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Abstract

Harp seals, Pagophilus groenlandicus, are the most abundant pinniped in the
Northwest Atlantic. The Canadian and Greenland hunt for the harp seal is the largest
marine mammal harvest in the world. To ensure a sustainable yield, it is important
to monitor abundance and population trends on a regular basis. In addition to
species management, assessing harp seal population is important in estimating the
consumption of prey by the species. To estimate the total population of harp seals, the
Canadian Department of Fisheries and Oceans (DFQO) uses a population model that
combines pup production estimates, pregnancy rates, and age-structured removals.

Currently, the number of harp seal pups are estimated by conducting visual and
photographic aerial surveys over whelping concentrations. A fixed-wing aircraft,
equipped with a large format metric mapping camera with motion compensation,
is used to take black-and-white photographs of whelping areas. To count seal pups,
manual analysis of aerial photographs is performed by trained scientific personnel
with extensive knowledge of harp seals and their environment. This process can take
many months and involve several people. While extensive measures are taken to en-
sure the most accurate pup count, manual identification of seal pups is not always
conclusive. This thesis attempts to address these issues by developing image process-
ing and pattern recognition tools that automatically detect and classify harp seal pups
in digitized aerial photographs. Automating this process will reduce the amount of
time required to compute population estimates and potentially improve the accuracy
of pup counts.

The first step in the pattern recognition algorithm is to divide the large digitized
aerial images into several sub-images for further analysis by the image processing and
classification tools. The objective of the image processing algorithm is to segment
and isolate potential harp seal objects to be used in pattern classification. The rigor-
ous image processing component uses a combination of techniques including contrast
stretching, adaptive thresholding using between-class variance, and a “cleaning” al-
gorithm that employs edge detection, line dissection, and removal of objects based on
size constraints. In addition, this thesis proposes a unique segmentation procedure
called Isolate Connected Components that separates connected objects with minimal
distortion to object shape.

The image processing routine calculates nineteen features for each segmented ob-
ject. Features are optimized using three different methods: scaling the data, Prin-
cipal Component Analysis, and kernel whitening. One-class classification methods
use these features to identify an object as ‘seal pup’ or ‘not seal pup’. Two one-
class methods are considered in this research: Parzen density estimation and Support
Vector Data Description (SVDD). Optimal classifier parameters are determined by
maximizing the Area Under the Receiver Operating Characteristic Curve (AUC). It is
shown that the Parzen method performs better than the SVDD with an 82% success
rate on test data.
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Chapter 1

Introduction

1.1 Problem Statement

The Harp seal is an abundant, medium sized seal which lives in the North Atlantic.
The largest harp seal population is the Northwest Atlantic stock. The Canadian and
Greenland hunt for the Northwest Atlantic harp seal is the largest marine mammal
harvest in the world. Therefore, it is important to monitor abundance and popula-
tion trends to ensure that these removals are sustainable [1]. Harp seals are among
the most important pinniped predators in the Gulf of St. Lawrence due to their
abundance in this area. Large quantities of prey, such as Atlantic cod, are consumed
by harp seals and other marine mammals impacting the yield of commercial fish-
eries. Therefore, information on population size of harp seals is also important in
evaluating the magnitude of prey consumption [2]. The Department of Fisheries and
Oceans (DFO) is responsible for managing the seal hunt and estimating population
size. The total population model currently used by DFO incorporates estimates of
pup production, age-specific reproductive rates, and age-structured removals [3].

Since 1990, visual and photographic aerial surveys have been flown over whelping



concentrations to determine pup production of Northwest Atlantic harp seals at four
to five year intervals. Photographic surveys use a large format metric mapping camera
to take black-and-white photographs of whelping areas. To count seal pups, manual
analysis of aerial photographs is performed by trained scientific personnel who have
extensive knowledge of the harp seal species. This process is very labor-intensive, ex-
pensive, and potentially error-prone. According to DFO, manually counting animals
as part of population assessment is one of the most complex and time consuming tasks
undertaken by the department [4]. An automated approach to counting seal pups in
aerial photographs will reduce the amount of time required to compute population

estimates and potentially improve the accuracy of pup counts.

1.2 Research Objectives

The main objective of this research is to develop an original automated method to
recognize seal pups in black-and-white aerial photographs collected by DFO. Such a
method should conserve time, reduce sources of error, and save money for estimating
total pup counts. To accomplish this objective, image segmentation and pattern
recognition algorithms for the detection and classification of harp seal pups are studied
and implemented.

This research must also meet Computational Science! objectives. Computational
Science studies the use of computers in analyzing, interpreting and solving complex
scientific problems arising in natural sciences (chemistry, physics, earth sciences and
mathematics) and engineering. Objectives for this program include training students

in:

LA detailed description of the Computational Science Graduate Program at Memorial University
of Newfoundland can be found online at http://www.mun.ca/science/ CMSC/index.php.



1. state-of-the-art numerical methods;

2. high performance computing;

3. use of graphics, visualization, and multi-media tools;

4. the acquisition, processing, and analysis of large experimental data sets; and

5. applying these techniques to at least one scientific or engineering discipline.

The problem addressed in this research is engineering-based and encompasses all
of these objectives: advanced linear algebra methods are applied in several tech-
niques used in this thesis including Principal Component Analysis, kernel whiten-
ing, and many image processing algorithms; large data sets of target objects (seal
pups) are acquired, processed, and analyzed by segmentation and classification al-
gorithms; graphics and visualization is inherent in implementing and explaining the
image processing techniques used; and all algorithms are implemented in MATLAB/[5],
a programming environment designed for the very purpose of solving computational

problems.

1.3 Thesis Contributions

The following contributions have been made to the fields of image processing, pattern

recognition, and environmental monitoring through this research:

1. A novel algorithm is designed to address the automated counting of seal pups
from digitized aerial photographs. This process uses a combination of image

segmentation techniques and classification methods.



2. A shape-preserving image segmentation algorithm has been developed to isolate
seal pups from highly cluttered background. The existence of shadows and the
large variation of pixel values over seal objects pose unique challenges. To iso-
late regions of interest, this new approach first utilizes contrast stretching and
adaptive thresholding using between-class variance and histogram skewness. A
“cleaning” algofithm is then applied to the threshold image using edge detec-
tion, line dissection, and removal of objects based on size constraints. Finally, a
unique algorithm called Isolate Connected Components further isolates target

objects using object labeling and removal/growing of perimeter pixels.

3. Instead of applying a generic classifier, a relatively new classification technique
called one-class classification is used to robustly identify target objects. Two
different one-class methods have been applied for classification of seal pups,

namely the Parzen density estimation and the Support Vector Data Description.

4. Initial recommendations have been made to DFO for developing a fully auto-

mated software tool for population estimation of harp seal pups.

1.4 Thesis Organization

This document is organized into five chapters. Chapter 2 describes background in-
formation on the harp seal species and examines the manual process currently used
to count seal pups in aerial images. A literature review on computer-aided systems
used in ecological science and environmental monitoring is conducted with a focus
on automated population assessment research. This is followed by a description of
the general approach used in this research to develop a computed-aided system for

recognition of seal pups in aerial images. Chapter 3 describes the image segmentation



algorithm used to extract potential seal pup objects from aerial images and defines
the features used to represent these objects. Chapter 4 focuses on the development of
a classifier for harp seal pups. An overview of one-class classification theory is given,
followed by a description of the one-class classifiers applied to the problem at hand,
the Parzen density estimation and the Support Vector Data Description. Classifier
optimization and feature reduction techniques including Principal Component Anal-
ysis and kernel whitening are reviewed. Results are presented including false positive
and false negative rates on each classifier tested. Chapter 5 summarizes the results
and provides recommendations for future work. Throughout the thesis, a certain de-
gree of familiarity with introductory statistics, image processing and classification is

assumed. Non-trivial concepts are explained within each chapter where necessary.



Chapter 2

Background

This chapter presents background information on the harp seal species. A description
of recent methods for assessing the Northwest Atlantic harp seal population provides
motivation for this current work. This is followed by a summary of computer-aided
systems used in ecological science and environmental monitoring, in particular, auto-
mated population assessment of wildlife species. Finally, the automated approach for

recognizing harp seal pups in aerial images developed in this research is presented.

2.1 Harp Seals

Harp seals, Pagophilus groenlandicus, are the most abundant pinniped (fin-footed
animal) in the Northwest Atlantic [1, 6]. They owe their name to the irregular
horseshoe-shaped band of black straddling the back in the adult male (see Figure
2.1). This band, or “harp”, unites across the shoulders, curves down toward the
abdominal region and then back toward the posterior flippers where it abruptly dis-
appears. The background color of the pelt is steel blue when wet and pale gray when

dry. The head and tail are black, while the anterior flippers and belly are whitish.



Adult females are similarly patterned, except that the harp, the head, and the tail
are usually somewhat lighter in colour. Some adult females have irregular dark gray
spots on the back with no clearly defined harp [7]. Male harp seals are only slightly
larger than females with adults averaging 1.6 meters in length and 130 kilograms in

wright Eﬂl

Figure 2.1: Adult male harp seal. From DFO marine mammal section.

Harp seals migrate annually between Arctic and sub-Arctic regions of the North
Atlantic Ocean. They are confined to three widely separated populations breeding
in the White Sea north of Russia, the “West loe™ near Jan Mayan Island southeast
of Spitsbergen, Norway, and off Newfoundland. The Northwest Atlantic harp seal
population, historically the largest, summers in the Canadian Aretic and Greenland.
In late September when new Arctie ice is forming, the seals start their journey south
along the cast and west coasts of Baffin Island and eastward through Hudson Strait.
The migrating group of seals separate into two herds; one breeding on the southward
drifting Arctic pack ice off Southern Labrador and Northern Newfoundland (called
the “Front” sub-population) and the other breeding on ice in the Guilf of St. Lawrence
near the Magdalen Islands (called the “Gulf” sub-population). During January and
February seals disperse widely and feed intensively. Feeding is particularly important
for pregnant females, for they need energy to support the enormous demands of their
rapidly growing offspring during lactation [7).

Pregnant females give birth, or whelp, several days after they have hauled out onto



the winter pack ice in late February or early March. Females nurse a single pup (twins
are uncommon) for approximately twelve days and then mate and disperse. Newborn
pups are about 85 centimeters long, weigh about 11 kilograms and are vellowish in
colour. In about 3 days their fur turns to a fluffy white from which the pups derive
the name whitecoat (see Figure 2.2). The whitecoat moults its white fur at about
three weeks of age. Large moulting concentrations, called patches, form on the sea ice
off Northeastern Newfoundland and in the Northern Gulf of 5t. Lawrence in April
and May (see Figure 2.3). After the moult, the seal pups disperse and eventually
migrate north again [8],
= *' JL‘

i =

Figure 2.2: Harp seal pup, also called a whitecoat, From DFO) marine mammal section.

2.1.1 Population Assessment

Harp seals are harvested commereially and for subsistence purposes in Atlantic and
Arctic Canada and from waters around Greenland. Harps are also taken as by-cateh
in commercial fisheries, Commercial harvesting of the species dates back to the early
cighteenth century. The Canadian and Greenland hunt for Northwest Atlantic harp
seals is the largest marine mammal harvest in the world, To ensure a sustainable vield,
it is important to monitor abundance and population trends on a regular basis. In
Canada, the commercial harvest is limited through a management plan that cutlines

management objectives, catch levels, methods of hunting, and seasonal and regional
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Figure 2.3: Map of four whelping concentrations located in the Gulf of St. Lawrence
and off Newfoundland and Labrador during March 2004. Shading indicates areas
covered by reconnaissance surveys conducted by DFO. The general direction of drift
is indicated by the arrows. From DFO, 2004 Harp Seal Survey [6].

closures [1, 9). The objective of this plan is to ensure that the population does not
decline below s precautionary reference lovel,

Marine mammals, because of their large size and abundance, may have an impor-
tant influence on the structure and function of many marine ecosystems [10]. One
obvious impact is that large quantities of prey are consumed by marine mammals, to
the detriment of commercial fisheries. Therefore, in addition to species management,
assessing harp scal population is important in estimating the consumption of Atlantic
codd, Atlantic herring, and other prey by the seals. Estimates of prey consumption by
harp and gray seals were developed by modeling changes in population size, energy
requirements, diet composition, and changes in population distribution [2].



The total population of harp seals cannot be counted directly. During the summer,
surveys of the total population are impractical because harp seals are distributed
widely across the Arctic and North Atlantic. Seals congregate during whelping and
moulting periods, but not all of the population is present on the surface at any one
time and place. However, whitecoats remain on the ice while being nursed. Therefore,
seal populations can be assessed by estimating pup production as a first step. This
is combined with information on pregnancy rates and age-structured removals to
construct a total population estimate [3, §].

Prior to 1990, the annual pup production of harp seals was estimated using a
variety of techniques including survival indices, catch-at-age analysis, sequential pop-
ulation models [11, 12, 13, 14, 15|, aerial photographic surveys [16, 17] and mark-
recapture experiments [18, 19]. Unfortunately, these different techniques often pro-
duced conflicting estimates. Since 1990, pup production has been estimated using a
combination of photographic and visual aerial surveys [6, 20, 21]. By consistently us-
ing these methods, comparable estimates can be used to determine if pup production

has increased in recent years.

2.1.2 Aerial Visual and Photographic Surveys

Whelping concentrations are identified by conducting fixed-wing and helicopter recon-
naissance surveys of areas historically used by harp seals. Once located, abundance
estimates of seal pups are determined using visual and photographic methods.
Visual surveys are flown via helicopter over the whelping concentrations. A series
of equally-spaced parallel lines, called transects, are laid out prior to the flight. As
the transects are flown, two observers seated in the rear of the helicopter count all

pups within a pre-defined visual area on each side of the aircraft. Correct altitude and
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transect spacing are maintained using a radar altimeter and GPS navigation systems
[6]. Such surveys are not always practical since they can only be conducted in good
weather conditions and with the assistance of a support vessel.

Photographic surveys are advantageous over the visual method since they allow
personnel to scan for seals in a laboratory setting after the survey is complete. A
fixed-wing aircraft, equipped with a large format metric mapping camera with mo-
tion compensation, is used to take black-and-white photographs of whelping areas
(Figure 2.4). Surveys are conducted at a fixed altitude. Transect lines and spacing
for all surveys are mapped prior to the flights to ensure complete coverage of the
patches. Any overlap between photos within a transect is removed prior to analysis.
Correct altitude and transect spacing is maintained using barometric altimeters and
GPS navigation systems. Ice drift is monitored by satellite transmitters to ensure
that transects remain independent [20]. Although the general method for conduct-
ing photographic surveys has been consistent since 1990, physical parameters such as
altitude of surveys and location of transect lines over whelping concentrations may
vary. A description of the physical parameters, camera equipment, and film used to

capture images for this research is given in Section 3.2.1.

2.1.3 Manual Photograph Analysis

Analysis of aerial photographs is performed by readers, trained scientific personnel
with extensive knowledge of harp seals and the environment. Photographs are exam-
ined by several readers using an illuminated hand-lens (7-8X mag.) or a rail-mounted
low magnification binocular microscope. To standardize the readers prior to the ac-
tual readings, each examines a common series of photographs and compares identified

seals. Once the cues used to identify seals are consistent among readers, all photos
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Figure 2.4: Survey photo of whelping patch along the Front, March 1999, This image
covers an area of 274.3 meters squared.
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are read once by each reader. For each photograph, the number and position of all
pups are recorded on a clear acetate overlay.

Manual identification of harp seal pups is not always conclusive, even for the very
experienced reader. Therefore, measures are taken to ensure the most accurate final
reading. After all photographs are examined, each reader re-reads a series of their
photographs in sequence to determine if identification of seals has improved over the
course of the readings. Readings of photographs continue until the counts from the
first and second reading differ by less than 5%. If pup counts differ by more than 5%,
the counts from the first reading are replaced by those from the second reading [6].

To correct for misidentified pups, a series of randomly selected frames for each
patch are examined by all readers. All resulting acetates are then overlaid and re-
examined by a few experienced readers to determine a ‘best estimate’ of the number
of pups present. Any pup that cannot be positively identified is not included. The
original counts are regressed on the best estimate to determine a correction factor for
each survey and reader. The corrected counts for each photograph are then summed
to obtain the corrected count for each transect. The variance associated with the
reading corrections is summed over transects to estimate the total measurement-error
for the survey and added to the sampling variance. A correction for the temporal
distribution of births and loss of pups, due to the dispersion of ice packs or pups in the
water, may also be applied to total pup estimates. For a review of the mathematical
equations used for estimating total pup production and error variance, please refer to
Stenson et al. [20, 22].

Manual analysis of aerial photographs can take many months and involve several
people. FEach survey can take up to 3 person-years to analyze and manpower costs are
quite high. The purpose of this work is to initiate an automated process to perform

the activities described above in order to improve accuracy and reduce time and costs.
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2.2 Previous Work

In recent years, pattern recognition and computer-aided systems have become an
important tool in ecological science and environmental monitoring. Such systems are
being employed for species identification, population counting, and determining the
size of organisms. It has been shown that automating these tasks produce faster and
more accurate results when compared to manual implementation.

The practice of species identification is one area where computer-based systems
is a growing trend. Worldwide, there is an increasing need for biodiversity monitor-
ing, while at the same time the number of trained taxonomists declines. Demand
for routine identification far outstrips the capabilities of the taxonomic community
[23]. Systems have been developed for automated species identification through hair
patterns [24], genomic data [25], sound {26, 27, 28] and image analysis [29-37]. The
latter has been used to identify zooplankton [29], moths [30], spiders [31, 32|, stonefly
larvae [33, 34], and other insects [35, 36, 37]. Image-based species classification sys-
tems are often trained on images of dead specimens in controlled lighting conditions.
Live specimens in their native habitat may move when an image is being captured
and lighting conditions are typically unpredictable. The demand for computer-based
systems that can automatically identify the species of live plants, insects, or animals
from digital images or recordings is surely to increase in the future {30].

Pattern recognition and computer-aided systems have also been developed for de-
termining the size of organisms and counting populations. Sonar systems have been
employed for automated fish sizing and counting [38, 39]; thermography and multi-
spectral scanners have been tested for detecting and counting deer [40, 41] and geese
[42, 43]; and image analysis programs have been designed for determining popula-

tion size of several species including plankton [29, 44], stonefly larvae [34], waterfowl
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(45, 46, 47, 48], penguins [49], whales [50], sea-lions [51], and caribou [48].

One of the most common image analysis methods for estimating population size
of wildlife is counting animals in aerial photographs. Traditionally, this approach has
been conducted manually. For example, manual analysis of aerial images has been
used to count arctic seabirds [52], Adelie penguins [53], flamingoes [54], caribou [55],
elk [56, 57], beluga whales [58], and seals [59, 20, 6]. However, manual counts from
aerial photographs are labor-intensive and can be subject to considerable error. While
computer-aided wildlife census may save time and improve accuracy of counts, limited
research has been conducted in this area [48]. The following paragraphs summarize
recent efforts in automating population counts from aerial images.

In 1988, Gilmer et al. [45] conducted aerial photographic surveys of snow geese
and Ross geese with a hand-held camera and high resolution film. After processing,
negatives were masked to eliminate areas without geese and then enlarged onto photo
paper. Photos were digitized using a linear array image-scanner and read into a
computer for analysis. The number of geese within two small polygons (training
sites), chosen at random, provided the training statistics necessary for determining
threshold values and goose-per-pixel relationships. Threshold values partitioned the
image into two classes, ‘goose’ and ‘non-goose’ (water, soil, vegetation). The threshold
value was chosen iteratively by visually comparing the density-sliced, digital images on
the display monitor with the original aerial photos. The area of an image (in pixels)
classified as ‘goose’ was divided by the average area of a single goose (computed
manually using the training sites) to estimate the total number of geese on the photo.
This early attempt at automatically counting geese in aerial photos provided fairly
accurate counts of white geese at significant savings of time and effort. However,
results may vary if background habitats contain density values corresponding to those

of the images being quantified, and will depend on the size distribution and spatial
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orientation of birds on the photograph.

In 1990, Bajzak and Piatt [46] presented a semi-automated technique for computer-
aided counting of snow geese from aerial images. Besides counting birds, this method
can be used to sort birds into size and tonal (photographic density) classes. A trans-
parency is produced from the aerial film and then digitized using a scanning micro-
densitometer. The digitized image is analyzed using two computer programs. The
first program produces a printed output of density values from a specified sub-image
which is used to manually determine the required parameters for computer identifi-
cation and counting. These parameters include tonal range of snow geese and the
minimum and maximum number of pixels that represent each bird. After performing
experiments to fine-tune thesé parameters, the second program identifies individual
birds based on these parameter values, counts the number of pixels per bird, and
calculates the minimum, maximum, and average densities for each identified bird.
Final results showed only a 2.3% difference between visual and computer counts, an
improvement from Gilmer et al. [45]. The total time required to analyze an image was
reduced even though preliminary data analysis and establishing relevant parameters
is time consuming.

A more automated approach was developed by Gosine et al. [51] in 1995 to count
sea-lions in aerial images, video, or still pictures. A binary image is first produced by
thresholding an enhanced edge image. Objects are manually identified by the user as
‘sea lion’ and ‘not-sea lion’ for the first image frame in the video. For each object,
basic features (e.g. size, shape, mean, standard deviation) and a specialized intensity
gradient across the object are computed and stored in a database. This information
is used to train a nearest-neighbor classifier [60] that is applied to subsequent video
frames to discriminate ‘sea lions’ from ‘not-sea lions’. The results indicated good

agreement between manual and automated counts.
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In 1996, Cunningham et al. [47] adapted Maclntosh-based, public-domain soft-
ware to create DUCK HUNT, a semi-automated program for counting waterfowl.
The software accesses digital images and, if necessary, performs interactive enhance-
ments using spatial and spectral processing. Objects to be counted are selected by
their spectral reflectance using interactive density slicing of images. When all objects
of interest are highlighted, the mouse cursor is used to mark a sample of highlighted
objects to define size and shape parameters for objects of interest. A counting routine
then counts objects with similar features. The selection parameters used for counting
can be saved and used for processing other images with similar optical characteristics.
This technique showed promising results, but is semi-automated. Efficient application
of this program depends on high contrast between objects of interest and background,
large concentrations of objects of interest, separation of individuals, and consistent
image quality.

In 2003, Laliberte and Ripple [48] used public-domain image-analysis software,
ERDAS Imagine[61] and ImageTool[62], to assess accuracy of counting wildlife from
remotely sensed images. Their objective was to develop a method that was simple
enough to permit widespread use, requiring only basic knowledge of image processing
techniques. Four illustrative case studies were chosen: a black-and-white aerial photo
of snow geese on water using a mapping camera; a color aerial photo of Canada geese
using a hand-held camera; a black-and-white aerial photo of caribou using a map-
ping camera; and a high-resolution satellite image (IKONOS) of cattle. The general
approach involved windowing out smaller sub-images, applying filters to enhance the
images, separating animals from the background by manually thresholding based on
sub-image histograms, and then using spectral and area attributes to separate single
animals from groups for counting purposes. Using manual counts for comparison,

computer count errors were computed to be 2.8% for the snow geese image, 4.4% for
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the Canada geese image and 10.2% for the caribou image. The test with the satellite
image performed satisfactorily and showed promise for future applications, however
ground-truth data was not available to compute error rates.

In 2004, Trathan [49] derived population estimates of Macaroni penguins using
computer-based image analysis of color aerial photographs digitized with a pho-
togrammetric scanner. Using MATLAB, images are divided by defining a separate
polygon around each colony of penguins. Each colony image is segmented into a grid
for further analysis. Within each grid square, or region-of-interest (ROI), descriptive
statistics are used to select the color band (red,green,blue) that best discriminates
between penguins and their background. A random line transect covering several pen-
guins is drawn through the ROI. A smaller random area within the ROI is selected
and a histogram of pixel values computed. Pixel values along the transect line and
from the pixel histogram are used to compute a threshold value for the image. After
the threshold is applied, pixel values classified as penguins are smoothed with a me-
dian filter and a second threshold is applied to eliminate any remaining background
pixels. The pixel-area of resulting blobs is used to remove objects not characteristic
of penguins. Each separate ROI is reassembled into a single image and an automated
routine is applied to count the number of birds present within the colony. Results were
highly correlated with manual photograph counts. However, many of the steps de-
scribed above are only semi-automated (e.g. defining ROIs, inspection of histograms,
selecting a threshold) and therefore the process is time consuming.

In 2006, Mills {50] developed an automated image analysis system, called Ma-
rine Mammal Detector, to detect and classify beluga whales in digitized aerial pho-
tographs. In general, a filtering algorithm masks image pixels that are considered
“unreadable” (land, sun glare, extensive wave crests, image borders). A specialized

adaptive thresholding technique is used to segment potential whales and then a size
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filter is applied to remove objects that are obviously not whales. Segmentation is
improved by applying a watershed algorithm and further thresholding to separate ad-
jacent whales. A Support Vector Machine [63] classifier is used to classify objects as
either ‘whale’ or ‘not-whale’. To optimize the classifier, a genetic algorithm is applied
for feature reduction and classifier parameter calibration during training. Testing of
this method demonstrated an excellent separation of classes and a low false positive
rate.

In 2004, DFO and Memorial University of Newfoundland initiated research in the
development of an automated system to identify harp seal pups in aerial photographs.
In an initial attempt to tackle this problem, Hogan et al.[64] used Matrox Inspector
4.1[65) and MATLAB to perform image processing and analysis methods to segment
objects characteristic of seal pups. A combination of image filtering, seeded region
growing and morphological operations were employed to segment target objects. Error
rates on this method were not available. An exhaustive search could not find evidence
of any other automated system to identify harp seal pups in aerial photographs. The
research conducted here is the first attempt of a more complete approach that includes
segmentation, feature analysis and classification of seal pups.

Table 2.1 gives a comparative summary of the aforementioned efforts in automated
population detection and counting in aerial images. The first two columns list the
author and year of the research and the species being studied. The third column
specifies whether the segmentation algorithm is fully automated, manual (requires
human interaction for each step), or a combination of the two (semi-automated). The
fourth column specifies if a classification algorithm is applied and the final column

gives a brief description of the segmentation and classification methods (if applicable).
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Table 2.1: Summary of recent efforts in automated population detection and counting

from aerial images.

Author, Species Segmentation | Classification | Methods Used

Year

Gilmer, Geese Semi- No Training statistics (threshold

1988 [45] Automated values and goose-per-pixel
relationships) acquired from
training sub-images are used
to partition image into ‘goose’
and ‘non-goose’ classes and
then estimate total geese in
photo.

Bajzak and | Geese Semi- No Manually selected parameters

Piatt, 1990 Automated (tonal range, min and max

[46] pixel values) in specified sub-
image are used to identify tar-
get species in remaining im-
age(s).

Gosine, Sea-lions | Semi- Yes Segmentation of ROIs using bi-

1995 [51] Automated nary edge image produced by
thresholding. Object features
and specialized intensity gra-
dient used to train a nearest-
neighbor classifier.

Cunningham{| Waterfowl | Semi- No ROIs selected using spectral

1996 [47] Automated reflectance. Size and shape pa-
rameters of ROIs used to iden-
tify /count objects with similar
features.

Laliberte Geese, Manual No ERDAS Imagine and Image-

and Ripple, | caribou Tool are wused to segment

2003 [48] and cattle sub-images using filtering and
thresholding and to analyze
spectral and area attributes.

Trathan, Penguins | Semi- No Segmentation using descriptive

2004 [49] Automated statistics, various thresholding
techniques and median filter-
ing.

Mills, 2006 | Beluga Automated Yes Segmentation using filtering,

[50] whales adaptive thresholding, and a
watershed algorithm. Clas-
sification using an optimized
SVM.

Hogan, Harp seal | Automated No Segmentation using filtering,

2005 [64] pups region growing and morpholog-

ical operations.
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2.3 The Approach

Pattern recognition is the act of taking in raw data and making an action based on
the “category” of the data [66]; it aims to classify patterns in data based on either
a priori knowledge or on statistical information extracted from the patterns. Appli-
cations of pattern recognition now include: character recognition; target detection;
medical diagnosis; biomedical signal and image analysis; remote sensing; identification
of human faces and of fingerprints; reliability analyses; socioeconomics; archaeology;
speech recognition and understanding; machine part recognition; automatic inspec-
tion; and many others [67]. Such systems are quite complex and can typically be

partitioned into five main components:

1. Sensing - a sensor converts physical inputs, such as images or sounds, into

signal data;
2. Segmentation - sensed objects are extracted from the signal data;
3. Feature extraction - object properties, or features, are measured;

4. Classification - a classifier uses features to assign the sensed object to a cate-

gory, or class; and

5. Post-processing - a post-processor uses the output of the classifier to recom-

mend actions.

Using these five components, a simplified system for the recognition of harp seal
pups is presented in Figure 2.5. In the research presented here, steps 2 through 4 are
addressed: segmentation, feature extraction, and classification. In the design of these

components, a number of different activities are considered: collection of training
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Figure 2.5: Simplified pattern recognition system for harp seal pups.

and test data, choosing distinguishing features, deciding on a classification method,
training the classifier, and evaluating its performance on test data,

Training and test data are extracted from aerial images using a segmentation
algorithm. Segmentation of nontrivial images is one of the most difficult tasks in image
processing. It involves distinguishing between objects-of-interest and “the rest”, also
referred to as the background. In segmenting images of whelping areas, the objects of
interest are harp seal pups and evervihing else (ocean, ice, land, other animals, etc.)
comprises the background. A combination of image processing techniques including
contrast stretching, adaptive thresholding, edge detection, line dissection, and an

original algorithm called Isolate Connected Components are used to segment seal
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pups. Feature measurements are then computed for the extracted seal pup objects.
A detailed description of the segmentation algorithm and object features is given in
Chapter 3.

Due to a variety of objects and lighting conditions in input images, it is highly
unlikely that the segmentation algorithm will work perfectly for every image (i.e.
extract every seal pup and only seal pups). Therefore, the goal is to maximize the
number of seal pups segmented while eliminating as much background as possible.
If a background object is incorrectly segmented as foreground, it then becomes the
responsibility of the classifier to identify it as a non-seal pup object.

A classifier is a function that takes a set of features that characterize an object
and uses them to determine the type, or class, of each object. In many classifica-
tion problems explicit rules do not exist to categorize an input object, but examples
of objects from each defined class can be obtained. Therefore, a classifier can be
constructed based on a finite set of pre-labeled training examples.

In a conventional multi-class classification problem, training examples are avail-
able for two or more classes. In a one-class classification problem, it is assumed that
information for only one of the classes, the target class, is available; information about
all other objects, or outliers, is minimal or not available. The objective is to define a
boundary around the target class so that it accepts as many target objects as possible
while minimizing the chance of accepting outlier objects.

For the current research, a one-class classification approach is very appropriate.
The target class consists of segmented seal pups for which ample training data is
available. While some outlier data is available (e.g. sea ice, ocean), it is unknown
whether these samples are well-representative of all possible non-seal pup objects.
Therefore, these objects are grouped into the outlier class. For training the classifier,

only objects segmented from training data that are verified as seal pups will be used.
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Verification is performed by comparing segmented objects with ground-truth images
provided by DFO. For testing the classifier, all objects segmented from test data are
input and then labeled as either ‘seal pup’ (target) or ‘not seal pup’ (outlier). It is
important to note that the tréining and test data sets are mutually exclusive.

Many different models have been proposed for one-class classification and these are
categorized into three approaches: density estimation, boundary methods, and recon-
struction models. In this research, two one-class classifiers are considered: Parzen den-
sity estimation (density method) and the Support Vector Data Description (boundary
method). A description of these classifiers and how they are optimized and applied

in this research is given in Chapter 4.
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Chapter 3

Image Segmentation

This chapter explains the segmentation algorithm used to extract target objects (seal
pups) from the aerial photographs collected by DFO. First, a brief introduction to
image processing and segmentation is given followed by a description of how the aerial
photographs were captured, digitized, and reduced to manageable size. Next, a review
of challenges presented by the complex images under study is given. This is followed
by a detailed account of the segmentation algorithm which includes: contrast stretch-
ing; adaptive thresholding using between-class variance and histogram skewness; a
“cleaning” algorithm that uses Canny edge detection, line dissection, and removal of
objects based on size constraints; and an original procedure called Isolate Connected
Components (ICC) that separates adjacent objects with minimal distortion to ob-
ject shape. Segmentation results on training and test data are given. Finally, object

features used by the classification component are described.
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3.1 Introduction

An image may be defined as a two-dimensional function, /(z,y), where = and y are
spatial coordinates, and the amplitude of I at any pair of coordinates (z,y) is called
the intensity or gray level of the image at that point. When z, y, and the amplitude
values of I are all finite, discrete quantities, the image is called a digital image. Each
discrete (z,y) coordinate in a digital image is referred to as a picture element or pizel
[68].

The field of digital image processing refers to processing images by means of a
digital computer. For the purpose of digital processing, images are stored as two-
dimensional arrays (matrices) in which each element of the matrix corresponds to
a single pixel in the displayed image. Digital images require so much storage and
computational power that progress in the field of digital image processing has been
dependent on the development of digital computers and of supporting technologies
that include data storage, display, and transmission. The first computers powerful
enough to carry out meaningful image processing tasks appeared in the early 1960s.
Since then, image processing techniques have been used in a wide variety of fields in-
cluding computer vision, robotics, artificial intelligence, remote sensing, manufactur-
ing, civil engineering, astronomy, geology, geophysics, biology, physiology, medicine,
aerospace and defense, environmental monitoring, agriculture, marine sciences, crime
and fingerprint analysis, movies and entertainment, and multimedia [69, 70].

When analyzing objects in images it is essential to distinguish between the objects
of interest and “the rest”, also referred to as the background. The techniques used
to find the objects of interest are typically referred to as segmentation techniques -
segmenting the foreground from the background. In segmenting images of whelping

areas, the objects of interest are harp seal pups and everything else (ocean, ice, land,
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other animals, etc.) comprises the background. All subsequent interpretation tasks -
feature extraction, object recognition, and classification - rely heavily on the quality
of the segmentation process [71].

Segmentation of nontrivial images is one of the most difficult tasks in image pro-
cessing. There is no universally applicable segmentation techniques that will work for
all images. The choice of one segmentation technique over another is dictated mostly
by the particular characteristics of the problem being considered. Image segmenta-
tion algorithms are generally based on one of two basic properties of intensity values:
discontinuity and similarity [68]. In the first category, the approach is to partition an
image based on abrupt changes in intensity, such as edges in an image. The principal
approaches in the second category are based on partitioning an image into regions
that are similar according to a set of pre-defined criteria. Thresholding, region grow-
ing, and region splitting and merging are examples of methods in this category. For
a detailed overview of image processing and segmentation techniques, please refer to

Woods and Gonzalez [68].

3.2 Data Set

This section explains how the seal pup data was acquired, converted to digital format,
and reduced in quantity to maximize computational efficiency. Features typically
found in aerial images of whelping concentrations are discussed, along with challenges

presented by these features.

3.2.1 Data Acquisition

The harp seal data examined in this research was collected by DFO in 1999. Al-

though the general methods for conducting visual and photographic surveys have
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been consistent since 1990, physical parameters such as altitude of surveys and lo-
cation of transect lines over whelping concentrations may vary. The methods and
parameters described here were used to estimate harp seal pup production for 1999
and are explained in detail by Stenson et al. [20].

Fixed-wing photographic surveys were flown using two planes equipped with 23 x
23cm format metric mapping cameras (Zeiss RMK/A) with a motion compensation
mechanism and Kodak Double-X (2405, ISO A4000) aerographic black-and-white
film. The cameras were fitted with a 150mm Sonnar lens, and surveys were conducted
at constant altitude of 183 meters. Each aerial photograph covers a geographical area
of 274.3 meters squared. As explained in Section 2.1.3, trained readers analyze each
developed photograph and record the position of all pups on a clear acetate overlay.
Photographs with manually identified seal pups are known as ground-truth images and
are used to select data for training and testing the segmentation and classification

algorithms.

3.2.2 Data Digitization and Reduction

In order to implement an automated, computer-assisted approach to detecting and
counting seal pups, it is necessary to convert aerial photographs to digital format.
Aerial photographic film requires specialized equipment that is capable of scanning
large format negatives at high resolution. Therefore, the images were scanned by a
third party company that specializes in such tasks. Each scanned image was saved in
TIFF (8-bit) format at a resolution of 907 dpi resulting in a total image size of 8430
x 8429 pixels (approximately 71 megapixels).

A significant amount of computer memory is required to store and perform op-

erations on such large images. In order to maximize computational efficiency, the
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Figure 3.1: In a complete software system, a pre-processing step may exist in which
regions void of seal paps, such as dark open waterways and vast areas of smooth ice
with homogencous gray levels, are masked out prior to cropping subimages.

TIMI* images are divided into more manageable subimages. In a complete software
system for counting seal pups, this step would be automated; an onginal large image
would be input to the svstem, analveed for areas likely to contain seal I, and these
areas would be antomatically divided into subimages for further processing. A pre-
processing step may exist in which certain regions or features in the original image
are masked out prior to creating subimages. Examples include dark open waterways
that would camouflage seal pups and vast areas of smooth sea ice with homogeneous

gray levels that clearly do not contain seals (see Figure 3.1), Masking out these
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features before processing would reduce the complexity of the data set and improve
computational time,

While image pre-processing and creating subimages are necessary components of
a complete software system, this research focuses exclusively on segmentation, feature
extraction, and classification; some automated pre- and post-processing steps, such
as dividing the original image into subimages, have been excluded. The processing
diagram for a compleie software system is shown in Figure 3.2, The components

contained within the dotted line have been implemented in this research.
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Figure 3.2: A complete software system for identifying and counting seal pups in aerial
photographs. The components implemented in this research are contained within the
dotted line.

For the purpose of this work, subimages were manually selected to ensure they

contain specific seal pup data required to train and test the segmentation and clas-



sification algorithms. Subimages are 100 x 100 pixels in size and were cropped such
that each contains at least one seal pup (as identified in ground-truth images') in
an arbitrary position within the subimage. The majority of subimages were cropped
by Hogan et al. [64] and graciously provided for this research. To produce a more
complete set of tesi and training data, additional subimages were cropped using a
MATLAB GUI designed by this author (Figure 3.3). A total of 900 subimages were
produced. Since the data set is large, a simple random holdout validation strategy
wis used to separate training and test data. Three hundred subimages were chosen
randomly to form the test data, and the remaining 600 subimages were retained to
develop the segmentation algorithm and train the classifier.
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Figure 3.3: MATLAB GUI used to crop 100 x 100 pixel subimages from the large
original images. The cropped area is highlighted in green on the main axis and
displayed in the top right-hand axis.

't s assumed that all seal pups manually identified by trained roaders in ground-truth images
provided for this research are correctly identified.
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3.2.3 Challenges

Aerial images of whelping concentrations may contain a variety of features including
open waterways, sea ice, shadows, adult seals, seal pups and other marine life. Sea ice
is also varied in shape and texture; it may appear flat and smooth or rough and jagged.
All of these features make it difficult to distinguish seal pups from their surroundings
and must be carefully considered when developing the segmentation algorithm. As
discussed in the previous section, regions known to be void of seal pups can be initially
masked out to help reduce the complexity of the data and improve the segmentation
results.

The segmentation algorithm must also be robust to complex conditions such as
uneven illumination, shadows, occlusions, and objects grouped together. In some
instances, seal pups and ice chunks are similarly shaped. In other cases, seal pups
and the adjacent background pixels have similar gray levels. Due to a variety of
objects and lighting conditions, it is highly unlikely that an automated segmentation
algorithm will work perfectly for every image. The goal is to maximize the number
of correctly segmented seal pups while eliminating as much background as possible.

The images presented in Table 3.1 represent a variety of conditions that must
be addressed by the segmentation algorithm. As these examples show, the pixel
values of seal pups vary significantly. In most cases, the background is composed
of sea ice which has typically lighter gray levels than seal pups. This fact is used
when developing the adaptive thresholding algorithm. However, ice chunks cast dark
shadows which may occlude seal pups or appear to be connected to a seal object. In
the latter case, the Isolate Connected Components algorithm attempts to separate
adjacent objects that are inadvertently segmented as one object because they share

similar intensity values.
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Table 3.1: The segmentation algorithm must be robust
to a variety of objects and lighting conditions.

Subimage

Condition

A dark seal pup on a light background
is trivial to segment.

Seal pups and sea ice may cast dark
shadows on the ice. A seal’s shadow
may be difficult to distinguish from its
body.

A light seal pup is difficult to distin-
guish from a light background (i.e. sim-
ilar gray levels).

A seal pup with homogeneous gray lev-
els on a mixed background (Le. adja-
cent background pixels are both light
and dark in intensity).

Continued on next page
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Table 3.1 - continued from previous page

Condition

A light seal pup on a light background
adjacent to dark non-seal pup objects.
The seal pup may be eliminated as

background.

A dark seal pup adjacent to dark non-
seal pup objects. These may be seg-
mented as a single object.

A seal pup partially occluded by other
objects.

A seal pup on a very complex back-
ground.




3.3 Segmentation Algorithm

The segmentation algorithm is broken down into 5 main steps:
1. Enhance the image to increase the dynamic range of gray levels.

2. Apply adaptive thresholding using between-class variance and histogram skew-

ness.
3. Apply a “cleaning” algorithm to the threshold image.

4. Separate connected objects using the Isolate Connected Components (ICC) al-

gorithm.
5. Remove outlier objects using select features.

These steps are fully explained in the following sections.

3.3.1 Image Enhancement

Image enhancement techniques are used to improve an image, where “improve” is
sometimes defined objectively (e.g. increase the signal-to-noise ratio), and sometimes
subjectively (e.g. make certain features easier to see by modifying the colors or
intensities) [5]. Contrast stretching is an image enhancement technique that attempts
to improve the contrast in an image by “stretching” the range of intensity values it
contains to span a desired range of values. Low-contrast images can result from poor
illumination, lack of dynamic range in the imaging sensor, or even incorrectly setting
a lens aperture during image acquisition [68].

Figure 3.4 shows a typical piecewise linear transformation function T(r) used for
contrast stretching. The locations of points (r;, ¢;) and (72, g2) control the shape of

the transformation. In general, 7; < r9 and ¢; < g9 is assumed so that the function
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is single valued and monotonically increasing. This condition preserves the order of
gray levels, thus preventing the creation of intensity artifacts in the processed image
[68]. To map intensity values from [r1, 73] to [¢1, g2}, the following equation should be

applied to each input image pixel with values in the range [r1, 73] :

Iout(m,y) = (Im(fﬂ,y) e rl) (Z2 — ql) + q1, (31)

2"
where I, is the input image, I, is the output image, and I(z,y) represents the gray
level of an image pixel at image coordinates (z,y). Pixel values in [;;, below r; and
above 7y are typically clipped; that is, values below r; are mapped to ¢;, and those

above 7y are mapped to g.
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Figure 3.4: Typical transformation used for contrast stretching. L is the number of
intensity levels.

To illustrate contrast stretching, consider the subimage in Figure 3.5a and the
corresponding histogram in Figure 3.5b. Notice how the intensity range is rather
narrow. It does not cover the potential gray-scale range of [0, 255] and is missing the

high and low values that would result in good contrast. If we let (r1,¢1) = (Tmin, 0)
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(c) (d)

Figure 3.5: (a) Example of low-contrast image. (b) Histogram ol (a) shows narrow
intensity range. (¢) Image after contrast stretching. (d) Histogram of (c) shows
increased dynamic range.

and (re, ) = (Finaxs 255), where rg, and 7. denote the minimum and maximum
gray levels in the input image, applying Equation (3.1) stretches the levels from their
original range to the full gray-scale range [0, 255]. Figures 3.5c and 3.5d show the
results. Increasing the dvnamic range of pixel values to the entire gray-scale range
highlights contrast between lighter and darker regions. This helps to make seal pups
easier 1o “see” by the segmentation algorithm. Stretching intensity values to the full
gray-scale range is applied to all subimages as a pre-processing step.
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3.3.2 Adaptive Thresholding and Between-Class Variance

The most trivial thresholding technique is to partition an image histogram by using a
single global threshold, T. Segmentation is then accomplished by scanning the image
pixel-by-pixel and labeling each pixel as object or background, depending on whether
the gray level of that pixel is greater or less than the value of T. Imaging factors
such as uneven illumination often prevent an image from being partitioned effectively
by a single global threshold. An alternative approach is to divide the original image
into subimages and then utilize a different threshold to segment each subimage. The
key issues in this approach are how to subdivide the image and how to estimate the
threshold for each resulting subimage. Since the threshold used for each pixel depends
on the location of the pixel in terms of the subimages, this approach is called adaptive
thresholding [68].

To perform adaptive thresholding on the seal pup data, each pre-processed 100 x
100 pixel subimage is subdivided into nine regions by placing a 3 x 3 grid with 50%
overlap over the image. Each of the nine resulting overlapped regioné is 50 x 50 pixels
in size. An illustration of this subdivision is show is Figure 3.6.

The next step is to compute a threshold value T for each subdivided region. The
main objective is to select the value of T that minimizes the average error in making
the decision that a given pixel belongs to an object or to the background. This value
is then called the optimal threshold.

Between-class variance, first introduced by Otsu [72], is a discriminant function
used to determine an optimal threshold from an image histogram in order to segment
the image into nearly uniform regions. This function has been used in previous
research [73, 74] and reported to perform best in a survey of thresholding techniques

[75]. As shown by [73], the between-class variance can also be used as a measure of
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Figure 3.6: (a) Enhanced 100 x 100 pixel subimage. (b) Image in (a) is subdivided
into nine regions (illustrated with colored squares) by placing a 3 x 3 grid with 50%
overlap over the image. (c) Each of the nine resulting overlapped regions is 50 x 50
pixels in size,

image bimodality. For this application, if the image histogram of a 50 x 50 subdivided
region I8 determined to be bimodal, between-class varianee is used to determine the

aptimal threshold for this region. Otherwise, the skewness of the image histogram

about the mean is used to determine the optimal threshold.
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Computation of Between-Class Variance and Image Bimodality

For each 50 x 50 pixel subdivided region, the gray-level histogram is normalized and

regarded as a discrete probability function p(i) such that

pli) =7, p(i) 20 and Y p(o) =1 (3.2)

where n; is the frequency of the gray level ¢ and M is the total number of pix-
els in the image. Each pixel in the image assumes a gray-level value from the set
[0,1,2,...,255]. If the histogram is divided into two classes by the gray-level inten-

sity ¢, then the probabilities of the respective classes can be expressed as

() = pG) » pa(t) = > p(3) (33)

Similarly, the class means m; and my are given by

255

t . .
10 . p(d)

ma(t) = 7- , Mol(t) = i- 3.4
1( ) ; pl(t) 2( ) i§1 pg(t) ( )

The class variances are then given by
A= mp 2 g = S oy 2D )

1 =0 n(t) i=t+1 pa(t)
The total variance is defined as

0% =05 + 05 (3.6)

where o3, (within-class variance) and % (between-class variance) are expressed as

o (t) = p1(t) - o3(t) + pa(t) - 03 (2), (3.7)
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o5(t) = pi(t) - (ma(t) — me)* + pa(t) - (ma(t) — mr)” (3-8)

where mr is the mean pixel value of the entire image.

Within-class variance is the sum of the individual class variances weighted by their
respective class probabilities. Between-class variance is an indicator of the “distance”
between the class modes. It provides valuable information as to how close the two
classes are to each other. It can also be expressed in terms of class probabilities and

means only:

o5 (t) = pa(t) - pa(t)[ma (t) — ma(t))? (3.9)

The optimal threshold ¢*, which segments the image into nearly uniform regions, is

the gray level at which between-class variance is maximum:

2 Ry 2
o5(t") = oax o5(t). (3.10)

The same optimum threshold can be obtained by minimizing within-class variance
since their sum is constant (refer to Equation (3.6)). However, Equation (3.9) is com-
putationally less expensive than Equation (3.7) as it does not include class variances.
In the sequential search for the optimal threshold, the class probabilities and means
can be progressively computed to reduce computation time [73].

In image segmentation, the detection of image bimodality becomes necessary to
make intelligent decisions prior to segmentation. In this application, image bimodality
is used to determine the method by which to compute the optimal threshold. The
term bimodal indicates a statistical distribution having two separated peaks or two
local maxima. The optimal threshold is the one that best separates these two distinct

regions of the histogram (Figure 3.7a). An image histogram may also be unimodal
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(a) (b)
Figure 3.7: (a) Bimodal distribution with optimal threshold indicated by red line.
(b) Unimodal distribution. (¢) Multimodal distribution with more than two peaks.
An optimal threshold may be more difficult to determine for distributions shown in
(b) and (c).
(have a single peak or local maximum) or multimodal with more than two peaks. In
these cases, an optimal threshold may be more difficult to determine (Figures 3.7h
and 3.7¢).

The normalized between-class variance,

ap(t) _ palt) - palt)fmy (t) — ma(t)]?

bit) = (3.11)
T total ot
is used to detect bimodality. That is, the maximum b(t)
boax = max_b(t) (3.12)

D<icing

is called the bimodality coefficient and is used as an indicator of bimodality. The b(1)
takes on values between zero and one. One difficultly in the bimodality test is o
select a threshold value for bpe,. For balanced uniform distributions, the theoretical
value of b(f) is 0.75 [73]. That is, bey, = 0.75 indicates bimodality. However, different
approaches can be taken depending on the application. In actuality, region distribu-
tions overlap significantly. For images consisting of regions with highly overlapping
distributions, a value less than the theoretical value can be selected as the threshold.
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For this application, bya. > 0.71 was empirically chosen to indicate bimodality.

To illustrate, consider the 100 x 100 pixel subimage of a seal pup in Figure 3.8;
two 50 x 50 subdivided regions are highlighted. The histogram and corresponding
bimodality coefficient of each subdivided region are also shown. The histogram of
the subdivided region in Figure 3.8b has a bimodal distribution with by, = 0.78.
The histogram of the subdivided region in Figure 3.8d is clearly not bimodal with
bmax = 0.66.

If a subdivided region is found to have a bimodal distribution (i.e. bpax > 0.71),
then the optimal threshold is t* (i.e. the value of ¢ that maximizes the between-
class variance). As discussed previously, this threshold value segments the image into
nearly uniform regions. If the subdivided region does not have a bimodal distribution
(i.e. bpax < 0.71), an optimal threshold value is computed based on the skewness of

the image histogram.

Skewness of Image Histogram

Skewness is a measure of the asymmetry of the data around the sample mean. It is

written as

y=1 (3.13)

03
where p3 is the third moment about the mean and ¢ is the standard deviation. A
negative skewness, v < 0, indicates the data are spread out more to the left of the
mean than to the right. If skewness is positive, v > 0, the data are spread out more
to the right. The skewness of the normal distribution, or any perfectly symmetric
distribution, is zero (y = 0).
For computing the optimal threshold, it is important to note that background

pixels are typically lighter in intensity than seal pup pixels. Therefore, the threshold
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(d) (e)

Figure 3.8: (a) 100 x 100 pixel gray-scale image of seal pup. Two 50 x 50 subdivided
regions are highlighted to illustrate bimodality. (b) 50 x 50 subdivided region high-
lighted in red in (a). (c) Histogram of (b); by = 0.78 indicates that image histogram
is bimodal. (d) 50 x 50 subdivided region highlighted in blue in (a). (e) Histogram
of (d): by = 0.66 indicates that image histogram is not bimodal.
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Figure 3.9: (a) Negative skewness: data are spread out more to the left of the mean.
(b) Positive skewness; data are spread out more to the right of the mean. In both
figures above, the mean is indicated by a red vertical line.

will be binsed toward darker gray levels in order to maximize the number of light
intensity pixels labeled as background. If darker background pixels are incorrectly
labeled as foreground during thresholding, such as arcas comprised of shadows, these
pixels may still be labeled as background, or belonging to outlier objects, in a later
stage of the algorithm.

For image histograms with a negative skewness (Figure 3.9a), the left tail of the
distribution is the longest and the mass of pixel values is concentrated on the right
of the histogram (i.e. toward lighter pixel values). In this case, the histogram peak
is usually located to the right of the mean pixel value. A large mass of light intensity
values typically indicates a large area of lighter background pixels, most likely sea ice,
with minimal darker objects. Seal pup pixels are more likely to be included among
the darker pixel values. In order to maximize the number of lighter pixels labeled
as background, the threshold value is chosen as the mean pixel value, g, minus one
standard deviation, o, of all pixel values in the subdivided region:



Tyeo=p—-o (3.14)

For image histograms with a positive skewness (Figure 3.9b), the right tail of the
distribution is the longest and the mass of pixel values is concentrated on the left
of the histogram (i.e. toward dark pixel values). In this case, the histogram peak is
usually located to the left of the mean pixel value. A larger mass of dark intensity
values typically indicates the presence of more shadows with a smaller area of lighter
background pixels. Seal pups may be among the darker pixels values, but they are
not likely to be as dark as shadows which tend to be black. Therefore, the threshold
value is more cautiously chosen as the mean (minus one standard deviation is not
applied) to decrease the likelihood of eliminating the seal as background. For normally
distributed histograms the skewness is zero. In this case, the optimal threshold is also

chosen as the mean pixel value:

Tyzo = p ' (3.15)

Final Threshold Image

Summarizing the previous discussion, the optimal threshold T" for each 50 x 50 pixel

subdivided region is given by

£* if brax > 0.71
T=4¢ p—0 ifbgy <07l and y<0 (3.16)
) if bpax < 0.71 and v > 0

After the threshold is determined for a subdivided region, a binary image is created

such that all background pixels are 0-valued and all foreground pixels are 1-valued.
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In other words, given an input image [, the threshold image [+ is defined by

1 il Mz, y)<T (loreground)
Ir(z,y) = (3.17)
1] if Mz.y) 2T (background)

where [(z, y) represents the gray level of an image pixel at image coordinates (r, y).
The resulting threshold images for the nine subdivided regions in Figure 3.6c are
shown in Figure 3,11a,

As n result of the 50% overlap between subdivided regions, certain pixels in the

100 % 100 subimage will belong to more than one of these regions (see Figure 3.10). A

Figure 3.10: Pixels in the shaded red area will belong to more than one subdivided
region during thresholding,

pixel in this overlap area may be labeled as foreground in one subdivided region and
background in another. In order to determine a single label for this pixel in the final
threshold image, a bitwise OR operation [68] is applied to all labels assigned to this
pixel, Bitwise OR sets a bit (or in this case, a binary pixel value) to 1 if one or both
of the corresponding bits in its operands are 1, and 1o 0 if both of the corresponding
bits are 0. In terms of pixel values, if a pixel is labeled as foreground in any of the
subdivided regions, the bitwise OR operation ensures it will be labeled as foreground
(i.e. possible target object) when the image is reassembled. A pixel will be labeled
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as background in the final threshold image if and only if it is labeled as background
in all subdivided regions. The final threshold result for the image in Figure 3.6a is

show in Figure 3.11b.

Bitwise
OR

(a) (b)

Figure 3.11: (a) The resulting binary images for the nine subdivided regions in Figure
3.6c. (b) A bitwise OR operation is performed on the nine subdivided regions to
produce the final threshold image.

3.3.3 “Cleaning” Algorithm

The binary image produced from the adaptive thresholding algorithm contains ex-
traneous pixels and appears a little “messy” (Figure 3.11b). It may be difficult to
distinguish possible target objects from this image. Therefore, a “cleaning” algorithm
is applied to the threshold image using edge detection, line dissection, and removal
of objects based on size constraints.

First, Canny edge detection [76] is applied to the enhanced image produced in
step one of the segmentation algorithm. The Canny method finds edges by looking
for local maxima of the image gradient which is calculated using the derivative of a

Gaussian filter. The method uses two thresholds to detect strong and weak edges.
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Weak edges are included in the output only if they are connected to strong edges.
This method is therefore less likely to be fooled by noise than other edge detection
techniques and more likely to detect true weak edges. Figure 3.12 shows the enhanced
100 x 100 pixel gray-scale image and its corresponding binary edge image after the

Canny edge detection is applied.

Figure 3.12: (a) Enhanced gray-scale image. (b) Edge image produced from Canny
edge detection.

Next, the negative of the Canny edge image is obtained by reversing 0-valued
(black) and 1-valued (white) pixels (see Figure 3.13a). A bitwise AND operation
[68] is applied between the negative Canny image and the binary threshold image
produced in step two of the segmentation algorithm (see Figure 3.13b). Bitwise AND
sets a bit (or a binary pixel value) to 0 if one or both of the corresponding bits in its
operands are 0, and to 1 if both of the corresponding bits are 1. The AND operation
superimposes the negative Canny edge image on the threshold image producing clearly
outlined objects (see Figure 3.13c). This process also helps to disconnect adjacent
objects.

To further clean the image and separate adjacent objects, an algorithm was de-
signed to remove isolated pixels (individual 1’s that are surrounded by 0’s) and dissect

horizontal and vertical lines that are one pixel in width. Table 3.2 gives examples of
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Figure 3.13: (a) Negative of binary Canny edge image. (b) Bitwise AND operation
is performed between the negative Canny edge image and the threshold image. (c)
The result is a threshold image with clearly outlined objects.

applying these operations to specific pixel patterns. Figure 3.14a shows the result of
applying the operations to the image in Figure 3.13c.
Table 3.2: As part of the “cleaning” process, isolated pixels are removed, and hori-

zontal and vertical lines are dissected. This table shows examples of applying these
operations to specific pixel patterns.

Pixel Pattern Operation Resulting Pixel Pattern
000 000
010 remove isolated pixels 00O
000 000
011 011
010 break vertical lines 1-pixel in width 0 00
110 110
001 0 01
111 break horizontal lines 1-pixel in width 1 01
1 00 1 00

The final step is this cleaning process is to compute the area of each object in
the threshold image shown in Figure 3.14a. Area is defined as the actual number of
pixels that compose an object. In order to distinguish individual objects, the type of
object connectivity must be defined. There are two standard two-dimensional con-
nectivity types: 4-connected and 8-connected. Four-connected pixels are connected

if their edges touch. This means that a pair of adjoining pixels are part of the same
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Figure 3.14: (a) A “cleaning” process is applied that removes isolated pixels and
dissects horizontal and vertical lines that are 1-pixel in width. (b) A clean binary
image is produced when objects with an area less than 50 are removed from the
threshold image in (a).

object if they are both “on” (i.e. 1-valued) and are connected along the horizontal
or vertical direction. Eight-connected pixels are connected if their edges or corners
touch. This means that if two adjoining pixels are “on”, they are part of the same
object, regardless of whether they are connected along the horizontal, vertical, or di-
agonal direction. The type of connectivity chosen affects the number of objects found
in an image and the boundaries of those objects. For computing area, objects are
defined as 4-connected. Objects with an area less than 50 are removed since these are
too small to be considered seal pups. This quantity was empirically chosen through

the training process. The result is a clean binary image (Figure 3.14b) to which the

Isolate Connected Components algorithm is applied.

3.3.4 Isolate Connected Components

In Figure 3.14b, some regions that appear as a large single object are, in fact, multiple
smaller objects connected together. This may occur if adjacent objects have similar
gray levels. For example, in Figure 3.15, a seal pup and part of the adjacent ice

are segmented as one object because they share similar intensity values. In some
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instances, two or more seal pups lving adjacent to each other on the ice may be
segmented as a single object. Neighborning objects may also remain connected il
edges produced from the Canny algorithm are incomplete (i.e. some edges are not
detected). An example of this situation is illustrated in Figure 3.16. The Isolaie
Connected Components (ICC) algorithm attempis to separnte grouped objects into
their constituent parts, or components, by breaking narrow lsthmus regions that

connect them.

F Wi ) aliiil,'q,'rﬁ.
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Figure 3.15: (a) Two objects (seal pup and adjacent ioe) with similar gray levels are
segmented as one object. (b) Original gray-scale image with outline of objects.

[ncomplete

:*u{-_._n_' detection

{a) (hi

Figure 3.16: (a) Neighboring objects remain connected because the Canny algorithm
did not detect all edges (i.e. incomplete edge detection). (b) Original gray-scale
Lmage

he 1CC algorithm should be applied to each 4-connected object in the binary



image produced in the previous step. Just one of the objects in Figure 3.14b is
usid] here to illustrate the algorithm (see Figure 3.18a). The first step is to apply a
marphological closing operation to remove all holes that are | pixel in size (see Figure
3.18b). Larger holes are not closed because they represent a more significant “vacant’
area inside an object that may aid in solating or separating connected components.

The next step of the algorithm depends on the area of the object. Figure 3.17
shows the distribution of area values for seal pup objects segmented from training

data. While area values widely range from 62 to 382, over Th'% of seal pup objects
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Figure 3.17: Distribution of area values for seal pup objects segmented from training
data.

have an area less than 230, Therefore, this value was empirically chosen as a threshold
for determining how to procesd with the ICC algorithm. Objects with an area greater
than or equal to 230 are less likely to be seal pups. Therefore, the ICC algorithm will
attempt to separate these objects into possible constituent parts. The algorithm will
not attempt to divide objects with an area less than 230 because this may have the

undesired effect of breaking a seal pup into multiple parts. For example, the body
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Figure 3.18: (a) Object from Figure 3.14b used to illustrate 1CC algorithm. (b
1-.|q..r|_|||n||--,;_|-:.|.i clising s |I.].IIF|_.i""|1 to rerrmose hodes 1 ill"u: i size and area of 'lilj"lf
1% oomputed (area 7499 ) Binary image ol ..h_||..-: s Ler dl Penmeter is
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blobs with area less than 15 are removed resulting in two isolated component obpects.



and tail flippers of a seal pup object may be separated if they are connected by a
narrow isthmus. Therefore, objects that have an area less than 230 remain whole.
The only process applied to these objects is a morphological closing operation using a
disk-shaped structuring element with radius 2. This attempts to close any remaining
interior holes.

For each object with area greater than or equal to 230, the next step is to remove
the object perimeter. A pixel is part of the perimeter if it is nonzero and it is connected
to at least one zero-valued pixel. The removal process is executed by creating a binary
image of the perimeter (Figure 3.18¢c) and subtracting it from a binary image of the
object (Figure 3.18b) . This effectively divides the object into smaller parts, referred
to hereafter as component objects, by removing narrow isthmus regions that are at
most 2 pixels in width (Figure 3.18d). Any resulting extraneous blobs with area less
than 15 are removed (Figure 3.18e).

If the area of a resulting component object is still greater than or equal to 230,
the perimeter removal process is repeated on that object. For example, the area of
the left and right component objects in Figure 3.18e is 286 and 111, respectively.
The left component object is processed first; since its area is greater than 230, the
ICC algorithm will attempt to divide it into even smaller components by subtracting
its perimeter a second time. As illustrated in Figure 3.19, the process is similar
to the previous step. First, a binary image of the object perimeter is created and
subtracted from a binary image of the object. This attempts to divide the object into
smaller components by removing narrow isthmus regions that are at most 2 pixels
in width. Any resulting extraneous blobs with area less than 10 are removed. For
this particular example, the division did not result in multiple component objects.
However, if multiple objects were produced, the perimeter removal process is not

applied a third time, regardless of object size. We are only interested in separating
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Figure 3.19: (a) Binary image of component object on left-hand side of Figure 3,18e.
['he area of this object is 286. (b) Binary image of object perimeter. (c) Perimeter
is subtracted from object {i.e. (a) minus (b)). This divides the abject into paris by
removing narrow isthmus regions that are at most 2 pixels in width. (d) Extraneous
blobs with area less than 10 are removed resulting in one component object.
components that are connected by narrow isthmus regions; applying the perimeter
removal process twice will break isthmus regions that are at most 4 pixels in width.
Applying the process a third time would break wider isthmus regions (6 pixels in
width} and may even remove small, but significant, peninsula regions; this may have
the undesired elfect of breaking a single object into multiple parts or distorting the
true shape of the object.

Next, the two perimeter layers that were removed must be reattached to the
object in Figure 3.19%d without reconnecting component objects (l.e. components

must remain distinet). The perimeter layers must be reattached in the reverse order



they were removed. That is, the perimeter in Figure 3.19b is added frst followed by
the perimeter in Figure 3.18¢.

To facilitate reattaching the perimeter, integer values are used to differentiate
perimeter and object pixels. A value of 1 15 assigned to pixels that compose the
perimeter and unigue integer values > 2 are assigned to pixels that compose each
object. Each integer label also corresponds to a different color in RGB space, so
object and perimeter pixels can be easily viewed. Any perimeter pixel that is 8-
connected to an object pixel is assigned the same integer label as the object (ie.
becomes an object pixel). A close-up look at this procedure is illustrated in Figure
3.20. It is important to note that if two or more objects share perimeter pixels, then
the “first come, first serve” rule is applied. That is, perimeter pixels are assigned to

objects in the order they are processed.

(a) (b)

Figure 3.20: Close-up of pixels. (a) Object pixels are shown in yvellow. Perimeter
pixels are shown in blue. (b) Any perimeter pixel that is 8-connected to an object
pixel is assigned the same integer label as the object (i.e. becomes an object pixel}.
The remaining blue pixel is the only perimeter pixel not S8-connected to an object
pixel.

First, the perimeter in Figure 3.19b and the object in 3.19d are considered.
Perimeter pixels are assigned a value of 1 and object pixels are assigned a value of 2.

Figure 3.21a illustrates this pixel labeling is RGB space. The result of reattaching the
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(c) (d)

Figure 3.21: {a) Integer labels allow component objects and their perimeter to be
viewed in RGB space. The perimeter in Figure 3.19b is shown in blue. The component
object in Figure 3.19d is shown in cyan. (b) The perimeter pixels are reattached to
the ohject using the 8-connected rule. (¢} The perimeter in Figure 3.18¢ is shown in
blue. The object in (b) is shown in cyan. (d)} The perimeter pixels are reattached to
the object using the S-connected rule.

perimeter pixels using the 8-connected rule is shown in Figure 3.21b. Perimeter pixels
not assigned to the object are labeled as background. Next, the perimeter in Figure
3.18¢c is reattached to the object using the 8-connected rule. Again, the perimeter
pixels are assigned a value of 1 while the object pixels already have a value of 2.
Figure 3.21c illustrates this pixel labeling in RGB space. The result of reattaching
the perimeter pixels is shown in Figure 3.21d.

MNext, the right component object in Figure 3.18¢ is processed. Recall that its
area is 111, Therefore, the perimeter removal process is net repeated on this object.

However, the perimeter in Figure 3.18¢ must still be reattached. The perimeter pixels

have already been assigned a value of 1 from the previous step. The object pixels are
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(a) (b)

Figure 3.22: (a) The right-hand component object in Figure 3.18e is shown in yellow.
The perimeter in Figure 3.18¢ is shown in blue: Note that some perimeter pixels are

missing; these have already been assigned to another object. (b) The perimeter pixels
ire reaccacted to Cfe odfect using ofe Foonmected e

assigned an integer value of 3 (the integer value 2 has already been used 1o identify
the object in the previous step). Figure 3.22a illustrates this pixel labeling in RGB
space, Note that some perimeter pixels are missing; these have already been assigned
to an object in the previous step. The result of reattaching the perimeter using the
8-connected rule is shown in Figure 3.22b. Perimeter pixels not assigned to an object
are labeled as background.

Recall that the first step of the ICC algorithm was to apply a morphological elosing
algorithm to each object to remove all holes that were 1 pixel in size, However, there
may still exist holes in the interior of objects that are larger than 1 pixel in size.
The final step of the ICC algorithm is to apply a morphological closing operation to
remove these holes. A flat, disk-shaped structuring element is used with radius 2.
The final result of applying the ICC algorithm to the object in Figure 3.18a is shown
in Figure 3.23a. The two component objects have clearly been separated. Figure
3.23b shows the outline of these two objects in the corresponding gray-scale image.

Psendocode for the ICC algorithm is given in Appendix A.



(&) (b)

Figure 3.23: (a) Final result of applying the ICC algorithm to the object in Figure
3.18a. The two component objects have clearly been isolated. (b) Outline of separated
objects in corresponding gray-scale image.

3.3.5 Remove Outliers

In order to remove outliers (i.e. data values that do not appear to be consistent with
the rest of the data), all objects output from the ICC algorithm must undergo a final
eriteria test for area and length. The latter is defined as the length of the major axis
of the ellipse that has the same normalized second central moments as the region [3].
All objects that have an area less than 50 or greater than 500, or a length greater than
50, are removed. These values were empirically chosen through the training process.
In addition, objects that are located on the border of the 100 x 100 pixel subimage
are also removed.

The original gray-scale image in the ongoing example is shown in Figure 3.24a.
The final result of applying the segmentation algorithm to this image is shown in
RGB space in Figure 3.24b. The seal pup has been segmented, however several other
non-seal pup objects have been segmented as well, It is the classifier’s responsibility

to identify each object as ‘seal pup’ or ‘not scal pup’.
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Figure 3.24: (a) Original 100 > 100 pixel gray-scale image. (b) Final result of seg-
mentation algorithm. The seal pup object has been segmented (located at centre of
image), but several other non-seal pup objects (mostly areas of dark ice) have also
been segmented.

3.4 Results

The following criteria were used to evaluate the performance of the segmentation
algorithm on training data:

o Excellent performance: the algorithm cleanly segments 1007% of the seal pup.
No artifacts, such as shadows or ice, are attached to the segmented seal object.

¢ Good performance: the algorithm segments at least 90% of the seal pup. A
very small part of the seal is segmented as background and/or small artifacts,
such as shadows or ice, are segmented as part of the seal object; this slightly

distorts the true shape of the seal.

o Satisfactory performance: the algorithm segments at least 50% of the seal
pup. A portion of the seal object is segmented as background and/or artifacts,
such as shadows or ice, are segmented as part of the seal object; the true shape
of the seal is still apparent.

o Poor performance: the algorithm segments a very small portion of the seal
pup (< 50%), or the seal is adjoined to other objects which are segmented
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together as a single object; this does not accurately represent the true shape of

the seal.

¢ Failure: the algorithm segments 0% of the seal pup.

In Section 3.2.3, several examples of challenges presented by the seal pup data
are given (refer to images in Table 3.1). Table 3.3 demonstrates how the algorithm
performed on these sample images. The first column of the table shows the original
grayscale image, the second column shows the segmented objects in RGB space,
and the third column contains remarks about the performance of the algorithm.

Additional images showing algorithm performance are included in Appendix B,

Table 3.3: Performance of segmentation algorithm on
sample images in Table 3.1.

Segmentation
Result
il

Performance of Algorithm

Subimage

Excellent performance: the seal
t pup object (shown in dark red) has
been correctly segmented.

~ Good performance; the seal pup
object (shown in vellow) has been
correctly segmented. A small part
of the seal’s shadow has also been
segmented as part of the seal ob-

ject.

Continued on next page
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Table 3.3 - continued from previous page

Subimage

Segmentation
Result

Performance of Algorithm

Satisfactory performance: the
seal pup object (shown in wel-
low) has been partially segmented.
Lighter gray level areas of the
seal have been segmented as back-
groamed.

Excellent performance: the seal
pup object (shown in red) has been
correctly segmented.

Satisfactory performance: the
seal pup object (shown in yel-
low) has been partially segmented.
Lighter gray level areas of the
seal have been segmented as back-

groumcd.

Excellent performance:; the seal
pup object (shown in yellow) has
been correctly segmented.

Failure: the algorithm failed to

segment the seal pup which is par-
tially occluded by adjacent ice.

Continued on next page
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Table 3.3 — continued from previous page

Subimage B Performance of Algorithm

Result
Excellent performance:  the
seal pup ohject (shown in light

» green) has been correctly  seg-
mented.  However, several other
t' g non-seal pup objects have also been

segmented from this complex back-

grouml,

Due to the complex nature of seal images, it is nearly impossible to develop an auto-
mated segmentation algorithm that will work perfectly for every image. As mentioned
previously, the goal is to maximize the number of correctly segmented seal pups while
eliminating as much background as possible. The segmentation algorithm was eval-
uated on 600 training images using the criteria described above. Table 3.4 presents
the evaluation results. The algorithm performed excellont on over 48% of the training
images, Approximately 45% of segmented seal pup objects were evaluated as good
or satisfactory, In these cases, a few seal pup pixels may have been misidentified as
background, or small artifacts, such as shadows or ice, may have been segmented as
part of a seal. The algorithm's performance was unsatisfactory (evaluated as poor or
failed performance) on 7% of the data. From the 600 training images, 1775 non-seal
pup objects were also segmented. As discussed in Chapter 4, while these objects are
not used to train the classifier, they are used to evaluate classifier performance.

It is assumed the algorithm will behave in a similar manner when applied to test
data. When training the classifier to identify seal pups, it is necessary to include a
valid representation of how seal objects appear when segmented; this includes seal
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Table 3.4: Performance of segmentation algorithm on training data.

Performance Description | Total | % of total
Excellent 289 48.2%
Good 201 33.5%
Satisfactory 68 11.3%
Poor 31 5.2%
Failure 11 1.8%
Total 600 100%

objects that are perfectly segmented as well as those that have small imperfections
(i.e. seal objects that have small artifacts adjoined to them or are slightly incom-
plete because small portions were misidentified as background). Therefore, training
data evaluated as excellent, good, and satisfactory in Table 3.4 are used to train the
classifier; this includes 93% of training data.

When applied to 300 test images (containing 300 seal pups), 1228 objects were
segmented. These objects were analyzed by the classifier and identified as ‘seal pup’ or
‘not seal pup’ (as described in Chapter 4). Prior to automated classification, objects
segmented from test data were manually reviewed and labeled in order to evaluate
classifier performance and compute error rates. Through this process, it was observed
that 297 seals and 931 outliers were segmented. Therefore, the algorithm failed to
segment only 1% (3 seals) from test data. This 1% will be added to the classification

error rate to compute the total error for the system.

3.5 Feature Selection

After the segmentation process, the resulting objects are represented and described
in a form suitable for further computer processing. A segmented region may be repre-

sented in terms of its external characteristics (its boundary) or in terms of its internal
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characteristics (the pixels comprising the region). A region is described based on the
chosen representation using measurements called features. For example, a region may
be represented by its boundary, and the boundary may be described by features such
as its length or the orientation of the straight line joining its extreme points [68].
An external representation is chosen when the primary focus is on shape character-
istics. An internal representation is selected when the primary focus is on regional
properties, such as color and texture. It is often necessary to use both types of rep-
resentation. It is of interest to select features that are simple to extract, invariant
to irrelevant transformations, insensitive to noise, and useful for discriminating pat-
terns in different categories. As discussed in Chapter 4, the choice and number of
features affects classifier performance. In this thesis, the following nineteen features

were chosen to represent segmented seal pup objects:

1. Area - the number of pixels in the region.

2. Length - the length (in pixels) of the major axis of the ellipse that has the

same normalized second central moments as the region.

3. Width - the length (in pixels) of the minor axis of the ellipse that has the same

normalized second central moments as the region.
4. Elongation - the ratio of the length, [, to width, w: [/w.

5. Perimeter - the number of pixels in the perimeter of the region. A pixel is
part of the region perimeter if it is nonzero and it is connected to at least one

zero-valued pixel.

6. Compactness - a measure of how close pixels are packed together. It is defined
as p®/a, where p is the perimeter and a is the area. Compactness is insensitive

to uniform scale changes and is minimal for a disk-shaped region.
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10.

11.

12.

Convex Area - the number of pixels in the convex image of a region. The
convex image is the smallest convex polygon that can contain the region, with

all pixels within the polygon filled in (i.e. set to ‘on’).

Convex Perimeter - the length of the perimeter of the convex image of the

region.

Mean Pixel - the average pixel intensity of the region:

1 n
w=- > (3.18)
i=1

where r; = pixel intensity of the i** pixel and n = number of region pixels.

Pixel Standard Deviation - the standard deviation of pixel intensities in the

region:

o= |1 > (ri— w)? (3.19)

i=1
where r; = pixel intensity of the " pixel, n = number of region pixels, and p =

mean pixel value of the region.

Minimum Pixel - the minimum intensity of all pixels in the region:

min r; (3.20)

1<i<n
where r; = pixel intensity of the 7** pixel and n = number of region pixels.

Maximum Pixel - the maximum intensity of all pixels in the region:

max 7; (3.21)

1<i<n
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13.

14.

15.

16.

17.

18.

where r; = pixel intensity of the i*" pixel and n = number of region pixels.

Moment Invariant 1 - this is defined as:

$1 = 120 + No2 (3.22)

where 7, is the normalized central moment (refer to Appendix C for more

details).

Moment Invariant 2 - this is defined as:

b2 = (20 — Mo2)* + 403, (3.23)

Moment Invariant 3 - this is defined as:

¢s = (1130 — 312)* + (3n21 — M03)” (3.24)

Moment Invariant 4 - this is defined as:

¢1 = (M30 + M2)* + (Mo1 + Mo3)? (3.25)

Moment Invariant 5 - this is defined as:

¢s = (130 — 3m2)(M30 + M2) [(7730 + 712)% = 3(n21 + 7703)2]
(3.26)

+(3n21 — n03) (M21 + M03) [3(7730 + m2)® — (ma1 + 7703)2}

Moment Invariant 6 - this is defined as:

¢s = (N20 — 7o2) [(7730 +m2)? — (a1 + 7703)2] + 4m11(M30 + M2)(M21 +Mo3) (3.27)
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19. Moment Invariant 7 - this is defined as:

¢7 = (3021 — Mo3) (M0 + T2) [(M30 + M2)? — 3(M21 + 70s)?]
(3.28)

+(3m2 — 130) (W21 + Mos) [3(m30 + Mi2)® — (a1 + 7703)2]

An arrangement of features, such as those described above, is called a pattern. A

very common pattern arrangement used in practice is a vector of the form

1
T2
X = (3.29)

Td

- .

where each component, z;, represents the ith feature and d is the total number of
such features, or dimensionality, associated with the pattern [68]. All such feature
vectors form a d-dimensional vector space X called the feature space. In this thesis, a
feature vector is formed for each segmented object using the nineteen features listed
above. Thus, each object becomes a point in the nineteen-dimensional feature space.
Furthermore, we presume that the continuity assumption of pattern recognition holds
[77]. That is, two objects near in feature space should also resemble each other in
real life. Therefore, it is assumed that objects are not randomly scattered in feature
space, but that they exist in cloud-like distributions. When this continuity does not

hold, it is unlikely that a classifier will learn well from a few example objects.
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Chapter 4

Classification

This chapter describes the classification methods used to identify segmented objects
as ‘seal pup’ or ‘not seal pup’. In the first section, a general classifier function is de-
fined and the concept of one-class classification is introduced. A general overview of
classifier design theory is given including a discussion of the many challenges associ-
ated with classifier training. In the next section, a summary of one-class classification
theory is presented which includes error definitions, considerations for training one-
class classifiers, techniques used to evaluate classifier performance, and a review of
one-class methods. The next two sections give a detailed description of the two one-
class methods applied in this research: the Parzen density estimation method and
the Support Vector Data Description. The final section presents the methodology for
optimizing and training these methods on seal data and compares their performance

on test data.
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4.1 Introduction

A classifier is a function that takes a set of features that characterize an object
and uses them to determine the type, or class, of each object. Classifiers may give
simple yes/no answers (e.g. ‘seal pup’ or ‘not seal pup’), or they may estimate
the probability that an object belongs to each of the candidate classes. In many
classification problems explicit rules do not exist to categorize an input object, but
examples of objects from each defined class can be obtained. Therefore, a classifier
can be constructed based on a finite set of pre-labeled training examples. To formalize
this concept, let X" represent a training set of N objects for which each object x; is

assigned a label y;. That is,

Xtr= {(X1,yz)|2= 1,,N} (41)

For the classification, a function f(x) has to be inferred from the training set. This
function is constructed such that for a given feature vector x an estimate of the label is
obtained, y = f(x). Most often the type of classifier function f is chosen beforehand
and just a few parameters of the function have to be determined. The function can be
denoted by f(x;w) to explicitly state the dependence on the parameters or weights
w [77].

In conventional multi-class classification problems, example patterns for two or
more classes are available for training the classifier. An example of a simple two-
class classification problem is illustrated in Figure 4.1. The training data consists of
samples from two different species of seals: harp seals (represented by an asterisk,
“*") and gray seals (represented by a plus sign, ‘+’). Each training object x has

two feature values, weight and length, and can therefore be represented as a point
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in 2-dimensional feature space. A simple linear classifier f(x;w) is modeled from
the data set (represented by the straight line). From the two object features, the
classifier estimates a label f(x;w) = +1 (gray seal class) or f(x;w) = —1 (harp seal
class). The line f(x;w) = 0 is the decision boundary. For most objects, it correctly
estimates the labels. However, for two gray seals and three harp seals, a wrong label

is assigned.

— G wy=0
HEAD) -
7wy =-1
L+
+
-+
* +
Feature 2 sk sl 3k + + +
(length) ® + +

Gray Seals

Harp Seals fxw)y=+1

v

Feature 1 (weight)

Figure 4.1: Scatterplot of a sample training set for gray seals and harp seals. A simple
(linear) classifier is shown. From the two features, weight and length, the classifier
estimates a label f(x;w) = +1 (gray seal) or f(x;w) = —1 (harp seal) for each
object. The line f(x;w) = 0 is the decision boundary.

In this thesis, a relatively novel classification approach called one-class classifica-
tion is used. Unlike the two-class example give above, in one-class classification it is
assumed that only information for one class, the target class, is available; information
about all other objects, called outliers, is unavailable or ill-sampled. The boundary
between the target and outlier classes has to be estimated from target data only. The
task is to define this boundary such that it accepts as many target objects as pos-
sible while minimizing the chance of accepting outlier objects. Figure 4.2 illustrates

a one-class classifier applied to the seal data from the two-class example. In this
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case, the classifier is not trying to distinguish gray seals from harp seals. Instead, the
classifier is used to describe the ‘seal’ class (target objects) and distinguish it from

the ‘non-seal’ class (outliers).

One-class Classifier

4  Target objects (‘seal’ class)
A A
” o o WA
"l e sk - + +\\
‘ *® % ok * + )
i e +
M £ e o+ [
Feature 2 s ok ok Wk + + !
(length) e *® +-1— + ;
ok owew H T g
“ﬁ ® -+ ++ + + e
. sk + + 4 ’ Outlier object
‘\214 b Pad
L + + .
............. +

Feature 1 (weight)

Figure 4.2: The boundary surrounding the data represents a one-class classifier used
to identify seals (target objects). An object located outside this boundary would be
classified as a non-seal (outlier object).

In general, the problem of one-class classification is harder than the problem of
normal two-class classification. For normal classification the decision boundary is
supported from both sides by examples of each of the classes. In the case of one-class
classification only one set of data is easily available, so only one side of the boundary
is covered. On the basis of one class it is difficult to decide how tight the boundary
should fit around the data in each of the directions.

For the current research, a one-class classification approach is very appropriate.
The target class consists of segmented seal pups for which ample training data is
available. While some outlier data is available (sea ice, ocean, shadows, etc.), it is
unknown whether these samples are well-representative of all possible non-seal pup
objects that may be segmented. Therefore, these objects are grouped into the outlier

class.
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A more in-depth study of one-class classification is presented in Section 4.2. How-
ever, it is beneficial to first include a general overview of classifier design theory.
Many of the concepts presented in the next section will be repeatedly considered in

the discussion of one-class classification.

4.1.1 Classifier Design and Performance

The process of creating the optimal classifier for a given problem is quite complex.
Many common issues arise in training a classifier including error minimization, gener-
alization of the method, the curse of dimensionality, overfitting/underfitting, and the
bias-variance dilemma. In this section, these concepts are discussed and suggestions

are given on how to improve classifier performance.

Error Minimization

The parameters w used to construct a classifier f(x;w) may not produce the optimal
classifier for the given problem. The optimal parameters w* of the function f are the

parameters which give the smallest average error over all possible samples:

w* = argmin e (f, W, X) (4.2)

w

where the true error &, is defined as

Exraolfy w0, X) = / E(F(x;w), y)p(x, y)dxdy. (4.3)

The integration in (4.3) is over the entire ‘true’ data distribution p(x,y) (i.e. over the
complete probability density of all possible objects x and labels y). This assumes that

it is possible to define a probability density p(x,y) in the complete feature space X.
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However, in almost all classification problems, p(x, y) will be unknown. Therefore, an
induction principle has to be used to approximate the true error (63, 77]. In practice,

the true error is approximated by the empirical error on the training set:
, 1
Semp(f) w, Xt ) = N Z E(f(Xi; W), yz) (44)

where various error definitions are available for £(f(x;; w), y;) including the 0-1—loss
error, the mean squared error and the cross entropy error [77] (see Appendix D for
details). By minimizing the empirical error Eemp on the training data, it is expected

that a set of weights w will be found that produce a good classification.

Generalization

Optimizing the classifier on the training data may be problematic if the set of training
examples is an atypical set. That is, it may be unclear whether the training data
distribution resembles the distribution in real life (i.e. the ‘true’ data distribution).
In general, the larger the sample size, the more likely the true characteristics of
the data can be determined. However, even if a large, characteristic data sample is
available, the number of functions which approximates or precisely fits the data is
quite large. Therefore, good classification of the training objects is not the main goal,
rather good classification of new and unseen objects is the chief objective. This is
called good generalization. To estimate how well a classifier generalizes, it should
be tested with a new set of objects which has not been used for training. Using an
independent test set avoids an overly optimistic estimate of classifier performance

[77).
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Overfitting and Variance

When a function f(x; w) minimizes the empirical error very well on a training set, but
still shows a large true error &, on an independent test set, the function is said to be
overtrained or overfit. An example of overfitting is shown in Figure 4.3. Here, a very
flexible two-class classifier is trained on the harp seal/gray seal samples leading to a
complex decision boundary. While such a decision may lead to perfect classification
of the training samples (zero empirical error), it may lead to poor performance on
future patterns (high true error).

When a very flexible function is trained on a new training sample X*" of the same
size from the same distribution, a completely different solution for the weights w
will be obtained. This large variance in w (and thus f(x;w)) over different training

samples is undesirable.

o+ +
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4«5 + Gray Seals

Harp Spalq

Feature | (weight)

Figure 4.3: A heavily overtrained two-class classifier, trained on the harp seal/gray
seal samples, produces a very complicated decision boundary. While such a decision
may lead to perfect classification of the training samples (zero empirical error), it
may lead to poor performance on future patterns (high true error).



Curse of Dimensionality

The overfitting problem becomes worse when a large number of features per object is
used. Since the function f(x;w) should be defined for the complete feature space, the
volume that should be described increases exponentially in the number of features.
This is referred to as the curse of dimensionality [77, 78, 79]. One way to deal with
the problems of overfitting and the curse of dimensionality is to reduce the number of
features by selecting an appropriate subset of the existing features, or by combining
the existing features in some way (for example, using Principal Component Analysis)
[66, 80]. Another important quantity that may affect classifier performance is the
number of training objects with respect to the dimensionality of the feature space.
If the number of features is large, a small number of samples may be insufficient to

estimate all free parameters w in the function f(x;w) with ample accuracy.

Underfitting and Bias

Another problem that arises in classifier design is underfitting. In this case the func-
tion f(x; w) is not flexible enough to follow all characteristics in the data. This type
of classifier is said to have low complexity and shows a large bias. The bias mea-
sures how well the classifier fits the problem (high bias implies a poor fit) [66]. The
linear classifier applied to the two-class problem in Figure 4.1 has a relatively low
complexity. A more flexible non-linear classifier would most likely produce a better

result.

Bias-Variance Dilemma

A good fitting function for a given data sample should have both a small bias and

a small variance. However, classifiers with increased flexibility to adapt to training
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data (e.g. have more free parameters) tend to have lower bias but higher variance.
Therefore, the best fitting function is a trade-off between the bias and variance con-
tributions. This phenomenon is known as the bias-variance dilemma or bias-variance
trade-off [77, 66]. A bias-variance trade-off between the classifiers in Figure 4.1 and

Figure 4.3 is shown in Figure 4.4.

e T T T S i

Feature 2
(length)
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Figure 4.4: A bias-variance trade-off between the classifiers in Figure 4.1 and Figure
4.3. The classifier has a small bias and is robust against small changes in the training
set (small variance).

Structural Error

The bias-variance dilemma can be minimized by introducing prior knowledge into
the design of f(x;w). By including prior knowledge, such as constraints on the
form of f to the problem at hand, the complexity of the function is decreased while
maintaining the flexibility [77]. Quite often, however, prior knowledge is not available
or it is difficult to include the knowledge into the design of f(x;w). In this case, an
extra error term Egruet(f, W) is added to the empirical error. This structural error

attempts to measure the complexity of the function f(x;w). Now the total error
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must be minimized:

gtot(f7 w, Xtr) = gemp(fv w, Xtr) + /\gstruct(fa W), (45)

where A, the regularization parameter, indicates the relative influence of the structural
error with respect to the empirical error. If A = 0, the structural error (and thus
the complexity) of f(x;w) will be ignored. If X is large, a very simple function
is obtained which completely ignores the data. This extended error is intended to
produce a classifier with higher generalization. The structural error can be minimized
by imposing smoothness constraints on the function f(x;w). Large fluctuations in
the function are discouraged; the smoother the function, the lower the complexity.
A number of approaches have been developed to approximate the structural error
including counting the number of free parameters in the function, using weight decay,
and considering the worse-case performance of the classifier [77]. A detailed discussion
about this topic is given by Wolpert [81].

As the preceding discussion has shown, when designing a classifier, problems such
as the generalization of the method, the curse of dimensionality, the bias-variance
dilemma, and measuring the complexity of the solution must be considered. While
numerous classification functions, errors, and optimization routines are available, the
‘true’ structure in the data is often quite difficult to model completely. It may be
said that determining a suitable classifier for a given problem is more of an art than

a science.
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4.2 One-Class Classification

The term “one-class classification” was first coined by Moya et al. in 1993 [82]. A
variety of other terms have been used in the literature to describe this classification
approach including “data description” [77], “outlier detection” [83], “novelty detec-
tion” [84], and “concept learning” [85]. The terms one-class classification and data
description will be used interchangeably in this thesis. Since the early 1990s, research
in this area has grown considerably. Some recent applications of one-class classifiers
include automated currency validation [86], diagnosis of interstitial disease in chest
radiographs [87], image retrieval [88, 89], novelty detection in gene expression data
[90], target recognition in SAR imagery [91], online signature verification [92], detect-
ing masses in mammograms [93], bioacoustic monitoring [94], face recognition [95],
and facial expression analysis [96].

The theory of one-class learning is covered extensively in the doctoral thesis of
Tax [77]. The following is a summary of this theory including error definitions for
one-class classifiers, considerations for training data descriptions, techniques used to

evaluate classifier performance, and a review of one-class methods.

4.2.1 EFError Definitions

In one-class classification, there are four possible situations of classifying an object;
these are shown in Table 4.1. The fraction of target objects accepted by the classifier
(true positives) is labeled fr,. The fraction of targets rejected by the classifier (false
negatives) is labeled fr_; this is called the error of the first kind, &. The fraction
of outlier objects rejected by the classifier (true negatives) is labeled fo_. Finally,
the fraction of outlier objects accepted by the classifier (false positives) is labeled

fou+; this is called the error of the second kind, &. In order to find a good one-class
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classifier, &1 and &y have to be minimized. The true positive and true negative objects
do not contribute to the total error because they are classified correctly.

Table 4.1: The four possible situations of classifying an object in one-class classifica-
tion.

Object from | Object from
target class outlier class

Classified as a | true positive, | false positive,
target object It fo+ (&)

Classified as an | false negative, | true negative,
outlier object fr- (&) fo-

Recall that the complete probability density p(x,y) is required to compute the
true error Eyye (as defined in Equation (4.3)). In one-class classification, only the
probability density of the target class p(x|wr) is known. Therefore, only the number
of false negatives (£;) can be minimized. The fraction false negative fr_ can be
estimated using an independent test set drawn from the same target distribution or
using cross-validation on the target training set. However, the fraction false positive
fo+ 1s much harder to estimate. When no example outlier objects are available, this
fraction cannot be estimated. However, minimizing just the fraction false negative will
result in a classifier that labels all objects as target objects. In order to prevent this
degenerate solution, outlier examples have to be available, or artificial outliers have to
be generated. In the absence of examples, it is assumed that the outliers are drawn
from a bounded uniform distribution around the target data and the description
volume [77].

Using Bayes rule [66], the posterior probability for the target set can be computed
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Since the outlier distribution p{xjwg) is unknown, and the prior probabilities plwy)
and plwg) are difficult to estimate, equation (4.6) cannot be used directly to compute
the posterior probability for target objects. However, when it is assumed that p(x|wo)
i independent of x (i.e. it is uniformly distributed in the area of feature space under

consideration), p(xjwy) can be used instead of pluwy|x) [97).

AT

Figure 4.5 Regions in one-class classification. A spherically shaped one-class bound-
ary is trained around a banana-shaped training set. The outliers are uniformly dis-
tributed in the rectangular block (as indicated by 2). The light gray area represents
the fraction of targets rejected, £. The dark gray area represents the fraction of
outliers acoepted, £y.

Figure 4.5 illustrates the regions in one-class classification. The banana-shaped
area is the target distribution A7. The circular boundary is the one-class classifier
which should describe the data. In the absence of outliers examples. a uniform out-

lier distribution is assumed, indicated by 2. Note that some of the target data is
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rejected (indicated by &;) and some outliers are accepted (indicated by &y1). The most
important feature of one-class classifiers is the tradeoff between the fraction of the
target class that is accepted, fry, and the fraction of outliers that is rejected, fo_ (or
equivalently, the tradeoff between & and &y). It is evident from Figure 4.5 that this
tradeoff cannot be avoided. Increasing the volume of the data description in order to
decrease & will automatically increase the number of accepted outliers, and therefore
increase &y1.

As Figure 4.5 also shows, using a uniform outlier distribution means that when
&1 is minimized, the data description with minimal volume is obtained. Therefore,
instead of minimizing both & and &, a combination of & and the volume of the
description can be minimized to obtain a good classifier [77]. However, when the true
outlier distribution deviates from the uniform distribution, another data description
will show better generalization performance. Of course, this cannot be checked with-
out sample outliers. In this thesis, the 1775 non-seal pup objects segmented from
training data will be used to estimate the outlier density and the fraction false posi-
tive, fo..

A structural error, Egruer, may also be defined for one-class classifiers. Recall
that for a conventional classifier, smoothness constraints on f(x;w) can be imposed
to reduce the structural error. For one-class classifiers not only should smoothness
constraints be enforced, but also constraints on the closed boundary around the data.
Unfortunately, these extra constraints make classifier design more difficult and amplify
problems like the curse of dimensionality. As a result, one-class classification problems

often require a larger sample size than conventional classification [77].
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4.2.2 Distance/Resemblance Threshold
Two distinct elements are identified in all one-class classification methods:

1. A measure for the distance d(z|wr) or resemblance p(z|wr) of an object z to
the target class wr (represented by the training set X*"); p(z|wr) (or d(z|wr))

can also be interpreted as the chance of object z given the target set wr.

2. A threshold 8 on the distance d(z|wr) or resemblance p(z|wr).

As discussed by Tax|[77], new objects are accepted by the description when the dis-

tance to the target class is smaller than the threshold 6,:

f(z) = I(d(z|wr) < 0,4) (4.7)

or when the resemblance is larger than the threshold 8,:

f(2) = I(p(z|lwr) > 6,) (4.8)
where I(-) is the indicator function defined as:

1 if A is true,
I(A) = (4.9)

0 otherwise.

One-class classification methods differ in their definition of p(z|wr) (or d(z|wr)),
and in their optimization of p(z|wr) (or d(z|wr)) and thresholds with respect to X*".
Many one-class methods focus on optimizing the resemblance or distance model first
and then optimize the threshold afterwards. However, a few methods optimize their
model p(z|wr) or d(z|wr) to an a priori defined threshold [77]; different thresholds

will give a different definition of p(z|wr) or d(z|wr). In this thesis, the threshold is
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derived directly from the training set and adjusted to accept a predefined fraction of

the target class. For a target acceptance rate fr,, the threshold 6y, is defined as
1
O, N Z I(p(x;lwr) > 6f,,) = fr+ (resemblance based method) (4.10)
or

1
Ofr, : N Z I{d(xilwr) < 0f..) = fr+ (distance based method) (4.11)

1

where x; € X", Vi.

4.2.3 ROC Curve

Using (4.10) (or (4.11)) we can, for varying fr, compute a threshold 6.  on the
training set and then measure the resulting fo_ on a set of example outliers. When for
all values of fr,, the fo_ is measured, the Receiver Operating Characteristic (ROC)
curve is obtained [98]. This curve shows how the fraction false positive changes for
varying fraction false negative. The smaller these fractions are, the more this one-
class classifier is preferred. Traditionally, the fraction true positive fr, is plotted
versus the faction false positive fo,, as shown in Figure 4.6. For this research, the
1775 sample outliers segmented from training data are used to measure the fo, for
varying fr, on the target class.

While the ROC curve gives a good summary of the performance of a one-class
classifier, it is difficult to compare two ROC curves. One way to summarize an ROC
curve in a single number is to compute the Area Under the ROC Curve (AUC) [99].

To compute the AUC, &y is integrated over varying thresholds (i.e. all possible errors
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Figure 4.6: Example of a ROC curve. The fraction true positive fr, is plotted versus
the faction false positive fo,. The small dot on the curve represents the operating
point.

of the first kind &;). This gives the error

Em —/ & 51 d&r = / / > 9f dzdaf (4.12)

where 6 is measured on the target set. This error measure does not evaluate a one-
class classifier on the basis of one single threshold value, but integrates its performance
over all threshold values. For the standard implementation of the AUC, smaller values
indicate a better separation between target and outlier objects. However, for the
implementation of the AUC included in the Data Description Toolbox[100] used in
this thesis, larger AUC values indicate a better separation between target and outlier
objects; this interpretation of the AUC is assumed for the remainder of the thesis.
Maximizing the AUC value does not guarantee optimal performance on test data;
a trade-off between &; and & must also be considered. It can therefore happen that

for a specific threshold a one-class classifier with a lower AUC might be preferred over
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another classifier with a higher AUC if, for that specific threshold, the fraction false
positive (&) is smaller for the first classifier than the second one [100].

In some cases, a range of reasonable false negatives or false positives can be given.
Therefore, the integration range for the AUC can be restricted to this specific range.
This will result in a more honest comparison between different classifiers for the
specific application [100]. Of course, for the actual application of a one-class classifier
a specific threshold has to be chosen. This means that only one point of the ROC
curve is used. An example of such an operating point is shown on the ROC curve in

Figure 4.6.

4.2.4 One-Class Methods

Several methods have been proposed to solve the one-class classification problem.
Methods may be grouped into three main approaches: density estimation, boundary
methods, and reconstruction models. The various one-class methods differ in their
ability to exploit different characteristics of the data such as scaling of feature mea-
surements, grouping of objects in clusters, and convexity of the data distribution and
their placing in subspaces [77].

The most straight forward way to obtain a one-class classifier is to estimate the
density of the training data [93] and to set a threshold on this density [77]. A variety
of distributions may be assumed, such as a Gaussian or a Poisson distribution, and
numerous discordancy tests are then available to test new objects [101]. Common
density methods include the Gaussian model, the mixture of Gaussians, and the
Parzen density model. The latter is described in detail in Section 4.3. Density
methods work well when the sample size is sufficiently large and a flexible density

model is used. If the sample size is not large enough, this approach may suffer from
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the curse of dimensionality. Assuming a good probability model is used and the data
size is sufficiently large, the density method approach has a big advantage: when
one threshold value is optimized, a minimum volume is automatically found for the
given probability density model. Therefore, only the high density areas of the target
distribution are included and superfluous outliers will not be accepted [77].

In boundary methods, a closed boundary around the target set is optimized. Al-
though the volume is not always actively minimized, most methods have a strong bias
towards a minimal volume solution [77]. The size of the volume depends on the fit of
the method to the data. In most cases, distances d to a set of objects in the training
set are computed. Due to their focus on the boundary, the threshold on the output
is straight forward to obtain. The number of objects required by boundary methods
is smaller than is required for density methods. However, because the methods rely
heavily on the distances between objects, they tend to be sensitive to the scaling of
features. Therefore, well-defined distances must be considered when training these
classifiers. Common boundary methods include the k-centers method, the nearest
neighbor method (NN-d), and the Support Vector Data Description. The latter is
described in detail in Section 4.4.

Reconstruction methods use prior knowledge about the data and make assump-
tions about the generating process to determine a model and then fit it to the data.
New objects are then described in terms of a state of the generating model. These
methods make assumptions about the clustering characteristics of the data or their
distribution in subspaces. A set of prototypes or subspaces is defined and a recon-
struction error is minimized. Examples include k-means clustering, learning vector
quantization, self-organizing maps, Principal Component Analysis, diabolo networks
and auto-encoder networks. These methods differ in their definition of the prototypes

or subspaces, their reconstruction error, and their optimization routine. Reconstruc-
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tion methods are not considered in this thesis, but more information can be found in

[77).

4.3 Parzen Density Estimation

The most simple density model is the normal or Gaussian density [79]. For this model,

the probability distribution for a d—dimensional object x is given by:

s Z) = e { S-S - W) @)

where g is the mean and ¥ is the covariance matrix [66]. The Parzen density estima-
tion [102] is an extension of the Gaussian model. The estimated density is a mixture
of, most often, Gaussian kernels centered on the individual training objects, with a

simplified diagonal covariance matrix ¥; = hZ:

po(x) = 5 3 Pl D) (4.14)

where 7 is the identity matrix. The equal width h in each feature direction means
that the Parzen density estimation assumes equally weighted features. As a result,
this approach is sensitive to the scaling of features, especially if the sample size is
small.

Training a Parzen density estimation consists of determining one single parameter,
the width of the kernel h. This free parameter is typically optimized by maximizing
the likelihood on the training data using leave-one-out [103, 104]. Producing a good
description from this approach completely depends on how representative the training
set is to the actual target distribution. While the computational cost for training the

Parzen density estimation is quite low, the cost for testing can be expensive. All
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training objects have to be stored and the distances to all training objects have to be

calculated and sorted [77].

4.4 Support Vector Data Description

Support vector machines (SVM) have become a popular method in pattern classifi-
cation and were originally developed for the discrimination of two-class classification
problems [63, 105]. In support vector classifiers, the input vectors are mapped to a
high dimensional feature space and then separated by the optimal linear hyperplane
[106]. A variant of this method was proposed by Tax [77] in 2001 for one-class clas-
sification and has since been applied in a variety of research [89, 94, 96, 107]. Aptly
called the Support Vector Data Description (SVDD), the one-class SVM attempts to
describe the target class by finding a hypersphere boundary around the class with
minimal volume. A better fit between the data boundary and the hypersphere model
may be found by introducing a kernel function K which maps the data to a new fea-
ture space. This method is similar to unsupervised learning algorithms like Gaussian

mixture models {108] or k-means clustering [109].

4.4.1 Derivation of SVDD

The SVDD is derived as a quadratic optimization problem. Let f(x;w) represent a
closed boundary, a hypersphere, around the target data. The hypersphere is char-
acterized by a center a and radius R. Assuming the hypersphere covers all training
objects X'*", the empirical error is equal to 0. Analogous to the conventional SVM,

the structural error is defined as

gstruct(Ra a) = R2 (415)
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which must be minimized with the constraints
|x; — al|* < R?, Vi. (4.16)

To make the method more robust, the model should allow the possibility of outliers
in the training set. In this case, the empirical error will not be 0. The total error now
contains a structural and an empirical error contribution. Slack variables &, &, > 0, Vi,
are introduced to enable soft boundary calculation and thus the minimization problem

becomes

E(Ra,&)=R*+C) ¢ (4.17)

with constraints that almost all objects are within the hypersphere:
|x;i —al* < R*+¢&, & >0, Vi (4.18)

The parameter C' gives a tradeoff between the volume of the description and the
errors. In Figure 4.7, a graphical representation of the hypersphere around some
training data is given. It shows three objects on the boundary and one object x; that
is rejected by the description.

The free parameters, a, R, and &, have to be optimized with respect to the con-
straints in (4.18). This can be accomplished by introducing Lagrange multipliers and

constructing the Lagrangian [110):

L(R,a§ 7)) = R+C) & (4.19)

(]
—Zai{Rz—kfi— (xi-x;—2a-x;+a-a)} —Z’y,-fi
i i
with the Lagrange multipliers «; > 0 and ; > 0, and where x; - x; represents the
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Figure 4.7: Graphical representation of a hypersphere with center a and radius /.
The sphere defines a boundnry separating the target objects from the rest of the
input space. Three objects are on the boundary, the support vectors, One objeet x;
is outside the boundary and has & > 0.

inner product between x; and x;. For each object x;, a corresponding a; and v are
defined. L has to be minimized with respect to R, a, and £, and maximized with
respect Lo o and .

Using the Karush-Kuhn-Tucker theory [111], the partial derivatives are set to 0
producing the following constraints:

al.

o =0 E.- a=1 (4.20)
oL _Eeay

e =0: a= e = E‘ X, {4.21)
aL

= =0: %w=0C—uo ¥i. (4.22)

Constraint (4.22) can be rewritten as oy = C' — 5. Instend of the constraints that

> 0 and v = C — ay, a new constraint on a; can be introduced:

0<a, <C, Vi (4.23)
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Provided (4.23) is satisfied, the Lagrange multipliers 7; can be computed by 7; =
C — a; and v; > 0 automatically holds. Assuming all constraints hold, (4.19) can be

rewritten as

L(R,a,¢ a,7) = ZazRMOZez Zaza Zm
+Zale xl—QZala xz+Zaza a (4.24)
= O+0+Za1xz xl—2ZaZZa]xJ x; +1- zjow]x1 X;
= Zaixi-xi—Zaiajxi-xj (4.25)
i 2

The minimization of the error function (4.25) with constraints (4.23) is a well-known
quadratic programming problem and standard algorithms exist to solve this [77].

When an object x; is within the hypersphere, the inequality in constraint (4.18)
is satisfied and the corresponding Lagrange multiplier becomes zero: a; = 0. For
objects satisfying the equality ||x; — al|> = R? + £;, the object is located at or outside
the boundary and the corresponding Lagrange multiplier becomes positive: a; > 0.
When an object obtains a; = C, the object is regarded as an outlier and will not
be accepted by the data description (i.e. the hypersphere description is not adjusted
further to include the corresponding object x; in the description).

In equation (4.21), the center of the sphere a is expressed as a linear combination
of objects with weights «;. For the computation of a, objects with 0 weight (a; = 0)
can be disregarded; only objects with positive weight (o; > 0) are required. In the
minimization of (4.25), often a large fraction of the weights become 0. Therefore, the
sum in (4.21) is usually over a small fraction of objects x; with o; > 0. Only these
objects, called the support vectors, are required for the description of the data set.

To test if a new object z is accepted by the description, the distance from the
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object to the center of the hypersphere a has to be calculated. The object is accepted

when this distance is smaller than or equal to the radius:

lz—al®=(z-2) —2)_oi(z-x:) + Y ouey(x; - ;) < R, (4.26)
i ij
where R? can be determined by calculating the squared distance from the center a to

any support vector x; on the boundary:

R? = (x} - %) — 2 Z o (x; - Xg) + Z ;o (%; - X5). (4.27)

i!j

The SVDD can now be written as

fsvop(z;o, R) = I(||lz—al* < R?)

= I <(z 7)) — 2 Zai(z X)) + Zaiaj(xi -x;5) < R2>(4.28)
i i
where I is the indicator function, as defined in (4.9). A bonus feature of the SVDD is
that it offers a direct estimate of the error it makes on the target set [77]. The fraction
of the target objects which become support vectors is an estimate of the fraction of
target objects rejected by the description.

When objects which should be rejected (negative examples) are available, they
can be used during training to improve the SVDD (i.e. to obtain a tighter boundary
around the data in the areas where outlier objects are present). In contrast with
the target examples, which should be within the hypersphere, the negative exam-
ples should be outside it. Formulation for an SVDD that uses negative examples to

improve the description boundary is given in Appendix D.

94



4.4.2 The Kernel Trick

The hypersphere is a very rigid model of the boundary of the data. In general, this
model will not fit the data well. An improved target data description can be achieved
using the so-called kernel trick, similar to that used in the nonlinear SVM [105]. The
general idea is to map data vectors from the input space to a high-dimensional kernel
space using an implicit nonlinear mapping ® and then minimize the volume of the
hypersphere containing the data in the kernel space. To illustrate this idea, assume

we are given a mapping ® which improves the fit:
x* = P(x) (4.29)
Applying this mapping to (4.25) and (4.28) gives:
L=> 0;®(x:) B(x:) — Y oo B(x;) - D(x;) (4.30)
i i\j
and

fSVDD(Z§a; R) =

I (@(Z) . CD(Z) - 22&1@(2) : (I)(Xz) + Zaiaj@(xi) . (I)(Xj) < R2> (431)

Since all mappings ®(x) in (4.30) and (4.31) occur only in inner products with other

mappings, a new kernel function of two input variables can be defined:

K(x;,x;) = ®(x;) - (x;) (4.32)
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Replacing all occurrences of ®(x;) - ®(x;) in (4.30) and (4.31) by this kernel gives:
L=> aK(xi,x:) — Y oy K (x;,%;) (4.33)
i i
and

fsvop(z;a,R) =1 (K(z,z) -2 ZaiK(z,xi) + ZaiajK(xi,xj) < R2) (4.34)
B i,

The kernel function K(x;,x;) is called a Mercer kernel because it can be written as
an inner product of two functions {105, 112]. In this formulation, the mapping & is
never used explicitly; it is only defined implicitly by the kernel K. The advantage of
the kernel trick is that the introduction of the kernels does not introduce much extra
computational costs. The optimization problem remains identical in the number of
free parameters [77].

Several kernel functions have been proposed for the support vector classifier [113].
However, it appears that not all kernels that were proposed for the SVC can be
used by the SVDD. In most cases the data classes are elongated, which is useful for
discrimination between two classes, but is harmful for one-class classification [114].
The two most common kernels used with the SVDD are the polynomial kernel and

the Gaussian kernel. The polynomial kernel is given by
K(Xi, Xj) = (Xi - Xy + 1);0 (435)

where the free parameter p gives the degree of the polynomial kernel. As argued by
Vapnik [63], this kernel maps the objects into the high dimensional featurc space by

adding products of the original features, up to degree p. For example, a 2D vector
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(z1, ;) is mapped to (1, %2, T1T2, %, 23) when a polynomial kernel with p = 2 is
used [115].
The Gaussian kernel is given by

s — %112
K(x;,%x;) = exp (——”—stzin> (4.36)

where the free parameter s is the width of the kernel. For small values of s the SVDD
resembles a Parzen density estimation, while for large s the original hypersphere
solution is obtained [115]. Tax [77] investigates the behaviour of these kernel functions
in detail. He concludes that the polynomial kernel suffers from the large influence
of the norms of the object vectors. While the Gaussian kernel results in a tighter
description than the polynomial kernel, it requires more data to support the more
flexible boundary. Both the polynomial and Gaussian kernels are investigated in this

thesis.

4.5 Experimental Results

This section describes the experimental results of applying the Parzen density es-
timation and SVDD classifiers to segmented seal data. First, a review of feature
optimization techniques is given. This is followed by a description of the general
methodology followed for training and testing the classifiers including parameter op-
timization. Finally, the results of applying the data descriptions to test data are given

and classifier performance is evaluated.
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4.5.1 Feature Optimization

In order to have a good distinction between target and outlier objects, good repre-
sentation of the data is essential. The performance of both the Parzen density esti-
mation and the SVDD critically depends on the scaling of data and is often harmed
by data distributions in subspaces [114]. Therefore, three different approaches have
been applied to optimize data features prior to training the classifier; scaling of the
data, Principal Component Analysis, and kernel whitening. The latter two methods
use feature reduction, while scaling maintains the original dimension of the feature
space. Classifier performance is evaluated on pre-processed data and compared to
classification results on data which is not pre-processed. It is expected that feature

optimization will improve classifier performance.

Scaling Data

For the first feature optimization approach, a scaling map is computed on the target
data such that its mean is shifted to the origin and the variances of all features are
scaled to one. Test data is pre-processed with the mapping that is computed for the

training set.

Principal Component Analysis

The second feature optimization approach is Principal Component Analysis (PCA).
The central idea of PCA is to reduce the dimensionality of a data set consisting of
a large number of interrelated variables, while retaining as much as possible of the
variation present in the data set. PCA is mathematically defined as an orthogonal
linear transformation that transforms the data to a new coordinate system such that

the greatest variance by any projection of the data comes to lie on the first coordinate
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(the first principal component), the second greatest variance on the second coordinate,
on so forth. PCA then eliminates the components that contribute the least to the
variation in the data set. In this thesis, the principal components that contribute less
than 1% to the total variation in the training data are eliminated. This constraint
results in 6 principal components in the transformed subspace. Test data is pre-
processed with the transformation matrix that is computed for the training set. For

a detailed description of PCA, please refer to Jolliffe [116] and Jackson [117].

Kernel Whitening

The final feature optimization approach is kernel whitening. In a study conducted
by Scholkopf et al. [118], it was indicated that nonlinear principal components from
kernel PCA had better recognition rates than the corresponding number of linear
principal components from linear PCA. In addition, the performance for nonlinear
components can be further improved by using more components than possible in
the linear case. Kernel whitening uses the idea of kernel PCA to extract the non-
linear principal features of the data set. After mapping the data to this new feature
space (implicitly defined by the kernel function), feature directions with (almost)
zero variance are removed and the other features are rescaled to unit variance. By
the kernel PCA and rescaling, the resulting data has zero mean with an identity
covariance matrix [114]. In principal, this data can now be described by any one-
class classifier. Mathematical details of the kernel whitening transformation are given
in Appendix D.

The efficiency of mapping the data to the new representation with unit variance
depends on the choice of the kernel and parameters. A polynomial or Gaussian kernel

is typically chosen. A suitable kernel may be selected by using the Chernoft distance
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between the target and outlier data [114]:

Jo = llog [E/__H_EQ/_Q_I} (4.37)

2 IR

where Yo is the covariance matrix of the outlier class and Z is the identity matrix
(see Appendix D for details). This distance is relatively cheap to compute, and thus
the expensive optimization of the classifier and the computation of the AUC for all
combinations of kernel definition and data dimensionality can be avoided. For each
kernel definition a near optimal dimensionality can be estimated. Then the classifier
and the AUC have to computed and compared for only these combinations of kernel
and dimensionality.

In an attempt to determine the optimal kernel, the Chernoff distance is computed
for the training data using a polynomial kernel with the degree ranging from p =1
to p = 5 and using a Gaussian kernel with the width parameters s = 5,15, 25, 35, 50.
For each of the kernels, the number of used principal components d’ (dimensionality)
is varied. In Figure 4.8a, the Chernoff distance between the target and outlier classes
is shown for the polynomial kernel. This plot implies that the higher the degree,
the faster the distance increases. This suggests that using higher degrees and higher
dimensionalities gives the best performance. However, in practice very good perfor-
mances have been obtained with lower values of p and d’ [114]. In Figure 4.8b, the
Chernoff distance between the target and outlier classes is shown for the Gaussian
kernel. This plot suggests that the smaller the kernel width, the faster the distance
increases. Unfortunately, there is no obvious choice of kernel from these plots.

Since a suitable kernel is difficult to select from the plots in Figure 4.8, the data is
pre-processed by each kernel using different parameters and varying data dimension-

alities, and then the Parzen density estimation and SVDD are trained on the data.
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Figure 4.8: The Chernoff distance for varying data dimensionalitics of the training
data which is pre-processed using (a) the polynomial kernel with degrees p=1,..,5,
and (b) the Gaussian kernel with width parameters s = 5, 15, 25, 35, 50.
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For each combination of parameter and dimensionality, the classifier is optimized by
maximizing the AUC. This AUC value is then plotted as a function of the retained
dimensionality of the kernel PCA. Figure 4.9 displays the AUC values computed for
the Parzen density estimation when the data is pre-processed using the polynomial
kernel. A similar plot was produced for the Gaussian kernel, but the best results
were clearly obtained with the polynomial kernel. As the plot in Figure 4.9 shows, a
polynomial kernel of degree 1 with 13 retained principal components gives the best
result. Therefore, this configuration is used to pre-process data for the Parzen clas-
sifier. It is interesting to note that this result is counterintuitive from the Chernolf
distance results in Figure 4.8a which suggest that using higher degrees and higher

dimensionalities for the polynomial kernel gives the best performance.

Figure 4.9: For the polynomial kernel with degrees p = 1, .., 5, and for varying dimen-
sionality ', a Parzen density estimation is optimized by maximizing the AUC. This
AUC value is plotted as a function of '. For this classifier, a kernel of degree 1 with
13 retained principal components gives the best result,

Figure 4.10 displays the AUC values computed for the SVDD when the data is

pre-processed using the polynomial kernel. Two different SVDD configurations are
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Figure 4.10: For the polynomial kernel with degrees p = 1,..,5, and for varying
dimensionality ', a SVDD is optimized by maximizing the AUC. This AUC value is
plotted as a function of . In (a) a polynomial kernel of degree 1 is used to construct
the SVDD. In (b) a Gaussian kernel with s = 10 is used to construct the SVDD. In
both cases, p = 1 with 17 retained principal components gives the best result.
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tested; in Figure 4.10a the SVDD is constructed with a polynomial kernel of degree 1
and in Figure 4.10b the SVDD is constructed with a Gaussian kernel using s = 10 (the
SVDD kernel should not be confused with the kernel function used in the whitening
process). As both plots show, a polynomial kernel of degree 1 with 17 retained
principal components gives the best result for both support vector data descriptions.
Therefore, this configuration is used to pre-process data for the SVDD. Similar plots
were produced for the Gaussian kernel, but results were not as good when compared

to the polynomial kernel.

4.5.2 Methodology for Training and Testing

This research uses the Data Description Toolbox[100] and PRTools4[119] to create and
apply one-class classifiers. After the data has been pre-processed, as described in the
previous section, the next step in training a classifier is to determine the optimal free
parameter(s) by maximizing the AUC on training data. This optimization process is
conducted for the Parzen method, for the SVDD with a polynomial kernel, and for
the SVDD with a Gaussian kernel.

For the Parzen density estimation there is only one free parameter to optimize, the
kernel width h. This parameter is typically optimized by maximizing the likelihood
on the training data using leave-one-out [103, 104]. However, a different approach
is taken here. First, a reasonable range of values for A is determined based on the
scaling of the data. This range will change depending on the pre-processing method
applied. For each value & in the specified range, the average AUC value is computed
using 5-fold cross validation. That is, the training data is randomly split into 5
groups of equal or near-equal size. For each group, the ROC curve is plotted and

the corresponding AUC value is computed. The AUC for all 5 groups is averaged
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and recorded as the AUC for the given parameter h. This process is repeated for
all parameter values in the given range. The parameter that produces the maximum
AUC is chosen as the optimal kernel width for the given data set.

For the SVDD, the free parameters are the Lagrange multipliers . From these
Lagrange multipliers, the center a and the threshold value R can be computed. Thus,
the number of free parameters is N, the size of the target set. However, for the SVDD
implementation in the Data Description Toolbox, the user only has to supply the
number of false negatives fr_ (which is varied for computation of the ROC curve)
and the kernel parameter(s) from which all other free parameters are determined.
For a polynomial kernel there is one free parameter, the degree p of the polynomial.
For a Gaussian kernel there is also one free parameter, the width s. The process for
determining the optimal parameter for the SVDD kernel is analogous to the process
used for the Parzen classifier. First, a reasonable range of values for the parameter is
given based on the type of kernel. For a polynomial kernel, p = 1, ..,5 is used. For
a Gaussian kernel, s = 1,..,50 is tested. For each parameter value in the specified
range, the average AUC value is computed using 5-fold cross validation as described
above. The parameter that produces the maximum AUC is chosen as the optimal
kernel parameter for the given data set.

The next step in the training process is to select a specific operating point. As
discussed in Section 4.2.2, the threshold on the distance d or resemblance p is derived
directly from the training set and adjusted to accept a predefined fraction of the target
class. For a target acceptance rate fr., the threshold 6;., is defined by Equation
(4.10) (or (4.11)). In this thesis, the target acceptance rate on the training data is
determined from the ROC plot produced from the optimal parameter(s). For training
the classifier, the fraction false negative should be no more than 10% (i.e. minimum

target acceptance rate of 90%). Therefore, for all operating points on the ROC curve
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for which £ < 0.1', the combination of & and £; that gives the minimum total
value is selected as the operating point for training the classifier. In other words, the
operating point must satisfly the condition

i (€ + &) (4.38)

For example, consider the ROC curve in Figure 4.11, This curve is produced when
the Parzen density estimation is applied to training data that is pre-processed using
PCA (h = 2.439 is the optimal kernel width). The condition in (4.38) is satisfied by
the operating point (£, £y) = (0.00625, 0.2406), as identified by the dot on the curve.
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Figure 4.11: ROC curve for the Parzen density estimation trained on seal pup data
with h = 2.439 and operating point (&, £y) = (0.09625, 0.2406).

The optimal parameter(s) and operating point determined in the previous steps

"The ROC curve does not explicitly show the faction false negative. Rather, £ is obtained from
the ROC by computing 1 — fr,.
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are now used to train the classifier. Finally, the data description is applied to test
data and its performance is evaluated and compared to other classifiers. The process

for training and testing each classifier, as described above, is summarized as follows:
1. Optimize features (scaling of data, PCA, kernel whitening).

2. Optimize classifier parameter(s) by maximizing AUC using 5-fold cross valida-

tion on training data.

3. Using the ROC curve produced from the optimal parameter(s), find & that

satisfies the condition in (4.38). This is considered the optimal operating point.

4. Use the optimal parameter(s) and operating point in the previous steps to con-

struct the classifier.

5. Apply the classifier to test data and evaluate its performance.

4.5.3 Final Results

Table 4.2 shows the final classification results for the objects segmented from test
data. The first column defines the pre-processing method applied to the data. The
second column gives the optimal parameter value for the given data description. The
third and fourth columns give the values of & and &y, respectively, for the classifier
performance on test data. The fifth column gives the total percentage of successful
classifications (defined as ( fr++ fo—)/2) and the final column gives the AUC produced
from the optimal parameter(s) on training data. For each of the three classification
methods (Parzen, SVDD with polynomial kernel, SVDD with Gaussian kernel), the
optimal values for &, &, the percentage of successful classifications, and the AUC,

are highlighted in bold typeface. It is important to note that & and &y are equally
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Table 4.2: Final classification results on test data.

Method | Parameter | & | &un | (fr+ + fo-)/2 | AUC
Parzen density estimation

no pre-processing | h=75610 | 10.77% | 37.72% 75.76% 0.8462
scaled h=2.624 11.79% | 25.54% 81.34% 0.9093
PCA h=2.439 10.77% | 25.75% 81.74% 0.9095
kernel whitening | 14 695 | 8.75% | 46.88% 72.19% 0.9119
(p=1,d =13)

SVDD with polynomial kernel

no pre-processing p=0.5 9.43% | 39.01% 75.78% 0.8146
scaled p=1 9.09% | 34.05% 78.43% 0.8698
PCA p=1 9.43% | 34.38% 78.10% 0.8694
e G IE | pm1 | 1549% | 2672% | T8.90% | 09080
SVDD with Gaussian kernel

no pre-processing s=48 9.42% | 66.27% 62.16% 0.7067
scaled s=7 11.79% | 31.03% 78.59% 0.8858
PCA s=T7 12.80% | 31.03% 78.09% 0.8808
kernel - whitening s=12 15.49% | 27.16% 78.68% 0.9093
(p=1,d =17)

weighted when analyzing classifier results (i.e. it is equally important to minimize
both the number of false negatives and the number of false positives).

As discussed in Chapter 3, objects segmented from test data were manually re-
viewed and labeled in order to compute error rates. Through this process, it was
observed that 297 seals and 931 outliers were segmented (a total of 1228 objects).
The percentages for & in Table 4.2 were computed for the 297 target objects. The

percentages for & were computed for the 931 outlier samples.

Parzen Density Estimation

For the Parzen method, the percentage of successful classifications ranges from 72.19%
for data pre-processed with kernel whitening, to 81.74% for data pre-processed with

PCA. As expected, applying the Parzen classifier with no pre-processing does not
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produce the optimal result as features are not equally weighted. The large differences
in magnitude between feature types in the original input space is evident by the large
width parameter, h = 75.610.

When predicting classifier performance using AUC values, it is expected that the
best separation between targets and outliers will be produced when the data is pre-
processed via kernel whitening. As Table 4.2 shows, the kernel whitening approach
does result in the smallest & value (8.75%). However, the corresponding & value
(and thus the total error) from this configuration is significantly high (46.88%). A
low & and high & may result from underfitting the classifier. Therefore, the kernel
whitening approach is considered suboptimal for the Parzen method.

The smallest value for &y is obtained when the data is pre-processed via scaling
(25.54%), closely followed by the &y value obtained when the data is pre-processed
with PCA (25.75%). Since a smaller & value and smaller total error is obtained from
the PCA configuration, this is considered the optimal solution for the Parzen density
estimation. Using this data description (PCA + Parzen), approximately 82% of test

data is correctly classified.

SVDD

For the SVDD, the polynomial kernel and Gaussian kernel produce similar results.
The percentage of successful classifications ranges from 62.16% (Gaussian kernel with
no pre-processing) to 78.90% (polynomial kernel with kernel whitening). For the
SVDD constructed with a polynomial kernel, optimizing the classifier resulted in
a kernel of degree p = 1 for all pre-processing methods. When the data is not
pre-processed, the optimal polynomial kernel has degree p = 0.5. For the SVDD
constructed with a Gaussian kernel, optimizing the classifier resulted in a range of

width parameters for the various pre-processing methods (s = 7 for scaling and PCA,
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s = 12 for kernel whitening). When the data is not pre-processed, the optimal
Gaussian kernel width is significantly larger (s = 48).

For the polynomial kernel, the smallest & value is produced when the data is pre-
processed via scaling (9.09%). However, when predicting classifier performance using
AUC values, it is expected that the best separation between targets and outliers will
be produced when the data is pre-processed via kernel whitening. While this approach
produces the largest & value (15.49%), it also results in the smallest &y; value (26.72%)
and greatest number of successful classifications (78.90%). Since the optimal balance
between & and &y is produced via kernel whitening, this configuration is considered
the optimal SVDD using a polynomial kernel.

For the Gaussian kernel, the smallest & value is surprisingly produced when the
data is not pre-processed (9.42%). However, the corresponding &y value is signifi-
cantly higher (66.27%). When predicting classifier performance using AUC values,
it is again expected that the best separation between targets and outliers will be
produced when the data is pre-processed via kernel whitening. Analogous to the
polynomial kernel, this approach also produces the largest & value with the Gaussian
kernel (15.49%). However, since the smallest & value (27.16%) and greatest number
of successful classifications (78.68%) are also produced with kernel whitening, this
approach is selected as the optimal choice for the SVDD with a Gaussian kernel.

The SVDD with kernel whitening produces a similar result for the polynomial and
Gaussian kernels; in both cases, close to 79% of test data is correctly classified. Both
kernels produce the same & value (15.49%), but the polynomial kernel produces
a slighter lower &y value (26.72%). Therefore, this configuration is chosen as the
optimal classifier for the SVDD approach. For both kernels, pre-processing the data
via scaling produces the next best results with 78.43% (polynomial kernel) and 78.59%

(Gaussian kernel) of test data correctly classified.
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Optimal Classifier

In summary, pre-processing the data with PCA and applying the optimized Parzen
density estimation produces the best results on test data (81.74% success rate). The
Parzen density estimation with scaled data produces the next best result (81.34% suc-
cess rate), followed by the SVDD with polynomial kernel (p = 1) and pre-processing
via kernel whitening (78.90% success rate). Density methods produce the best data
descriptions when the target distributions for the training and test data are (approxi-
mately) equal [77]. Therefore, it can be concluded that the distribution of seal objects
in the training set and test set are very similar. However, even for the optimal data
description, over 25% of outlier objects are classified as targets. Therefore, the target
and outlier distributions still overlap to a moderate degree.

As discussed in Chapter 3, the segmentation algorithm failed to extract 1% of
seals from test data. That is, for 3 out of 300 test images, 0% of the seal object was
segmented. This error is added to the total error rate ((€1 + &r1)/2) for the optimal
classifier (PCA + Parzen density estimation) to produce the total error rate for the
optimal system (segmentation + classification). As Table 4.3 shows, the total success
rate for the optimal system is 80.74%.

Table 4.3: Total error rate for the optimal system; this includes the segmentation
error plus the error rate for the optimal classifier (PCA + Parzen).

Segmentation error rate | 1%
Classification error rate | 18.26%
Total error rate ‘ 19.26%

Total success rate 80.74%
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Chapter 5

Conclusions and Recommendations

5.1 Summary of Research Methods

In this thesis, a method is developed to automatically recognize harp seal pups in
black-and-white aerial photographs captured by DFO. It is expected that an au-
tomated approach will conserve time, reduce sources of error, and save money for
estimating total pup counts. The algorithm uses image segmentation and pattern
recognition methods to extract objects from aerial images and then classify these
objects as either ‘seal pup’ or ‘not seal pup’.

Each cropped subimage is first enhanced by applying contrast stretching to in-
crease the dynamic range of pixel values. The foreground is segmented from the
background by applying an adaptive thresholding algorithm that divides the subim-
age into smaller regions and then uses between-class variance and histogram skewness
to compute an optimal threshold for each subdivided region. The binary threshold
image is “cleaned” by using Canny edge detection to further define object boundaries,
line dissection to disconnect adjacent objects, and removal of objects based on size

constraints. The Isolate Connected Components algorithm further separates adjacent
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objects with minimal distortion to object shape. Finally, outlier objects are removed
based on area and length measurements.

Nineteen feature measurements are computed for each segmented object. Three
different approaches have been applied to optimize data features prior to training the
classifier; scaling of the data, PCA, and kernel whitening. The latter two methods
use feature reduction, while scaling maintains the original dimension of the feature
space. For PCA, the principal components that contribute less than 1% to the total
variation in the training data are eliminated. This constraint results in 6 principal
components in the transformed subspace. For kernel whitening, a polynomial kernel
of degree 1 is used to transform the data and the number of principal components
depends on the classifier; 13 and 17 principal components are selected for the Parzen
density estimation and SVDD, respectively.

Two one-class classifiers are trained and tested on seal pup data: the Parzen
density estimation and the SVDD. For the SVDD, a polynomial and Gaussian kernel
are tested and compared. For each classifier, the optimal parameter(s) are computed
by maximizing the AUC using 5-fold cross validation on training data. Using the
ROC curve produced from the optimal parameter(s), the operating point is chosen

by selecting &; that satisfies ,Join 1(51—{—511). The optimal parameter(s) and operating

mi
<&<0
point are then used to train the data description. Finally, classifier performance is

evaluated on objects segmented from test data.

5.2 Summary of Results and Conclusions

Automated recognition of harp seal pups in digitized aerial photographs is a non-
trivial task. Aerial images of whelping concentrations may contain a variety of features

including open waterways, sea ice, shadows, adult seals, seal pups and other marine
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life. Sea ice is varied in size, shape, and texture; it may appear flat and smooth
or rough and jagged. All of these features present challenges when attempting to
distinguish seal pups from their surroundings.

The segmentation algorithm must be robust to complex conditions such as uneven
illumination, shadows, occlusions, and objects grouped together. One reoccurring is-
sue with the seal images is that whitecoats and small ice chunks may be similarly
shaped. Another problem is that seal pup pixels and the adjacent background pixels
sometimes share similar gray level values and as a result, these areas are segmented
together as a single object. To address these problems, the segmentation algorithm
incorporates robust procedures such as the adaptive thresholding algorithm and the
original Isolate Connected Components algorithm which attempts to separate indi-
vidual seal objects with minimal distortion to object shape. Even with the variety of
challenges presented, the segmentation algorithm performs good on the majority of
images. Algorithm performance was evaluated as excellent, good, or satisfactory on
93% of seals segmented from 600 images used for training. When applied to 300 test
images, the segmentation algorithm successfully segments 297 seals; therefore, the
algorithm failed to segment only 1% of seals from test data. Of course, the segmenta-
tion algorithm also segments a large number of non-seal pup objects (outliers); 1775
outliers were segmented from training data and 931 outliers were segmented from test
data.

While a large number of outliers were segmented from seal pup data, it is difficult
to know how representative these objects are of the true outlier distribution. Con-
versely, objects from the target class (seal pups) are well-sampled. For this situation,
a one-class classifier is preferred over a conventional classifier. A one-class classifier
is used to describe the target class and then detect new data that is characteristic

(seal pups) or uncharacteristic (outliers) of the target data. Therefore, a well-sampled
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class of outliers is not required.

Classifier performance is affected by how well the training data represents the true
data distribution, the size of the sample, the type and number of object features, and
the complexity of the model. The Parzen density estimation and the SVDD are both
sensitive to the scaling of data and its distribution in subspaces. For both classifiers,
pre-processing the data using scaling and PCA significantly improves results over data
that is not pre-processed. Pre-processing the data using kernel whitening improves
performance for the SVDD but not for the Parzen density estimation. The success of
kernel whitening largely depends on choosing a suitable kernel function and parameter
values.

The ROC curve provides a good way to evaluate classifier performance and choose
an optimal operating point. While the AUC provides a single measurement to com-
pare classifiers, maximizing its value does not guarantee optimal performance on test
data; a trade-off between & and &£;; must also be considered. It can therefore happen
that for a specific threshold a one-class classifier with a lower AUC might be preferred
over another classifier with a higher AUC if, for that specific threshold, the fraction
false positive (&y) is smaller for the first classifier than the second one. A combina-
tion of AUC, &, and & values are considered in this thesis to determine the optimal
classifier.

The Parzen density estimation and the SVDD both produce satisfactory results
on test data. As Table 4.2 shows, the fraction of false negatives is quite reasonable,
ranging from 8.75% to 15.49%. However, the fraction of false positives has a much
broader range and can be fairly high, ranging from 25.54% to 66.27%. The total
number of successful classifications ranges from 62.16% to 81.74%.

The largest AUC value and the smallest £ value for the Parzen method are ob-

tained when the data is pre-processed using kernel whitening. However, the resulting
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&n (and thus the total error) from this configuration is significantly high (46.88%).
Therefore, this approach is considered suboptimal. The smallest value for &y is ob-
tained when the data is pre-processed via scaling (25.54%), closely followed by the &y
value obtained when the data is pre-processed with PCA (25.75%). Since a smaller
&1 value and smaller total error is obtained from the latter configuration, this is
considered the optimal solution for the Parzen density estimation. Using this data
description (PCA + Parzen), 81.74% of test data is correctly classified.

For the SVDD, the polynomial and Gaussian kernels produce similar results. For
both kernels, the smallest & values, smallest total error, and largest AUC values
are obtained when the data is pre-processed using kernel whitening. However, both
configurations produce the largest & values (15.49%). While all other configurations
produce a smaller &;, the kernel whitening approach is still considered optimal because
it produces the largest number of successful classifications (approximately 79% for
both kernels). Since the polynomial kernel produces a slightly smaller &£ than the
Gaussian kernel, this configuration is considered optimal for the SVDD approach.

In summary, pre-processing the data with PCA and applying the optimized Parzen
density estimation produces the best results on test data (81.74% success rate). The
Parzen density estimation with scaled data produces the next best result (81.34% suc-
cess rate), followed by the SVDD with polynomial kernel (p = 1) and pre-processing
via kernel whitening (78.90% success rate). Recall that the segmentation algorithm
failed to extract 1% of seals from test data. Adding this error to the classification
error rate for the Parzen density estimation (18.26%) produces the total error rate
for the optimal system (19.26% error rate = 80.74% success rate).

Density methods produce the best data descriptions when the target distributions
for the training and test data are (approximately) equal. Therefore, it can be con-

cluded that the distribution of seal objects in the training set and test set are very
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similar. However, even for the optimal data description, over 25% of outlier objects
are classified as targets. Therefore, the outlier distribution overlaps the target dis-
tribution to a moderate degree. Unfortunately, creating a tighter data description
to minimize the number of outliers accepted will also increase the number of targets
rejected. Improving the segmentation algorithm may produce a better representative
sample of target objects, minimize the number of outliers segmented, and thus reduce
the number of outliers accepted as targets. In addition, a better separation between
target and outlier distributions may be obtained by another one-class classification
method (such as other boundary or reconstruction methods).

The algorithm developed in this thesis for the detection and classification of harp
seal pups produces promising first results. While this research is just one possible
solution, the development of an automated pattern recognition system for counting
seal pups certainly appears to be feasible. If such a system could significantly reduce
the time and costs for producing population estimates, then it is worth investing in
further research to improve the accuracy and robustness of the segmentation and

classification methods.

5.3 Recommendations

The following are recommendations for future work.

1. Improve segmentation algorithm - While the segmentation algorithm has
a high success rate for extracting seal pups, it also segments a large number of
other, unwanted objects. Improving the adaptive thresholding algorithm and
the techniques that separate adjacent and occluded seals may minimize the

number of outliers segmented. Template matching may also be considered as
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a segmentation approach!. In this case, a finite set of templates that represent

the variety of seal pup shapes would need to be created.

2. Test other one-class classifiers - In a literature search of one-class classifica-
tion applications, the Parzen density estimation and SVDD often produce the
best results. However, there are over 20 one-class classifiers currently available.
It would be of interest to investigate how other one-class classifiers perform on
the seal data. Alternative approaches to consider include other boundary meth-
ods (k-centers, nearest neighbor (NN-d)) and reconstruction methods (k-means
clustering, learning vector quantization, self-organizing maps, diabolo networks

and auto-encoder networks).

3. Combine one-class classifiers - As in any type of classification, one classi-
fier hardly ever captures all characteristics of the data. To improve classifier
performance and increase robustness of the classification, the results of differ-
ent classifiers (which may differ in complexity or training algorithm) could be
combined (77, 97]. Classifiers can be combined in several ways. One approach
is to use different feature sets and combine the classifiers trained on each set.
Another approach is to train several different classifiers on one feature set and
combine these. The effectiveness of combining one-class classifiers has been re-
searched by a number of people in recent years [97, 120, 121, 90}, and it rhay

be worth investigating for the problem studied in this research.

4. Incorporate weights into the total error - The most important feature of
one-class classifiers is the tradeoff between & and &;;. Consider two one-class

classifiers with the following error values:

!The idea of template matching is to create a model of an object of interest (the template, or
kernel) and then to search over the image of interest for objects that match the template.
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Classifier 1 — & = 0.11, &y = 0.44, total error = 0.55

Classifier 2 — & = 0.16, & = 0.38, total error = 0.54

Classifier 2 has a smaller total error (0.54), but only by a small margin. For the
given problem however, it may be more important to maximize the number of
true positives (i.e. minimize &£). To reflect the greater importance placed on
the value of &}, both error values could be weighted (i.e. a&; + B&y, where o
and [ are the weights for & and &y, respectively). Assume that it is twice as

important to minimize & over &y1. Setting a = 2 gives the following:

Classifier 1 — total error = 2(0.11) + 0.44 = 0.66

Classifier 2 — total error = 2(0.16) + 0.38 = 0.70

Now classifier 1 produces the smallest total error. Incorporating weights into
the total error may assist in the choosing the optimal classifier for a particular
problem. For this research, it is assumed that & and & are equally weighted.
However, if the pattern recognition tools developed in this thesis were incorpo-
rated into a software system, the option to weight & and &y differently may be

important to the end-user.

. Compare manual and automated methods on new data - It would be of
interest to compare automated detection and classification results to traditional
manual results on new data. An automated approach would only be practical
(and preferred) if the results were similar to manual detection within a certain
error margin. A small total error rate may be acceptable for the automated
approach (when compared to the manual process) if the time and cost savings

are substantial.
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6. Test data from other surveys - Large format negatives from aerial surveys
must be digitized by a third party company and this process is quite expensive.
Therefore, only the aerial photographs from the 1999 survey were digitized and
provided for this research. However, since 1990, DFO have conducted aerial
surveys of whelping concentrations at four to five year intervals. Therefore,
an abundance of data from other surveys is available and could be digitized
to further test the segmentation and classification algorithms developed herein.
Empirically chosen parameters for the segmentation algorithm (e.g. size con-
straints) may need to be adjusted for other survey data if aerial photographs
were captured at a different altitude. In addition, if the distribution of target
data from other surveys is different from the target distribution of data collected

in 1999, a new classifier will need to be trained.

7. Complete system design - Once the pattern recognition methods have been
studied further and adjusted for optimal performance, they may be incorporated
into a complete software system for estimating pup production of harp seals.
Input to this system would be an original large image (as shown in Figure 2.4)
and the output would be the number and locations of seals in the image. In
addition, it may be possible to include a module for on-line learning; this would
allow end-users to train the classifier on new data sets. It is important to note
that a software system would most likely be an aid for counting seals, not a user
replacement. Manual user quality control would still have to be incorporated

into the system to confirm automated detections.

8. Other survey methods - More and more often, environmental monitoring
problems are turning to the computational world for automated solutions. It is

highly likely that an automated approach for estimating harp seal pup produc-

120



tion will be established in the coming years; the exact form of that approach is
yet to be determined. While this research focused on the current survey method
of using black-and-white aerial photography, another survey method may lend
itself to more robust pattern recognition tools. The feasibility of multi-spectral

scanning, ultraviolet photography, and infrared photography may be considered.
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Appendix A
Pseudocode for ICC Algorithm
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Algorithm 1 Isolate Connected Components
Input: Threshold image It
Output: Label matrix identifying objects
r «— 2 //initialize object labels; 1 is used to label perimeter pixels
N « number of 4-connected objects in threshold image I
SFE « disk-shaped structuring element with radius 2
fori=1to N do
O; « ith 4-connected object
O; « apply morphological closing to O; to remove holes 1 pixel in size
if area(O;) > 230 then
P, «— perimeter of O;
remove perimeter F; to divide O; into component objects
M «+ number of 4-connected component objects
for j =1to M do
O;; « jth component object of O;
if area(O;;) < 15 then
remove O;;
else if area(O;;) > 230 then
P,;; < perimeter of O;;
remove perimeter F,; to divide O,; into subcomponent objects
L «— number of 4-connected subcomponent objects
for k=1to L do
Oijr — kth subcomponent object of Oy
if area(O;j;) < 10 then
remove O
else
label object Oy as r
reattach P,; to Oy using labeling and 8-connected rule
reattach P, to O,;; using labeling and 8-connected rule
apply morphological closing to O using SE
re—r-+1
end if
end for
else
label object O;; as r
reattach P; to O;; using labeling and 8-connected rule
apply morphological closing to O,; using SF
r—r+1
end if
end for
else
label object O; as r
apply morphological closing to O; using SE
r—r+1
end if
end for




Appendix B

Performance of Segmentation
Algorithm on Training Data

The following sections give several examples of how the segmentation algorithm per-
formed on training data. Performance is categorized as excellent, good, satisfactory,
poor, or fallure. The criteria for cach category is given al the beginning of each
section. In the example grayscale images shown below, the seal pup is circled.

B.1 Excellent Performance

Segmentation results are evaluated as “excellent” if the algorithm cleanly segments
100% of the seal pup with no attached artifacts, such as shadows or ice. Table B.1

shows several examples.

Table B.1: Examples of segmentation performance eval-
uated as “excellent”.

2 Segmentation
Subimage Result

v

Continued on next page




Table B.1 - continued

tation
Subimage mﬂ

B.2 Good Performance

Segmentation results are evaluated as “good” if the algorithm segments at least 90%
of the seal pup. A very small part of the seal may be segmented as background and /or
small artifacts, such as shadows or ice, may be segmented as part of the seal object;
this slightly distorts the true shape of the seal. Table B.2 shows several examples.
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Table B.2: Examples of segmentation performance eval-
uated as “good”.

Subi mntntmn
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B.3 Satisfactory Performance

Segmentation results are evaluated as “satisfactory™ if the algorithm segments at least
50% of the seal pup. A portion of the seal object may be segmented as background
and /or artifacts, such as shadows or ice, may be segmented as part of the seal object;
the true shape of the seal is still apparent. Table B.3 shows several examples.

Table B.3: Examples of segmentation performance eval-
uated as “satisfactory”.

Subi m:nutiun

Continued on next page
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Table B.3 —Enntinmd

Result

B.4 Poor Performance

Segmentation results are evaluated as “poor” if the algorithm segments a very small
portion of the seal pup (< 50%), or the seal is adjoined to other objects (e.g. adjacent
ice) which are segmented together as a single object; this does not accurately represent
the true shape of the seal, Table B.4 shows several oxamples,

Table B.4: Examples of segmentation performance eval-
uated as “poor”.

Segmentation
Subimage Result

iy

.

Continued on next page
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Table B.4 - i:unlinund
Segmentation
Result

‘

B.5 Failure

Segmentation results are evaluated as “failure” if the algorithm segments 0% the seal
pup. Table B.5 shows several examples.
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Table B.5: Examples of segmentation performance eval-
uated as “failure”.

Segmentation
Subimage Resul tn
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Appendix C

Hu Moments

The seven moment invariants, ¢;,7 = 1---7, defined in Section 3.5, are often referred
to as Hu moments [122]. This set of moments is invariant to translation, rotation,
and scale change. The Hu moments are derived from the second and third normalized
central moments [68]. For a digital image I, the moment of order (p+ q) is defined as

Mpq = Z Z zPy?1(z, y)
z y

(C.1)

where p,q = 0,1,2,... and I(z,y) is the intensity value at location (z,y). The central

moments are defined as
fpg = Z Z(I - T)P(y - 7)1 (z,y)
x oy

where

The normalized central moments, denoted 7,4, are defined as

Hpq
Mg = —~
i Ngo
where
p+q
=——+1
Y 5 +
forp+q=2,3,...
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Appendix D

Classification Theory

D.1 Error Definitions

As discussed in [77], the total error of function f on a set of independently distributed
training objects is decomposed as:

E(fw, X7) = = 3 e(F (i w), ) (D.1)

where different definitions for the error function ¢ are possible, depending on the type
of f(x;;w). For a discrete valued f(x;;w), the 0-1—loss error is used. This counts
the number of wrongly classified objects:

{ 0, if f(xi;w) =y, (D.2)

o1 (f(xi; W), i) = 1 otherwise.

For real-valued functions f(x;;w) € [—1,1], common error definitions include the
mean squared error (MSE):

emse(f(xi; W), i) = (f(xi; w) — yi)2 (D.3)
and the cross entropy (where the labels should be rescaled to positive values y; =

{0,1}):

Eee(f (3is W), 43) = f (33 w)¥ (1 — f (i w)) 7, (D.4)

D.2 SVDD with Negative Examples

Negative examples (objects which should be rejected) can be used to improve the
SVDD by defining a tighter boundary around the data in the areas where outlier
objects are present. In contrast with the target examples, which should be within the
hypersphere, the negative examples should be outside it.
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For the following derivation (summarized from Tax [77]), target objects are enu-
merated by indices ¢, j and outlier objects are enumerated by [, m. In addition, target
objects are labeled y; = 1 and outlier objects are labeled y; = —1. Again, slack vari-
ables & > 0 and & > 0 are introduced to allow for errors in the target and outlier
sets:

ERa€) =R +C1) &+C Y & (D.5)
i 1
and the constraints:
Ixi—al?< R*+¢&, ||xi—al|*>R*-¢&, &>0,6>0 Vil (D.6)

Objects with &; > 0 are the false negatives and objects with & > 0 are false positives.
Incorporating the above constraints into Equation (D.5) and introducing Lagrange
multipliers oy, oy, v;, Vi gives:

L(R,a,€,a,7) = R+C) &+Cy - wéi—Y né (D.7)
% l % {
- D alR+& - x—alf] - ) alll—al’ - B+ &)
% l

with ; 2> O’al > Oafyl 2 Oa’)/l > 0.
The partial derivatives of L with respect to R, a and &; (&) are set to O resulting

in the new constraints:
Y=y =1 (D.8)
a=> . X — ), X (D.9)
0<ay <Oy, 0<a<Cy Vil (D.10)
When these constraints are substituted into (D.7) we obtain

L = Zai(xi X)) — Y on(xp X)) — Zaiaj(xi £ X;)

l

2 ogag(x1 %) = D 0qam (X1 Xim) (D.11)
I,m

Lj

Equation (D.11) can be simplified when new variables ;' are defined which include
the labels y; = +1:
ai’ = Y; Q. (D].Q)

Index ¢ now enumerates both target and outlier objects. Using ;' the SVDD with
negative examples becomes identical to the original SVDD (Equation (4.25)). The
first two terms in (D.11) collapse to the first term in (4.25) and the last three terms
reduce to the second term in (4.25). Then the constraints in (D.8) and (D.9) become
Y, = 1and a =3 o'x;, and the function fsypp in Equation (4.28) can be
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used. Thus, when outlier examples are available, o;" will be used instead of o; in the
optimization and the evaluation.

One might ask the question: if a SVDD can be trained using two classes (tar-
gets and outliers), then why not use a conventional two-class classifier? The choice
between a SVDD and an ordinary classifier is influenced by both the number of out-
lier objects available for training and how well they represent the target and outlier
distributions. A conventional classifier distinguishes between two (or more) classes
without special focus any of the classes. When a representative sample from the
target class and a large amount of example outliers is available, and when it is as-
sumed that these objects are independently drawn from the same target and outlier
distributions, an ordinary two-class classification problem is obtained. However, the
conventional classifier is expected to perform poorly when just a few outlier examples
are available and the outlier class is undersampled. In this case, the SVDD will work
better because it obtains a close boundary around the target class without requiring a
strict representative sample of the target distribution (some outliers are acceptable).
Furthermore, training the SVDD with sample outliers is intended to improve the
description by obtaining a tighter boundary around the data in areas where outlier
objects are present.

D.3 Kernel Whitening

The following theory is summarized from Tax and Juszczak [114]. Assume the data
Xt is mapped to the kernel space F by some mapping ® : R — F and that the
transformed data is centered in this space, i.e. ), ®(z;) = 0. Now the covariance
matrix C of the mapped data set can be estimated by

C ==Y e@)e@E)" (D.13)

The eigenvectors ¥ and eigenvalues A satisfy

C7 = = 3°(0(z3) - () = AT (D.14)

Equation (D.14) shows that the eigenvectors with non-zero eigenvalue must be in the
span of the mapped data {®(Z;)}, which means that ¢ can be expanded as

U= Z ;D(7) (D.15)
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Multiplying Equation (D.14) from the left with ®(z};) and using Equation (D.15)
gives

%Z(@(@)-@(fj)) (@(fj) - Za@(ﬁ)) = /\Zai(é(f;c)-@(ﬁ)) vk (D.16)

Introducing the kernel matrix K;; = ®(z;) - ®(Z;), the coefficients @ from Equation
(D.15) can be obtained by solving the eigenvalue problem

A6 = K& (D.17)

For normal kernel-PCA the eigenvectors should be normalized to unit length. There-
fore, for each eigenvector ¥%, the &@* are rescaled to

(@ a%) =1 (D.18)

Since we assumed the data is centered in F, the original kernel matrix must be
transformed. Assume K is the n X n kernel matrix of the training data and K** the
m X n matrix of new data. The centered kernel matrix is computed by

K=K* - 1K - K*1,+ 1*K1, (D.19)

where 1, is an n x n matrix and 1} is an m X n matrix, both with all entries 1/n
[118]. It is assumed that the kernel matrices will always be centered using (D.19).

When the coefficients of & are obtained, a new object Z' can be mapped onto
eigenvector * in F by

(2 = (- @(2) = 3 af(®(F) - &(2) = }_ o} K(&, 2) (D.20)

where (5’),1C means the k-th component of vector Z.

The data can be transformed into a representation with equal variance in each
feature direction by slightly adapting the normalization from Equation (D.18). The
variance of the mapped data along component " is

var(X") = =3 (E) = -3 (Z afk(xz,m) = (@'KKE  (D21)

Using Equation (D.17) the variance is constant for all features when, instead of Equa-
tion (D.18), we use the normalization

M (&F - @) =1 for all considered components k (D.22)
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The data set X*r, transformed using the mapping (D.20) with normalization (D.22),
can now be used by any one-class classifier. The dimensionality d’' of this data set
depends on how many principal components 7* are taken into account. All features
now have equal variances and the data is also uncorrelated due to the fact that it is
mapped onto the principal components of the covariance matrix [114].

D.3.1 Chernoff Distance

After applying a suitable kernel whitening to the original data, it is sufficient to use
a simple one-class classifier on the mapped data. The complexity is then moved from
optimizing a classifier to optimizing the pre-processing. In order to avoid a complete
model selection for both the kernel whitening and the classifier, the Chernoff distance
[114] between the target and outlier class can be used to select parameters for the
kernel whitening. This distance is defined as:

Jo = —log [ [ty wo)l_sdé] (D.23)

where s is free to choose such that 0 < s < 1, p(Z | wr) is the data distribution of the
target objects, and p(Z | wp) is the distribution of the outlier objects. Assuming we
have two normally distributed classes with means p; and po and covariance matrices
Y1 and X, the Chernoff distance reduces to:

[l(l — 8)31 + 85o|

) 1
J = Zg 1—3s — T 1 — 8 Z + 82 - H /‘ 10 E E
¢~=35 ( )2 = p1)” [( )21 2] (ke 1) & X[ 2|z

2

In one-class classification it can be assumed that the mean of the outlier class is very
close to the mean of the target class, such that yuo —ur = 0. In addition, by the kernel
whitening, the data is transformed such that 37 = Z, the identity matrix. Taking
these last two details into consideration and setting s = %, the Chernoff distance

becomes: ) T/2+ S0/2)
+ 20
= Zog | AL 204

where Y, is the covariance matrix of the outlier class. The Chernoff distance is
relatively cheap to compute, and thus the expensive optimization of the one-class
classifier and the computation of the AUC for all combinations of kernel definition
and data dimensionality can be avoided. For each kernel definition, a near optimal
dimensionality can be estimated by plotting the Chernoff distance for varied dimen-
sionalities. Only for these combinations of kernel and dimensionality do the one-class
classifier and AUC have to be computed and compared.

(D.25)
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