

1+1 Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de !'edition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre reference
ISBN: 978-0-494-33455-3
Our file Notre reference
ISBN: 978-0-494-33455-3

L'auteur a accorde une licence non exclusive
permettant a Ia Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I' Internet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

L'auteur conserve Ia propriete du droit d'auteur
et des droits meraux qui protege cette these.
Ni Ia these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

Performance Analysis and VLSI Design of a

High-Speed Reconfigurable Shared Queue

St. John's

by

@LING WU, B.ENG.

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the

requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

August 2007

Newfoundland

Abstract

Modern switches and routers require a large amount of storage space to bufl'er

packets. This becomes more significant as the link speed increases and switch size

grows. While DRAM is a good choice to provide capacity, the access time becomes a

problem for high-speed applications. In this case, SRAM has to be used to match the

link speed. However, SRAM is more costly and the density is low. The SRAM/DRAM

hybrid architecture provides a good solution to meet both capacity and speed require­

ments.

To minimize packet loss and provide better quality of service (QoS), each switch

port is normally equipped with a large amount of buffering resources, which is usually

based on the worst case scenario. However, under normal load conditions, the buffer

utilization is very low. Therefore, we propose a reconfigurable buffer sharing scheme

in which a buffer controller can dynamically adjust the buffer size allocated for each

port according to the parameters derived from the traffic pattern and buffer saturation

status. The target is to improve the buffer utilization without posing much constraints

on the buffer speed.

In our research, we study how buffer sharing architectures improve the switch

performance, based on the results from both numerical analysis and simulations. The

performance results obtained from both uniform and nonuniform traffics demonstrate

that the proposed reconfigurable shared buffer can provide better queuing perfor­

mance with a much smaller shared buffer. We further conduct research into the VLSI

design of the proposed reconfigurable shared queue architecture using hardware de­

scription language VHDL and using 0.18um CMOS technology. The design result

11

indicates that the buffer sharing and control logic can be integrated into port con­

trollers with a increasing of about 20, 000 gate-count for each 4-port group, while the

memory size can be reduced into half of the dedicated buffer scheme.

lll

Acknowledgements

First of all, the most sincere thanks is given to my supervisor Dr. Cheng Li, not

only for his academic guidance, but also for his concern and help toward my family.

With numerous meetings and patient instructions, he led me into this deep scientific

area and directed me to the end of this work.

I would especially like to thank to Dr. Ramachandran Venkatesan, Dr. Howard

Heys and the Faculty of Engineering and Applied Science for giving me this oppor­

tunity to pursue my graduate studies here; I would also like to give my appreciations

to the School of Graduate Studies, and Memorial University of Newfoundland for

providing such a fine research environment, facilities and technical support services.

I would like to thank Reza Shahidi and Mr. Nolan White; they were very helpful

with setting up my computer systems and providing advice when ever I needed. Also

thanks to Jonathan Anderson who newly became our computer administrator in the

CERL lab. I would also like to express my appreciations to Colin Hodder from the

writing center.

I would like to express my appreciations to all my colleagues: Zhiwei An, Wcihua

Gao, Tianqi Wang, Shi Chen, Liang Zhang, Pu Wang, Chuck Rumbolt, Dianyong

Zhang, and Shenqiu Zhang. With all of you, the study and research work in this lab

has been more than an enjoyable experience to me.

Most importantly, I would like to express my gratitude to my parents for their

unconditional love and support; special thanks to my mother for her constant encour­

agement. I would like to dedicate this work to my mother, Sha Lu, and my father,

Zhian Wu.

IV

Another important person I am grateful to, is my sweetest little girl: Xinyu Huang,

thank you for always staying at my side and willingly helping me at every moment.

Finally, I would like to thank another person. However, I could not pick up a

single word to express my gratitude. For the past seventeen years, no matter it is

sunny or rainy, stormy or windy, you are alway at my side. Love, encourage, support,

they are not loudly spoken out, but they arc all in your heart. Sincerely, I want to

say thank you, my dearest husband: Yanping Huang.

v

Contents

Abstract

Acknowledgements

Table of Contents

List of Figures

List of Tables

List of Abbreviations

1 Introduction

1.1 Brief History of Data Networks

1.2 Packet Switching

1.2.1 Packet Switching Architectures

1.2.1.1 Shared Memory Switch

1.2.1.2 Shared Medium Switch .

1.2.1.3 Space-Division Packet Switch

1.2.2 Queuing Strategy

Vl

ii

IV

vi

X

XIII

XV

1

1

3

5

6

7

7

10

1.2.2.1 Input Queuing

1.2.2.2 Output Queuing

1.2.2.3 Shared Queuing .

1.3 Motivation . .

1.4 Thesis Organization .

2 Memory Technology and Network Queuing Systems

2.1 Random Access Memory Technologies

2.1.1 Static Random Access Memory (SRAM)

2.1.2 Dynamic Random Access Memory (DRAM)

2.2 RAM in High-Speed Network Applications ...

2.2.1 Pipelined Memory Shared Buffer- 1995 .

2.2.2 DRAM-based Shared Memory - 1997 ..

2.2.3 Hybrid SRAM/DRAM Architecture- 2001

2.3 Proposed Shared Output Queue (SOQ)

2.3.1 Proposed SOQ Architecture ..

2.3.2 The SOQ High Level Control Algorithm

2.4 Summary

3 Performance Analysis of the Shared Output Queue under Uniform

Random Traffic

3.1 Analytical Modeling

3.1.1 Review

3.1.2 Performance Analytical Model .

3.1.3 Arrival Process

Vll

11

12

12

13

14

16

16

17

18

19

20

21

23

25

25

26

28

29

29

29

31

33

3.1.4 Departure Process

3.1.5 Steady-State Analysis and Performance Parameters

3.1.5.1 Average Queue Occupancy

3.1.5.2 Cell Loss Rate (CLR)

3.1.6 Performance Comparison .

3.2 Confidence Interval Analysis . . .

3.2.1 Confidence Interval Basics

3.3

3.2.2 Confidence Interval Analysis of SOQ Performance

3.2.2.1

3.2.2.2

Summary ..

Delay Performance

Cell Loss Rate performance

4 Performance Analysis under Non-Uniform Traffic

4.1 simulation Environment

4.2 Performance under Bursty Thaffic

4.2.1 Bursty Traffic Generation

4.2.2 Performance Evaluation .

4.3 Performance under Hot-Spot Traffic .

4.3.1 Hot-Spot Thaffic Model .

4.3.2 Performance Evaluation

4.4 Performance under Prioritized Traffic

4.5 Performance under Set Assignment

4.5.1 Average Delay.

4.5.2 Cell Loss Rate .

Vlll

34

36

37

38

38

40

40

43

43

44

45

47

47

50

50

52

56

56

57

59

61

62

63

4.6 Performance Scalability

4.6.1 Different Switch Sizes .

4.6.2 The Impact of Traffic Burstiness .

4. 7 Summary

5 Shared Output Queue System Design and Implementation

5.1 System Level Design

5.2 Tail and Head Buffer

5.2.1 11emory Size

5.2.2 Tail Buffer Implementation

5.2.2.1

5.2.2.2

5.2.2.3

Tail Buffer Datapath .

Finite State 11achine(FS11)

Synthesized Tail Buffer

5.2.3 Head Buffer Implementation

5.3 Reconfigurable Main Controller . .

5.3.1 11ain Controller Datapath Design

5.3.1.1 Request Arbitration Unit(RAU) .

64

64

65

66

71

71

73

73

75

75

78

79

79

81

83

83

5.3.1.2 Pointer 11anagement Unit (P11U) . 84

5.3.1.3 Queue Control Unit(QCU) and Special Function Unit(SFU) 86

5.3.2 11ain Finite State 11achine . 88

5.3.3 Synthesized 11ain Controller 89

5.4 System Implementation . .

5.5 Entity Functional Testing

5.5.1 Tail and Head Buffer Functional Simulation

lX

90

91

91

5.5.2 Main Controller Functional Simulation

5.5.3 Internal Delay .

5.6 Summary

6 Conclusion and Open Issues

6.1 Summary of Thesis

6.2 Major Contribution of Thesis

6.3 Open Issues for Future Work .

References

Appendix

X

92

93

94

103

103

105

106

108

114

List of Figures

1.1 A 24 Ports Ethernet Switch

1.2 A 2 x 2 Switch Element ..

1.3 Multistage Switch Fabric: Banyan Network

1.4 Multiple-Path Switch Fabric: Balanced Gamma Switch

2.1 An SRAM Cell

2.2 The 2 x 2 Shared Buffer using Pipelined Memory

2.3 The Beluga System Architecture . . .

2.4 Hybrid SRAM/DRAM Packet Buffer

2.5 Proposed Shared Output Queue Architecture .

3.1 Shared Output Queue Model .

3.2 Average Number In Queue vs. Offered Load for SOQ-4

3.3 Cell Loss Rate vs. Offered Load for SOQ-4

3.4 Cell Loss Rate Performance for Analytical Models of DOQ and Various

SOQ Schemes

3.5 Normal Distribution

4.1 Class Diagram for DOQ Scheme .

Xl

4

8

9

10

17

21

22

23

25

31

39

40

41

42

48

4.2 Class Diagram for SOQ Scheme

4.3 Warm-up Period

49

50

4.4 ON-OFF Markov Modulated State Machine 51

4.5 Cell Loss Rate vs. Offered Load 52

4.6 Average Number in Queue vs. Offered Load 54

4.7 Cell Loss Rate vs. Buffer Size (-\ = 0.85) 55

4.8 Hot Port and Its Shared Group 58

4.9 Average Number of Cells in Queue under 1% Hot Spot Traffic 59

4.10 Cell Loss Rate for Priority Class 0 (,\ = 0.85) 60

4.11 Cell Loss Rate for Priority Class 1 (,\ = 0.85) 61

4.12 Cell Loss Rate for Priority Class 2 (-\ = 0.85) 62

4.13 Average Number of Cells in Queue for Different Set Size- SOQ-2 63

4.14 Average Number of Cells in Queue for Different Set Size- SOQ-4 64

4.15 Average Number of Cells in Queue for Different Set Size- SOQ-8 65

4.16 Cell Loss Rate for Different Set Size- SOQ-2 . 66

4.17 Cell Loss Rate for Different Set Size - SOQ-4 . 67

4.18 Cell Loss Rate for Different Set Size - SOQ-8 . 68

4.19 CLR for DOQ and SOQ-8 vs. Offered Load . 69

4.20 Average Number of Cells in Queue vs. Offered Load 69

5.1 Data Bus Architecture .

5.2 Tail Buffer Architecture

5.3 Tail Buffer Finite State Machine .

5.4 Synthesized Tail Buffer Circuit

xu

72

76

78

80

505 Synthesized Head Buffer Architecture 81

506 Write Operation 0 0 0 0 0 0 0 0 0 0 0 0 82

507 Synthesized Request Arbitration Unit 83

508 DRAM Addressing Scheme 0 0 0 0 0 0 0 85

509 Memory Management - Set Assignment 0 85

5010 Synthesized Address Pointer Management Unit 86

5011 Synthesized Queue Length Controll Datapath 87

5012 State Diagram of Main-FSM 88

5013 Synthesized Main Controller 89

5014 Hierarchical SOQ System Architecture 90

5015 Synthesized SOQ System Architecture 96

5016 Tail Buffer Function Simulation 97

5017 Head Buffer Function Simulation 98

5018 Waveform of Set Assign and Return 0 99

5019 Main Controller Function Simulation - Writing 100

5020 Main Controller Function Simulation - Reading 101

5021 Internal Delay 102

1 SOQ System Synthesis Report 114

2 System Delay Time 0 0 0 0 0 0 115

3 Waveform under 60% Traffic Load 0 116

4 Waveform under 75% Traffic Load 0 117

5 Whole Simulation Waveform 0 0 0 0 118

Xlll

List of Tables

2.1 Typical SRAM/DRAM Parameters

3.1 95% Confidence Interval of Delay Performance

3.2 95% Confidence Interval of Cell Loss Rate

4.1 95% Confidence Interval of Cell Loss Rate

19

44

44

53

4.2 95% Confidence Interval of Average Number in Queue Performance 55

4.3 Cell Loss Rate for Burst Length of 5 . 70

4.4 Cell Loss Rate for Burst Length of 10 . 70

4.5 Cell Loss Rate for Burst Length of 15 . 70

xiv

List of Abbreviations

ATM Asynchronous Transfer Mode

AQ Active Queue

CI Confidence Interval

CLR Cell Loss Rate

CFDS Conflict Free DRAM System

DOQ Dedicated Output Queue

DRAM Dynamic Random Access Memory

ECQF Earliest Critical Queue First

FDM Frequency Division Multiplex

FCFS First-Come-First-Serve

FIFO First-In-First-Out

FSM Finite State Machine

HOL Head Of the Line

XV

IC

ISDN

LSI

MDQF

MMA

oc

pdf

PMU

QCU

QDRSRAM

QoS

RAM

RAU

RRR

RTT

SE

SFU

Integrated Circuits

Integrated Service Digital Network

Large-scale integrated circuits

Most Deficit Queue First

Memory Management Algorithm

Optical Carrier

probability density function

Pointer Management Unit

Queue Control Unit

Quad Data Rate SRAM.

Quality of Service

Random Access Memory

Requests Arbitration Unit

Read Request Register

Round Trip Time

Switch Element

Special Function Unit

XVl

SRAM

SO NET

SOQ

TDM

VHDL

VoiP

VOQ

WRR

Static Random Access Memory

Synchronous Optical Network

Shared Output Queue

Time Division Multiplex

Very High Speed IC Hardware Description Language

Voice over IP Network

Virtual Output Queue

Write Requests Register

xvn

Chapter 1

Introduction

1.1 Brief History of Data Networks

Since the first data transmission network appeared in the late 1960s, data networks

became a popular communication tool. Because of its great potential, in the past

four decades, data communication networks have attracted extensive research. By

pioneer researchers' tremendous efforts, the Internet development became one of the

most successful and exciting phenomena in the history of technology. The merge of

computer technologies and communication networks is so successful that there has

a such valuable resource, the Internet, been available to everyone in the world. It

changes our life styles dramatically, and also leads to numerous innovations of new

technologies. As the data transmission speed keeps increasing, even the traditional

telephone services are now considering to transmit telephone calls over the Internet,

such as Voice over IP (VoiP).

The telephone network was established in the late nineteenth century. In the

1

beginning, the transmitted telephone calls were analog signals over wire lines [1]. At

that time, the switching infrastructures were all electronic circuits to provide point­

to-point connections with fixed bandwidth for each call.

Because of increasing demand, the switching networks were necessary to develop

more efficient interconnection operations. Since 1960's, digital devices have been in­

troduced to telephone network which provide higher service quality and speed [2].

In order to share expensive computer resources and exchange information, the data

network was developed at around the 1960's [3]. The first nationwide data network

ARPANET was established in 1969 by the pioneer research team at the Advanced Re­

search Projects Agency, USA. These early data networks typically deployed modems

to convert digital information into analog signals and transmitted over leased tele­

phone lines [1]. The transmission bandwidth was typically limited by the voiceband

channels, where the data rate was about 50Kbps, with packet delay at the order of

50-100 ms [1].

Digital transmission has many advantages, such as, easier to regenerate, lower

noise interference, and easier to multiplex, etc. As the digital technology progressed,

Time Division Multiplex (TDM) brought the transmission bandwidth into a new level

- T1-carrier, 24 voice channels were multiplexed to achieve 1.544 Mbps [1]. Later, the

Frequency Devision Multiplex (FDM) was introduced to telephony switching systems.

All these technologies brought to the Integrated Service Digital Network (ISDN)

technology, which maximized the usage of digital infrastructures. In the mid-1980s,

the bandwidth of data transmission had achieved 150Mbps and higher, and so-called

Broadband ISDN (B-ISDN) appeared with more flexibilities and service categories

[1].

2

The Synchronous Optical Network (SONET) standard appeared in the late 1980s

and led to the world wide data transmission explosion [1]. It played an important role

for the B-ISDN: the transmission bandwidth continuously increases and the transmis­

sion reliability and quality improves incredibly. In the SONET, Optical Carrier (OC)

level describes the capacity range of an optic fiber to carry digital signals. As a road

map, from the beginning of OC-1 (1 x 51.8 Mbps) to current OC-192 (192 x 51.8Mbps)

and OC-768 (768 x 51.8 Mbps), a single optical channel can support 192 and 768 op­

tical carriers and provide 10 Gbps and 40 Gbps of bandwidth. In the future, the

OC-1536 and OC-3072 will provide 80 Gbps and 160 Gbps for faster data transmis­

sion [4].

1.2 Packet Switching

Since the network evolution through ISDN and SONET technologies, now the com­

munication infrastructures can support a broad category of services, such as voice

service, data service, image and video services, etc. From the network users' point

of view, all computers send and receive messages through modems to their service

provider's infrastructures. However, at each service network, hundreds of thousands

of users could access the Internet at the same time. In addition, these accesses have

various destinations, which could be local area applications or world-wide websites.

All these applications require the network infrastructures to handle a large amount

of messages efficiently, which puts great pressure on the network switching nodes.

The message switch is a core device which is responsible for transmitting data

messages according to their required destinations [5]. It is distinguished from tele-

3

phone switch in numerous ways, such as, message transmissions are connectionless

operations; the time delay can be tolerant compared with voice calls; and during the

network congestion, it would hold data message temporarily for later transmission,

and so on.

Packet switching has the same concept as the message switching except each

message is limited by a packet length [5]. For a long message, it can be divided

into a number of packets and sequentially transmitted over the networks. At the

receiver side, these packets are reassembled together by a predefined order to restore

the original message before passing onto the end user.

The packet switching, which is described in this chapter, usually refers to the

packet distribution technology rather than a specific network switch node.

WorkGroup

10 Mbps FuH-dupl••
FMI Etbem•t HM-1

24pQrts, +2G Ethe.rnet Swjtch Application

Figure 1.1: A 24 Ports Ethernet Switch (taken from www.netsys.com.tw)

As an example of the packet switch, Figure 1.1 shows a typical modern Ethernet

4

switch model, which has 24 ports with up to 2Gbps links.

The two basic functions of packet switching are store and forwarding (sometimes

refer to as buffering and routing) of data packets [5]. Abstractly, packet switching

can be described as a box with N inputs and N outputs. According to a packet

destination, internal connection will be provided to the packet during its transmission.

For the synchronized packet switching, during each time slot, the internal connections

could be different according to the demands of incoming packets. Besides the two

basic functionalities [5], some packet switches have priority service classes, which

provide services with different resource allocation schemes according to the packet

priority classes. Another functionality is broadcast and multicast, which are also

commonly implemented in packet switches to distribute a data packet to multiple

destinations. These special functionalities are important features to provide Quality

of Service (QoS) to end users and improve infrastructure utilizations.

1.2.1 Packet Switching Architectures

Based on different criteria, packet switching can be classified into different categories.

For example, based on how internal conflicts are handled, packet switches can be

divided into internal non-blocking and blocking switches. Based on the method of

switching operation, they can be classified into three types, shared memory type,

shared medium type and space division type. An abbreviative description of these

three types is provided here based on [3], [5], and [6].

5

1.2.1.1 Shared Memory Switch

Shared memory switch, sometimes referred to as the first generation packet switching,

usually consists of a central computer with a dual-port memory shared by all switch

inlets and outlets. Internally, the memory is divided into separate logic queues corre­

sponding to each transmission link. At each time slot, all arriving packets from input

links are multiplexed into a single stream and written to the shared memory; then,

all packets at the head of each logic queue are retrieved and fed to their output links

for departure. All receiving and departing operations are controlled by the central

computer.

The shared memory switch appeared at the early stage of packet switching, while

the data networks were still in small scale with less users and applications. The

bandwidth of shared memory should be at least 2N times faster than link rate, and the

central computer should run even faster to accomplish all operations in one time slot.

These critical conditions limited the data transmission rate and their applications. As

the network technologies progressed, the shared memory switch is no longer suitable

for high speed data transmission applications.

However, the shared memory switch still has some remarkable advantages: Firstly,

it is an internal non-blocking switch, because every incoming packet will be stored

in memory unless memory is full; secondly, the memory size is the most optimized

because the sharing mechanism eliminates memory redundancy; thirdly, it is easy to

implement using single Large-Scale Integrated (LSI) circuit. These advantages enable

the shared memory switches still exist in some small scaled data communication

networks.

6

1.2.1.2 Shared Medium Switch

The shared medium switch is also known as the second generation packet switch.

The shared medium switch usually deploys a shared high-speed medium, such as a

parallel bus, that is capable to carry all arrived packets. At the output side, each

link has an interface controller, which tests the identification on the head of each

packet. If it has a match, the packet will be accepted and stored in its First-In-First­

Out (FIFO) queue waiting for its turn to depart. This architecture, compared with

shared memory switch, distributes the central computation functions to the interface

controllers, which improves the operation speed. However, the speed of the shared

medium and each buffer memory still should operate at N times faster than the link

rate, and the same as the interface controllers, which is not feasible with the rapid

development of computer communication networks.

1.2.1.3 Space-Division Packet Switch

In space-division packet switches, multiple concurrent paths can be established during

each operation slot to transmit packets from their inlets to their destination outlets.

This is also generally referred to as the third generation packet switch. In each time

slot, the internal connections could adjust according to packet demands. Also, each

Switch Element (SE) implements routing functionalities with distributed routing al­

gorithms, so the centralized controller is not necessary anymore. The commonly used

space division packet switch architecture is the multistage interconnection network.

The crossbar switch belongs to this category.

• Crossbar Switch: For an N x N switch, the N inputs and N outputs can

7

be configured as a two-dimensional array with a switch at each cross-point on

the grid. During each time slot, if the destinations of the N arrived packets

are different from each other, N distinct paths will be setup by turning on

N switches at the corresponding grid of each input-output pair, then all N

packets will be transmitted in one time slot. However, when multiple packets

are destined to the same output links, internal conflicts are not avoidable, and

some queuing schemes must be deployed to improve the overall throughput of

the switch. The major drawback of crossbar switch is its high complexity, which

is in the order of O(N2) and is measured in terms of the number of cross-points.

Therefore, the crossbar switch is not suitable for large switch fabric.

Figure 1.2: A 2 x 2 Switch Element

• Multistage Interconnection Network Based Switch: One typical multistage in­

terconnection network is the Banyan-based network [5]. The Banyan network

is constructed by interconnecting several switch elements as its basic building

blocks. A 2 x 2 switch element is shown in Figure 1.2, which contains two in­

puts and two outputs. It has four internal paths for all possible combinations

of a packet with different destinations. The routing bit for each stage at the

8

0

2

3

4

5

6

7

Figure 1.3: Multistage Switch Fabric: Banyan Network

packet header, either a 0 or 1, will determine whether the packet will be sent

to upper or lower link. An 8 x 8 Banyan network switch is shown in Figure 1.3,

which is comprised of three stages and with 4 switch elements in each stage.

For example, as shown in the figure, input 0, 4 and 6 have packets destined to

output 7, 1 and 2, respectively. The destinations are represented in their binary

format as shown in the figure. The first bit (most significant bit) determines

the routing at the first stage; the second bit is used in stage two; and the last

bit is used in the last stage for routing decision. In this way, all three packets

are routed to their destinations.

Other multistage interconnection network, such as, the OMEGA network and

the delta network, etc., can be referred to [5] for more details.

9

• Multi-Path Switch: A Balanced Gamma Switch [7], [8] is used to illustrate the

multi-path switch as shown in Figure 1.4. In the Balanced Gamma network,

packets can be routed through even in the presence of failures of some of the

SEs in the network [8]. Because of its multi-path property and efficient routing

algorithm, Balanced Gamma network can provide outstanding performance,

single fault-tolerant and robust when multiple faults exist, along with highly

reliable and scalable properties.

Stag• 0 Stage l Stag• 2 Output Stag•

Iupm 0 -OmpurO

Input 2 Outpur 2

Input 3 Output 6

Input 4 Outpnr 1

Input 5 Omput 5

Input 7 --·-·-· · Output 7

Figure 1.4: Multiple-Path Switch Fabric: Balanced Gamma Switch

1.2.2 Queuing Strategy

In order to store packets in switch fabric, packet buffering, also known as queuing, is

usually implemented inside the network switches. Queuing systems can be classified

10

into input queue, output queue and shared queue depending on the different buffer

locations.

1.2.2.1 Input Queuing

For input queuing, packet buffers are implemented at the input side of a switch fabric

[9]. When packets arrive at inlets with more than one packet destined to a same outlet,

they will compete for transmission at the switch fabric. Usually, only one packet will

be switched, others will be blocked and have to be buffered in their corresponding

buffers for temporary storage and will be tried again.

The most commonly known service discipline in a queuing system is First-Come­

First-Served (FCFS), that is, if the queue buffer is not empty, the newly arrived

packets have to stay in the line to wait for their turns. Here, a problem arises that

if a packet at the head of line experiences a longer waiting time, then, all other

packets behind it have to wait, even though they are destined to idle output links.

This is usually known as the Head Of the Line (HOL) blocking. Because of that,

the maximum throughput of a purely input buffered switch is about 58% [3] under

uniform random traffic. The performance becomes even worse when the applied traffic

is getting burstier.

To improve the throughput, some techniques have been developed to solve the

HOL problem, such as, the Virtual Output Queue (VOQ) scheme. The VOQ divides

the input buffer into a number of virtual output queues, and all arriving packets will

be enqueued to their corresponding virtual output queues. In this way, the switch

can maximize the throughput of the switch.

11

1.2.2.2 Output Queuing

The output queued switch buffers packets at output side after they are switched

through the switch fabric [9]. In the case of multiple packets destined to the same

outlet at the same time, each output queue usually accepts up to k packets simulta­

neously, while 1 :::; k :::; N. Generally, k is called the knockout factor and its value

can be engineered according to different switch sizes and traffic conditions.

As is known, if the k is equal to link number N, then the switch arc totally non­

blocking, which is an ideal but impractical for large switches. However, if k is properly

chosen, the switch can still achieve close to 100% throughput [9]. Moreover, with an

output queue, packets are only waiting in the buffer for unavoidable congestions

because of multiple arrivals or previous arrivals, so the best delay performance can

be achieved compared with other queuing approaches.

The drawback of this scheme is the potential speed up of k [3]. Another tech­

nique to reduce memory speedup limitation is to use concentrator which increases

the hardware complexity, and increases cell loss in the concentrator [6] and [9].

1.2.2.3 Shared Queuing

The shared queuing has similar architecture as mentioned in shared memory switch,

that is, all packets are stored in a shared memory [9]. At each time slot, all arrivals

are multiplexed into a single stream and written to the memory; all outgoing packets

are retrieved from the memory and demultiplexed to feed into corresponding output

links. The shared queue achieves 100% throughput and optimized delay performance.

However, the cost is unaffordable- 2N times speed up for both the shared memory

12

and the central computer.

From the previous discussion, it is clear that each queuing strategy has its ad­

vantages and drawbacks. In practice, schemes which combine different strategies

may be deployed in switch fabric to achieve high performance. For example, some

network switches use parallel switch planes to transmit packets, whereas some oth­

ers implement recycle paths for those unsuccessful packets resulting from the port

competitions.

References [1], [6], and [9] provide more detailed information for different switch

models and queuing architectures.

1.3 Motivation

For many packet switches, output queuing has been one of the most popular buffering

strategy and it has been widely used, such as in the knockout switch [10], Pinium

switch [11], etc. It has been recognized that the output-queued switch possesses

the best throughput and delay performance [12]. Therefore, we decide to conduct our

research based on an output queued switch. However, if one output queue is dedicated

to each port, the buffering space for each queue usually should be allocated based

on the worst case traffic requirements. While, under normal traffic conditions, the

applied load is far less from its peak load. Moreover, for a switch with a large number

of ports, it is quite possible that the momentarily unbalanced traffic experienced in

the switch would cause some output queues suffer from overly intensive load where

packets discarding is unavoidable, while other queues may remain in the normal

condition or even in the idle state.

13

This thesis will show that how the shared queue will provide better performance

on the time delay and cell loss rate. Cell discarding will only occur when the entire

shared buffer space is full. In this way, it can smooth out the unbalanced traffic load.

The delay performance is optimized because a cell is only delayed by unavoidable

waiting time in the FIFO. In addition, since the shared queue can accommodate

more cells, the buffer utilization will be improved.

1.4 Thesis Organization

New generation routers and packet switches usually have a large number of ports

with very high link rates. With the rapid increases of network applications, data

traffics on the Internet are difficult to measure and cope with. As a result, a large

queuing buffer is usually equipped in order to accommodate the worst-case scenario.

However, under normal traffic conditions, buffer utilization is rather low. Improving

the buffer efficiency and minimize possible packet loss has become a major concern

for broadband switch design and implementation.

In our research, we proposed a reconfigurable buffer sharing scheme, which fol­

lows the advanced hybrid SRAM/DRAM approach to enhance the queuing perfor­

mance for high speed switches and routers. It is known that, this architecture is the

fastest buffering scheme with the worst case bandwidth guarantees [13]. The proposed

scheme targets at improving buffer utilization, while not posing much constraints on

the buffer speed by dynamically adjusting buffer spaces for individual ports according

to traffic patterns and buffer saturation status.

The organization of the thesis is as follows: Chapter 2 provides a technical review

14

of various queuing systems and involved memory technologies. A brief introduction

of our proposed shared queue architecture is presented too. Chapter 3 provides a

numerical model to analyze the SOQ performance under uniform traffic. In Chapter

4, we present the performance comparison for different shared queue schemes under

non-uniform traffic. Chapter 5 describes the design and implementation of the re­

configurable SOQ system using hardware description language VHDL and 0.18 um

CMOS technology. Chapter 6 gives the thesis conclusions and future work.

15

Chapter 2

Memory Technology and Network

Queuing Systems

Modern memones can be simply classified into volatile and nonvolatile memory

which depends on whether a constant power is supplied for data sustainment [14].

Currently, two widely available memory, Static Random AccessM emory (SRAM)

and Dynamic Random Access Memory (DRAM) [15] are volatile memory, which

can perform both reading and writing operations. This chapter firstly provides a brief

introduction of SRAM and DRAM technologies, then proceeds with their deployments

in network switches. The proposed reconfigurable shared output queue architecture

is presented in the last section.

2.1 Random Access Memory Technologies

Random Access Memory (RAM) is initially used to hold program codes and data for

computers. Random access means that any locations in the memory can be written

16

to or read from at any time, regardless of the last accessed location [16]. RAM

is classified as a volatile memory, that is, data stored in its memory cell will be

maintained upon a persistent power supply.

2.1.1 Static Random Access Memory (SRAM)

An SRAM chip contains an array of memory cells with support circuitry such as

address decoders. The memory array is organized in rows and columns which called

word lines and bit lines respectively. During a write or read operation, the address

decoder provides the row address and column address, then the corresponding SRAM

cell is selected, and the desired data value is written into or read from this location.

Figure 2.1 shows a SRAM cell, which is implemented by using 6 transistors.

Bt Une
True

V\tird Une

GND

Figure 2.1: An SRAM Cell (taken from http:/ jparts.jpl.nasa.gov/asic)

The performance of SRAM is usually measured in access time and cycle time [17].

The access time specifies a minimum amount of time required to read a bit from the

memory, from the initiation of the read operation to when the bit appears on the

17

data bus. The cycle time indicates the time interval from the end of the previous

operation to when the next operation is ready. SRAMs usually responds quickly to

the required operations because their access time and cycle time are generally less

than or equal to one clock cycle- considering a SRAM runs at 250M Hz, the duration

is 4 ns. However, because the leakage and standby currents exist for all transistors,

the SRAMs usually consume a large silicon area and power supply.

2.1.2 Dynamic Random Access Memory (DRAM)

Dynamic Random Access memory is probably the most widely used semiconductor

memory because of its higher storage density and advantage on cost per bit. A

DRAM cell is usually implemented using a storage capacitor and a single transistor

as a switch [18]. The charge presented on the capacitor indicates a logical value 1,

and its absence is 0. However, DRAMs have more complex operation modes and

require additional circuitry to sustain the data value. During a reading process, the

data bus which is connected to the corresponding data cell should be pre-charged.

Then, the stored data on its capacitor leads to a very small voltage change, which

causes a response on its sense amplifier. In this way, the data will appear on the

data bus. A writing operation involves charging or discharging of the capacitor to

the desired voltage level. Because of the leakage current, the value stored in the

capacitor degrades gradually even with a constant power applied to it. Therefore,

constant refresh operation has to be performed at a periodic interval to preserve its

value.

The Random Access Cycle Time (TRAG) is defined as a minimum time interval

18

for two consecutive accesses to a DRAM device [17]. This time interval includes the

time to complete the first operation, the pre-charge or recovery time, and the address

select re-active time. The TRAG is an important DRAM measurement parameter

because it determines the memory operation speed. Compared with the computer

clock speed, the DRAM access time is usually very slow. To improve the DRAM

performance, instead of faster retrieving of data, the trend of the DRAM technology

is to provide a large volume of data during each access, which means that a wider data

bus and memory bank interleaving have to be used to increase the data transmission

parallelism.

Table 2.1 provides a simple comparison about current SRAM and DRAM param­

eters including access time, density, and power consumption per 100 Gbit of storage.

The information for SRAM is taken from [19], and that for DRAM is from [20]).

Table 2.1: Typical SRAM/DRAM Parameters

Access Cycle Time Max. Density /Chip Power Consumption/100Gbit

(Approximately) (Approximately)

SRAM 4 ns 18 Mbit 10 kW

DRAM 50 ns 1 Gbit 10 w

2.2 RAM in High-Speed Network Applications

Switches and routers are the central components in communication networks whose

basic function is to forward data packets. Buffering is a fundamental requirement

19

to temporarily provide data storage during network congestions. As a widely used

rule-of-thumb [21], for TCP flow to work well, packet switch has to buffer all packets

passing through in Round Trip Time (RTT), which implies that the required buffer

space is usually huge.

The queuing system for high-speed switches/routers is based on memory technolo­

gies. Usually, SRAMs are employed to provide faster operation speed. However, its

density is low and it is more costly. Therefore, as the memory capacity requirement

becomes significant, DRAMs are getting attractive. Although DRAMs can provide

massive and dense storage, the memory access time is usually slow. Much research

has been conducted in past decade on the above mentioned issues for memory tech­

nologies.

It is obvious that modern memory technologies have become more and more so­

phisticated. New techniques, such as cache and memory bank interleaving, have

greatly improved the performance of modern computer systems. These techniques

had been introduced to packet switches too.

2.2.1 Pipelined Memory Shared Buffer - 1995

The basic concept of memory bank interleaving can be found as early as in 1988

for the Prelude switch [22] and in 1993 for Turner's multicast switch [23]. In 1995,

Manolis Katevenis et al. proposed the concept of the Pipelined Memory Technique

[24], which employed interleaved memory banks as shown in Figure 2.2.

In this figure, the interleaved memory banks take advantage of the fact that the

packet access to the memory bank is in a sequential manner. This is because the

20

inO
w

in1 fnpu1
buf.

w reg's

ou1pu1{ outO
buffers out1 -

M3

Figure 2.2: The 2 x 2 Shared Buffer using Pipelined Memory (taken from [24])

incoming and outgoing link width is equal to w and packet width is equal to a multiple

of w. So, when the first word wO is received by the registers on the left most column,

they are ready to be transferred to the memory bank MO, while subsequent words

are in the progress of being registered by w1, w2, and w3. Because this is a 2-input

and 2-output system, the memory operations have been divided into 4 pipeline stages.

As long as the packets are wider than 4 words, the memory operations and packet

receiving/transmitting can work perfectly without any stall.

2.2.2 DRAM-based Shared Memory - 1997

Later, Chiueh and Varadarajan proposed the architecture of the Beluga shared mem-

ory ATM switch in 1997, which employed centralized and heavily interleaved DRAMs

for a shared queue, together with input and output buffers at the receiving and trans-

mitting ports [25].

21

3.2 ;' I nput B us ,
Output

Bus
I Input B1((!'1r ~

.Shared ..;\ft!'mc,·

•·-rtll•~·u I I Lorkal Bank I 3.2 Ourpur .I & Conrroll,-r request ~ Bl{~r&
gr·ant Controll&>r

Bi'tllt

Shar~d .:.\femor·y

2 I Logical .Bani; I I Inpur B1~r 1- r·equnr ~ Owpur I .& Conrro/1,-r fr!QIIr!Sf BI{(Yer ... ~ ,.,.,,.
Sharr!d ~v,mo,·y tp'iWt Controller

3 I Logical B~Plk I

2

3 I Inpur B•<tfl!.• ~ Owp1.t I rlqUIS.t
.

& Conrroll~r .
IINJ.Ih."SI -4 Bu.t:r~~·&

grant .
Conrrol:~r . grant

3

. . . . Slrar~d Alc>mor';_l-' . . ~-~I Logical Bani: I u. Irtpul P•c-Bm•k M• T•M• ~ Omp"'

1

.
I Input Bl(t}';:r ~ -l Ompur, 1· « Conrrolltrr Bus Pu-Output Info Tabl' r. Bus .

14/anesr BJ{ty..tr & Contt·o/Jer o11trollet
_!Z.'.!!c_q_.s_t_];_i_n_l!.e:.t!-_I::f.:r_t __ 61'(111(Ccnff'o!Jer

Aiulticast Link,d-List

N

Figure 2.3: The Beluga System Architecture (taken from [25])

The overall Beluga system architecture is shown in Figure 2.3, with N connections

and M shared memory logical banks. To implement the shared memory with DRAMs,

a small amount of SRAMs are used as writing and reading buffers to match with

the data bus speed. Inside the Beluga, if an arrival packet needs to be stored in

the memory, a memory bank will be selected to be activated and receive the entire

packet. This clearly indicates that, as the link number N increases, the required

memory bank M has to be increased to ensure no bank conflict if multiple packets

arrive simultaneously. Because the shared memory banks are basically single port

memory devices, the reading and writing contention still exists when both try to

access the same memory bank. Under this situation, the writing process will have a

higher priority to ensure no packet loss occurs. The reading process has to be delayed.

As a result, the corresponding transmission port will be stalled for one round robin

22

interval.

2.2.3 Hybrid SRAM/DRAM Architecture - 2001

In 2001, S. Iyer and N. McKeown proposed a new hybrid SRAM/DRAM architecture

for fast packet switches, which has been recognized as the fastest packet buffer with

the worst-case bandwidth guarantee [13]. In the paper, the authors proposed a hi-

erarchical memory architecture, which is shown in the Figure 2.4, and demonstrated

the SRAM size calculations and Memory Management Algorithm (MMA).

Large DRAM memory with random access time. T

Read Access

niving A
p ackets

~
R

b byte> U

::J]/

:J]
I

I
:J]Q
wbytes

Cachl' ur
FIFO tails

11111

1111
I
I

IIIIQ

u ~
/ b byt~-S . , Memory

tvtanagement

,, b byt~s ~
Algorithm

SRAivt
........ ::n'• :n

cut-through I

path
....... I :nQ

w bytes

Cacht• nf
FIFO heads

Departing grants

Pac~tsB
- Arbiter

R '
~- /requests

Figure 2.4: Hybrid SRAM/DRAM Packet Buffer (taken from [13])

23

In their design, an input queue was implemented at each line interface. To improve

the performance, the input queue is organized in Virtual Output Queue fashion, where

the input queue is virtually divided into N output buffers corresponding to all output

links. For each interconnection, two small SRAM buffers are implemented at arriving

and departing interfaces to store the head and tail cells and all the rest cells are stored

in the central DRAM memory. As the figure shows, the access to DRAM for writing

and reading is organized in a block of b cells. The value of b is decided by several

factors: the DRAM access time, link speed, memory hierarchy and MMA. After b is

derived, the tail and head buffer sizes can be determined to achieve the most optimized

SRAM size in the system. The memory management algorithm presented in the paper

is called the Earliest Critical Queue First MMA (ECQF-MMA). During every time

slot, the central switch scheduler issues a request to each input queue for transmission,

and all requests are stored in a Lookahead Buffer. Then, all transmissions are executed

in the pipeline fashion. The ECQF-MMA has an advantage that the SRAM size is

minimized, which is on the cost of an additive pipeline delay to the packets.

Additional efforts have been put forward to improve the performance and control

algorithms based on this innovative system. [26] introduced new memory manage­

ment algorithms, for example, the Most Deficit Queue First MMA (MDQF-MMA)

is proposed to guarantee zero pipeline delay for larger SRAM size, and the Most

Deficit Queue First is proposed as a compromised solution between ECQF-MMA and

MDQF-MMA.

In [27], J. Garcia, M. Valero, and et.al., implemented an input queuing sys­

tem using the same SRAM/DRAM architecture. The system could support up to

OC - 3072 (160Gbps) link rate with about one hundred ports and several service

24

Port 0
Port 1

Port 2
Port 3

PortN-1

(a) Shared Output Queue Sw1tch

PortN-3

PortN-2

PortN-1

(b) Shared Output Queue Architecture

Figure 2.5: Proposed Shared Output Queue Architecture

Port 0

Port 1

Port2

Port 3

classes. In their system design, heavy DRAM bank interleaving was introduced,

which is called Conflict Free DRAM System (CFDS), with reduced block size of cells

(smaller data granularity). To ensure the conflict free access to DRAM banks, out-

of-order execution and bank-renaming were deployed. However, the CFDS increases

the system complexity and introduces DRAM fragmentations during the system op-

eration.

2.3 Proposed Shared Output Queue (SOQ)

2.3.1 Proposed SOQ Architecture

Based on the previous discussion, we propose a reconfigurable buffer sharing scheme

for an N x N output-queued switch, which is shown in Figure 2.5(a) and 2.5(b).

To make it more general, we denote k in the figure as the knockout factor, where

1 ~ k ~ N, and we use fixed length data cells as our traffic load. Although, data

packet could be variable length, we assume that they have been segmented in advance.

In Figure 2.5(b), we show a 4-port shared buffer architecture: each port has

25

dedicated tail and head buffers which use fast SRAM memory to match with the high

link speed. A block of cells buffered in a tail buffer will be transfered to the shared

central memory which will be implemented in DRAMs. To improve DRAM efficiency,

multiple interleaved memory banks are deployed. Similarly, the reading process will

transfer a block of waiting cells to their corresponding head buffers for transmission to

downstream nodes. The block transfer of cells between the main memory and those

tail/head buffers must obey two rules:

• The tail buffers should not experience overflow before the main memory is full;

• The head buffers are never empty if there are waiting cells in the main memory

and tail buffers.

Also, the transmission of the block of data should match the speed and bandwidth

requirements between SRAMs and DRAMs. Furthermore, in case that a tail buffer

has less than a block of cells but the head buffer is empty, a cut-through transmission

will be performed through data bus.

2.3.2 The SOQ High Level Control Algorithm

The top level control algorithm is implemented inside the SOQ, and its pseudo code

is shown below. Basically, in a while loop, the algorithm checks the read/write

requests from the head buffers and tail buffers, then the corresponding operations

are performed. The details of these operations are discussed in Chapter 5 when

functional units design and implementation are presented.

26

while SystemOperating do

if WriterRequest then

if !QueueFull then

write-transmission

else

set-full-flag

end if

else if ReadRequest then

if !QueueEmpty then

read-transmission

else if !T-BufferEmpty then

cutthrough-transmission

else

null

end if

else

null

end if

end while

The proposed shared output queue scheme deploys the hybrid SRAM/DRAM

architecture, which follows a similar memory technique mentioned in [27] and [13].

In these previous works, the input queue, more precisely, the virtual output queue, is

implemented for the switch fabric. The major concern of the research is to replenish

the head buffers according to the requests from the switch scheduler. The results

27

indicate that various memory management algorithms provide different performance

on time delays and SRAM size requirements. In the proposed SOQ scheme, we are

more focused on the shared memory management to improve the queuing performance

on cell loss rate and delay time, which will be discussed in the next two chapters. In

Chapter 5, the detailed architecture design and implementation will be studied.

2.4 Summary

In this chapter, we have introduced some basic semiconductor memories and their

characteristics. In particular, how these characteristics affect their applications in

high-speed networks. From the literature review, we find that the hybrid SRAM/DRAM

scheme exhibits excellent performance, not only for computer system designs, but also

for high speed network applications. It has been recognized as the fastest buffering

strategy with guaranteed worst-case bandwidth. Therefore, we propose the shared

output queue scheme based on this advanced architecture. In fact, this architecture

can be used not only for the design of the input and output queues in broadband

switches, but also for the shared memory queue with multiple ports inside the switch

fabric.

28

Chapter 3

Performance Analysis of the

Shared Output Queue under

Uniform Random Traffic

The numerical methods and analytical methods are theoretical foundations for the

performance analysis of queuing systems. In our study, an analytical model is devel­

oped under uniform random traffic which provides numerical results of performance

of our proposed SOQ scheme.

3.1 Analytical Modeling

3.1.1 Review

The analytical methods provide theoretical foundations for the modeling of network

queues. Many studies have been conducted on the subject of various shared queuing

29

schemes. The computational complexity is considered to be an important factor for

the feasibility of a model in real applications.

In [28], Turner proposed an analytical model, referred to as the scalar model,

in which the state variables (si,t E 8) are used to keep track of the overall buffer

occupancy and determine the status of each virtual queue. However, the calculated

results of this model are overly optimized when compared to those from simulations.

Then, the vector model [29] was proposed, which provided better accuracy than

the scalar model. Its state, s = (s1, s2 , ... , sb), is a vector with b as the number of

logic queues, and si gives the number of packets destined to a specific output port

i. This model considered the correlations among packets inside the shared queue,

however, the computational intensity increases severely as the buffer size and switch

size increase.

Turner's bidimensional model [30] keeps track of both the number of packets in

the shared queue and the number of active outputs. On the other hand, Giannatti

and Pattavina's bidimensional model [31] provides relatively better accuracy and

tractability. In this model, the shared queue is studied via a tagged queue (represent­

ing a logic queue) and all other logic queues are considered together as an untagged

queue. The two variables of the switch state keep track of the content of the tagged

queue and the cumulative content of the untagged queue. In this way, the state space

is kept reasonable low, even for a large switch size and large number of logic queues.

Based on this model, in [32], Abonamah and Dang developed their bidimensional

scheme to analyze the behavior of channel grouping with shared queues for ATM

switches.

30

0
SOQ,

N-1 Untagged Queue (XI

(lt+X <=B)

Switch Fabric Shared Output Queue Inside of ith Shared Output Queue

Figure 3.1: Shared Output Queue Model

3.1.2 Performance Analytical Model

In this subsection, we present our performance model of the shared output queue un-

der uniform random traffic, which is modified from Pattavina's bidimensional model.

The illustrative architecture of the shared output queue (SOQ) is shown in the Figure

3.1. Because of the homogeneity among all SOQ modules, we only focus on one of

the SOQ modules, the SOQ;, where 0 :S i :S NjM -1, and M is the number of logic

queues sharing a common buffer with a total of B cell spaces. Because cell desti-

nations are uniformly distributed, any queue in SOQ; can be chosen as the tagged

queue, which is denoted by ¢, the other M - 1 logic queues are grouped together as

the untagged queue which is denoted by 1> _

For a stable queue, its behavior can be described by the state probabilities and

state transitions. It is clear that two operations are involved, that is, writing cells

into the buffer during an arrival process and reading cells from the buffer during a

departure process. Therefore, we define the queue state (x, X) as the state of the

system with x cells in the ¢ and X cells in the 1>. Because the cell number x and

31

X could be arbitrary numbers within the boundary B, the state at a given time t is

(x, X) E 8, where 8 is the collection of all valid states.

The following notations are defined for later use:

• wt(x, X) :the state probability of SOQ; at time slot t with x cells in the¢ and

X cells in the <I>.

• wt'(v, V) : the intermediate state probability after the arrival process, with v

cells in the ¢ and V cells in the <I>.

By introducing the intermediate state, we can decompose the operation in one

time slot into two parts: first, the arrival process and followed by the departure

process. Given the initial SOQ; state probability wt(x, X), after the arrival process,

the intermediate state probability is

wt,(v, V) = L wt(x,X)!'A(a,A), (3.1)
V(x,X)E8

where "Y A (a, A) is arrival probability that a cells arrives to ¢ and A cells arrives to <I>,

and state (v, V) is equal to (x +a, X+ A).

Similarly, after the departure process, the SOQ state probability is given by

wt+l(y, Y) = L wt'(v, VhD(d, D),
V(v,V)E8

(3.2)

where "'(D(d, D) is the departure probability that d cells depart from ¢ and D cells

depart from <I>, and the next state (y, Y) is equal to (v - d, V - D).

Next, we examine and analyze the two processes in detail.

32

3.1.3 Arrival Process

We assume that cell arrival is an independent and identically distributed (i.i.d.) ran-

dom process with the probability of p across all switch inlets. Cell destinations are

uniformly distributed to all outputs. We further assume that the switch fabric is

ideal and nonblocking, so that cell loss is only caused by buffer overflow. Under such

circumstances, a simple Queue Loss (QL) mechanism will be deployed so that all ex-

ceeded cells will be dropped. If we define 8 as the set of all valid states, V(x, X) E 8,

then,

X::; B, X::; B, X+ X ::; B, (3.3)

where B is the total buffer size for the share queue.

Clearly, under the i.i.d. random traffic, cell arrival to ¢ and cell arrival to <I> are

independent random process, so the joint probability of ')'A(a, A) can be written as

!'A(a, A)= !'a(a)!'A(A), (3.4)

where 'Ya(a) is the probability of having a cells to tagged queue ¢ and 'YA(A) is the

probability of having A cell to untagged queue <I>.

Let us define f](N, k,p) as the probability that there are k cells destined to an

output queue in a time slot, given that p is arrival rate at each switch inlet and N is

the switch size, and we have

(N) k N-k f](N,k,p)=Pr[K=k]= k (p) (1-p) . (3.5)

Therefore, under random traffic condition, arrival process for output queues can be

modeled by the binomial distribution. Let us denote St the available cell space inside

33

the SOQi at timet, that is,

St = B- (x +X),

the probabilities "Ya(a) and "YA(A) can be written as

"'fa(a)= (J(N, a,pjN), while (a+ A) ~ St (3.6)

"YA(A) = (J(N, A,p(M- 1)/N), while (a+ A)~ St. (3.7)

During a time slot, the number of cells arrives at SOQi must not be larger than

N (100% traffic load has N cells arrival), then all pairs of (a, A) satisfy following

constraints

a+A E [O,N]

a E [O,N]

A E [O,N].

(3.8)

When (a+ A) > St, the exceeded cells will be discarded, which means that the

state transition from (x, X) to (v, V), where v + V = B, will occur for all (a+ A=

St+1, St+2, ... ,N). lnthiscase,ifwedefine.6.asasetincluding(St+l, St+2, ... ,N),

then cell arrival probabilities to the tagged and untagged queue when (a+ A) E .6.,

"Ya and "YA respectively, can be calculated by

{

"Ya(as) = L (J(N,a,pjN)
V'(a)E6.

"YA(As) = L {J(N, A,p(M- 1)/N).
V'(A)E6.

3.1.4 Departure Process

(3.9)

Next, we examine the departure process. In our switch model, one cell departs from

each logic queue unless its bufl'er is empty. Because the departure processes for all

34

logic queues are independent, the probability of having d and D cells departing from

the tagged queue and the untagged queue, respectively, can be write as

"!D(d, D) = 'Yd(d)'yD(D).

The probability of d cells departing from the tagged queue ¢ is

{

'Yd(d = 1) = 1, while v > 0
'Yd(d) =

'Yd(d = 0) = 1, while v = 0,

(3.10)

(3.11)

which indicates a deterministic cell departure of one will occur when the tagged queue

¢ is not empty. Then, the next state of tagged queue is y = v - 1.

For the untagged queue <I>, at timet', V cells are stored in theM -1logic queues.

It is possible that all V cells belong to one logic queue, or they could be distributed

to the M - 1 logic queues. It is necessary to find out how many cells will depart in

the given time slot. We define a queue as Active Queue (AQ) which contains at least

one cell in its logic buffer. In this way, if we know the number of AQ within M- 1

logic queues, we know the number of departing cells in the current time slot. The

approximation of the AQ value is based on [30], and the essential assumption is that

all combinations of the V cells existing in all M - 1 logic queues are equiprobably

distributed. Then, the problem is to find out the probability of AQs in the untagged

queue <I> with V cells in it.

We define the function

(
m + n -1) cr(m, n) = ,

n-1
(3.12)

which gives all possible combinations that the sum of n nonnegative integers is equal

tom [30], [32]. For example in the case of m = 3 and n = 2,

(
3 + 2- 1) 4!

cr(3, 2) = 2-1 = (4 -1)!1! = 4"

35

That is to say, there is a total of 4 ways for 2 nonnegative integers to sum up to 3.

Based on this, we calculate the probability of D active queues, where 1 ~ D ~ M -1,

and V cells in all untagged queue,

(M-1) (V-1)
Pr(D) = D D-1 .

a(V, M- 1)
(3.13)

In this equation, the denominator gives all possible ways that V cells are distributed

among the M -1 logic queues, and the numerator gives the total number of ways that

V cells are distributed to D active queues times the binomial coefficient D chosen

from M - 1. With the number of AQs derived, the probability of having D cells

departing from the untagged queue is given by

{

"fD(D = 0) = 1,
/'D(D) =

Pr(D),

and the next state of <P is Y = V - D.

while V = 0
(3.14)

while V > 0,

Therefore, the joint probability of having d and D cells depart from ¢ and <D,

!'D(d, D),respectively, can be written as

/'d(d = O)!'D(D = 0) = 1, while v = 0 and V = 0

!'d(d = 1)/'D(D = 0) = 1, while v > 0 and V = 0

Pr(D), otherwise.

(3.15)

After all the transition probabilities have been derived, we are ready to compute state

probabilities and performance parameters.

3.1.5 Steady-State Analysis and Performance Parameters

In the performance evaluation, a stable queue and a steady-state computation arc

necessary, which is assumed for our analytical model. In our analysis, the probabilities

36

of arrival 'YA and departure 'YD are pre-calculated and stored in two tables. After the

initial state is chosen, we compute and record state probabilities slot by slot. In this

way, at the end of the desired number of iterations, the corresponding performance

parameters can be obtained. For reasonable B and M values, the required space to

store the state probabilities is usually reasonably small for our analytical model. In

most cases, convergence can be achieved with around 50 iterations, which indicates

that this iterative analytical approach is efficient. The following parameters, which

include cell loss rate and average queue occupancy, arc studied and compared.

3.1.5.1 Average Queue Occupancy

After the SOQi steady-state probabilities have been worked out, the average number

of cells in queue, N, can be obtained as

_ 1 B B-j

N = M L L (j + J)ii!(j, J).
j=O J=O

(3.16)

The average delay time can be computed by applying the well-known Little's formula,

which stated that the average number of customers in a stable system, N u, is equal

to their average arrival rate, >., multiplied by their average time in the system, Tw,

that is

Nu = ,\ x Tw.

It should be noticed that in our calculation, the service time, which is constant, is

not included.

37

3.1.5.2 Cell Loss Rate (CLR)

At any given time slot t, if the remaining buffering space, St = B- (x +X), is not

enough to accommodate all incoming cells, up to St cells will be accepted, and the

excessive ones will be discarded. For a given state (x, X), the corresponding Cell Loss

Rate 1f(x,X) can be calculated as

where the factor

N

1f(x,X) = w(x, X) L rJ'YA(a, A),

rJ-
{

0

a+A-St
a+A

a+A=St+l

while (a+A) :SSt

while (a+A) >St.

Therefore, the total cell loss rate 1r can be derived as

7r = L 1f(x,X)·
(x,X)E8

3.1.6 Performance Comparison

(3.17)

(3.18)

(3.19)

Here, we compare the performance results from the analytical model with those from

simulations. An ideal128 x 128 non-blocking switch is used for the study. The sharing

factor M is set to 4 and the shared buffer space B is 32 cells. The cell arrival rate p

at switch inlet ranges from 0.6 to 0.9 and the departure rate is 1. For the analytical

model, we chose the initial state is (0, 0). Figure 3.2 and 3.3 compare the cell loss rate

and average queue occupancy performance for the SOQ-4 scheme. The results from

different iterations, 40, 50 and 60 rounds as in the figure, are almost same, which

indicate the queue has been in the steady state. Therefore, we can conclude that

38

the analytical model can converge in about 50 round iterations, and it is efficient to

compute the performance results.

4

-3.5
"' 'ii
~ 3
:. ..
a; 2.5
6
,;; 2

i

--+--Simulation

• - Round40

-.-Round50

-..- Round60

/.
F

_#'
~-

~ § 1.5
z: ..
:;' 1 ~
~~ ~

<t 0.5

0

0.6 0.65 0.7 0.75 0.8 0.85 0.9

Offered Lo.1d

Figure 3.2: Average Number In Queue vs. Offered Load for SOQ-4

In both figures, the results from the analytical model match the simulation results

very well under various load conditions. With an efficient buffer sharing scheme,

fewer buffer would be required, the state calculation from our model can be be done

efficiently.

To demonstrate the advantage of using shared queue scheme, we compared the

analytical results of various SOQ schemes with that from the Dedicated Output

Queue (DOQ) scheme. Figure 3.4 compares the cell loss rate performance of dif-

ferent schemes. It is clear that all SOQ schemes have better cell loss performance

over the DOQ scheme.

39

1.00E-01
0

1 .OOE-02

. 5 0.7 0.75 0.8 0.85 0.9

~
/~

x:Y

1 .OOE-03
;
a::
~ 1 .OOE-04
-' ..
'-'

1 .OOE-05

1 .OOE-06

1 .OOE-07

/.
/ #/

/

Ohred Load

-+--Simulation . Round40

.. Round 50

__,._ Round60

Figure 3.3: Cell Loss Rate vs. Offered Load for SOQ-4

3. 2 Confidence Interval Analysis

The Confidence Interval (CI) is an efficient method for statistical analysis of simula-

tion results, which estimates the result reliability and approximates its distribution

range. Confidence interval is defined as an estimated range of values which are likely

to include an unknown population parameter, the estimated range being calculated

from a given set of sample data. Reference [33] provides the basic concepts of CI and

its applications, which is briefly introduced here.

3.2.1 Confidence Interval Basics

From the basic statistics theory, for a set of samples {Z1 , Z2 , ... , Zn}, the mean value

of this set is defined as

(3.20)

40

l.OOE+OO

0 6 0.65 o-.. 0.75 0.8 0.85 0.9
l.OOE-01

l.OOE-01
::
«
~ l.OOE-OJ
~

~
l.OOE-0-1 = " \.I
l.OOE-05

l.OOE-06

l.OOE-07

____________. ___ ..
.-•

~-- :--/
~ • / "

_...

.. / .. / --noo
• SOQ-2A

...... / --soQ--tA
--soQ-SA

Figure 3.4: Cell Loss Rate Performance for Analytical Models of DOQ and Various

SOQ Schemes

and the sample variance is

S2(n) = I:~=l[Z,- Z(n)]2
n-1

(3.21)

If the simulation result is z C {Z1 , Z2 , ... , Zn}, and the set {Z} contains indepen-

dent and identically distributed variables (i.i.d.) with n ---" oo, then the sample mean

z has a normal distribution with Probability Density Function (pdf)

P(z) = 1 exp-(z-M)2/2a2'

fi;;;2
(3.22)

where its mean value is 1-l and its variance is a 2
, which is shown in Figure 3.5.

We can see, if a is properly chosen, then the covered area could be 90, 95 or 98

percent, as defined as the desired confidence interval 1 - a. If the whole area under

41

//

///
//

1-u.

u+u "

Figure 3.5: Normal Distribution

the curve represents as 1, then the area between {-a, a} is:

P(u-a<z<u+a)= exp-(z-1-')/2" dz=1-o:. 1 lu+a 2 2

J2n(J2 u-a (3.23)

By replacing w = (z - 11,) I ((}I y'n), so

(3.24)

Here the desired value of this integral, can be calculated be choosing the point

a= wa12 . So the value of z is,

(3.25)

However in practice, it is difficult to use this formula since the Variance a 2 is

usually unknown in advance. In order to estimate confidence interval, the sample's

standard deviation S is used under the condition that the set contains large sample

42

elements. So the formula is modified to

(82(;0
z = J-L ± te>/2,n-1 v ~' (3.26)

where t
0

; 2,n-l is a value corresponding to the desired a and sample space n. So

Equation 3.26 gives the 100(1- a) percent confidence interval of z with n- 1 degrees

of freedom. Generally, some typical values of t have been calculated and stored in

a table for readers to retrieve, which is also provided in the previously mentioned

reference [33].

Now, we conduct the confidence interval analysis of our simulation results.

3.2.2 Confidence Interval Analysis of SOQ Performance

In this subsection, we study the SOQ performance by analysis its confidence interval

for the simulation results.

In the simulation, with uniform random traffic, the offered load ranges from 60

to 90 percent is applied. For each round of every experiment trial, the switch runs

for 5 million cycles. A total of 50 rounds is repeated to collect the output data. We

provide the confidence interval analysis of the average delay and cell loss rate.

3.2.2.1 Delay Performance

Table 3.1 provides the 95% confidence intervals for average delay performance for

various offered load conditions. The upper and lower bounds of the interval are

shown in the table for various queue sharing schemes, which indicate that 95 percent

of simulation results arc located within the range. This also means that, in any

43

number of simulation rounds, only 5 percent of the results will be distributed outside

of the range in the table.

Table 3.1: 95% Confidence Interval of Delay Performance
Offered Load DOQ SOQ-2 SOQ-4 SOQ-8

Upper Lower Upper Lower Upper Lower Upper Lower

0.6 0.7362813 0.7363421 0.7440419 0.7441183 0.7441234 0.7441885 0.744099 0.7441632

0.65 0.8993704 0.8994493 0.9207768 0.9208733 0.9213091 0.9214073 0.921233 0.921326

0.7 1.1000013 1.1000906 1.1544122 1.154515 1.1574216 1.1575402 1.1574761 1.1576038

0.75 1.3442313 1.3443317 1.471593 1.471749 1.4879049 1.4880666 1.4881909 1.488359

0.8 1.6352177 1.6353167 1.9048013 1.9049961 1.9787996 1.9790815 1.9842544 1.9845221

0.85 1.9710783 1.9711622 2.4743716 2.4745836 2.733775 2.7341673 2.8055281 2.8059845

0.9 2.3424462 2.3425582 3.1542365 3.1544308 3.7751787 3.7755865 4.1920849 4.1926083

3.2.2.2 Cell Loss Rate performance

The 95% Confidence Interval of Cell Loss Rate is listed in the Table 3.2. It is noticed

that zero cell loss is encountered under low traffic load conditions and when a larger

queue sharing scheme is used.

Table 3 2· 95% Confidence Interval of Cell Loss Rate
Offered Load DOQ SOQ-2 SOQ-4 SOQ-8

Upper Lower Upper Lower Upper Lower Upper Lower

0.6 0.0004615 0.0004626 0.0000028 0.0000028 - - - -

0.65 0.0011242 0.0011259 0.0000178 0.000018 - - - -

0.7 0.0025299 0.0025319 0.0000973 0.0000978 0.0000002 0.0000003 - -

0.75 0.0052763 0.0052796 0.0004501 0.000451 0.0000057 0.0000058 - -

0.8 0.0102256 0.0102299 0.0017481 0.0017501 0.0000934 0.0000939 0.0000004 0.0000004

0.85 0.0184646 0.018469 0.0056218 0.0056252 0.0009864 0.0009883 0.0000533 0.0000537

0.9 0.0311044 0.0311098 0.0147878 0.0147934 0.0060762 0.0060809 0.0019289 0.0019314

44

3.3 Summary

In this chapter, we have studied some mathematical methods for the performance

analysis of queue sharing scheme. Firstly, we have introduced our shared output

queue analytical model based on discrete-time Markov chain analysis. Secondly, we

briefly reviewed the confidence interval method for verifying simulation results.

In our analytical model, a discrete-time Markov chain model with two dimensional

state variables is used to evaluate the Shared Output Queue buffer behavior. The state

probabilities and state transition probabilities are derived. According to the traffic

arrival rate, the arrival probabilities toward both the tagged queue and the untagged

queue are developed. The analysis of departure process has been conducted. With all

the aforementioned analysis, the state probabilities and state transition probabilities

of the bidimensional Markov chain can be determined.

The advantage of this bidimensional Markov chain model is that, the probabil­

ity computation converges quickly (within about 50 iterations and reasonable state

space), which shows the efficiency of this model. Also, the model provides accu­

rate performance evaluations for average waiting time for cells in the queue, and the

estimation of cell loss rate under heavy traffic.

The confidence interval method is a powerful tool for conducting simulation anal­

ysis. The confidence interval indicates that as simulation runs for finite times, the

results eventually distribute within a specific range. In our research, we calculated

the 95% CI range, which can be easily extended to other ranges. Due to the re­

quirement of huge number of simulation runs, the confidence interval analysis is only

carried out for the purpose of simulation model construction and initial simulation

45

results verification analysis. Once verified, we will just use the model to generate the

performance results based on the rule of thumb: for example, to claim a better than

10-9 cell loss ratio, a minimum of ten times the required packets will ge gererated,

that is, at least ten billion cells will be generated and studied.

46

Chapter 4

Performance Analysis under

Non-Uniform Traffic

An analytical model under bursty traffic is usually complex due to the correlation

between arrivals, hence, computer simulations are commonly used to evaluate system

performance. This chapter studies the performance of our proposed Shared Output

Queue under various non-uniform traffic through a serial of simulations.

4.1 simulation Environment

In our research, we develop a simulation platform using the Object Oriented Pro­

gramming Language Java. The simulation platform includes Traffic Generation cla.ss,

Switch Fabric class and Output class with queuing buffers. For the shared queue, a

Controller class is placed in front of the shared buffer. Figure 4.1 and 4.2 shown the

relational diagrams for various classes used in the Dedicated Output Queue scheme

and the Shared Output Queue scheme, respectively.

47

-tlmeDIStrlbiJ:Ion int(]

+dr0¥BarChart():void

Cia.: Random Tratnc Generator

.Jembda Double

-isPacketkrl:Boolean

-outPort:ll'lt

+rurflandomQYOid

+lsPac:ketArrive{~boolean

+getOutp!.JPortOilt
+lnaeP acketeourterQYold

-E--- +getP8dcetCot.rier():i"!t

Class: Buni T~ Genentor

T_ -lembd& double

'------1+isPDetAlri:boolean

-outPort:int

+rur&lst(}vOid

+isPd:etArn-.eQ.booleen

+gei:OutPortQ:int
+lnaePaclcetCourier()vold

+getPad:etCourter():int

-Lamb del :double

-queueSize :int

+inilfetbric (lambdel :lambda ,queueSize :queueSize).void

+myfabricrun (~void

+tleOutput Ctvotd

+msin():void

r
CJaacfabric

-clockStze.int

1 .. •
-clock:int

f---------j-packeiCounl:erlllt

1.."

-por!Size:int

-preSI:ze:int

-counter(lint
-port{ll"ll

+runModeiQ:void

+resetModel()void

+ditaGollectiOn() void

+setCOIA"ier():VOid

t-----i+getCounter(}int

+initTraGenerstorO·void

+iniiDQueue():void

+getDala()Strlng

Cl1ac Olipt.iDell

-throu~ttoet

-aVMigeWT·toat

+CLR·double

-averi.ltiUZI!IItiontoat

-maxQL:int

+detaP ass():VOICJ
1-------l+dalaP rocess() void

+getOIJDataQ.String

ClaaK D Q ueue

-rPOtrter:ll'"ll

r------'---1" -courter.tnt
-disC:OIXller in!

-maxQle~h W"lt

+ runQu eue (): votd

+EnQueue ():void

+DeQueue(). void

+getOUlpul ():strinQ]

CreSted wl:h-POsetdon for UML ConvnuntY. Edh:m. Not for CommerCial Use

Figure 4.1: Class Diagram for DOQ Scheme

An ideal, non-blocking, 128 x 128 switch fabric is used for our study. The output

buffers are assumed to be ideal, that is, all incoming cells would be enqueued if there

are cell spaces available. The traffic source generates bursty traffic with arriving rate

A. A departure rate of one cell per time slot is assumed, i.e., f.L = 1, and the offered

load in switch fabric is p = Aj f.L· The duration for each simulation lasts for a period

of 5 million slots, which yields about 640A million cells switched through the switch

fabric.

It is well-known that the initial conditions affect the precision of the performance

data collected in simulations. In our study, a warm-up technique has been used

48

-l.MJbd&.doiJble

..quweSIIe:int

+ll"llfat:n:: (lambdll:lamtdl ,(JJel.leSize :tJJet.!eSize)"VOid

+mvf'abric.run ().void

+tleOrJ:Piot():void

+rn-'n():void

Cl811e R.ndomTrwtnc Gl!nWRK

-«<mbde.OOible

..JsP&CketMt:Booleen

-<UPOitlnl

•r~lll"ldornOvoid

+laPacketArtwe().boolean

-te;JetOrJ:pUF'Oit()ll"ll

0... I ..Ct. +r~aePdetColrler()void

-tuneOistlii:IIJ:ioni1t[] ~ +gctP&O::~OUf'tefQ.i1t

+.:t".....a.rchewt():llcld

ca...BUI"'IITI"'IIeGerwntor

+n.I'IBurst():void

-t~sPactetkn-.e():boolean

+ge!OI.APorl():i1t
+lnaePocketCotner()lfOid

+getP &dl.elCounterairrt

1.'
f--"-----j-P&CketCc.•.mler-lnt

-portSize·nt

-preS.:zeint
-colrlerUnl
-port[J:.i'll

1

-ftrOIJ!tlputtoal

-l'llet'll~toat

+CLR:dol.mle

-aven.JIIIzatlon.loet

-maxQl:lnt

+dalaP&1S().'IIOid

+dalaProtenl):'ll'llld

+getOrJ:DI!ta():Stnng

-\I!Polnter.lnt[J

t•-rPotnler:~nf{J

1------...:.ounternt[l
~-disCourternt

f---------1--l~axOLel'l!ihN'tt

+~"t.I'ICortrolletQIIOICI •rli'IG:lleue():void

~Operarlot().IIOid +EnOueue()llold

+satCOI.rier():lf!ltl +DeQueuel):vOid

+ctllcultiii.OIAO.ta():'lltW:! +9MOliJUQ.Str1rgj

+ve!QI.t().Str1~]

Created Wlh Posei-OOn for iJML Ccmnuntv Ed• on Not fc:K" Cornnertial Use

Figure 4.2: Class Diagram for SOQ Scheme

to provide an initial condition to the system. Figure 4.3 shows the queue length

parameter for different warm-up periods, and it clearly indicates that the queue length

becomes stable if the warm-up period is large enough. According to this figure, we

chose 50 thousand as our warm-up period to make sure that all queues have been

pre-loaded.

49

t 19.5
<::
Q)

....J

~ 19
Q)
:>
0
Q) 18.5
Ol

~

~ 18

::"1--------

------T
I

Pre-run Number

Figure 4.3: Warm-up Period

4.2 Performance under Bursty Traffic

4.2.1 Bursty Traffic Generation

Bursty traffic provides a better resemblance of traffic in real networks. In general,

more buffer space would be required under bursty traffic. Therefore we assume 80-cell

space is equipped to each port, hence, a total of 10240 cell space is used for the whole

switch.

Bursty traffic can be modeled using the ON/OFF Markov-Modulated model [34],

which is shown in Figure 4.4 for the state transition diagram. During the busy period

(ON state), cell arrives in each time slot with the same destination. Then followed

by the idle period (OFF state), during which no cell arrival occurs. For each input

50

Transition to OFF State

Transition to ON State

Figure 4.4: ON-OFF Markov Modulated State Machine

link, a new cell will arrive with a probability of p, and the probability of having no

cell coming is 1 - p. Similarly, for idle state, after a slot with no cell arrival, the

probability of no cell arrival for the next slot is r, and the probability of having a

cell coming is 1 - r. The duration of busy and idle periods can be modeled as two

geometric distributions. The probability of having a burst of s slots is given by

(4.1)

where s is burst length, which could be 1, 2,.... While the probability of having t

consecutive idle slots is

(4.2)

where t is idle length, which could be 0, 1, 2, ... [35]. The slight difference of these two

equations indicates that burst length s should not be zero, which also means no two

consecutive idle periods existing in this model.

51

The offered load to the link, p, is given by

s
p=s+t' (4.3)

where s and t are the average length of ON and OFF periods. For the geometric

distribution, the mean burst length, s, is ~' and the mean idle length, t, is l~r. Based

on the offered load p and the chosen average burst length s, we can calculate the

value of p and r. Then the runtime burst length and idle length can be calculated in

the simulation using the Inverse Transform Technique [36].

4.2.2 Performance Evaluation

1.00E+OO
0 6 0.65 0.7 0.75 0.8 0.85 09

1.00E-01

1.00E-02 ...
+-'
('G

~ 1.00E-03
<I)
<I)

0 _.
1.00E-04 = II>

u
1.00E-05

1.00E-06

1.00E-07

_ _______.--t
..--..------~ .. ---"" ...------------- -·- '/ • -~

/

/ /il. __ .-

/

/ ..&:

___ .--·

.- I --ooa
• SOQ-2

I --.- SOQ-4

-- SOQ-8

Offered Load

Figure 4.5: Cell Loss Rate vs. Offered Load

In the following discussion, we assume the average burst length s = 10 time slots

52

unless otherwise indicated. An 128 x 128 switch is assumed, with traffic load ,\ ranges

from 0.6 to 0.9. The buffer size is set to 80 cell space per port.

Figure 4.5 shows the Cell Loss Rate for different traffic load. It is clear that the

performance of a switch under bursty traffic has degraded significantly when compared

to those from the random traffic, although the buffer size per port is already much

larger. Nevertheless, the performance enhancement via buffer sharing is obvious, for

example, under 80% offered load, the cell loss rate for the DOQ scheme is about

2.7 x 10-2 • However, the number is reduced to 1 x 10-2 , 3.1 x 10-3 , 4.2 x 10-4 when

2-port, 4-port and 8-port sharing schemes are used, respectively. Table 4.1 shows the

95% confidence interval for the cell loss rate performance under bursty traffic.

Table 4.1: 95% Confidence Interval of Cell Loss Rate
Offered Load II DOQ I SOQ-2 I SOQ-4 I SOQ-8

0.6 0.0049992 - 0.0050079 0.0004246 - 0.0004284 0.0000052 - 0.0000057 -

0.65 0.0079848 - 0.0079980 0.0010609 - 0.0010664 0.0000327 - 0.0000337 -

0.7 0.0123672 - 0.0123833 0.0024672 - 0.0024767 0.0001785 - 0.0001812 0.0000012 - 0.0000015

0.75 0.0186487- 0.0186665 0.0053597 - 0.0053725 0.0008144 - 0.0008207 0.0000294 - 0.0000309

0.8 0.027364 7 - 0.0273837 0.0107947 - 0.0108099 0.0030776 - 0.0030886 0.0004225 - 0.000427 4

0.85 0.0390632 - 0.0390922 0.0200768 - 0.0201043 0.0092631 - 0.0092831 0.0033558 - 0.0033671

0.9 0.0542670 - 0.0542921 0.0344335 - 0.0344631 0.0220594 - 0.0220843 0.0139168 - 0.0139428

Because larger buffer size is used for bursty traffic, the average number of cells

in the queue increases for all schemes, as shown in Figure 4.6. Under light traffic

condition, the results for all schemes are close. When the offered load increases,

that performance using the SOQ schemes increases faster than that of the DOQ

scheme. For example, at 90% offered load, the average number of cells using the

SOQ-8 scheme is over 60 cells, whereas it is around 30 cells for the DOQ scheme.

53

Reasons that account for such observation are: the performance of average number

of cells in the queue is measured based on the cells that are successfully accepted

by the output queue; During the ON period under the bursty traffic, it is very easy

for the buffers dedicated to certain output ports (in the case of the DOQ scheme) to

experience overflow which results in significant amount of cell loss, while other ports

have relatively low utilization. Therefore, average number of cells in the queue is low.

However, with shared buffer schemes, significant enhancement in buffer utilization

can be achieved by distributing the excessive cells for one port to other ports, which

yields a large number of cells in the queue. Table 4.2 shows the 95% confidence

interval for this performance measurement.

70
-+-DOQ

• ··SOQ2
60 ---a-8001 ...

:I ... --soas :I
0
.5

50 ..
~ • ...

~ 40
:I .. z ...
~ 30
>
c(

20

10
0.6 0.65 0.7 0.75 0.8 0.85 0.9

Offered Load

Figure 4.6: Average Number in Queue vs. Offered Load

In Figure 4.7, we show the cell loss rate for different buffer sizes under 85% of-

54

Table 4.2: 95% Confidence Interval of Average Number in Queue Performance

I Offered Load II DOQ I SOQ-2 I SOQ-4 I SOQ-8 I
0.6 12.8593 - 12.8625 13.9600 - 13.9648 14.1031 - 14.1091 14.1018- 14.1077

0.65 15.2036 - 15.2075 17.0615- 17.0674 17.4504 - 17.4576 17.4618 - 17.4698

0.7 17.8673 - 17.8700 20.8745 - 20.8814 21.8492 - 21.8597 21.9534 - 21.9641

0.75 20.8647- 20.8690 25.4819 - 25.4893 27.7072- 27.7218 28.1997- 28.2153

0.8 24.1853 - 24.1893 30.8644 - 30.8690 35.2943 - 35.3096 37.2567- 37.2748

0.85 27.7997- 27.8033 36.8118 - 36.8216 44.1814- 44.1970 49.3780 - 49.3994

0.9 31.6443 - 31.6480 42.9790 - 42.9863 53.0251 - 53.0371 61.3065 - 61.3272

fered load. This figure can help us to determine the necessary buffer size to achieve

desireable cell loss rate. For example, in order to achieve a cell loss of 10-6 , the

switch using the SOQ-8 scheme will require 192 cell buffers for each port, whereas

the number reaches 320, 400 and 600 cell spaces in the case of SOQ-4, SOQ-2 and

DOQ schemes, respectively. It is clear that a switch using the SOQ schemes requires

much smaller buffering resources than the DOQ scheme.

1.00E-+OO
8 120 160 200 240 280 320 360 400 44

1.00E-01
--DOQ

1.00E-02 --II·- SOQ-2
<I)

----- SOQ-4 ~
0.:: 1.00E-03 ---SOQ-8

"'
-......._ ... ____

"' c
...J 1.00E-04
<I)
u

1.00E-05

1.00E-06

1.00E-07

Butte 1 Size for Each Logic Oueu e

Figure 4.7: Cell Loss Rate vs. Buffer Size (A= 0.85)

55

From the above analysis, it is clear that when a more realistic traffic model, for

example, bursty traffic, is used, all SOQ schemes demonstrate better performance

than the DOQ scheme. Using the same assumptions, for the 128 x 128 switch to

achieve a better than 10-6 cell loss rate, the total required memory for the SOQ-

8 scheme is approximately 128 x 192 ::::::: 25K cells, while the number for the DOQ

scheme is around 77 K cells, which is three times larger.

4.3 Performance under Hot-Spot Traffic

Hot-Spot traffic generally exists in data networks which represents highly demanded

applications and services. As more traffic is destined to these hot-spot nodes, more

pressure is induced to switching nodes along the path.

4.3.1 Hot-Spot Traffic Model

Assume a single hot-spot exists among all output ports, which will be referred to as

hot port[37]. Other output ports are considered to be cold ports. The hotport has a

higher chance to be requested by incoming cells. The probability of an incoming cell

requesting the hotport is

and the probability of a cell requesting one of the cold outputs is

1- !h
Pc = p(-----;:;--),

56

(4.4)

(4.5)

where fh is the fraction of the hot traffic. Obviously, the total input traffic load

Ph+ (N- 1)Pc = p.

4.3.2 Performance Evaluation

Assume the fraction of hot traffic fh = 1%, our simulation results show some inter­

esting phenomenon. For the DOQ scheme, the traffic filled up the buffer of hot port

quickly. As expected, high cell loss rate is experienced. Because the buffer is always

full, the average number of cells in the hot port is equal to its buffer size. On the

other hand, the cold ports operate in normal conditions, since the hot traffic does not

influence them. Hence, the cell loss rate and average number of cells in the queue

almost remain the same as what have been obtained in the previous section.

For the SOQ schemes, any shared queue which does not include the hot port has

similar performance as in the previous section. So, we will focus on the hot port and

those cold ports within the same shared group.

Figure 4.8 shows cell loss rate for the hot port and the cold ports within the

shared group (with suffix G), which arc compared with the non-grouped cold ports

(with suffix c) for the DOQ and SOQ. Interestingly, hot port cell loss rate is very high

for all schemes (DOQ and SOQs). This is because, for the 128 x 128 switch, with

1% hot traffic, the hot port traffic load becomes (76.8% to 115.2%). Such overflow

makes the queue become unstable. Under this situation, no matter how big the buffer

is, the hot traffic always saturate the buffer space which leads to extremely high cell

loss. Consequently, those cold ports within the same shared buffer space experience

higher cell loss as well.

57

¥J
II:
0
.J

i
u

1.DDE+01 ,-------r---~---r------.-----.---,-----,

06 0.65 0.7 0.75 0.8 0.85 0.9

1.00E+OO +-----------------------1

1.DDE-01

1.00E-02

1.00E-03

1.00E-04

1.00E-05

1.DOE-06

1.00E-07

1-----------·· •. --·-·----~·-----·

.
4

• .. ····

4

. / --=-~~~~2c
/ / -r- SOQ-4c

···•··
;

/ --soo-8c
f---:7""'-------/---r"----------1-- SOQ-2-G

---soo-4-G
+-----/----,7"------------1 ... S00-8-G

__._Hot Port

Offered Load

Figure 4.8: Hot Port and Its Shared Group

Figure 4.9 shows average number of cells performance. The similar observation

obtained: the hot traffic cells always saturate the available buffer space, so the average

number of cells for hot port is equal to the total buffer size. For those cold ports

sharing the same queuing buffers, they only take a small portion of buffer space, which

show much smaller average number performance compare with those cold ports.

With our proposed reconfigurable SOQ scheme, the buffer sharing parameters,

such as sharing level thresholds, can be adjusted in runtime. In this section we show

the performance of the fully shared queue scheme. To isolate the hot-spot traffic

from those cold traffic, user can configure the shared queue into the dedicated output

queue, which will reduce the hot-spot traffic influence to those cold ports within the

same shared group.

58

-;; 78
i -+- DOOc (.) 68
;§. ~ S00-2c .. 58 -*- S00-4c ::J ..

~···
----1

~ 18 ~~~~_1--~---.-~-=.·=~·¥",....,:::_~-~

8 48
-- SOO-Bc

1: __,._ S00-2-G ..
S00-4-G ..

38 • .D.
E ~·· S00-8-G
::J z 28 __...Hot Port ..
>
c(F

8+-----~----~~----~----~------~-----~

0.6 0.65 0.7 0.75 0.8 0.85 0.9

Offered Lo;~d

Figure 4.9: Average Number of Cells in Queue under 1% Hot Spot Traffic

4.4 Performance under Prioritized Traffic

Network traffic has various characteristics, some may require better transmission

quality, such as network control messages and real-time applications. So the priori-

tized traffic is likely to be considered in real data networks. This section studies the

performance of the proposed SOQ scheme under prioritized traffic.

We assume that incoming traffic has three priority classes [3]. Class 0 is the

highest priority which may contain the network control information, and Class 2

is the lowest, which represent the best effort data traffic. In our simulation, cell

priority is considered only during traffic congestion, that is, when cell drop needs to

be considered. In that case, cell with the lowest priority will be dropped first, and

then move to cell with higher priorities if the available room is still not sufficient to

accommodate all incoming cells.

In the simulation, the generated traffic 1s a mixture of 10% Class 0 traffic,

59

20% Class 1 traffic, and 70% Class 2 traffic. The average number of cells in queue is

very little affected by priority classes, because newly arrived cells are always enqueued

at the tail of buffers which do not influenced by their priorty classes. So we focus on

the cell loss rate performance for different buffer sizes under 85% traffic load.

1.00E+OO
~p 130 180 230 280 330 380 430 4 0

1.00E-01
-+- 000-PO

1.00E-02 • SJ0-2-PO
...
1;j
0:: 1.00E-03
(I)
(I)

0
..J

-.; 1.00E-04
u

1.00E-05

~
--.-- SJQ-4-PO

-- SJ0-8-PO
•
~ " .

.. • ~-.. .. ,.

1.00E-06
1.00E-07 '\

Buffer Size for Each Logic Queue

Figure 4.10: Cell Loss Rate for Priority Class 0 (>. = 0.85)

Figure 4.10 to Figure 4.12 compare the cell loss rate for traffic belong to the three

priority classes using various sharing schemes. As expected, better performance can

be achieved for traffic associated with higher priority, for example, with 80 cell space

allocated in SOQ-4 scheme, cell loss performance of 8.3 x 10-5 , 1.4 x 10-3 ,1.6 x 10-2

can be achieved for Class 0, Class 1 and Class 2, respectively. Furthermore, better

performance can be achieved for schemes with more ports sharing.

60

UXJE-+{10

8P 130 180 230 280 330 380 430 4 0

LOOE-01
-+-DOQ-P1

LOOE-02 ..
"IV
a:: JOOE-03
0

....1
LOOE-04 ..

u

LOOE-05

LOOE-06

JOOE-07

.___ • SOQ-2-P1
~, .
~----

--.o- SOQ-4-P1

___,._ SOQ-8-P1
-" ..

------~ ·~
), -~

\ .. • ---------.

\), •

\ ..
•

Buffer Size for Each Logic Queue

Figure 4.11: Cell Loss Rate for Priority Class 1 (..\ = 0.85)

4. 5 Performance under Set Assignment

In our switch model, the queuing buffers are shared by multiple output ports. During

the arrival process, a memory address should be provided immediately upon each

arrival. However, for a high speed network switch with multiple simultaneous ar-

rivals at each logic queue, such speed requirement introduces much pressure to the

implementation of address pointers.

Set assignment means that a bunch of contiguous buffer space will be assigned to

a logic port when required, where Set is used to denote the bunch of buffering space.

The details of the set assignment scheme and its control logic are introduced in the

next chapter. Because the set assignment scheme only influences the performance for

the shared queuing schemes, the delay and cell loss performance are studied only for

the SOQ schemes with different set sizes.

61

1.00E+OO

~b 130 180 230 280 330 380 430 4 0

1 OOE-01
-+-DOO-P2

1.00E-02

"' -., 0:: 1.00E-03
"' "' 0
..J

1.00E-04 = ..
u

1.00E-05

1.00E-06

1.00E-07

~~----.-~---·-------- .. S00-2-P2

\'
,.

-~~ _,.___ S00-4-P2 ..
--soo-8-P2

\ .. ~---
• --------------~ \

a

•

\ .1.

\ •

Buffer Size for Each Logic Queue

Figure 4.12: Cell Loss Rate for Priority Class 2 (>. = 0.85)

To distinguish the set sizes with different sharing schemes, we use 2Share to indi-

cate SOQ-2 scheme and use the suffix to represent the set size (4, 8, 16). Therefore,

the 28 hare - 1 scheme in the figure indicates two ports sharing with the set size of

one, which is the same results of SOQ-2. Similar notations are used for SOQ-4 and

SOQ-8 schemes.

4.5.1 Average Delay

Figure 4.13 to 4.15 show that for different set sizes, the numbers of cells in queue

are almost the same, especially under small set sizes such as 4 and 8, under various

traffic loads. However, when the set size is 1G and the traffic load is heavy, (90%),

the delay performances are reduced by about 5.3%, 6% and 6.5% for SOQ-2, SOQ-4

and SOQ-8 schemes, respectivally. The main reason of this deduction is because of

62

50
-+- 2Share-1

.. _._ 2S h are-4
:::1
<II

40 --- 2Share-8 :::1
0 --- 2Share-16 .= ...
<II
~

30 E
:::1 z
<II
1:1)

" ... 20 Ql
>
c(

10
0.6 0.65 0.7 0.75 0.8 0.85 0.9

Offered Load

Figure 4.13: Average Number of Cells in Queue for Different Set Size- SOQ-2

its increased cell loss rate, where more cells are discarded because buffers are locked

with each set, they could not be shared any more.

4.5.2 Cell Loss Rate

Figure 4.16 to 4.18 show that cell loss performance under set assignment degrades as

the set size increases. This is because, for the set assignment, when a bunch of buffers

is assigned to a specific output port, these buffers are no longer being shared by other

ports. Even if only a small portion of the set is occupied, the set is still dedicated to

its assigned port. At this moment, if other ports require more buffering space, it is

very likely that there is no available set for assigning.

Although the increased buffer granularity in set assignment degrades the shared

queue performance, the trade off between hardware complexity and performance has

to be considered during the SOQ system implementation. From the previous discus-

63

60~------~~----------------------------
--4Share-1

• · 4Share-4 <~~
-a-- 4Share-8 f-------------------------c...:'-,.L-----1

--4Share-16

10+-----~----~----~----~----~----~_J

0.6 0.65 0.7 0.75 0.8 0.85 0 9

Offered Load

Figure 4.14: Average Number of Cells in Queue for Different Set Size- SOQ-4

sion, it is noticeable that, if the set size is not very large, the performance remains

in an acceptable range. Therefore, for our implementation which will be discussed in

the next chapter, a set size of 8 is chosen for the system.

4.6 Performance Scalability

In this section, we study how the switch performance scales with switch size and the

burstiness of network traffic.

4.6.1 Different Switch Sizes

In this subsection, we study how the switch performance scales with switch sizes.

Modern high-speed switches support hundreds of incoming and outgoing ports, the

performance scalability is an important aspect for any proposed scheme.

64

70
-+-BShare-1

"' • BShare-4 -~' :::J 60 Gl --BShare-8 :::J
0

__,.__ 8Share-16
-= ... 50 • ..Q

E
:::J
z 40
• m • > 3D <

20

0.7 0.75 0.8 0.85 0.9

Offered Load

Figure 4.15: Average Number of Cells in Queue for Different Set Size- SOQ-8

Figure 4.19 compares the cell loss rate for the DOQ scheme and the SOQ-8 scheme

for various switch sizes under bursty traffic with an average burst length of 10. The

impact of switch size on the loss performance is minor, particularly under heavy

load conditions. This implies that the loss performance scales well with switch sizes.

Similar observation is obtained for average number of cells in queue performance as

shown in Figure 4.20.

4.6.2 The Impact of Traffic Burstiness

In this subsection, we examine how traffic burstiness affects the performance of the

proposed schemes. A 128 x 128 switch fabric with 80 cell buffers per port is used for

the experiments.

Table 4.3 to 4.5 list the cell loss rate for average burst length of 5, 10 and 15, respec-

tively. It is clear that, the cell loss rate performance for the DOQ scheme degraded

65

1. OOE+OO

0.6

Ill 1. OOE-01
+-' «<
1::111

Ill

~ 1. OOE-02
...:I

......
'il

0. 65 0. 7 0. 75 0.8 0.85 0. 9

u 1. OOE-03 t--:~?"""---------------1-- 2Shar e-1
- • 2Share-4
-.- 2Share-8

1. OOE-04
-- 2Share-16

Offered Load

Figure 4.16: Cell Loss Rate for Difl"crent Set Size- SOQ-2

dramatically as traffic burstiness increases, whereas the SOQ-8 scheme manages to

maintain its cell loss rate performance reasonably well. For example, with an average

burst length of 10 and 15, the SOQ-8 scheme can still achieve 10-6 cell loss rate

with 75% and 65% ofl"ered load, respectively. However, for the DOQ scheme, at 60%

ofl"ered load it has 1.07 x 10-4 cell loss rate, even with only a burst length of 5. When

the burst length increases to 10 and 15, the cell loss rate droped quickly to 3. 79 x 10-3

and 1.63 x 10-2 , respectively. In general, traffic burstiness has significant impact on

the switch performance.

4.7 Summary

In this chapter, the performance of the proposed SOQ scheme has been studied under

bursty traffic. Various non-uniform bursty traffic patterns, such as, hot-spot traffic,

prioritized traffic, and a shared memory management algorithm - set assignment, are

66

IIJ

1. OOE+OO

0.6

1. OOE-01

":;i 1. OOE-02
1:10:

Ill

~ 1. OOE-03
...:I
.-t

'il 1. OOE -04
t..)

0. 65 0. 7 0. 75 0.8 0. 85 0.9

-.- 4Share-1
__ .-""/ ~ --

1. OOE-05 b.:::__---------------1 -• 4Share-4
-.-4Share-8

1. OOE-06
.... 4 Share-16

Offered Load

Figure 4.17: Cell Loss Rate for Different Set Size- SOQ-4

applied to the switch model to obtain their performance. Issues related to traffic gen-

eration, such as, bursty traffic modeling, hot-spot traffic g·cncration, and prioritized

traffic generation, are discussed. Furthermore, the scalability issues of our proposed

shared queue are studied with the growing switch sizes and bursty lengths.

We analyzed the requirement of buffer size to achieve the desired cell loss perfor-

mance. As expected, the SOQ-8 only requires one third of the buffer space of the

DOQ scheme, which implies the total memory size has been reduced dramatically. In

addition, the longer average delay performance, especially under heavy traffic, which,

as we mentioned earlier, is unavoidable queuing delay because more cells are accom-

modated in the shared buffer. The hot-spot traffic causes higher cell loss rate for

those shared ports because hot traffic saturates all cell buffers. The main reason of

the saturation, as we analyzed, is the total combined traffic load in the hot port has

exceeded 100%. In general, the performance obtained in this chapter clearly shows

67

1. OOE+OO

0. 6
1. OOE-01

!l 1. OOE-02
«<
~
Ill 1. OOE-03
!ll
0

...l 1. OOE-04

.-I

a:l
u 1. OOE-05

0. 65 0. 7 0. 75 0. 8 0. 85 0. 9

1. OOE-06

---+-- 8 Share-!

~----~~·~------------~ • 8Share~
---*- 8Share-8

1. OOE-07
--- 8 Share-16

Offered Load

Figure 4.18: Cell Loss Rate for Different Set Size- SOQ-8

that, the shared output queue provides better performance on cell loss rate under

bursty traffic and non-uniform traffic conditions.

68

J!l
1'$

0:::
VI
VI
0
..J

iii
()

""" =i!
v
.a
a;

ii! ;:::
0'
.a ...
a;

-a s z
a;
l)ll
r: a:
>

-1.'!

1.00E+OO

0 6 0.65 0.7 0.75 0.8 0.85 0.9
1.00E-01 -DOQ Scheme

1.00E-02

1.00E-03

1.00E-04

1.00E-05

. ...t

J=="' ~;;-~

SOQ-8 Scheme ,;ef~t-;>
,.- I/ --- SMtch-16 ,;.P

-~ / 1- •- SMtch-32
/J /

/ • __.._.. SMtch-64

1.00E-06
/1 /~/ SMtch-128

1.00E-07
;; .. i

1 --- SMtch-256 I

f -+- SM!ch-512 /

Offered Load

Figure 4.19: CLR for DOQ and SOQ-8 vs. Offered Load

70
-+- Switdr-16
~-· Swi tdr32

60 Switch-64
Switch-128

50 -+- Swi tch-256
--+- Swi tch-512

40

30

20

10
0.6 0. 65 0. 7

:i
;:/

/
/

/;,
SOQ-8 Schem:-f"

0. 75
Offered Load

0.8 0.85 0.9

Figure 4.20: Average Number of Cells in Queue vs. Offered Load

69

Table 4.3: Cell Loss Rate for Burst Length of 5
Offered Load Cell Loss Rate(B5)

DOQ SOQ2 SOQ4 SOQ8

0.6 1.08E-4 1.54E-7 - -

0.65 2.90E-4 2.77E-6 - -

0.7 7.08E-4 1.67E-5 - -

0.75 1.67E-3 9.09-5 8.71E-7 -

0.8 3.72E-3 4.75E-4 2.60E-5 -

0.85 6.26E-3 1.34E-4 1.85E-4 4.24E-7

0.9 6.25E-3 1.33E-4 1.96E-4 4.71E-7

Table 4.4: Cell Loss Rate for Burst Length of 10
Offered Load Cell Loss Rate(BlO)

DOQ SOQ2 SOQ4 SOQ8

0.6 3.79E-3 2.45E-4 - -

0.65 6.25E-3 7.10E-4 4.69E-6 -

0.7 9.95E-3 1.66E-3 4.69E-5 -

0.75 1.54E-2 4.28E-3 3.26E-4 2.17E-7

0.8 2.35E-2 9.33E-3 1.58E-3 4.94E-5

0.85 3.44E-2 1.89E-2 5.89E-3 1.13E-3

0.9 4.92E-2 3.50E-2 1. 73E-2 8.61E-3

Table 4.5: Cell Loss Rate for Burst Length of 15
Offered Load Cell Loss Rate(Bl5)

DOQ SOQ2 SOQ4 SOQ8

0.6 1.63E-2 3.83E-3 2.88E-4 2.30E-6

0.65 2.27E-2 7.15E-3 9.01E-4 3.14E-5

0.7 3.09E-2 1.25E-2 2.61E-3 2.13E-4

0.75 4.14E-2 2.08E-2 6.63E-3 1.28E-3

0.8 5.41E-2 3.31E-2 1.41E-2 5.36E-3

0.85 6.95E-2 5.00E-2 2.65E-2 1.56E-2

0.9 8.78E-2 7.20E-2 4.45E-2 3.34E-2

70

Chapter 5

Shared Output Queue System

Design and Implementation

Chapter 2 provides a brief introduction to the proposed Shared Output Queue archi­

tecture, and this chapter presents the detailed system designs and implementations

in various hierarchical levels.

5.1 System Level Design

The proposed Shared Output Queue system mainly contains four subsystems: tail

buffers, head buffers, main controller, and memory banks. The tail buffers are respon­

sible to accept arrived cells and store them in their buffers temporarily. The head

buffers store the outgoing cells for transmitting. The main controller controls all these

processes, and provides commands for main memory writing, reading or cut-through

transmissions according to current conditions.

Figure 5.1 shows a 4-port sharing system architecture and internal data trans-

71

mitting processes on the data bus. This is the basic SOQ system which will be

implemented.

During every main memory writing and reading, a block of b (b is block size) cells

is transferred on the data bus. Considering the value of b could be quite large, a wider

internal data bus is necessary, and it has to be shared by all subsystems as the figure

shows. As a result, a tri-state bus driver is implemented for each tail and head buffer.

However, the main memory has its own chip-select (cs) signal, so it is not necessary

to implement tri-state driver for main memory.

Matn Con:rolier

Ma1n Memory

~--

' Read Grart j
Cut-Through I

I

I
I

B;mk 0 Batl._ 1 Bank 2 Bar11<. 3

Figure 5.1: Data Bus Architecture

In the system implementation, data cell arrives sequentially with one bit at a

time from the switch fabric. Also, the transmitting process at the head buffer is a

sequential process with one bit departing at every clock cycle.

Next, we examine each subsystem in more detail about its functional descriptions,

its architecture design and functional simulation results. In real implementation, the

main memory bank is massive and is usually handled differently, either by using stan-

72

dard commercial parts, or synthesized by a different tool, e.g., memory compiler. So

the implementation of the main memory bank will not be included in our discussion.

Instead, we use data files to emulate memory banks during our simulation.

5.2 Tail and Head Buffer

As described in chapter 2, DRAMs provide better storage capacity because a DRAM

cell is usually implemented using a single transistor with a capacitor. However, the

access time to DRAM is relatively long. On the other hand, the SRAMs are faster,

but they consume larger area and power. Therefore, only a small amount of SRAMs

will be used in the proposed shared queue architecture.

5.2.1 Memory Size

In our design, a small amount of SRAMs are used for Tail Buffer and Head Buffer

implementations, whereas massive DRAMs are used for main memory bank. In order

to match the speed between faster links and slower main memory bank, wider data

bus and memory bank interleaving have been used to achieve better data transmission

parallelism.

To determine the sizes of Tail and Head buffers, some important factors should

be considered. Because the DRAM access time is the most critical factor, we define

a time interval T for the DRAMs to perform one memory access, either for a writing

or a reading operation. Given the link rate R, the maximum number of bits coming

in from a link is 2RT. Considering that up to k cells can be accepted by each port,

and the number of shared ports is M, the data block between tail/head buffer and

73

main memory is 2kM RT bits, which is referred to as b cells.

Because the successive transmissions from the same tail/head buffer will only be

performed in M intervals in the worst-case scenario, a minimum of 2b - 1 cells for

the tail buffer should be sufficient. Similarly, for the head buffer, in the worst-case

scenario, it should have a size of (b - 1) + 2M cells. This kind of arrangement will

ensure that the tail/head buffer satisfies the block transfer rules which defined in

Chapter 2, and meanwhile, the buffer sizes are minimum.

For example, if we chosen a 50ns access time DRAMs for the main memory, then

T = 50ns. If the link rate R = 10Gbps, k = 4, and M = 4, then the block size is

16000 bits. If a data cell is equal to 64 bytes, then the block size is equal to 32 cells.

For the link rate of 5Gbps, the block size is 16 cells. In our implementation, the block

size will be chosen as 16 cells, however, the tail buffer and head buffer sizes will be

calculated using 32 cells for possible future expansion.

Because the successive transmissions from the same tail/head buffer will only be

performed in M time intervals in the worst-case scenario, a minimum of 2 x b- 1

bits for the tail buffer size should be sufficient, where in our example it is 63 cells.

Similarly for the head buffer, in the worst case scenario, it should have a size of

(b- 1) +2M cells, where it equals to 39 cell spaces in our example. In addition, the

cut-through transmissions between tail buffers and head buffers can be any number

of cells, but the maximum value is equal to b cells to avoid head buffer overflow.

The size of the main memory is engineered by many factors, such as the Quality

of Service (QoS) requirements. With different data traffic requirements, the main

memory should be expandable. In our implementation, a buffer of 256 cells are

equipped for each port as in the DOQ scheme, which yields a total of 1024 cells for

74

the main memory bank in the case of the SOQ-4 scheme.

Inside each tail and head buffer, cells are arranged in the First-Come-First-Served

(FCFS) fashion and a simple control algorithm will be implemented. An internal

counter is used to track the number of cells in the buffer, and when the number

reaches the block size, a write transmission request is sent to the Main Controller.

Similarly, when a head buffer has space for a block of data cells, a read transmission

request is sent out.

5.2.2 Tail Buffer Implementation

The tail buffer is responsible to receive arrival cells from the switch fabric, keep track

of the number of cells in its buffer, send transfer requests to the main controller, and

manage the writings and readings from its buffer memory. So, the tail buffer can

be constructed by these functional blocks which are organized into two groups: the

Datapath, which includes most combinational circuits; and all control functionalities

inside the tail buffer, which is usually implemented using Finite State Machine.

5.2.2.1 Tail Buffer Datapath

The tail buffer datapath includes Receive Registers, a Packet Counter, and Address

Pointers to provide addresses during the tail buffer write and read operations.

1. Receive Register

Although in previous simulation study, the switch is assumed to be an ideal non­

blocking, it is not practical for implementation. A knockout factor of 4 is commonly

used, such as in [38] and [39]. This is because under uniform random traffic, the

arrival probability in an output queue is modeled by binomial distribution. The

75

probability of having more than 4 cells destined to a specific queue is very low, for

example, under 70% random traffic, this probability is about 0.00074. Under such

circumstances, only the exceeded cell would be dropped. Therefore, the cell loss rate

caused by knockout factor would be considerably small. For this reason, in our design,

we choose the knockout factor k = 4 for implementation.

Two methods can be used to fulfill such requirement. One is to use faster memory

to construct the receiving buffer, e.g., the buffer could operate k times faster than

the regular link rate. However, this is not practical for modern switches which are

already running at very high speed. The other method is to implement k receiving

buffers in parallel with each one operates at the same speed as a regular link. In our

implementation, the second approach is used, which is shown in Figure 5.2. Arriving

data cells will be immediately written to tail buffer for storage.

ArTivals ~---~---~ ,------ ·-- Grant

Data_inO

Tail Buffer
Controfler

Write Data Bus

Write
addr.

Tail
Buffer

Figure 5.2: Tail Buffer Architecture

76

Read
Addr

Read Data Bus

The data cells arrive in each register sequentially, but writing into the tail buffer

is performed on a wider internal data bus. In the worst case scenario, k cells are

written in round robin fashion. The register is 8-bit wide and the data bus is 4-bit

wide, so 2 bus transmissions are needed to finish one cell writing. During the busy

period, a new receiving process is overlapped with the previous transmission process

to achieve higher system efficiency.

2. Cell Counter

An internal cell counter keeps tracking of the number of cells in the tail buffer is

employed. When the number exceeds the block size, a write request will be issued

to the main controller. During data transferring from the tail buffer, either the

operation is main memory write or cut-through operation, the cell counter decreases

by one upon each cell reading. When the cell counter reaches the block size or equals

to zero, then the data valid signal will be de-asserted, which indicates the end of

current data transfer operation. Two flag signals are also provided by the counter:

tail buffer empty or full, and write transmission request.

3. Address Pointers

Because of the parallel operations of writings and readings, two pointers are imple­

mented in the tail buffer which provide the write address and the read address. In the

write address unit, double buffering has been used because parallel and overlapped

operations for receiving and writing processes, which is shown in the tail buffer FSM

design below.

77

5.2.2.2 Finite State Machine(FSM)

A reading operation from the tail buffer is granted by the main controller, while

writing to the tail buffer should never be blocked for data receiving process. This

means that the tail buffer should be capable of writing and reading at the same time.

Currently, QDR SRAM [19] could meet these requirements because it has two separate

data buses and two address buffers for writing and reading operations. An arbiter

is required to ensure no address conflict occurring. Because reading and writing

operations can be conducted simultaneously, two independent Finite State Machines

(FSMs) are designed to control the tail buffer for reading and writing operations.

Figure 5.3: Tail Buffer Finite State Machine

The main state diagram of the tail buffer is shown in Figure 5.3, and it is clearly

78

indicated that the receiving process is overlapped with the tail buffer writing process.

The receiving process of one packet is assumed in eight steps, once half packet is

buffered in the receiving register, write operation will be started which will write the

half packet into tail buffer. The four parallel receiving registers will be read out in

round robin fashion as indicated as state Write Tij, while i is the index of receiving

registers, and j indicates the first half or second half of a packet. During the writing

of first half of packets from all registers, the rest half of packets continuously arrive

at registers. The writing of the second half of packets will probably overlapped with

the receiving process of next arrival cycle.

The reading process, which is another independent process, has a separate finite

state machine, and it performs read operations under the grant or cut - through

signal from the main controller.

5.2.2.3 Synthesized Tail Buffer

The designed tail buffer has been synthesized using Synopsys (Design Compiler),

and the resulting circuit at block level is shown in Figure 5.4, which is comprised of

a datapath and two Finite State Machines.

5.2.3 Head Buffer Implementation

The design of the head buffers is similar to the tail buffers, except that they include

only one transmitting register. Cells coming from the tail buffer or main memory will

be temporarily stored in the head buffer, which will be continuously read out and

transmitted to the output link. The Cell Counter keeps track of the number of cells

in the buffer. If the available space is larger than the block size, a read request will be

79

fuJJ_.In

'"

dlt;;_inll

d;~h-1nl

dilta_in:Z

d•t•-inl

........

........

~

10: -

~

;;;;;.

;::::

:;a

. , _

d .. , _ ..

~· .. , ,_,_

•' oolo<Hool.l. -
,--

--
~

L....____

r-

F
lbuff•r-dltap

lr--
-

~

-
-'"""'

tb_f!lin

r-
r--
r-
~_ -
...
:::::

~

;;;;;.

~

~

full-aut

tr.n_S;£L

•ddr•••r-5 '1-

add,.IP!I~W-'5' 1-

d•ta_ral'lif'1_3 (IL

reque1t.

t•ll-~,.,pty

dada_v.alid

Figure 5.4: Synthesized Tail Buffer Circuit

issued to the main controller. Similar to the tail buffer, the head buffer can perform

writing and reading operations simultaneously.

The synthesized head buffer circuit is shown in Figure 5.5 which includes four

main blocks: Cell Counter, Address Pointer, Transmitting Register and Head Buffer

FSM.

80

~-----------------li'>ACICsyn

~---+------------------f""">rR•d-r•~:~u••t

ACtcbaclcC>+--------++
11:0 lk_2sC:l....._--l

cL k_of""":)...------..--1
r • a d_gr an t,l""'>_f-c&l

Figure 5.5: Synthesized Head Buffer Architecture

5.3 Reconfigurable Main Controller

add_cutr_5: liL

•dd_outw_5:fi:!_

trans_out

Being the most critical unit in the system, the main controller performs the follow-

ing tasks: i) processing requests from tail and head buffers, ii) managing the main

memory operations, iii) manipulating shared queuing operations, and iv) performing

reconfigurations functionalities. In order to accomplish these tasks, the controller

is partitioned into several functional units, and these units work together under the

control of a Main Finite State Machine.

Four major functional units are designed, which cooperate to perform the recon-

figurable buffer sharing functionality. They are:

• Request Arbitration Unit(RAU);

• Pointer Management Unit(PMU);

81

• Queue Control Unit(QCU);

• Special Function Unit(SFU).

As an example, Figure 5.6 shows a block write operation. In the figure, the first

write request in the RAU is Port 0 and the corresponding address in the PMU is

9. Hence a block of cells are transfered from the tail-buffer of Port 0 to the central

memory and stored at the location of 9. Then the request register will be updated

and the next write request from Port 3 will be processed. The block read operation

is executed in a similar manner.

BankO

Main Memory

Figure 5.6: Write Operation

82

5.3.1 Main Controller Datapath Design

This section introduces the detailed functionalities, architecture designs and imple-

mentations of each functional unit inside the SOQ main controller.

5.3.1.1 Request Arbitration Unit(RAU)

Inside the RAU, two sets of shift registers are used to track writing and reading

requests from each tail/head buffer. They are named as Write Request Register

(WRR) and Read Request Register (RRR). The main control process checks the

write requests and read requests alternatively, and a grant signal is issued upon the

positive response from the request registers. The grant signal includes write grant

corresponding to WRR, read grant and cut throughgrant corresponding to RRR.

The pseudo code of the main control algorithm has been given in Chapter 2.

cut through

read_check

read_grant

read reques

read_reques t_3: B...£:>---1

wri±e_o::heck

wri±e-gr~nt~>----------------1

.---.::...;;;,-por t_nu~_l: ~L

write-yes

write_request_3:B~~---------1. ____ .J

Figure 5.7: Synthesized Request Arbitration Unit

83

The functional simulation will be presented later in the entity testing subsection,

and the synthesized result of the request Arbitration Unit is shown in Figure 5.7.

5.3.1.2 Pointer Management Unit (PMU)

The PMU is responsible to provide the address for main memory write and read.

The addressing scheme is decided by the main memory organization. In our design,

four memory banks are used to construct the main memory and each memory bank

is comprised of several memory blocks. To differentiate from cell blocks, we use the

term set to describe a block of addresses to accommodate blocks of cells. As a result,

there are three addresses for the memory access: Set Address, Pointer address, and

Burst Address as shown in Figure 5.8. Because the granularity of each memory op­

eration will be in a block of cells, both set address and pointer address are remained

the same during each operation.

It is very common that burst read or burst write will be required for DRAM access.

A burst length of 2, 4 or 8 can be used in a burst operation. In our implementation,

the burst length of 4 is chosen which means a 2-bit burst address is required. We

choose the block size b = 16 cells, which means the main memory of 1024 cells is

organized into 64 blocks with each set containing 8 blocks of cells, and a total of 8

sets are available. Therefore, we need 3 bits for set address, 3 bits for pointer address

and 2 bits for burst address.

The implementation of the PMU contains three components: address pointer, set

list, and set pool. One address pointer and one set list are dedicated to each link,

so, in total 4 address pointers and 4 set lists are implemented. There is only one set

pool which stores all available sets. Two operations are involved between the set pool

84

7 6 5 ... 3 2 1 0
--.....--- --.....--- '-v-'
set adcl.r. pointer_adch. bm~t aclclr

Figure 5.8: DRAM Addressing Scheme

Memory

Seto
, -,_, - Wntedddr

Port 0

Set1
Port 1

PortZ Set2

Port 3

Set_assign (
Return_p01rter

AsSign_pOII'Ier

Figure 5.9: Memory Management- Set Assignment

and each logic link. Firstly, when a write address pointer indicates that current set is

full, it requires for assigning a new set as shown in Figure 5.9. If there is an available

set in the set pool, then one set is assigned to the required link. Secondly, when a

read address pointer reaches the set boundary which indicates the set is empty, a

returnset signal is issued to both its set list and the set pool. Upon a set return

operation, the corresponding set list drops the set, and the set pool adds it into the

pool of available sets.

Figure 5.10 shows the synthesized result of the Pointer Management Unit. But

the burst address component is not included because it is allocated more closely to

85

the main memory banks as a separate unit.

,-- -
r--__

- I.....- e:t_lis roset_addrsss_2:B_

L__j_~~~----1

Figure 5.10: Synthesized Address Pointer Management Unit

5.3.1.3 Queue Control Unit(QCU) and Special Function Unit(SFU)

The functional components inside the Queue Control Unit include counter based

queue length registers for each port, a total queue length register, and a queue

full/empty flag register. The queue length register is used to report the dynamic

queue status, with which the main memory controller can make corresponding oper-

ation decisions.

The Special Function Unit is a unique design in the proposed SOQ scheme. It

stores the configuration parameters and various parameters for different traffic pat-

terns, such as the thresholds of queue length for each port. The value for the parame-

ters can be reconfigured during the runtime based on the information and commands

given by the network processor at the port controller. In this project, we only focus

86

on the basic infrastructure for runtime reconfiguration. The SFU unit is implemented

in the datapath together with the QCU.

par t_access_l: B

read-gran

sat_unav

d

dk_

ress

lo

---tD

t

1

kc
,.
tC

~
g

- ~

o-- '--.,
Q _ccuni: ,

r-
r-

......_
r-

r- !JL-con tr o 1
r-

j r-

-pf_unl -

"t ~•ntr •l.lthr ••ll•l ~-•• k_1. < 1-

--

-C>

--

queuE!_full_3:B_

setting

set_dong

values_3:1L

Figure 5.11: Synthesized Queue Length Controll Datapath

The synthesized QCU and SFU datapath is shown in Figure 5.11 and its functional

simulation is shown in the main write and read operation figures below.

After all these functional units perform their designed functionalities correctly,

they are integrated together as one subsystem which is called the main datapath, and

will be used for higher level synthesis.

87

5.3.2 Main Finite State Machine

The state transition diagram of the main controller is shown in Figure 5.12. When

the system is powered on, the DRAMs will be first initialized. After it is done, the

system enters the initial state which provides ready signals to the switch fabric. In its

normal operation mode, the controller alternatively checks the write request and read

request, and conduct corresponding processing according to different system states,

traffic conditions, and the configurable parameter settings. Cut-through operation,

in which the user data do not need to go through the main memory, is considered

and handled using a separate state. When the corresponding operation has been

issued, the system will enter the wait state in which the data_valid signal is checked

to terminate current transmissions, and make the controller move on to the next

checking state.

Figure 5.12: State Diagram of Main-FSM

88

5.3.3 Synthesized Main Controller

olh:::­
dL.oD,__-___,+-----Jf++l--.+----+--++-+----++--=-:1_

....... ••
'::::: ..
~··

'-J ••

'--"'"'

~·-··~
~ _,_

"--••lld-•v\: ..,
llul_fuiLl•B-
t_dOIII

illdlng

tUng

Hl"l

L---4----_.~-~0 M ~-w.••••-•••"'-''"-
M1H-++-l-.J'

L----------------C).,~lull-3'1-

Figure 5.13: Synthesized Main Controller

Figure 5.13 shows the synthesized top level main controller circuit, which includes

the main datapath, the main FSM and the DRAM address unit. The main datapath

contains four functional units as we mentioned in the previous section: RAU, AMU,

QCU and SFU.

89

5.4 System Implementation

A top-down design and bottom-up implementation approach is followed in our re-

search. A divide-and-conquer strategy is used in our design until all the leaf compo-

nents become manageable. As shown in Figure 5.14, after three levels of partitioning,

the implementation hierarchy of the SOQ system is obtained.

In our design and verification, all components are properly designed and tested

before the 4-port shared output queue is constructed. DRAMs and SRAMs are con-

sidered for system design and functional simulations, however, they are not included

in the system final synthesis because different CAD tools are usually used for memory

design, which is beyond the scope of our research.

tb_datapath: tail buffer data path
tb_fsm: tail buffer write finite state

machine
read fsm: read finite state machine
w_addr.: write_address
r_addr.: read_address
rreg: receive register

Figure 5.14: Hierarchical SOQ System Architecture

90

The functional simulations are conducted on the M odelSim X E I I I simulation

platform. The test vectors are generated using software programs and recorded in

four data files which will feed to four input ports. Bursty traffic is considered in

the hardware simulation. When testing, for each iteration the M odelSim simulator

reads in a test vector to the receiving register according to the generated cell arrival

status information. Similarly, on the output side, all transmitted cells are recorded

into a result data file. When the simulation is completed, all the data files are sent to

another software program for final verification. In our experiment, after about 8000

simulation rounds, around 5800 cells per link are transmitted over the output link.

As expected, no cell loss has occurred as long as they got queued in the buffer.

The whole 4-port sharing system is synthesized using Synopsys Synthesizer DC

Shell, with the 0.18um CMOS technology. The total area for the whole control logic

is 24. 79um2 , which is approximately 20, 000 gates in terms of 2-input NAND gates.

The total dynamic power consumption is merely 24.12m W. The whole design can

comfortably operate using the IOns system clock.

5.5 Entity Functional Testing

5.5.1 Tail and Head Buffer Functional Simulation

The functional simulation results of the tail buffer are shown in Figure5.16. Three

state transition processes: main receive process (state), write to tail buffer (tstate),

and read from tail buffer (rstate) are shown in the waveform. The cell counter counts

the number of cells in the tail buffer. When a grant signal read is given, which is

91

shown in the figure for a cut-through operation, six cells have been read from the tail

buffer to the data bus, and the cell counter is updated to zero afterward.

Figure 5.17 shows the functional simulation results of the head buffer. On the

waveform, the departing cell appears as the trans_out signal. Two state transi­

tion processes are shown as transmission state(tsstate) and writing to head buffer

state(wstate). In this figure, it is shown that a total of 12 cells has been written into

the head buffer, and meanwhile, two of them have departed, and ten cells remain in

the buffer.

5.5.2 Main Controller Functional Simulation

The functional simulation of the PMU is shown in Figure 5.18, which includes assign­

ing a set to one set list and returning a set to the set pool.

When writing a block of cells to main memory, the controller issues a write grant

to both the selected tail buffer and the address pointer management unit. Immediately

following the grant signal, data streams are put on the data bus, and a write address

is also available on the address bus. The memory write operation is interleaved to

each individual memory banks with the bank select signal which is issued by DRAM

address unit, which shows in Figure 5.13 as the separate unit (addr_draminte). It

also provides 2-bit burst address to the address bus. The memory read operation is

similar, except that the data streams are from main memory to a head buffer.

For a cut-through operation, a cut through signal is issued to the selected tail

and head buffers. However, no signal is sent to the address pointer management

unit to ensure no main memory involved in the process. Data stream is directly

92

transmitted from the tail buffer to the head buffer, and when the cell counter in

the tail buffer reaches zero, the data valid signal becomes false and terminates the

transmission process. In this way, it is more flexible to control the number of cells for

each transmission, while the maximum value is equal to block size to avoid the head

buffer overflow.

The functional simulation waveform in Figure 5.19 shows a main memory write

operation, with a cut-through process; and Figure 5.20 shows a main memory read

operation.

5.5.3 Internal Delay

Because the internal data bus is shared by all links, an additional waiting delay is

introduced at the very beginning when the system comes out from the reset state,

while the head buffers are empty and wait for cells to be write in through the shared

data bus. Once the head buffers are filled up, they would send data cells out serially

and require for cell replenishment before their buffers become empty. So the internal

waiting delay is observed as pipeline delays which would happen when head buffers

are empty.

According to Figure 5.21, the delay time between the completion of receiving at

tail buffers to the starting of transmissions at head buffers varies for all links. For

the first port (PortO), the delay time is about 7 clock cycles, however, for the last

port (Port3), the delay time is about 28 clock cycles. Although, this delay time

affects the overall SOQ performance, as we stated, it is introduced by the hardware

implementation of the shared data bus which is considered as one of the hardware

93

implementation and performance trade-offs.

5.6 Summary

In this chapter, we have studied the Shared Output Queue system design and im­

plementation issues. We have presented the detailed functionalities for each unit.

According to its functional specifications, the architectural design has been provided.

A top-down design and bottom-up implementation approach has been followed in

this study, and divide-and-conquer strategy has been used for system implementa­

tion. The hierarchical system design was shown in Figure 5.14, and along with each

basic component design, functional simulation and synthesized circuit diagram has

been shown. Then at a higher level, a structural subsystem has been derived. Both

the functional verification and synthesis results are produced for further integration.

Finally, based on all subsystems, the top level SOQ system was constructed. In or­

der to verify its functionalities, we developed a computer program to generate test

vectors, which are applied to all system inlets. At the outlets, the transmitted data

cells are verified with their input vectors using another program. As indicated in the

previous section, the final results is promising: the system is working exactly as we

expect.

The hardware implementation of proposed SOQ-4 scheme assumes that a symbolic

data cell is 8-bit long and incoming and outgoing links are 1-bit wide. In this condition,

totally 8 cycles will be required to receive or transmit one data cell. In addition, the

purposes of the implementation in our research are:

• Verify the proposed shared buffer scheme has better performance;

94

• The shared memory control algorithms are feasible under the critical speed

requirements for modern high-speed switches and routers.

These goals have been accomplished by testing the implemented SOQ-4 with op­

timized results.

Because the main memory controller has been implemented, SOQ system can pro­

vide dynamic adjustments and reconfigurations to the shared memory according to

traffic characteristics and commands from the central switch controller or port con­

troller. Compare with traditional FIFO queue, the SOQ-4 has added about 20, 000

gates (in term of NAND gate), which would be 5, 000 gates or 6um2 for each port.

As a result, the increased control circuit has significantly improved the buffer perfor­

mance, which is shown in previous chapters. The employment of the advanced hybrid

SRAM/DRAM architecture also provides the worst case bandwidth guarantee and

optimized memory utilization.

95

I =I ,.=..l

I~

~
I ~

u
[';;;;; :'3"E

I-- :::1"'-t LP~"" -u==
11"1 T
I~ 1:::... 'IT

~
---'

r- -~

~
~ L-J r- r-

H

--- '--

-~ r-

r ""
I../

'---- ~

ll':L E
-o--

Figure 5.15: Synthesized SOQ System Architecture

96

F"agurf' $ lt.i Tad BufltT funnKJG S mulattoo

Figurfl .S.17 H<'3d Bu.f!tor Funt Uon ..; mulauon

Figure 5.18 W;wf"form of St•l t\Niif(n uml ll.t·ttun

Figure 5.19. Main Contro1lcr F\tnctiou Simulation- Wntiug

Figure 5.21: Jutcmal Delay

Chapter 6

Conclusion and Open Issues

6.1 Summary of Thesis

In this thesis, we reviewed the fundamental issues related to high-speed switches and

routers, which include the history of data networks, network switch architectures and

their working principles, and the classification of high-speed network switches which

include the shared memory switch, the shared medium switch, and the space-division

multi-stage interconnection network based switch. We further reviewed memory tech­

nologies and their applications in the high-speed data networks. From early stage

queuing systems to the advanced hybrid SRAM/DRAM architecture, which has the

worst case bandwidth guarantee and optimized memory size. Based on the review and

analysis, we proposed the reconfigurable Shared Output Queue(SOQ) architecture.

In order to analyze the performance of the proposed SOQ, we proposed a numerical

model under uniform, random traffic. Detailed analysis of this model is presented

based on a two-dimensional Markov chain model. The computed results from the

103

model are compared with those from simulations, which proved that this numerical

model is accurate and efficient.

Then we further examined the shared queue performance under non-uniform and

bursty traffic through simulations. Various bursty traffic patterns were applied to

the simulation platform to obtain a comprehensive set of performances. The results

indicate clearly that the shared queue scheme provides better performance. Much

lower cell loss rate with a small increased delay time, which is unavoidable because

more cells are accommodated in the shared queue. Moreover, we showed that, to

achieve the same level of cell loss rate, the shared queue requires much less memory

space, for example, the 4-port sharing scheme can reduce the memory size by half to

that of the dedicated queue. This number can be as low as one third in the case of

8-port sharing.

Finally, we conduct the Shared Output Queue architecture VLSI design and im­

plementation with a symbolic cell of 8-bit wide. From functional specifications to top

down design hierarchies, we recursively decomposed the system into subsystems until

down to the component level. Then from the bottom level and up, we implement each

component with its functional simulation and its synthesized circuit. By constructing

the subsystems and the whole system in a structural way, we successfully complete

the whole design and verification process. The final implemented SOQ system is

working properly: with about 75% traffic load, no cell loss is experienced during the

whole hardware simulation process.

104

6.2 Major Contribution of Thesis

Some major contributions of this thesis are as follow.

• A Reconfigurable Shared Output Queue Architecture for High-Speed Switched/Routers

We have studied the advantages of the hybrid SRAM/DRAM architecture for

data network applications. This architecture can provide both higher operation speed

and massive storage space, which are desirable characteristics for queuing systems of

high speed network switches and routers. Based on this observation, we proposed

the reconfigurable Shared Output Queue architecture for an output queued switch

system. The applications of the proposed hybrid SRAM/DRAM architecture is not

limited to the output queue system, but can be extended to all high-speed network

storage applications.

• Analytical Model under Uniform Random Traffic

In this thesis, an analytical model is developed based on the two-dimentional

Markov chain under uniform random traffic, which provides the theoretical foun­

dations for analyzing the behaviors of the shared output queue. This model gives

accurate results and it is very efficient for computation. The results obtained from

both analytical model and simulation are very close, which clearly indicates that the

proposed SOQ scheme provides better performance under uniform random traffic.

• Comprehensive Analysis under Non-Uniform and Bursty Traffic

Also the thesis provides a comprehensive analysis of the proposed shared queue

system performance under non-uniform bursty traffic. We adopted the simulation

method to determine the system performance, and with various bursty traffic pat­

terns, the SOQ scheme displays the superior performance on cell loss rate which is

105

one of the most important measurement for network applications. In general, the

Shared Output Queue scheme provides much better cell loss rate performance com­

pared with those from the dedicated queue. It also minimizes the required memory

size and improves the buffer utilization.

• VLSI Design and Implementation

Finally, we proceed to conduct the architectural implementation of our proposed

reconfigurable Shared Output Queue. From the functional descriptions of the SOQ

system, we decompose the whole system into hierarchical levels. At each level, all

components are implemented along with their functional design, verifications and

synthesis. In the end, we obtain the top level structural SOQ system which performs

the designated functionalities as we expected. The system provides a basic recon­

figuration infrastructure for higher level controller (switch central controller or port

controller) to access for run time reconfiguration.

6.3 Open Issues for Future Work

Although, we have provided a comprehensive performance study on the proposed

Shared Output Queue and architecture implementation of the basic SOQ system,

there are still some aspects that can be further improved in the future, which include

the development of the memory management algorithm and a reconfiguration scheme.

• Shared Memory Management Algorithm

Inside the shared memory system for network applications, memory management

is to determine logic queue's status and allocate buffer space to each logic queue

during system operation. An efficient memory management algorithm is difficult to

106

derive because too many parameters should be considered, such as, different QoS

requirements, different priority classes, and different traffic patterns. Furthermore,

the computational complexity also affects the time for making decisions, which is

critical for high speed network switches. Further research on these parameters is

required to derive the efficient shared memory management algorithm.

• Better Network Traffic Modeling

As network applications are continuously exploding, numerous new applications,

such as network streaming media [35] and VoiP, are appearing on the Internet. These

new traffic patterns have some unique characteristics, and will lead to new challenges

to traditional network infrastructures. So, a thorough study on these traffic patterns

are necessary for developing an efficient shared memory management algorithm.

• Runtime R.econfiguration

As new traffic patterns appear on the Internet, the QoS requirements vary from

each other. How to efficiently adapt to these demands becomes a great challenge to the

design of network switches and routers. A runtime reconfiguration scheme can provide

more adaptability and flexibility to adjust the system with different traffic demands.

However, as the network speed continuously increaseing, the reconfiguration time

and the period between two rcconfigurations are critical factors, and they should be

carefully managed. Hence, the study of runtime reconfiguration scheme is required

in future research.

107

References

[1] Toomas M. Chen, Stephen S. Liu, ATM Switching Systems. Norwood: Artech

House, 1995.

[2] "Wikipedia, the free encyclopedia, http:/ /en.wikipedia.org/wiki/digitaLtelephony,"

2007.

[3] Srinivsan Keshar, An engineering approach to computer networking : ATM net­

works, the internet, and the telephone network. Boston, MA: Addison-Wesley,

1997.

[4] "Wikipedia, the free encyclopedia, http:/ /en.wikipedia.org/wiki/opticaLcarrier,"

2007.

[5] Fouad A. Tobagi, "Fast packet switch architectures for broadband integrated

services digital networks," in Proceedings of the IEEE, vol. 78, pp. 133-178, Jan

1990.

[6] H. Jonathan Chao and Cheuk H. Lam and Eiji Oki, Broadband Packet Switching

Technologies. New York: A John Wiley & Sons, 2001.

108

[7] Cheng Li, Design, Modeling and Analysis of the Balanced Gamma Multicast

Switch for Broadband Communications. PhD thesis, Memorial University of

Newfoundland, Canada, St. John's, CA, 2004.

[8] Ramachandran Venkatesan and Hussein T. Mouftah, "Balanced gamma network

- a new candidate for broadband packet switching architectures," in in Proceed­

ings of the IEEE INFOCOM'92, vol. 3, pp. 2482-2488, 1992.

[9] Achille Pattavina, Switching Theory. New York: John Wiley & Sons, 1998.

[10] Yu-Shuan Yeh, Michael G. Hluchyj, and Anthony S. Acampora, "The knockout

switch: A simple, modular architecture for high-performance packet switching,"

IEEE Journal on Selected Areas in Communications, vol. 5, No. 8, pp. 1274-

1283, Oct 1987.

[11] K. Eddie Law, and Alberto Leon-Garcia, "A large scalable atm multicast switch,"

IEEE Journal on Selected Areas in Communications, vol. 15, No.5, pp. 844-854,

Jun 1997.

[12] H. Jonathan Chao, Byeong-Seog Choe, Jin-Soo Park and Necdet Uzun, "Design

and implementation of abacus switch: A scalable multicast atm switch," IEEE

Journal on Selected Areas in Communications, vol. 15, No. 5, pp. 830-843, Jun

1997.

[13] Sundar Iyer, Ramana R. Kompella and Nick McKeown, "Analysis of a memory

architecture for fast packet buffers," in IEEE Proceedings and Workshop, High

Performance Switching and Routing, (Dallas, USA), pp. 368-373, May 2001.

109

[14] William Stallings, Computer Organization and Architecture. Upper Saddle River,

NJ: Prentice Hall, fifth ed., 2000.

[15] Sundar lyer and Nick McKeown, "Techniques for fast shared memory switches,"

Technical Report- TROJ-HPNG-081501, Stanford University, Aug 2001.

[16] "Wikipedia, the free encyclopedia, http:/ /en.wikipedia.org/wiki/static_random_acccss_mcn

2007.

[17] Ashok K. Sharma, Advanced Semiconductor Memories: Architectures, Designs,

and Applications.

[18] "Wikipedia, the free encyclopedia, http:/ /en.wikipedia.org/wiki/dram," 2007.

[19] IDT Datasheet, 18Mb Pipelined QDRII SRAM Burst of 4. IDT Inc., San Jose,

USA, May, 2006.

[20] Macron Datasheet, Double Data Rate (DDR} SDRAM- 1Gb. Macron Technology

Inc., Pasadena, USA, May, 2006.

[21] Sundar Iyer, Ramana R. Kompella and Nick McKeown, "Design packet buffers

for router linecards," Technical Report- TR02-HPNG-031001, Stanford Univer­

sity, Mar 2002.

[22] Michel Devault, Jean-Yves Cochennec and Michel Servel, "The 'prelude' atd

experiment: Assessments and future prospects," IEEE Journal on Selected Areas

in Communications, vol. 6, No.9, pp. 1528-1537, Dec 1988.

110

[23] Jonathan J. Turner, "An optimal nonblocking multi-cast virtual circuit switch,"

Technical Report WUCS-93-30, Washington University, val. 1, pp. 298-305, Jun

1994.

[24] Manolis Katevenis, Panagiota Vatsolaki and Aristides Efthymiou, "Pipelined

memory shared buffer for vlsi switches," in Proceedings of the ACM SIGCOMM'

95 Conference, (Cambrige, USA), Aug 1995.

[25] Tzi-Cker Chiueh and Srinidhi Varadarajan, "Design and evaluation of a dram­

based shared memory atm switch," ACM SIGMETRICS Performance Evalua­

tion Review, val. 25, Issue 1, Jun 1997.

[26] Gireesh Shrimali and Nick McKeown, "Building packet buffers using interleaved

memories," in IEEE Proceedings and Workshop, High Performance Switching

and Routing, (Hong King, PRC), pp. 1-5, May 2005.

[27] Jorge Garcia, Jesus Corbal, Llorenc Cerda and Mateo Valero, "Design and im­

plementation of high-performance memory systems for future packet buffers," in

Proceedings of the 36th IEEE/ A CM International Symposium on Microarchitec­

ture (MICR0-36'03}, (San Diego, USA), pp. 372-384, Dec 2003.

[28] Jonathan S. Turner, "Queueing analysis of buffered switching networks," IEEE

Transactions on Communications, val. 41, No. 2, Feb 1993.

[29] Alberto Monterosso and Achille Pattavina , "Performance analysis of multistage

interconnection networks with shared buffered switching clements for atm switch­

ing," in Proceeding of IEEE INFOCOM'92, (Florence, Italy), May 1992.

111

[30] Giuseppe Bianchi and Jonathan S. Turner, "Improved queueing analysis of

shared buffer switching networks," IEEE/ ACM Transactions on Networking,

vol. 1, No. 4, Aug 1993.

[31] Stefano Gianatti and Achille Pattavina, "Performance analysis of atm banyan

networks with shared queueing - part i: Random offered traffic," IEEE/ A CM

Transactions on Networking, vol. 2, No. 4, pp. 398-410, Aug 1994.

[32] Abdullah A. Abonamah and Xyan-H. Dang, "Queueing analysis of shared-buffer

atm switches with grouped output channels," International Journal on Commu­

nication Systems, vol. 14, 2001.

[33] Averill M. Law and W. David Kelton, Simulation Modeling and Analysis. Colum­

bus, OH: McGraw Hill, third ed., 2000.

[34] "Network processing forum, http:/ jwww.npforum.org/benchmarking," 2006.

[35] "Wikipedia, the free encyclopedia,

2006.

http:// en. wikipedia.org/wiki/ internet,"

[36] Jerry banks and John S. Carson II and Barry L. Nelson and David M. Nicol,

Discrete-Event System Simulation. Upper Saddle River, NJ: Prentice Hall, 2001.

[37] Mahmoud Saleh, Mohammed Atiquzzaman, "Buffer occupancy in atm switches

with single hot spot," in Electronics Letters, IEEE, vol. 31, Issue 1, pp. 13-15,

Jan 1995.

112

[38] Cheng Li, Ramachandran Venkatesan and Howard M. Heys, "Design of a scal­

able switch architecture for efficient high-speed data multicasting," International

Journal on Communication Systems, Aug. 2006.

[39] Ramachandran Venkatesan, Yaser El-Sayed, Rajagopalan Thuppal and H.

Sivakumar, "Performance analysis of pipelined multistage interconnection net­

works," Informatica: An International Journal of Computing and Informatics,

vol. 23, No. 3, pp. 347-357, Sep. 1999.

113

Appendix

Rt!port : ce 11
Design : soq_nornem
Ver~ion: 2001.06-SPZ
Date Wed Nov 15 17:03:49 2006

Attribute~:

b - black box (unknown)

control logic
h - hl.eraJ:"chical
n - noncomb inat ional

removable
::~ynthet ic operator

u - contaill3 unmapped logic

Cell Reference Library

U7 GTECH ORZ t;~tech

ue GTrCH=NOT qtech
U9 GTECH _AND _NOT gtech
U10 •SELECT OP 2 .1_2 .1 - 1
U18 GTECH_OR2 qtech
U19 GTECH_NOT gtech
U20 GTECH _AND_ NOT qtech

U21 •SELECT OP 2 . 1_ 2. 1_ 1
U29 GTECH_OR2 gtt!Ch

U30 GTECH NOT gtech
U31 GT!CH _AND_ NOT qtech

U32 ... SELECT OP 2. 1_2 .1 - 1
U40 GTECH OR2 gtech

uu GTECH_NOT gtech

U42 GTECH _AND_ NOT Qtech
control main_ controller
hdbufft!rO head_ bufferD
hdbufferl head buffer 1
hdbufter2 head_ butter2
hdbutter3 head_ buffer3
tbuftero tail_buffero
tbuffe:rl tai 1_ buffe:r 1
tbutte:r2 tail_bufte:r2
ebutte:r3 tail_bufte:r3

Total 24 cells

Area Attrl.bute~

o.oo c, u

0.00 c, u
0.00 c, u
0.00 ., u
0.00 c, u
0.00 c, u

0.00 c, u
0.00 ., u
o.oo c, u
0.00 c, u

0.00 c, u

0.00 .. u
0.00 c, u
o.oo c, u
0.00 c, u

52145.25 h, n
8106.80 h, n
8106.80 h, n

8106.80 h, n
8106.80 h, n

40834.77 h, n
40834.77 h, n
40834.77 h, n
-40834.77 h, n

247911.56

Figure 1: SOQ System Synthesis Report

114

Figure 2: Sy:;l<'m Delay Time

Figm·l' 3: Wl\V('form mHfl"r 60% Tr~-tOit· Locvl

Figure 4: Wnvdorm undc·r 75<x:, Traffic I...oorl

Figure 5: Whole Simulation Waveform

