

Table 3.2: MDS Search Results

MDS | Galois | P(z) | Average | Involution || w(F¢) Delay Matrix
Field Weight (# layers) Type

(4,2,3) | GF(2%) 7TH 8 No 9 2 exhaustive
(4,2,3) | GF(2*)| 13H 32 No 17 2 exhaustive
(4,2,3) | GF(2°) [11D H 128 No 35 3 exhaustive
(8,4,5) | GF(2*) | 13H 128 No 76 3 circulant
(8,4,5) | GF(2°) [11IDH | 512 No 164 3 circulant
(16,8,9) [GF(2*) | 13H | 5121 No 464 4 Cauchy
(16,8,9) | GF(2°) [11D H | 2048 No 784 4 circulant
(4,2,3) | GF(2%) 7TH 8 Yes 11 2 exhaustive
(4,2,3) | GF(2*) | 13H 32 Yes 21 2 exhaustive
(4,2,3) | GF(2®) | 11D H 128 Yes 48 3 exhaustive
(8,4,5) | GF(2%) | 13H 128 Yes 88 3 Hadamard
(8,4,5) |GF(?®) | 1IDH| 512 Yes 500 1 Hadamard
(16,8,9) | GF(2*) | 13H | 5127 Yes 544 5 Cauchy
(16,8,9) | GF(2°) [1ID H | 2048 Yes 928 5 Hadamard

t: Most randomly generated matrices are not MDS due to a small field and the
requirement of a large branch number.

The optimal involution MDS mappings in terms of our complexity analysis are
also given in Table 3.2. Since the MDS test of Theorem 3.1 is computationally
intensive, an involution test will be performed first to eliminate wrong candidates.
In [29], an algebraic construction of an involution MDS mapping based on Cauchy

matrices is described. This known MDS mapping is used to eliminate remaining

49

candidates that produce higher complexity and therefore reduce search space before
a better mapping is found.

The categories in Table 3.2 correspond to many MDS mappings in real ciphers
(although there are minor differences in finite field selection). For example, Square,
AES, and Hierocrypt at the lower level have non-involution MDS mappings based on
(8,4, 5)-codes over GF(28) [32, 36, 37]. SHARK has an non-involution MDS mapping
based on (16,8, 9)-codes over GF(2®) [21]. Hierocrypt at the higher level has two
choices of non-involution MDS mappings, based on (8,4, 5)-codes over GF(2%) and
GF(232), respectively [37]. Anubis has an involution MDS mapping based on an
(8,4,5)-code over GF(28) [30]. Khazad has an involution MDS mapping based on
a (16,8,9)-code over GF(2®) [31]. None these ciphers have MDS mappings with
complexity as low as their corresponding cases listed in the tables. The mappings
of AES, Anubis, and Khazad have MDS mappings that are close to the optimal
cases in terms of gate counts (i.e., w(F¢) = 184,216, and 1296, respectively), while
Hierocrypt’s MDS mappings have high complexity, similar to the average gate counts.

As Table 3.2 indicates, the involution MDS mappings are not as efficient as non-
involution MDS mappings after optimization. However, the performance difference
between them is quite small. When used in an SPN, the involution MDS mapping
produces equally optimized performance for both encryption and decryption. When
an SPN uses a non-involution MDS mapping optimized only for encryption, the
inverse MDS mapping used in decryption has a higher complexity. For example, the
MDS mapping used in AES decryption has w(F¢) = 472 and, hence, needs more
gates in hardware than the MDS mapping used for encryption which has w(F¢) =
184. When a non-involution MDS mapping is optimized for both encryption and

decryption, the overall hardware cost is similar to an optimized involution MDS

90

mapping.

3.1.7 Synthesis Results

We implemented the optimized MDS mappings in hardware using both 0.18 um
and 0.35 yum CMOS technologies. Synopsys Design Compiler was used for synthesis
and the default optimization strategy gave the space concern a higher priority [74].
TSMC'’s cell library was targeted to 0.18 um technology, where a specific area size
was reported after synthesis. The cell library lsi_10k.db was targeted to 0.35 um
technology, where the area was reported in the number of equivalent NAND gates.
Tables 3.3 and 3.4 show the synthesis results of optimized MDS mappings listed in
Table 3.2. The synthesis circuits of these MDS mappings produce space complexities
with roughly the same trends as shown in Table 3.2. Because some cells in the
target libraries have more than 2 inputs, the ratio between experimental values and
the corresponding estimates vary slightly when the fields and minimum distances of
MDS mappings are both small. This variance becomes insignificant as the complexity
of an MDS mapping increases. The delay time of an MDS mapping may be larger
than its estimate when the circuit becomes larger (e.g., mappings based on (16, 8,
9)-codes when using 0.35 ym CMOS), which is due to technology related wiring

overhead and optimization strategy.

ol

Table 3.3: Synthesis Results of Non-Involution MDS Mappings

MDS Hamming | Gate || .18 um CMOS | .35 pum CMOS
Weight | Delay | Area | Delay || Areal | Delay
(um?) | (ns) (ns)
4, 2, 3), GF(22) 9 2 | 1057 | 080 | 12 | 225
(4,2, 3), GF(2) 17 3 | 2602 | 042 | 28 | 2.25
(4,2, 3), GF(2) 35 3 | 5448 | 042 | 57 | 2.25
(8, 4, 5), GF(2%) 76 3 1549.0 | 1.30 153 3.62
(8, 4, 5), GF(2°) 164 3 3659.0 | 1.33 375 3.51
(16, 8, 9), GF(2%) 464 4 8863.0 | 2.01 844 8.59
(16, 8, 9), GF(2%) 784 4 17376.4 | 2.01 | 1636 | 9.49

t: # equivalent NANDs

Table 3.4: Synthesis Results of Involution MDS Mappings

MDS Hamming | Gate || .18 um CMOS | .35 um CMOS
Weight | Delay || Area | Delay || Area' | Delay
(pm?) | (ns) (ns)
(4, 2, 3), GF(2?) 11 2 1138 | 159 | 12 | 3.44
(4, 2, 3), GF(2%) 21 2 280.5 | 0.95 27 2.43
(4, 2, 3), GF(28) 48 3 703.3 1.10 63 3.85
(8,4, 5), GF (2% 88 3 | 16872 | 1.70 | 174 | 3.77
(8, 4, 5), GF(25) 200 4 | 42608 | 1.33 || 398 | 6.34
(16, 8, 9), GF(2Y) | 544 5 | 93712 | 264 | 891 | 11.45
(16, 8, 9), GF(2%) 928 5 | 10550.6 | 2.36 || 1850 | 10.96

t . # equivalent NANDs

92

3.2 General Hardware Model of Invertible S-boxes

3.2.1 Biham’s Method to Simplify S-box Circuits

In [34], a method of generating a Boolean function through nested multiplexing is
introduced to optimize gate circuits for the 6 x4 S-boxes in DES implementations.
Consider that a Boolean function f(a,b,c) with three input bits a, b, and ¢ can be

written as

f(a’bac) = fl(aab) ~c+f2(a,b) ‘C

where f1(a,b) and f3(a, b) are two Boolean functions and “+” denotes OR. If f3(a, b) =
fi(a,b) & fa(a,b), then

f(a,b,¢) = fa(a,b) ® (fs(a,b) - ¢) .

Similarly, a Boolean function with an input of 4 bits can be regarded as a multiplexor
using one input bit to select two boolean functions determined by the other three
input bits. This procedure is repeated until a Boolean function has 6 input bits. A
6x4 DES S-box contains four of these 6-bit Boolean functions. This general approach
can be taken for any size S-box and works well for optimization of small S-boxes such
as the 4 x4 S-boxes in Serpent [33]. However, in the case of general invertible 8 x 8

S-boxes used by many ciphers, this method can be improved upon, as we shall see.

3.2.2 Decoder-Switch-Encoder Model

In this section, we derive a general hardware model of n xn invertible S-boxes by

simplification of a decoder-switch-encoder structure. Using this model, the upper

93

bounds of optimized gate counts and delays for S-boxes can be deduced.

I() —:_ - Xo — — Yo — _: 00
L T oax2 R X1 . itch R T 2'xn [Oy
. i | decoder | o . swite . | encoder | i .
In-l—g— [X2"_1_ [Y2"_1 _ Onl

Figure 3.1: A General Hardware Structure of Invertible S-boxes

As shown in Figure 3.1, the n x 2" decoder outputs 2" distinct minterms from
the n-bit S-box input. The switch is a wiring area composed of 2" wires. Each wire
connects an input port X; to an output port Y;, 0<4,j < 2" —1. Since the S-box is
invertible, only one input port is connected to an output port. Although the wiring
scheme embodies the S-box mapping, the switch does not cost any gates. The output
of the switch is encoded through a 2" xn encoder, which produces the n-bit output
of the S-box. A detailed example is presented in Figure 3.2, which is chosen for DES

(the first row of the first S-box with the mapping shown in Table 2.1).

Decoder

The nx2™ decoder is implemented by n NOT gates and a number of AND gates. The
NOT gates generate complementary variables of n inputs. The AND gates produce
all 2" minterms from n binary inputs and their complements.

The most straightforward approach is to generate every minterm separately,
which costs 2"-(n — 1) 2-input AND gates plus n bit-wise NOT gates, and a delay

of [log, n]+1 gate levels. This approach can be improved by eliminating redundant

o4

i m
M w
! i
vmm--- e bo ol bl i I - |
< T m
. P! 1

1 [H
.m mu =
. T 3

<= ! S

2 il b

m A o

.

@ i i
° i ;
-3 - w
+ - m
N ', i
o ! i :
N T i

lemfamcmondemem e o S T Y e T i U PR R p—— PRI RN Np——— S J

95

Iy

I

L

I

Figure 3.2: The Circuit of a 4x4 Invertible S-box

AND gates in the circuit. The gate count of the optimized circuit can be generated

using a dynamic programming method.

fori+—0ton—1do
D(i,i) + 0
for step — 1ton—1do
for i — 0 ton—1— step do
j =1+ step
D(i, j) < oo
fork —itoj—1do
temp = D(i, k) + D(k + 1,5) + 29—+
if temp < D(3,7) then D(i,j) « temp
return D(0,n — 1)

Figure 3.3: Algorithm to Determine Decoder AND-Gate Count

Consider the dynamic programming algorithm in Figure 3.3, used to compute the
minimum number of AND gates in the decoder. Let D(¢,) be the minimal number
of 2-input AND gates used for generating all possible minterms composed of literals
I;,---,1I; and their complements. Thus, D(i,j) = 0 when ¢ = j. If we know two
optimal results of subproblems, say D(i,k) and D(k + 1,j) where i < k < j, all
minterms for I;, - - -, I; can be obtained by using AND gates to connect two different
minterms in the subproblems, respectively. Since the number of these pairs is 29741,
this solution needs D(i,k) + D(k + 1, 7) +27~**1 AND gates in total. The algorithm
of Figure 3.3 can be easily modified to determine the actual gate network used for
the decoder. When n = 2¥, it can be shown that the number of 2-input AND gates

and bit-wise NOT gates in the decoder is given by

k
Gpec(n) =n) 277" 4n. (3.8)

1=1

56

The delay, in terms of the number of gate levels, of the decoder is

Dpec(n) = [logan] +1.

Encoder

The 2" xn binary encoder can be implemented using a number of 2-input OR gates.
Table 3.5 gives the truth table of a 16 x4 binary encoder. Each output signal O; is
the OR of the 2"~! input signals that produce “1” in column O; in the truth table;
this is denoted as O; = > Y. If we separately construct circuits for these output
signals, it would cost n - (2"~! — 1) 2-input OR gates and a delay of n—1 gate levels.
Fortunately, most OR gates can be saved if the same intermediate ORed signals are
reused.

Considering that the OR is done in a dynamic programming method, some sub-
problems used in calculating O; are also used in calculating O; if i>j>0. For exam-
ple, as shown in Table 3.5, the task of calculating O,,_; includes the subproblems of
calculating the OR from Yg.on-3 to Ys.on-3_; and calculating the OR from Yg.gn-3 to
Yon_1. These two subproblems are also included in the calculation of O,_3 and O,,_,
respectively. As a result, the OR gates needed to solve the recurrent subproblems
can be saved. Actually, in the procedure of calculating O;, only the subproblem of
calculating the OR from Y3: to Yai+1_; has to be solved because all other 27~i~1—1
subproblems have been solved in the procedures of calculating O,_1,---,0;41. In
this sense, we need 2:—1 OR, gates for the subproblem that has not been solved and

2"~=1_1 OR gates to OR the results of all 2"~*~! subproblems. In total, the count

o7

Table 3.5: Truth Table of a 2™ xn Encoder

Output

0,

o

Y10

Y12

Yi3

Y14

o—n.—-.—n.—u—u—-HHoooooooowQ
.—u—-»—u—aoooon—w—l'—"—'oooc‘mg

~l| ool —|olol—|~|o|o|—|~|o

| of | o| =| of =| o] || ~| o] ~| o| =] 0|2

Input Output
Yy On—1| On—2 | On—3

Yo Yyoo; 0 [0 | 0
Yon-a,- -+, Yon-2_ 0 0 1
Yon-2,-+,Y39n-3_ 0 1 0
Y3on-3, -+, Yon-1_4 0 1 1
Yoot Yogsg | 1 0 0
Yogros, - Yogoos| 1 0 i
Yeon-3,--+, Yoon-a_1 | 1 1 0
Yoon-3,--+,Yon_4 1 1 1

(a) n=4

98

(b)n>4

of OR gates for the encoder is
n—1
GEne(n) =) (2= 1)+ (2" —1)] =2 —2n -2 (3.9)
i=0
which is less than n(2"~! — 1) for n > 2 and the gate delay is
Dgpe(n)=n-1
which is the same as the delay before simplification.

3.2.3 S-box Complexity

Based on the analysis of the decoder-switch-encoder structure, the hardware com-
plexity of invertible S-boxes is estimated. Since 8 X8 S-boxes are very popular in
current block ciphers (e.g., AES [32], Hierocrypt [37], and Camellia [6]), let us exam-
ine the usability of this model in this case. According to (3.8) and (3.9), the upper
bound of the optimal gate count for an 8 x 8 invertible S-box is 806, while the gate
count before logic minimization is 2816.

Through experimental simplifications using the Synopsys logic synthesis tool [74],
we realized 8x8 invertible S-boxes with a count of equivalent gates close to 800 when
the target library was lsi_10k.db, as shown in Table 3.6. In addition to the S-boxes
of AES and Hierocrypt, we also implemented 10 randomly generated S-boxes with
Ps,qs < 274, In this table, the average cell count is 548 and the average equivalent
gate count is 777. Since a small part of cells in the library have more than 2 inputs,
the average of gates used for an 8 x 8 S-box is between 548 and 777 when only gates

with 1 or 2 inputs are used. Such a result is quite close to the upper bound derived

59

Table 3.6: Synthesis Results of 8 x8 S-boxes
(RS-1,- - +,10: randomly generated S-boxes with p;,qs < 274)

S-box # cells Area Delay (ns)
(# equivalent gates)
AES 510 752 18.14
Hierocrypt 555 784 15.85
RS-1 563 785 18.31
RS-2 531 765 17.72
RS-3 567 788 16.43
RS-4 525 759 17.93
RS-5 571 784 17.24
RS-6 557 775 16.32
RS-7 538 780 16.44
RS-8 553 779 17.29
RS-9 552 775 14.83
RS-10 550 793 17.57

from our model when n = 8.

When considering the implementation of an S-box with our model, the upper
bound of the gate count increases exponentially with the S-box size n, as shown in
Figure 3.4. Simultaneously, the upper bound of delay increases linearly, as shown in
Figure 3.5. In these two figures, the S-box optimization model described in [34] and
presented in Section 2 is used as the reference and the decoder-switch-encoder model
is labelled DSE. When the size of an S-box is less than 6, the delay of the two models
are similar and the gate count of the reference model is slightly lower. As the size of
the S-box increases, the decoder-switch-encoder model costs less in both gate count
and delay. The details of gate counts and delays are listed in Table 3.7 and Table 3.8.
Given the fact that about half the gates used in the reference model are XOR gates
which are typically more expensive in hardware in area and delay than NOT, AND,

and OR gates, the decoder-switch-encoder model would appear to be more useful

60

for hardware design, both as an indication of the upper bound on the optimal S-box

complexity and as a general methodology for implementing an invertible S-box.

1000000
100000
10000
1000
100

10

1

Gate Count

4 5 6 7 8 9 10 11 12 13 14 15 16
Size n

|—e—DSE Model —#— Reference Model |

Figure 3.4: Gate Count Upper Bounds of S-boxes

35
% 30
[25
2
° 20
E 10
g 5
0

4 5 6 7 8 9 10 11 12 13 14 15 16

Sizen

|+DSE Model -#- Reference Model|

Figure 3.5: Delay Upper Bounds of S-boxes

3.3 Efficient AES Encryption Implementations

Since AES was selected to succeed DES, it is of great significance to characterize the

implementation of AES in hardware. As introduced in Section 2.2.4, each round of

61

Table 3.7: Gate Counts of Invertible S-boxes in the Decoder-Switch-Encoder Model

[SboxSize [4x4]6x6] 8x8 | 10x10 | 12x12 | 14x14 | 16x16 |
NOT # 4] 6 | 8 10 12 14 16
AND # 24 | 88 | 304 | 1120 | 4272 | 16712 | 66144
OR # 22 | 114 | 494 | 2026 | 8166 | 32738 | 131038
Gate Count || 50 | 208 | 806 | 3156 | 12450 | 49464 | 197198
Reference Count | 36 | 192 | 1020 | 5112 | 24564 | 114672 | 524268

Table 3.8: Gate Delays of Invertible S-boxes in the Decoder-Switch-Encoder Model

S-box Size 4%x4 | 6x6 | 8x8 | 10x10 | 12x12 | 14%x14 | 16x16
NOT 1 1 1 1 1 1 1
AND 2 3 3 4 4 4 4

OR 3 5 7 9 11 13 15
Delay 6 9 11 14 16 18 20
Reference Delay 6 10 14 18 22 26 30

AES contains the following operations to the State (i.e., the intermediate data stored
in a two dimensional array) [32]: (1) a layer of 8 x8 S-boxes called ByteSub, (2) a
byte-wise cyclic shift per row called ShiftRow, (3) an MDS mapping based on an (8, 4,
5)-code per column called MizColumn, and (4) the round key mixing through XORs.
The MDS mapping is defined over GF(2®) and the S-box performs the equivalent of
multiplicative inverse over GF(2®) followed by a bit-wise affine operation.

With parallel S-boxes implemented through table lookups, a hardware design is
proposed in [66]. Adhering to the structure of the algorithm specification of [32] as
in Figure 3.6(a), this design achieves a throughput of 1.82 Gbits/s in 0.18 pm CMOS
technology, where each S-box costs about 2200 gates. Since some operations over
the composite field GF((24)?) [22] are more compact than over GF(28), an efficient
AES design with a low gate count in composite field arithmetic is proposed in [75].

A cryptographic core (i.e., essentially one round mainly consisting of 16 S-boxes and

62

the MDS mapping layer) in [75] only costs about 4000 gates and a delay of 240 gate

levels [76] for the full cipher is expected in theory.

3.3.1 Designl

Following the normal encryption dataflow, labelled as Design I in Figure 3.6(a), we
apply the discussed S-box model and MDS bit-parallel implementation method to
ByteSub and MixColumn, respectively. After the first round key Ky is added to
the plaintext, the State goes through an iterative round structure. Regardless of
its mathematical definition, ByteSub is implemented as a layer of 16 parallel 8 x 8
S-boxes using the decoder-switch-encoder model. Then, the State iteratively pro-
ceeds through ShiftRow, MixColumn, and the addition with round key K,. ShiftRow
is implemented through wiring without any gates needed. Four bit-parallel MDS
mappings perform MizColumn for the 4 columns. As listed in Table 3.9, we get an
iterative core circuit of one round which costs 13456 gates and produces a delay of
15 gate levels per round. Because the MDS mappings are omitted in the last round,
the AES encryption of 10 rounds produces a delay of 148 gate levels, a significant
improvement over the delay of 240 gate levels in the design of [75]. The design needs

far fewer gates than that in [66].

Table 3.9: Gate Counts and Delays of Operations in AES Design I

(l Operations | ByteSub | MizColumn | Key Addition | Total per Round ||
Gate Count 12896 432 128 13456
Delay (gate levels) 11 3 1 15

63

[Plaintext | | Plaintext |

% [Ka | [1O |
] «—
| ByteSub | ()
v
| ShiftRow | | Inversion over GF((2*)") |
yes yes
| MixColumn | | LT1 |
I
I
| LT2 |
it
| Ciphertext | | Ciphertext |
(a) DesignI (b) Design II

Figure 3.6: AES Encryption Implementations

3.3.2 Design II

As shown in Figure 3.6(b), labelled as Design II, we get a more compact circuit
through hybrid operations over GF(28) and its equivalent composite field GF((24)?%).
The polynomial Pi(y) = y* +y + 1 is used to define GF(2*) and the polynomial
Py(z) = %+ z + 09H is used to define GF((24)?). Such a composite field is the same
as in the implementation proposed in [75] for ease of comparison. The conversion
from GF(28) to GF((24)?) is denoted as T'(+), and its inverse is T71(-).

It has been recognized that the multiplicative inverse over GF((2™)™) can have
a much lower complexity than the equivalent inverse over GF(2™") [73, 77]. As an

example, the equivalent ByteSub over GF((24)?) costs less than one fifth of the gate

64

()
Affine Function T7()
ShiftRow Affine Function
MixColumn ShiftRow
()
(a) LTI (b) LT2

Figure 3.7: Linear Transformations in AES Design 11

count of a general invertible S-box based on the upper bound of 806 in the decoder-
switch-encoder S-box model. However, the subfield-based operation is normally slow.
In the implementation of Figure 3.6(b), the inverse over the composite field costs a
gate delay of 14 (as deduced from [72, 73, 75, 76]). Given additional overhead for field
conversion and ByteSub’s affine function, the ByteSub instance has a much longer
delay path than in the implementation of Design I. To mitigate this problem, we can
incorporate all linear operations into L'T1 in the first nine rounds and LT?2 in the last
round as shown in Figure 3.7, resulting in a delay of 202 gate levels for encryption.
The number of gates used in the iterative core circuit is slightly (about 3%) less than
in [75]. The detailed gate counts and delays for Design II components are listed in

Table 3.10.

Table 3.10: Gate Counts and Delays of Operations in AES Design II

Operations 16 xInversion | LT1 | LT2 Key Total
over GF((24)?) T(-) | Addition | per Round
[72, 73, 75, 76]
Gate Count 2384 792 | 304 | 208 128 3816
Delay (gate levels) 14 5 3 3 1 20

In order to mathematically represent LT1 and LT2, we denote the input State as

65

{U;;} and the output State as {V;;}, where i denotes the row index and j denotes
the column index of an element in the State. The binary coefficients of U;; and
Vi,; in their polynomial expressions can be written as two 32-bit tuples i; ; and V; ;,

respectively. LT1 can be expressed as

(Vo,j \ { Froz Fros Fro Froi \ (U ; \ / T(63H) \
Vi, _ Froo Froz Fros Fro U j-1 N T(63H) (3.10)
Vai Fron Fron Froz FrLos U2 T(63H)

\ Vs;)\ Frs Fro Fro Free) \ Usj—s)\ T(63H) }

In above equation, Fro1, Froz, and Fro3 are 8 X8 submatrices derived from the

following expression:
Froi=Fr-Foi- Fa-Fr', i=1,2,3 (3.11)

where Fy; is the product matrix associated with 01H, 02H, or 03H in GF(28) and
matrix F4 is associated with the affine function A(-) inside ByteSub (i.e., A(X) =
Fa-X + 63H). Fr is the 8 x 8 transformation matrix associated with T'(-)(i.e.,
TU;;) = Fr-U;;). Its inverse is Fr'.

Similarly, LT2 is a function defined as

(Vo,) [w, \ [63H)
O BTN el I e (3.12)
W, Ui 63H

\ Ve \ hss)\ 63H]

Once we know the matrices Fr, Froi, and the result of F4 - Fp 1 (as listed in the

66

Appendix), the gate networks consisting of XORs can be straightforwardly derived
for LT1 and LT2. The greedy method I described in [73] is used to reduce redundancy
in the gate network, where small modifications are made in order to avoid the increase

of delay.

3.3.3 Implementation Results

Figure 3.8 compares the estimated performance of the two designs of Figure 3.6 with
respect to the implementation in [75]. Design I uses the MDS mapping implemen-
tation method and S-box model discussed in Sections 3.1 and 3.2 directly (while
“Design I (Ref.)” uses the reference model in [34] for the S-boxes). In Design II, the
method discussed in previous section is used to deduce the linear transformations
LT1 and LT2. As Figure 3.8 shows, Design II gains a delay reduction of 16% and a
slight reduction in the number of gates compared with the implementation of [75].

Design I is a much faster implementation with about three times as many gates.

500%

400%

300%

200%

100% -

0%

Design | (Ref.) Design | Design li
|DGate count 423% 337% 97%
(mDelay 74% 62% 84%

Figure 3.8: Performance Comparison of AES Designs

67

400000

350000 1

300000 \

250000 \
Area 200000 %
™) 50000 \k

100000 —

50000
0 : : :
0 5 10 15 20

Delay (ns)

|+Design | —#— Design || |

Figure 3.9: Synthesis of AES Round Structure

The round structures of the two AES designs have been coded in VHDL and syn-
thesized using Synopsys Design Compiler and TSMC’s 0.18 um CMOS cell library.
Setting constraints to tradeoff area and delay during synthesis, we get the charac-
teristic curves shown in Figure 3.9. The two end points of each curve represent the
synthesis results with smallest delay and smallest area. In line with our performance
evaluation, Design I can lead to an iterative cipher architecture with a throughput
up to 4 Gbits/s (i.e., the smallest round critical path is 3.04 ns). On the other hand,
Design II is useful for an area-restricted or pipelined application because of its small

area requirement.

3.4 Summary

We have presented a mechanism to select the MDS mappings for optimal hardware
implementation of a block cipher. The optimized MDS mapping straightforwardly

leads to a compact and fast implementation at the gate level. As well, a general

68

model of invertible S-boxes was proposed and the upper bounds of the minimal
hardware complexity were deduced through systematic logic minimization. Since
S-boxes and MDS mappings are both widely used cipher components, the discussed
design, optimization, and hardware complexity evaluation provide an analytical basis
for studying the hardware performance of block ciphers. As an example, two effi-
cient hardware designs of AES encryption were considered with regards to different

tradeoffs between gate count and delay, and their synthesis results were presented.

69

Chapter 4

Hardware Performance Characterization

of Cipher Structures

In this chapter, we present a general framework for evaluating the hardware perfor-
mance characteristics of block cipher structures composed of S-boxes and Maximum
Distance Separable (MDS) mappings. In particular, we examine nested Substitution-
Permutation Networks (SPNs) and Feistel networks with round functions composed
of S-boxes and MDS mappings. Within each cipher structure, many cases are con-
sidered based on two types of S-boxes (i.e., 4x4 and 8x8) and parameterized MDS
mappings. In our study of each case, the hardware complexity and performance are
analyzed. Cipher security, in the form of resistance to differential, linear, and integral
attacks, is used to determine the minimum number of rounds required for a partic-
ular parameterized structure. Because the discussed structures are similar to many
existing ciphers (e.g., AES, Camellia, Hierocrypt, and Anubis), the analysis provides
a meaningful mechanism for seeking efficient ciphers through a wide comparison of
performance, complexity, and security. The content of this chapter is also presented

in [78].

70

4.1 Studied Cipher Structures

4.1.1 Nested SPNs

The concept of a nested SPN was first introduced in [37]. In a nested SPN, S-boxes
may be viewed at different levels: each S-box at a higher level is actually a small
SPN at the lower level. In this chapter, we examine nested SPNs which have the

following properties:

e The structure contains just two levels of SPNs. A higher level S-box consists

of a lower level SPN; a lower level S-box is an actual 4 x4 or 8 x8 S-box.

e The linear transformation layers in both levels are based on MDS codes, de-

noted as M DSy for the higher level and M DS, for the lower level.

e The subkey mixture occurs directly before each layer of actual (i.e., lower-
level) S-boxes. One additional subkey mixture is used to replace the linear
transformation at the end of the cipher structure. The subkey bits are mixed

with data bits by XOR operations.

e A “round” refers to the combination of the subkey mixture, lower-level S-box

layer, and subsequent M DSy, or M DSy linear transformation.

As Figure 4.1 shows, M DS, is an MDS mapping from a (2m;,m;, m; + 1)-code
over GF(2™), while M DSy is an MDS mapping from a (2mg, mg, me + 1)-code over
GF(2"2). The variables m;, mq, n;, and ng represent parameter choices for a nested
SPN.

In the most straightforward case, the output of each S-box forms one source sym-

bol for the MDS mapping, and each encoded symbol forms the input of a subsequent

71

1st higher level (m,-1)-th higher level m,-th higher level
— S-box (n; bits) -—, r—- S-box (n, bits) — —- S-box (n, bits) —
n, bits]

| |
| |
| |
e o o]
Sl G
MDS, |1 e e ei mDs |

|
| |
| |
| |

|
|
|
|
: | |Round 1
|
|
|
I
|
|

| Mmps, |
(OO . o En n R

Round 2

e GHGT 5 s

____________ b el pound 4

MDS;,. based on a (2my, m;, my+1)-code over GF(2™)
MDSy;. based on a (2my, m,, my+1)-code over GF(2™)

Figure 4.1: Basic 2-level Nested SPN (4 Rounds)

S-box at the same level. So the size of an S-box is n; bits at the lower level and
ny bits at the higher level. This leads to ny = nym;. Thus, the block size of the
SPN is nymymy. For example, the 128-bit block cipher Hierocrypt (Type I) [37] is
described as the iteration of such a 4-round structure where n; = 8, ny = 32, and
mp = mg = 4.

At each level of a nested SPN, the branch number of the MDS layer determines
the minimum number of active S-boxes in differential or linear cryptanalysis. For 4
rounds of a nested SPN, an active S-box at the higher level contains at least m; + 1
active S-boxes at the lower level. Since there are at least mq+1 active S-boxes at the
higher level, the minimum number of active lower-level S-boxes is (m + 1)(mg +1).
Therefore, the security against differential and linear attacks is evaluated as the

following:

72

Theorem 4.1 (deduced from [5, 21, 36, 37]): With the assumption that all S-box ap-
proximations involved in linear and differential cryptanalysis are independent, for 4r
rounds of a nested SPN the mazimum differential characteristic probability (denoted

by P;) is upper bounded by pimtDm2t) i the mazimum linear characteristic

probability (denoted by P,) is upper bounded by g5 ™ ™2t

To attack a cipher using differential cryptanalysis, the number of chosen plain-
texts is expected to be in the order of 1/P,;. Similarly, for linear cryptanalysis, the
number of known plaintexts is expected to be in the order of 1/P,. Hence, the upper
bounds of P; and P, provided in Theorem 4.1 indicate the lower bounds of required
workload for attacking 4r+1 rounds of the cipher based on a 4r round characteristic.

The basic operations in MDS codes are multiplications and additions in finite
fields. When n, is large, operations over GF(2"2) are inefficient and M DSy can be
costly in computation. An alternative method to obtain the same branch number is to
concatenate several parallel MDS codes over a smaller finite field. The concatenated

codes may be designed to facilitate a bitslice implementation.

Theorem 4.2 [37]: An MDS mapping defined by a (2m,m, m+ 1)-code over the nl-
bit symbol set can be constructed by concatenating l mappings defined by a (2m, m, m+

1)-code over the n-bit symbol set, where l can be any positive integer.

For the example illustrated by Figure 4.1, since ny = mini, the mapping M DSy
over GF(2"2) can be implemented with m; parallel MDS mappings over GF(2"). In
this case, the basic M DSy layer is denoted as 1x(2mg, mg, mg + 1) over GF(2™™),
and its simplified, parallelized M DS}y layer is denoted as I x (2mg, mg, mg + 1) over
GF(2"2) where, for example, we can have | = m; and ny = n;. Since m;n; may

be factored in other ways, other simplifications are also possible. Hence, we can

73

consider that the general relation nyl = min; can be used to determine different
cases of M DSy defined by the values of the symbol size, ny, or the number of
parallel MDS mappings, [. A similar approach can also be applied to the M DSy,
layer. However, restrictions on values of n and m must be considered for designing
a (2m,m,m + 1)-code over GF(2") such that 2m <2"+1 in order that it is possible
to construct an MDS code [24].

The 128-bit ciphers Square, AES, and Anubis can be regarded as the iterations
of 4-round nested SPNs where n; = ny, = 8 and m; = my = 4. The parameters of
Hierocrypt (Type II) are selected as ny = 8, ny = 4, and my = my = 4.

A set of nested SPNs can be generated with appropriate configurations of pa-
rameterized M DSy, MDSy, and S-boxes. As Theorem 4.2 illustrates, the MDS
mapping defined over a large Galois field can be simplified using several mappings
in a smaller Galois field. Table 4.1 lists the cases of nested SPNs in 12 categories
(labelled as N1 to N12) defined by the S-boxes and M DSy,. Thus, the cases within
a category only differ in the simplification of M DSy. Each case can be regarded as
4r rounds of a 128-bit cipher where r is an integer, except that no particular key
schedule has been defined. Due to the difficulty of finding optimized MDS mappings,
the cases with a Galois field larger than GF(2®) are not considered. The values of
P, and P, represent the maximum differential and linear characteristic probabilities
for 4r rounds evaluated by Theorem 4.1.

In relation to real ciphers, case N4-a includes Square, AES, and Anubis. Type II
of Hierocrypt belongs to case N4-b with a simplified M DSy over GF(2%). Similar
to SHARK and Khazad, case N8 is a one-level SPN. However, SHARK and Khazad
are 64-bit ciphers because their MDS mappings are based on a (16, 8, 9)-code over
GF(28).

74

Table 4.1: 128-bit Nested SPNs of 4r Rounds

Case | S-box MDSy : MDSy : Py, P
size | l1x(2m1,m1, m1+1) over GF(2"1) | lax(2m2, m2, ma+1l) over GF(2"2)
Nl-a | 8x8 8x(4, 2, 3) over GF(2%) 2x(16,8,9) over GF(2%) 2= T62r]
N1-b 4x(16,8,9) over GF(2%)
N2-a | 8x8 16x(4,2, 3) over GF(2%) 2x(16,8,9) over GF(2°) 2~ 1oer
N2-b 4x(16,8,9) over GF(2%)
N3a | 8x8 32x(4, 2, 3) over GF(2?) 9x(16,8,9) over GF(2%) | 2 1°%"
N3-b 4x(16,8,9) over GF(2%)
N4-a | 8x8 4x(8,4,5) over GF(2°) 4x(8,4,5) over GF(2°) 2~ 150r
N4-b 8x(8,4,5) over GF(2%)
N5-a | 8x3 8x(8,4,5) over GF(2%) 4x(8, 4, 5) over GF(2°) 51507
N5-b 8%(8,4,5) over GF(2%)
N6-a | 8x8 2x(16,8,9) over GF(28) 8%(4,2,3) over GF(2°) 2-1ear
N6-b 16x(4, 2, 3) over GF(2%)
N7-a | 8x8 4x(16,8,9) over GF(2%) 8%(4, 2, 3) over GF(2°) 2-eer
N7-b 16x(4,2,3) over GF(2%)
N7-c 32x(4, 2, 3) over GF(2%)
N8 8x8 1x(32,16,17) over GF(2°) same as M DS, 2=<04r
N9 4x4 16x(4,2, 3) over GF(2%) 1x(32,16,17) over GF(2%) [2710<r
N10 | 4x4 | 32x(4,2,3) over GF(2%) 1x(32, 16, 17) over GF(25) | 2~ 0%
Nil-a | 4x4 8x(8, 4, 5) over GF(2%) 2x(16,8,9) over GF(2°) 2-90r
N11-b 4x(16,8,9) over GF(2%)
N12-a | 4x4 4x(16,8,9) over GF(2%) 4x(8,4,5) over GF(2°) 20T
N12-b 8x(8,4,5) over GF(2%)

75

In theory, a maximum characteristic probability less than 27128 indicates that the
cipher is secure enough when only one characteristic is used for an attack. However,
it is possible that several characteristics are combined to improved the attack as
discussed in [41, 47]. As a result, it is still desirable that the maximum characteristic
probability is much less than 27128, In the same sense, composite 8 x 8 S-boxes at
the higher level of N9 and N10 cannot gain exactly the same security as 8 x 8 S-boxes
used for N1 to N8, although the two types of ciphers may have the same maximum

characteristic probabilities.

4.1.2 A Class of Feistel Networks

Figure 4.2 illustrates one particular class of round function F' used for Feistel net-
works (as shown in Figure 2.5). Such a round function can be regarded as an SPN
of one round with a size equal to half of the cipher block size. The round function
includes one layer of key mixture with K; (i.e., bit-wise XOR of X; and Kj), one
layer of invertible! S-boxes for substitution, and an MDS mapping layer as a linear
transformation. If the MDS mapping layer is constructed through concatenation
of several small MDS mappings, it is necessary to include a permutation of MDS
symbols in the linear transformation in order to ensure the avalanche effect.

In a Feistel network whose round function has an invertible linear transformation
appended to a layer of S-boxes, it is proved in [46] that the number of active S-
boxes in any differential or linear characteristic of 4r rounds is lower bounded by
X B + |r/2], where B is the branch number of the linear transformation and r is

an integer. For an MDS layer based on m symbols, B = m + 1. Therefore, we get:

nvertible S-boxes are used so that a bijective round function can be constructed, which achieves
the given upper bounds of maximal differential and linear probabilities faster in rounds than a
general round function [79].

76

Figure 4.2: A Class of the Round Function

Theorem 4.3 (deduced from [46]): For 4r rounds of a Feistel cipher with the round
function of Figure 4.2, the mazimum differential characteristic probability P; and

magzimum linear characteristic probability P; are upper bounded by p <™/ gng

q: x(m+1)+|r/2] , respectively.

To construct a typical 128-bit cipher, a Feistel network of this class has a 64-bit
round function which contains sixteen 4 x 4 or eight 8 x 8 parallel S-boxes followed
by an MDS mapping layer. As listed in Table 4.2, six categories (labelled as F1 to
F6) of these 128-bit Feistel networks can be generated. To ensure a good avalanche
effect, an appropriate fixed permutation of MDS symbols after the MDS mapping is

expected, which does not cost any gates.

(s

Table 4.2: 128-bit Feistel Networks of 4r Rounds

Case | S-box MDS P;, P,
size Ix (2m,m, m+1) over GF(2")

Fl-a | 8x8 | 4x(4,2,3) over GF(2%) | 276Gr+13D
Fl-b 8x(4,2,3) over GF(2%)

Fl-c 16 x (4,2, 3) over GF(2%)

F2-a | 8x8 | 2x(8,4,5) over GF(28) | 276Cr+13])
F2-b 4% (8,4,5) over GF(2%)

F3-a | 8x8 | 1x(16,8,9) over GF(28) | 2760 +1z])
F3-b 2x(16,8,9) over GF(2*%)

F4-a | 4x4 | 4x(4,2,3) over GF(28) | 272CGr+1zD
F4-b 8x (4,2,3) over GF(2%)

F4-c 16 (4,2, 3) over GF(2%)

F5-a | 4x4 | 2x(8,4,5) over GF(28) | 27207+(z])
F5-b 4% (8,4,5) over GF(2%)

F6-a | 4x4 | 1x(16,8,9) over GF(2%) | 2720r+13])
F6-b 2x(16,8,9) over GF(2%)

4.2 Comparison of Hardware Performance

4.2.1 Performance Measures

It is normally hard to compare hardware performance among different block ciphers.
The main problems are: (1) each implementation represents a tradeoff between area

and delay, (2) the specific hardware cost of a gate network is dependent on the target

technology, and (3) ciphers may contain different security margins.

For the first problem, the classical delay-area product is used to evaluate the
hardware complexity universally. The typical methods used in the hardware imple-
mentation of a block cipher include a round iterated design, a pipelined design, a
loop-unrolled design, and a block parallel design [70]. For a given cipher, the delay-

area product is kept roughly unchanged across the different design methods (except

78

for a loop-unrolled design), assuming the control overhead for parallelism can be ig-
nored. If a round iterated design is regarded as a reference, a k-block parallel design
using several round iterated implementations will cost about k times the number of
gates and result in about 1/k of the average time to produce an encrypted block.
The same situation occurs in a pipelined design when each stage performs one or
several rounds of the cipher. For loop unrolling, when &k rounds are unrolled, it can
be understood as removing the registers betweens rounds in a pipelined design of k
rounds and then laying these rounds out. Using CAD tools to minimize such a large
combinational circuit, its gate count is more than an iterative design but possibly
much less than a pipelined design. By doing so, the encryption time for one block
is reduced. Loop unrolling usually results in low performance in the sense of the
delay-area product.

For the second problem, a universal way is to assume that all gates have the
same hardware cost [73]. Thus, the gate count and delay of all components are
deduced from the upper bound of typical implementations. Such an approach leads
to a measure of complexity which is technology-independent. However, in a certain
target VLSI technology, the hardware costs of different gates may not be similar. In
this case, it is possible to estimate the overall area (respectively, delay) by summing
weighted gate counts (respectively, weighted gate layers traversed). The weights
are proportional to the size of a gate (respectively, delay) and can be calculated by
statistical comparison of hardware among gates based on a target technology. The

hardware complexity is then evaluated by weighted area Ay and weighted delay Dw:

Aw= > G(u)x Wo(u) (4.1)
gate type «

79

Dw= Y D(u)x Wp(u). (4.2)
gate type u

Associated with gate type u, G(u) and We(u) return the gate count and weight of
each gate. In the critical path of the circuit, D(u) and Wp(u) return the number of
traversed gate layers and weight of each layer associated with gate type u.

For the problem caused by different security margins, we use a rule-of-thumb to
determine resistance to differential and linear cryptanalysis. For differential crypt-
analysis, the number of chosen plaintext pairs to attack a cipher is expected to be
in the order of 1/P,;, where Py is the maximum differential characteristic probabil-
ity determined by Theorems 4.1 and 4.3. Similarly, to attack a cipher using linear
cryptanalysis, the number of known plaintexts is expected to be in the order of 1/ P,
where P, is the maximum linear characteristic probability.

Based on above considerations, we define three hardware performance metrics 75,
N, and 1 to measure the space, time, and overall performance, respectively. The

three metrics integrate security and complexity and are defined as follows:

log, 1/P
" g2 1/ (4.3)
of rounds X Aw per round
log, 1/P
_ 44
1 # of rounds x Dy per round (44)
log, 1/P
n = gs 1/ (4.5)

of rounds x(Aw X Dy per round)

where P = P; for hardware performance in relation to differential attacks and P =
P, in relation to linear attacks. The probability P;/P, represents the maximum
differential /linear characteristic probability for the number of rounds specified in the
denominator. In each expression, the numerator is essentially a security measure in

bits and the denominator is a complexity measure. Since we assume that the S-boxes

80

in the three discussed cipher structures satisfy ps = ¢,, the values of log, 1/P; and
log, 1/ P, are the same. For the nested SPNs and Feistel networks discussed in Section
2, logy 1/P is a linear function of the number of rounds. Therefore, the values of
ns, M, and 7 indicate how much security is expected to be obtained for a specific
hardware cost, regardless of the number of rounds in a cipher.

Targeted to the same design method, 1, shows the security contribution provided
by each area unit; 7; shows the security contribution provided by each delay unit.
For a fast implementation such as a pipelined or parallel design, a high n, means
that many independent blocks can be processed simultaneously. For a round iterated
design, a high n; means that the encryption time for a block is small. More generally,
using the classical delay-area product as its denominator, 7 indicates the performance
integrating both the delay and area complexities.

The cases that we compare in the following sections are generated as 128-bit
block ciphers defined by the nested SPN and Feistel networks. To calculate the
gate count and number of gate layers per round, we consider the construction of
the combinational circuits of the round structure with S-box and MDS mapping
components which can produce high efficiencies in hardware. The hardware design
and optimization of these components are described in Chapter 3. The detailed data
used in the complexity estimation which is to be used for determining performance

will be presented in this chapter.

4.2.2 Hardware Performance of Nested SPNs

From the viewpoint of implementation, a nested SPN follows the iterative dataflow
of key addition, an S-box layer, and an MDS mapping layer (either M DS], or

MDSpy). Since S-boxes cost the most hardware complexity, a 128-bit multiplexor

81

selects M DSy, and M DSy dynamically such that only one layer of S-boxes is needed
in a round iterated design. So assuming a round iterated implementation, the round
circuit used for each case in Table 4.1 includes a 128-bit key addition, one layer of
S-boxes, MDSy,, MDSy, and a 128-bit multiplexor?. The 128-bit multiplexor can
be implemented by 385 NAND gates (i.e., y = z; - ¢ + 2 - T where c is the select
signal and “+” denotes OR).

In hardware, the complexity of S-boxes are evaluated through the simplification
results deduced from an encoder-switch-decoder model as proposed in Section 3.2. In
this model, S-boxes are composed of low complexity gates (ANDs, ORs, and NOTS).
A 4 x4 S-box can be implemented using 50 gates and produces a delay of 6 gate
layers; an 8x8 S-box can be implemented using 806 gates and produces a delay of 11
gate layers. Involution MDS codes [30] are found by searching Hadamard matrices
and have been optimized for hardware, as has been done in Section 3.1. MDS codes
are implemented using XORs. Using these results, the complexity of each 128-bit
2-level nested SPN is evaluated for each round.

When Wg(u) = Wp(u) = 1 for any gate type u (i.e., all gates are assumed to have
the same hardware complexity), we can sum the number of gates as the universal
hardware area of a round structure. The calculation of the universal delay per
round assumes the highest delay of M DSy, and M DSy. Table 4.3 lists the evaluated
hardware complexity of S-boxes, MDS mappings, and round structures. The area and
delay per round are then used in (4.3), (4.4), and (4.5) and the resultant performance
measures 7, 7:, and n are also listed in Table 4.3.

Although each individual value in Table 4.3 cannot be perfectly accurate, the

comparison of the performance measures does enable us to distinguish the cases

2MDS Multiplexing is not necessary for N8.

82

Table 4.3: Complexity and Universal Performance Estimation of One Round of 128-
bit Nested Involution SPNs in Hardware

Case S-boxes MDSy, | MDSyg | Round Total | 7, i n Ny
(universal)
Gatef# - | XOR# - | XOR# - Gate# - 10-3) 10—% | @0-9
- Delay - Delay | - Delay - Delay

Nl-a || 12896 — 11 | 256 -3 | 1728 -5 | 15393 -19 | 2.63 | 2.13 | 1.38 | 3.42
N1-b | 12896 — 11 | 256 -3 | 2048 -5 | 15713 -19 | 2.58 | 2.13 | 1.36 | 3.35
N2-a || 12896 — 11 | 208 -2 | 1728 -5 | 15345-19 | 2.64 | 2.13 | 1.39 | 3.43
N2-b || 12896 — 11 | 208 -2 | 2048 -5 | 15665 -19 | 2.59 | 2.13 | 1.36 | 3.36
N3-a | 12896 - 11 | 224 -2 | 1728 -5 | 15361-19 | 2.64 | 2.13 | 1.39 | 3.43
N3-b || 12896 — 11 | 224 -2 | 2048 -5 | 15681 -19 | 2.58 | 2.13 | 1.36 | 3.36
N4-a || 12896 - 11 | 672 -4 | 672 -4 | 14753 -18 | 2.54 | 2.08 | 1.41 | 3.77
N4-b || 12896 - 11 | 672 -4 | 576 -3 | 14657 -18 | 2.56 | 2.08 | 1.42 | 3.79
N5-a | 12896 —11 | 576 -3 | 672 -4 | 14657 -18 | 2.56 | 2.08 | 1.42 | 3.79
N5-b || 12896 — 11 | 576 -3 | 576 -3 | 14561 — 17 | 2.58 | 2.21 | 1.51 | 4.04
N6-a | 12896 — 11 | 1728 -5 | 256 -3 | 15393 -19 | 2.63 | 2.13 | 1.38 | 3.42
N6-b || 12896 — 11 | 1728 -5 | 208 -2 | 15345-19 | 2.64 | 2.13 | 1.39 | 3.43
N7-a | 12896 — 11 | 2048 -5 | 256 -3 | 15713-19 | 2.58 | 2.13 | 1.36 | 3.35
N7-b || 12896 — 11 | 2048 -5 | 208 -2 | 1566519 | 2.59 | 2.13 | 1.36 | 3.36
N7-c || 12896 - 11 | 2048 -5 | 224 -2 | 15681 -19 | 2.58 | 2.13 | 1.36 | 3.36

N8 12896 — 11 | 8064 — 6 | 8064 -6 | 21088 - 18 | 2.42 | 2.83 | 1.34 | 2.63

N9 1600 - 6 208 -2 | 8064 -6 | 10257 -15 | 2.49 | 1.70 | 1.66 | 6.50
N10 1600 - 6 224 -2 | 8064 -6 | 10401 -15 | 2.45 [1.70 | 1.63 | 6.41
N11l-a || 1600 -6 576 -3 | 1728 -5 | 4417 -14 5.09 | 1.61 | 3.64 | 16.2
N11-b || 1600 - 6 576 —3 | 2048 -5 | 4737-14 4.75 | 1.61 | 3.39 | 15.1
N12-a 1600 -6 | 2048 -5 | 672 -4 4833 - 14 4.66 | 1.61 | 3.33 | 14.8
N12-b || 1600-6 | 2048 -5 | 576 -3 4737 - 14 4.75 | 1.61 | 3.39 | 15.1

83

which are more efficient in hardware.

Figure 4.3 shows the tendency of the universal performance comparison (i.e.,
We(u) = 1, Wp(u) = 1). In an ASIC design, XOR gates are more expensive
than other gates such as NOT, AND, and OR gates. Figure 4.4 shows a weighted
performance comparison when Wg(XOR) = Wp(XOR) = 2 and weight for others is

one. The two figures follow the similar tendency in performance comparison:

e The size of the S-box largely determines space and time performances. Using
small S-boxes tends to cost less hardware area, but more delay than using large
S-boxes. Given fixed chip area, the cipher cases using small S-boxes are more

advantageous for parallelism as their higher 7, values show.

e Many SPN structures (N1-N10, N11-N12) are essentially equivalent with re-
spect to their hardware performance. Hence, it is wise for a cipher designer to

consider those structures which can facilitate software implementation.

e When the symbol size is 8 bits or less, the simplification of MDS mappings
through concatenation does not significantly improve the performance when
the MDS mappings have been selected to be optimized for hardware. For
example, Case N4-b in Table 4.1 does not gain a much higher improvement in

hardware than Case N4-a.

e When m; or my are very high, the MDS mapping determined by m; or my (e.g.,

M DSy in cases of N9 and N10) will cost much more hardware and overwhelm

S-box costs, which degrades the cipher performance.

e As a cipher of Case N4-a, AES is very suitable for a round iterated design.

However, its suitability for pipelined or parallel implementations is not as high

84

Performance Measures

Performance Measures

Figure 4.3: Universal Performance Comparison of Nested SPNs

Figure 4.4: Weighted Performance Comparison of Nested SPNs

85

as cipher cases using 4 x4 S-boxes such as cases of N11 and N12.

The above conclusions are based on hardware complexity and security against
differential and linear attacks. For some other attacks such as the integral attack,
the effectiveness significantly decreases after a certain number of rounds. In this

circumstance, a performance metric of the round structure is defined as:

1
" Aw x Dw per round

Nr

Since the security in bits to resist these attacks increases very rapidly in the number
of rounds, with a trend much steeper than differential and linear attacks as more
rounds are appended, we take a fixed number of rounds (e.g., about 8 for the integral
attack on AES) as enough for the security. The comparison of round performance is
also included in Figures 4.3 and 4.4. It is obvious that the nested SPNs with small
S-boxes and modest sized M DSy, and M DSy have significantly better performance

in relation to the integral attack than other cases.

4.2.3 Hardware Performance of Feistel Networks

The Feistel network discussed in this section is limited to the class described in
Section 4.1, which has an SPN-like round function. As listed in Table 4.2, the cases
of the same category only differ in the simplification of the MDS mapping. The
hardware of one round of the Feistel network includes a 64-bit key addition layer, an
S-box layer, an MDS mapping layer, and a 64-bit XOR after the round function (as
shown in Figure 4.2). The key addition costs 64 XOR gates and a delay of one gate
level. The XOR after the round function has the same hardware complexity as the

key addition.

86

Table 4.4: Complexity and Universal Performance Estimation of One Round of 128-
bit Feistel Networks in Hardware

Case S-boxes MDS Round Total s M n
(universal)

Gate # — Delay | XOR # — Delay | Gate # — Delay | (10-3) (10-4)
Fl-a 6448 - 11 76 -3 6652 — 16 0.79 [0.33 | 0.49
F1-b 6448 - 11 72 -2 6648 — 15 0.79 |1 0.35 | 0.53
Fl-c 6448 - 11 80 -2 6656 — 15 0.79 [0.35 | 0.53
F2-a 6448 - 11 264 - 3 6840 — 16 1.21 |1 0.52 | 0.75
F2-b 6448 — 11 240 -3 6816 — 16 1.21 | 0.52 | 0.76
F3-a 6448 - 11 720 -4 7296 - 17 1.95 |1 0.84 | 1.15
F3-b 6448 - 11 864 — 4 7440 - 17 1.92 | 0.84 | 1.13
F4-a 800 - 6 76 -3 1004 - 11 1.74 | 0.16 | 1.58
F4-b 800 - 6 72 -2 1000 - 10 1.75 |1 0.18 | 1.75
F4-c 800 - 6 80 -2 1008 - 10 1.74 10.18 | 1.74
F5-a 800 - 6 264 — 3 1192 - 11 2.31 | 0.25 | 2.10
F5-b 800 - 6 240 - 3 1168 — 11 235 |1 0.25| 2.14
F6-a 800 - 6 720 - 4 1648 — 12 2.88 | 0.40 | 2.40
F6-b 800 - 6 864 — 4 1792 - 12 2.65 | 0.40 | 2.21

As shown in Figures 4.5 and 4.6, both the universal (Wg(u) =1, Wp(u) =1 for
any gate type u) and weighted (i.e., Wg(XOR) = 2, Wp(XOR) = 2 and Wg = 1,

Wp =1 for all other gate types) performance comparisons indicate:

e It is useful to pick an MDS mapping that has a large branch number (i.e.,
m+1). The cases with such an MDS mapping have significantly higher values

in all three performance measures.

e With high n; values, the cases with 8 x 8 S-boxes demonstrate high perfor-
mance in non-pipelined and non-parallel implementations. With high 7 values,
the cases with 4 x4 S-boxes demonstrate high performance in pipelined and
parallel implementations because many independent blocks can be processed

simultaneously.

87

Performance Measures

Performance Measures

Figure 4.6: Weighted Performance Comparison of Feistel Networks

Camellia is a 128-bit Feistel cipher with a 64-bit round function which consists of
eight 8 x8 invertible S-boxes and a linear transformation. Hence, Camellia is similar
to Feistel networks that we discussed but does not use an MDS mapping. The branch
number of the Camellia linear transformation is 5. An efficient implementation of
such a linear transformation costs 176 two-input XOR gates and a delay of 3 gate

layers in universal comparison. Thus, Camellia has universal performance similar to

Case F2-a which has 264 XOR gates and a delay of 3 gate layers (see Table 4.4).

33

Compared with the case F3-a, Camellia has a slightly more compact round structure
(i.e., about 5% less in gate count than Case F3-a). However, each round of Camellia
contributes much less to the security. Eleven rounds of F3-a provides equivalent
security to nineteen rounds of Camellia. Further calculation shows that the overall
hardware universal performance 7 of F3-a is about 50% higher than that of Camellia.

The weighted performance comparison follows a similar trend.

4.2.4 Synthesis Results

The above performance analysis is based on theoretical evaluation of hardware com-
plexity. The usability of these analytical results can be verified when VLSI technol-
ogy is targeted. To avoid arduous work on synthesizing each cipher case, we did a
high level synthesis of each component used in Tables 4.1 and 4.2. The components
are coded in VHDL and synthesized with Synopsys Design Compiler. Two CMOS

3 were used where most standard cells have one or two bit-wise inputs.

libraries

During synthesis, if the minimum area (respectively, delay) is set as the main
constraint?, the numbers of equivalent gates (respectively, critical delay time) of 8x8
S-boxes are close to their estimates in Tables 4.3 and 4.4. The gates and delays
of 4x4 S-boxes are slightly less than their estimates because it is much easier for
CAD tools to simplify smaller S-boxes. This effect indicates that the performance
advantage of using small S-boxes as shown in Figures 4.3 to 4.6 is significant and

slightly understated.

Since the MDS mapping is implemented in XOR gates, the areas and delays

3]si_10k.db and TSMC’s 0.18 um CMOS library are targeted separately.
4When other constraints are set, the absolute values of area and delay will vary, but their
comparison follows a similar trend.

89

closely follow the proportional relation of their estimates in Tables 4.3 and 4.4. Be-
cause XOR gates are larger and slower than other gate types, synthesis tools may
replace them with other gates such as NXORs during optimization. Nevertheless,
the delays and numbers of equivalent gates imply that a weight of 2 is reasonable
for an XOR gate. This effect makes the cases with large MDS mapping worse in
weighted performance, e.g., the cases in N8 to N12, F5, and F6.

This problem is encountered in the realizations where a large percent of XORs
are used. The weighted performance shown in Figures 4.4 and 4.6 are thus more

useful for a closer comparison than the universal method.

4.3 Summary

In this chapter we have considered two cipher structures composed of S-boxes and
MDS mappings. Various cipher cases were generated from these structures with
different component configurations. Their security and complexity were examined
and integrated into performance metrics.

In hardware, the discussed cipher cases using large S-boxes are suitable for non-
pipelined and non-parallel applications where delay is the main design criterion. In
pipelined and parallel applications, the cipher cases using small S-boxes produce high
performance. Further, appropriate selection of an MDS mapping layer is important
for security against differential and linear attacks. With little change in the linear
transformation, a suggestion was made to improve Camellia in terms of security and
hardware efficiency.

For a Feistel network, more rounds are needed to be secure against differential

and linear attacks. Compared with Feistel networks, the nested SPNs generally have

90

higher hardware performance. When the same S-boxes are used, a nested SPN tends
to be more efficient in hardware to resist differential and linear attacks. Considering
the threat of integral attacks, nested SPNs with smaller S-boxes are preferred.
Analogous with a nested SPN, MISTY [38] can be regarded as a nested Feistel
network. Using provable security as the security measure, it will be interesting future
work to compare the hardware performance between these two nested structures with

similar performance metrics defined in Section 4.2.

91

Chapter 5

Software Performance Characterization of

Cipher Structures

This chapter analyzes the software performance of cipher structures. The cipher
structures studied are still nested SPNs and the class of Feistel networks analyzed
in the previous chapter. Similar to the hardware performance metrics previously
introduced, a novel performance metric is presented which allows us to consider
the performance of a cipher structure as the combination of security and software
efficiency. The parameterized cases of 128-bit block ciphers are studied. The software
efficiency is mainly evaluated through a table-lookup implementation, where the
number of table lookups is used as the time measure and the table size required
is the space measure. A table-lookup implementation method is selected because
it is usually efficient and such a method makes it possible to compare performance
generally across different cipher configurations and different computing platforms.
The efficiencies of other implementations (e.g., bitslicing, ztime [5], and power-index
exchange) are also briefly examined. The content of this chapter is also presented

in [80].

92

5.1 Table Lookup Implementations

The table lookup approach incorporates the S-boxes and the linear transformation
into a table that is then accessed to perform both operations. This approach has
been used for fast implementations of DES [9], AES [5], and Camellia [10]. Using this
approach, the two cipher structures discussed in the former chapter can be imple-
mented efficiently in software through table lookups, logic operations (e.g., XORs),
and rotations. This chapter analyzes the efficiency of such fast implementations so
that the memory and computational cost for a cipher case can be estimated. Inde-
pendent of the targeted machine, the space complexity is evaluated as memory used
for tables and the time complexity is evaluated by the number of table lookups.

The table lookup approach is chosen for analysis because it is normally faster
and more general than other implementation approaches. A table lookup operation
involves the reading of data from memory and also encompasses other operations
necessary for indexing such as rotation and masking. Although the number of clock
cycles to implement different operations is machine dependent, using the number of
lookups and the size of the tables is suitable for determining a rough estimate of the
time and space complexity of an efficient software implementation.

Larger tables require large data structures, and depending on the memory orga-
nization of the computer used, might require longer access times than smaller tables.
This connection between the space and time complexities exists but becomes negligi-
ble when the tables that we compare are not far different in size. On the other hand,
smaller tables may have indices with bit lengths less than 8 bits. In this case, shifting
and masking are typically required for each lookup, which costs additional processing

time. In this chapter, it is assumed that each table lookup requires the same access

93

time. The effect on lookup times caused by different table sizes, as will be examined
in the experimental results of particular cipher cases, does not significantly affect our
performance comparison.

In software, regardless of the implementation approach, the S-box layer is typ-
ically done by table lookups. An MDS mapping based on a (2m,m, m + 1)-code
conceptually performs a matrix multiplication over a Galois field, which requires m?
modular multiplications and m(m — 1) XORs on words that are of the size of Galois
field elements. To bypass costly multiplications, we enlarge the S-box table such
that the MDS mapping work is included in the table lookups. This is the essence
of the table lookup implementation. According to the size of the S-boxes and the

type of MDS mappings, any cipher case may select appropriate methods as follows

to generate lookup tables.

5.1.1 Cases with 8 x8 S-boxes

The dataflow of a round in these cases involves the keyed input entering 8x8 S-boxes
followed by | mappings based on a (2m, m, m+1)-code over GF(28). (The case of two
concatenated mappings over GF(2*) will be discussed later.) To represent the op-
erations mathematically, we denote the input, output, subkey, and MDS generation
matrix as {4;}, {E:}, {K:}, and {C; ;}, respectively, each containing 8-bit elements.

Thus, the key mixture, S-box layer, and MDS mapping are expressed together as:

(Eo \ (Co,o Coqp ... Com-1 \ / S(Ao @ Ko) \

Ey _ 0.1,0 Cip ... C1,1:n—1 S(AI.GBKI) 6D)

\Em—l) \Cm—l,O Cr-11 --- Cm—l,m—l/ \S(Am—l@K —1)}

94

Denoting the keyed input as B; = A; ® K;, (5.1) is equivalent to:

(Eo \ (Coyo \ (Com-1 \

E c Clrme
o= P xsBye-@ T X 8(Bas). (52)

Bt)\ Cso) \ Cnosns)

Hence, we may generate m tables as the following:

/ Cog x S(

))

\ Cm—l,j X S())

where 0 < j <m—1. The output of several S-boxes followed by the MDS mapping

may then be generated using:

([B)

Ey
 To[Bo] @ -+ ® Tons[Bona]. (5.4)

vy

Each fetch from the table T}[-] accepts an 8-bit input as the index and produces
an 8m-bit output from the indexed entry. It takes 256m? bytes of memory to store

these m tables. Given a processor with a word size of w bits, implementation of (5.4)
needs m[8m/w] lookups and (m—1)[8m/w] XORs. In cases where the word size w

is larger than the size of a table index, the preparation of a table lookup input will

95

generally need a rotation and masking (bit-wise AND) within a word.

When the size of an MDS field is smaller than the size of the S-boxes, we can
consider an MDS mapping layer of more than one MDS mapping (i.e., the adjacent
S-box output bits may pass through different mappings). The table T}[-] is then es-
tablished through concatenation. Each entry of T;[-] consists of concatenated results
from different MDS mappings. The result from one mapping corresponds to a specific
subset of the table lookup output. For example, considering 8 x 8 S-boxes followed
by 2% (2m,m,m + 1) over GF(2*), each coefficient C;; in (5.1) can be regarded as
concatenation of two 4-bit coefficients C’;j and C;; from two MDS mappings, so that

Cy =Cyll C

YR

1"

where “ || ” denotes concatenation. Then we generate m tables as:

(xS CLxs"())

CpixS'() | CrxS"()

T[] = (5.5)

\ Crn1 %S () || Croia jxS°()

where 0 < j <m —1, S'(-) and S”(-) represent 4 output bits of an S-box, and
S(-) = S'(-)|] S”(:). When these concatenated tables {T}[-]} are used in (5.4), the
size of tables and the number of lookups and XORs are the same as for the tables

required in (5.3).

5.1.2 Cases with 4x4 S-boxes

In constrained environments such as smart cards, cipher cases using 4 x4 S-boxes
cost much less memory for table storage than those using 8 x 8 S-boxes. We can

use the same method described by (5.2) and (5.4) to generate a set of small tables.

96

Since the variables B; and E; in (5.2) and (5.4) are now 4 bits, each fetch from the
table T}[-] accepts a 4-bit input as the index and produces a 4m-bit output from the
indexed entry. It takes 8m? bytes of memory to store these m tables since each table
requires 16-m-4/8 = 8m bytes. Such an implementation needs m[4m/w] lookups
and (m—1)[4m/w] XORs.

When memory is not constrained, a modified method can be used to reduce the
number of table lookups by a factor of 2. To implement a cipher case with 4 x 4
S-boxes, each table T}[-] in (5.4) has an index of 4 bits. We can combine two tables

into one, represented by T”;, whose index is 8 bits. As a result, (5.4) is transformed

[B)

Ey

to:

=T'o[Bo|| B1]® -+ & T'_1[Bm—2|| Bm—1]. (5.6)

\ Bm-1)
where B; and E; are representing 4-bit values. For each 8-bit input X|| Y composed

of 2 concatenated 4-bit values, X and Y, the table performs:
T';[X|| Y] = T[X] ® T [Y]

where 0 < j < m/2 — 1. It takes 64m? bytes of memory to store these m/2 tables.
The implementation of (5.6) needs (m/2)[4m/w] lookups and (m/2—1)[4m/w]
XORs.

The method expressed by (5.6) should also be chosen for the cases where the
symbol length of an MDS mapping is larger than the S-box size. For example, the

inputs of two adjacent 4x4 S-boxes followed by an MDS mapping over GF(28) have

97

to be combined as an 8-bit index to a table of 256 elements.

5.2 Software Performance Comparison

It is normally hard to compare software performance among different block ciphers.
The main difficulties are: (1) each cipher has its own security margin, (2) each
implementation method represents a tradeoff between memory and speed, (3) the
number of clock cycles required by one operation is determined by the platform,
and (4) one specific instruction set may facilitate some operation combinations (e.g.,
DSP processors can do multiplication and accumulation using one single instruction).
Considering the above difficulties, in order to get around the last three problems, we
select the table lookup approach as a general and efficient method to implement all
the cipher cases. Moreover, a meaningful study of the performance of ciphers should

make comparisons between ciphers in consideration of a consistent security level.

5.2.1 Time Performance Metric

In software, the memory used for table storage is independent of the number of
rounds. Since the memory can be easily allocated in many computers!, the tradeoff
between space and time is not as important as that in hardware. Therefore, instead
of defining three metrics for space, time, and overall performance as in the previous
chapter, we care more about the time performance in software. To compare the time
used for a given cipher to achieve a certain amount of security, we define the time

performance measure 7, with respect to differential and linear attacks, where w is

1The smart card is an exception where memory is restricted.

98

the processor word size:

B log, 1/P
Nw) = (# of rounds) x (# of table lookups per round) '

(5.7)

The numerator of (5.7) indicates the security of the cipher for the specified num-
ber of rounds, where we use a heuristic approach to determine resistance to differ-
ential and linear cryptanalysis. For differential cryptanalysis, the number of chosen
plaintexts to attack a cipher is expected to be in the order of 1/P, where P is
the maximum differential characteristic probability P; determined by Theorems 4.1
and 4.3; the number of known plaintexts required by linear cryptanalysis is expected
to be in the order of 1/P, where P is the maximum linear characteristic probability
P, of the cipher. For the nested SPNs and Feistel networks discussed in Chapter 4,
log, 1/P is a linear function of the number of rounds for both differential and linear
cryptanalysis. Therefore, the value of 7, indicates how much security is expected
to be obtained within a unit running time (i.e., time for one table lookup), regardless
of the number of rounds in a cipher.

Note that one table lookup has associated with it the setup of an index (e.g.,
one rotation and one masking operation) and a post-lookup XOR. Among these
operations, the table lookup would normally require the most clock cycles in most
processors. Hence, we use the table lookups as a barometer for the number of oper-

ations required to implement the cipher.

5.2.2 Comparison of Nested SPNs

In the previous chapter, Table 4.1 lists the cases of nested SPNs in 12 categories
(labelled as N1 to N12) defined by the S-boxes and M DSy. The values of Py and P,

99

Table 5.1: Software Performance of 128-bit Nested SPNs

of table lookups
Case Table size per 4 rounds) | M32) | M)
(KBytes) | 8-bit | 32-bit | 64-bit
Nl-a,b 17 320 96 64 | 051 1.69 | 2.53
N2-a,b 17 320 96 64 | 051 1.69 | 2.53
N3-a,b 17 320 96 64 | 051 1.69 | 2.53
N4-a,b 8T 256 64 64 |059 (234|234
N5-a,b 8t 256 64 64 |059| 234|234
N6-a,b 17 320 96 64 | 051 1.69 | 2.53
N7-a,b,c 17 320 96 64 |0.51 | 1.69 | 253
N8 64 1024 | 256 128 | 0.20 | 0.80 | 1.59
N9 64.03125 | 576 192 128 | 0.18 | 0.53 | 0.80
N10 64.03125 | 576 192 128 [0.18 | 0.53 | 0.80
Nl1l-a 16.125 384 128 96 |0.23|0.70 | 0.94
N11-b 0.625 384 128 128 | 0.23 | 0.70 | 0.70
N12-a 4.5 384 96 96 023|094]|094
N12-b 0.625 384 128 128 1 0.23 | 0.70 | 0.70

T : By use of the same mapping in M DSy, and M DSy, half of the table size can be saved.

represent the differential and linear characteristic probabilities for 4r rounds evalu-
ated by Theorem 4.1 and used as P in (5.7) to determine 7). Table 5.1 lists the
table size (i.e., the sum of sizes of tables required for M DS and M DSy rounds)
and the number of table lookups for 4 rounds for each cipher case. The table sizes
listed in this table represent a minimum requirement and can only be achieved when
an S-box does not differ from the corresponding S-box in another MDS mapping in
the same layer (although S-boxes may be different within the domain of one MDS
mapping). As a result, only one table as in (5.4) is required for each of the M DS|,
and M DSy layers.

For each case using 4 x4 S-boxes, the tables with 4-bit indices are created as
shown in (5.4) or (5.5) when the MDS mapping is chosen over GF(24) or GF(22), re-

spectively. However, as explained in Section 5.1.2, the performance can be improved

100

by using 8-bit indices in the lookup as in (5.6) at the expense of more memory. For
example, case N11-b can be implemented using 8-bit indices thereby doubling the
efficiency but requiring 8 times the memory to store the lookup tables for both the
MDS;, and MDSy rounds. When GF(28) is chosen for the MDS mapping, the
length of table indices has to be 8 bits. The number of table lookups is used in the

calculation of the denominator in (5.7).

Performance Measures

Figure 5.1: Software Performance Comparison of Nested SPNs

The table also includes the performance 7, for each case. The implementation
performance on three types of processors (i.e., w = 8,32,64) is considered. The
implementation on an 8-bit processor is suitable for smart cards, where the memory
size is constrained. The implementations on 32-bit and 64-bit processors are suitable
for applications on general purpose computers and workstations. The values of 7
are also presented in Figure 5.1. By comparing these measures, it is possible to
distinguish the cases which are more efficient in software and the following general

conclusions can be made:

101

The implementation performance is improved when the word size of the proces-
sor increases, although in some cases there is no difference in the performance

on a 32-bit or 64-bit processor.

The cases with larger S-boxes (N1, -- -, N8) have better performance but cost

more memory to store the lookup tables.

The cases with the same S-box size (N1, - - -, N8 and N9, - - -, N12) share similar
performance although their memory requirements can vary significantly (as

shown in Table 5.1).

Cases N4 and N5 have the best, or close to the best, performance for all word

sizes.

As an example of N4-a, AES has very good performance. M DS, and M DSy
in AES are based on the same (8,4,5) code. Therefore, half of the table size
can be saved. Its byte-wise cyclic shifts (ShiftRow), before the MDS mapping,
can be easily realized by taking the data from a modified byte location in the
State as the index for a table lookup. Since the indirect addressing mode is
supported by most processors, such a cyclic shift does not need to be coded

separately in a table lookup implementation.

5.2.3 Comparison of Feistel Networks

The Feistel network discussed in this section is limited to the class described in

Section 4.1, which has an SPN-like round function. The 128-bit cipher cases of this

class have been listed in Table 4.2, which have 64-bit round functions consisting of

sixteen 4 x4 or eight 8 x 8 parallel S-boxes followed by an MDS mapping layer. To

102

ensure a good avalanche effect, an appropriate fixed permutation of MDS symbols
after the MDS mapping is expected, which may cost a small amount of additional
processing time. The cases of the same category in Table 4.2 only differ in the
simplification of the MDS mapping. The performance comparison details are given
in Table 5.2, where table lookups use 4-bit indices when 4 x4 S-boxes are used in
a cipher case. A summary of the performance measure 7, is also illustrated in

Figure 5.2. The following conclusions can be drawn:

e An MDS mapping that has a large branch number (i.e., m+1) results in good
performance for implementations on computers supporting a large word size

(e.g., comparing 7)) and 7es) in cases F3-a and F3-b).

e Although they require more memory, the cases with 8 x8 S-boxes demonstrate

higher performance.

e For the cases with 4x4 S-boxes, we can trade off memory and time requirements
by choosing the element size of the MDS mapping. Using small Galois fields
for the MDS codes, cases F4-b, F4-c, and F5-b can be used for some memory-
constrained applications. However, their performance is not as high as the
counterparts using large Galois fields (e.g., F4-a and F5-a) for a word size

larger than 8.

e Compared with nested SPN networks, the Feistel networks discussed here need

less memory but result in a lower performance.

Camellia uses 8 x 8 S-boxes and a linear transformation that is not MDS-based
with branch number 5. (An MDS-based linear transformation would have a branch

number of 9.) Hence, a simplified Camellia structure (without F'L/FL~! functions)

103

Table 5.2: Software Performance of 128-bit Feistel Networks

of table lookups
Case Table size per round ne) | M32) | Mea)
(KBytes) | 8-bit | 32-bit | 64-bit
Fl-ab,c 1 16 8 8 0.33 | 0.66 | 0.66
F2-a,b 4 32 8 8 0.26 | 1.03 | 1.03
F3-a,b 16 64 16 8 0.22 | 0.89 | 1.78
F4-a 1 16 8 8 0.11 | 0.22 | 0.22
F4-b,c 0.03125 16 16 16 |0.110.11 | 0.11
F5-a 4 32 8 8 0.09 | 0.34 | 0.34
F5-b 0.125 32 16 16 |0.09 | 0.17 | 0.17
F6-a 16 64 16 8 0.07 { 0.30 | 0.59
F6-b 0.5 64 16 16 | 0.07| 0.30 | 0.30

Performance Measures

Figure 5.2: Software Performance Comparison of Feistel Networks

104

produces a security level equivalent to F2-a,b in Table 4.2. A fast Camellia imple-
mentation using table lookups was introduced in [10], which incorporates the linear
transformation and S-boxes into several tables with 8-bit indices and 64-bit entries.
In this method, a simplified Camellia has the equivalent number of table lookups
to 18-round F3-a,b. As a result, Camellia uses tables as large as F3-a,b, while its
performance is lower than both F2-a,b and F3-a,b on 32-bit processors and equal to

F2-a,b but lower than F3-a,b on 64-bit processors.

5.2.4 Experimental Results

The performance comparison above is based on the assumption that the number of
lookups is a good time measure for table lookup implementations. We implemented
typical SPN cipher cases from Table 4.1 in “C” using the MS Visual C++ 6.0 compiler
and determined the throughput for each implementation on an Intel Pentium III
933MHz computer. The throughput is measured by encrypting a data file containing
millions of plaintexts. It is expected that the throughput will vary inversely to the

number of lookups, considering throughput to be defined as:

block length
processing time for each block

throughput =

As shown in Table 5.3, the expected trend in throughput can be observed in the
implementations when the number of rounds are set to the same value, especially in
the compiler optimized version. When the table index is 8 bits, the byte permuta-
tion after the lookup operations (e.g., the concatenation of parallel MDS mappings
discussed in Theorem 4.2) can be easily done by reordering the table lookup inputs

for next round. When the table index is 4 bits as in N11-b, bit manipulation within

105

bytes costs more processing time. This cost is compensated by the use of small ta-
bles, which can be easily cached during the program run. The bottom two rows of
Table 5.3 lists the results of our 10-round AES implementation and reference code

in ANSI C2.0 [81], respectively.

Table 5.3: Experimental Results of 32-bit Implementations of Nested SPNs

Case # Throughput (Mbits/s) | # lookups Comments
rounds | non-optimized | optimized | (4 rounds)

Nl-a 32 18.16 45.65 96 similar to N2, N3, N6, N7

N4-a 32 22.58 60.86 64 similar to 32-round AES

N8 32 10.49 17.02 256 with uniform round

N11-b 32 16.06 36.21 128 similar to N12-b

N4-a 10 68.38 155.91 64 10-round AES (our code)

N4-a 10 119.51 120.64 64 reference AES code

Table 5.4: Experimental Results of Two Real Ciphers

Cipher Throughput (Mbits/s) # lookups
non-optimized optimized

AES 32.7 55.3 160
(10 rounds, 32-bit)

Simplified Camellia 20.1 72.5 288
(18 rounds, 32-bit)

Simplified Camellia 35.2 87.3 144
(18 rounds, 64-bit)

The experimental throughput results for AES and Camellia using the GNU C++
compiler on a 64-bit Alpha machine (COMPAQ AlphaServer DS10) are listed in Ta-
ble 5.4. The 32-bit implementations of AES and Camellia are tested on this machine
by using 32-bit data type arrays to store lookup tables and 32-bit operations for
XORs. Before optimization, the throughput and the inverse of estimated number of
lookups follow the same trend. After optimization, the 32-bit Camellia implementa-

tion is largely improved and close to its 64-bit implementation. With the smallest

106

number of lookups, the 64-bit simplified Camellia is still the fastest after optimiza-
tion. It should be noted that such software comparison of Table 5.4 is purely based
on software throughput. When security is considered simultaneously as shown in
Figures 5.1 and 5.2, AES has a higher performance (as a typical SPN corresponding
to N4-a) than Camellia. This reflects the fact that the Camellia cipher has a lower
security margin than the AES cipher. Note that it is not meaningful to compare the

numbers in Table 5.3 to Table 5.4 as the implementation platforms are different.

5.3 Alternative Implementations

Besides the table lookup approach, a block cipher can be implemented in other ways
based on its structure. We briefly discuss these alternatives without a full exposé of
their characterization because they apply to specialized circumstances rather than

having general application.

5.3.1 Bitslice Implementations

For some cipher cases, a bitslice software implementation derived from the gate level
circuit may be more efficient in parallelized applications [34]. A Dbitslice design is
suitable for the cases whose synthesized circuits are compact. A w-bit processor
can be regarded as w bit-processors in parallel. The gate level network circuit is
described with instructions in software. Each bit in hardware corresponds to a word
in software and each word is the concatenation of bits belonging to w separate blocks.
Given enough registers in a processor, the memory requirement is negligible since no
table lookups are necessary. Typically, the bitslice technique can be applied in three

ways:

107

(a)

(c)

Parallel blocks: This is the classic bitslice implementation. A total of w plain-
text blocks are reorganized so that the bits at the same bit positions of different
original blocks are now collected in one register. The number of registers re-
quired to store these blocks is equal to the block size of the cipher. Then,
all registers are used as signals to a gate network deduced from a hardware
implementation. Each gate in the network corresponds to a logic operation
in software. The output signals, w bits each, are converted to their original
format as w ciphertext blocks. Whether a cipher case discussed in this chapter
is suitable for bitslice implementation can be determined from its space per-
formance value 7, in hardware, which was investigated in Chapter 4. When
ns is high, a compact gate network can be used. The gate count of the circuit
determines the number of instructions used in the bitslice software. Thus, a

high 7, indicates a small number of clock cycles in software.

Bitslice cipher: Serpent [33] is an example of an internal bitslice implementa-
tion. In Serpent, each 128-bit block is expressed as four 32-bit words after a
bit permutation. S-boxes in each round can be regarded as 32 sets of parallel
and identical 4 x 4 gate networks. A word is the collection of 32 bit signals,
each corresponding to its own set of gate networks at the same locations. The
other cipher operations can also be easily expressed by words. At the end of
encryption, the bits of the four output words are permuted to form a 128-bit

block.

Within special linear operations: It has been shown that several parallel MDS
mappings can be concatenated into one big mapping. When the number of

parallel MDS mappings in each round, denoted by w’, is at least 8, there is a

108

more subtle bitslice method within the round structure, as used in Hierocrypt’s
MDS mapping [37]. The linear expression of each output bit is extended to the
expression of words, whose size is w’ bits. The input and output bit variables
are replaced with word variables, each including w’ adjacent bits. Such a
method works for any concatenated linear transformation with a convenient
number of parallel sets. This parallel structure within a specific operation
avoids the overhead caused by the block representation transformation between

the standard form and bitslice parallel form as required in (a).

5.3.2 Power Implementations

Although the table lookup method is very efficient, the memory required for table
storage is usually too large for a smart card, which has a restricted memory size.
Hence, it is desirable to utilize a fast implementation for a smart card application
that does not require large tables. Because an S-box just requires a small array, the
main concern is then how to perform MDS mappings with low memory cost.
Defined as 1-bit left shift followed by bit-wise XOR with an appropriate irre-
ducible polynomial in [5], the ztime operation can be used to perform multiplications
for the MDS mapping. The operation ztime has no table lookups and the matrix
multiplication is easier when all coefficients meet two requirements: (1) low Ham-
ming weights and (2) low value. It is easy to find an MDS mapping satisfying these
two requirements. When an SPN uses this mapping, however, the mapping’s inverse
used for decryption does not necessarily satisfy the two conditions and many more
operations are therefore needed, making decryption much slower than encryption.
As we know, any element in a finite field can be expressed by both its power

representation and its polynomial representation. As a result, the multiplication of

109

two elements can be realized by index addition on their power representations [22].
Here we examine the software efficiency when this approach is used for cipher imple-
mentations on a processor. Note that this approach cannot be used for AES which
has its MDS mapping based on an irreducible but not primitive polynomial.

Suppose poly(-) returns the polynomial representation of a GF(2") element from
the index of power representation and its inverse function is denoted as pow(-). We
know that

Y =C - X = poly((pow(C) + pow(X)) mod (2" —1))

when C # 0, X # 0, and where Y is in polynomial representation. If the processor
records the carry bit ¢ for n-bit addition pow(C)+pow(X), the modulo operation

can be bypassed:

Y =C - X = poly((pow(C) + pow(X)) +c) .

Using this method to perform the MDS mapping after substitution, C' indicates one
coefficient in MDS generation matrix C. Each coefficient C in C is constant and
nonzero. Denote pow(C) as Cpoy. If X is the output of an nxn S-box S(-) with

input Z, substitution S(-) can be merged into the above operations:

Y =C - X = poly(Cpow + pow(S(Z)) + ¢) .

Therefore, each multiplication over Galois fields costs two additions and two table
lookups. The two tables for poly(-) and pow(S(Z)) need 2"*! bytes in total. It can
be seen that the nature of the coefficients in generation matrix C does not affect the

speed of multiplication. If the coefficients in C are randomly selected, this method

110

is more efficient than the ztime method and, hence, does provide better balance

between the speeds of encryption and decryption.

5.3.3 General Comparison of Methods

Table 5.5 gives a general comparison of the software implementation methods dis-

cussed in this section.

Table 5.5: Comparison of Software Methods Used in MDS Codes

MDS coefficents | S-box/MDS
Method Speed Memory | Universal | affect affect operations
speed | memory merged?
Table lookups fast large yes no no yes
Bitslice parameter- none no' yes no no
dependent
Power slow small yest no* no yes
xtime slow none yes yes no no

t: the number of parallel sets should be compatible with machine operand sizes.
. the polynomial to define the finite field must be primitive.
* : it can make a small difference depending on how many coefficients are 1s in C.

5.4 Summary

We have considered the software performance of two cipher structures composed
of S-boxes and MDS mappings. Various cipher cases were generated from these

structures with different component configurations. Table lookup implementations
were used to evaluate the software efficiency of the various cases. A performance

metric was defined to capture the security and efficiency simultaneously. With the

111

tendency similar to hardware performance, cases using 8 x8 S-boxes are faster than
cases using 4x4 S-boxes and nested SPNs are more efficient in obtaining security than
Feistel networks. Specifically, AES and Camellia were analyzed in terms of software
performance, and some interesting performance features were noted and confirmed
through experimental results. Three other software implementation methods that are
applicable in special circumstances were also discussed and their general advantages

and disadvantages were listed.

112

Chapter 6

Applicability of XSL Attacks

Many comparisons of security, complexity, and performance have been made in the
previous chapters among block ciphers composed of 4 x4 and 8 x8 S-boxes. The
security estimate is based on differential, linear, and integral cryptanalysis. Recently,
it has been found that many block ciphers can be described by overdefined systems
of quadratic equations. Although solving Multivariate Quadratic (MQ) equations is
NP-hard, it is observed in [82, 83] that the complexity could be subexponential if the
equations are overdefined. As a result, the complexity evaluations claimed in [11, 84]
to break AES and Serpent by solving an overdefined set of quadratic equations are
lower than in an exhaustive search. Since the computation is too large, neither
the two ciphers nor their simplified variants with a reduced number of rounds have
been practically attacked as of now. However, for cipher designers, the potential
attack may be a security concern because efficient algorithms to solve overdefined
MQ equations could be found in the future.

In this chapter, while we do not study the details of the attack, some proper-
ties are discussed based on a toy cipher example presented in [11]. Moreover, a

method to evaluate a cipher’s susceptibility to this attack is proposed with results

113

applied to several currently proposed block ciphers and a new S-box design criterion

is presented.

6.1 Introduction to XSL Attacks

A Dblock cipher can be sometimes described by a system of MQ equations. The
equations involve bit values of input, output, key, and intermediate data. When the
unknown bit values are not more than the equations, it is possible to get the key
bits as part of the equation system solution. For example, Figure 6.1 shows a very
simple partial encryption system! from a 2-bit plaintext (z1, zo) to a 2-bit ciphertext
(21,20). The S-box performs substitution as shown in Table 6.1. A 2-bit key (k1, ko)

is mixed with the S-box output (y;,yo) by XORs.

X1 X0
v v
S-box

Y1 Yo
ki —»

ko ?
1 20

Z

Figure 6.1: A Simple Example

Table 6.1: Mapping Table of a 2x2 S-box

Input z129 |0 | 1|2 |3
Output 4190 || 3 2|0 |1

1Such a trivial toy system is, of course, trivial to break and is simply for illustration purposes.

114

The S-box in Figure 6.1 can be described by the equations over GF(2) as shown
in (6.1).
(Il=z0+z1+ Yo
l=z1+u
0 = zoz1 + ToYo
S 0=xz0+ 2o1 + Toy1 (6.1)

0 = zoz1 + T1Y%0

0=my

\ 1 =1xo+ z1 + ZoZ1 + YoUY1

We denote r as the number of possible linearly independent quadratic equations for
an S-box and denote t as the number of different terms (including “1”) in these
equations. In this case, 7 = 7 and ¢t = 11. An equation system is overdefined if r
is much larger than the size of the S-box, e.g., 2 bits in this example. Two other

equations can be written for key mixture:

20 = xo + ko (6 2)

2'1=$L‘1+k1

If a plaintext and its ciphertext are obtained, we can easily determine the key
(k1, ko) by solving the equation system consisting of (6.1) and (6.2), i.e., 4 unknown
variables y1, yo, k1, and ko with 9 equations. When the quadratic equation sys-
tem becomes larger and contains many more unknown variables, however, it will be
hard to get the solution. In fact, solving systems of MQ equations is an NP-hard
problem [82].

It has been observed that the complexity to find the solution drops significantly

115

if the equations are overdefined. Moreover, if the equations are sparse, the com-
plexity could be further reduced. Three algorithms have been proposed to solve
overdefined MQ problems. They are relinearization [82], XL [85], and XSL [11] al-
gorithms. Based on relinearization and XL algorithms, XSL stands for “eXtended
Sparse Linearization” or “multiply(X) by Selected monomials and Linearization”.

The XSL attack on a block cipher begins with the initial equations for each n x n
S-box, which has r equations and t terms. Based on these equations derived from
S-boxes, a system of equations is then written for the whole cipher. Assuming at
least one pair of plaintext and ciphertext is known, the intermediate bits and key bits
are unknown variables to be solved in these equations. Each equation of an S-box
is multiplied by all possible terms for all subsets of (3 — 1) other S-boxes, where
the parameter 3 is a positive integer selected during the attack. Then, each term of
high degree is considered as a new variable and Gaussian elimination is performed.
It is assumed that at least one univariant equation (i.e., with only one unknown
variable but the equation contains the powers of the variable in this case) can be
generated through Gaussian elimination [85]. Such an equation can be solved with
Berlekamp’s algorithm [86]. With the results of possible univariable equations, the
former equation systems can be simplified and a similar process can be repeated until
all variables are determined.

To perform a general XSL attack (the first XSL attack in [11]), one working
condition has to be satisfied. Denote T" as the number of terms in the equations and
T’ as the number of terms that can be multiplied by one original bit variable and still
belong to the set of T' terms. Denote Free as the number of linearly independent

equations that are newly generated. In [11], the working condition of XSL attacks is

116

given as
Free
T-T

>1 (6.3)
and the complexity of the attack is evaluated by

t—r

T =~ ()“# . (Block Size)“? - (Number of rounds)?*? (6.4)

n

where the coefficient w is the exponent associated with the complexity of Gaussian
elimination. Typically, w = 3. An improved method presented in [87] can lead w to
be no more than 2.376. This upper bound of w is used in the complexity evaluation
of (6.4).

Applying the XSL attack on AES of 128-bit blocks and 256-bit keys, the expected

workload is T¥ =~ 2298

, which is higher than that for an exhaustive search. Further, a
new cipher BES is defined in [84] which uses simple algebraic operations over GF(28).
It has been shown in [84] that AES can be regarded as a special case of BES. As
a result, by describing AES in its BES equivalent form, an extremely sparse and
overdefined multivariant quadratic systems can be constructed over GF(28). In this
approach, it is expected that even AES of 128-bit keys may also be vulnerable with
the estimated complexity T* =~ 287 [11, 84]. The complexity to break Serpent using
a key of 256 bits is evaluated as T* ~ 22!0 [11]. For each attack, the value of 3 must

be large enough to ensure that Free>T—T'. However, a small increase of § (even

1 or 2) results in a much larger workload.

117

6.2 Effectiveness of the Attack

Since the XSL attack has not yet been demonstrated to work as claimed by its
authors, it is still unclear whether it should be regarded as a serious security threat.
Some skepticism of this attack has been raised in the cryptology community [88, 89].

It appears that the XSL attack could be applied in theory to break AES and
Serpent. However, two main issues have to be noted when effectiveness is scrutinized.
Firstly, the working condition stipulated in (6.3) is necessary but not sufficient for the
success of the attack. Secondly, a sub-exponential (or even polynomial) complexity
is largely based on the conjecture that 5 grows very slowly (or is even constant) when
the number of rounds or the block size increases.

Due to the difficulty in undertaking the massive computation, the effectiveness
of an attack is typically based on the simulation of simplified versions of targeted
ciphers. For example, differential and linear attacks are well believed to work because
the expected complexity can be demonstrated well on DES with a reduced number
of rounds [39, 40]. Until now, the only achievable simulation of the XSL attack on
a block cipher came from the Appendix of [90]. A “toy” cipher is targeted for the
simulated attack, which is an SPN composed of 3 x3 S-boxes. Each round of the
cipher contains round key XORing, a layer of parallel S-boxes, and bit permutation.
Applying XSL to the toy cipher with different block sizes and numbers of rounds,
the working condition is satisfied within a reasonably small number of rounds. The
results from [90] are presented? in Table 6.2.

For each case in Table 6.2, it is emphasized in [11, 90] that the number of rounds

does not cause the complexity to increase exponentially. When the block size of the

2The complexity is calculated by T“ where w = 2.376.

118

Table 6.2: Maximum Number of Rounds for a Toy Cipher to Satisfy XSL Working
Condition

[# S-boxes/round | Block size || # rounds | Complexity ||
2 6 16 9422
4 12 8 9423
8 24 4 2424

toy cipher is fixed (6, 12, or 24 bits), the values of f:;f, appear to “either converge to
a fixed value, or they decrease very slowly” [90] as the number of rounds increases.
However, a trend different from such an optimistic conjecture seems to be overlooked.
When the block size of the cipher increases, the maximum number of rounds for which
the working condition is satisfied decreases. As a result, it is not surprising that the
working condition cannot be satisfied for even one round of the toy cipher with a
large block size, e.g., on the order of 128 bits. More extensive simulation will be
necessary to understand the effectiveness of the attack when applied to realistically

sized block ciphers.

6.3 Applicability to Cipher Structures

More research is required to clearly understand the actual complexity of XSL attacks.
Even so, it is wise for a cipher designer to evaluate the potential security threat from
this attack. As a necessary requirement to launch an XSL attack, the S-box must
be able to be described by overdefined MQ equations. Based on this concept, we
propose a new criterion to S-box design which is more straightforward and applicable
than the security contribution I" suggested in [11].

For an nxn S-box with input X = (z,_1,---,20) and output Y = (yn—1, -, %0),

the total number of possible terms {1, Z,_1,* -, Yo, Tn—1ZTn—2," -+, Y1Yo} in a quadratic

119

expression is: t = n(2n—1)+2n+1 = 2n%+n+1. Denote {co, " -, ci~1} as the binary
coefficients associated with the t terms in any possible quadratic equation. For

each possible X, 0 < X <2"—1, we calculate the values of the ¢ terms and denote

them by {ax,o, - ,axt-1}. Then we can write 2" equations to form a system with
{co,**+,ct—1} as the unknown:
(o0 ao 1 R \ (Co \ (0 \
a0 a1 carg-l 1 0
' - (6.5)

\azn—l,o agrn—11 a2"—1,t—1) \ct—lj \0)

Each possible nonzero solution of {co, -, c;—1} will form a quadratic expression of
the S-box. Denote A as the matrix composed of a;;, 0 <¢<2"—1and 0 <j< t-1,

in (6.5). We have the rank of A, denoted as R(.A), bounded by

R(A) < min(2"t)

< min(2",2n® +n+1) .

When n < 6, R(A) < 2™ < t. Assuming the S-box is such that R(A) = 2", we
get the expressions of the 2" terms’ coeflicients cg, - - -, con_1 by Gaussian elimination

on (6.5). Without loss of generality, we suppose they are the first 2" terms:

(Co \ (bo,o bo,1 o boggn_1 \ (0271 \

)

¢ b1,0 b1 oo bigoono Con41

\Czn—1) \b2"—1,0 bon—11 ccr banoig-omoy) \Ct—l)

120

where the binary constants b, - - -, ben_1¢—on_1 are calculated from Gaussian elimi-

nation. Thus, (¢ — 2") independent vectors are obtained to express all solutions:

(Co \ (bo,0 \ (bo,1 \ (bo,i—2n -1 \

Con—1 b2"—1,0 b2n—1,1 b2"—1,t—-2"—1
Con =cpn | 1 +epng1| 0 +otc-1| 0 (6.6)
Cony1 0 1 0

e) N0 \0) \ 1 /

Therefore, (t — 2") linearly independent quadratic equations can be written for the
S-box when R(A) = 2". More generally, when R(A) < ¢, the number of independent
quadratic equations written for the S-box is ¢t — R(A). If t — R(A) > n, the system
is overdefined.

When n > 6, R(A) < t < 2". If the S-box is randomly generated, it can be
shown that the possibility that R(A) = t is very high. When R(A) = t, there is
no nontrivial solution for (6.5) (i.e., {co, ..., ci—1} must be all zeros). Therefore, the
XSL attack cannot be launched. When R(A) < t, the XSL is possible depending on

the security contribution [11]:

In this case, r =t — R(A). We get

It should be noted that I" = (¢/n)*/™ when R(A) = t. In this case, the complexity
evaluation is meaningless because the attack definitely fails due to nonexistence of
quadratic expressions for S-boxes. Therefore, the security contribution provided
in [11] is not a straightforward way to evaluate the susceptibility of a cipher to the
attack. Thus, we give an easy approach to evaluate the potential susceptibility of an

S-box to the XSL attack as the following:
(a) Calculate matriz A given the mapping table of the S-boz.
(b) Calculate the rank of matriz A, R(A).

(c) Compare R(A) with t. If R(A)=t, the cipher is resistant to the XSL attack.
Otherwise, the difference between t and R(A) shows how susceptible the cipher
may be to the XSL attack.

The resistance to the XSL attack comes from the difficulty to describe S-boxes
using quadratic equations. This approach can be used by cipher designers to ensure
that, even if the XSL algorithm becomes practical, the cipher is still immune to this
attack. It is important to note that ciphers based on 4 x 4 S-boxes cannot be easily
made immune because R(A) < 2" < t when n = 4, while for 8 x 8 S-boxes this is
possible.

Table 6.3 shows the evaluated resistance of several block ciphers including 10
randomly generated 8 x 8 S-boxes. The S-boxes of AES, Camellia, Hierocrypt-3,
and MISTY have similar algebraic structures which are power operations over finite
fields. Such a structure has been proved (e.g., as in [91]) to be able to enhance
the resistance to differential and linear attacks. The power operation can also be
simplified by the equivalent operations in the composite field although the advantage

in circuit synthesis is not as significant as expected (as shown in Chapter 3). For the

122

Table 6.3: Evaluated Susceptibility to the XSL Attack

Cipher S-box | ps qgs | t—R(A) Algebraic Comments
size n structure
Serpent 4 22 | 272 21 random susceptible
AES
Camellia 8 276 276 39 power over GF | susceptible
Hierocrypt-3
Hierocrypt 8 | 2042|2508 23 unknown susceptible
MISTY S7 7 2-°¢ 27° 21 power over GF | susceptible
MISTY S9 9 2=8 | 278 36 power over GF | susceptible
Anubis 8 2o | 27383 0 random immune
Khazad
RS-1,97 8§ |27468 [2-4 0 random immune
RS-2,3,5,6" 8 2—442 1 o—4 0 random immune
RS-4,7,8,107 8 2—419 1 o—4 0 random immune

t . RS-1,--,10 are randomly generated by computer.

same reason, these S-boxes might be prone to be attacked based on some algebraic
methods and the XSL attack encourages more attempts in this direction. On the
other hand, S-boxes with this algebraic structure are only a very small subset of all
possible bijective mappings. It is very easy to generate S-boxes randomly with the
full rank of matrix A. Therefore, it is necessary to consider the full rank of matrix A
as a criterion for future S-box selection, when other criteria have been satisfied.

It should be noted that even if susceptibility is observed by this method, the suc-
cess of an XSL attack is still based on the reasonableness of the complexity evaluated
in [11]. The XSL attack cannot work on the ciphers proved to be immune in this

method even if its complexity is implied to be low by the analysis in [11].

123

6.4 Summary

This chapter briefly discussed the effectiveness of XSL attacks and their applicability
to block ciphers. An approach was proposed to check the immunity of an S-box to
this attack. It has been shown that ciphers using 8 X 8 S-boxes can be easily designed
to be immune to this attack while it is hard for ciphers using 4 x 4 S-boxes. The
potential susceptibility of several block ciphers to XSL attacks was also analyzed

using this approach.

124

Chapter 7

Simple Power Attacks on Cipher Key
Schedules

This chapter explores a potential vulnerability when a block cipher is implemented in
an 8-bit smart card environment. Introduced in [56], power analysis exploits the fact
that the power consumption of some cryptographic implementations is dependent on
the intermediate data values. It is indicated in [92] that many smart card processors
demonstrate a roughly linear relation between the Hamming weight of the data and
the power consumed at the associated clock cycle. The Hamming weight attacks
against the key schedules of DES and AES were discussed in [93, 94]. It was shown
in [94] that an AES cipher key could be deduced given accurate leakage information
of Hamming weights and a pair of plaintext and ciphertext. The susceptibility of
NESSIE candidates to power attacks was theoretically evaluated in [95], which mainly
focused on differential power analysis and gave Camellia a high rank among others.

In this chapter, we apply a simple power analysis to Camellia’s key schedule as a
typical example and demonstrate that the attack works even if leakage information

bears noise and distortion. Using the same typical leakage model, our attack on

125

Camellia runs faster than the attack on AES presented in [94] and does not require
any pair of plaintext and ciphertext. More generally, a method is proposed to evalu-
ate how vulnerable a block cipher is toward similar attacks. The countermeasures in
terms of both design rationale and implementation are also suggested. The content

of this chapter is also presented in [96].

7.1 Camellia’s 128-Bit Key Schedule

The attack described in this chapter is focused on Camellia’s 128-bit key schedule [6].
The attacking technique to be discussed can be easily modified for the 192- and 256-
bit key schedules.

Camellia’s 128-bit key schedule expands 26 subkeys of 64 bits from the original
key K and another derived key K 4 of 128 bits. Each subkey can be obtained as one
half of K, or K 4 after they are left rotated for a specific number of bits. This number
can be 0, 15, 30 (only for K 4), 45, 60, 77 (only for K1), 94, or 111, depending on the
round number. During encryption or decryption, 18 subkeys are used for the round
function in the 18 rounds. The other 8 subkeys are used for pre-, post-whitening and
the FL-, FL~'-functions.

K4 is derived from the original key K through a Feistel network. As shown
in Figure 7.1, K}, is the input of such a network. The left half is the input to the
same round function as in encryption. The round function can be divided into 3
steps: (1) a 64-bit constant, denoted as X; for round ¢, is XORed with the input,
(2) the S-function performs byte-wise bijective substitution, and (3) the P-function
performs a linear transformation. The output of the round function is XORed with

the right half of the round input. The two halves are then swapped. This Feistel

126

structure is iterated for a total of 4 rounds for the 128-bit key schedule. Note that
the intermediate result after 2 rounds is XORed with K to form the next round
input. To ease the description of the attack in later sections, each 64-bit block in

Figure 7.1 is labelled as T;, 0 <¢ <17.

K;
v
Ty ¥ T,
® I 1,
S-function |73
P-furlxction T, AN
"XV
T5 i TO

ox, |Ts
S-function |77
P-function |73

—

@K,

P /
Tg @ T0= Tg P T10 T5 @ T1=-' T4

S-function |T11

P-function T12 A
L » /

Ti3 ©x, |Tu |Ts
S-function |T5
P-function |Ti6

»(1
L/

I |><| T
v

K,

Figure 7.1: Camellia’s 128-bit Key Schedule

127

7.2 Hamming Weight Attack

The Hamming weight attack exploits the relation between data and its Hamming
weight derived by examining a power trace. If the Hamming weight can be captured
from a poorly designed cryptographic device, we can use it to eliminate those data
candidates failing to meet this relation. Given a Hamming weight of A for a particular
byte, there are <%) byte values consistent with this weight. Hence, as deduced
in [57, 94], the number of byte values consistent with a Hamming weight is expected

to be 9

8

28: b{H = h} ; > L[® 50.27 (7.1)
pro = = — ~ 00.27 . .
h=0 h 256 h

h=0

Thus, to attack a block cipher with 128-bit key running on an 8-bit processor, the
leakage of Hamming weight information for each key byte straightforwardly enables
attackers to reduce the possible key space from 228 to 50.271¢ ~ 29943 However,
depending on the nature of a block cipher, the outcome of a Hamming weight attack
could be much simpler than this reduced workload if many intermediate values are
derived from a small subset of key or subkey bits. For example, the attack presented
in this chapter exploits the redundancy in the key schedule of Camellia and is able
to determine all key bits without knowledge of any plaintext and ciphertext pair.
The complexity of our attack is very low, e.g., a processing time of 5 ms on a PIII

computer.

7.2.1 Basic Power Leakage Model

A popular power leakage model was proposed in [92] with two assumptions. One

assumption is that the processor leaks the Hamming weights of data being processed.

128

For example, for an XOR operation on bytes such as Z = X @ Y, information of
the Hamming weights of X, Y, and Z can be derived by examining the processor
power consumption. It is also assumed that the power consumed by the processor
demonstrates a linear relation to the Hamming weight of the processed data. As

defined in [92], the power consumption at a specific time j is

Powerljl=¢-H[j]+L+n (7.2)

where H[j] is the Hamming weight at time j, L is the additive constant portion in
the power trace, € represents the incremental amount of power caused by each extra
1 in the Hamming weight, and n is a random variable with zero mean representing
noise.

In the basic model of this chapter, we need not restrict the Hamming weight-
power relation to be linear. Instead, we simply assume that the power consumption
monotonical<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>