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Abstract 

Modern switches and routers require a large amount of storage space to bufl'er 

packets. This becomes more significant as the link speed increases and switch size 

grows. While DRAM is a good choice to provide capacity, the access time becomes a 

problem for high-speed applications. In this case, SRAM has to be used to match the 

link speed. However, SRAM is more costly and the density is low. The SRAM/DRAM 

hybrid architecture provides a good solution to meet both capacity and speed require­

ments. 

To minimize packet loss and provide better quality of service (QoS), each switch 

port is normally equipped with a large amount of buffering resources, which is usually 

based on the worst case scenario. However, under normal load conditions, the buffer 

utilization is very low. Therefore, we propose a reconfigurable buffer sharing scheme 

in which a buffer controller can dynamically adjust the buffer size allocated for each 

port according to the parameters derived from the traffic pattern and buffer saturation 

status. The target is to improve the buffer utilization without posing much constraints 

on the buffer speed. 

In our research, we study how buffer sharing architectures improve the switch 

performance, based on the results from both numerical analysis and simulations. The 

performance results obtained from both uniform and nonuniform traffics demonstrate 

that the proposed reconfigurable shared buffer can provide better queuing perfor­

mance with a much smaller shared buffer. We further conduct research into the VLSI 

design of the proposed reconfigurable shared queue architecture using hardware de­

scription language VHDL and using 0.18um CMOS technology. The design result 
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indicates that the buffer sharing and control logic can be integrated into port con­

trollers with a increasing of about 20, 000 gate-count for each 4-port group, while the 

memory size can be reduced into half of the dedicated buffer scheme. 
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Chapter 1 

Introduction 

1.1 Brief History of Data Networks 

Since the first data transmission network appeared in the late 1960s, data networks 

became a popular communication tool. Because of its great potential, in the past 

four decades, data communication networks have attracted extensive research. By 

pioneer researchers' tremendous efforts, the Internet development became one of the 

most successful and exciting phenomena in the history of technology. The merge of 

computer technologies and communication networks is so successful that there has 

a such valuable resource, the Internet, been available to everyone in the world. It 

changes our life styles dramatically, and also leads to numerous innovations of new 

technologies. As the data transmission speed keeps increasing, even the traditional 

telephone services are now considering to transmit telephone calls over the Internet, 

such as Voice over IP (VoiP). 

The telephone network was established in the late nineteenth century. In the 
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beginning, the transmitted telephone calls were analog signals over wire lines [1]. At 

that time, the switching infrastructures were all electronic circuits to provide point­

to-point connections with fixed bandwidth for each call. 

Because of increasing demand, the switching networks were necessary to develop 

more efficient interconnection operations. Since 1960's, digital devices have been in­

troduced to telephone network which provide higher service quality and speed [2]. 

In order to share expensive computer resources and exchange information, the data 

network was developed at around the 1960's [3]. The first nationwide data network 

ARPANET was established in 1969 by the pioneer research team at the Advanced Re­

search Projects Agency, USA. These early data networks typically deployed modems 

to convert digital information into analog signals and transmitted over leased tele­

phone lines [1]. The transmission bandwidth was typically limited by the voiceband 

channels, where the data rate was about 50Kbps, with packet delay at the order of 

50-100 ms [1]. 

Digital transmission has many advantages, such as, easier to regenerate, lower 

noise interference, and easier to multiplex, etc. As the digital technology progressed, 

Time Division Multiplex (TDM) brought the transmission bandwidth into a new level 

- T1-carrier, 24 voice channels were multiplexed to achieve 1.544 Mbps [1]. Later, the 

Frequency Devision Multiplex (FDM) was introduced to telephony switching systems. 

All these technologies brought to the Integrated Service Digital Network (ISDN) 

technology, which maximized the usage of digital infrastructures. In the mid-1980s, 

the bandwidth of data transmission had achieved 150Mbps and higher, and so-called 

Broadband ISDN (B-ISDN) appeared with more flexibilities and service categories 

[1]. 
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The Synchronous Optical Network (SONET) standard appeared in the late 1980s 

and led to the world wide data transmission explosion [1]. It played an important role 

for the B-ISDN: the transmission bandwidth continuously increases and the transmis­

sion reliability and quality improves incredibly. In the SONET, Optical Carrier (OC) 

level describes the capacity range of an optic fiber to carry digital signals. As a road 

map, from the beginning of OC-1 (1 x 51.8 Mbps) to current OC-192 (192 x 51.8Mbps) 

and OC-768 (768 x 51.8 Mbps), a single optical channel can support 192 and 768 op­

tical carriers and provide 10 Gbps and 40 Gbps of bandwidth. In the future, the 

OC-1536 and OC-3072 will provide 80 Gbps and 160 Gbps for faster data transmis­

sion [4]. 

1.2 Packet Switching 

Since the network evolution through ISDN and SONET technologies, now the com­

munication infrastructures can support a broad category of services, such as voice 

service, data service, image and video services, etc. From the network users' point 

of view, all computers send and receive messages through modems to their service 

provider's infrastructures. However, at each service network, hundreds of thousands 

of users could access the Internet at the same time. In addition, these accesses have 

various destinations, which could be local area applications or world-wide websites. 

All these applications require the network infrastructures to handle a large amount 

of messages efficiently, which puts great pressure on the network switching nodes. 

The message switch is a core device which is responsible for transmitting data 

messages according to their required destinations [5]. It is distinguished from tele-
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phone switch in numerous ways, such as, message transmissions are connectionless 

operations; the time delay can be tolerant compared with voice calls; and during the 

network congestion, it would hold data message temporarily for later transmission, 

and so on. 

Packet switching has the same concept as the message switching except each 

message is limited by a packet length [5]. For a long message, it can be divided 

into a number of packets and sequentially transmitted over the networks. At the 

receiver side, these packets are reassembled together by a predefined order to restore 

the original message before passing onto the end user. 

The packet switching, which is described in this chapter, usually refers to the 

packet distribution technology rather than a specific network switch node. 

WorkGroup 

10 Mbps FuH-dupl•• 
FMI Etbem•t HM-1 

24pQrts, +2G Ethe.rnet Swjtch Application 

Figure 1.1: A 24 Ports Ethernet Switch (taken from www.netsys.com.tw) 

As an example of the packet switch, Figure 1.1 shows a typical modern Ethernet 
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switch model, which has 24 ports with up to 2Gbps links. 

The two basic functions of packet switching are store and forwarding (sometimes 

refer to as buffering and routing) of data packets [5]. Abstractly, packet switching 

can be described as a box with N inputs and N outputs. According to a packet 

destination, internal connection will be provided to the packet during its transmission. 

For the synchronized packet switching, during each time slot, the internal connections 

could be different according to the demands of incoming packets. Besides the two 

basic functionalities [5], some packet switches have priority service classes, which 

provide services with different resource allocation schemes according to the packet 

priority classes. Another functionality is broadcast and multicast, which are also 

commonly implemented in packet switches to distribute a data packet to multiple 

destinations. These special functionalities are important features to provide Quality 

of Service (QoS) to end users and improve infrastructure utilizations. 

1.2.1 Packet Switching Architectures 

Based on different criteria, packet switching can be classified into different categories. 

For example, based on how internal conflicts are handled, packet switches can be 

divided into internal non-blocking and blocking switches. Based on the method of 

switching operation, they can be classified into three types, shared memory type, 

shared medium type and space division type. An abbreviative description of these 

three types is provided here based on [3], [5], and [6]. 
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1.2.1.1 Shared Memory Switch 

Shared memory switch, sometimes referred to as the first generation packet switching, 

usually consists of a central computer with a dual-port memory shared by all switch 

inlets and outlets. Internally, the memory is divided into separate logic queues corre­

sponding to each transmission link. At each time slot, all arriving packets from input 

links are multiplexed into a single stream and written to the shared memory; then, 

all packets at the head of each logic queue are retrieved and fed to their output links 

for departure. All receiving and departing operations are controlled by the central 

computer. 

The shared memory switch appeared at the early stage of packet switching, while 

the data networks were still in small scale with less users and applications. The 

bandwidth of shared memory should be at least 2N times faster than link rate, and the 

central computer should run even faster to accomplish all operations in one time slot. 

These critical conditions limited the data transmission rate and their applications. As 

the network technologies progressed, the shared memory switch is no longer suitable 

for high speed data transmission applications. 

However, the shared memory switch still has some remarkable advantages: Firstly, 

it is an internal non-blocking switch, because every incoming packet will be stored 

in memory unless memory is full; secondly, the memory size is the most optimized 

because the sharing mechanism eliminates memory redundancy; thirdly, it is easy to 

implement using single Large-Scale Integrated (LSI) circuit. These advantages enable 

the shared memory switches still exist in some small scaled data communication 

networks. 
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1.2.1.2 Shared Medium Switch 

The shared medium switch is also known as the second generation packet switch. 

The shared medium switch usually deploys a shared high-speed medium, such as a 

parallel bus, that is capable to carry all arrived packets. At the output side, each 

link has an interface controller, which tests the identification on the head of each 

packet. If it has a match, the packet will be accepted and stored in its First-In-First­

Out (FIFO) queue waiting for its turn to depart. This architecture, compared with 

shared memory switch, distributes the central computation functions to the interface 

controllers, which improves the operation speed. However, the speed of the shared 

medium and each buffer memory still should operate at N times faster than the link 

rate, and the same as the interface controllers, which is not feasible with the rapid 

development of computer communication networks. 

1.2.1.3 Space-Division Packet Switch 

In space-division packet switches, multiple concurrent paths can be established during 

each operation slot to transmit packets from their inlets to their destination outlets. 

This is also generally referred to as the third generation packet switch. In each time 

slot, the internal connections could adjust according to packet demands. Also, each 

Switch Element (SE) implements routing functionalities with distributed routing al­

gorithms, so the centralized controller is not necessary anymore. The commonly used 

space division packet switch architecture is the multistage interconnection network. 

The crossbar switch belongs to this category. 

• Crossbar Switch: For an N x N switch, the N inputs and N outputs can 
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be configured as a two-dimensional array with a switch at each cross-point on 

the grid. During each time slot, if the destinations of the N arrived packets 

are different from each other, N distinct paths will be setup by turning on 

N switches at the corresponding grid of each input-output pair, then all N 

packets will be transmitted in one time slot. However, when multiple packets 

are destined to the same output links, internal conflicts are not avoidable, and 

some queuing schemes must be deployed to improve the overall throughput of 

the switch. The major drawback of crossbar switch is its high complexity, which 

is in the order of O(N2) and is measured in terms of the number of cross-points. 

Therefore, the crossbar switch is not suitable for large switch fabric. 

Figure 1.2: A 2 x 2 Switch Element 

• Multistage Interconnection Network Based Switch: One typical multistage in­

terconnection network is the Banyan-based network [5]. The Banyan network 

is constructed by interconnecting several switch elements as its basic building 

blocks. A 2 x 2 switch element is shown in Figure 1.2, which contains two in­

puts and two outputs. It has four internal paths for all possible combinations 

of a packet with different destinations. The routing bit for each stage at the 
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0 

2 

3 

4 

5 

6 

7 

Figure 1.3: Multistage Switch Fabric: Banyan Network 

packet header, either a 0 or 1, will determine whether the packet will be sent 

to upper or lower link. An 8 x 8 Banyan network switch is shown in Figure 1.3, 

which is comprised of three stages and with 4 switch elements in each stage. 

For example, as shown in the figure, input 0, 4 and 6 have packets destined to 

output 7, 1 and 2, respectively. The destinations are represented in their binary 

format as shown in the figure. The first bit (most significant bit) determines 

the routing at the first stage; the second bit is used in stage two; and the last 

bit is used in the last stage for routing decision. In this way, all three packets 

are routed to their destinations. 

Other multistage interconnection network, such as, the OMEGA network and 

the delta network, etc., can be referred to [5] for more details. 
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• Multi-Path Switch: A Balanced Gamma Switch [7], [8] is used to illustrate the 

multi-path switch as shown in Figure 1.4. In the Balanced Gamma network, 

packets can be routed through even in the presence of failures of some of the 

SEs in the network [8]. Because of its multi-path property and efficient routing 

algorithm, Balanced Gamma network can provide outstanding performance, 

single fault-tolerant and robust when multiple faults exist, along with highly 

reliable and scalable properties. 

Stag• 0 Stage l Stag• 2 Output Stag• 

Iupm 0 -OmpurO 

Input 2 Outpur 2 

Input 3 Output 6 

Input 4 Outpnr 1 

Input 5 Omput 5 

Input 7 --·-·-· · Output 7 

Figure 1.4: Multiple-Path Switch Fabric: Balanced Gamma Switch 

1.2.2 Queuing Strategy 

In order to store packets in switch fabric, packet buffering, also known as queuing, is 

usually implemented inside the network switches. Queuing systems can be classified 
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into input queue, output queue and shared queue depending on the different buffer 

locations. 

1.2.2.1 Input Queuing 

For input queuing, packet buffers are implemented at the input side of a switch fabric 

[9]. When packets arrive at inlets with more than one packet destined to a same outlet, 

they will compete for transmission at the switch fabric. Usually, only one packet will 

be switched, others will be blocked and have to be buffered in their corresponding 

buffers for temporary storage and will be tried again. 

The most commonly known service discipline in a queuing system is First-Come­

First-Served (FCFS), that is, if the queue buffer is not empty, the newly arrived 

packets have to stay in the line to wait for their turns. Here, a problem arises that 

if a packet at the head of line experiences a longer waiting time, then, all other 

packets behind it have to wait, even though they are destined to idle output links. 

This is usually known as the Head Of the Line (HOL) blocking. Because of that, 

the maximum throughput of a purely input buffered switch is about 58% [3] under 

uniform random traffic. The performance becomes even worse when the applied traffic 

is getting burstier. 

To improve the throughput, some techniques have been developed to solve the 

HOL problem, such as, the Virtual Output Queue (VOQ) scheme. The VOQ divides 

the input buffer into a number of virtual output queues, and all arriving packets will 

be enqueued to their corresponding virtual output queues. In this way, the switch 

can maximize the throughput of the switch. 
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1.2.2.2 Output Queuing 

The output queued switch buffers packets at output side after they are switched 

through the switch fabric [9]. In the case of multiple packets destined to the same 

outlet at the same time, each output queue usually accepts up to k packets simulta­

neously, while 1 :::; k :::; N. Generally, k is called the knockout factor and its value 

can be engineered according to different switch sizes and traffic conditions. 

As is known, if the k is equal to link number N, then the switch arc totally non­

blocking, which is an ideal but impractical for large switches. However, if k is properly 

chosen, the switch can still achieve close to 100% throughput [9]. Moreover, with an 

output queue, packets are only waiting in the buffer for unavoidable congestions 

because of multiple arrivals or previous arrivals, so the best delay performance can 

be achieved compared with other queuing approaches. 

The drawback of this scheme is the potential speed up of k [3]. Another tech­

nique to reduce memory speedup limitation is to use concentrator which increases 

the hardware complexity, and increases cell loss in the concentrator [6] and [9]. 

1.2.2.3 Shared Queuing 

The shared queuing has similar architecture as mentioned in shared memory switch, 

that is, all packets are stored in a shared memory [9]. At each time slot, all arrivals 

are multiplexed into a single stream and written to the memory; all outgoing packets 

are retrieved from the memory and demultiplexed to feed into corresponding output 

links. The shared queue achieves 100% throughput and optimized delay performance. 

However, the cost is unaffordable- 2N times speed up for both the shared memory 
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and the central computer. 

From the previous discussion, it is clear that each queuing strategy has its ad­

vantages and drawbacks. In practice, schemes which combine different strategies 

may be deployed in switch fabric to achieve high performance. For example, some 

network switches use parallel switch planes to transmit packets, whereas some oth­

ers implement recycle paths for those unsuccessful packets resulting from the port 

competitions. 

References [1], [6], and [9] provide more detailed information for different switch 

models and queuing architectures. 

1.3 Motivation 

For many packet switches, output queuing has been one of the most popular buffering 

strategy and it has been widely used, such as in the knockout switch [10], Pinium 

switch [11], etc. It has been recognized that the output-queued switch possesses 

the best throughput and delay performance [12]. Therefore, we decide to conduct our 

research based on an output queued switch. However, if one output queue is dedicated 

to each port, the buffering space for each queue usually should be allocated based 

on the worst case traffic requirements. While, under normal traffic conditions, the 

applied load is far less from its peak load. Moreover, for a switch with a large number 

of ports, it is quite possible that the momentarily unbalanced traffic experienced in 

the switch would cause some output queues suffer from overly intensive load where 

packets discarding is unavoidable, while other queues may remain in the normal 

condition or even in the idle state. 
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This thesis will show that how the shared queue will provide better performance 

on the time delay and cell loss rate. Cell discarding will only occur when the entire 

shared buffer space is full. In this way, it can smooth out the unbalanced traffic load. 

The delay performance is optimized because a cell is only delayed by unavoidable 

waiting time in the FIFO. In addition, since the shared queue can accommodate 

more cells, the buffer utilization will be improved. 

1.4 Thesis Organization 

New generation routers and packet switches usually have a large number of ports 

with very high link rates. With the rapid increases of network applications, data 

traffics on the Internet are difficult to measure and cope with. As a result, a large 

queuing buffer is usually equipped in order to accommodate the worst-case scenario. 

However, under normal traffic conditions, buffer utilization is rather low. Improving 

the buffer efficiency and minimize possible packet loss has become a major concern 

for broadband switch design and implementation. 

In our research, we proposed a reconfigurable buffer sharing scheme, which fol­

lows the advanced hybrid SRAM/DRAM approach to enhance the queuing perfor­

mance for high speed switches and routers. It is known that, this architecture is the 

fastest buffering scheme with the worst case bandwidth guarantees [13]. The proposed 

scheme targets at improving buffer utilization, while not posing much constraints on 

the buffer speed by dynamically adjusting buffer spaces for individual ports according 

to traffic patterns and buffer saturation status. 

The organization of the thesis is as follows: Chapter 2 provides a technical review 
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of various queuing systems and involved memory technologies. A brief introduction 

of our proposed shared queue architecture is presented too. Chapter 3 provides a 

numerical model to analyze the SOQ performance under uniform traffic. In Chapter 

4, we present the performance comparison for different shared queue schemes under 

non-uniform traffic. Chapter 5 describes the design and implementation of the re­

configurable SOQ system using hardware description language VHDL and 0.18 um 

CMOS technology. Chapter 6 gives the thesis conclusions and future work. 
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Chapter 2 

Memory Technology and Network 

Queuing Systems 

Modern memones can be simply classified into volatile and nonvolatile memory 

which depends on whether a constant power is supplied for data sustainment [14]. 

Currently, two widely available memory, Static Random AccessM emory (SRAM) 

and Dynamic Random Access Memory (DRAM) [15] are volatile memory, which 

can perform both reading and writing operations. This chapter firstly provides a brief 

introduction of SRAM and DRAM technologies, then proceeds with their deployments 

in network switches. The proposed reconfigurable shared output queue architecture 

is presented in the last section. 

2.1 Random Access Memory Technologies 

Random Access Memory (RAM) is initially used to hold program codes and data for 

computers. Random access means that any locations in the memory can be written 
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to or read from at any time, regardless of the last accessed location [16]. RAM 

is classified as a volatile memory, that is, data stored in its memory cell will be 

maintained upon a persistent power supply. 

2.1.1 Static Random Access Memory (SRAM) 

An SRAM chip contains an array of memory cells with support circuitry such as 

address decoders. The memory array is organized in rows and columns which called 

word lines and bit lines respectively. During a write or read operation, the address 

decoder provides the row address and column address, then the corresponding SRAM 

cell is selected, and the desired data value is written into or read from this location. 

Figure 2.1 shows a SRAM cell, which is implemented by using 6 transistors. 

Bt Une 
True 

V\tird Une 

GND 

Figure 2.1: An SRAM Cell (taken from http:/ jparts.jpl.nasa.gov/asic) 

The performance of SRAM is usually measured in access time and cycle time [17]. 

The access time specifies a minimum amount of time required to read a bit from the 

memory, from the initiation of the read operation to when the bit appears on the 
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data bus. The cycle time indicates the time interval from the end of the previous 

operation to when the next operation is ready. SRAMs usually responds quickly to 

the required operations because their access time and cycle time are generally less 

than or equal to one clock cycle- considering a SRAM runs at 250M Hz, the duration 

is 4 ns. However, because the leakage and standby currents exist for all transistors, 

the SRAMs usually consume a large silicon area and power supply. 

2.1.2 Dynamic Random Access Memory (DRAM) 

Dynamic Random Access memory is probably the most widely used semiconductor 

memory because of its higher storage density and advantage on cost per bit. A 

DRAM cell is usually implemented using a storage capacitor and a single transistor 

as a switch [18]. The charge presented on the capacitor indicates a logical value 1, 

and its absence is 0. However, DRAMs have more complex operation modes and 

require additional circuitry to sustain the data value. During a reading process, the 

data bus which is connected to the corresponding data cell should be pre-charged. 

Then, the stored data on its capacitor leads to a very small voltage change, which 

causes a response on its sense amplifier. In this way, the data will appear on the 

data bus. A writing operation involves charging or discharging of the capacitor to 

the desired voltage level. Because of the leakage current, the value stored in the 

capacitor degrades gradually even with a constant power applied to it. Therefore, 

constant refresh operation has to be performed at a periodic interval to preserve its 

value. 

The Random Access Cycle Time (TRAG) is defined as a minimum time interval 
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for two consecutive accesses to a DRAM device [17]. This time interval includes the 

time to complete the first operation, the pre-charge or recovery time, and the address 

select re-active time. The TRAG is an important DRAM measurement parameter 

because it determines the memory operation speed. Compared with the computer 

clock speed, the DRAM access time is usually very slow. To improve the DRAM 

performance, instead of faster retrieving of data, the trend of the DRAM technology 

is to provide a large volume of data during each access, which means that a wider data 

bus and memory bank interleaving have to be used to increase the data transmission 

parallelism. 

Table 2.1 provides a simple comparison about current SRAM and DRAM param­

eters including access time, density, and power consumption per 100 Gbit of storage. 

The information for SRAM is taken from [19], and that for DRAM is from [20]). 

Table 2.1: Typical SRAM/DRAM Parameters 

Access Cycle Time Max. Density /Chip Power Consumption/100Gbit 

(Approximately) (Approximately) 

SRAM 4 ns 18 Mbit 10 kW 

DRAM 50 ns 1 Gbit 10 w 

2.2 RAM in High-Speed Network Applications 

Switches and routers are the central components in communication networks whose 

basic function is to forward data packets. Buffering is a fundamental requirement 
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to temporarily provide data storage during network congestions. As a widely used 

rule-of-thumb [21], for TCP flow to work well, packet switch has to buffer all packets 

passing through in Round Trip Time (RTT), which implies that the required buffer 

space is usually huge. 

The queuing system for high-speed switches/routers is based on memory technolo­

gies. Usually, SRAMs are employed to provide faster operation speed. However, its 

density is low and it is more costly. Therefore, as the memory capacity requirement 

becomes significant, DRAMs are getting attractive. Although DRAMs can provide 

massive and dense storage, the memory access time is usually slow. Much research 

has been conducted in past decade on the above mentioned issues for memory tech­

nologies. 

It is obvious that modern memory technologies have become more and more so­

phisticated. New techniques, such as cache and memory bank interleaving, have 

greatly improved the performance of modern computer systems. These techniques 

had been introduced to packet switches too. 

2.2.1 Pipelined Memory Shared Buffer - 1995 

The basic concept of memory bank interleaving can be found as early as in 1988 

for the Prelude switch [22] and in 1993 for Turner's multicast switch [23]. In 1995, 

Manolis Katevenis et al. proposed the concept of the Pipelined Memory Technique 

[24], which employed interleaved memory banks as shown in Figure 2.2. 

In this figure, the interleaved memory banks take advantage of the fact that the 

packet access to the memory bank is in a sequential manner. This is because the 
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Figure 2.2: The 2 x 2 Shared Buffer using Pipelined Memory (taken from [24]) 

incoming and outgoing link width is equal to w and packet width is equal to a multiple 

of w. So, when the first word wO is received by the registers on the left most column, 

they are ready to be transferred to the memory bank MO, while subsequent words 

are in the progress of being registered by w1, w2, and w3. Because this is a 2-input 

and 2-output system, the memory operations have been divided into 4 pipeline stages. 

As long as the packets are wider than 4 words, the memory operations and packet 

receiving/transmitting can work perfectly without any stall. 

2.2.2 DRAM-based Shared Memory - 1997 

Later, Chiueh and Varadarajan proposed the architecture of the Beluga shared mem-

ory ATM switch in 1997, which employed centralized and heavily interleaved DRAMs 

for a shared queue, together with input and output buffers at the receiving and trans-

mitting ports [25]. 
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Figure 2.3: The Beluga System Architecture (taken from [25]) 

The overall Beluga system architecture is shown in Figure 2.3, with N connections 

and M shared memory logical banks. To implement the shared memory with DRAMs, 

a small amount of SRAMs are used as writing and reading buffers to match with 

the data bus speed. Inside the Beluga, if an arrival packet needs to be stored in 

the memory, a memory bank will be selected to be activated and receive the entire 

packet. This clearly indicates that, as the link number N increases, the required 

memory bank M has to be increased to ensure no bank conflict if multiple packets 

arrive simultaneously. Because the shared memory banks are basically single port 

memory devices, the reading and writing contention still exists when both try to 

access the same memory bank. Under this situation, the writing process will have a 

higher priority to ensure no packet loss occurs. The reading process has to be delayed. 

As a result, the corresponding transmission port will be stalled for one round robin 
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interval. 

2.2.3 Hybrid SRAM/DRAM Architecture - 2001 

In 2001, S. Iyer and N. McKeown proposed a new hybrid SRAM/DRAM architecture 

for fast packet switches, which has been recognized as the fastest packet buffer with 

the worst-case bandwidth guarantee [13]. In the paper, the authors proposed a hi-

erarchical memory architecture, which is shown in the Figure 2.4, and demonstrated 

the SRAM size calculations and Memory Management Algorithm (MMA). 
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Figure 2.4: Hybrid SRAM/DRAM Packet Buffer (taken from [13]) 
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In their design, an input queue was implemented at each line interface. To improve 

the performance, the input queue is organized in Virtual Output Queue fashion, where 

the input queue is virtually divided into N output buffers corresponding to all output 

links. For each interconnection, two small SRAM buffers are implemented at arriving 

and departing interfaces to store the head and tail cells and all the rest cells are stored 

in the central DRAM memory. As the figure shows, the access to DRAM for writing 

and reading is organized in a block of b cells. The value of b is decided by several 

factors: the DRAM access time, link speed, memory hierarchy and MMA. After b is 

derived, the tail and head buffer sizes can be determined to achieve the most optimized 

SRAM size in the system. The memory management algorithm presented in the paper 

is called the Earliest Critical Queue First MMA (ECQF-MMA). During every time 

slot, the central switch scheduler issues a request to each input queue for transmission, 

and all requests are stored in a Lookahead Buffer. Then, all transmissions are executed 

in the pipeline fashion. The ECQF-MMA has an advantage that the SRAM size is 

minimized, which is on the cost of an additive pipeline delay to the packets. 

Additional efforts have been put forward to improve the performance and control 

algorithms based on this innovative system. [26] introduced new memory manage­

ment algorithms, for example, the Most Deficit Queue First MMA (MDQF-MMA) 

is proposed to guarantee zero pipeline delay for larger SRAM size, and the Most 

Deficit Queue First is proposed as a compromised solution between ECQF-MMA and 

MDQF-MMA. 

In [27], J. Garcia, M. Valero, and et.al., implemented an input queuing sys­

tem using the same SRAM/DRAM architecture. The system could support up to 

OC - 3072 ( 160Gbps) link rate with about one hundred ports and several service 
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Figure 2.5: Proposed Shared Output Queue Architecture 
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classes. In their system design, heavy DRAM bank interleaving was introduced, 

which is called Conflict Free DRAM System (CFDS), with reduced block size of cells 

(smaller data granularity). To ensure the conflict free access to DRAM banks, out-

of-order execution and bank-renaming were deployed. However, the CFDS increases 

the system complexity and introduces DRAM fragmentations during the system op-

eration. 

2.3 Proposed Shared Output Queue (SOQ) 

2.3.1 Proposed SOQ Architecture 

Based on the previous discussion, we propose a reconfigurable buffer sharing scheme 

for an N x N output-queued switch, which is shown in Figure 2.5(a) and 2.5(b). 

To make it more general, we denote k in the figure as the knockout factor, where 

1 ~ k ~ N, and we use fixed length data cells as our traffic load. Although, data 

packet could be variable length, we assume that they have been segmented in advance. 

In Figure 2.5(b), we show a 4-port shared buffer architecture: each port has 
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dedicated tail and head buffers which use fast SRAM memory to match with the high 

link speed. A block of cells buffered in a tail buffer will be transfered to the shared 

central memory which will be implemented in DRAMs. To improve DRAM efficiency, 

multiple interleaved memory banks are deployed. Similarly, the reading process will 

transfer a block of waiting cells to their corresponding head buffers for transmission to 

downstream nodes. The block transfer of cells between the main memory and those 

tail/head buffers must obey two rules: 

• The tail buffers should not experience overflow before the main memory is full; 

• The head buffers are never empty if there are waiting cells in the main memory 

and tail buffers. 

Also, the transmission of the block of data should match the speed and bandwidth 

requirements between SRAMs and DRAMs. Furthermore, in case that a tail buffer 

has less than a block of cells but the head buffer is empty, a cut-through transmission 

will be performed through data bus. 

2.3.2 The SOQ High Level Control Algorithm 

The top level control algorithm is implemented inside the SOQ, and its pseudo code 

is shown below. Basically, in a while loop, the algorithm checks the read/write 

requests from the head buffers and tail buffers, then the corresponding operations 

are performed. The details of these operations are discussed in Chapter 5 when 

functional units design and implementation are presented. 
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while SystemOperating do 

if WriterRequest then 

if !QueueFull then 

write-transmission 

else 

set-full-flag 

end if 

else if ReadRequest then 

if !QueueEmpty then 

read-transmission 

else if !T-BufferEmpty then 

cutthrough-transmission 

else 

null 

end if 

else 

null 

end if 

end while 

The proposed shared output queue scheme deploys the hybrid SRAM/DRAM 

architecture, which follows a similar memory technique mentioned in [27] and [13]. 

In these previous works, the input queue, more precisely, the virtual output queue, is 

implemented for the switch fabric. The major concern of the research is to replenish 

the head buffers according to the requests from the switch scheduler. The results 
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indicate that various memory management algorithms provide different performance 

on time delays and SRAM size requirements. In the proposed SOQ scheme, we are 

more focused on the shared memory management to improve the queuing performance 

on cell loss rate and delay time, which will be discussed in the next two chapters. In 

Chapter 5, the detailed architecture design and implementation will be studied. 

2.4 Summary 

In this chapter, we have introduced some basic semiconductor memories and their 

characteristics. In particular, how these characteristics affect their applications in 

high-speed networks. From the literature review, we find that the hybrid SRAM/DRAM 

scheme exhibits excellent performance, not only for computer system designs, but also 

for high speed network applications. It has been recognized as the fastest buffering 

strategy with guaranteed worst-case bandwidth. Therefore, we propose the shared 

output queue scheme based on this advanced architecture. In fact, this architecture 

can be used not only for the design of the input and output queues in broadband 

switches, but also for the shared memory queue with multiple ports inside the switch 

fabric. 
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Chapter 3 

Performance Analysis of the 

Shared Output Queue under 

Uniform Random Traffic 

The numerical methods and analytical methods are theoretical foundations for the 

performance analysis of queuing systems. In our study, an analytical model is devel­

oped under uniform random traffic which provides numerical results of performance 

of our proposed SOQ scheme. 

3.1 Analytical Modeling 

3.1.1 Review 

The analytical methods provide theoretical foundations for the modeling of network 

queues. Many studies have been conducted on the subject of various shared queuing 
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schemes. The computational complexity is considered to be an important factor for 

the feasibility of a model in real applications. 

In [28], Turner proposed an analytical model, referred to as the scalar model, 

in which the state variables ( si,t E 8) are used to keep track of the overall buffer 

occupancy and determine the status of each virtual queue. However, the calculated 

results of this model are overly optimized when compared to those from simulations. 

Then, the vector model [29] was proposed, which provided better accuracy than 

the scalar model. Its state, s = (s1, s2 , ... , sb), is a vector with b as the number of 

logic queues, and si gives the number of packets destined to a specific output port 

i. This model considered the correlations among packets inside the shared queue, 

however, the computational intensity increases severely as the buffer size and switch 

size increase. 

Turner's bidimensional model [30] keeps track of both the number of packets in 

the shared queue and the number of active outputs. On the other hand, Giannatti 

and Pattavina's bidimensional model [31] provides relatively better accuracy and 

tractability. In this model, the shared queue is studied via a tagged queue (represent­

ing a logic queue) and all other logic queues are considered together as an untagged 

queue. The two variables of the switch state keep track of the content of the tagged 

queue and the cumulative content of the untagged queue. In this way, the state space 

is kept reasonable low, even for a large switch size and large number of logic queues. 

Based on this model, in [32], Abonamah and Dang developed their bidimensional 

scheme to analyze the behavior of channel grouping with shared queues for ATM 

switches. 
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Figure 3.1: Shared Output Queue Model 

3.1.2 Performance Analytical Model 

In this subsection, we present our performance model of the shared output queue un-

der uniform random traffic, which is modified from Pattavina's bidimensional model. 

The illustrative architecture of the shared output queue (SOQ) is shown in the Figure 

3.1. Because of the homogeneity among all SOQ modules, we only focus on one of 

the SOQ modules, the SOQ;, where 0 :S i :S NjM -1, and M is the number of logic 

queues sharing a common buffer with a total of B cell spaces. Because cell desti-

nations are uniformly distributed, any queue in SOQ; can be chosen as the tagged 

queue, which is denoted by ¢, the other M - 1 logic queues are grouped together as 

the untagged queue which is denoted by 1> _ 

For a stable queue, its behavior can be described by the state probabilities and 

state transitions. It is clear that two operations are involved, that is, writing cells 

into the buffer during an arrival process and reading cells from the buffer during a 

departure process. Therefore, we define the queue state (x, X) as the state of the 

system with x cells in the ¢ and X cells in the 1>. Because the cell number x and 
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X could be arbitrary numbers within the boundary B, the state at a given time t is 

(x, X) E 8, where 8 is the collection of all valid states. 

The following notations are defined for later use: 

• wt(x, X) :the state probability of SOQ; at time slot t with x cells in the¢ and 

X cells in the <I>. 

• wt'(v, V) : the intermediate state probability after the arrival process, with v 

cells in the ¢ and V cells in the <I>. 

By introducing the intermediate state, we can decompose the operation in one 

time slot into two parts: first, the arrival process and followed by the departure 

process. Given the initial SOQ; state probability wt(x, X), after the arrival process, 

the intermediate state probability is 

wt,(v, V) = L wt(x,X)!'A(a,A), (3.1) 
V(x,X)E8 

where "Y A (a, A) is arrival probability that a cells arrives to ¢ and A cells arrives to <I>, 

and state (v, V) is equal to (x +a, X+ A). 

Similarly, after the departure process, the SOQ state probability is given by 

wt+l(y, Y) = L wt'(v, VhD(d, D), 
V(v,V)E8 

(3.2) 

where "'(D( d, D) is the departure probability that d cells depart from ¢ and D cells 

depart from <I>, and the next state (y, Y) is equal to ( v - d, V - D). 

Next, we examine and analyze the two processes in detail. 
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3.1.3 Arrival Process 

We assume that cell arrival is an independent and identically distributed (i.i.d.) ran-

dom process with the probability of p across all switch inlets. Cell destinations are 

uniformly distributed to all outputs. We further assume that the switch fabric is 

ideal and nonblocking, so that cell loss is only caused by buffer overflow. Under such 

circumstances, a simple Queue Loss (QL) mechanism will be deployed so that all ex-

ceeded cells will be dropped. If we define 8 as the set of all valid states, V(x, X) E 8, 

then, 

X::; B, X::; B, X+ X ::; B, (3.3) 

where B is the total buffer size for the share queue. 

Clearly, under the i.i.d. random traffic, cell arrival to ¢ and cell arrival to <I> are 

independent random process, so the joint probability of ')'A(a, A) can be written as 

!'A(a, A)= !'a(a)!'A(A), (3.4) 

where 'Ya(a) is the probability of having a cells to tagged queue ¢ and 'YA(A) is the 

probability of having A cell to untagged queue <I>. 

Let us define f](N, k,p) as the probability that there are k cells destined to an 

output queue in a time slot, given that p is arrival rate at each switch inlet and N is 

the switch size, and we have 

(N) k N-k f](N,k,p)=Pr[K=k]= k (p) (1-p) . (3.5) 

Therefore, under random traffic condition, arrival process for output queues can be 

modeled by the binomial distribution. Let us denote St the available cell space inside 

33 



the SOQi at timet, that is, 

St = B- (x +X), 

the probabilities "Ya(a) and "YA(A) can be written as 

"'fa( a)= (J(N, a,pjN), while (a+ A) ~ St (3.6) 

"YA(A) = (J(N, A,p(M- 1)/N), while (a+ A)~ St. (3.7) 

During a time slot, the number of cells arrives at SOQi must not be larger than 

N (100% traffic load has N cells arrival), then all pairs of (a, A) satisfy following 

constraints 

a+A E [O,N] 

a E [O,N] 

A E [O,N]. 

(3.8) 

When (a+ A) > St, the exceeded cells will be discarded, which means that the 

state transition from (x, X) to (v, V), where v + V = B, will occur for all (a+ A= 

St+1, St+2, ... ,N). lnthiscase,ifwedefine.6.asasetincluding(St+l, St+2, ... ,N), 

then cell arrival probabilities to the tagged and untagged queue when (a+ A) E .6., 

"Ya and "YA respectively, can be calculated by 

{ 

"Ya(as) = L (J(N,a,pjN) 
V'(a)E6. 

"YA(As) = L {J(N, A,p(M- 1)/N). 
V'(A)E6. 

3.1.4 Departure Process 

(3.9) 

Next, we examine the departure process. In our switch model, one cell departs from 

each logic queue unless its bufl'er is empty. Because the departure processes for all 
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logic queues are independent, the probability of having d and D cells departing from 

the tagged queue and the untagged queue, respectively, can be write as 

"!D(d, D) = 'Yd(d)'yD(D). 

The probability of d cells departing from the tagged queue ¢ is 

{ 

'Yd(d = 1) = 1, while v > 0 
'Yd(d) = 

'Yd(d = 0) = 1, while v = 0, 

(3.10) 

(3.11) 

which indicates a deterministic cell departure of one will occur when the tagged queue 

¢ is not empty. Then, the next state of tagged queue is y = v - 1. 

For the untagged queue <I>, at timet', V cells are stored in theM -1logic queues. 

It is possible that all V cells belong to one logic queue, or they could be distributed 

to the M - 1 logic queues. It is necessary to find out how many cells will depart in 

the given time slot. We define a queue as Active Queue (AQ) which contains at least 

one cell in its logic buffer. In this way, if we know the number of AQ within M- 1 

logic queues, we know the number of departing cells in the current time slot. The 

approximation of the AQ value is based on [30], and the essential assumption is that 

all combinations of the V cells existing in all M - 1 logic queues are equiprobably 

distributed. Then, the problem is to find out the probability of AQs in the untagged 

queue <I> with V cells in it. 

We define the function 

(
m + n -1) cr(m, n) = , 

n-1 
(3.12) 

which gives all possible combinations that the sum of n nonnegative integers is equal 

tom [30], [32]. For example in the case of m = 3 and n = 2, 

(
3 + 2- 1) 4! 

cr(3, 2) = 2-1 = (4 -1)!1! = 4" 
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That is to say, there is a total of 4 ways for 2 nonnegative integers to sum up to 3. 

Based on this, we calculate the probability of D active queues, where 1 ~ D ~ M -1, 

and V cells in all untagged queue, 

(M-1) (V-1) 
Pr(D) = D D-1 . 

a(V, M- 1) 
(3.13) 

In this equation, the denominator gives all possible ways that V cells are distributed 

among the M -1 logic queues, and the numerator gives the total number of ways that 

V cells are distributed to D active queues times the binomial coefficient D chosen 

from M - 1. With the number of AQs derived, the probability of having D cells 

departing from the untagged queue is given by 

{ 

"fD(D = 0) = 1, 
/'D(D) = 

Pr(D), 

and the next state of <P is Y = V - D. 

while V = 0 
(3.14) 

while V > 0, 

Therefore, the joint probability of having d and D cells depart from ¢ and <D, 

!'D(d, D),respectively, can be written as 

/'d(d = O)!'D(D = 0) = 1, while v = 0 and V = 0 

!'d(d = 1)/'D(D = 0) = 1, while v > 0 and V = 0 

Pr(D), otherwise. 

(3.15) 

After all the transition probabilities have been derived, we are ready to compute state 

probabilities and performance parameters. 

3.1.5 Steady-State Analysis and Performance Parameters 

In the performance evaluation, a stable queue and a steady-state computation arc 

necessary, which is assumed for our analytical model. In our analysis, the probabilities 
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of arrival 'YA and departure 'YD are pre-calculated and stored in two tables. After the 

initial state is chosen, we compute and record state probabilities slot by slot. In this 

way, at the end of the desired number of iterations, the corresponding performance 

parameters can be obtained. For reasonable B and M values, the required space to 

store the state probabilities is usually reasonably small for our analytical model. In 

most cases, convergence can be achieved with around 50 iterations, which indicates 

that this iterative analytical approach is efficient. The following parameters, which 

include cell loss rate and average queue occupancy, arc studied and compared. 

3.1.5.1 Average Queue Occupancy 

After the SOQi steady-state probabilities have been worked out, the average number 

of cells in queue, N, can be obtained as 

_ 1 B B-j 

N = M L L (j + J)ii!(j, J). 
j=O J=O 

(3.16) 

The average delay time can be computed by applying the well-known Little's formula, 

which stated that the average number of customers in a stable system, N u, is equal 

to their average arrival rate, >., multiplied by their average time in the system, Tw, 

that is 

Nu = ,\ x Tw. 

It should be noticed that in our calculation, the service time, which is constant, is 

not included. 
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3.1.5.2 Cell Loss Rate (CLR) 

At any given time slot t, if the remaining buffering space, St = B- (x +X), is not 

enough to accommodate all incoming cells, up to St cells will be accepted, and the 

excessive ones will be discarded. For a given state (x, X), the corresponding Cell Loss 

Rate 1f(x,X) can be calculated as 

where the factor 

N 

1f(x,X) = w(x, X) L rJ'YA(a, A), 

rJ-
{ 

0 

a+A-St 
a+A 

a+A=St+l 

while (a+A) :SSt 

while (a+A) >St. 

Therefore, the total cell loss rate 1r can be derived as 

7r = L 1f(x,X)· 
(x,X)E8 

3.1.6 Performance Comparison 

(3.17) 

(3.18) 

(3.19) 

Here, we compare the performance results from the analytical model with those from 

simulations. An ideal128 x 128 non-blocking switch is used for the study. The sharing 

factor M is set to 4 and the shared buffer space B is 32 cells. The cell arrival rate p 

at switch inlet ranges from 0.6 to 0.9 and the departure rate is 1. For the analytical 

model, we chose the initial state is (0, 0). Figure 3.2 and 3.3 compare the cell loss rate 

and average queue occupancy performance for the SOQ-4 scheme. The results from 

different iterations, 40, 50 and 60 rounds as in the figure, are almost same, which 

indicate the queue has been in the steady state. Therefore, we can conclude that 
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the analytical model can converge in about 50 round iterations, and it is efficient to 

compute the performance results. 
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Figure 3.2: Average Number In Queue vs. Offered Load for SOQ-4 

In both figures, the results from the analytical model match the simulation results 

very well under various load conditions. With an efficient buffer sharing scheme, 

fewer buffer would be required, the state calculation from our model can be be done 

efficiently. 

To demonstrate the advantage of using shared queue scheme, we compared the 

analytical results of various SOQ schemes with that from the Dedicated Output 

Queue (DOQ) scheme. Figure 3.4 compares the cell loss rate performance of dif-

ferent schemes. It is clear that all SOQ schemes have better cell loss performance 

over the DOQ scheme. 
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3. 2 Confidence Interval Analysis 

The Confidence Interval ( CI) is an efficient method for statistical analysis of simula-

tion results, which estimates the result reliability and approximates its distribution 

range. Confidence interval is defined as an estimated range of values which are likely 

to include an unknown population parameter, the estimated range being calculated 

from a given set of sample data. Reference [33] provides the basic concepts of CI and 

its applications, which is briefly introduced here. 

3.2.1 Confidence Interval Basics 

From the basic statistics theory, for a set of samples {Z1 , Z2 , ... , Zn}, the mean value 

of this set is defined as 

(3.20) 
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and the sample variance is 

S2(n) = I:~=l[Z,- Z(n)]2 
n-1 

(3.21) 

If the simulation result is z C {Z1 , Z2 , ... , Zn}, and the set {Z} contains indepen-

dent and identically distributed variables (i.i.d.) with n ---" oo, then the sample mean 

z has a normal distribution with Probability Density Function (pdf) 

P(z) = 1 exp-(z-M)2/2a2' 

fi;;;2 
(3.22) 

where its mean value is 1-l and its variance is a 2
, which is shown in Figure 3.5. 

We can see, if a is properly chosen, then the covered area could be 90, 95 or 98 

percent, as defined as the desired confidence interval 1 - a. If the whole area under 
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the curve represents as 1, then the area between {-a, a} is: 

P(u-a<z<u+a)= exp-(z-1-')/2" dz=1-o:. 1 lu+a 2 2 

J2n(J2 u-a (3.23) 

By replacing w = ( z - 11,) I ((}I y'n), so 

(3.24) 

Here the desired value of this integral, can be calculated be choosing the point 

a= wa12 . So the value of z is, 

(3.25) 

However in practice, it is difficult to use this formula since the Variance a 2 is 

usually unknown in advance. In order to estimate confidence interval, the sample's 

standard deviation S is used under the condition that the set contains large sample 
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elements. So the formula is modified to 

(82(;0 
z = J-L ± te>/2,n-1 v ~' (3.26) 

where t
0

; 2,n-l is a value corresponding to the desired a and sample space n. So 

Equation 3.26 gives the 100(1- a) percent confidence interval of z with n- 1 degrees 

of freedom. Generally, some typical values of t have been calculated and stored in 

a table for readers to retrieve, which is also provided in the previously mentioned 

reference [33]. 

Now, we conduct the confidence interval analysis of our simulation results. 

3.2.2 Confidence Interval Analysis of SOQ Performance 

In this subsection, we study the SOQ performance by analysis its confidence interval 

for the simulation results. 

In the simulation, with uniform random traffic, the offered load ranges from 60 

to 90 percent is applied. For each round of every experiment trial, the switch runs 

for 5 million cycles. A total of 50 rounds is repeated to collect the output data. We 

provide the confidence interval analysis of the average delay and cell loss rate. 

3.2.2.1 Delay Performance 

Table 3.1 provides the 95% confidence intervals for average delay performance for 

various offered load conditions. The upper and lower bounds of the interval are 

shown in the table for various queue sharing schemes, which indicate that 95 percent 

of simulation results arc located within the range. This also means that, in any 
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number of simulation rounds, only 5 percent of the results will be distributed outside 

of the range in the table. 

Table 3.1: 95% Confidence Interval of Delay Performance 
Offered Load DOQ SOQ-2 SOQ-4 SOQ-8 

Upper Lower Upper Lower Upper Lower Upper Lower 

0.6 0.7362813 0.7363421 0.7440419 0.7441183 0.7441234 0.7441885 0.744099 0.7441632 

0.65 0.8993704 0.8994493 0.9207768 0.9208733 0.9213091 0.9214073 0.921233 0.921326 

0.7 1.1000013 1.1000906 1.1544122 1.154515 1.1574216 1.1575402 1.1574761 1.1576038 

0.75 1.3442313 1.3443317 1.471593 1.471749 1.4879049 1.4880666 1.4881909 1.488359 

0.8 1.6352177 1.6353167 1.9048013 1.9049961 1.9787996 1.9790815 1.9842544 1.9845221 

0.85 1.9710783 1.9711622 2.4743716 2.4745836 2.733775 2.7341673 2.8055281 2.8059845 

0.9 2.3424462 2.3425582 3.1542365 3.1544308 3.7751787 3.7755865 4.1920849 4.1926083 

3.2.2.2 Cell Loss Rate performance 

The 95% Confidence Interval of Cell Loss Rate is listed in the Table 3.2. It is noticed 

that zero cell loss is encountered under low traffic load conditions and when a larger 

queue sharing scheme is used. 

Table 3 2· 95% Confidence Interval of Cell Loss Rate 
Offered Load DOQ SOQ-2 SOQ-4 SOQ-8 

Upper Lower Upper Lower Upper Lower Upper Lower 

0.6 0.0004615 0.0004626 0.0000028 0.0000028 - - - -

0.65 0.0011242 0.0011259 0.0000178 0.000018 - - - -

0.7 0.0025299 0.0025319 0.0000973 0.0000978 0.0000002 0.0000003 - -

0.75 0.0052763 0.0052796 0.0004501 0.000451 0.0000057 0.0000058 - -

0.8 0.0102256 0.0102299 0.0017481 0.0017501 0.0000934 0.0000939 0.0000004 0.0000004 

0.85 0.0184646 0.018469 0.0056218 0.0056252 0.0009864 0.0009883 0.0000533 0.0000537 

0.9 0.0311044 0.0311098 0.0147878 0.0147934 0.0060762 0.0060809 0.0019289 0.0019314 
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3.3 Summary 

In this chapter, we have studied some mathematical methods for the performance 

analysis of queue sharing scheme. Firstly, we have introduced our shared output 

queue analytical model based on discrete-time Markov chain analysis. Secondly, we 

briefly reviewed the confidence interval method for verifying simulation results. 

In our analytical model, a discrete-time Markov chain model with two dimensional 

state variables is used to evaluate the Shared Output Queue buffer behavior. The state 

probabilities and state transition probabilities are derived. According to the traffic 

arrival rate, the arrival probabilities toward both the tagged queue and the untagged 

queue are developed. The analysis of departure process has been conducted. With all 

the aforementioned analysis, the state probabilities and state transition probabilities 

of the bidimensional Markov chain can be determined. 

The advantage of this bidimensional Markov chain model is that, the probabil­

ity computation converges quickly (within about 50 iterations and reasonable state 

space), which shows the efficiency of this model. Also, the model provides accu­

rate performance evaluations for average waiting time for cells in the queue, and the 

estimation of cell loss rate under heavy traffic. 

The confidence interval method is a powerful tool for conducting simulation anal­

ysis. The confidence interval indicates that as simulation runs for finite times, the 

results eventually distribute within a specific range. In our research, we calculated 

the 95% CI range, which can be easily extended to other ranges. Due to the re­

quirement of huge number of simulation runs, the confidence interval analysis is only 

carried out for the purpose of simulation model construction and initial simulation 
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results verification analysis. Once verified, we will just use the model to generate the 

performance results based on the rule of thumb: for example, to claim a better than 

10-9 cell loss ratio, a minimum of ten times the required packets will ge gererated, 

that is, at least ten billion cells will be generated and studied. 
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Chapter 4 

Performance Analysis under 

Non-Uniform Traffic 

An analytical model under bursty traffic is usually complex due to the correlation 

between arrivals, hence, computer simulations are commonly used to evaluate system 

performance. This chapter studies the performance of our proposed Shared Output 

Queue under various non-uniform traffic through a serial of simulations. 

4.1 simulation Environment 

In our research, we develop a simulation platform using the Object Oriented Pro­

gramming Language Java. The simulation platform includes Traffic Generation cla.ss, 

Switch Fabric class and Output class with queuing buffers. For the shared queue, a 

Controller class is placed in front of the shared buffer. Figure 4.1 and 4.2 shown the 

relational diagrams for various classes used in the Dedicated Output Queue scheme 

and the Shared Output Queue scheme, respectively. 
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Figure 4.1: Class Diagram for DOQ Scheme 

An ideal, non-blocking, 128 x 128 switch fabric is used for our study. The output 

buffers are assumed to be ideal, that is, all incoming cells would be enqueued if there 

are cell spaces available. The traffic source generates bursty traffic with arriving rate 

A. A departure rate of one cell per time slot is assumed, i.e., f.L = 1, and the offered 

load in switch fabric is p = Aj f.L· The duration for each simulation lasts for a period 

of 5 million slots, which yields about 640A million cells switched through the switch 

fabric. 

It is well-known that the initial conditions affect the precision of the performance 

data collected in simulations. In our study, a warm-up technique has been used 
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Figure 4.2: Class Diagram for SOQ Scheme 

to provide an initial condition to the system. Figure 4.3 shows the queue length 

parameter for different warm-up periods, and it clearly indicates that the queue length 

becomes stable if the warm-up period is large enough. According to this figure, we 

chose 50 thousand as our warm-up period to make sure that all queues have been 

pre-loaded. 
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4.2 Performance under Bursty Traffic 

4.2.1 Bursty Traffic Generation 

Bursty traffic provides a better resemblance of traffic in real networks. In general, 

more buffer space would be required under bursty traffic. Therefore we assume 80-cell 

space is equipped to each port, hence, a total of 10240 cell space is used for the whole 

switch. 

Bursty traffic can be modeled using the ON/OFF Markov-Modulated model [34], 

which is shown in Figure 4.4 for the state transition diagram. During the busy period 

(ON state), cell arrives in each time slot with the same destination. Then followed 

by the idle period (OFF state), during which no cell arrival occurs. For each input 
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Transition to OFF State 

Transition to ON State 

Figure 4.4: ON-OFF Markov Modulated State Machine 

link, a new cell will arrive with a probability of p, and the probability of having no 

cell coming is 1 - p. Similarly, for idle state, after a slot with no cell arrival, the 

probability of no cell arrival for the next slot is r, and the probability of having a 

cell coming is 1 - r. The duration of busy and idle periods can be modeled as two 

geometric distributions. The probability of having a burst of s slots is given by 

(4.1) 

where s is burst length, which could be 1, 2,.... While the probability of having t 

consecutive idle slots is 

(4.2) 

where t is idle length, which could be 0, 1, 2, ... [35]. The slight difference of these two 

equations indicates that burst length s should not be zero, which also means no two 

consecutive idle periods existing in this model. 
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The offered load to the link, p, is given by 

s 
p=s+t' (4.3) 

where s and t are the average length of ON and OFF periods. For the geometric 

distribution, the mean burst length, s, is ~' and the mean idle length, t, is l~r. Based 

on the offered load p and the chosen average burst length s, we can calculate the 

value of p and r. Then the runtime burst length and idle length can be calculated in 

the simulation using the Inverse Transform Technique [36]. 

4.2.2 Performance Evaluation 
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Figure 4.5: Cell Loss Rate vs. Offered Load 

In the following discussion, we assume the average burst length s = 10 time slots 
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unless otherwise indicated. An 128 x 128 switch is assumed, with traffic load ,\ ranges 

from 0.6 to 0.9. The buffer size is set to 80 cell space per port. 

Figure 4.5 shows the Cell Loss Rate for different traffic load. It is clear that the 

performance of a switch under bursty traffic has degraded significantly when compared 

to those from the random traffic, although the buffer size per port is already much 

larger. Nevertheless, the performance enhancement via buffer sharing is obvious, for 

example, under 80% offered load, the cell loss rate for the DOQ scheme is about 

2.7 x 10-2 • However, the number is reduced to 1 x 10-2 , 3.1 x 10-3 , 4.2 x 10-4 when 

2-port, 4-port and 8-port sharing schemes are used, respectively. Table 4.1 shows the 

95% confidence interval for the cell loss rate performance under bursty traffic. 

Table 4.1: 95% Confidence Interval of Cell Loss Rate 
Offered Load II DOQ I SOQ-2 I SOQ-4 I SOQ-8 

0.6 0.0049992 - 0.0050079 0.0004246 - 0.0004284 0.0000052 - 0.0000057 -

0.65 0.0079848 - 0.0079980 0.0010609 - 0.0010664 0.0000327 - 0.0000337 -

0.7 0.0123672 - 0.0123833 0.0024672 - 0.0024767 0.0001785 - 0.0001812 0.0000012 - 0.0000015 

0.75 0.0186487- 0.0186665 0.0053597 - 0.0053725 0.0008144 - 0.0008207 0.0000294 - 0.0000309 

0.8 0.027364 7 - 0.0273837 0.0107947 - 0.0108099 0.0030776 - 0.0030886 0.0004225 - 0.000427 4 

0.85 0.0390632 - 0.0390922 0.0200768 - 0.0201043 0.0092631 - 0.0092831 0.0033558 - 0.0033671 

0.9 0.0542670 - 0.0542921 0.0344335 - 0.0344631 0.0220594 - 0.0220843 0.0139168 - 0.0139428 

Because larger buffer size is used for bursty traffic, the average number of cells 

in the queue increases for all schemes, as shown in Figure 4.6. Under light traffic 

condition, the results for all schemes are close. When the offered load increases, 

that performance using the SOQ schemes increases faster than that of the DOQ 

scheme. For example, at 90% offered load, the average number of cells using the 

SOQ-8 scheme is over 60 cells, whereas it is around 30 cells for the DOQ scheme. 
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Reasons that account for such observation are: the performance of average number 

of cells in the queue is measured based on the cells that are successfully accepted 

by the output queue; During the ON period under the bursty traffic, it is very easy 

for the buffers dedicated to certain output ports (in the case of the DOQ scheme) to 

experience overflow which results in significant amount of cell loss, while other ports 

have relatively low utilization. Therefore, average number of cells in the queue is low. 

However, with shared buffer schemes, significant enhancement in buffer utilization 

can be achieved by distributing the excessive cells for one port to other ports, which 

yields a large number of cells in the queue. Table 4.2 shows the 95% confidence 

interval for this performance measurement. 
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Figure 4.6: Average Number in Queue vs. Offered Load 

In Figure 4.7, we show the cell loss rate for different buffer sizes under 85% of-
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Table 4.2: 95% Confidence Interval of Average Number in Queue Performance 

I Offered Load II DOQ I SOQ-2 I SOQ-4 I SOQ-8 I 
0.6 12.8593 - 12.8625 13.9600 - 13.9648 14.1031 - 14.1091 14.1018- 14.1077 

0.65 15.2036 - 15.2075 17.0615- 17.0674 17.4504 - 17.4576 17.4618 - 17.4698 

0.7 17.8673 - 17.8700 20.8745 - 20.8814 21.8492 - 21.8597 21.9534 - 21.9641 

0.75 20.8647- 20.8690 25.4819 - 25.4893 27.7072- 27.7218 28.1997- 28.2153 

0.8 24.1853 - 24.1893 30.8644 - 30.8690 35.2943 - 35.3096 37.2567- 37.2748 

0.85 27.7997- 27.8033 36.8118 - 36.8216 44.1814- 44.1970 49.3780 - 49.3994 

0.9 31.6443 - 31.6480 42.9790 - 42.9863 53.0251 - 53.0371 61.3065 - 61.3272 

fered load. This figure can help us to determine the necessary buffer size to achieve 

desireable cell loss rate. For example, in order to achieve a cell loss of 10-6 , the 

switch using the SOQ-8 scheme will require 192 cell buffers for each port, whereas 

the number reaches 320, 400 and 600 cell spaces in the case of SOQ-4, SOQ-2 and 

DOQ schemes, respectively. It is clear that a switch using the SOQ schemes requires 

much smaller buffering resources than the DOQ scheme. 
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Figure 4.7: Cell Loss Rate vs. Buffer Size (A= 0.85) 
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From the above analysis, it is clear that when a more realistic traffic model, for 

example, bursty traffic, is used, all SOQ schemes demonstrate better performance 

than the DOQ scheme. Using the same assumptions, for the 128 x 128 switch to 

achieve a better than 10-6 cell loss rate, the total required memory for the SOQ-

8 scheme is approximately 128 x 192 ::::::: 25K cells, while the number for the DOQ 

scheme is around 77 K cells, which is three times larger. 

4.3 Performance under Hot-Spot Traffic 

Hot-Spot traffic generally exists in data networks which represents highly demanded 

applications and services. As more traffic is destined to these hot-spot nodes, more 

pressure is induced to switching nodes along the path. 

4.3.1 Hot-Spot Traffic Model 

Assume a single hot-spot exists among all output ports, which will be referred to as 

hot port[37]. Other output ports are considered to be cold ports. The hotport has a 

higher chance to be requested by incoming cells. The probability of an incoming cell 

requesting the hotport is 

and the probability of a cell requesting one of the cold outputs is 

1- !h 
Pc = p(-----;:;-- ), 
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where fh is the fraction of the hot traffic. Obviously, the total input traffic load 

Ph+ (N- 1)Pc = p. 

4.3.2 Performance Evaluation 

Assume the fraction of hot traffic fh = 1%, our simulation results show some inter­

esting phenomenon. For the DOQ scheme, the traffic filled up the buffer of hot port 

quickly. As expected, high cell loss rate is experienced. Because the buffer is always 

full, the average number of cells in the hot port is equal to its buffer size. On the 

other hand, the cold ports operate in normal conditions, since the hot traffic does not 

influence them. Hence, the cell loss rate and average number of cells in the queue 

almost remain the same as what have been obtained in the previous section. 

For the SOQ schemes, any shared queue which does not include the hot port has 

similar performance as in the previous section. So, we will focus on the hot port and 

those cold ports within the same shared group. 

Figure 4.8 shows cell loss rate for the hot port and the cold ports within the 

shared group (with suffix G), which arc compared with the non-grouped cold ports 

(with suffix c) for the DOQ and SOQ. Interestingly, hot port cell loss rate is very high 

for all schemes (DOQ and SOQs). This is because, for the 128 x 128 switch, with 

1% hot traffic, the hot port traffic load becomes (76.8% to 115.2%). Such overflow 

makes the queue become unstable. Under this situation, no matter how big the buffer 

is, the hot traffic always saturate the buffer space which leads to extremely high cell 

loss. Consequently, those cold ports within the same shared buffer space experience 

higher cell loss as well. 
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Figure 4.8: Hot Port and Its Shared Group 

Figure 4.9 shows average number of cells performance. The similar observation 

obtained: the hot traffic cells always saturate the available buffer space, so the average 

number of cells for hot port is equal to the total buffer size. For those cold ports 

sharing the same queuing buffers, they only take a small portion of buffer space, which 

show much smaller average number performance compare with those cold ports. 

With our proposed reconfigurable SOQ scheme, the buffer sharing parameters, 

such as sharing level thresholds, can be adjusted in runtime. In this section we show 

the performance of the fully shared queue scheme. To isolate the hot-spot traffic 

from those cold traffic, user can configure the shared queue into the dedicated output 

queue, which will reduce the hot-spot traffic influence to those cold ports within the 

same shared group. 
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Figure 4.9: Average Number of Cells in Queue under 1% Hot Spot Traffic 

4.4 Performance under Prioritized Traffic 

Network traffic has various characteristics, some may require better transmission 

quality, such as network control messages and real-time applications. So the priori-

tized traffic is likely to be considered in real data networks. This section studies the 

performance of the proposed SOQ scheme under prioritized traffic. 

We assume that incoming traffic has three priority classes [3]. Class 0 is the 

highest priority which may contain the network control information, and Class 2 

is the lowest, which represent the best effort data traffic. In our simulation, cell 

priority is considered only during traffic congestion, that is, when cell drop needs to 

be considered. In that case, cell with the lowest priority will be dropped first, and 

then move to cell with higher priorities if the available room is still not sufficient to 

accommodate all incoming cells. 

In the simulation, the generated traffic 1s a mixture of 10% Class 0 traffic, 
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20% Class 1 traffic, and 70% Class 2 traffic. The average number of cells in queue is 

very little affected by priority classes, because newly arrived cells are always enqueued 

at the tail of buffers which do not influenced by their priorty classes. So we focus on 

the cell loss rate performance for different buffer sizes under 85% traffic load. 
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Figure 4.10: Cell Loss Rate for Priority Class 0 (>. = 0.85) 

Figure 4.10 to Figure 4.12 compare the cell loss rate for traffic belong to the three 

priority classes using various sharing schemes. As expected, better performance can 

be achieved for traffic associated with higher priority, for example, with 80 cell space 

allocated in SOQ-4 scheme, cell loss performance of 8.3 x 10-5 , 1.4 x 10-3 ,1.6 x 10-2 

can be achieved for Class 0, Class 1 and Class 2, respectively. Furthermore, better 

performance can be achieved for schemes with more ports sharing. 
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Figure 4.11: Cell Loss Rate for Priority Class 1 (..\ = 0.85) 

4. 5 Performance under Set Assignment 

In our switch model, the queuing buffers are shared by multiple output ports. During 

the arrival process, a memory address should be provided immediately upon each 

arrival. However, for a high speed network switch with multiple simultaneous ar-

rivals at each logic queue, such speed requirement introduces much pressure to the 

implementation of address pointers. 

Set assignment means that a bunch of contiguous buffer space will be assigned to 

a logic port when required, where Set is used to denote the bunch of buffering space. 

The details of the set assignment scheme and its control logic are introduced in the 

next chapter. Because the set assignment scheme only influences the performance for 

the shared queuing schemes, the delay and cell loss performance are studied only for 

the SOQ schemes with different set sizes. 
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Figure 4.12: Cell Loss Rate for Priority Class 2 (>. = 0.85) 

To distinguish the set sizes with different sharing schemes, we use 2Share to indi-

cate SOQ-2 scheme and use the suffix to represent the set size (4, 8, 16). Therefore, 

the 28 hare - 1 scheme in the figure indicates two ports sharing with the set size of 

one, which is the same results of SOQ-2. Similar notations are used for SOQ-4 and 

SOQ-8 schemes. 

4.5.1 Average Delay 

Figure 4.13 to 4.15 show that for different set sizes, the numbers of cells in queue 

are almost the same, especially under small set sizes such as 4 and 8, under various 

traffic loads. However, when the set size is 1G and the traffic load is heavy, (90%), 

the delay performances are reduced by about 5.3%, 6% and 6.5% for SOQ-2, SOQ-4 

and SOQ-8 schemes, respectivally. The main reason of this deduction is because of 
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Figure 4.13: Average Number of Cells in Queue for Different Set Size- SOQ-2 

its increased cell loss rate, where more cells are discarded because buffers are locked 

with each set, they could not be shared any more. 

4.5.2 Cell Loss Rate 

Figure 4.16 to 4.18 show that cell loss performance under set assignment degrades as 

the set size increases. This is because, for the set assignment, when a bunch of buffers 

is assigned to a specific output port, these buffers are no longer being shared by other 

ports. Even if only a small portion of the set is occupied, the set is still dedicated to 

its assigned port. At this moment, if other ports require more buffering space, it is 

very likely that there is no available set for assigning. 

Although the increased buffer granularity in set assignment degrades the shared 

queue performance, the trade off between hardware complexity and performance has 

to be considered during the SOQ system implementation. From the previous discus-
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Figure 4.14: Average Number of Cells in Queue for Different Set Size- SOQ-4 

sion, it is noticeable that, if the set size is not very large, the performance remains 

in an acceptable range. Therefore, for our implementation which will be discussed in 

the next chapter, a set size of 8 is chosen for the system. 

4.6 Performance Scalability 

In this section, we study how the switch performance scales with switch size and the 

burstiness of network traffic. 

4.6.1 Different Switch Sizes 

In this subsection, we study how the switch performance scales with switch sizes. 

Modern high-speed switches support hundreds of incoming and outgoing ports, the 

performance scalability is an important aspect for any proposed scheme. 
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Figure 4.15: Average Number of Cells in Queue for Different Set Size- SOQ-8 

Figure 4.19 compares the cell loss rate for the DOQ scheme and the SOQ-8 scheme 

for various switch sizes under bursty traffic with an average burst length of 10. The 

impact of switch size on the loss performance is minor, particularly under heavy 

load conditions. This implies that the loss performance scales well with switch sizes. 

Similar observation is obtained for average number of cells in queue performance as 

shown in Figure 4.20. 

4.6.2 The Impact of Traffic Burstiness 

In this subsection, we examine how traffic burstiness affects the performance of the 

proposed schemes. A 128 x 128 switch fabric with 80 cell buffers per port is used for 

the experiments. 

Table 4.3 to 4.5 list the cell loss rate for average burst length of 5, 10 and 15, respec-

tively. It is clear that, the cell loss rate performance for the DOQ scheme degraded 
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Figure 4.16: Cell Loss Rate for Difl"crent Set Size- SOQ-2 

dramatically as traffic burstiness increases, whereas the SOQ-8 scheme manages to 

maintain its cell loss rate performance reasonably well. For example, with an average 

burst length of 10 and 15, the SOQ-8 scheme can still achieve 10-6 cell loss rate 

with 75% and 65% ofl"ered load, respectively. However, for the DOQ scheme, at 60% 

ofl"ered load it has 1.07 x 10-4 cell loss rate, even with only a burst length of 5. When 

the burst length increases to 10 and 15, the cell loss rate droped quickly to 3. 79 x 10-3 

and 1.63 x 10-2 , respectively. In general, traffic burstiness has significant impact on 

the switch performance. 

4.7 Summary 

In this chapter, the performance of the proposed SOQ scheme has been studied under 

bursty traffic. Various non-uniform bursty traffic patterns, such as, hot-spot traffic, 

prioritized traffic, and a shared memory management algorithm - set assignment, are 
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Figure 4.17: Cell Loss Rate for Different Set Size- SOQ-4 

applied to the switch model to obtain their performance. Issues related to traffic gen-

eration, such as, bursty traffic modeling, hot-spot traffic g·cncration, and prioritized 

traffic generation, are discussed. Furthermore, the scalability issues of our proposed 

shared queue are studied with the growing switch sizes and bursty lengths. 

We analyzed the requirement of buffer size to achieve the desired cell loss perfor-

mance. As expected, the SOQ-8 only requires one third of the buffer space of the 

DOQ scheme, which implies the total memory size has been reduced dramatically. In 

addition, the longer average delay performance, especially under heavy traffic, which, 

as we mentioned earlier, is unavoidable queuing delay because more cells are accom-

modated in the shared buffer. The hot-spot traffic causes higher cell loss rate for 

those shared ports because hot traffic saturates all cell buffers. The main reason of 

the saturation, as we analyzed, is the total combined traffic load in the hot port has 

exceeded 100%. In general, the performance obtained in this chapter clearly shows 
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Figure 4.18: Cell Loss Rate for Different Set Size- SOQ-8 

that, the shared output queue provides better performance on cell loss rate under 

bursty traffic and non-uniform traffic conditions. 
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Table 4.3: Cell Loss Rate for Burst Length of 5 
Offered Load Cell Loss Rate(B5) 

DOQ SOQ2 SOQ4 SOQ8 

0.6 1.08E-4 1.54E-7 - -

0.65 2.90E-4 2.77E-6 - -

0.7 7.08E-4 1.67E-5 - -

0.75 1.67E-3 9.09-5 8.71E-7 -

0.8 3.72E-3 4.75E-4 2.60E-5 -

0.85 6.26E-3 1.34E-4 1.85E-4 4.24E-7 

0.9 6.25E-3 1.33E-4 1.96E-4 4.71E-7 

Table 4.4: Cell Loss Rate for Burst Length of 10 
Offered Load Cell Loss Rate(BlO) 

DOQ SOQ2 SOQ4 SOQ8 

0.6 3.79E-3 2.45E-4 - -

0.65 6.25E-3 7.10E-4 4.69E-6 -

0.7 9.95E-3 1.66E-3 4.69E-5 -

0.75 1.54E-2 4.28E-3 3.26E-4 2.17E-7 

0.8 2.35E-2 9.33E-3 1.58E-3 4.94E-5 

0.85 3.44E-2 1.89E-2 5.89E-3 1.13E-3 

0.9 4.92E-2 3.50E-2 1. 73E-2 8.61E-3 

Table 4.5: Cell Loss Rate for Burst Length of 15 
Offered Load Cell Loss Rate(Bl5) 

DOQ SOQ2 SOQ4 SOQ8 

0.6 1.63E-2 3.83E-3 2.88E-4 2.30E-6 

0.65 2.27E-2 7.15E-3 9.01E-4 3.14E-5 

0.7 3.09E-2 1.25E-2 2.61E-3 2.13E-4 

0.75 4.14E-2 2.08E-2 6.63E-3 1.28E-3 

0.8 5.41E-2 3.31E-2 1.41E-2 5.36E-3 

0.85 6.95E-2 5.00E-2 2.65E-2 1.56E-2 

0.9 8.78E-2 7.20E-2 4.45E-2 3.34E-2 
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Chapter 5 

Shared Output Queue System 

Design and Implementation 

Chapter 2 provides a brief introduction to the proposed Shared Output Queue archi­

tecture, and this chapter presents the detailed system designs and implementations 

in various hierarchical levels. 

5.1 System Level Design 

The proposed Shared Output Queue system mainly contains four subsystems: tail 

buffers, head buffers, main controller, and memory banks. The tail buffers are respon­

sible to accept arrived cells and store them in their buffers temporarily. The head 

buffers store the outgoing cells for transmitting. The main controller controls all these 

processes, and provides commands for main memory writing, reading or cut-through 

transmissions according to current conditions. 

Figure 5.1 shows a 4-port sharing system architecture and internal data trans-
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mitting processes on the data bus. This is the basic SOQ system which will be 

implemented. 

During every main memory writing and reading, a block of b ( b is block size) cells 

is transferred on the data bus. Considering the value of b could be quite large, a wider 

internal data bus is necessary, and it has to be shared by all subsystems as the figure 

shows. As a result, a tri-state bus driver is implemented for each tail and head buffer. 

However, the main memory has its own chip-select (cs) signal, so it is not necessary 

to implement tri-state driver for main memory. 

Matn Con:rolier 

Ma1n Memory 

~--

' Read Grart j 
Cut-Through I 

I 

I 
I 

B;mk 0 Batl._ 1 Bank 2 Bar11<. 3 

Figure 5.1: Data Bus Architecture 

In the system implementation, data cell arrives sequentially with one bit at a 

time from the switch fabric. Also, the transmitting process at the head buffer is a 

sequential process with one bit departing at every clock cycle. 

Next, we examine each subsystem in more detail about its functional descriptions, 

its architecture design and functional simulation results. In real implementation, the 

main memory bank is massive and is usually handled differently, either by using stan-
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dard commercial parts, or synthesized by a different tool, e.g., memory compiler. So 

the implementation of the main memory bank will not be included in our discussion. 

Instead, we use data files to emulate memory banks during our simulation. 

5.2 Tail and Head Buffer 

As described in chapter 2, DRAMs provide better storage capacity because a DRAM 

cell is usually implemented using a single transistor with a capacitor. However, the 

access time to DRAM is relatively long. On the other hand, the SRAMs are faster, 

but they consume larger area and power. Therefore, only a small amount of SRAMs 

will be used in the proposed shared queue architecture. 

5.2.1 Memory Size 

In our design, a small amount of SRAMs are used for Tail Buffer and Head Buffer 

implementations, whereas massive DRAMs are used for main memory bank. In order 

to match the speed between faster links and slower main memory bank, wider data 

bus and memory bank interleaving have been used to achieve better data transmission 

parallelism. 

To determine the sizes of Tail and Head buffers, some important factors should 

be considered. Because the DRAM access time is the most critical factor, we define 

a time interval T for the DRAMs to perform one memory access, either for a writing 

or a reading operation. Given the link rate R, the maximum number of bits coming 

in from a link is 2RT. Considering that up to k cells can be accepted by each port, 

and the number of shared ports is M, the data block between tail/head buffer and 
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main memory is 2kM RT bits, which is referred to as b cells. 

Because the successive transmissions from the same tail/head buffer will only be 

performed in M intervals in the worst-case scenario, a minimum of 2b - 1 cells for 

the tail buffer should be sufficient. Similarly, for the head buffer, in the worst-case 

scenario, it should have a size of ( b - 1) + 2M cells. This kind of arrangement will 

ensure that the tail/head buffer satisfies the block transfer rules which defined in 

Chapter 2, and meanwhile, the buffer sizes are minimum. 

For example, if we chosen a 50ns access time DRAMs for the main memory, then 

T = 50ns. If the link rate R = 10Gbps, k = 4, and M = 4, then the block size is 

16000 bits. If a data cell is equal to 64 bytes, then the block size is equal to 32 cells. 

For the link rate of 5Gbps, the block size is 16 cells. In our implementation, the block 

size will be chosen as 16 cells, however, the tail buffer and head buffer sizes will be 

calculated using 32 cells for possible future expansion. 

Because the successive transmissions from the same tail/head buffer will only be 

performed in M time intervals in the worst-case scenario, a minimum of 2 x b- 1 

bits for the tail buffer size should be sufficient, where in our example it is 63 cells. 

Similarly for the head buffer, in the worst case scenario, it should have a size of 

(b- 1) +2M cells, where it equals to 39 cell spaces in our example. In addition, the 

cut-through transmissions between tail buffers and head buffers can be any number 

of cells, but the maximum value is equal to b cells to avoid head buffer overflow. 

The size of the main memory is engineered by many factors, such as the Quality 

of Service (QoS) requirements. With different data traffic requirements, the main 

memory should be expandable. In our implementation, a buffer of 256 cells are 

equipped for each port as in the DOQ scheme, which yields a total of 1024 cells for 
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the main memory bank in the case of the SOQ-4 scheme. 

Inside each tail and head buffer, cells are arranged in the First-Come-First-Served 

(FCFS) fashion and a simple control algorithm will be implemented. An internal 

counter is used to track the number of cells in the buffer, and when the number 

reaches the block size, a write transmission request is sent to the Main Controller. 

Similarly, when a head buffer has space for a block of data cells, a read transmission 

request is sent out. 

5.2.2 Tail Buffer Implementation 

The tail buffer is responsible to receive arrival cells from the switch fabric, keep track 

of the number of cells in its buffer, send transfer requests to the main controller, and 

manage the writings and readings from its buffer memory. So, the tail buffer can 

be constructed by these functional blocks which are organized into two groups: the 

Datapath, which includes most combinational circuits; and all control functionalities 

inside the tail buffer, which is usually implemented using Finite State Machine. 

5.2.2.1 Tail Buffer Datapath 

The tail buffer datapath includes Receive Registers, a Packet Counter, and Address 

Pointers to provide addresses during the tail buffer write and read operations. 

1. Receive Register 

Although in previous simulation study, the switch is assumed to be an ideal non­

blocking, it is not practical for implementation. A knockout factor of 4 is commonly 

used, such as in [38] and [39]. This is because under uniform random traffic, the 

arrival probability in an output queue is modeled by binomial distribution. The 
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probability of having more than 4 cells destined to a specific queue is very low, for 

example, under 70% random traffic, this probability is about 0.00074. Under such 

circumstances, only the exceeded cell would be dropped. Therefore, the cell loss rate 

caused by knockout factor would be considerably small. For this reason, in our design, 

we choose the knockout factor k = 4 for implementation. 

Two methods can be used to fulfill such requirement. One is to use faster memory 

to construct the receiving buffer, e.g., the buffer could operate k times faster than 

the regular link rate. However, this is not practical for modern switches which are 

already running at very high speed. The other method is to implement k receiving 

buffers in parallel with each one operates at the same speed as a regular link. In our 

implementation, the second approach is used, which is shown in Figure 5.2. Arriving 

data cells will be immediately written to tail buffer for storage. 

ArTivals ~---~---~ ,------ ·-- Grant 

Data_inO 

Tail Buffer 
Controfler 

Write Data Bus 

Write 
addr. 

Tail 
Buffer 

Figure 5.2: Tail Buffer Architecture 
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The data cells arrive in each register sequentially, but writing into the tail buffer 

is performed on a wider internal data bus. In the worst case scenario, k cells are 

written in round robin fashion. The register is 8-bit wide and the data bus is 4-bit 

wide, so 2 bus transmissions are needed to finish one cell writing. During the busy 

period, a new receiving process is overlapped with the previous transmission process 

to achieve higher system efficiency. 

2. Cell Counter 

An internal cell counter keeps tracking of the number of cells in the tail buffer is 

employed. When the number exceeds the block size, a write request will be issued 

to the main controller. During data transferring from the tail buffer, either the 

operation is main memory write or cut-through operation, the cell counter decreases 

by one upon each cell reading. When the cell counter reaches the block size or equals 

to zero, then the data valid signal will be de-asserted, which indicates the end of 

current data transfer operation. Two flag signals are also provided by the counter: 

tail buffer empty or full, and write transmission request. 

3. Address Pointers 

Because of the parallel operations of writings and readings, two pointers are imple­

mented in the tail buffer which provide the write address and the read address. In the 

write address unit, double buffering has been used because parallel and overlapped 

operations for receiving and writing processes, which is shown in the tail buffer FSM 

design below. 
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5.2.2.2 Finite State Machine(FSM) 

A reading operation from the tail buffer is granted by the main controller, while 

writing to the tail buffer should never be blocked for data receiving process. This 

means that the tail buffer should be capable of writing and reading at the same time. 

Currently, QDR SRAM [19] could meet these requirements because it has two separate 

data buses and two address buffers for writing and reading operations. An arbiter 

is required to ensure no address conflict occurring. Because reading and writing 

operations can be conducted simultaneously, two independent Finite State Machines 

(FSMs) are designed to control the tail buffer for reading and writing operations. 

Figure 5.3: Tail Buffer Finite State Machine 

The main state diagram of the tail buffer is shown in Figure 5.3, and it is clearly 
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indicated that the receiving process is overlapped with the tail buffer writing process. 

The receiving process of one packet is assumed in eight steps, once half packet is 

buffered in the receiving register, write operation will be started which will write the 

half packet into tail buffer. The four parallel receiving registers will be read out in 

round robin fashion as indicated as state Write Tij, while i is the index of receiving 

registers, and j indicates the first half or second half of a packet. During the writing 

of first half of packets from all registers, the rest half of packets continuously arrive 

at registers. The writing of the second half of packets will probably overlapped with 

the receiving process of next arrival cycle. 

The reading process, which is another independent process, has a separate finite 

state machine, and it performs read operations under the grant or cut - through 

signal from the main controller. 

5.2.2.3 Synthesized Tail Buffer 

The designed tail buffer has been synthesized using Synopsys (Design Compiler), 

and the resulting circuit at block level is shown in Figure 5.4, which is comprised of 

a datapath and two Finite State Machines. 

5.2.3 Head Buffer Implementation 

The design of the head buffers is similar to the tail buffers, except that they include 

only one transmitting register. Cells coming from the tail buffer or main memory will 

be temporarily stored in the head buffer, which will be continuously read out and 

transmitted to the output link. The Cell Counter keeps track of the number of cells 

in the buffer. If the available space is larger than the block size, a read request will be 
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Figure 5.4: Synthesized Tail Buffer Circuit 

issued to the main controller. Similar to the tail buffer, the head buffer can perform 

writing and reading operations simultaneously. 

The synthesized head buffer circuit is shown in Figure 5.5 which includes four 

main blocks: Cell Counter, Address Pointer, Transmitting Register and Head Buffer 

FSM. 

80 



~-----------------li'>ACICsyn 

~---+------------------f""">rR•d-r•~:~u••t 

ACtcbaclcC>+--------++ 
11:0 lk_2sC:l....._--l 

cL k_of""":)...------..--1 
r • a d_gr an t,l""'>_f-c&l 

Figure 5.5: Synthesized Head Buffer Architecture 

5.3 Reconfigurable Main Controller 

add_cutr_5: liL 

•dd_outw_5:fi:!_ 

trans_out 

Being the most critical unit in the system, the main controller performs the follow-

ing tasks: i) processing requests from tail and head buffers, ii) managing the main 

memory operations, iii) manipulating shared queuing operations, and iv) performing 

reconfigurations functionalities. In order to accomplish these tasks, the controller 

is partitioned into several functional units, and these units work together under the 

control of a Main Finite State Machine. 

Four major functional units are designed, which cooperate to perform the recon-

figurable buffer sharing functionality. They are: 

• Request Arbitration Unit(RAU); 

• Pointer Management Unit(PMU); 
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• Queue Control Unit(QCU); 

• Special Function Unit(SFU). 

As an example, Figure 5.6 shows a block write operation. In the figure, the first 

write request in the RAU is Port 0 and the corresponding address in the PMU is 

9. Hence a block of cells are transfered from the tail-buffer of Port 0 to the central 

memory and stored at the location of 9. Then the request register will be updated 

and the next write request from Port 3 will be processed. The block read operation 

is executed in a similar manner. 

BankO 

Main Memory 

Figure 5.6: Write Operation 
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5.3.1 Main Controller Datapath Design 

This section introduces the detailed functionalities, architecture designs and imple-

mentations of each functional unit inside the SOQ main controller. 

5.3.1.1 Request Arbitration Unit(RAU) 

Inside the RAU, two sets of shift registers are used to track writing and reading 

requests from each tail/head buffer. They are named as Write Request Register 

(WRR) and Read Request Register (RRR). The main control process checks the 

write requests and read requests alternatively, and a grant signal is issued upon the 

positive response from the request registers. The grant signal includes write grant 

corresponding to WRR, read grant and cut throughgrant corresponding to RRR. 

The pseudo code of the main control algorithm has been given in Chapter 2. 

cut through 

read_check 

read_grant 

read reques 

read_reques t_3: B...£:>---1 

wri±e_o::heck 

wri±e-gr~nt~>----------------1 

.---.::...;;;,-por t_nu~_l: ~L 

write-yes 

write_request_3:B~~---------1. ____ .J 

Figure 5.7: Synthesized Request Arbitration Unit 
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The functional simulation will be presented later in the entity testing subsection, 

and the synthesized result of the request Arbitration Unit is shown in Figure 5.7. 

5.3.1.2 Pointer Management Unit (PMU) 

The PMU is responsible to provide the address for main memory write and read. 

The addressing scheme is decided by the main memory organization. In our design, 

four memory banks are used to construct the main memory and each memory bank 

is comprised of several memory blocks. To differentiate from cell blocks, we use the 

term set to describe a block of addresses to accommodate blocks of cells. As a result, 

there are three addresses for the memory access: Set Address, Pointer address, and 

Burst Address as shown in Figure 5.8. Because the granularity of each memory op­

eration will be in a block of cells, both set address and pointer address are remained 

the same during each operation. 

It is very common that burst read or burst write will be required for DRAM access. 

A burst length of 2, 4 or 8 can be used in a burst operation. In our implementation, 

the burst length of 4 is chosen which means a 2-bit burst address is required. We 

choose the block size b = 16 cells, which means the main memory of 1024 cells is 

organized into 64 blocks with each set containing 8 blocks of cells, and a total of 8 

sets are available. Therefore, we need 3 bits for set address, 3 bits for pointer address 

and 2 bits for burst address. 

The implementation of the PMU contains three components: address pointer, set 

list, and set pool. One address pointer and one set list are dedicated to each link, 

so, in total 4 address pointers and 4 set lists are implemented. There is only one set 

pool which stores all available sets. Two operations are involved between the set pool 
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Figure 5.8: DRAM Addressing Scheme 
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Figure 5.9: Memory Management- Set Assignment 

and each logic link. Firstly, when a write address pointer indicates that current set is 

full, it requires for assigning a new set as shown in Figure 5.9. If there is an available 

set in the set pool, then one set is assigned to the required link. Secondly, when a 

read address pointer reaches the set boundary which indicates the set is empty, a 

returnset signal is issued to both its set list and the set pool. Upon a set return 

operation, the corresponding set list drops the set, and the set pool adds it into the 

pool of available sets. 

Figure 5.10 shows the synthesized result of the Pointer Management Unit. But 

the burst address component is not included because it is allocated more closely to 
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the main memory banks as a separate unit. 
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Figure 5.10: Synthesized Address Pointer Management Unit 

5.3.1.3 Queue Control Unit(QCU) and Special Function Unit(SFU) 

The functional components inside the Queue Control Unit include counter based 

queue length registers for each port, a total queue length register, and a queue 

full/empty flag register. The queue length register is used to report the dynamic 

queue status, with which the main memory controller can make corresponding oper-

ation decisions. 

The Special Function Unit is a unique design in the proposed SOQ scheme. It 

stores the configuration parameters and various parameters for different traffic pat-

terns, such as the thresholds of queue length for each port. The value for the parame-

ters can be reconfigured during the runtime based on the information and commands 

given by the network processor at the port controller. In this project, we only focus 
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on the basic infrastructure for runtime reconfiguration. The SFU unit is implemented 

in the datapath together with the QCU. 
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Figure 5.11: Synthesized Queue Length Controll Datapath 

The synthesized QCU and SFU datapath is shown in Figure 5.11 and its functional 

simulation is shown in the main write and read operation figures below. 

After all these functional units perform their designed functionalities correctly, 

they are integrated together as one subsystem which is called the main datapath, and 

will be used for higher level synthesis. 
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5.3.2 Main Finite State Machine 

The state transition diagram of the main controller is shown in Figure 5.12. When 

the system is powered on, the DRAMs will be first initialized. After it is done, the 

system enters the initial state which provides ready signals to the switch fabric. In its 

normal operation mode, the controller alternatively checks the write request and read 

request, and conduct corresponding processing according to different system states, 

traffic conditions, and the configurable parameter settings. Cut-through operation, 

in which the user data do not need to go through the main memory, is considered 

and handled using a separate state. When the corresponding operation has been 

issued, the system will enter the wait state in which the data_valid signal is checked 

to terminate current transmissions, and make the controller move on to the next 

checking state. 

Figure 5.12: State Diagram of Main-FSM 
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5.3.3 Synthesized Main Controller 
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Figure 5.13: Synthesized Main Controller 

Figure 5.13 shows the synthesized top level main controller circuit, which includes 

the main datapath, the main FSM and the DRAM address unit. The main datapath 

contains four functional units as we mentioned in the previous section: RAU, AMU, 

QCU and SFU. 
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5.4 System Implementation 

A top-down design and bottom-up implementation approach is followed in our re-

search. A divide-and-conquer strategy is used in our design until all the leaf compo-

nents become manageable. As shown in Figure 5.14, after three levels of partitioning, 

the implementation hierarchy of the SOQ system is obtained. 

In our design and verification, all components are properly designed and tested 

before the 4-port shared output queue is constructed. DRAMs and SRAMs are con-

sidered for system design and functional simulations, however, they are not included 

in the system final synthesis because different CAD tools are usually used for memory 

design, which is beyond the scope of our research. 

tb_datapath: tail buffer data path 
tb_fsm: tail buffer write finite state 

machine 
read fsm: read finite state machine 
w_addr.: write_address 
r_addr.: read_address 
rreg: receive register 

Figure 5.14: Hierarchical SOQ System Architecture 
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The functional simulations are conducted on the M odelSim X E I I I simulation 

platform. The test vectors are generated using software programs and recorded in 

four data files which will feed to four input ports. Bursty traffic is considered in 

the hardware simulation. When testing, for each iteration the M odelSim simulator 

reads in a test vector to the receiving register according to the generated cell arrival 

status information. Similarly, on the output side, all transmitted cells are recorded 

into a result data file. When the simulation is completed, all the data files are sent to 

another software program for final verification. In our experiment, after about 8000 

simulation rounds, around 5800 cells per link are transmitted over the output link. 

As expected, no cell loss has occurred as long as they got queued in the buffer. 

The whole 4-port sharing system is synthesized using Synopsys Synthesizer DC 

Shell, with the 0.18um CMOS technology. The total area for the whole control logic 

is 24. 79um2 , which is approximately 20, 000 gates in terms of 2-input NAND gates. 

The total dynamic power consumption is merely 24.12m W. The whole design can 

comfortably operate using the IOns system clock. 

5.5 Entity Functional Testing 

5.5.1 Tail and Head Buffer Functional Simulation 

The functional simulation results of the tail buffer are shown in Figure5.16. Three 

state transition processes: main receive process (state), write to tail buffer (tstate), 

and read from tail buffer (rstate) are shown in the waveform. The cell counter counts 

the number of cells in the tail buffer. When a grant signal read is given, which is 
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shown in the figure for a cut-through operation, six cells have been read from the tail 

buffer to the data bus, and the cell counter is updated to zero afterward. 

Figure 5.17 shows the functional simulation results of the head buffer. On the 

waveform, the departing cell appears as the trans_out signal. Two state transi­

tion processes are shown as transmission state(tsstate) and writing to head buffer 

state(wstate). In this figure, it is shown that a total of 12 cells has been written into 

the head buffer, and meanwhile, two of them have departed, and ten cells remain in 

the buffer. 

5.5.2 Main Controller Functional Simulation 

The functional simulation of the PMU is shown in Figure 5.18, which includes assign­

ing a set to one set list and returning a set to the set pool. 

When writing a block of cells to main memory, the controller issues a write grant 

to both the selected tail buffer and the address pointer management unit. Immediately 

following the grant signal, data streams are put on the data bus, and a write address 

is also available on the address bus. The memory write operation is interleaved to 

each individual memory banks with the bank select signal which is issued by DRAM 

address unit, which shows in Figure 5.13 as the separate unit ( addr_draminte). It 

also provides 2-bit burst address to the address bus. The memory read operation is 

similar, except that the data streams are from main memory to a head buffer. 

For a cut-through operation, a cut through signal is issued to the selected tail 

and head buffers. However, no signal is sent to the address pointer management 

unit to ensure no main memory involved in the process. Data stream is directly 
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transmitted from the tail buffer to the head buffer, and when the cell counter in 

the tail buffer reaches zero, the data valid signal becomes false and terminates the 

transmission process. In this way, it is more flexible to control the number of cells for 

each transmission, while the maximum value is equal to block size to avoid the head 

buffer overflow. 

The functional simulation waveform in Figure 5.19 shows a main memory write 

operation, with a cut-through process; and Figure 5.20 shows a main memory read 

operation. 

5.5.3 Internal Delay 

Because the internal data bus is shared by all links, an additional waiting delay is 

introduced at the very beginning when the system comes out from the reset state, 

while the head buffers are empty and wait for cells to be write in through the shared 

data bus. Once the head buffers are filled up, they would send data cells out serially 

and require for cell replenishment before their buffers become empty. So the internal 

waiting delay is observed as pipeline delays which would happen when head buffers 

are empty. 

According to Figure 5.21, the delay time between the completion of receiving at 

tail buffers to the starting of transmissions at head buffers varies for all links. For 

the first port (PortO), the delay time is about 7 clock cycles, however, for the last 

port (Port3), the delay time is about 28 clock cycles. Although, this delay time 

affects the overall SOQ performance, as we stated, it is introduced by the hardware 

implementation of the shared data bus which is considered as one of the hardware 
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implementation and performance trade-offs. 

5.6 Summary 

In this chapter, we have studied the Shared Output Queue system design and im­

plementation issues. We have presented the detailed functionalities for each unit. 

According to its functional specifications, the architectural design has been provided. 

A top-down design and bottom-up implementation approach has been followed in 

this study, and divide-and-conquer strategy has been used for system implementa­

tion. The hierarchical system design was shown in Figure 5.14, and along with each 

basic component design, functional simulation and synthesized circuit diagram has 

been shown. Then at a higher level, a structural subsystem has been derived. Both 

the functional verification and synthesis results are produced for further integration. 

Finally, based on all subsystems, the top level SOQ system was constructed. In or­

der to verify its functionalities, we developed a computer program to generate test 

vectors, which are applied to all system inlets. At the outlets, the transmitted data 

cells are verified with their input vectors using another program. As indicated in the 

previous section, the final results is promising: the system is working exactly as we 

expect. 

The hardware implementation of proposed SOQ-4 scheme assumes that a symbolic 

data cell is 8-bit long and incoming and outgoing links are 1-bit wide. In this condition, 

totally 8 cycles will be required to receive or transmit one data cell. In addition, the 

purposes of the implementation in our research are: 

• Verify the proposed shared buffer scheme has better performance; 
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• The shared memory control algorithms are feasible under the critical speed 

requirements for modern high-speed switches and routers. 

These goals have been accomplished by testing the implemented SOQ-4 with op­

timized results. 

Because the main memory controller has been implemented, SOQ system can pro­

vide dynamic adjustments and reconfigurations to the shared memory according to 

traffic characteristics and commands from the central switch controller or port con­

troller. Compare with traditional FIFO queue, the SOQ-4 has added about 20, 000 

gates (in term of NAND gate), which would be 5, 000 gates or 6um2 for each port. 

As a result, the increased control circuit has significantly improved the buffer perfor­

mance, which is shown in previous chapters. The employment of the advanced hybrid 

SRAM/DRAM architecture also provides the worst case bandwidth guarantee and 

optimized memory utilization. 

95 



I =I ,.=..l 

I~ 

~ 
I ~ 

u 
[';;;;; :'3"E 

I-- :::1"'-t LP~"" -u== 
11"1 T 
I~ 1:::... 'IT 

~ 
---' 

r- -~ 

~ 
~ L-J r- r-

H 

--- '--

-~ r-

r "" 
I../ 

'---- ~ 

ll':L E 
-o--

Figure 5.15: Synthesized SOQ System Architecture 
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Chapter 6 

Conclusion and Open Issues 

6.1 Summary of Thesis 

In this thesis, we reviewed the fundamental issues related to high-speed switches and 

routers, which include the history of data networks, network switch architectures and 

their working principles, and the classification of high-speed network switches which 

include the shared memory switch, the shared medium switch, and the space-division 

multi-stage interconnection network based switch. We further reviewed memory tech­

nologies and their applications in the high-speed data networks. From early stage 

queuing systems to the advanced hybrid SRAM/DRAM architecture, which has the 

worst case bandwidth guarantee and optimized memory size. Based on the review and 

analysis, we proposed the reconfigurable Shared Output Queue(SOQ) architecture. 

In order to analyze the performance of the proposed SOQ, we proposed a numerical 

model under uniform, random traffic. Detailed analysis of this model is presented 

based on a two-dimensional Markov chain model. The computed results from the 
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model are compared with those from simulations, which proved that this numerical 

model is accurate and efficient. 

Then we further examined the shared queue performance under non-uniform and 

bursty traffic through simulations. Various bursty traffic patterns were applied to 

the simulation platform to obtain a comprehensive set of performances. The results 

indicate clearly that the shared queue scheme provides better performance. Much 

lower cell loss rate with a small increased delay time, which is unavoidable because 

more cells are accommodated in the shared queue. Moreover, we showed that, to 

achieve the same level of cell loss rate, the shared queue requires much less memory 

space, for example, the 4-port sharing scheme can reduce the memory size by half to 

that of the dedicated queue. This number can be as low as one third in the case of 

8-port sharing. 

Finally, we conduct the Shared Output Queue architecture VLSI design and im­

plementation with a symbolic cell of 8-bit wide. From functional specifications to top 

down design hierarchies, we recursively decomposed the system into subsystems until 

down to the component level. Then from the bottom level and up, we implement each 

component with its functional simulation and its synthesized circuit. By constructing 

the subsystems and the whole system in a structural way, we successfully complete 

the whole design and verification process. The final implemented SOQ system is 

working properly: with about 75% traffic load, no cell loss is experienced during the 

whole hardware simulation process. 
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6.2 Major Contribution of Thesis 

Some major contributions of this thesis are as follow. 

• A Reconfigurable Shared Output Queue Architecture for High-Speed Switched/Routers 

We have studied the advantages of the hybrid SRAM/DRAM architecture for 

data network applications. This architecture can provide both higher operation speed 

and massive storage space, which are desirable characteristics for queuing systems of 

high speed network switches and routers. Based on this observation, we proposed 

the reconfigurable Shared Output Queue architecture for an output queued switch 

system. The applications of the proposed hybrid SRAM/DRAM architecture is not 

limited to the output queue system, but can be extended to all high-speed network 

storage applications. 

• Analytical Model under Uniform Random Traffic 

In this thesis, an analytical model is developed based on the two-dimentional 

Markov chain under uniform random traffic, which provides the theoretical foun­

dations for analyzing the behaviors of the shared output queue. This model gives 

accurate results and it is very efficient for computation. The results obtained from 

both analytical model and simulation are very close, which clearly indicates that the 

proposed SOQ scheme provides better performance under uniform random traffic. 

• Comprehensive Analysis under Non-Uniform and Bursty Traffic 

Also the thesis provides a comprehensive analysis of the proposed shared queue 

system performance under non-uniform bursty traffic. We adopted the simulation 

method to determine the system performance, and with various bursty traffic pat­

terns, the SOQ scheme displays the superior performance on cell loss rate which is 
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one of the most important measurement for network applications. In general, the 

Shared Output Queue scheme provides much better cell loss rate performance com­

pared with those from the dedicated queue. It also minimizes the required memory 

size and improves the buffer utilization. 

• VLSI Design and Implementation 

Finally, we proceed to conduct the architectural implementation of our proposed 

reconfigurable Shared Output Queue. From the functional descriptions of the SOQ 

system, we decompose the whole system into hierarchical levels. At each level, all 

components are implemented along with their functional design, verifications and 

synthesis. In the end, we obtain the top level structural SOQ system which performs 

the designated functionalities as we expected. The system provides a basic recon­

figuration infrastructure for higher level controller (switch central controller or port 

controller) to access for run time reconfiguration. 

6.3 Open Issues for Future Work 

Although, we have provided a comprehensive performance study on the proposed 

Shared Output Queue and architecture implementation of the basic SOQ system, 

there are still some aspects that can be further improved in the future, which include 

the development of the memory management algorithm and a reconfiguration scheme. 

• Shared Memory Management Algorithm 

Inside the shared memory system for network applications, memory management 

is to determine logic queue's status and allocate buffer space to each logic queue 

during system operation. An efficient memory management algorithm is difficult to 

106 



derive because too many parameters should be considered, such as, different QoS 

requirements, different priority classes, and different traffic patterns. Furthermore, 

the computational complexity also affects the time for making decisions, which is 

critical for high speed network switches. Further research on these parameters is 

required to derive the efficient shared memory management algorithm. 

• Better Network Traffic Modeling 

As network applications are continuously exploding, numerous new applications, 

such as network streaming media [35] and VoiP, are appearing on the Internet. These 

new traffic patterns have some unique characteristics, and will lead to new challenges 

to traditional network infrastructures. So, a thorough study on these traffic patterns 

are necessary for developing an efficient shared memory management algorithm. 

• Runtime R.econfiguration 

As new traffic patterns appear on the Internet, the QoS requirements vary from 

each other. How to efficiently adapt to these demands becomes a great challenge to the 

design of network switches and routers. A runtime reconfiguration scheme can provide 

more adaptability and flexibility to adjust the system with different traffic demands. 

However, as the network speed continuously increaseing, the reconfiguration time 

and the period between two rcconfigurations are critical factors, and they should be 

carefully managed. Hence, the study of runtime reconfiguration scheme is required 

in future research. 
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Appendix 

Rt!port : ce 11 
Design : soq_nornem 
Ver~ion: 2001.06-SPZ 
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Attribute~: 

b - black box (unknown) 

control logic 
h - hl.eraJ:"chical 
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removable 
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u - contaill3 unmapped logic 

Cell Reference Library 
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U9 GTECH _AND _NOT gtech 
U10 •SELECT OP 2 .1_2 .1 - 1 
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U20 GTECH _AND_ NOT qtech 
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U31 GT!CH _AND_ NOT qtech 

U32 ... SELECT OP 2. 1_2 .1 - 1 
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U42 GTECH _AND_ NOT Qtech 
control main_ controller 
hdbufft!rO head_ bufferD 
hdbufferl head buffer 1 
hdbufter2 head_ butter2 
hdbutter3 head_ buffer3 
tbuftero tail_buffero 
tbuffe:rl tai 1_ buffe:r 1 
tbutte:r2 tail_bufte:r2 
ebutte:r3 tail_bufte:r3 

Total 24 cells 
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0.00 c, u 
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0.00 .. u 
0.00 c, u 
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40834.77 h, n 
40834.77 h, n 
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-40834.77 h, n 

247911.56 

Figure 1: SOQ System Synthesis Report 
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Figure 2: Sy:;l<'m Delay Time 



Figm·l' 3: Wl\V('form mHfl"r 60% Tr~-tOit· Locvl 



Figure 4: Wnvdorm undc·r 75<x:, Traffic I...oorl 



Figure 5: Whole Simulation Waveform 










