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Abstract 

Harp seals, Pagophilus groenlandicus, are the most abundant pinniped in the 
Northwest Atlantic. The Canadian and Greenland hunt for the harp seal is the largest 
marine mammal harvest in the world. To ensure a sustainable yield, it is important 
to monitor abundance and population trends on a regular basis. In addition to 
species management, assessing harp seal population is important in estimating the 
consumption of prey by the species. To estimate the total population of harp seals, the 
Canadian Department of Fisheries and Oceans (DFO) uses a population model that 
combines pup production estimates, pregnancy rates, and age-structured removals. 

Currently, the number of harp seal pups are estimated by conducting visual and 
photographic aerial surveys over whelping concentrations. A fixed-wing aircraft, 
equipped with a large format metric mapping camera with motion compensation, 
is used to take black-and-white photographs of whelping areas. To count seal pups, 
manual analysis of aerial photographs is performed by trained scientific personnel 
with extensive knowledge of harp seals and their environment. This process can take 
many months and involve several people. While extensive measures are taken to en­
sure the most accurate pup count, manual identification of seal pups is not always 
conclusive. This thesis attempts to address these issues by developing image process­
ing and pattern recognition tools that automatically detect and classify harp seal pups 
in digitized aerial photographs. Automating this process will reduce the amount of 
time required to compute population estimates and potentially improve the accuracy 
of pup counts. 

The first step in the pattern recognition algorithm is to divide the large digitized 
aerial images into several sub-images for further analysis by the image processing and 
classification tools. The objective of the image processing algorithm is to segment 
and isolate potential harp seal objects to be used in pattern classification. The rigor­
ous image processing component uses a combination of techniques including contrast 
stretching, adaptive thresholding using between-class variance, and a "cleaning" al­
gorithm that employs edge detection, line dissection, and removal of objects based on 
size constraints. In addition, this thesis proposes a unique segmentation procedure 
called Isolate Connected Components that separates connected objects with minimal 
distortion to object shape. 

The image processing routine calculates nineteen features for each segmented ob­
ject. Features are optimized using three different methods: scaling the data, Prin­
cipal Component Analysis, and kernel whitening. One-class classification methods 
use these features to identify an object as 'seal pup' or 'not seal pup'. Two one­
class methods are considered in this research: Parzen density estimation and Support 
Vector Data Description (SVDD). Optimal classifier parameters are determined by 
maximizing the Area Under the Receiver Operating Characteristic Curve (AUC). It is 
shown that the Parzen method performs better than the SVDD with an 82% success 
rate on test data. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

The Harp seal is an abundant, medium sized seal which lives in the North Atlantic. 

The largest harp seal population is the Northwest Atlantic stock. The Canadian and 

Greenland hunt for the Northwest Atlantic harp seal is the largest marine mammal 

harvest in the world. Therefore, it is important to monitor abundance and popula­

tion trends to ensure that these removals are sustainable [1]. Harp seals are among 

the most important pinniped predators in the Gulf of St. Lawrence due to their 

abundance in this area. Large quantities of prey, such as Atlantic cod, are consumed 

by harp seals and other marine mammals impacting the yield of commercial fish­

eries. Therefore, information on population size of harp seals is also important in 

evaluating the magnitude of prey consumption [2]. The Department of Fisheries and 

Oceans (DFO) is responsible for managing the seal hunt and estimating population 

size. The total population model currently used by DFO incorporates estimates of 

pup production, age-specific reproductive rates, and age-structured removals [3]. 

Since 1990, visual and photographic aerial surveys have been flown over whelping 
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concentrations to determine pup production of Northwest Atlantic harp seals at four 

to five year intervals. Photographic surveys use a large format metric mapping camera 

to take black-and-white photographs of whelping areas. To count seal pups, manual 

analysis of aerial photographs is performed by trained scientific personnel who have 

extensive knowledge of the harp seal species. This process is very labor-intensive, ex-

pensive, and potentially error-prone. According to DFO, manually counting animals 

as part of population assessment is one of the most complex and time consuming tasks 

undertaken by the department [4]. An automated approach to counting seal pups in 

aerial photographs will reduce the amount of time required to compute population 

estimates and potentially improve the accuracy of pup counts. 

1.2 Research Objectives 

The main objective of this research is to develop an original automated method to 

recognize seal pups in black-and-white aerial photographs collected by DFO. Such a 

method should conserve time, reduce sources of error, and save money for estimating 

total pup counts. To accomplish this objective, image segmentation and pattern 

recognition algorithms for the detection and classification of harp seal pups are studied 

and implemented. 

This research must also meet Computational Science1 objectives. Computational 

Science studies the use of computers in analyzing, interpreting and solving complex 

scientific problems arising in natural sciences (chemistry, physics, earth sciences and 

mathematics) and engineering. Objectives for this program include training students 

in: 
1 A detailed description of the Computational Science Graduate Program at Memorial University 

of Newfoundland can be found online at http:/ jwww.mun.cajscience/CMSC/index.php. 
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1. state-of-the-art numerical methods; 

2. high performance computing; 

3. use of graphics, visualization, and multi-media tools; 

4. the acquisition, processing, and analysis of large experimental data sets; and 

5. applying these techniques to at least one scientific or engineering discipline. 

The problem addressed in this research is engineering-based and encompasses all 

of these objectives: advanced linear algebra methods are applied in several tech­

niques used in this thesis including Principal Component Analysis, kernel whiten­

ing, and many image processing algorithms; large data sets of target objects (seal 

pups) are acquired, processed, and analyzed by segmentation and classification al­

gorithms; graphics and visualization is inherent in implementing and explaining the 

image processing techniques used; and all algorithms are implemented in MATLAB[5], 

a programming environment designed for the very purpose of solving computational 

problems. 

1.3 Thesis Contributions 

The following contributions have been made to the fields of image processing, pattern 

recognition, and environmental monitoring through this research: 

1. A novel algorithm is designed to address the automated counting of seal pups 

from digitized aerial photographs. This process uses a combination of image 

segmentation techniques and classification methods. 
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2. A shape-preserving image segmentation algorithm has been developed to isolate 

seal pups from highly cluttered background. The existence of shadows and the 

large variation of pixel values over seal objects pose unique challenges. To iso­

late regions of interest, this new approach first utilizes contrast stretching and 

adaptive thresholding using between-class variance and histogram skewness. A 

"cleaning" algorithm is then applied to the threshold image using edge detec­

tion, line dissection, and removal of objects based on size constraints. Finally, a 

unique algorithm called Isolate Connected Components further isolates target 

objects using object labeling and removal/growing of perimeter pixels. 

3. Instead of applying a generic classifier, a relatively new classification technique 

called one-class classification is used to robustly identify target objects. Two 

different one-class methods have been applied for classification of seal pups, 

namely the Parzen density estimation and the Support Vector Data Description. 

4. Initial recommendations have been made to DFO for developing a fully auto­

mated software tool for population estimation of harp seal pups. 

1.4 Thesis Organization 

This document is organized into five chapters. Chapter 2 describes background in­

formation on the harp seal species and examines the manual process currently used 

to count seal pups in aerial images. A literature review on computer-aided systems 

used in ecological science and environmental monitoring is conducted with a focus 

on automated population assessment research. This is followed by a description of 

the general approach used in this research to develop a computed-aided system for 

recognition of seal pups in aerial images. Chapter 3 describes the image segmentation 
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algorithm used to extract potential seal pup objects from aerial images and defines 

the features used to represent these objects. Chapter 4 focuses on the development of 

a classifier for harp seal pups. An overview of one-class classification theory is given, 

followed by a description of the one-class classifiers applied to the problem at hand, 

the Parzen density estimation and the Support Vector Data Description. Classifier 

optimization and feature reduction techniques including Principal Component Anal­

ysis and kernel whitening are reviewed. Results are presented including false positive 

and false negative rates on each classifier tested. Chapter 5 summarizes the results 

and provides recommendations for future work. Throughout the thesis, a certain de­

gree of familiarity with introductory statistics, image processing and classification is 

assumed. Non-trivial concepts are explained within each chapter where necessary. 
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Chapter 2 

Background 

This chapter presents background information on the harp seal species. A description 

of recent methods for assessing the Northwest Atlantic harp seal population provides 

motivation for this current work. This is followed by a summary of computer-aided 

systems used in ecological science and environmental monitoring, in particular, auto­

mated population assessment of wildlife species. Finally, the automated approach for 

recognizing harp seal pups in aerial images developed in this research is presented. 

2.1 Harp Seals 

Harp seals, Pagophilus groenlandicus, are the most abundant pinniped (fin-footed 

animal) in the Northwest Atlantic [1, 6]. They owe their name to the irregular 

horseshoe-shaped band of black straddling the back in the adult male (see Figure 

2.1). This band, or "harp", unites across the shoulders, curves down toward the 

abdominal region and then back toward the posterior flippers where it abruptly dis­

appears. The background color of the pelt is steel blue when wet and pale gray when 

dry. The head and tail are black, while the anterior flippers and belly are whitish. 
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\cluh frmales a~ 'irnilarly palt(>rned. ~<•'<pi that thr horp, thr brad. and the tail 

are II>UAII)· IIOm,...•hat lighter in colour. Some adult females ha\0 irr•gular dark gra)' 

'l><>t• un th•• I>IU'k "ith no dearly defined hiU'I> (7). \lok hor1> ""'''a~ onl~ •ligbll~· 

1•'11''' than fpmale. with adul"' averagilljl 1.6 rntler. in length and 130 kilograms in 

wdghl (8). 

f'l.KUn": 2.1: .\rlult male- harp S('al. From DFO marinr rnnnunal -.M""tion. 

fh•rp SC"al~ ntiRT&l(" annually bet"wn An:tK· and t\Ub- \n·uc ~orb of the .:\"orth 

At1anu< 0t'Mln Thry ~ confined to th~ ,.i<k-h O<'J>IIfllted I"'J>Ulations breeding 

in thr \\'hitf! SM north of Russia. th(' .. \\.N't lN'"' m':.Rr Jan \1a~·an J.,1and bOutheast 

of Si)it,brrgrn, Xorway, and off Xewfoundland Til{' ~or1hw<"St Atlantic harp seal 

IK>JlllhHiou, hi!'!lnrkally th<' largest, summers in Uw C'nnacliau ,\ relit and Gr('enland. 

lu lt\lt' St•ptt•rnbt•r when new Arctic ice i!:i forming, the 1,('nl" MarL thrir journey south 

along thr ru."'L and west coasts of Baffin Is land and t'~\.'ILWI\rd through Hudson Strait. 

l"hf nugrnting group of S('als S<'pa.ratf' into ~wu hfrds; mw hn•,•cling on ~he southward 

drifton~ \rrtor park ko off Southern Labrador and \orthrrn \rwfoundland {called 

tbe "Front" ~ub-populatlon) and the other bl't"f'dm~ on w••m thf' Gulf of St. lawrl'"DC'l'" 

nrar th• \la~<laltn bland> {railed the "Culr •ni~IM~•olatonn). During JanUM)· and 

1-"ebruAry sral!i di"'JM'I"'i(' 1rddely and feed mt«.>ru;l\l.'ly. h, .... ting L" particularly important 

for )>n~lftn1 ff'"rnAIM, for lhl'"y ncccJ <'DC'Tg\ lO SUJ>J>ort tht t'IIUTUII•U~ d('m31.d!> Of their 

rapidl)ll'''"'i"K off,pring during lactation (7). 

Prf'gnnnt frmal('S give birth, or whelp, bt'Vl'ral day8 nftf'r t hry have hauled out onto 
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~he winter pack ice in late l.<'el>ruary or early March. Female:; nurse a :;ingle pup (twins 

are uncommon) for approximately tweh·e days and then mate and disperse. Ncwbom 

pups arc about 85 ccntimC"Wrs long, weigh abou~ 11 kilograms and are yellowish in 

colour. ln about 3 days their fur turns to a Huffy white from which the pups derive 

the name whitecoat (sec Figure 2.2). 'I'he whitccoat moults its white fur at about 

three weeks of age. Large moulting conoomrations, called patches, form on the sea ice 

off :'-lorthe~tern Newfoundland and in the Northern Gulr of St. Lawrence in April 

and );lay (sec figure 2.3). Afwr the moult, the seal pups d isperse and evcutually 

migrate north again [8). 

Figure 2.2: llarp seal pup, a lso called a whitecoat. From DFO marine mammal soction. 

2.1.1 Population Assessment 

Harp seals are harvested c..-ommerclally and for subsistence purposes in Atlantic and 

Arctic Canada and from waters around Greenland. Harps arc also taken a.s hy-ea.tch 

in commercial fisheries. Commercial harvesting of the specie:; date:; back to the early 

elghteenth century. The Canadian and Greenland hunt for Northwest Atlantic harp 

seals is the largest marine mammal harvest in the world. To ensure a sustainable yield, 

it is important t.o monitor abundance and population trends on a regular basis. In 

Canada, the commercial harvest is limited through a management plan that outlines 

management objectives, cat<:h IC"vcls, methods of hunting1 and seasonal and regional 
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figurf' 2.3: \lap or four whelping ronctntratiHfl!'i ICK'llU'(l111 tht Gulf of St. Lav..-rence 
and orr ~t·wfoundland and Labrador during \1arth 200 I. Shading indicates areas 
covrrt'd hy rrc·ounoissan<Y surveys condut'trd by OF'O. The gt•ncral direction of drift 
is indicated by the arrows. From OF01 200 l llnrp 541a l Sun·~·y (6J. 

do.~ut·~ II, 9J. The objective of thi!:i (>lan iH to C'llfHII'I' that. t lw population docs not 

dt'('line b<•low a prN'autionary reference lc\'t'l. 

\lnriuc• nuumnals, becauS<' of th('ir largr si1t" and nhundtH1C'l', may have an impor-

cant infturncr on the btructure and function of mAn)· marmr ~ystrm~ (10]. One 
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The total population of harp seals cannot be counted directly. During the summer, 

surveys of the total population are impractical because harp seals are distributed 

widely across the Arctic and North Atlantic. Seals congregate during whelping and 

moulting periods, but not all of the population is present on the surface at any one 

time and place. However, whitecoats remain on the ice while being nursed. Therefore, 

seal populations can be assessed by estimating pup production as a first step. This 

is combined with information on pregnancy rates and age-structured removals to 

construct a total population estimate [3, 8]. 

Prior to 1990, the annual pup production of harp seals was estimated using a 

variety of techniques including survival indices, catch-at-age analysis, sequential pop­

ulation models [11, 12, 13, 14, 15], aerial photographic surveys [16, 17] and mark­

recapture experiments [18, 19]. Unfortunately, these different techniques often pro­

duced conflicting estimates. Since 1990, pup production has been estimated using a 

combination of photographic and visual aerial surveys [6, 20, 21]. By consistently us­

ing these methods, comparable estimates can be used to determine if pup production 

has increased in recent years. 

2.1.2 Aerial Visual and Photographic Surveys 

Whelping concentrations are identified by conducting fixed-wing and helicopter recon­

naissance surveys of areas historically used by harp seals. Once located, abundance 

estimates of seal pups are determined using visual and photographic methods. 

Visual surveys are flown via helicopter over the whelping concentrations. A series 

of equally-spaced parallel lines, called transects, are laid out prior to the flight. As 

the transects are flown, two observers seated in the rear of the helicopter count all 

pups within a pre-defined visual area on each side of the aircraft. Correct altitude and 
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transect spacing are maintained using a radar altimeter and GPS navigation systems 

[6). Such surveys are not always practical since they can only be conducted in good 

weather conditions and with the assistance of a support vessel. 

Photographic surveys are advantageous over the visual method since they allow 

personnel to scan for seals in a laboratory setting after the survey is complete. A 

fixed-wing aircraft, equipped with a large format metric mapping camera with mo­

tion compensation, is used to take black-and-white photographs of whelping areas 

(Figure 2.4). Surveys are conducted at a fixed altitude. Transect lines and spacing 

for all surveys are mapped prior to the flights to ensure complete coverage of the 

patches. Any overlap between photos within a transect is removed prior to analysis. 

Correct altitude and transect spacing is maintained using barometric altimeters and 

GPS navigation systems. Ice drift is monitored by satellite transmitters to ensure 

that transects remain independent [20). Although the general method for conduct­

ing photographic surveys has been consistent since 1990, physical parameters such as 

altitude of surveys and location of transect lines over whelping concentrations may 

vary. A description of the physical parameters, camera equipment, and film used to 

capture images for this research is given in Section 3.2.1. 

2.1.3 Manual Photograph Analysis 

Analysis of aerial photographs is performed by readers, trained scientific personnel 

with extensive knowledge of harp seals and the environment. Photographs are exam­

ined by several readers using an illuminated hand-lens (7-8X mag.) or a rail-mounted 

low magnification binocular microscope. To standardize the readers prior to the ac­

tual readings, each examines a common series of photographs and compares identified 

seals. Once the cues used to identify seals are consistent among readers, all photos 
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are read once by each reader. For each photograph, the number and position of all 

pups are recorded on a clear acetate overlay. 

Manual identification of harp seal pups is not always conclusive, even for the very 

experienced reader. Therefore, measures are taken to ensure the most accurate final 

reading. After all photographs are examined, each reader re-reads a series of their 

photographs in sequence to determine if identification of seals has improved over the 

course of the readings. Readings of photographs continue until the counts from the 

first and second reading differ by less than 5%. If pup counts differ by more than 5%, 

the counts from the first reading are replaced by those from the second reading [6]. 

To correct for misidentified pups, a series of randomly selected frames for each 

patch are examined by all readers. All resulting acetates are then overlaid and re­

examined by a few experienced readers to determine a 'best estimate' of the number 

of pups present. Any pup that cannot be positively identified is not included. The 

original counts are regressed on the best estimate to determine a correction factor for 

each survey and reader. The corrected counts for each photograph are then summed 

to obtain the corrected count for each transect. The variance associated with the 

reading corrections is summed over transects to estimate the total measurement-error 

for the survey and added to the sampling variance. A correction for the temporal 

distribution of births and loss of pups, due to the dispersion of ice packs or pups in the 

water, may also be applied to total pup estimates. For a review of the mathematical 

equations used for estimating total pup production and error variance, please refer to 

Stenson et al. [20, 22]. 

Manual analysis of aerial photographs can take many months and involve several 

people. Each survey can take up to 3 person-years to analyze and manpower costs are 

quite high. The purpose of this work is to initiate an automated process to perform 

the activities described above in order to improve accuracy and reduce time and costs. 
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2.2 Previous Work 

In recent years, pattern recognition and computer-aided systems have become an 

important tool in ecological science and environmental monitoring. Such systems are 

being employed for species identification, population counting, and determining the 

size of organisms. It has been shown that automating these tasks produce faster and 

more accurate results when compared to manual implementation. 

The practice of species identification is one area where computer-based systems 

is a growing trend. Worldwide, there is an increasing need for biodiversity monitor­

ing, while at the same time the number of trained taxonomists declines. Demand 

for routine identification far outstrips the capabilities of the taxonomic community 

[23]. Systems have been developed for automated species identification through hair 

patterns [24], genomic data [25], sound [26, 27, 28] and image analysis [29-37]. The 

latter has been used to identify zooplankton [29], moths [30], spiders [31, 32], stonefiy 

larvae [33, 34], and other insects [35, 36, 37]. Image-based species classification sys­

tems are often trained on images of dead specimens in controlled lighting conditions. 

Live specimens in their native habitat may move when an image is being captured 

and lighting conditions are typically unpredictable. The demand for computer-based 

systems that can automatically identify the species of live plants, insects, or animals 

from digital images or recordings is surely to increase in the future [30]. 

Pattern recognition and computer-aided systems have also been developed for de­

termining the size of organisms and counting populations. Sonar systems have been 

employed for automated fish sizing and counting [38, 39]; thermography and multi­

spectral scanners have been tested for detecting and counting deer [40, 41] and geese 

[42, 43]; and image analysis programs have been designed for determining popula­

tion size of several species including plankton [29, 44], stonefiy larvae [34], waterfowl 
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[45, 46, 47, 48], penguins [49], whales [50], sea-lions [51], and caribou [48]. 

One of the most common image analysis methods for estimating population size 

of wildlife is counting animals in aerial photographs. Traditionally, this approach has 

been conducted manually. For example, manual analysis of aerial images has been 

used to count arctic seabirds [52], Adelie penguins [53], flamingoes [54], caribou [55], 

elk [56, 57], beluga whales [58], and seals [59, 20, 6]. However, manual counts from 

aerial photographs are labor-intensive and can be subject to considerable error. While 

computer-aided wildlife census may save time and improve accuracy of counts, limited 

research has been conducted in this area [48]. The following paragraphs summarize 

recent efforts in automating population counts from aerial images. 

In 1988, Gilmer et al. [45] conducted aerial photographic surveys of snow geese 

and Ross geese with a hand-held camera and high resolution film. After processing, 

negatives were masked to eliminate areas without geese and then enlarged onto photo 

paper. Photos were digitized using a linear array image-scanner and read into a 

computer for analysis. The number of geese within two small polygons (training 

sites), chosen at random, provided the training statistics necessary for determining 

threshold values and goose-per-pixel relationships. Threshold values partitioned the 

image into two classes, 'goose' and 'non-goose' (water, soil, vegetation). The threshold 

value was chosen iteratively by visually comparing the density-sliced, digital images on 

the display monitor with the original aerial photos. The area of an image (in pixels) 

classified as 'goose' was divided by the average area of a single goose (computed 

manually using the training sites) to estimate the total number of geese on the photo. 

This early attempt at automatically counting geese in aerial photos provided fairly 

accurate counts of white geese at significant savings of time and effort. However, 

results may vary if background habitats contain density values corresponding to those 

of the images being quantified, and will depend on the size distribution and spatial 
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orientation of birds on the photograph. 

In 1990, Bajzak and Piatt [46] presented a semi-automated technique for computer­

aided counting of snow geese from aerial images. Besides counting birds, this method 

can be used to sort birds into size and tonal (photographic density) classes. A trans­

parency is produced from the aerial film and then digitized using a scanning micro­

densitometer. The digitized image is analyzed using two computer programs. The 

first program produces a printed output of density values from a specified sub-image 

which is used to manually determine the required parameters for computer identifi­

cation and counting. These parameters include tonal range of snow geese and the 

minimum and maximum number of pixels that represent each bird. After performing 

experiments to fine-tune these parameters, the second program identifies individual 

birds based on these parameter values, counts the number of pixels per bird, and 

calculates the minimum, maximum, and average densities for each identified bird. 

Final results showed only a 2.3% difference between visual and computer counts, an 

improvement from Gilmer et al. [45]. The total time required to analyze an image was 

reduced even though preliminary data analysis and establishing relevant parameters 

is time consuming. 

A more automated approach was developed by Cosine et al. [51] in 1995 to count 

sea-lions in aerial images, video, or still pictures. A binary image is first produced by 

thresholding an enhanced edge image. Objects are manually identified by the user as 

'sea lion' and 'not-sea lion' for the first image frame in the video. For each object, 

basic features (e.g. size, shape, mean, standard deviation) and a specialized intensity 

gradient across the object are computed and stored in a database. This information 

is used to train a nearest-neighbor classifier [60] that is applied to subsequent video 

frames to discriminate 'sea lions' from 'not-sea lions'. The results indicated good 

agreement between manual and automated counts. 

16 



In 1996, Cunningham et al. [47] adapted Macintosh-based, public-domain soft­

ware to create DUCK HUNT, a semi-automated program for counting waterfowl. 

The software accesses digital images and, if necessary, performs interactive enhance­

ments using spatial and spectral processing. Objects to be counted are selected by 

their spectral reflectance using interactive density slicing of images. When all objects 

of interest are highlighted, the mouse cursor is used to mark a sample of highlighted 

objects to define size and shape parameters for objects of interest. A counting routine 

then counts objects with similar features. The selection parameters used for counting 

can be saved and used for processing other images with similar optical characteristics. 

This technique showed promising results, but is semi-automated. Efficient application 

of this program depends on high contrast between objects of interest and background, 

large concentrations of objects of interest, separation of individuals, and consistent 

image quality. 

In 2003, Laliberte and Ripple [48] used public-domain image-analysis software, 

ERDAS Imagine[61] and ImageTool[62], to assess accuracy of counting wildlife from 

remotely sensed images. Their objective was to develop a method that was simple 

enough to permit widespread use, requiring only basic knowledge of image processing 

techniques. Four illustrative case studies were chosen: a black-and-white aerial photo 

of snow geese on water using a mapping camera; a color aerial photo of Canada geese 

using a hand-held camera; a black-and-white aerial photo of caribou using a map­

ping camera; and a high-resolution satellite image (IKONOS) of cattle. The general 

approach involved windowing out smaller sub-images, applying filters to enhance the 

images, separating animals from the background by manually thresholding based on 

sub-image histograms, and then using spectral and area attributes to separate single 

animals from groups for counting purposes. Using manual counts for comparison, 

computer count errors were computed to be 2.8% for the snow geese image, 4.4% for 
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the Canada geese image and 10.2% for the caribou image. The test with the satellite 

image performed satisfactorily and showed promise for future applications, however 

ground-truth data was not available to compute error rates. 

In 2004, Trathan [49] derived population estimates of Macaroni penguins using 

computer-based image analysis of color aerial photographs digitized with a pho­

togrammetric scanner. Using MATLAB, images are divided by defining a separate 

polygon around each colony of penguins. Each colony image is segmented into a grid 

for further analysis. Within each grid square, or region-of-interest (ROI), descriptive 

statistics are used to select the color band (red,green,blue) that best discriminates 

between penguins and their background. A random line transect covering several pen­

guins is drawn through the ROI. A smaller random area within the ROI is selected 

and a histogram of pixel values computed. Pixel values along the transect line and 

from the pixel histogram are used to compute a threshold value for the image. After 

the threshold is applied, pixel values classified as penguins are smoothed with a me­

dian filter and a second threshold is applied to eliminate any remaining background 

pixels. The pixel-area of resulting blobs is used to remove objects not characteristic 

of penguins. Each separate ROI is reassembled into a single image and an automated 

routine is applied to count the number of birds present within the colony. Results were 

highly correlated with manual photograph counts. However, many of the steps de­

scribed above are only semi-automated (e.g. defining ROis, inspection of histograms, 

selecting a threshold) and therefore the process is time consuming. 

In 2006, Mills [50] developed an automated image analysis system, called Ma­

rine Mammal Detector, to detect and classify beluga whales in digitized aerial pho­

tographs. In general, a filtering algorithm masks image pixels that are considered 

"unreadable" (land, sun glare, extensive wave crests, image borders). A specialized 

adaptive thresholding technique is used to segment potential whales and then a size 
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filter is applied to remove objects that are obviously not whales. Segmentation is 

improved by applying a watershed algorithm and further thresholding to separate ad­

jacent whales. A Support Vector Machine [63] classifier is used to classify objects as 

either 'whale' or 'not-whale'. To optimize the classifier, a genetic algorithm is applied 

for feature reduction and classifier parameter calibration during training. Testing of 

this method demonstrated an excellent separation of classes and a low false positive 

rate. 

In 2004, DFO and Memorial University of Newfoundland initiated research in the 

development of an automated system to identify harp seal pups in aerial photographs. 

In an initial attempt to tackle this problem, Hogan et al. [64] used Matrox Inspector 

4.1[65] and MATLAB to perform image processing and analysis methods to segment 

objects characteristic of seal pups. A combination of image filtering, seeded region 

growing and morphological operations were employed to segment target objects. Error 

rates on this method were not available. An exhaustive search could not find evidence 

of any other automated system to identify harp seal pups in aerial photographs. The 

research conducted here is the first attempt of a more complete approach that includes 

segmentation, feature analysis and classification of seal pups. 

Table 2.1 gives a comparative summary of the aforementioned efforts in automated 

population detection and counting in aerial images. The first two columns list the 

author and year of the research and the species being studied. The third column 

specifies whether the segmentation algorithm is fully automated, manual (requires 

human interaction for each step), or a combination of the two (semi-automated). The 

fourth column specifies if a classification algorithm is applied and the final column 

gives a brief description of the segmentation and classification methods (if applicable). 
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Table 2.1: Summary of recent efforts in automated population detection and counting 
from aerial images. 

Author, Species Segmentation Classification Methods Used 
Year 
Gilmer, Geese Semi- No Training statistics (threshold 
1988 [45] Automated values and goose-per-pixel 

relationships) acquired from 
training sub-images are used 
to partition image into 'goose' 
and 'non-goose' classes and 
then estimate total geese in 
photo. 

Bajzak and Geese Semi- No Manually selected parameters 
Piatt, 1990 Automated (tonal range, min and max 
[46] pixel values) in specified sub-

image are used to identify tar-
get species in remaining im-
age(s). 

Gosine, Sea-lions Semi- Yes Segmentation of ROis using bi-
1995 [51] Automated nary edge image produced by 

thresholding. Object features 
and specialized intensity gra-
dient used to train a nearest-
neighbor classifier. 

Cunningham, Waterfowl Semi- No ROis selected using spectral 
1996 [47] Automated reflectance. Size and shape pa-

rameters of ROis used to iden-
tifyjcount objects with similar 
features. 

Laliberte Geese, Manual No ERDAS Imagine and Image-
and Ripple, caribou Tool are used to segment 
2003 [48] and cattle sub-images using filtering and 

thresholding and to analyze 
spectral and area attributes. 

Trathan, Penguins Semi- No Segmentation using descriptive 
2004 [49] Automated statistics, various thresholding 

techniques and median filter-
ing. 

Mills, 2006 Beluga Automated Yes Segmentation using filtering, 
[50] whales adaptive thresholding, and a 

watershed algorithm. Clas-
sification using an optimized 
SVM. 

Hogan, Harp seal Automated No Segmentation using filtering, 
2005 [64] pups region growing and morpholog-

ical operations. 
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2.3 The Approach 

Pattern recognition is the act of taking in raw data and making an action based on 

the "category" of the data [66]; it aims to classify patterns in data based on either 

a priori knowledge or on statistical information extracted from the patterns. Appli­

cations of pattern recognition now include: character recognition; target detection; 

medical diagnosis; biomedical signal and image analysis; remote sensing; identification 

of human faces and of fingerprints; reliability analyses; socioeconomics; archaeology; 

speech recognition and understanding; machine part recognition; automatic inspec­

tion; and many others [67]. Such systems are quite complex and can typically be 

partitioned into five main components: 

1. Sensing - a sensor converts physical inputs, such as images or sounds, into 

signal data; 

2. Segmentation - sensed objects are extracted from the signal data; 

3. Feature extraction - object properties, or features, are measured; 

4. Classification - a classifier uses features to assign the sensed object to a cate­

gory, or class; and 

5. Post-processing - a post-processor uses the output of the classifier to recom­

mend actions. 

Using these five components, a simplified system for the recognition of harp seal 

pups is presented in Figure 2.5. In the research presented here, steps 2 through 4 are 

addressed: segmentation, feature extraction, and classification. In the design of these 

components, a number of different activities are considered: collection of training 
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Figure 2.5: Simplified pattern recognition ::;y:;tem for harp seal pups. 

and test data, rhoosing distinguishing features, deciding on a classification method, 

training the cl8.';!;i6er, and C\'aluati11.g its performance on test data. 

Training and test data are extracted from aerial images u::;ing a segmentation 

aJgoriLhm. &>gmcntation of nontrivial images is one of the most difficult tasks in image 

pro<..-essing. It involve::; disLinguishing between obj~ts-<>f-intcrest and '1the rest", al'i<> 

referred to as the background. In segmenting images of whelping areas, the object::; of 

interest are harp seal pups and C\'erything else (o('('an, iCX', land, other animals, etc.) 

comprises the background. A combination of image processing Lechniques incloding 

contrast stretching, adaptive thresholding, edge detection, line dis:;ectiou, and au 

original algorithm called Isolate Connected Component.• arc used to segment seal 
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pups. Feature measurements are then computed for the extracted seal pup objects. 

A detailed description of the segmentation algorithm and object features is given in 

Chapter 3. 

Due to a variety of objects and lighting conditions in input images, it is highly 

unlikely that the segmentation algorithm will work perfectly for every image (i.e. 

extract every seal pup and only seal pups). Therefore, the goal is to maximize the 

number of seal pups segmented while eliminating as much background as possible. 

If a background object is incorrectly segmented as foreground, it then becomes the 

responsibility of the classifier to identify it as a non-seal pup object. 

A classifier is a function that takes a set of features that characterize an object 

and uses them to determine the type, or class, of each object. In many classifica­

tion problems explicit rules do not exist to categorize an input object, but examples 

of objects from each defined class can be obtained. Therefore, a classifier can be 

constructed based on a finite set of pre-labeled training examples. 

In a conventional multi-class classification problem, training examples are avail­

able for two or more classes. In a one-class classification problem, it is assumed that 

information for only one of the classes, the target class, is available; information about 

all other objects, or outliers, is minimal or not available. The objective is to define a 

boundary around the target class so that it accepts as many target objects as possible 

while minimizing the chance of accepting outlier objects. 

For the current research, a one-class classification approach is very appropriate. 

The target class consists of segmented seal pups for which ample training data is 

available. While some outlier data is available (e.g. sea ice, ocean), it is unknown 

whether these samples are well-representative of all possible non-seal pup objects. 

Therefore, these objects are grouped into the outlier class. For training the classifier, 

only objects segmented from training data that are verified as seal pups will be used. 
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Verification is performed by comparing segmented objects with ground-truth images 

provided by DFO. For testing the classifier, all objects segmented from test data are 

input and then labeled as either 'seal pup' (target) or 'not seal pup' (outlier). It is 

important to note that the training and test data sets are mutually exclusive. 

Many different models have been proposed for one-class classification and these are 

categorized into three approaches: density estimation, boundary methods, and recon­

struction models. In this research, two one-class classifiers are considered: Parzen den­

sity estimation (density method) and the Support Vector Data Description (boundary 

method). A description of these classifiers and how they are optimized and applied 

in this research is given in Chapter 4. 
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Chapter 3 

Image Segmentation 

This chapter explains the segmentation algorithm used to extract target objects (seal 

pups) from the aerial photographs collected by DFO. First, a brief introduction to 

image processing and segmentation is given followed by a description of how the aerial 

photographs were captured, digitized, and reduced to manageable size. Next, a review 

of challenges presented by the complex images under study is given. This is followed 

by a detailed account of the segmentation algorithm which includes: contrast stretch­

ing; adaptive thresholding using between-class variance and histogram skewness; a 

"cleaning" algorithm that uses Canny edge detection, line dissection, and removal of 

objects based on size constraints; and an original procedure called Isolate Connected 

Components (ICC) that separates adjacent objects with minimal distortion to ob­

ject shape. Segmentation results on training and test data are given. Finally, object 

features used by the classification component are described. 
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3.1 Introduction 

An image may be defined as a two-dimensional function, I(x, y), where x and y are 

spatial coordinates, and the amplitude of I at any pair of coordinates (x, y) is called 

the intensity or gray level of the image at that point. When x, y, and the amplitude 

values of I are all finite, discrete quantities, the image is called a digital image. Each 

discrete (x, y) coordinate in a digital image is referred to as a picture element or pixel 

[68]. 

The field of digital image processing refers to processing images by means of a 

digital computer. For the purpose of digital processing, images are stored as two­

dimensional arrays (matrices) in which each element of the matrix corresponds to 

a single pixel in the displayed image. Digital images require so much storage and 

computational power that progress in the field of digital image processing has been 

dependent on the development of digital computers and of supporting technologies 

that include data storage, display, and transmission. The first computers powerful 

enough to carry out meaningful image processing tasks appeared in the early 1960s. 

Since then, image processing techniques have been used in a wide variety of fields in­

cluding computer vision, robotics, artificial intelligence, remote sensing, manufactur­

ing, civil engineering, astronomy, geology, geophysics, biology, physiology, medicine, 

aerospace and defense, environmental monitoring, agriculture, marine sciences, crime 

and fingerprint analysis, movies and entertainment, and multimedia [69, 70]. 

When analyzing objects in images it is essential to distinguish between the objects 

of interest and "the rest", also referred to as the background. The techniques used 

to find the objects of interest are typically referred to as segmentation techniques -

segmenting the foreground from the background. In segmenting images of whelping 

areas, the objects of interest are harp seal pups and everything else (ocean, ice, land, 
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other animals, etc.) comprises the background. All subsequent interpretation tasks -

feature extraction, object recognition, and classification - rely heavily on the quality 

of the segmentation process [71 J. 

Segmentation of nontrivial images is one of the most difficult tasks in image pro­

cessing. There is no universally applicable segmentation techniques that will work for 

all images. The choice of one segmentation technique over another is dictated mostly 

by the particular characteristics of the problem being considered. Image segmenta­

tion algorithms are generally based on one of two basic properties of intensity values: 

discontinuity and similarity [68]. In the first category, the approach is to partition an 

image based on abrupt changes in intensity, such as edges in an image. The principal 

approaches in the second category are based on partitioning an image into regions 

that are similar according to a set of pre-defined criteria. Thresholding, region grow­

ing, and region splitting and merging are examples of methods in this category. For 

a detailed overview of image processing and segmentation techniques, please refer to 

Woods and Gonzalez [68]. 

3.2 Data Set 

This section explains how the seal pup data was acquired, converted to digital format, 

and reduced in quantity to maximize computational efficiency. Features typically 

found in aerial images of whelping concentrations are discussed, along with challenges 

presented by these features. 

3.2.1 Data Acquisition 

The harp seal data examined in this research was collected by DFO in 1999. Al­

though the general methods for conducting visual and photographic surveys have 
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been consistent since 1990, physical parameters such as altitude of surveys and lo­

cation of transect lines over whelping concentrations may vary. The methods and 

parameters described here were used to estimate harp seal pup production for 1999 

and are explained in detail by Stenson et al. [20]. 

Fixed-wing photographic surveys were flown using two planes equipped with 23 x 

23cm format metric mapping cameras (Zeiss RMK/ A) with a motion compensation 

mechanism and Kodak Double-X (2405, ISO A4000) aerographic black-and-white 

film. The cameras were fitted with a 150mm Sonnar lens, and surveys were conducted 

at constant altitude of 183 meters. Each aerial photograph covers a geographical area 

of 274.3 meters squared. As explained in Section 2.1.3, trained readers analyze each 

developed photograph and record the position of all pups on a clear acetate overlay. 

Photographs with manually identified seal pups are known as ground-truth images and 

are used to select data for training and testing the segmentation and classification 

algorithms. 

3.2.2 Data Digitization and Reduction 

In order to implement an automated, computer-assisted approach to detecting and 

counting seal pups, it is necessary to convert aerial photographs to digital format. 

Aerial photographic film requires specialized equipment that is capable of scanning 

large format negatives at high resolution. Therefore, the images were scanned by a 

third party company that specializes in such tasks. Each scanned image was saved in 

TIFF (8-bit) format at a resolution of 907 dpi resulting in a total image size of 8430 

x 8429 pixels (approximately 71 mega pixels). 

A significant amount of computer memory is required to store and perform op­

erations on such large images. In order to maximize computational efficiency, the 
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71 \(Jl iJJIIlR<'l'l urr divid<'Cl into more manageable .,uhilnRg<~. l11 a C1)111pl<'lP sort.warc 

syfoit('m for NJuntiug !K".al pups, this St('p 'A'OUI<i I)C'; automAt('(!, an original large image 

\\OUid t~ lni)Ut to the system, analyzed for areas likf·lv to f'nDIAJn 1'('81 pua:-s. and th~ 

an-as \\uuld be automAtic-ally di\·idOO into 'uhmlagt.,. for furtht'r proct'SYog. A pre. 

1>~•nx 'trp may exist in which cenain l't'Rion~ or fc ~nun~ 10 the original irnagt 

are ma~k('tl uut ()riOr to C'rt'ating subimagM. Exnmpl~ include dark open watervoa._v~ 

thnt would camouHage seal pup:; and \1\bl 8f'{'3S of l'ilnooth M'a k<' w1th homogeneous 

II"'Y l<•V<•I• that dearly do not contain S<als (HA'e Figure 3.1). Ma.kiug out the.e 
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features before processing would reduce the complexity of the dat.a set and improve 

computational time. 

\\ihile image pre-processing and cr('ating suhimagcs arc necessary components of 

a complete software system, this research focuses exclusive1y on segmentation, feature 

extraction, and classificat ion; some automated pre- and post-processing steps, such 

as dividing the original image into l;Ubimages, have been excluded. The p•·ocessing 

diagra•n fol' a romp1ctc software system is shown in Figure 3.2. The compouentl; 

contained within the dotted Hne have been implemented in this research. 

Cropped image 
Full image (IOOxiOO) 

(84.JOx8429) Components covered in th<Sis 
~------------------------, 
I _. I 

Nn1btr I I 
··d 

IO<ati.o. 
oruals 

i. ~· 
i .. ~e 

I 
I 

I N .. •berand I 
IIMati.o• of•eah i• 1 

1ubi•aa;e J ! ________________________ _ 

Figure 3.2: A complete software system for identifying and counting seal pups in aerial 
photographs. The components implemen~OO in this research arc contained within the 
dotted line. 

!<Or the purpose of this work, subima.ges were m«n!Ullly selected to ensure thC'y 

contain specific seal pup data required to train and t~t the segmentation and clas-
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sification algorithm ..... _ Subimages a~ 100 x 100 pix4'1' 10 Mit" and were cropped such 

thai C"ach Nntain.:; at le&st one seal pup (a:, idt.·ntifinl 10 gnmnd-truth images1) in 

an arbitral)· J.Hlf'litton -.·ithin the subimag~ Th~ ma.torit' or 'ubunage, \'\""ere cropped 

by HOKM t1 aJ. (6-IJ and graciou•ly pro,·idl'<l for till> ""''arth. 'lc> produce a mo"' 

<'Otn(>lc>t(' ij(.•t or tc:;t and trainir1g data, adclitionnl NHbirnnKt-s wt'rr cropped using a 

~IATLAO CU I dt.,igned by thi• author (Figun• 3.3). A LOtlll of 000 suhimagcs were 

pmdu<·(lcl . Sir1rt• th<' data set is large, a simplf' mndom l1oldout validation strategy 

wn."' u't<'d tu t~eJmratc training and test data. Thrf'l' huncln'(l ~;ul,imngrs were chosen 

rAndomly to rorm thc> L<'St data, and the remaining G(M) sul:muages were retained to 

d('\·t-lop thr S('Krnentation algorithm and train thr c:hL'C!>.ifil'r 

........ 
~ 

--

fi«Un' 3 3 ~IATLAO Gt:l U>ed to crop 100 >< 100 I""' "'binoR~"" from the larg~ 
(»rigmal 1m~t"!'> The cropped area is hidtli~ttd in gtft'D on the main a.·<i.:s and 
di~l>1l\)'f'Cl in th(• tup right-hand a."'<i~. 

1 h ht IL•c.<,UnM'll that. aU aeal pupes maoual)y idcullfinl b)' traln4"!:t rl"l\dt•N lu ground· lrulb. images 
provid('d fur thJ• re!tcan:h are oorr<'etly idcndfiOO. 
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3.2.3 Challenges 

Aerial images of whelping concentrations may contain a variety of features including 

open waterways, sea ice, shadows, adult seals, seal pups and other marine life. Sea ice 

is also varied in shape and texture; it may appear flat and smooth or rough and jagged. 

All of these features make it difficult to distinguish seal pups from their surroundings 

and must be carefully considered when developing the segmentation algorithm. As 

discussed in the previous section, regions known to be void of seal pups can be initially 

masked out to help reduce the complexity of the data and improve the segmentation 

results. 

The segmentation algorithm must also be robust to complex conditions such as 

uneven illumination, shadows, occlusions, and objects grouped together. In some 

instances, seal pups and ice chunks are similarly shaped. In other cases, seal pups 

and the adjacent background pixels have similar gray levels. Due to a variety of 

objects and lighting conditions, it is highly unlikely that an automated segmentation 

algorithm will work perfectly for every image. The goal is to maximize the number 

of correctly segmented seal pups while eliminating as much background as possible. 

The images presented in Table 3.1 represent a variety of conditions that must 

be addressed by the segmentation algorithm. As these examples show, the pixel 

values of seal pups vary significantly. In most cases, the background is composed 

of sea ice which has typically lighter gray levels than seal pups. This fact is used 

when developing the adaptive thresholding algorithm. However, ice chunks cast dark 

shadows which may occlude seal pups or appear to be connected to a seal object. In 

the latter case, the Isolate Connected Components algorithm attempts to separate 

adjacent objects that are inadvertently segmented as one object because they share 

similar intensity values. 
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I'abl• 3.1: The ..-gmmtation algonthm mu.•t Ill' rob<L" 

to a \'8riN~ of objects and liKhtang ('1J11Chllon.,_ 

A dark seal pup 011 a lop;hl backl{found 

is trivial to bCSIIIl'lll. 

Seal pupt; and ~a iff mi\Y ca,:,t dark 

shado~--s on thr u·r ,\ M'tll's shado~· 

rna)· be diffi<'uh to di!'!tingut-'h from it.~ 

body. 

A light seal pup " dtffirult to dt<tm­

gulsh from a light bac·kground (i.t- sim­

ilar gray lrvds). 

A seal pup with hOiuogf'nrouR gray lc\'· 

cis on a mix<'d background {i.t'. adja· 

cent barkgrountl I""'" nr~ both light 

and dark in intc·nMty). 

Continued oo next 
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A light seal pup on a light hac·kground 

ndjnrrnt to dark non~st•aJ pup ohjf'('ts. 

Thf' S<'al pup may br ('lilllinat('cl as 

bll<'kground • 

. \ dark sral pup adJact>nt to dnrk 11o11· 

.cui pup obj('C'ts. Th"'"' may be '"'K· 

numh.•d as a singlr object . 

A ,..aJ pup partially ocdudl'rl by otber 

obj('('\~. 

A t1eal pup on a \'<'ry C"Omph~x buck~ 

ground. 



3.3 Segmentation Algorithm 

The segmentation algorithm is broken down into 5 main steps: 

1. Enhance the image to increase the dynamic range of gray levels. 

2. Apply adaptive thresholding using between-class variance and histogram skew­

ness. 

3. Apply a "cleaning" algorithm to the threshold image. 

4. Separate connected objects using the Isolate Connected Components (ICC) al­

gorithm. 

5. Remove outlier objects using select features. 

These steps are fully explained in the following sections. 

3.3.1 Image Enhancement 

Image enhancement techniques are used to improve an image, where "improve" is 

sometimes defined objectively (e.g. increase the signal-to-noise ratio), and sometimes 

subjectively (e.g. make certain features easier to see by modifying the colors or 

intensities) [5]. Contrast stretching is an image enhancement technique that attempts 

to improve the contrast in an image by "stretching" the range of intensity values it 

contains to span a desired range of values. Low-contrast images can result from poor 

illumination, lack of dynamic range in the imaging sensor, or even incorrectly setting 

a lens aperture during image acquisition [68]. 

Figure 3.4 shows a typical piecewise linear transformation function T(r) used for 

contrast stretching. The locations of points ( r 1 , ql) and ( r 2 , q2 ) control the shape of 

the transformation. In general, r 1 :::; r 2 and q1 :::; q2 is assumed so that the function 
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is single valued and monotonically increasing. This condition preserves the order of 

gray levels, thus preventing the creation of intensity artifacts in the processed image 

[68]. To map intensity values from [r1 , r 2] to [q1 , q2], the following equation should be 

applied to each input image pixel with values in the range [r1 , r 2] : 

(3.1) 

where lin is the input image, lout is the output image, and l(x, y) represents the gray 

level of an image pixel at image coordinates (x, y). Pixel values in lin below r1 and 

above r 2 are typically clipped; that is, values below r1 are mapped to q1 , and those 

above r 2 are mapped to q2 . 

L-1.-------~-------r------~r-------, 

3U4 
0" 

1 
~L!2 
E;, 

j 
8 

U4 

o~------~------~--------~----~ 
0 U4 L!2 3U4 L·1 

Input gray level, r 

Figure 3.4: Typical transformation used for contrast stretching. L is the number of 
intensity levels. 

To illustrate contrast stretching, consider the subimage in Figure 3.5a and the 

corresponding histogram in Figure 3.5b. Notice how the intensity range is rather 

narrow. It does not cover the potential gray-scale range of [0, 255] and is missing the 

high and low values that would result in good contrast. If we let (r1 , qi) = (rmin, 0) 
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-
(a) (b) 

(c) (d) 

l'tgurt• 3.5: (n) Example of low-contrast imago (b) llo.tiJKram of (a) s~o"'> narro" 
inton,itv '""K''· (c) lmag~ after oontra.t s1rrrrhing. (d) H"'togram of (c) •how• 
inrr'.'a.• .. ('(l dynomic range. 

aucl (r1, ttl) (r,111un 2S5), where Tmh• and r111a~~. dt•not-t• t.ht• 111iniuuun and ma..:<imum 

Kl'nY h•vc•lw iulh<' input image, applying Equation (3.1) !ttrett·lu.'g the lewb from thei•· 

origmal ron~<· to the full gray-scale rnngr [0, 2r.r.). Figur"" J.:X: and 3.5d •how the 

T('!Ult.s. lntrt".R'iDK tbe dynamic range o£ pixr) \Dim'S tQ the> <'lllin" gray.sc:aJe range 

hiahlight• contra.'t b<tl\'t't'D lighter and darker ~on .. Thi• hriP' to malre se8l pup:. 

f'a.. .. if'r to .,._"14.'("., ~· th(' stgm('ntation algorithm. su.·trhmg lnl('D51(~' \-.lues to the full 

gray.oecal~ range." i~ applied to aU subimag~ a:, a pn"'-JKoc"f'S"mg strp. 
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3.3.2 Adaptive Thresholding and Between-Class Variance 

The most trivial thresholding technique is to partition an image histogram by using a 

single global threshold, T. Segmentation is then accomplished by scanning the image 

pixel-by-pixel and labeling each pixel as object or background, depending on whether 

the gray level of that pixel is greater or less than the value of T. Imaging factors 

such as uneven illumination often prevent an image from being partitioned effectively 

by a single global threshold. An alternative approach is to divide the original image 

into subimages and then utilize a different threshold to segment each subimage. The 

key issues in this approach are how to subdivide the image and how to estimate the 

threshold for each resulting subimage. Since the threshold used for each pixel depends 

on the location of the pixel in terms of the subimages, this approach is called adaptive 

thresholding [68]. 

To perform adaptive thresholding on the seal pup data, each pre-processed 100 x 

100 pixel subimage is subdivided into nine regions by placing a 3 x 3 grid with 50% 

overlap over the image. Each of the nine resulting overlapped regions is 50 x 50 pixels 

in size. An illustration of this subdivision is show is Figure 3.6. 

The next step is to compute a threshold value T for each subdivided region. The 

main objective is to select the value ofT that minimizes the average error in making 

the decision that a given pixel belongs to an object or to the background. This value 

is then called the optimal threshold. 

Between-class variance, first introduced by Otsu [72], is a discriminant function 

used to determine an optimal threshold from an image histogram in order to segment 

the image 'into nearly uniform regions. This function has been used in previous 

research [73, 7 4] and reported to perform best in a survey of thresholding techniques 

[75]. As shown by [73], the between-class variance can also be used as a measure of 
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(b) (c) 

rljllln' ;J.G : (a) Enhanced !00 X 100 pix•l•nhlllllll\C. (b) 11110«<' 10 (a) is subdi\·ided 
into uuu' n•gion.s (illustrated with colored squarrs) hv plnc·ing n 3 x 3 grid with 5~ 
OV<'rll\J) over the im3g('. (C) Each Of th(' ninf' r~nlting 0\'('r(apped region$ i:, 50 X 50 
pixf'ls iu ijitc. 

inlll(.!;<' bimodulity. For this application, if the illlnJ.tt' hi-.togrnm of a 50 x 50 subdivided 

n•giou is clrtc·rminC'd to b<' bimodal, bctwt'<'n-cla.''i varhwt'C' h. \1'-t<.l LO dctNminc thr 

optmutl thn_osllold ror tllis region. Othf'rwi'il', Cht !iik('WII('""J or the unage histOgram 

abuut thr m<"an i.s used to determine tbe optirnftl thn-:,hold . 
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Computation of Between-Class Variance and Image Bimodality 

For each 50 x 50 pixel subdivided region, the gray-level histogram is normalized and 

regarded as a discrete probability function p( i) such that 

255 

p(i) = : , p(i) 2: 0 and LP(i) = 1 
i=O 

(3.2) 

where ni is the frequency of the gray level i and M is the total number of pix-

els in the image. Each pixel in the image assumes a gray-level value from the set 

[0, 1, 2, ... , 255]. If the histogram is divided into two classes by the gray-level inten-

sity t, then the probabilities of the respective classes can be expressed as 

t 255 

PI(t) = LP(i) ) P2(t) = L p(i) (3.3) 
i=O i=t+l 

Similarly, the class means m1 and m2 are given by 

~ 0 p(i) 255 0 p(i) 
m1(t) = ~ ~ · -(t) , m2(t) = L ~ ·-

i=O PI i=t+l P2(t) 
(3.4) 

The class variances are then given by 

The total variance is defined as 

(3.6) 

where a&r (within-class variance) and a~ (between-class variance) are expressed as 

a~(t) = PI(t) · ai(t) + P2(t) · ai(t), (3.7) 
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(3.8) 

where mr is the mean pixel value of the entire image. 

Within-class variance is the sum of the individual class variances weighted by their 

respective class probabilities. Between-class variance is an indicator of the "distance" 

between the class modes. It provides valuable information as to how close the two 

classes are to each other. It can also be expressed in terms of class probabilities and 

means only: 

(3.9) 

The optimal threshold t*, which segments the image into nearly uniform regions, is 

the gray level at which between-class variance is maximum: 

a~(t*) = max a~(t). 
09<255 

(3.10) 

The same optimum threshold can be obtained by minimizing within-class variance 

since their sum is constant (refer to Equation (3.6)). However, Equation (3.9) is com­

putationally less expensive than Equation (3.7) as it does not include class variances. 

In the sequential search for the optimal threshold, the class probabilities and means 

can be progressively computed to reduce computation time [73]. 

In image segmentation, the detection of image bimodality becomes necessary to 

make intelligent decisions prior to segmentation. In this application, image bimodality 

is used to determine the method by which to compute the optimal threshold. The 

term bimodal indicates a statistical distribution having two separated peaks or two 

local maxima. The optimal threshold is the one that best separates these two distinct 

regions of the histogram (Figure 3.7a). An image histogram may also be unimodal 
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.,. --

<•> {h) (c) 

Fignr~ :1.1: {n) Bimodal distribution with optimnl thrt••hold indicated by red line. 
(b) Unimodal disLI'ibution. (c) Multimodal distributiou with more than two peaks. 
An optimul thrt~hold may be more difficult to dC'LC'rn1inr ror dbtributions shown in 

(h) '""' (<'). 

(luw1' a t.ingh• JWak or local maximum) or multimudal w1th more than Lwo peaks:. Jn 

thew CA.V5, an uptimaJ threshold may 1M- mort'" difficult to dettnnint (Figun:-$ 3.7b 

and 3 7c). 

Th.- normalizt'd bet1\·een--class \-arianct", 

b{l) = u~(l) = p,(l) · p,{l)[r~;1 (1) m,(l)j' 
C1 t-.1 D t.~•t 

il'l UR('(I to d.:tl'Ct bimodality. That is, til(' nu\Ximum b(t) 

b,..,. = max b(l) 
O<I<J."l-"1 

{3.11) 

(3.12) 

;, <·nll"ltht• bamotlalaty roeific>ent and is used._, an indit•t<>r or him<>dalit). The b(t) 

tAkii"'S on ,..Ju~ bE-tv."'t"e'n zero and one. On.- diffifllh ly m thr bimodality test is to 

tw'I•'C'l a th~hold \-alue ror 6_. for balanct"d unlrt_Jf'ln cli. .. lrihution.,, thf" throrttical 

'"'"• o( b(l) ;, 0. ;;; [i3). That is. 6,... ~ 0. i5 indKftl.,. bam<>dahty. 11"""''<1r. different 

approAt'h~ can be taken depending on th(" ap,)HC"Aunn (n actuahtyw region distribu4 

liOn~ 0\'t'rlap ~ignificantly. For ima.get~ consh;ting or rrgionli with highly O\'erlapping 

di!;trilmtious~ a vnlue less than the theoretical value can be bCI(l(;tcd as the threshold. 
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For this application, bmax 2: 0.71 was empirically chosen to indicate bimodality. 

To illustrate, consider the 100 x 100 pixel subimage of a seal pup in Figure 3.8; 

two 50 x 50 subdivided regions are highlighted. The histogram and corresponding 

bimodality coefficient of each subdivided region are also shown. The histogram of 

the subdivided region in Figure 3.8b has a bimodal distribution with bmax = 0. 78. 

The histogram of the subdivided region in Figure 3.8d is clearly not bimodal with 

bmax = 0.66. 

If a subdivided region is found to have a bimodal distribution (i.e. bmax 2: 0.71), 

then the optimal threshold is t* (i.e. the value of t that maximizes the between­

class variance). As discussed previously, this threshold value segments the image into 

nearly uniform regions. If the subdivided region does not have a bimodal distribution 

(i.e. bmax < 0.71), an optimal threshold value is computed based on the skewness of 

the image histogram. 

Skewness of Image Histogram 

Skewness is a measure of the asymmetry of the data around the sample mean. It is 

written as 

(3.13) 

where J-L3 is the third moment about the mean and 0' is the standard deviation. A 

negative skewness, 1 < 0, indicates the data are spread out more to the left of the 

mean than to the right. If skewness is positive, 1 > 0, the data are spread out more 

to the right. The skewness of the normal distribution, or any perfectly symmetric 

distribution, is zero (I= 0). 

For computing the optimal threshold, it is important to note that background 

pixels are typically lighter in intensity than seal pup pixels. Therefore, the threshold 
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--
(b) (r) 

--(d) (t•) 

Ft~lll<' 3.8 (a) 100 X 100 pixel gray-scale am~ or~ pup. T .. .., 50 X 50 .... bdh"ided 
rqpon• an' haghli~tht<'d to illustnne hirnotlaht). (b) ~.0 x 50 >ubdi•ided region high· 
li3ht<'d an 1<'<1 in (a). (c) Histogram or (b); b... 0.78 rndi.-at..,. that a mag• histogram 
i' buundlll. (d) '.0 x :,0 subdivided "'!lion bighh~t•'<l rn blue in (a). (e) ltistOgrtllll 
or (d); b.. .. = 0.66 indicates I hat image hastogram i• not bimodal. 
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..._ ..... ,_ ..• ....... lllf'.' - · *' 

c 

• 

(a) {b) 

Fl~ttarf' 3.9: (a) 1\f'gat iw~ skf'wness; data are SJ>I''(•ad out. ltlQrt to th(' ldl of the mean. 
(h) PO!<Itivr •k•"""""' data are '""'<UI OUI IDOl"(' to the right or the mean. In both 
figun'JC aiM:J'of', the mean is indicated b)' a rOO wrti<·Allinr. 

"·ill be hta.'l('tl toward darker gray le\"t"b in onh·r to max•mi1r. thf' number of light 

ontrn"tY pi>tl' la!X'Iro a. badcground. U dark.,. burk~•ond pixrl• a"' incorn'Ctly 

labrl<'<l a.< foreground during tbre;bolding. "'''h as nro•o., rompn....t or shadows, tb..e 

pixrls mny b~ill br labeled as background, or brlonp;1ng to QU~Iirr ohjf'<'ts, in a later 

81 ngr or the nlgoritbm. 

f.'OI' iiiU\l(t' histograms with a negatiW Skt'WIH'Sil (fi.,;un• :J.9a)1 the left tail of the 

distribution is Lh(' longrst and the mass of pixt•l vnlm~ iM l'OIItrutratcd on the right 

of thr hislog.ram (l.c. toward ligtnf'r pixf'l valu~). In thil; tl:\.!;(.' 1 tlu: histogram p('A.k 

is u-.ually located to the right of the meau pix(') "aluf' .• \ lar~e mass of light interu;ity 

\'B.IUt":!; t~·l)tf<tlly indi<':ates a large area of light(>f l~:kRmuncll)lxtl ... mo~t likely sea ice. 

•·uh mlmmal darker obje(ts. Seal pup pixf'l'i an- nlOff' likrh· to 1x- included among 

ttw clarkrr ptxel \'&lues. In order co rnaximi1r tbf' numlM"r of li3bter pixels labeled 

L., bo\C'k~tmtmd, tht' tbrf'Shold \-alue is chOben a.., th~· tnt'.Hl I)IXt'l \'3hU.'. JJ, minus one 

standard dr,·ialiou, a, or all pixel values in thr subdh·idOO u·gion: 
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T'Y<O = f.L - a (3.14) 

For image histograms with a positive skewness (Figure 3.9b), the right tail of the 

distribution is the longest and the mass of pixel values is concentrated on the left 

of the histogram (i.e. toward dark pixel values). In this case, the histogram peak is 

usually located to the left of the mean pixel value. A larger mass of dark intensity 

values typically indicates the presence of more shadows with a smaller area of lighter 

background pixels. Seal pups may be among the darker pixels values, but they are 

not likely to be as dark as shadows which tend to be black. Therefore, the threshold 

value is more cautiously chosen as the mean (minus one standard deviation is not 

applied) to decrease the likelihood of eliminating the seal as background. For normally 

distributed histograms the skewness is zero. In this case, the optimal threshold is also 

chosen as the mean pixel value: 

(3.15) 

Final Threshold Image 

Summarizing the previous discussion, the optimal threshold T for each 50 x 50 pixel 

subdivided region is given by 

t* 

T= 

if bmax 2:: 0. 71 

if bmax < 0.71 and"(< 0 

if bmax < 0. 71 and "( 2:: 0 

(3.16) 

After the threshold is determined for a subdivided region, a binary image is created 

such that all background pixels are 0-valued and all foreground pixels are 1-valued. 
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In otiK·r """),· giwn an mput image/, the thr~ld rm•~• I, 1< dclirl('() by 

fr(.r.g) = { ~ if /(z. ~) < T (fonwoond) 

if /(.r,y);::: I (l..,·kKruttnd) 
(3.17) 

whrrt' /(.r,l/) rrprrs4'nts the gray IC\'el o( i\n imngr pi:(f') at i1nugc lvordinat~ (x. y). 

Thr r~ulting thrloshold images for the ninr suhdiviclrd n•g:ions in Figure 3.6c are 

shown iu FiKurc 3.11a. 

AM n r(·~u l 1 of tht 00% overlap between subchvidC'd r(·giomJ, t't'rlain vixels in the 

100 x 100 >ubi mage will belong w mol'<) than one of thO'<' n•gions ("""Figure 3.10). A 

Figurr 3. LO: Pixelt~ in the shaded red llr('<\ will hrlong to mort• than one subdivided 
rrglou cluriug Lhrcsholding. 

pixrl in lhiM OYtrlav area may be lab(')('(} A.S fort"'ground m one subdivided region and 

harkgruund m another. ln order to detennim.• a ,.,inKlr. lalx·l rur chi~ pixf'l in the final 

thn.,.hold un•go. a bitwise OR operation [68) i.• Apph .. t to all labeb "'"igned to thi> 

pixrl Brt"""' OR"""' a bit (or in this t&.,.., a l•uar) JMXOI \alu•J to I if one or both 

of th• <orr.,.ponding bits in its operand:, are I, ond to 0 rf both of the oorresponding 

bit~ are o. [n lt'fiH!o, or pix.rl \'alucs, if a pi.xrl i~ lnbtlrd a.:, rore~und in any of the 

subdivided r('KJOIU, tbe bitwise OR Op<'ri\lion ('lhUr~ It Will be labeled as roreground 

(i.r i><>Miblo turgot object) when tb~ imllgl' ;, r<'"""'""'"l. A pixrl will be labeled 
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as background in the final threshold image if and only if it is labeled as background 

in all subdivided regions. The final threshold result for the image in Figure 3.6a is 

show in Figure 3.11b . 

• 

<l;·~~~~~ . .;;, 
' . 

< . ... ~. 

Bitwise 
OR 

(b) 

Figure 3.11: (a) The resulting binary images for the nine subdivided regions in Figure 
3.6c. (b) A bitwise OR operation is performed on the nine subdivided regions to 
produce the final threshold image. 

3.3.3 "Cleaning" Algorithm 

The binary image produced from the adaptive thresholding algorithm contains ex­

traneous pixels and appears a little "messy" (Figure 3.11 b). It may be difficult to 

distinguish possible target objects from this image. Therefore, a "cleaning" algorithm 

is applied to the threshold image using edge detection, line dissection, and removal 

of objects based on size constraints. 

First, Canny edge detection [76] is applied to the enhanced image produced in 

step one of the segmentation algorithm. The Canny method finds edges by looking 

for local maxima of the image gradient which is calculated using the derivative of a 

Gaussian filter. The method uses two thresholds to detect strong and weak edges. 
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Weak edges are included in the output only if they are connected to strong edges. 

This method is therefore less likely to be fooled by noise than other edge detection 

techniques and more likely to detect true weak edges. Figure 3.12 shows the enhanced 

100 x 100 pixel gray-scale image and its corresponding binary edge image after the 

Canny edge detection is applied. 

I 
I 

Figure 3.12: (a) Enhanced gray-scale image. (b) Edge image produced from Canny 
edge detection. 

Next, the negative of the Canny edge image is obtained by reversing 0-valued 

(black) and 1-valued (white) pixels (see Figure 3.13a). A bitwise AND operation 

[68] is applied between the negative Canny image and the binary threshold image 

produced in step two of the segmentation algorithm (see Figure 3.13b). Bitwise AND 

sets a bit (or a binary pixel value) to 0 if one or both of the corresponding bits in its 

operands are 0, and to 1 if both of the corresponding bits are 1. The AND operation 

superimposes the negative Canny edge image on the threshold image producing clearly 

outlined objects (see Figure 3.13c). This process also helps to disconnect adjacent 

objects. 

To further clean the image and separate adjacent objects, an algorithm was de­

signed to remove isolated pixels (individual1's that are surrounded by O's) and dissect 

horizontal and vertical lines that are one pixel in width. Table 3.2 gives examples of 
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Bitwise 
AND --

Figure 3.13: (a) Negative of binary Canny edge image. (b) Bitwise AND operation 
is performed between the negative Canny edge image and the threshold image. (c) 
The result is a threshold image with clearly outlined objects. 

applying these operations to specific pixel patterns. Figure 3.14a shows the result of 

applying the operations to the image in Figure 3.13c. 

Table 3.2: As part of the "cleaning" process, isolated pixels are removed, and hori­
zontal and vertical lines are dissected. This table shows examples of applying these 
operations to specific pixel patterns. 

Pixel Pattern Operation Resulting Pixel Pattern 
0 0 0 0 0 0 
0 1 0 remove isolated pixels 0 0 0 
0 0 0 0 0 0 
0 1 1 0 1 1 
0 1 0 break vertical lines 1-pixel in width 0 0 0 
1 1 0 1 1 0 
0 0 1 0 0 1 
1 1 1 break horizontal lines 1-pixel in width 1 0 1 
1 0 0 1 0 0 

The final step is this cleaning process is to compute the area of each object in 

the threshold image shown in Figure 3.14a. Area is defined as the actual number of 

pixels that compose an object. In order to distinguish individual objects, the type of 

object connectivity must be defined. There are two standard two-dimensional con­

nectivity types: 4-connected and 8-connected. Four-connected pixels are connected 

if their edges touch. This means that a pair of adjoining pixels are part of the same 
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Figure 3.14: (a) A "cleaning" process is applied that removes isolated pixels and 
dissects horizontal and vertical lines that are 1-pixel in width. (b) A clean binary 
image is produced when objects with an area less than 50 are removed from the 
threshold image in (a). 

object if they are both "on" (i.e. 1-valued) and are connected along the horizontal 

or vertical direction. Eight-connected pixels are connected if their edges or corners 

touch. This means that if two adjoining pixels are "on", they are part of the same 

object, regardless of whether they are connected along the horizontal, vertical, or di­

agonal direction. The type of connectivity chosen affects the number of objects found 

in an image and the boundaries of those objects. For computing area, objects are 

defined as 4-connected. Objects with an area less than 50 are removed since these are 

too small to be considered seal pups. This quantity was empirically chosen through 

the training process. The result is a clean binary image (Figure 3.14b) to which the 

Isolate Connected Components algorithm is applied. 

3.3.4 Isolate Connected Components 

In Figure 3.14b, some regions that appear as a large single object are, in fact, multiple 

smaller objects connected together. This may occur if adjacent objects have similar 

gray levels. For example, in Figure 3.15, a seal pup and part of the adjacent ice 

are segmented as one object because they share similar intensity values. In some 
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inManc:·.:,•. t"v or mort seal pups lying adjat't'nt to t'ath other on the iN' may be 

~Ill( nt('d u a "'lngk- object. ~eighboring ubJf"l·•~ IRA\ abo remain connect~ if 

f'rltt('!'\ s•nM'tU('f'() (rom thf" Canny algorithm are illfOUI(Helf! (i.f' liOme edges are not 

dc>t~·trd). An f'"-3mpl4"': of this situation is Hlu~tratNl Ill hgun" 3.l6. The lsolatt' 

Onuwrlt'fl Components (ICC) algorithm attf'mph to M'parntc p;rouped objectl:i into 

their c·oustil llt'nt lmrts, or components, by brc•nking nnrn)w isthmus regions that 

connt"CL tlte111. 

Fignl'l' 315: (a) rwo objects (seal pup and a<li•u·•·nt in·) w•th smular grav levels are 
segmrnt<'<l .. one object. (b) Original gray-scalr hung<· w•th outline or objects. 

Fi~ure 3 16: (a) ;\eighbo~ objects remain <'Ufl<...,.t.,.ll>l'<auoe the Canny algorithm 
d1d nut d<·tl'<·t all rdgt5 (o.e. incomplete rdgo· do·t<,·toun). (b) Original gray-scale 
IID"«t' 

l'lu' ICC algorithm should be applit~l to r8('h 1-ronnN'l«l object in t he binary 
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im•K• produe<d rn tbe P"'''ious sleJ>· JaM onr or thr ob)''<l:i in ~-agun! 3.1-lb is 

""'I hr.,. to allustrate tbe algorithm (,.... Fig11.-. ~.1&). Thr fir>t step ;, to apply a 

mbrpholugin•l flc..,mg O(M'f1ltion to J'f'IDO\"e all hot~ that are l paxf"' in siu• (~figure 

318b). LnrKtr hole:. are not do.ed b«ausr thr\ N'prt'll<·nt a more ,iguifictull ·,-aunt' 

an•n in:otidl' an obj('("t that may aid in bolating or ~'IMml ing fOIIH('("t<'d components. 

Thf' ncx~ HlC'p or th(' algorithm depends on the• nn•n or thr ohjN't. Figmc 3.17 

ShOWK th(' distribution of area values (or RC'i\l pup OhjN't/'1 Ht'KIIU~11Ll-d fr0111 training 

dlltn. \\-lui(' area values widely range from 62 to :~82, owr 75% of seal pup objects 

- I I 

'" .,. 

J->"igurc' ~~ - 17: Distribution of area values for ~;ral )mp c•hjl'<·ts t~rgnlrnt<.'d from training 
datf\. 

haw an an·a 1«-&S than 230. Therefore, tbb \lllu<• wa."' t IIIJ•Inf'Aih· C'hCl"4"n as a threshold 

ford· ltnllinmg how to pr'()('('('({ with the ICC algonlhm OhJ•'( I!\ with an area grcaler 

than or t<jUallo 230..,. l..,.l~ly to be SMII J>UJl". Thr,..fort', tbe ICC algorithm will 

Rtu•mpt to M"paratt' these objects into po~~-..ihlt· nm .. liltlt'nt parts. The algorithm .,.ill 

not 1\U('ut()t to dividr objrcts with an area l~s Lhan 230 lx•taU!)C this may ba-.-e the 

unde"Sir£'d effect or breaking a seal pup into multiplf' pnrt!J. For t·~amvle, the body 



tiJ!Ur. :us, (a) Ohjf'<"t from figure 3.11b .. ,..,] tu tllustrate ICC algorithm. (b) 
\1ui'J>faoiOSJC al clu.ifllt i:, applied to retnO\~ bole. l l>lXf'l ln :t-il~ and area or object 
"' <OIIIputf'd (a,...a - :.99). (c) Biruuy imago of ohJt•·t 1•·nnlf'trr. (d) Prrirll<'t<'r b 
oubtra<tM fwm ohjt'C't (i.P. (b) minus (<)). I hts eli\ id• th<· objf'<"t into parts by 
n·mm inK narrow ibthmm, regiorn, that. are at nKJ&l 2 pixf'li!l 111 width (e) Extraneous 
blob!f wtth area I~ than 15 are re-moved t'e)Uitm~ m twu Htolattd romponC"nt obj<-cts:. 



and tail flippers of a seal pup object may be separated if they are connected by a 

narrow isthmus. Therefore, objects that have an area less than 230 remain whole. 

The only process applied to these objects is a morphological closing operation using a 

disk-shaped structuring element with radius 2. This attempts to close any remaining 

interior holes. 

For each object with area greater than or equal to 230, the next step is to remove 

the object perimeter. A pixel is part of the perimeter if it is nonzero and it is connected 

to at least one zero-valued pixel. The removal process is executed by creating a binary 

image of the perimeter (Figure 3.18c) and subtracting it from a binary image of the 

object (Figure 3.18b) . This effectively divides the object into smaller parts, referred 

to hereafter as component objects, by removing narrow isthmus regions that are at 

most 2 pixels in width (Figure 3.18d). Any resulting extraneous blobs with area less 

than 15 are removed (Figure 3.18e). 

If the area of a resulting component object is still greater than or equal to 230, 

the perimeter removal process is repeated on that object. For example, the area of 

the left and right component objects in Figure 3.18e is 286 and 111, respectively. 

The left component object is processed first; since its area is greater than 230, the 

ICC algorithm will attempt to divide it into even smaller components by subtracting 

its perimeter a second time. As illustrated in Figure 3.19, the process is similar 

to the previous step. First, a binary image of the object perimeter is created and 

subtracted from a binary image of the object. This attempts to divide the object into 

smaller components by removing narrow isthmus regions that are at most 2 pixels 

in width. Any resulting extraneous blobs with area less than 10 are removed. For 

this particular example, the division did not result in multiple component objects. 

However, if multiple objects were produced, the perimeter removal process is not 

applied a third time, regardless of object size. We are only interested in separating 
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figure 3.19: (a) Binary image or component object on le[t-hand •ide or Figure 3.18e. 
The area or this object is 286. (b) Binary image or object perimeter. (c) Perimeter 
is subtracted [rom object (i.e. (a) minus (b)). Tlois divides tloe object into parts by 
removing narrow isthmus regions that are at most 2 pixels in width. (d) Extraneou:; 
blobs with area less than 10 arc removed resulting in one component object. 

compOnents that are connected by rutn'Qw isthmus n'gions: applying the perimeter 

removal process twice will break isthmus region~; that are at most 4 pixels in width. 

Applying the process a third time would break wider isthmus regions (6 pixels in 

width) and may C\'en remove small, but significant, p<'ninsula r<'gions; this may have 

the undesired effect or breaking a s ingle object into multiple parts or distorting the 

true shape or the objoct. 

Next1 the two perim(>ter layers that were removed must be !'('attached to the 

object in Figure 3.19d without reconnecting component objects (i.e. co.nponet~ts 

must remain distinct). The perimeter layers must be reattached in the reverM! order 
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they were removed. That is, the perimeter in Figure 3.19b is added first followed by 

the perimeter in Figurr 3.1&. 

'lb facilitate reattaching the perimeter, integer value:; are used to differentiate 

perimeter and object pixels. A value of 1 is assigned to pixels that compose the 

perimeter and uuique inte-ger values ~ 2 are a.,')SignOO to pixels that rornposc each 

object. Each inwger label also corresponds to a different color in RCO space, so 

object and perimeter pixels can be easily viewed. Any perimeter pixel that is 8~ 

connected to an objcrt pixrl is as."!igncd the same imcger label a.':l the object (i.e. 

becomes au object pixel). A clooe-up look at this prooodure is illustrated in Figure 

3.20. It is important to note that if two or more objects share perimeter pixels, then 

the •· firs~ COli\(', first serve" rule is applied. That is, p('rimctPr pixC'Is arc assignrcl to 

objects in the order they are processed. 

-= 
(a) (b) 

Figure 3.20: Close-up of pixels. (a) Object pixels are shown iu yellow. Perimeter 
pixels arc shown in blue. (b) Any perimeter pixel that is 8·connected to an object 
pixel is assigned the same integer label as the object (i.r. bocomcs an object pixel). 
The remaining blue pixel is the only perimeter pixel not 8-conuocted to an object 
pixel. 

First1 the perimeter in figure 3.19b and the object in 3.19d arc considered. 

Perimeter pixC'Is arc assigned a value of 1 and object pixels are a.c;..;;igncd a value of 2. 

Figure 3.21• illustrates this pixel labeling is RCO space. '!'he result of reattaching the 
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(a) (b) 

(c) (d) 

Figure 3.21: (a) Integer labels allow component objects and their perimeter to be 
viewed in RGB sp;tcc. The pcrim('t('r in Fig1arc 3.19b is shO\'i'n in blue. The component 
object in F'igure 3.19d is shown in cyan. (b) The perimeter pixels are reattached to 
the object using the 8-conncctcd rule. (c) The perimeter in Figure 3.18<: is shown in 
blue. The object in (b) is shown in cyan. (d) The perimeter pixels are reattached to 
the object using the 8-<:onnected rule. 

pcrimf't<:r pixels using thC' 8-conncctcd rule is shown in Figure 3.2lb. Perimeter pixels 

not assigned to the object arc labeled as background. Next1 the perimeter in Figure 

3.18<: is reattached to the object using the 8-oonnected rule. Again, the perimeter 

pixeL-, are assigned a value of 1 while the object pixels a1ready have a value of 2. 

Figure 3.21c illustrates this pixel labeling in RGB space. The result of reattaching 

the perimeter pixels is shown in figure 3.2ld. 

Next, the right oomponcnt object in Figure 3.1 8c is processed. Recall that its 

area is 111. Therefore, the perimeter removal process is not repeated on this object. 

However, the perimeter in Figure 3.18c must stilll>e reattached. The perimeter pixels 

have alr<-ady been assign('(( a value of 1 from the prrvious step. The object pix<-ls arc 
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(a) (b) 

Figure 3.22: (a) The right-hand component object in Figure 3.18e is shown in yellow. 
The pcrimctcl' in Figure 3.18c is shown in blue. ~Ot(' tha.~ some periul~l.cr pixels Hre 
rni.s::;ingi these have already been a..ssigued to another object. (b) The perimeter pixels 

are ruu:cac6:ed co cite atJj.::ce usicrg cite 8-<:r:mncct:W r<tlc. 

assigned au integer value of :1 (t\1e integer value 2 \1as already been use(\ to iilcntify 

the object in the pre,•ious step). Figure 3.22a illustrates this pixel labeling in HCB 

!;pace. Note that some perimeter pixels are missing; lhese have already been assigned 

to an obje<:t in the previous step. The result or reattaching the porimct~r using the 

8-conncctcd rule is sho"'" in Figure J.22b. Perimeter plxcls not assig u('(/ to an obj(!(>t 

are labeled as background. 

Recall that the first srep or the ICC algorithm was to apply a morphological closing 

algorithm to each object to remove all holes that were 1 pixel in size. However, there 

may still cxh;t holes in the interior or objects bha~ are larger than 1 pixel in si1.C'. 

The final step or the ICC algorithm is to apply a morphological closing operation to 

remove these holes. A Hat, disk-shaped structuring element is ust-'d with radiu::; 2. 

The final result or applying the ICC algorithm to the object in Figure 3.18a is shown 

in Figure 3.23a. The two component objects have clearly been ooparMed. Figure 

3.23b show::; the outline of these tw·o objects in the corresponding gray-scale image. 

Pseudocode [or the ICC ~tlgorithm is given in Appendix A. 
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(a) 

figure 3.23: (a) Final result of applying the ICC algorithm to the object in F'igure 
3.!8a. The two component objects have dearly !)C<)n isolated. (b) Outline of separated 
objCC[S in corresponding gray-scale image. 

3.3.5 Remove Outliers 

In order to remove outliers (i.e. data values that do not ap(>ear to be consistent with 

the rest or the data), all objeets output from the ICC algorithm must undergo a final 

crit~ria test for area and length. The latter is defined as the length or the major axis 

or the ellipse that has the same uorrnali:ted secor}d central moments as the region [.:>]. 

All objects that have an area less than 50 or greater than 500, or a length greater than 

50, arc rcmO\'cd. These values were empirically chosen through the brainiug process. 

In addition, objects that are located on the border of the 100 x 100 pix~l suhimago 

are also removed. 

The original gray .. scale image in the ongoing example is shown in Figur<:' 3.24a. 

The final resulb of applying the S('gm<'ntation algorithm to this image is shown in 

TtGB spae<) in Figure 3.24h. The seal pup has been segmented, however several other 

non-seal pup objects have been segmented as ,veu. lt is the classifier's responsibility 

to identify each object. as 'seal pup' or •not seal pup'. 
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{b 

F'igul'<' 3.21: (11) Original 100 x 100 pixel grny-senle iounge. (b) Fina l result of seg­
uU'nlnLiou tilgoritlun. T he seal pup obj('Ct ltru; brt'n :;rgnwuh•cl (IO<·atrd at centre of 
lounge'), butll('VCral other non-seal pup objrcts (m01<tly l\<1'11>1 of durk ice) ha,·e also 
bN'n ttrgult'lltl-d. 

3.4 Results 

Th(• fnUcl"illlt rrilPria ""ere used to e\'8lU&tt" tht> J)(>rfnrmAnf't' ur tht' stgnwntation 

alpithm on tmining data: 

• ExceUent performance: the algorithm rlc·anl' "'llnu·nt• liMfl( of the seal pup. 

\u MhfRA.'h, ~U('h as shadows or it'(', ar(' auachrd tu the tK•gmentl-d ~eal object . 

• Cood performance: the algorlthm ij(•guU'nl s Ul h·~"-'l 90% or thr seal pup. A 

vc•ry timoll JJfll' t of the SC<1.1 is SC'gmrntrd n.~ hn(·kgruund tmd/or small artifacts, 

~Uth llS tlhadOWS Qf ice, are SCgnl('H(~( n,'i pnl'~ of t ht• !;('ill object; this slightly 

cHwtortJt Cht> lrur shape of the seal 

• Satisfactory performance: the algorithm M'JI.IIU"nt~ at 1<'a.~t 509( of the seal 

J>UJ> \ J>Orlion o( th~ seal object is ..-gJ~M'ntro a.• bao·kgrnund and/or ani facts, 

such 8b shadow& or ice. are segrtl4'nU'fl a.,., pan of tht• JW'al objf'Ct. the true shape 

or th• s.·al .. still apparent. 

• Poor perrormance: the algorithm Sl'gmrntR n "l'r)· tnnall portion o£ the ~al 

pup ( < 50%), or the seal is adjoint"() to olll('r ohjt•c-U! which arc segmented 
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together as a single object; bhis docs not accurate-ly represe-nt the true shape of 

the seal. 

• Failure: the a lgorithm sogmont.s 0% of the seal pup. 

In Section 3.2.3, •evcral examples of challenges presented by the seal pup data 

arc given (refer to images in Table 3.1). Table 3.3 demonstrates how the rugorithm 

performed on thetie tiarnple images. 'The firtit column of the table shOwl:i the original 

gr;)yscale image, the second column shows the SC'gmrntC'd objects in RGB spacC', 

and the third column contains remarks about the performance of the algorithm. 

Additional images showing algorithm performance are included in Appendix B. 

Table 3.3: Performance of segmentation algorithm on 
sample images in Table 3.1. 

Subimage 
Segmentation 

Result 

t 

Performance of Algorithm 

Excellent performance: the seal 

pup object (shown in dark red) has 

been oorrcctly seg.men~d. 

Good performan~'C: the seal pup 

object (shown in yellow) has been 

corroctly segmented. A small part 
of the seal's shadow has a lso been 

segmented as part of the seal ob­

ject. 

on next 
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Sub image 

Table 3.3 continued from previous 
Segm~ntation 

ltesult 
Performance of Algorithm 

Satisfactory performance: the 

""'·al pup objoct (!-ihOWn in yel­

l<>w) h ... "'"'" p8rti&lly «gownted. 
l.ight•·r &fliY 1<-"1 are&> of the 

• wal ha'" been ""8JOPoted as back­
Rn)uncl. 

I 

• 

Excellent performance: the seal 

J>llp ohjr<t (shO\\ n in rm) has been 
n)rm·clo,. IW'gtnf"ntrd. 

Satisfactory performance: the 

b<'al pup object (shown in yel­

low) has been partially segmented . 

Lighlrr gray lcv<'l areas or the 
s<•al havr b<on srgmrntod as back­

ground. 

Excellent performance: the seal 

pUJ> objt'Ct (shown in yellow) has 

been t"'rrectly segmented. 

Failure: tho algonthm failed to 

&o<·g:mcnt the seal pup which is par­

tially occluded by adjacent ice. 

Conunmod on next -



Subim~~ge 

Table 3.3 - continued from 

Segmentation 

Result 
Performance o f Algorithm 

Excellent pcrrormance: the 

"'"' pup obj..-1 (•boo"!\ 111 light 
grl•·n) h.. bl'<'n oorn-ctly scg­

nu.•nt.('(l. IIOYt'<'\'l"r, SC\'eral other 

~~ "-.! uon-t;t.'t'l piiJ) ohjr<·t!i have also been 

M>SIIH'IliC"'(I rro111 this complex back· 

g1'01111d. 

mat ... t ~fllf•ntat~un algorithm that .,;u "'"'rk pt"Tf("('tl)· fur f'Wr) illlRJ;:P .. .U, mentioned 

J)rf>\·iuusl~. tiM'~ b to maximize the numiM'r uf rorn"t'tl~· 5f'gm("ntf'd ~pups while 

rlirninatlng M much background 3S J~ihll". fill' ~'&lllf'llfiUion algorithm was C\'al­

uatrd on ('1()() trAining irnages using the criteria de!o('fllH:'-<1 abo\'f" TAble 3..1 presents 

th<• ('\'j'lunhon r<.':'.U)ts. The algorithm performrd t'XN'liNll. on O\'("r 18% ofthe training 

iuingt·lt ApJ,roximntely 45% of scgm<'nt<'<l M'nl pH J) ohjPc-t:; Wl'rc <.•valuated as good 

or ... ntil'lfn(_·tory. In thf"SI' casrs, a few seal ()ltJ> pix(•ho~ uuty hnvc been misidentified as 

t.>.u.·kground, or small nrtifncts, such as shado~ or tl'C\ may h1Wt' lwrn srgmrntcd I.L'J 

parl of a ~''dl. Th(l algorithm's performance was mL-.Rdsfat·tory (t"\-ahuned ~poor or 

failf'Cl pnfc•nnAD«') 00 7% O( tbe data. from the (i()() traillutl( im~. l775 DOD·5eal 

pup ob}t'<t• ,., ..... Al<O ""8J'>Pnted. As dil.c:u''<'d m th•ptrr I .. ·hiiP th""' obj..-ts are 

h l!i a.~umt'(l the algorithm will behave in a ~unilar marmrr \\·twn applied to test 

data Wtwn 1raining the classifier to identif)' M·al IHII>M, it i~ fl('C.~sary to include a 

valid l'f'l>f'f'M'ntation of how seal ohjf'Cu; appear when M'gmrmrd; this includes seal 
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Table 3.4: Performance of segmentation algorithm on training data. 

Performance Description Total %of total 
Excellent 289 48.2% 
Good 201 33.5% 
Satisfactory 68 11.3% 
Poor 31 5.2% 
Failure 11 1.8% 
Total 600 100% 

objects that are perfectly segmented as well as those that have small imperfections 

(i.e. seal objects that have small artifacts adjoined to them or are slightly incom­

plete because small portions were misidentified as background). Therefore, training 

data evaluated as excellent, good, and satisfactory in Table 3.4 are used to train the 

classifier; this includes 93% of training data. 

When applied to 300 test images (containing 300 seal pups), 1228 objects were 

segmented. These objects were analyzed by the classifier and identified as 'seal pup' or 

'not seal pup' (as described in Chapter 4). Prior to automated classification, objects 

segmented from test data were manually reviewed and labeled in order to evaluate 

classifier performance and compute error rates. Through this process, it was observed 

that 297 seals and 931 outliers were segmented. Therefore, the algorithm failed to 

segment only 1% (3 seals) from test data. This 1% will be added to the classification 

error rate to compute the total error for the system. 

3.5 Feature Selection 

After the segmentation process, the resulting objects are represented and described 

in a form suitable for further computer processing. A segmented region may be repre­

sented in terms of its external characteristics (its boundary) or in terms of its internal 
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characteristics (the pixels comprising the region). A region is described based on the 

chosen representation using measurements called features. For example, a region may 

be represented by its boundary, and the boundary may be described by features such 

as its length or the orientation of the straight line joining its extreme points [68]. 

An external representation is chosen when the primary focus is on shape character­

istics. An internal representation is selected when the primary focus is on regional 

properties, such as color and texture. It is often necessary to use both types of rep­

resentation. It is of interest to select features that are simple to extract, invariant 

to irrelevant transformations, insensitive to noise, and useful for discriminating pat­

terns in different categories. As discussed in Chapter 4, the choice and number of 

features affects classifier performance. In this thesis, the following nineteen features 

were chosen to represent segmented seal pup objects: 

1. Area - the number of pixels in the region. 

2. Length - the length (in pixels) of the major axis of the ellipse that has the 

same normalized second central moments as the region. 

3. Width- the length (in pixels) of the minor axis of the ellipse that has the same 

normalized second central moments as the region. 

4. Elongation- the ratio of the length, l, to width, w: ljw. 

5. Perimeter - the number of pixels in the perimeter of the region. A pixel is 

part of the region perimeter if it is nonzero and it is connected to at least one 

zero-valued pixel. 

6. Compactness- a measure of how close pixels are packed together. It is defined 

as p2 /a, where p is the perimeter and a is the area. Compactness is insensitive 

to uniform scale changes and is minimal for a disk-shaped region. 
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7. Convex Area - the number of pixels in the convex image of a region. The 

convex image is the smallest convex polygon that can contain the region, with 

all pixels within the polygon filled in (i.e. set to 'on'). 

8. Convex Perimeter - the length of the perimeter of the convex image of the 

region. 

9. Mean Pixel- the average pixel intensity of the region: 

(3.18) 

where ri = pixel intensity of the ith pixel and n = number of region pixels. 

10. Pixel Standard Deviation - the standard deviation of pixel intensities in the 

region: 

(3.19) 

where ri = pixel intensity of the ith pixel, n = number of region pixels, and 1-L = 

mean pixel value of the region. 

11. Minimum Pixel - the minimum intensity of all pixels in the region: 

(3.20) 

where ri = pixel intensity of the ith pixel and n = number of region pixels. 

12. Maximum Pixel- the maximum intensity of all pixels in the region: 

max ri 
l_<Si_<Sn 
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where ri = pixel intensity of the ith pixel and n = number of region pixels. 

13. Moment Invariant 1 - this is defined as: 

¢1 = T/20 + T/02 (3.22) 

where T/pq is the normalized central moment (refer to Appendix C for more 

details). 

14. Moment Invariant 2 -this is defined as: 

15. Moment Invariant 3 - this is defined as: 

16. Moment Invariant 4- this is defined as: 

17. Moment Invariant 5 - this is defined as: 

¢5 = (T/3o- 3T/12)('T!3o + T/12) [(T/3o + T/12) 2 - 3('T!21 + T/o3) 2] 

+(3'T!21 - T/03)(T/21 + T/o3) [3(T/3o + T/12)2 - (T/21 + T/o3?] 

18. Moment Invariant 6 - this is defined as: 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

cP6 = ('T!2o- T/o2) [(T/30 + T/12)2 - (T/21 + T/o3?] + 4ryn(T/3o + T/12)('T!21 + T/o3) (3.27) 
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19. Moment Invariant 7- this is defined as: 

(h = (31721 -17o3)(173o + 1112) [(1730 + 1112)2 - 3(1721 + 1703) 2] 

+(31712- 173o)(1721 + 17o3) [3(173o + 1112)2 - (1121 + 17o3)2] 

(3.28) 

An arrangement of features, such as those described above, is called a pattern. A 

very common pattern arrangement used in practice is a vector of the form 

x= (3.29) 

where each component, Xi, represents the ith feature and d is the total number of 

such features, or dimensionality, associated with the pattern [68]. All such feature 

vectors form ad-dimensional vector space X called the feature space. In this thesis, a 

feature vector is formed for each segmented object using the nineteen features listed 

above. Thus, each object becomes a point in the nineteen-dimensional feature space. 

Furthermore, we presume that the continuity assumption of pattern recognition holds 

[77]. That is, two objects near in feature space should also resemble each other in 

real life. Therefore, it is assumed that objects are not randomly scattered in feature 

space, but that they exist in cloud-like distributions. When this continuity does not 

hold, it is unlikely that a classifier will learn well from a few example objects. 
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Chapter 4 

Classification 

This chapter describes the classification methods used to identify segmented objects 

as 'seal pup' or 'not seal pup'. In the first section, a general classifier function is de­

fined and the concept of one-class classification is introduced. A general overview of 

classifier design theory is given including a discussion of the many challenges associ­

ated with classifier training. In the next section, a summary of one-class classification 

theory is presented which includes error definitions, considerations for training one­

class classifiers, techniques used to evaluate classifier performance, and a review of 

one-class methods. The next two sections give a detailed description of the two one­

class methods applied in this research: the Parzen density estimation method and 

the Support Vector Data Description. The final section presents the methodology for 

optimizing and training these methods on seal data and compares their performance 

on test data. 
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4.1 Introduction 

A classifier is a function that takes a set of features that characterize an object 

and uses them to determine the type, or class, of each object. Classifiers may give 

simple yes/no answers (e.g. 'seal pup' or 'not seal pup'), or they may estimate 

the probability that an object belongs to each of the candidate classes. In many 

classification problems explicit rules do not exist to categorize an input object, but 

examples of objects from each defined class can be obtained. Therefore, a classifier 

can be constructed based on a finite set of pre-labeled training examples. To formalize 

this concept, let xtr represent a training set of N objects for which each object xi is 

assigned a label Yi. That is, 

(4.1) 

For the classification, a function f(x) has to be inferred from the training set. This 

function is constructed such that for a given feature vector x an estimate of the label is 

obtained, y = f(x). Most often the type of classifier function f is chosen beforehand 

and just a few parameters of the function have to be determined. The function can be 

denoted by f(x; w) to explicitly state the dependence on the parameters or weights 

w [77]. 

In conventional multi-class classification problems, example patterns for two or 

more classes are available for training the classifier. An example of a simple two­

class classification problem is illustrated in Figure 4.1. The training data consists of 

samples from two different species of seals: harp seals (represented by an asterisk, 

'*') and gray seals (represented by a plus sign, '+'). Each training object x has 

two feature values, weight and length, and can therefore be represented as a point 
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in 2-dimensional feature space. A simple linear classifier f(x; w) is modeled from 

the data set (represented by the straight line). From the two object features, the 

classifier estimates a label f ( x; w) = + 1 (gray seal class) or f ( x; w) = -1 (harp seal 

class). The line J(x; w) = 0 is the decision boundary. For most objects, it correctly 

estimates the labels. However, for two gray seals and three harp seals, a wrong label 

is assigned. 

Feature 2 
(length) 

f(Y.;w)=-1 

* 
I 

Harp Seals 

Feature 1 (weight) 

Figure 4.1: Scatterplot of a sample training set for gray seals and harp seals. A simple 
(linear) classifier is shown. From the two features, weight and length, the classifier 
estimates a label f ( x; w) = + 1 (gray seal) or f ( x; w) = -1 (harp seal) for each 
object. The line f(x; w) = 0 is the decision boundary. 

In this thesis, a relatively novel classification approach called one-class classifica-

tion is used. Unlike the two-class example give above, in one-class classification it is 

assumed that only information for one class, the target class, is available; information 

about all other objects, called outliers, is unavailable or ill-sampled. The boundary 

between the target and outlier classes has to be estimated from target data only. The 

task is to define this boundary such that it accepts as many target objects as pos-

sible while minimizing the chance of accepting outlier objects. Figure 4.2 illustrates 

a one-class classifier applied to the seal data from the two-class example. In this 
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case, the classifier is not trying to distinguish gray seals from harp seals. Instead, the 

classifier is used to describe the 'seal' class (target objects) and distinguish it from 

the 'non-seal' class (outliers). 

Feature 2 
Qength) 

One-class Classifi~ 
Target objects ('seal' class) / 

_,/~--------~':.f>,,, 
,/ >I< -+· + -+ ',, 

/ >I< >I< + + \ 
' >I< >I< >I< >I< + \ ! >1<>1<>1< >I< >I< >I< + ·~ 

I >!< >!< >J< >f< >f< + ++ I 

~>I< >I< >I< + + : 
\>I< >1<>1<+ ++++ +/ 
-~ >I< + + + + ,' 

• >I< ++ + + / ... ,<'< )k + ,,' ....... * + ... ~; 
... ~~·-----~--·--' 

Outlier obJect 

/ 
+ 

Feature 1 (wetgl'lt) 

Figure 4.2: The boundary surrounding the data represents a one-class classifier used 
to identify seals (target objects). An object located outside this boundary would be 
classified as a non-seal (outlier object). 

In general, the problem of one-class classification is harder than the problem of 

normal two-class classification. For normal classification the decision boundary is 

supported from both sides by examples of each of the classes. In the case of one-class 

classification only one set of data is easily available, so only one side of the boundary 

is covered. On the basis of one class it is difficult to decide how tight the boundary 

should fit around the data in each of the directions. 

For the current research, a one-class classification approach is very appropriate. 

The target class consists of segmented seal pups for which ample training data is 

available. While some outlier data is available (sea ice, ocean, shadows, etc.), it is 

unknown whether these samples are well-representative of all possible non-seal pup 

objects that may be segmented. Therefore, these objects are grouped into the outlier 

class. 
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A more in-depth study of one-class classification is presented in Section 4.2. How-

ever, it is beneficial to first include a general overview of classifier design theory. 

Many of the concepts presented in the next section will be repeatedly considered in 

the discussion of one-class classification. 

4.1.1 Classifier Design and Performance 

The process of creating the optimal classifier for a given problem is quite complex. 

Many common issues arise in training a classifier including error minimization, gener-

alization of the method, the curse of dimensionality, overfitting/underfitting, and the 

bias-variance dilemma. In this section, these concepts are discussed and suggestions 

are given on how to improve classifier performance. 

Error Minimization 

The parameters w used to construct a classifier f(x; w) may not produce the optimal 

classifier for the given problem. The optimal parameters w* of the function f are the 

parameters which give the smallest average error over all possible samples: 

w* = argmint'true(/, w, X) (4.2) 
w 

where the true error Etrue is defined as 

Etrue(f, w, X)= J E(f(x; w), y)p(x, y)dxdy. (4.3) 

The integration in ( 4.3) is over the entire 'true' data distribution p(x, y) (i.e. over the 

complete probability density of all possible objects x and labels y). This assumes that 

it is possible to define a probability density p(x, y) in the complete feature space X. 
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However, in almost all classification problems, p(x, y) will be unknown. Therefore, an 

induction principle has to be used to approximate the true error [63, 77]. In practice, 

the true error is approximated by the empirical error on the training set: 

Eemp(f, w, xtr) = ~ L c(f(xi; w), Yi) (4.4) 
i 

where various error definitions are available for c(f(xi; w), Yi) including the 0-1-loss 

error, the mean squared error and the cross entropy error [77] (see Appendix D for 

details). By minimizing the empirical error Eemp on the training data, it is expected 

that a set of weights w will be found that produce a good classification. 

Generalization 

Optimizing the classifier on the training data may be problematic if the set of training 

examples is an atypical set. That is, it may be unclear whether the training data 

distribution resembles the distribution in real life (i.e. the 'true' data distribution). 

In general, the larger the sample size, the more likely the true characteristics of 

the data can be determined. However, even if a large, characteristic data sample is 

available, the number of functions which approximates or precisely fits the data is 

quite large. Therefore, good classification of the training objects is not the main goal; 

rather good classification of new and unseen objects is the chief objective. This is 

called good generalization. To estimate how well a classifier generalizes, it should 

be tested with a new set of objects which has not been used for training. Using an 

independent test set avoids an overly optimistic estimate of classifier performance 

[77]. 
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Overfitting and Variance 

When a function J(x; w) minimizes the empirical error very well on a training set, but 

still shows a large true error Etrue on an independent test set, the function is said to be 

overtrained or overfit. An example of overfitting is shown in Figure 4.3. Here, a very 

flexible two-class classifier is trained on the harp seal/ gray seal samples leading to a 

complex decision boundary. While such a decision may lead to perfect classification 

of the training samples (zero empirical error), it may lead to poor performance on 

future patterns (high true error). 

When a very flexible function is trained on a new training sample xtr of the same 

size from the same distribution, a completely different solution for the weights w 

will be obtained. This large variance in w (and thus J(x; w)) over different training 

samples is undesirable. 

Feature 2 
(length) 

Harp Seals 

Feature I (weight) 

Figure 4.3: A heavily overtrained two-class classifier, trained on the harp seal/gray 
seal samples, produces a very complicated decision boundary. While such a decision 
may lead to perfect classification of the training samples (zero empirical error), it 
may lead to poor performance on future patterns (high true error). 
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Curse of Dimensionality 

The overfitting problem becomes worse when a large number of features per object is 

used. Since the function f(x; w) should be defined for the complete feature space, the 

volume that should be described increases exponentially in the number of features. 

This is referred to as the curse of dimensionality [77, 78, 79]. One way to deal with 

the problems of overfitting and the curse of dimensionality is to reduce the number of 

features by selecting an appropriate subset of the existing features, or by combining 

the existing features in some way (for example, using Principal Component Analysis) 

[66, 80]. Another important quantity that may affect classifier performance is the 

number of training objects with respect to the dimensionality of the feature space. 

If the number of features is large, a small number of samples may be insufficient to 

estimate all free parameters w in the function f(x; w) with ample accuracy. 

U nderfitting and Bias 

Another problem that arises in classifier design is underfitting. In this case the func­

tion f(x; w) is not flexible enough to follow all characteristics in the data. This type 

of classifier is said to have low complexity and shows a large bias. The bias mea­

sures how well the classifier fits the problem (high bias implies a poor fit) [66]. The 

linear classifier applied to the two-class problem in Figure 4.1 has a relatively low 

complexity. A more flexible non-linear classifier would most likely produce a better 

result. 

Bias-Variance Dilemma 

A good fitting function for a given data sample should have both a small bias and 

a small variance. However, classifiers with increased flexibility to adapt to training 
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data (e.g. have more free parameters) tend to have lower bias but higher variance. 

Therefore, the best fitting function is a trade-off between the bias and variance con-

tributions. This phenomenon is known as the bias-variance dilemma or bias-variance 

trade-off [77, 66]. A bias-variance trade-off between the classifiers in Figure 4.1 and 

Figure 4.3 is shown in Figure 4.4. 

Feature 2 
(length) 

"' I 
Harp Seals 

* Gray Seals 

Feature 1 (weight) 

Figure 4.4: A bias-variance trade-off between the classifiers in Figure 4.1 and Figure 
4.3. The classifier has a small bias and is robust against small changes in the training 
set (small variance). 

Structural Error 

The bias-variance dilemma can be minimized by introducing prior knowledge into 

the design of f(x; w). By including prior knowledge, such as constraints on the 

form of f to the problem at hand, the complexity of the function is decreased while 

maintaining the flexibility [77]. Quite often, however, prior knowledge is not available 

or it is difficult to include the knowledge into the design of f(x; w). In this case, an 

extra error term Estruct(f, w) is added to the empirical error. This structural error 

attempts to measure the complexity of the function f(x; w). Now the total error 
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must be minimized: 

(4.5) 

where A, the regularization parameter, indicates the relative influence of the structural 

error with respect to the empirical error. If A = 0, the structural error (and thus 

the complexity) of f(x; w) will be ignored. If A is large, a very simple function 

is obtained which completely ignores the data. This extended error is intended to 

produce a classifier with higher generalization. The structural error can be minimized 

by imposing smoothness constraints on the function f(x; w). Large fluctuations in 

the function are discouraged; the smoother the function, the lower the complexity. 

A number of approaches have been developed to approximate the structural error 

including counting the number of free parameters in the function, using weight decay, 

and considering the worse-case performance of the classifier [77]. A detailed discussion 

about this topic is given by Wolpert [81]. 

As the preceding discussion has shown, when designing a classifier, problems such 

as the generalization of the method, the curse of dimensionality, the bias-variance 

dilemma, and measuring the complexity of the solution must be considered. While 

numerous classification functions, errors, and optimization routines are available, the 

'true' structure in the data is often quite difficult to model completely. It may be 

said that determining a suitable classifier for a given problem is more of an art than 

a science. 

79 



4.2 One-Class Classification 

The term "one-class classification" was first coined by Moya et al. in 1993 [82]. A 

variety of other terms have been used in the literature to describe this classification 

approach including "data description" [77], "outlier detection" [83], "novelty detec­

tion" [84], and "concept learning" [85]. The terms one-class classification and data 

description will be used interchangeably in this thesis. Since the early 1990s, research 

in this area has grown considerably. Some recent applications of one-class classifiers 

include automated currency validation [86], diagnosis of interstitial disease in chest 

radiographs [87], image retrieval [88, 89], novelty detection in gene expression data 

[90], target recognition in SAR imagery [91], online signature verification [92], detect­

ing masses in mammograms [93], bioacoustic monitoring [94], face recognition [95], 

and facial expression analysis [96]. 

The theory of one-class learning is covered extensively in the doctoral thesis of 

Tax [77]. The following is a summary of this theory including error definitions for 

one-class classifiers, considerations for training data descriptions, techniques used to 

evaluate classifier performance, and a review of one-class methods. 

4.2.1 Error Definitions 

In one-class classification, there are four possible situations of classifying an object; 

these are shown in Table 4.1. The fraction of target objects accepted by the classifier 

(true positives) is labeled fT+· The fraction of targets rejected by the classifier (false 

negatives) is labeled fr-; this is called the error of the first kind, £1. The fraction 

of outlier objects rejected by the classifier (true negatives) is labeled fo-· Finally, 

the fraction of outlier objects accepted by the classifier (false positives) is labeled 

f O+; this is called the error of the second kind, £11 . In order to find a good one-class 
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classifier, £I and En have to be minimized. The true positive and true negative objects 

do not contribute to the total error because they are classified correctly. 

Table 4.1: The four possible situations of classifying an object in one-class classifica­
tion. 

Object from Object from 
target class outlier class 

Classified as a true positive, 
target object fr+ 

Classified as an false negative, 
outlier object fr- (£I) 

false positive, 
fo+ (En) 

true negative, 

fo-

Recall that the complete probability density p(x, y) is required to compute the 

true error Etrue (as defined in Equation (4.3)). In one-class classification, only the 

probability density of the target class p(xlwr) is known. Therefore, only the number 

of false negatives (£I) can be minimized. The fraction false negative fr- can be 

estimated using an independent test set drawn from the same target distribution or 

using cross-validation on the target training set. However, the fraction false positive 

fo+ is much harder to estimate. When no example outlier objects are available, this 

fraction cannot be estimated. However, minimizing just the fraction false negative will 

result in a classifier that labels all objects as target objects. In order to prevent this 

degenerate solution, outlier examples have to be available, or artificial outliers have to 

be generated. In the absence of examples, it is assumed that the outliers are drawn 

from a bounded uniform distribution around the target data and the description 

volume [77]. 

Using Bayes rule [66], the posterior probability for the target set can be computed 
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rejected (indicated by £1) and some outliers are accepted (indicated by En). The most 

important feature of one-class classifiers is the tradeoff between the fraction of the 

target class that is accepted, fr+, and the fraction of outliers that is rejected, f 0 _ (or 

equivalently, the tradeoff between £1 and En). It is evident from Figure 4.5 that this 

tradeoff cannot be avoided. Increasing the volume of the data description in order to 

decrease £1 will automatically increase the number of accepted outliers, and therefore 

increase En. 

As Figure 4.5 also shows, using a uniform outlier distribution means that when 

En is minimized, the data description with minimal volume is obtained. Therefore, 

instead of minimizing both £1 and En, a combination of £1 and the volume of the 

description can be minimized to obtain a good classifier [77]. However, when the true 

outlier distribution deviates from the uniform distribution, another data description 

will show better generalization performance. Of course, this cannot be checked with­

out sample outliers. In this thesis, the 1775 non-seal pup objects segmented from 

training data will be used to estimate the outlier density and the fraction false posi­

tive, fo+· 

A structural error, fstruct, may also be defined for one-class classifiers. Recall 

that for a conventional classifier, smoothness constraints on f(x; w) can be imposed 

to reduce the structural error. For one-class classifiers not only should smoothness 

constraints be enforced, but also constraints on the closed boundary around the data. 

Unfortunately, these extra constraints make classifier design more difficult and amplify 

problems like the curse of dimensionality. As a result, one-class classification problems 

often require a larger sample size than conventional classification [77]. 
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4.2.2 Distance/Resemblance Threshold 

Two distinct elements are identified in all one-class classification methods: 

1. A measure for the distance d(zlwr) or resemblance p(zlwr) of an object z to 

the target class Wr (represented by the training set Xtr); p(zlwr) (or d(zlwr)) 

can also be interpreted as the chance of object z given the target set wr. 

2. A threshold eon the distance d(zlwr) or resemblance p(zlwr). 

As discussed by Tax[77], new objects are accepted by the description when the dis­

tance to the target class is smaller than the threshold ed: 

f(z) = I(d(zlwr) < ed) 

or when the resemblance is larger than the threshold ep: 

f(z) = I(p(zlwr) > ep) 

where I ( ·) is the indicator function defined as: 

I(A) = c if A is true, 

otherwise. 

(4.7) 

(4.8) 

(4.9) 

One-class classification methods differ in their definition of p( z lwr) (or d( z lwr)), 

and in their optimization of p( z lwr) (or d( z lwr)) and thresholds with respect to xtr. 

Many one-class methods focus on optimizing the resemblance or distance model first 

and then optimize the threshold afterwards. However, a few methods optimize their 

model p( z lwr) or d( z lwr) to an a priori defined threshold [77]; different thresholds 

will give a different definition of p( z lwr) or d( z lwr). In this thesis, the threshold is 
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derived directly from the training set and adjusted to accept a predefined fraction of 

the target class. For a target acceptance rate fr+, the threshold (}fr+ is defined as 

1 
(}fT+ : N L I(p(xilwr) ~ OJrJ = fr+ (resemblance based method) 

i 

(4.10) 

or 

(4.11) 

where Xi E xtr' Vi. 

4.2.3 ROC Curve 

Using (4.10) (or (4.11)) we can, for varying fr+, compute a threshold (}h+ on the 

training set and then measure the resulting fo- on a set of example outliers. When for 

all values of fr+, the fo- is measured, the Receiver Operating Characteristic (ROC) 

curve is obtained [98]. This curve shows how the fraction false positive changes for 

varying fraction false negative. The smaller these fractions are, the more this one-

class classifier is preferred. Traditionally, the fraction true positive fr+ is plotted 

versus the faction false positive fo+, as shown in Figure 4.6. For this research, the 

1775 sample outliers segmented from training data are used to measure the fo+ for 

varying fr+ on the target class. 

While the ROC curve gives a good summary of the performance of a one-class 

classifier, it is difficult to compare two ROC curves. One way to summarize an ROC 

curve in a single number is to compute the Area Under the ROC Curve (AUC) [99]. 

To compute the AUC, En is integrated over varying thresholds (i.e. all possible errors 
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Figure 4.6: Example of a ROC curve. The fraction true positive fr+ is plotted versus 
the faction false positive fo+· The small dot on the curve represents the operating 
point. 

of the first kind £1). This gives the error 

(4.12) 

where () 1 is measured on the target set. This error measure does not evaluate a one­

class classifier on the basis of one single threshold value, but integrates its performance 

over all threshold values. For the standard implementation of the AUC, smaller values 

indicate a better separation between target and outlier objects. However, for the 

implementation of the AUC included in the Data Description Toolbox[lOO] used in 

this thesis, larger AUC values indicate a better separation between target and outlier 

objects; this interpretation of the AUC is assumed for the remainder of the thesis. 

Maximizing the AUC value does not guarantee optimal performance on test data; 

a trade-off between £1 and En must also be considered. It can therefore happen that 

for a specific threshold a one-class classifier with a lower AUC might be preferred over 
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another classifier with a higher AUC if, for that specific threshold, the fraction false 

positive (En) is smaller for the first classifier than the second one [100]. 

In some cases, a range of reasonable false negatives or false positives can be given. 

Therefore, the integration range for the AUC can be restricted to this specific range. 

This will result in a more honest comparison between different classifiers for the 

specific application [100]. Of course, for the actual application of a one-class classifier 

a specific threshold has to be chosen. This means that only one point of the ROC 

curve is used. An example of such an operating point is shown on the ROC curve in 

Figure 4.6. 

4.2.4 One-Class Methods 

Several methods have been proposed to solve the one-class classification problem. 

Methods may be grouped into three main approaches: density estimation, boundary 

methods, and reconstruction models. The various one-class methods differ in their 

ability to exploit different characteristics of the data such as scaling of feature mea­

surements, grouping of objects in clusters, and convexity of the data distribution and 

their placing in subspaces [77]. 

The most straight forward way to obtain a one-class classifier is to estimate the 

density of the training data [93] and to set a threshold on this density [77]. A variety 

of distributions may be assumed, such as a Gaussian or a Poisson distribution, and 

numerous discordancy tests are then available to test new objects [101]. Common 

density methods include the Gaussian model, the mixture of Gaussians, and the 

Parzen density model. The latter is described in detail in Section 4.3. Density 

methods work well when the sample size is sufficiently large and a flexible density 

model is used. If the sample size is not large enough, this approach may suffer from 
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the curse of dimensionality. Assuming a good probability model is used and the data 

size is sufficiently large, the density method approach has a big advantage: when 

one threshold value is optimized, a minimum volume is automatically found for the 

given probability density model. Therefore, only the high density areas of the target 

distribution are included and superfluous outliers will not be accepted [77]. 

In boundary methods, a closed boundary around the target set is optimized. Al­

though the volume is not always actively minimized, most methods have a strong bias 

towards a minimal volume solution [77]. The size of the volume depends on the fit of 

the method to the data. In most cases, distances d to a set of objects in the training 

set are computed. Due to their focus on the boundary, the threshold on the output 

is straight forward to obtain. The number of objects required by boundary methods 

is smaller than is required for density methods. However, because the methods rely 

heavily on the distances between objects, they tend to be sensitive to the scaling of 

features. Therefore, well-defined distances must be considered when training these 

classifiers. Common boundary methods include the k-centers method, the nearest 

neighbor method (NN-d), and the Support Vector Data Description. The latter is 

described in detail in Section 4.4. 

Reconstruction methods use prior knowledge about the data and make assump­

tions about the generating process to determine a model and then fit it to the data. 

New objects are then described in terms of a state of the generating model. These 

methods make assumptions about the clustering characteristics of the data or their 

distribution in subspaces. A set of prototypes or subspaces is defined and a recon­

struction error is minimized. Examples include k-means clustering, learning vector 

quantization, self-organizing maps, Principal Component Analysis, diabolo networks 

and auto-encoder networks. These methods differ in their definition of the prototypes 

or subspaces, their reconstruction error, and their optimization routine. Reconstruc-
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tion methods are not considered in this thesis, but more information can be found in 

[77]. 

4.3 Parzen Density Estimation 

The most simple density model is the normal or Gaussian density [79]. For this model, 

the probability distribution for a d-dimensional object x is given by: 

1 { 1 ( T -l ) } PN(x; J-l, ~) = (27r)d/21~11/2 exp -2 x- J-l) ~ (x- J-l (4.13) 

where J-l is the mean and~ is the covariance matrix [66]. The Parzen density estima­

tion [102] is an extension of the Gaussian model. The estimated density is a mixture 

of, most often, Gaussian kernels centered on the individual training objects, with a 

simplified diagonal covariance matrix ~i =hi: 

(4.14) 

where I is the identity matrix. The equal width h in each feature direction means 

that the Parzen density estimation assumes equally weighted features .. As a result, 

this approach is sensitive to the scaling of features, especially if the sample size is 

small. 

Training a Parzen density estimation consists of determining one single parameter, 

the width of the kernel h. This free parameter is typically optimized by maximizing 

the likelihood on the training data using leave-one-out [103, 104]. Producing a good 

description from this approach completely depends on how representative the training 

set is to the actual target distribution. While the computational cost for training the 

Parzen density estimation is quite low, the cost for testing can be expensive. All 
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training objects have to be stored and the distances to all training objects have to be 

calculated and sorted [77]. 

4.4 Support Vector Data Description 

Support vector machines (SVM) have become a popular method in pattern classifi­

cation and were originally developed for the discrimination of two-class classification 

problems [63, 105]. In support vector classifiers, the input vectors are mapped to a 

high dimensional feature space and then separated by the optimal linear hyperplane 

[106]. A variant of this method was proposed by Tax [77] in 2001 for one-class clas­

sification and has since been applied in a variety of research [89, 94, 96, 107]. Aptly 

called the Support Vector Data Description (SVDD), the one-class SVM attempts to 

describe the target class by finding a hypersphere boundary around the class with 

minimal volume. A better fit between the data boundary and the hypersphere model 

may be found by introducing a kernel function K which maps the data to a new fea­

ture space. This method is similar to unsupervised learning algorithms like Gaussian 

mixture models [108] or k-means clustering [109]. 

4.4.1 Derivation of SVDD 

The SVDD is derived as a quadratic optimization problem. Let f(x; w) represent a 

closed boundary, a hypersphere, around the target data. The hypersphere is char­

acterized by a center a and radius R. Assuming the hypersphere covers all training 

objects xtr, the empirical error is equal to 0. Analogous to the conventional SVM, 

the structural error is defined as 

Estruct(R, a) = R2 (4.15) 
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which must be minimized with the constraints 

(4.16) 

To make the method more robust, the model should allow the possibility of outliers 

in the training set. In this case, the empirical error will not be 0. The total error now 

contains a structural and an empirical error contribution. Slack variables e, ~i 2: 0, Vi, 

are introduced to enable soft boundary calculation and thus the minimization problem 

becomes 

( 4.17) 

with constraints that almost all objects are within the hypersphere: 

(4.18) 

The parameter C gives a tradeoff between the volume of the description and the 

errors. In Figure 4.7, a graphical representation of the hypersphere around some 

training data is given. It shows three objects on the boundary and one object Xi that 

is rejected by the description. 

The free parameters, a, R, and e, have to be optimized with respect to the con-

straints in (4.18). This can be accomplished by introducing Lagrange multipliers and 

constructing the Lagrangian [110]: 

L(R, a, e, a,/') R
2 + c:L:~i (4.19) 

- L ai { R2 + ~i- (xi· xi- 2a ·xi+ a· a)} - L "'fi~i 
i i 

with the Lagrange multipliers ai 2: 0 and "Yi 2: 0, and where xi · Xj represents the 
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L:,<>,X, "' 
" - £..- t> X, 
L-oa, 

8 (Ul) 

7, = C-o,. Vo (4.22) 

Cnustrnint. (4.22) can be n:'Wrilt('n l.lS tl1 = C- ;,. ln~teod of thr constraints that 

')'1 ?' 0 nnd "Yi =C- o,, a II<'W {'on:;trnint. on o, can be introdurf<l: 

Vi. (4.23) 
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Provided ( 4.23) is satisfied, the Lagrange multipliers /i can be computed by li = 

C- ai and {i 2:: 0 automatically holds. Assuming all constraints hold, (4.19) can be 

rewritten as 

L(R, a, e, a,!) 

L G:iXi . Xi - L G:iG:jXi . Xj 

i,j 

(4.24) 

j i,j 

(4.25) 

The minimization of the error function (4.25) with constraints (4.23) is a well-known 

quadratic programming problem and standard algorithms exist to solve this [77]. 

When an object Xi is within the hypersphere, the inequality in constraint ( 4.18) 

is satisfied and the corresponding Lagrange multiplier becomes zero: ai = 0. For 

objects satisfying the equality II xi - all 2 = R2 + ~i, the object is located at or outside 

the boundary and the corresponding Lagrange multiplier becomes positive: ai > 0. 

When an object obtains G:i = C, the object is regarded as an outlier and will not 

be accepted by the data description (i.e. the hypersphere description is not adjusted 

further to include the corresponding object Xi in the description). 

In equation (4.21), the center of the sphere a is expressed as a linear combination 

of objects with weights ai. For the computation of a, objects with 0 weight ( ai = 0) 

can be disregarded; only objects with positive weight (ai > 0) are required. In the 

minimization of (4.25), often a large fraction of the weights become 0. Therefore, the 

sum in ( 4.21) is usually over a small fraction of objects xi with ai > 0. Only these 

objects, called the support vectors, are required for the description of the data set. 

To test if a new object z is accepted by the description, the distance from the 
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object to the center of the hypersphere a has to be calculated. The object is accepted 

when this distance is smaller than or equal to the radius: 

liz- all 2 
= (z · z)- 2 L ai(z ·xi)+ L aiaJ(xi · xJ):::; R2, 

i,j 

( 4.26) 

where R2 can be determined by calculating the squared distance from the center a to 

any support vector Xk on the boundary: 

R2 
= (xk · xk)- 2 L ai(xi · xk) + L aiaJ(xi · xJ)· 

i,j 

The SVDD can now be written as 

fsvvv(z; a, R) I(llz- all2 :::; R2) 

(4.27) 

I ((z · z)- 2 L ai(z ·xi)+ 2: aiaJ(xi · xJ) :::; R2)(4.28) 
t t,J 

where I is the indicator function, as defined in ( 4. 9). A bonus feature of the SVD D is 

that it offers a direct estimate of the error it makes on the target set [77]. The fraction 

of the target objects which become support vectors is an estimate of the fraction of 

target objects rejected by the description. 

When objects which should be rejected (negative examples) are available, they 

can be used during training to improve the SVDD (i.e. to obtain a tighter boundary 

around the data in the areas where outlier objects are present). In contrast with 

the target examples, which should be within the hypersphere, the negative exam-

ples should be outside it. Formulation for an SVDD that uses negative examples to 

improve the description boundary is given in Appendix D. 
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4.4.2 The Kernel Trick 

The hypersphere is a very rigid model of the boundary of the data. In general, this 

model will not fit the data well. An improved target data description can be achieved 

using the so-called kernel trick, similar to that used in the nonlinear SVM [105]. The 

general idea is to map data vectors from the input space to a high-dimensional kernel 

space using an implicit nonlinear mapping <I> and then minimize the volume of the 

hypersphere containing the data in the kernel space. To illustrate this idea, assume 

we are given a mapping <I> which improves the fit: 

x* = <I>(x) ( 4.29) 

Applying this mapping to ( 4.25) and ( 4.28) gives: 

L = L ai<I>(xi) · <I>(xi)- L aiaj<I>(xi) · <I>(xj) (4.30) 
i,j 

and 

!svDD(z; a, R) = 

I (<I>(z) · <I>(z)- 2 L ai<I>(z) · <I>(xi) +I: aiaj<I>(xi) · <I>(xj):::; R2
) (4.31) 

I IJ 

Since all mappings <I>(x) in (4.30) and (4.31) occur only in inner products with other 

mappings, a new kernel function of two input variables can be defined: 

(4.32) 
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Replacing all occurrences of 1>(xi) · 1>(xj) in (4.30) and (4.31) by this kernel gives: 

and 

L = 2:::.:: aiK(xi, xi) - 2:::.:: aiajK(xi, Xj) 

i,j 
(4.33) 

fsvDD(z; a, R) =I (K(z, z)- 2 2:::.:: aiK(z, Xi)+~ aiajK(xi, xj) ::; R2
) (4.34) 

t t,] 

The kernel function K(xi, xj) is called a Mercer kernel because it can be written as 

an inner product of two functions [105, 112]. In this formulation, the mapping 1> is 

never used explicitly; it is only defined implicitly by the kernel K. The advantage of 

the kernel trick is that the introduction of the kernels does not introduce much extra 

computational costs. The optimization problem remains identical in the number of 

free parameters [77]. 

Several kernel functions have been proposed for the support vector classifier [113]. 

However, it appears that not all kernels that were proposed for the SVC can be 

used by the SVDD. In most cases the data classes are elongated, which is useful for 

discrimination between two classes, but is harmful for one-class classification [114]. 

The two most common kernels used with the SVDD are the polynomial kernel and 

the Gaussian kernel. The polynomial kernel is given by 

(4.35) 

where the free parameter p gives the degree of the polynomial kernel. As argued by 

Vapnik [63], this kernel maps the objects into the high dimensional feature space by 

adding products of the original features, up to degree p. For example, a 2D vector 
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(x1,x2) is mapped to (x 1 ,x2 ,x 1x2 ,xi,x~) when a polynomial kernel with p = 2 is 

used [115]. 

The Gaussian kernel is given by 

(4.36) 

where the free parameters is the width of the kernel. For small values of s the SVDD 

resembles a Parzen density estimation, while for large s the original hypersphere 

solution is obtained [115]. Tax [77] investigates the behaviour of these kernel functions 

in detail. He concludes that the polynomial kernel suffers from the large influence 

of the norms of the object vectors. While the Gaussian kernel results in a tighter 

description than the polynomial kernel, it requires more data to support the more 

flexible boundary. Both the polynomial and Gaussian kernels are investigated in this 

thesis. 

4.5 Experimental Results 

This section describes the experimental results of applying the Parzen density es­

timation and SVDD classifiers to segmented seal data. First, a review of feature 

optimization techniques is given. This is followed by a description of the general 

methodology followed for training and testing the classifiers including parameter op­

timization. Finally, the results of applying the data descriptions to test data are given 

and classifier performance is evaluated. 
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4.5.1 Feature Optimization 

In order to have a good distinction between target and outlier objects, good repre­

sentation of the data is essential. The performance of both the Parzen density esti­

mation and the SVDD critically depends on the scaling of data and is often harmed 

by data distributions in subspaces [114]. Therefore, three different approaches have 

been applied to optimize data features prior to training the classifier; scaling of the 

data, Principal Component Analysis, and kernel whitening. The latter two methods 

use feature reduction, while scaling maintains the original dimension of the feature 

space. Classifier performance is evaluated on pre-processed data and compared to 

classification results on data which is not pre-processed. It is expected that feature 

optimization will improve classifier performance. 

Scaling Data 

For the first feature optimization approach, a scaling map is computed on the target 

data such that its mean is shifted to the origin and the variances of all features are 

scaled to one. Test data is pre-processed with the mapping that is computed for the 

training set. 

Principal Component Analysis 

The second feature optimization approach is Principal Component Analysis (PCA). 

The central idea of PCA is to reduce the dimensionality of a data set consisting of 

a large number of interrelated variables, while retaining as much as possible of the 

variation present in the data set. PCA is mathematically defined as an orthogonal 

linear transformation that transforms the data to a new coordinate system such that 

the greatest variance by any projection of the data comes to lie on the first coordinate 
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(the first principal component), the second greatest variance on the second coordinate, 

on so forth. PCA then eliminates the components that contribute the least to the 

variation in the data set. In this thesis, the principal components that contribute less 

than 1% to the total variation in the training data are eliminated. This constraint 

results in 6 principal components in the transformed subspace. Test data is pre­

processed with the transformation matrix that is computed for the training set. For 

a detailed description of PCA, please refer to Jolliffe [116] and Jackson [117]. 

Kernel Whitening 

The final feature optimization approach is kernel whitening. In a study conducted 

by Scholkopf et al. [118], it was indicated that nonlinear principal components from 

kernel PCA had better recognition rates than the corresponding number of linear 

principal components from linear PCA. In addition, the performance for nonlinear 

components can be further improved by using more components than possible in 

the linear case. Kernel whitening uses the idea of kernel PCA to extract the non­

linear principal features of the data set. After mapping the data to this new feature 

space (implicitly defined by the kernel function), feature directions with (almost) 

zero variance are removed and the other features are rescaled to unit variance. By 

the kernel PCA and rescaling, the resulting data has zero mean with an identity 

covariance matrix [114]. In principal, this data can now be described by any one­

class classifier. Mathematical details of the kernel whitening transformation are given 

in Appendix D. 

The efficiency of mapping the data to the new representation with unit variance 

depends on the choice of the kernel and parameters. A polynomial or Gaussian kernel 

is typically chosen. A suitable kernel may be selected by using the Chernoff distance 
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between the target and outlier data [114]: 

(4.37) 

where L:0 is the covariance matrix of the outlier class and T is the identity matrix 

(see Appendix D for details). This distance is relatively cheap to compute, and thus 

the expensive optimization of the classifier and the computation of the AUC for all 

combinations of kernel definition and data dimensionality can be avoided. For each 

kernel definition a near optimal dimensionality can be estimated. Then the classifier 

and the AUC have to computed and compared for only these combinations of kernel 

and dimensionality. 

In an attempt to determine the optimal kernel, the Chernoff distance is computed 

for the training data using a polynomial kernel with the degree ranging from p = 1 

top= 5 and using a Gaussian kernel with the width parameters s = 5, 15, 25, 35, 50. 

For each of the kernels, the number of used principal components d' (dimensionality) 

is varied. In Figure 4.8a, the Chernoff distance between the target and outlier classes 

is shown for the polynomial kernel. This plot implies that the higher the degree, 

the faster the distance increases. This suggests that using higher degrees and higher 

dimensionalities gives the best performance. However, in practice very good perfor-

mances have been obtained with lower values of p and d' [114]. In Figure 4.8b, the 

Chernoff distance between the target and outlier classes is shown for the Gaussian 

kernel. This plot suggests that the smaller the kernel width, the faster the distance 

increases. Unfortunately, there is no obvious choice of kernel from these plots. 

Since a suitable kernel is difficult to select from the plots in Figure 4.8, the data is 

pre-processed by each kernel using different parameters and varying data dimension-

alities, and then the Parzen density estimation and SVDD are trained on the data. 
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For each combination of parameter and dimensionality, the classifier is optimized by 

maximizing the AUC. This AUC value is then plotted as a function of the retained 

dimensionality of the kernel PCA. Figure 1.9 disJ)Iays the AUC "alues computed for 

the Parzcn density estimation when the data is pre-processed using the polynomial 

kernel A similar plot was produced for the Gaussian kf"rn<"l, but the best rcS\Ilts 

were clearly obtained with the polynomial kemel. As the plot in Figure 4.9 shows, a 

polynomial kernel of degree 1 with 13 retained principal c..-omponents gives the best 

result. Therefore, this configuration is used to pre-process data for the Part.cn clas­

sifier. It is interesting to note that this result is counterintuitive from the Chernoff 

distance results in Figure 4.8a which suggest that using higher degrees and higher 

dimensionalitics for the polynomial kernel giws the best performance. 

-· -. -· .. -.. 
.. -----. 

.. --- ._ -

., 

figure 4.9: For the polynomial kernel with degrees p = 1, .. , 5, and for varying dimen­
sionality fl, a Parzen density estimation is optimized by maximizing the AUC. This 
AVC value is plotted as a function of d'. Por this cla.~sifier) a. kernel of degree 1 with 
13 retained principal components givet; the best result. 

Pigu~'<' 4.10 displays the AUC values computed for the SVOD when the data is 

pre-pr~ using the polynomial kernel. 'fwo different SVOO configurations are 
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tested; in Figure 4.10a the SVDD is constructed with a polynomial kernel of degree 1 

and in Figure 4.10b the SVDD is constructed with a Gaussian kernel using s = 10 (the 

SVDD kernel should not be confused with the kernel function used in the whitening 

process). As both plots show, a polynomial kernel of degree 1 with 17 retained 

principal components gives the best result for both support vector data descriptions. 

Therefore, this configuration is used to pre-process data for the SVDD. Similar plots 

were produced for the Gaussian kernel, but results were not as good when compared 

to the polynomial kernel. 

4.5.2 Methodology for Training and Testing 

This research uses the Data Description Toolbox[100] and PRTools4[119] to create and 

apply one-class classifiers. After the data has been pre-processed, as described in the 

previous section, the next step in training a classifier is to determine the optimal free 

parameter(s) by maximizing the AUC on training data. This optimization process is 

conducted for the Parzen method, for the SVDD with a polynomial kernel, and for 

the SVDD with a Gaussian kernel. 

For the Parzen density estimation there is only one free parameter to optimize, the 

kernel width h. This parameter is typically optimized by maximizing the likelihood 

on the training data using leave-one-out [103, 104]. However, a different approach 

is taken here. First, a reasonable range of values for h is determined based on the 

scaling of the data. This range will change depending on the pre-processing method 

applied. For each value h in the specified range, the average AUC value is computed 

using 5-fold cross validation. That is, the training data is randomly split into 5 

groups of equal or near-equal size. For each group, the ROC curve is plotted and 

the corresponding AUC value is computed. The AUC for all 5 groups is averaged 

104 



and recorded as the AUC for the given parameter h. This process is repeated for 

all parameter values in the given range. The parameter that produces the maximum 

AUC is chosen as the optimal kernel width for the given data set. 

For the SVDD, the free parameters are the Lagrange multipliers a. From these 

Lagrange multipliers, the center a and the threshold value R can be computed. Thus, 

the number of free parameters is N, the size of the target set. However, for the SVDD 

implementation in the Data Description Toolbox, the user only has to supply the 

number of false negatives fr- (which is varied for computation of the ROC curve) 

and the kernel parameter(s) from which all other free parameters are determined. 

For a polynomial kernel there is one free parameter, the degree p of the polynomial. 

For a Gaussian kernel there is also one free parameter, the width s. The process for 

determining the optimal parameter for the SVDD kernel is analogous to the process 

used for the Parzen classifier. First, a reasonable range of values for the parameter is 

given based on the type of kernel. For a polynomial kernel, p = 1, .. , 5 is used. For 

a Gaussian kernel, s = 1, .. , 50 is tested. For each parameter value in the specified 

range, the average AUC value is computed using 5-fold cross validation as described 

above. The parameter that produces the maximum AUC is chosen as the optimal 

kernel parameter for the given data set. 

The next step in the training process is to select a specific operating point. As 

discussed in Section 4.2.2, the threshold on the distance d or resemblance pis derived 

directly from the training set and adjusted to accept a predefined fraction of the target 

class. For a target acceptance rate fr+, the threshold efT+ is defined by Equation 

(4.10) (or (4.11)). In this thesis, the target acceptance rate on the training data is 

determined from the ROC plot produced from the optimal parameter(s). For training 

the classifier, the fraction false negative should be no more than 10% (i.e. minimum 

target acceptance rate of 90%). Therefore, for all operating points on the ROC curve 
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are now used to train the classifier. Finally, the data description is applied to test 

data and its performance is evaluated and compared to other classifiers. The process 

for training and testing each classifier, as described above, is summarized as follows: 

1. Optimize features (scaling of data, PCA, kernel whitening). 

2. Optimize classifier parameter(s) by maximizing AUC using 5-fold cross valida­

tion on training data. 

3. Using the ROC curve produced from the optimal parameter(s), find £1 that 

satisfies the condition in (4.38). This is considered the optimal operating point. 

4. Use the optimal parameter(s) and operating point in the previous steps to con­

struct the classifier. 

5. Apply the classifier to test data and evaluate its performance. 

4.5.3 Final Results 

Table 4.2 shows the final classification results for the objects segmented from test 

data. The first column defines the pre-processing method applied to the data. The 

second column gives the optimal parameter value for the given data description. The 

third and fourth columns give the values of £1 and £n, respectively, for the classifier 

performance on test data. The fifth column gives the total percentage of successful 

classifications (defined as Ur++ fo-)/2) and the final column gives the AUC produced 

from the optimal parameter( s) on training data. For each of the three classification 

methods (Parzen, SVDD with polynomial kernel, SVDD with Gaussian kernel), the 

optimal values for £1, £n, the percentage of successful classifications, and the AUC, 

are highlighted in bold typeface. It is important to note that £1 and £n are equally 
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Table 4.2: Final classification results on test data. 

Method Parameter e1 en (fT+ + fo-)/2 AUC 
Parzen density estimation 
no pre-processing h=75.610 10.77% 37.72% 75.76% 0.8462 
scaled h=2.624 11.79% 25.54% 81.34% 0.9093 
PCA h=2.439 10.77% 25.75% 81.74% 0.9095 
kernel whitening 

h=13.628 8.75% 46.88% 72.19% 0.9119 
(p = 1, d' = 13) 
SVDD with polynomial kernel 
no pre-processing p=0.5 9.43% 39.01% 75.78% 0.8146 
scaled p=1 9.09% 34.05% 78.43% 0.8698 
PCA p=1 9.43% 34.38% 78.10% 0.8694 
kernel whitening 

p=1 15.49% 26.72% 78.90% 0.9080 
(p = 1' d' = 1 7) 
SVDD with Gaussian kernel 
no pre-processing s=48 9.42% 66.27% 62.16% 0.7067 
scaled s=7 11.79% 31.03% 78.59% 0.8858 
PCA s=7 12.80% 31.03% 78.09% 0.8808 
kernel whitening 

s=12 15.49% 27.16% 78.68% 0.9093 
(p = 1' d' = 17) 

weighted when analyzing classifier results (i.e. it is equally important to minimize 

both the number of false negatives and the number of false positives). 

As discussed in Chapter 3, objects segmented from test data were manually re-

viewed and labeled in order to compute error rates. Through this process, it was 

observed that 297 seals and 931 outliers were segmented (a total of 1228 objects). 

The percentages for £1 in Table 4.2 were computed for the 297 target objects. The 

percentages for En were computed for the 931 outlier samples. 

Parzen Density Estimation 

For the Parzen method, the percentage of successful classifications ranges from 72.19% 

for data pre-processed with kernel whitening, to 81.74% for data pre-processed with 

PCA. As expected, applying the Parzen classifier with no pre-processing does not 
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produce the optimal result as features are not equally weighted. The large differences 

in magnitude between feature types in the original input space is evident by the large 

width parameter, h = 75.610. 

When predicting classifier performance using AUC values, it is expected that the 

best separation between targets and outliers will be produced when the data is pre­

processed via kernel whitening. As Table 4.2 shows, the kernel whitening approach 

does result in the smallest £1 value (8.75%). However, the corresponding £11 value 

(and thus the total error) from this configuration is significantly high ( 46.88%). A 

low £1 and high £11 may result from underfitting the classifier. Therefore, the kernel 

whitening approach is considered suboptimal for the Parzen method. 

The smallest value for £11 is obtained when the data is pre-processed via scaling 

(25.54%), closely followed by the £11 value obtained when the data is pre-processed 

with PCA (25.75%). Since a smaller £1 value and smaller total error is obtained from 

the PCA configuration, this is considered the optimal solution for the Parzen density 

estimation. Using this data description (PCA + Parzen), approximately 82% of test 

data is correctly classified. 

SVDD 

For the SVDD, the polynomial kernel and Gaussian kernel produce similar results. 

The percentage of successful classifications ranges from 62.16% (Gaussian kernel with 

no pre-processing) to 78.90% (polynomial kernel with kernel whitening). For the 

SVDD constructed with a polynomial kernel, optimizing the classifier resulted in 

a kernel of degree p = 1 for all pre-processing methods. When the data is not 

pre-processed, the optimal polynomial kernel has degree p = 0.5. For the SVDD 

constructed with a Gaussian kernel, optimizing the classifier resulted in a range of 

width parameters for the various pre-processing methods ( s = 7 for scaling and PCA, 
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s = 12 for kernel whitening). When the data is not pre-processed, the optimal 

Gaussian kernel width is significantly larger ( s = 48). 

For the polynomial kernel, the smallest Er value is produced when the data is pre­

processed via scaling (9.09%). However, when predicting classifier performance using 

AUC values, it is expected that the best separation between targets and outliers will 

be produced when the data is pre-processed via kernel whitening. While this approach 

produces the largest E1 value (15.49%), it also results in the smallest En value (26.72%) 

and greatest number of successful classifications (78.90%). Since the optimal balance 

between E1 and En is produced via kernel whitening, this configuration is considered 

the optimal SVDD using a polynomial kernel. 

For the Gaussian kernel, the smallest E1 value is surprisingly produced when the 

data is not pre-processed (9.42%). However, the corresponding En value is signifi­

cantly higher (66.27%). When predicting classifier performance using AUC values, 

it is again expected that the best separation between targets and outliers will be 

produced when the data is pre-processed via kernel whitening. Analogous to the 

polynomial kernel, this approach also produces the largest E1 value with the Gaussian 

kernel (15.49%). However, since the smallest En value (27.16%) and greatest number 

of successful classifications (78.68%) are also produced with kernel whitening, this 

approach is selected as the optimal choice for the SVDD with a Gaussian kernel. 

The SVDD with kernel whitening produces a similar result for the polynomial and 

Gaussian kernels; in both cases, close to 79% of test data is correctly classified. Both 

kernels produce the same £1 value (15.49%), but the polynomial kernel produces 

a slighter lower En value (26.72%). Therefore, this configuration is chosen as the 

optimal classifier for the SVDD approach. For both kernels, pre-processing the data 

via scaling produces the next best results with 78.43% (polynomial kernel) and 78.59% 

(Gaussian kernel) of test data correctly classified. 
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Optimal Classifier 

In summary, pre-processing the data with PCA and applying the optimized Parzen 

density estimation produces the best results on test data (81.74% success rate). The 

Parzen density estimation with scaled data produces the next best result (81.34% suc­

cess rate), followed by the SVDD with polynomial kernel (p = 1) and pre-processing 

via kernel whitening (78.90% success rate). Density methods produce the best data 

descriptions when the target distributions for the training and test data are ( approxi­

mately) equal [77]. Therefore, it can be concluded that the distribution of seal objects 

in the training set and test set are very similar. However, even for the optimal data 

description, over 25% of outlier objects are classified as targets. Therefore, the target 

and outlier distributions still overlap to a moderate degree. 

As discussed in Chapter 3, the segmentation algorithm failed to extract 1% of 

seals from test data. That is, for 3 out of 300 test images, 0% of the seal object was 

segmented. This error is added to the total error rate ((£1 + Eu)/2) for the optimal 

classifier (PCA + Parzen density estimation) to produce the total error rate for the 

optimal system (segmentation + classification). As Table 4.3 shows, the total success 

rate for the optimal system is 80.74%. 

Table 4.3: Total error rate for the optimal system; this includes the segmentation 
error plus the error rate for the optimal classifier (PCA + Parzen). 

Segmentation error rate 
Classification error rate 
Total error rate 
Total success rate 
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Chapter 5 

Conclusions and Recommendations 

5.1 Summary of Research Methods 

In this thesis, a method is developed to automatically recognize harp seal pups in 

black-and-white aerial photographs captured by DFO. It is expected that an au­

tomated approach will conserve time, reduce sources of error, and save money for 

estimating total pup counts. The algorithm uses image segmentation and pattern 

recognition methods to extract objects from aerial images and then classify these 

objects as either 'seal pup' or 'not seal pup'. 

Each cropped subimage is first enhanced by applying contrast stretching to in­

crease the dynamic range of pixel values. The foreground is segmented from the 

background by applying an adaptive thresholding algorithm that divides the subim­

age into smaller regions and then uses between-class variance and histogram skewness 

to compute an optimal threshold for each subdivided region. The binary threshold 

image is "cleaned" by using Canny edge detection to further define object boundaries, 

line dissection to disconnect adjacent objects, and removal of objects based on size 

constraints. The Isolate Connected Components algorithm further separates adjacent 
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objects with minimal distortion to object shape. Finally, outlier objects are removed 

based on area and length measurements. 

Nineteen feature measurements are computed for each segmented object. Three 

different approaches have been applied to optimize data features prior to training the 

classifier; scaling of the data, PCA, and kernel whitening. The latter two methods 

use feature reduction, while scaling maintains the original dimension of the feature 

space. For PCA, the principal components that contribute less than 1% to the total 

variation in the training data are eliminated. This constraint results in 6 principal 

components in the transformed subspace. For kernel whitening, a polynomial kernel 

of degree 1 is used to transform the data and the number of principal components 

depends on the classifier; 13 and 17 principal components are selected for the Parzen 

density estimation and SVDD, respectively. 

Two one-class classifiers are trained and tested on seal pup data: the Parzen 

density estimation and the SVDD. For the SVDD, a polynomial and Gaussian kernel 

are tested and compared. For each classifier, the optimal parameter(s) are computed 

by maximizing the AUC using 5-fold cross validation on training data. Using the 

ROC curve produced from the optimal parameter(s), the operating point is chosen 

by selecting £I that satisfies min (£I+ £n). The optimal parameter( s) and operating 
O:SE!:SO.l 

point are then used to train the data description. Finally, classifier performance is 

evaluated on objects segmented from test data. 

5.2 Summary of Results and Conclusions 

Automated recognition of harp seal pups in digitized aerial photographs is a non-

trivial task. Aerial images of whelping concentrations may contain a variety of features 

including open waterways, sea ice, shadows, adult seals, seal pups and other marine 
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life. Sea ice is varied in size, shape, and texture; it may appear fiat and smooth 

or rough and jagged. All of these features present challenges when attempting to 

distinguish seal pups from their surroundings. 

The segmentation algorithm must be robust to complex conditions such as uneven 

illumination, shadows, occlusions, and objects grouped together. One reoccurring is­

sue with the seal images is that whitecoats and small ice chunks may be similarly 

shaped. Another problem is that seal pup pixels and the adjacent background pixels 

sometimes share similar gray level values and as a result, these areas are segmented 

together as a single object. To address these problems, the segmentation algorithm 

incorporates robust procedures such as the adaptive thresholding algorithm and the 

original Isolate Connected Components algorithm which attempts to separate indi­

vidual seal objects with minimal distortion to object shape. Even with the variety of 

challenges presented, the segmentation algorithm performs good on the majority of 

images. Algorithm performance was evaluated as excellent, good, or satisfactory on 

93% of seals segmented from 600 images used for training. When applied to 300 test 

images, the segmentation algorithm successfully segments 297 seals; therefore, the 

algorithm failed to segment only 1% of seals from test data. Of course, the segmenta­

tion algorithm also segments a large number of non-seal pup objects (outliers); 1775 

outliers were segmented from training data and 931 outliers were segmented from test 

data. 

While a large number of outliers were segmented from seal pup data, it is difficult 

to know how representative these objects are of the true outlier distribution. Con­

versely, objects from the target class (seal pups) are well-sampled. For this situation, 

a one-class classifier is preferred over a conventional classifier. A one-class classifier 

is used to describe the target class and then detect new data that is characteristic 

(seal pups) or uncharacteristic (outliers) of the target data. Therefore, a well-sampled 
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class of outliers is not required. 

Classifier performance is affected by how well the training data represents the true 

data distribution, the size of the sample, the type and number of object features, and 

the complexity of the model. The Parzen density estimation and the SVDD are both 

sensitive to the scaling of data and its distribution in subspaces. For both classifiers, 

pre-processing the data using scaling and PCA significantly improves results over data 

that is not pre-processed. Pre-processing the data using kernel whitening improves 

performance for the SVDD but not for the Parzen density estimation. The success of 

kernel whitening largely depends on choosing a suitable kernel function and parameter 

values. 

The ROC curve provides a good way to evaluate classifier performance and choose 

an optimal operating point. While the AUC provides a single measurement to com­

pare classifiers, maximizing its value does not guarantee optimal performance on test 

data; a trade-off between E1 and En must also be considered. It can therefore happen 

that for a specific threshold a one-class classifier with a lower AUC might be preferred 

over another classifier with a higher AUC if, for that specific threshold, the fraction 

false positive (En) is smaller for the first classifier than the second one. A combina­

tion of AUC, E1, and En values are considered in this thesis to determine the optimal 

classifier. 

The Parzen density estimation and the SVDD both produce satisfactory results 

on test data. As Table 4.2 shows, the fraction of false negatives is quite reasonable, 

ranging from 8. 75% to 15.49%. However, the fraction of false positives has a much 

broader range and can be fairly high, ranging from 25.54% to 66.27%. The total 

number of successful classifications ranges from 62.16% to 81.74%. 

The largest AUC value and the smallest E1 value for the Parzen method are ob­

tained when the data is pre-processed using kernel whitening. However, the resulting 
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En (and thus the total error) from this configuration is significantly high (46.88%). 

Therefore, this approach is considered suboptimal. The smallest value for En is ob­

tained when the data is pre-processed via scaling (25.54%), closely followed by the En 

value obtained when the data is pre-processed with PCA (25.75%). Since a smaller 

E1 value and smaller total error is obtained from the latter configuration, this is 

considered the optimal solution for the Parzen density estimation. Using this data 

description (PCA + Parzen), 81.74% of test data is correctly classified. 

For the SVDD, the polynomial and Gaussian kernels produce similar results. For 

both kernels, the smallest En values, smallest total error, and largest AUC values 

are obtained when the data is pre-processed using kernel whitening. However, both 

configurations produce the largest E1 values (15.49%). While all other configurations 

produce a smaller E1, the kernel whitening approach is still considered optimal because 

it produces the largest number of successful classifications (approximately 79% for 

both kernels). Since the polynomial kernel produces a slightly smaller En than the 

Gaussian kernel, this configuration is considered optimal for the SVDD approach. 

In summary, pre-processing the data with PCA and applying the optimized Parzen 

density estimation produces the best results on test data (81.74% success rate). The 

Parzen density estimation with scaled data produces the next best result (81.34% suc­

cess rate), followed by the SVDD with polynomial kernel (p = 1) and pre-processing 

via kernel whitening (78.90% success rate). Recall that the segmentation algorithm 

failed to extract 1% of seals from test data. Adding this error to the classification 

error rate for the Parzen density estimation (18.26%) produces the total error rate 

for the optimal system (19.26% error rate = 80.74% success rate). 

Density methods produce the best data descriptions when the target distributions 

for the training and test data are (approximately) equal. Therefore, it can be con­

cluded that the distribution of seal objects in the training set and test set are very 
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similar. However, even for the optimal data description, over 25% of outlier objects 

are classified as targets. Therefore, the outlier distribution overlaps the target dis­

tribution to a moderate degree. Unfortunately, creating a tighter data description 

to minimize the number of outliers accepted will also increase the number of targets 

rejected. Improving the segmentation algorithm may produce a better representative 

sample of target objects, minimize the number of outliers segmented, and thus reduce 

the number of outliers accepted as targets. In addition, a better separation between 

target and outlier distributions may be obtained by another one-class classification 

method (such as other boundary or reconstruction methods). 

The algorithm developed in this thesis for the detection and classification of harp 

seal pups produces promising first results. While this research is just one possible 

solution, the development of an automated pattern recognition system for counting 

seal pups certainly appears to be feasible. If such a system could significantly reduce 

the time and costs for producing population estimates, then it is worth investing in 

further research to improve the accuracy and robustness of the segmentation and 

classification methods. 

5.3 Recommendations 

The following are recommendations for future work. 

1. Improve segmentation algorithm - While the segmentation algorithm has 

a high success rate for extracting seal pups, it also segments a large number of 

other, unwanted objects. Improving the adaptive thresholding algorithm and 

the techniques that separate adjacent and occluded seals may minimize the 

number of outliers segmented. Template matching may also be considered as 
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a segmentation approach1 . In this case, a finite set of templates that represent 

the variety of seal pup shapes would need to be created. 

2. Test other one-class classifiers - In a literature search of one-class classifica-

tion applications, the Parzen density estimation and SVDD often produce the 

best results. However, there are over 20 one-class classifiers currently available. 

It would be of interest to investigate how other one-class classifiers perform on 

the seal data. Alternative approaches to consider include other boundary meth-

ods (k-centers, nearest neighbor (NN-d)) and reconstruction methods (k-means 

clustering, learning vector quantization, self-organizing maps, diabolo networks 

and auto-encoder networks). 

3. Combine one-class classifiers - As in any type of classification, one classi­

fier hardly ever captures all characteristics of the data. To improve classifier 

performance and increase robustness of the classification, the results of differ­

ent classifiers (which may differ in complexity or training algorithm) could be 

combined [77, 97]. Classifiers can be combined in several ways. One approach 

is to use different feature sets and combine the classifiers trained on each set. 

Another approach is to train several different classifiers on one feature set and 

combine these. The effectiveness of combining one-class classifiers has been re-

searched by a number of people in recent years [97, 120, 121, 90], and it may 

be worth investigating for the problem studied in this research. 

4. Incorporate weights into the total error - The most important feature of 

one-class classifiers is the tradeoff between £1 and En. Consider two one-class 

classifiers with the following error values: 

1The idea of template matching is to create a model of an object of interest (the template, or 
kernel) and then to search over the image of interest for objects that match the template. 
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Classifier 1 --+£I= 0.11, En= 0.44, total error= 0.55 

Classifier 2--+ £I= 0.16, En= 0.38, total error= 0.54 

Classifier 2 has a smaller total error (0.54), but only by a small margin. For the 

given problem however, it may be more important to maximize the number of 

true positives (i.e. minimize £I)· To reflect the greater importance placed on 

the value of £I, both error values could be weighted (i.e. a£I + f3£n, where a 

and (3 are the weights for £I and En, respectively). Assume that it is twice as 

important to minimize £1 over En. Setting a = 2 gives the following: 

Classifier 1 --+total error= 2(0.11) + 0.44 = 0.66 

Classifier 2 --+total error= 2(0.16) + 0.38 = 0.70 

Now classifier 1 produces the smallest total error. Incorporating weights into 

the total error may assist in the choosing the optimal classifier for a particular 

problem. For this research, it is assumed that E1 and En are equally weighted. 

However, if the pattern recognition tools developed in this thesis were incorpo­

rated into a software system, the option to weight £1 and En differently may be 

important to the end-user. 

5. Compare manual and automated methods on new data- It would be of 

interest to compare automated detection and classification results to traditional 

manual results on new data. An automated approach would only be practical 

(and preferred) if the results were similar to manual detection within a certain 

error margin. A small total error rate may be acceptable for the automated 

approach (when compared to the manual process) if the time and cost savings 

are substantial. 
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6. Test data from other surveys - Large format negatives from aerial surveys 

must be digitized by a third party company and this process is quite expensive. 

Therefore, only the aerial photographs from the 1999 survey were digitized and 

provided for this research. However, since 1990, DFO have conducted aerial 

surveys of whelping concentrations at four to five year intervals. Therefore, 

an abundance of data from other surveys is available and could be digitized 

to further test the segmentation and classification algorithms developed herein. 

Empirically chosen parameters for the segmentation algorithm (e.g. size con­

straints) may need to be adjusted for other survey data if aerial photographs 

were captured at a different altitude. In addition, if the distribution of target 

data from other surveys is different from the target distribution of data collected 

in 1999, a new classifier will need to be trained. 

7. Complete system design- Once the pattern recognition methods have been 

studied further and adjusted for optimal performance, they may be incorporated 

into a complete software system for estimating pup production of harp seals. 

Input to this system would be an original large image (as shown in Figure 2.4) 

and the output would be the number and locations of seals in the image. In 

addition, it may be possible to include a module for on-line learning; this would 

allow end-users to train the classifier on new data sets. It is important to note 

that a software system would most likely be an aid for counting seals, not a user 

replacement. Manual user quality control would still have to be incorporated 

into the system to confirm automated detections. 

8. Other survey methods - More and more often, environmental monitoring 

problems are turning to the computational world for automated solutions. It is 

highly likely that an automated approach for estimating harp seal pup produc-
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tion will be established in the coming years; the exact form of that approach is 

yet to be determined. While this research focused on the current survey method 

of using black-and-white aerial photography, another survey method may lend 

itself to more robust pattern recognition tools. The feasibility of multi-spectral 

scanning, ultraviolet photography, and infrared photography may be considered. 
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Pseudocode for ICC Algorithm 
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Algorithm 1 Isolate Connected Components 
Input: Threshold image Ir 
Output: Label matrix identifying objects 

r .- 2 //initialize object labels; 1 is used to label perimeter pixels 
N .- number of 4-connected objects in threshold image Ir 
S E .- disk-shaped structuring element with radius 2 
for i = 1 to N do 

oi - ith 4-connected object 
oi - apply morphological closing to oi to remove holes 1 pixel in size 
if area(Oi) ~ 230 then 

else 

pi - perimeter of oi 
remove perimeter ~ to divide oi into component objects 
M .-number of 4-connected component objects 
for j = 1 to M do 

oij - jth component object of oi 
if area( oij) < 15 then 

remove oij 

else if area( oij) ~ 230 then 
pij - perimeter of oij 

else 

remove perimeter ~j to divide oij into subcomponent objects 
L .-number of 4-connected subcomponent objects 
for k = 1 to L do 

oijk - kth subcomponent object of oij 

if area( oijk) < 10 then 

else 
remove oijk 

label object oijk as r 
reattach ~j to oijk using labeling and 8-connected rule 
reattach pi to oijk using labeling and 8-connected rule 
apply morphological closing to Oijk using S E 
r .- r+ 1 

end if 
end for 

label object oij as r 
reattach pi to oij using labeling and 8-connected rule 
apply morphological closing to Oij using S E 
r .- r+ 1 

end if 
end for 

label object oi as r 
apply morphological closing to Oi using S E 
r.-r+1 

end if 
end for 



Appendix B 

Performance of Segmentation 
Algorithm on Training Data 

Tht' follo"mg toN'Iion"' gi\'1' st\·eral exampl~ of bow tlu.• ...-ognu•ntntion algorithm per .. 
formtd on training data. Performance b categorw:'li n.-, f'XN"IINn, good, satisfactory, 
poor, or ffUIIIr«" . Thr C'rit('ria for taCh CAt('Jtury i~ Jl\1'11 at the 'bf1tinning of each 
\l('(·eton In tbt· f"XRntple gra~-scale images shown lK-Iow, thr S('al pup is eirclrd. 

B .l Excellent Performance 

S€>gm(·nt nt ion w~ults ar~ evaluated as -excellene' if tht a lg-orithm clt'anly segments 
100% or the ll('rU pup with no attached ~>rti[a<'h, '""h '" sluulo"s or i('e. !'able 0.1 
~hOWl\ M'\'t•m) t'XfUnpl~. 

Ttthlr 0.1: Examples of ~cgmcntatiou l)('l'foruuuu·c• cval­
untt.•d as '·excellent". 

Subimagc Result 
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Table B .l - continued 

Subinu~ge 

, 

-
B.2 Good Performance 
5<-.grn('nta.t 100 results are e\'a)uated as "'good" if thr al~torit hm Sl'gfl\('m s at leasl.. 9()5{ 
oft hr .. ·alt>IIJ> .. \ ,·rry small part of th~ """' may ho• ""'~""'"' rd as background and/or 
'111811 ortiffltts, such as shadows or ice. may be sc-gmrntrd M pan or thr sc..al obj('('t; 
thi• sliKhtly distorts the <rue shape of the seal. I ubi<• ll.2 show• ""'"'"'examples. 
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Table 8.2: Examples of segmentation performance eval­
uated as "good'~. 

Subirnage 
Result 
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B.3 Satisfactory Performance 
~nt'nt.at ion results are e\"aluated as "'sat~factory· af th<" Algorathm ~ents at least 
:;o% of til<" M'al pup . .\ pOrtion of th~ seal ohjr<t "'"l' bt• "''K""'nt«l .., background 
and/or ar11fi\C'1 ~. such as shadows or ice, rna)' be wgnwutC'd a.~ pA-ri or the seal object; 
tlw trut• 'hnt>O of tlw sc~l is still appaN'nt. Tahir 113 >I"'"" M'voral examples. 

Tnblc 0.3: Examples of segmentation IH'rfonnnnt~ cval­
untC'd as .. sntisfactory"' . 

Subirnage~--+R""ult 

• 
-

• 
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Table B.3 

Subirnage Result 

• 

B.4 Poor Performance 
Sc-gmrlllnLion rC'Sults are e\'aluated as '"poor"' if the algorithm ~mrnts a very small 
portion uf tho M'•l pup (<50%), Or the seal is odjoinrd to Ollorr Ohj"flS (r.g. adja('<'lll 
irr) whkh nr('t ~«'gmcnt<.'d together as a single objt'Cti this dO<'H not accurately represent 
tltc true tdulp~~ of Lite b('&l. Table BA shows M::vcrol t•xnmplrR. 

Tahir D.-1: Examples of scgmcutntion J)('rformnnN e\'al· 
uaL(.'(t as "(><>Or". 

Subimage 

11CXlJ)fl:!:R,:,<' __ _ 
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Table 8.4 continued 

Subimage Result 

B.5 Failure 

Srgtn(•nlfttinn fl."ltUits art' evaluated as .. failure"" if tht a1gCJrichm ~~n~nls OS( the se-.al 
pup. Table 11.5 •how, S<'veral examples. 
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Table 13.5: Examples of segmentation perrormance eval­
uated as ''railurc". 

Subimage 
Result 
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Appendix C 

Hu Moments 

The seven moment invariants, (Pi, i = 1 · · · 7, defined in Section 3.5, are often referred 
to as Hu moments [122]. This set of moments is invariant to translation, rotation, 
and scale change. The Hu moments are derived from the second and third normalized 
central moments [68]. For a digital image I, the moment of order (p + q) is defined as 

mpq = L L xPyq I(x, y) (C.1) 
X y 

where p, q = 0, 1, 2, ... and I(x, y) is the intensity value at location (x, y). The central 
moments are defined as 

where 

X y 

_ m10 d _ mo1 
x=- an y=-. 

moo moo 

The normalized central moments, denoted 'T/pq, are defined as 

/Jpq 
'r/pq = ----;y 

fJoo 

where 

for p + q = 2, 3, .... 
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Appendix D 

Classification Theory 

D.l Error Definitions 

As discussed in [77], the total error of function f on a set of independently distributed 
training objects is decomposed as: 

1 
£(!, w, xtr) = N L E(J(xi; w), Yi) (D.1) 

i 

where different definitions for the error function c are possible, depending on the type 
of f(xi; w). For a discrete valued J(xi; w), the 0-1-loss error is used. This counts 
the number of wrongly classified objects: 

co-1 (!(xi; w), Yi) = { ~: 
For real-valued functions f(xi; w) E [-1, 1], 
mean squared error (MSE): 

if f(xi; w) = Yi, 
otherwise. 

(D.2) 

common error definitions include the 

(D.3) 

and the cross entropy (where the labels should be rescaled to positive values Yi = 
{0,1}): 

(D.4) 

D.2 SVDD with Negative Examples 

Negative examples (objects which should be rejected) can be used to improve the 
SVDD by defining a tighter boundary around the data in the areas where outlier 
objects are present. In contrast with the target examples, which should be within the 
hypersphere, the negative examples should be outside it. 
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For the following derivation (summarized from Tax [77]), target objects are enu­
merated by indices i, j and outlier objects are enumerated by l, m. In addition, target 
objects are labeled Yi = 1 and outlier objects are labeled Yi = -1. Again, slack vari­
ables ~i 2:: 0 and 6 2:: 0 are introduced to allow for errors in the target and outlier 
sets: 

(D.5) 

and the constraints: 

Objects with ~i > 0 are the false negatives and objects with ~~ > 0 are false positives. 
Incorporating the above constraints into Equation (D.5) and introducing Lagrange 
multipliers ai, a~, "fi, "fl gives: 

L(R,a,e,a,'f) = R2 +C1L~i+C2L~z- L'Yi~i- L'Yz~z (D.7) 

L ai[R2 + ~i- llxi- all 2
] - L al[llxz- all 2

- R2 + ~z] 

with ai 2:: 0, az 2:: 0, "fi 2:: 0, "fz 2:: 0. 
The partial derivatives of L with respect to R, a and ~i (~1 ) are set to 0 resulting 

in the new constraints: 
Li ai - Lz az = 1 

a = Li aixi - Lz azxz 

0 ::; Cti ::; cl' 0 ::; CXz ::; c2 Vi, l 

When these constraints are substituted into (D.7) we obtain 

L = L ai(xi ·xi)- L az(xz · xz)- L aiaJ(xi · xj) 
l i,j 

l,j l,m 

(D.8) 

(D.9) 

(D.10) 

(D.ll) 

Equation (D.ll) can be simplified when new variables a/ are defined which include 
the labels Yi = ±1: 

(D.12) 

Index i now enumerates both target and outlier objects. Using a/ the SVDD with 
negative examples becomes identical to the original SVDD (Equation (4.25)). The 
first two terms in (D.ll) collapse to the first term in (4.25) and the last three terms 
reduce to the second term in (4.25). Then the constraints in (D.8) and (D.9) become 
Li a/ = 1 and a = Li a/xi, and the function fsvDD in Equation (4.28) can be 
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used. Thus, when outlier examples are available, a/ will be used instead of ai in the 
optimization and the evaluation. 

One might ask the question: if a SVDD can be trained using two classes (tar­
gets and outliers), then why not use a conventional two-class classifier? The choice 
between a SVDD and an ordinary classifier is influenced by both the number of out­
lier objects available for training and how well they represent the target and outlier 
distributions. A conventional classifier distinguishes between two (or more) classes 
without special focus any of the classes. When a representative sample from the 
target class and a large amount of example outliers is available, and when it is as­
sumed that these objects are independently drawn from the same target and outlier 
distributions, an ordinary two-class classification problem is obtained. However, the 
conventional classifier is expected to perform poorly when just a few outlier examples 
are available and the outlier class is undersampled. In this case, the SVDD will work 
better because it obtains a close boundary around the target class without requiring a 
strict representative sample of the target distribution (some outliers are acceptable). 
Furthermore, training the SVDD with sample outliers is intended to improve the 
description by obtaining a tighter boundary around the data in areas where outlier 
objects are present. 

D.3 Kernel Whitening 

The following theory is summarized from Tax and Juszczak [114]. Assume the data 
xtr is mapped to the kernel space IF by some mapping 4> : JRd ---t IF and that the 
transformed data is centered in this space, i.e. I:i cf>(Xi) = 0. Now the covariance 
matrix C of the mapped data set can be estimated by 

C = ~ L cf>(xi)cf>(xif 
n . 

t 

The eigenvectors v and eigenvalues >. satisfy 

Cv = ~ L(cf>(xj). v)ci>(xj) = >.v 
n . 

J 

(D.13) 

(D.14) 

Equation (D.14) shows that the eigenvectors with non-zero eigenvalue must be in the 
span of the mapped data {cf>(xi)}, which means that v can be expanded as 

(D.l5) 
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Multiplying Equation (D.14) from the left with <I>(xk) and using Equation (D.15) 
gives 

~ L(<I>(xk) · <I>(xj)) (<I>(xj) · ~ ai<I>(xi)) = >. L ai(<I>(xk) · <I>(xi)) Vk (D.16) 
J t t 

Introducing the kernel matrix Kij = <I>(xi) · <I>(xj), the coefficients ii from Equation 
(D.15) can be obtained by solving the eigenvalue problem 

(D.17) 

For normal kernel-PCA the eigenvectors should be normalized to unit length. There­
fore, for each eigenvector vk, the (ik are rescaled to 

(D.18) 

Since we assumed the data is centered in IF, the original kernel matrix must be 
transformed. Assume K is the n x n kernel matrix of the training data and Ktst the 
m x n matrix of new data. The centered kernel matrix is computed by 

K = Ktst - 1 * K - Ktst 1 + 1 * K1 n n n n (D.19) 

where 1n is an n x n matrix and 1~ is an m x n matrix, both with all entries 1/n 
[118]. It is assumed that the kernel matrices will always be centered using (D.19). 

When the coefficients of ii are obtained, a new object z can be mapped onto 
eigenvector vk in lF by 

(i)k = (ifc · <I>(z)) = L af(<I>(ii) · <I>(z)) = L af K(xi, Z) (D.20) 

where (i}k means the k-th component of vector i. 
The data can be transformed into a representation with equal variance in each 

feature direction by slightly adapting the normalization from Equation (D.18). The 
variance of the mapped data along component vk is 

var(Xtr) = ~ L(x~)2 = ~ L (2:afk(xi,xj))

2 

~ ~(ii'fKKii' 
J J t 

(D.21) 

Using Equation (D.17) the variance is constant for all features when, instead of Equa­
tion (D.18), we use the normalization 

>.%(iik. iik) = 1 for all considered components k (D.22) 
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The data set X'tr, transformed using the mapping (D.20) with normalization (D.22), 
can now be used by any one-class classifier. The dimensionality d' of this data set 
depends on how many principal components iJk are taken into account. All features 
now have equal variances and the data is also uncorrelated due to the fact that it is 
mapped onto the principal components of the covariance matrix [114]. 

D.3.1 Chernoff Distance 

After applying a suitable kernel whitening to the original data, it is sufficient to use 
a simple one-class classifier on the mapped data. The complexity is then moved from 
optimizing a classifier to optimizing the pre-processing. In order to avoid a complete 
model selection for both the kernel whitening and the classifier, the Chernoff distance 
[114] between the target and outlier class can be used to select parameters for the 
kernel whitening. This distance is defined as: 

(D.23) 

where s is free to choose such that 0 ~ s ~ 1, p(z I wr) is the data distribution of the 
target objects, and p(z I w0 ) is the distribution of the outlier objects. Assuming we 
have two normally distributed classes with means J.L1 and J.L2 and covariance matrices 
~1 and ~2 , the Chernoff distance reduces to: 

1 T _ 1 1 [l(1-s)~1+s~2l] 
Jc = 2s(1- s)(J.L2- J.Ld [(1- s)~1 + s~2] (J.L2- /LI) + 2log ~~ 1 11-s1~2 1s · 

(D.24) 
In one-class classification it can be assumed that the mean of the outlier class is very 
close to the mean of the target class, such that J.Lo- /LT = 0. In addition, by the kernel 
whitening, the data is transformed such that ~T = I, the identity matrix. Taking 
these last two details into consideration and setting s = ~, the Chernoff distance 
becomes: 

1 = ~ 1 [II/2 + ~o/21] 
c 2 og l~oll/2 ' (D.25) 

where ~0 is the covariance matrix of the outlier class. The Chernoff distance is 
relatively cheap to compute, and thus the expensive optimization of the one-class 
classifier and the computation of the AUC for all combinations of kernel definition 
and data dimensionality can be avoided. For each kernel definition, a near optimal 
dimensionality can be estimated by plotting the Chernoff distance for varied dimen­
sionalities. Only for these combinations of kernel and dimensionality do the one-class 
classifier and AUC have to be computed and compared. 
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