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Abstract

Longitudinal binary data has been analyzed over the last three decades either by
using odds ratio or ‘working’ correlations as a measure of association between the re-
peated binary responses. Recently, this type of data has been analyzed by modeling
the correlations parametrically and estimating the parameters by a generalized quasi-
likelihood (GQL) approach. In this thesis, we consider a specific correlation model,
namely, the binary autoregressive order 1 (AR(1)) model to generate the data, and
study the relative performance of the odds ratio and equi-correlations based esti-
mation approaches with the GQL approach. This comparison is mainly done by
simulations under both stationary and non-stationary AR(1) correlation models. A
real life data set containing repeated asthima status of a group of children is also

analyzed.
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Chapter 1

Introduction

1.1 Background of the Problem

Longitudinal binary data analysis is an important research topic. In this setup, binary
respouses are repeatedly collected over a small pertod of tiie from a large number
of independent individuals. For example, consider a binary longitudinal study refer-
enced in Sutradhar (2003) [see also Zeger, Liang, and Albert (1988)]. A data set for
537 children from Ohio state was examined annually from the ages 7-10. Whether the
children had respiratory infection in the previous year was reported by the mother of
the child. That is, the repeated response is the wheezing status (1=yes, 0=n0) of the

child. The initial simoking status of the mothers (1=regular smoker, 0= not) were
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also collected. and considered as a covariate. The interest in such a study would be
to investigate the effect that smoking by a mother on the wheeze status of her child.
We also refer to another longitudinal binary data study reported by Fitzmaurice and
Lipsitz (1995). In this case, data from 51 subjects from an arthritis clinical trial were
collected. In this study, patients complete a self-assessment measurement of arthritis
(0 = ‘poor’. 1 = ‘good’). Each paticnt had a basc-line self-assessment measurement at
week 0, and then follow-up measureinents at weeks 1, 5,9 and 13. Patients were then
randowmly assigned to one of the two treatments. Overall, four covariates including
the treatient were considered, the three other covariates being gender, age, and time
factor. The interest in this particular study is whether the treatinent increases the
possibility of a positive self-assessment. I addition, the sccondary interest of such a

study would be to investigate whether the response differs by age and gender.

Note that the repeated binary responses, such as wheezing status of a child over 4
vears in the aforementioned first problemn, are likely to be correlated. Shmilarly, in the
second problem, the binary responses, namely the arthritis status, taken repeatedly at
four titne points are also likely to be correlated. This type of longitudinal correlations

must be accounted for while estimating the effects of the covariates (regression effects)

on the binary responses. However, the modeling of binary correlations is often difhi-
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cult. Consequently, many authors have used a ‘working’ correlations approach. For
example, in relation to the second problem, Fitzmaurice and Lipsitz (1995) [see also
Lipsitz et al. (1991)] have computed the associated covariate matrix of an individual
by using a ‘working’ odds ratio approach and then using such covariance matrices
to construct the so-called generalized estimating equation (GEE) [Liang and Zeger,
1986]. Some authors have used equi-correlations instead of odds ratios to obtain
correlation structure based regression estimates. See, for example, Prentice (1988) in
the context of a dietary screening problen. However, this selection of equi-correlations
was not adequately justified. Morcover, when covariates are time dependent, the cor-
relations for binary respouses no longer follow equi-correlations (Sutradhar, 2010). In
addition, onc may argue that a correlation structure exhibiting decay in correlations
as time lag micreases, would be the better choice. This decaying pattern can be mod-
eled by using a Gaussian type AR(1) (autoregressive) relationship. By this token, it
would be more appropriate to use a possible class of correlation structure (Sutradhar
2011, Chapter 7) that may accommodate AR(1) and equi-correlations, and so on, as

specialized structures.

Note that the odds ratios are computed from a bivariate binary distribution for a

pair of binary respouses collected from two transiting times. One may illustrate this
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odds ratio computation as follows. Let y;; be the binary response, i.e y;, = 1 or 0, for
the 4 individual (i = 1,...,n) at time t (¢t = 1,...,T). Also, let m;y = P(yy = 1)

be the marginal probabilities at time ¢. Suppose that P(y;,, = 1,y = 1) is denoted

by Wfllllf) Then for all possible transitions from time u to ¢, the joint and marginal

probabilities may be written as in Table 1.1.

Table 1.1: Joint probabilities in contingency table form.

Time t
Time u 1 (y=1) 2 (y=0) Total
Lo=1) =Y mn

tiu tiu
2 (y=0) WE,‘Z[L) ”5,2’2) 1 — 7y
Total Tt 1 - it 1

We may then write the log odds ratios for the " individual as

(blw) _(th)
T 7522

l/’,'z,[ = lOg —‘(—tm = lOg Tiuts (say) (111)
0,12 721

Suppose that > oy = ny and Y . valir = 'nétl'“). When the probabilities in

Table 1.1 are the same for all individuals 7 = 1, ..., n, we may consequently construct
(t

. . . U
a contingency table using the notation ZZ':I yie = ng and Y Vil = nllll), for

exawmple. The 2 x 2 contingency table may then be formed as
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Table 1.2: Contingency table for general time points.

Time t
Time u 1 (y=1) 2 (y=0) Total
1 (y=1) nll® T
2 (y=0) nl Y —n,
Total g n—mng n

Thus, in this situation, one can estimate the common odds ratio 7, (7wt = Tiwe) by

Sy

(t]e) | (elu)’
Mg Mg

(1.1.2)

Tut =

Next, using further assumption that the odds ratio are the same for any two time
points, i.e, using 7, = 7, some authors such as Lipsitz et al. (1991) [see also Fitz-
maurice and Lipsitz (1995)] computed the joiut probabilities in order to construct
the ‘working’ equal odds ratio based GEE. It is, however, clear that common 7 based
GEE approach is not appropriate when odds ratio vary from individual to individual.
Also, they may not be the same for all time points. But the effect of using such 7
based GEE when 14, is appropriate is not adequately discussed in the literature. In
this thesis, we revisit this inference issue and examine the performauce of the GEE

approach by generating data under a non-stationary correlation model.

As opposed to technically using equi-correlations or odds ratio for binary responses
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over time, there exist some parametric modeling to understand the correlations. For
convenicnce, we cexplain below some of these correlation models for a specialized
stationary case, where covariates x;; corresponding to y;; are assumed to be the saine
forall t = 1,...,T. Let x; = x;; to represent this situation. Note that using this

notation, we write

emi.ﬁ

=y =™ =Ll (1.13)
e

Py = 1)

which will be used as the marginal probabilities under all models explained below.

1.1.1 Stationary Correlated Binary Models
1.1.1.1 Bahadur Model

For T > 2, Bahadur (1961) [see also Sutradhar 2011, Chapter 7| introduced a joint

probability function-based correlation model given by

f@u)znmu—n)x[uz,( )( )} (1.1.4)

[mi(1=7, )2 [mi.(1-m,)]2

where p7 ; denotes the correlation between two binary responses y; and y;,,. From (1.1.4),

one can then show that




1.1 BACKGROQUND OF THE PROBLEM 17

E(th) = T
Var(Yy) = m(1—m)

Corr(Yiy, Yiu) = P (1.1.5)

Alternatively, (1.1.4) can also be expressed as

(1.1.6)

3 . : 2myit i i ERls
fly yer) = 1+ (ZKU pru(— 1)y e R (1 — )Vt )
Yils o oo Yi) = ’

’/T,ﬁ_(l e 7Ti,)

where y; = 0,1 for any ¢ and all ¢ = 1,..., T (Sutradhar 2011, Chapter 7, eq. 7.12).

This model may however, encounter range restriction problems for correlations

P} .- To be specific, the range for p; , may be much narrower than —1 to 1.

1.1.1.2 Kanter Model

Suppose that y,q ~ b(m; ), and let s, and d;, denote binary randomn variables with

Pr(spy=1) = m, with0 <y <1,

Prid, = 1) = ¢ = L=m)

= : 1.1.7
= T o (1.1.7)

fort = 2,...,7. Kauter (1975) proposed that one may generate the AR(1)-type
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correlated respouses yi, . ..,y by using the following model

Yit = Sit (yi,t—l <] dit) + (1 — Sib)dit fOI' t = 2, e ,T, (118)

were @ denotes addition mod 2. Since y;; ~ b(w;) for t = 1,..., T, using (1.1.8) one

may then show that

E(Yit) = T

Var(Yy) = m(l —m). (1.1.9)

In addition, the correlation hetween y;; and y;, can then be found as

Corr(Yis, Yiu) = piy = p““”[, for t # u, (1.1.10)

i

where

:,y_l(l____Q_@ (1.1.11)

pl (1 '—2’717'('1")'

Note that this model also encounters range restrictions for the correlations.
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1.1.1.3 Binary Dynamic Logit (BDL) Model

There exists a binary model where correlations are not restricted. For example,

consider the following non-linear binary dynamic model:

pa = Prlyg =1]=m = exp(z, B)/[1 + exp(z) B)]
exp(x] B+ 0yi1)
itli—1 = Prlye = |y = & : , 1.1.12
Pitje=1 i ) 1+ exp(e; B+ Oyir-1) ( )
for t =2,...,T, where 8 denotes the dynamic dependence parameter.
When t = 1, y;; is assumed to be binary with mean p;; = 7;. Let
exp(ai B+ 6 y .
Pitlt=1(yi e-1=1) = ( - ) =D; for all t=2,,7 (1113)

1+ exp(z; 5+ 6)

The unconditional mean of y;, is found using (1.1.13) as,

pi = E(Yi) = Pr(yy = 1) = m 4 i1 (Pi — mi)s fort=2,....,7, (1.1.14)

along with variance of y;, as

Oia = var(Yi) = pa(l — ). (1.1.15)
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Furthermore, it can be shown that the lag (# — u) autocorrelation between y;,, and y;

is found as

COI‘I’(Y;u 3 1/If) =

[Sutradhar (2011, Eqn. (7.150))].

Note that even though this model produces correlations with full range, the mean
under various times maintains a recursive relationship, as opposed to Bahadur (1961)

and Kanter (1975) models.

1.1.1.4 Linear Dynamic Conditional Probability (LDCP) Model

Some authors have modeled correlated binary data by way of the AR(1) type linear

dynamic conditional probability (LDCP) model given by

Yii ~ b(m) (1.1.17)

PriYy=1Yi o1 =i = m +p(yie—r —m), fort=2...,T (1.1.18)

[Zeger, Liang, and Self (1985), Qaqish (2003)]. This model will then yield the following

marginal mean and variance of y,; forall t =1,...,T, as
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E( ’n) = T

var(Yy) = m(1—m), (1.1.19)
for w < t. The lag ¢ — « autocorrelation is given as
Corr[ Y, Yie) = proe = p' 7" (1.1.20)
However, the lag 1 correlation must satisfy the range restriction
; 1 —m

max; | ———, — | <p <, (1.1.21)
1= ;.

but as shown by Farrell and Sutradhar (2006), the ranges for correlation under this
LDCP model arc wider than that of Bahadur (1961) and Kanter (1975) models.
Note that the comparison for ranges of correlation structures studied by Farrell and
Sutradhar (2006) also include other correlation structures such as moving average of

order (1) (MA(1)) and equi-correlation (EQC) structures.










Chapter 2

Estimation for Longitudinal Binary

Models

As mentioned earlier, the main objective of the thesis is to examine the relative per-
formance of the existing ‘working’ equi-correlations and odds ratio based estimation
approaches as compared to the GQL approach constructed based on known correla-
tion class or structures. As far as the correlation structure is concerned, we assuine
that the binary data follow a non-stationary AR(1) correlation model, which would be
a generalization of the stationary AR(1) model (1.1.17)-(1.1.18), sce Sutradhar (2010)
and Sutradhar (2011, Chapter 7) for details on such non-stationary AR(1) structures.

Note that the Bahadur model given in Section 1.1.1.1 may acconmodate AR(1) and
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EQC structures; however the other models, namely Kanter’s model in Section 1.1.1.2,
BDL model in Section 1.1.1.3, and LDCP model in Section 1.1.1.4, were given for
AR(1) type relationships only. One of the main reasons to consider the AR(1) struc-
ture in this thesis is that the correlation under such a model decreases exponentially

as time lag increases, which is considered to be realistic for many practical data.

2.1 Non-Stationary AR(1) Correlation Models and

GQL Estimation Approach

To counsider a non-stationary AR(1) binary corrclation modecl, let y; be the binary
response at a given time point ¢, with

eilj:tﬁ

PI‘(y,‘t = 1) = Tt —

Note that this marginal probability is a function of the time dependent covariate xy.
Suppose that the repeated binary responses u;1,..., Vi, ..., ¥ are geunerated using

the following relationships

Pr(Yiy=1) = my

Pr(Y, = 1lyii—1) = mu+pWivo1 — mig1), fort =2,...,7, (2.1.2)
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where m;, is given in (2.1.1), for all t = 1,...,T. Using this model, it can then be

shown that the mean and variance are given as

E(Yu) = Hi =Ty

var(Yy) = ouu = m(l — mar), (2.1.3)

fort=1,...,7T.

For u < t, the covariance between v, and y; can be found using the model given

in (2.1.1) as

('OV(}Yim )/Lf) = E(Y;u - 7Tiu)(YVit - 7Tit)
= BE(YiYi) — E(Yi ) E(Ya)
- EJmY EJu (t—u—1) [ o [Eyi,t—Z [Eyi,t—l [Yit|yi,f—l} |?/1’,t—2] ] |yi,tf(t—u—1)]

— Tt

f—u—1 t—u—1

_ /. t—u
- Ey,-“}iu Tt + E ﬂjﬂn —j + 1Y ( u 7T1u E /)Jﬂ-ti il = TiuTst

i=1
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= pt_uEy,'u [Y;u(Y;u - 7r'iu)]
= ,0{'““7Tiu(1 - 7riu)

= f)twuai,uu (214)

[Sutradhar (2011, Eqn. (7.72))]. The non-stationary correlation matrix can then be

given as

plv ['Z‘:} ’ foru<t
corr(Yi,, Yu) = n (2.1.5)

i [U%” } for u > t.

T

However, the parameter p in (2.1.5) must satisfy the following range restriction

us 1 —m . 1 —m s .
max | — ! — t} < p < min {—1 L L (2.1.6)

? s
- Tit-1 Tit—1 — -1 Tit—1

Note that because o, 4, for example, depends on the time dependent covariates
x;; through the relationships (2.1.3) and (2.1.1), the correlations defined in (2.1.5)
arc functions of time dependent covariates, and hence these correlations are non-

stationary.
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2.1.1 GQL Approach for the Estimation of Regression Ef-

fects (5)

It is well known that by treating binary data as independent, one may exploit the
mean and variance functions and develop a quasi-likelihood (QL) estimating equation

for the regression effect 3 given by
o B
D03 5 00) ™ — ) = 0 (2.1.7)

[Wedderburn (1974), Sutradhar (2011, Equ. (7.5))] where p;; = 7 is the mean,
and o; 4 is the variance of y; as in (2.1.3). However, because the binary data under
the AR(1) model in (2.1.2) are correlated following (2.1.5), the solution of the QL
estimating equation (2.1.7) for 8 would produce an inefficient estimate. As a remedy
to this inefliciency problem, Sutradhar (2010) suggested a generalization of the QL
equation (2.1.7) to accommodate the correlations in estimating . The generalized
quasi-likelihood (GQL) estimating equation is given by

Oht; ¢~ (ns)
Z 3/;3 =B, p) (s = ) = 0, (2.1.8)

where
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yi = (i, vir)
Hy = T, = (7]',;1, e ,T['/,j']“)l, (219)
and the covariance matrix of y; is denoted by EE"S)(/)’, p), such that

!

£M(8,0) = AFCI(pA;, (2.1.10)

3

where A; is defined as

A; = diaglvar(yi1),...,var(ya), ..., var{yr)]
= diag[gi,lla s Oty ey 0i,']'7']

= di‘dg[ﬂil(l — 7T,'1), e ,ﬂ'“,(]. — 7T“), ey 7T11T(]. — 7T1'T)]. (2111)

and CI(-M) (p) as

o) = (s win)) (2.1.12)

foru,t=1,.... T, where by (2.1.8), the (u,t)" element is given by
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ns)
Cg,m (T i, p) = corr(Yiy, Yi)
1
t—u | Oiuu 2
B P [om} foru <t

= ’ (2.1.13)
' for v > t.

e
=
| —|
Qla
2 |X
P
o

Note that even though ZE"’S)(ﬁ, p) in (2.1.8) is a function of j, the construction of
the estimating equation (2.1.8) assumes that 3 in Zl(."s) (8, p) is known. This is becausc
when m; in p; is known, o4 = m;(1 — m;) becomes known as well to construct the
A; matrix contained in ZE"S)(B, p) . Also, the correlations given in (2.1.13) depend on
B only through o4 or m;. Thus, it is sufficient to estimate 8 involved in the mean

function.

2.1.1.1 Computation of u;

ap
The derivative (i;;; can be computed by using the formula for Q(—%i, given by
a’/Tj[
a—/; :ﬂ-it(]-_ﬂ'it)wit : p X 1, (2114)

forall t =1,...,T. Thus,
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3/12 . 87ri1 87ru 87T7'T
ap o’ T as’ T 9B
= [mai(1 — )T, - Ta(l = )@, mr(1 = mp)zer) 0 px T
= XA, (2.1.15)
where
Xi= [z, ..., %y zr) o px T, (2.1.16)

and A; is the T' x T diagonal matrix as in (2.1.11).

2.1.1.2 Tterative Formula for GQL Estimator

Now for known p, we can solve the GQL estimating equation given in (2.1.8) for j

iteratively by using the so-called Newton-Raphson formula given by

n -1
B =B+ [Z X;Aizgmrl (8. p)Aixi]
=1 r (2.1.17)

X

S OXAEM (B ) s — w')]
=1

r

where [ | denotes that the expression contained within the hrackets is evaluated

at g = B('r); that is, the r*" iterative value for 3. Let BGQL be the final estimate
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obtained from (2.1.17).

2.1.1.3 Estimation of p

Note that in solving for 3 by (2.1.17), we have assumed that the correlation index

parameter p is known. In practice, this is not usually the case, and the AR(1) index

parameter is unknown. To estimate this parameter consistently, we first observe that
u

p is in fact a lag 1 correlation index parameter. That is, if p is known, then p'=* is

also known.

Consequently, to estimate the lag 1 index paramecter, we construct a mnoment
estimating equation by equating the sample lag 1 auto-covariance to its expected

value. In other words, for @y = |yu — 7ul/\/Tin With o, = 7 (1 — 75),

1 n T
E(yit — 7it ) (Yit—1 — Tit-1)
Uz Uz —
_1 ’zl:; o ! ;Z; \/oztt)(ai,t~1,t-1)
n T
PO;¢-1t—1
= (2.1.18)

;;\/01”)( Tit—1t-1)

by (2.1.4). Thus,

(2.1.19)

n T n
E! Z{if?ji,t—ll = r
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ratio approach. The latter two methods are discussed in detail in the next two sec-

tions.

Further note that BGQL obtained from (2.1.3) is consistent for 5. This is because
E(fcqr) = 5, (2.1.24)
using the fact that E(Y;) = u; under the present AR(1) model (2.1.12), yielding

E ZX;AiZEnS)1(/37/))(?,/17—/»’41'):' =0. (2.1.25)
=1

Furthermore, it can be shown that (Sutradhar (2011, Eqn. (7.87))) BGQL has asymp-

totic covariance given by
n -1
: Ok 1A 7 ) 7
cov(fBaor) = lim E X;AC (p)AFX, : (2.1.26)
n—o0
i=1

which provides bounded variances when fixed design matrices X; are chosen properly.

Also. Bagor has demonstrated to be more efficient than Sgy,, for example, where
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/3(9 1, is obtained by solving

Zx' — ) =0, (2.1.27)

[sec (2.1.7)]. This can be examined by comparing the asymptotic variance of BQ L
given by
-1

-1 n n
V(BoL) = (Z X'AX; ) > X/ X, (Z x;Aixi> , (2.1.28)
i=1 i=1

with the asymptotic variance of /S’GQL given in (2.1.26).

2.1.2 Joint GQL Estimation for g and p

Since /3 is the regression effect and p is the correlation index parameter, for their
joint estimation, following Sutradhar (2004), we exploit both first and second order

respouses. For this purpose, we define u; = (y/, ¢7)" where

Yi = (yzl» . 7yz’T)/

g9 = (yﬂyiz, o Yit—1Yit - - ~yi.T—1yiT)/-

Note that we arc considering only the lag 1 pairwise responses, which are appropriate
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for any lag 1 correlation model. It is known from (2.1.9) that
E(}/l) = [,
and by denoting E(g;) as
E(!]z‘) = = (771',12, e Mit—1ty - - - s Tli,T—l,T)’,
one can compute the general element ;1 as

Mit—14 = E(Yz‘LYi,t—l)

= cov(Yy, Y1) + E(Yi ) E(Yiio1)

)

= Oip—14 + Tir-1Tg

Oit—1,t—1

- p( 4)\/%1\/m+m-1m, (2.1.29)

Titt

by (2.1.13), yielding

Nid—14 = POi—14—1 T My 1T (2.1.30)
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Note that in general, for lag |t — u| apart responses, one may write

Miwt = E(Yiuyi,t) = 7r1(t11L11)

Plu—t|/ TiunTitt + Ty i (2131)

for time points « and ¢. The non-stationary AR(1) model, (2.1.31), reduces to

O:
. o {—u 1,UU
Niut — P ( ) vV Tiuu v Titt + TiuTit

T tt

= Pt—uTiuuTitt + Wit for u < t, (2132)

by way of (2.1.13).

Let

= (un)

Il
>

(2.1.33)

and

cov(U;) = €, (2.1.34)










2.1 NON-STATIONARY AR(1) CORRELATION MODELS AND GQL ESTIMATION
APPROACH 40

where, for example,

E(Ytiu}/i,ﬁ

Tiut + Ti—1T4

t—u .
= P 0w+ i1, for u < t,

by (2.1.13). Now we compute, !

B; = cov(yig;)

Y

= Cov Yie | (Yaryiz, - - - y Yig—1Yits - - - JYir—1yir) | (2.1.40)

Yir /

where in general

cov(Yiu, YarYu) = E(YaYitYa) — E(Yiu)E(YiYa)

Viqutl = Taullitls (2.1.41)
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where 7, . are computed by (2.1.38) for selected values of w,t, and {. Thus, B; has

been computed.

Likewise, one may also write the raw fourth order moments from (2.1.37) as,

E(L‘/z‘uyuyil%m) =

TiutTilm + TiulTitm + TiumTitl + 37Ti117rit7ri[7rim,

TimYi,utl + T Y utm + TitYiulm + TiuYi tlm.

(7rit7ril7/i,u,m + T TimTlitl + TiaTim1]i + TiuT it Tl lm

T3 T 7]i,u[, + TriLTr'imni,ul)

¢'i,utlm~

(2.1.42)

The formulas from (2.1.38) and (2.1.42) may be used to compute A;. To be specific,

for the computation of A;, we first compute

A; = cov(gi, g)) = cov

Yi12

Yiu—1u

Yir—1,T

)

(il/irz, .-

S Yil-1Yit. - -

sYir—1 .Uz"]')

o (2.1.43)
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where in general

C()V(}/iu}/zl,hy;ly’im) = E(Yviu}/ity;ly;m) - E(Y;uY;t)E(YTilY;m)

d)i,utlm — NiutThims (2144)

where ¢; ,um 1s computed by (2.1.42) for selected values of u,t,[, and m, and 7, . is

given by (2.1.39). Thus, A; has been computed.

. aN,
T
Computation for —:

To compute %AH—; first recall that 8 = (3, p) and A\; = (ut,n!)’. This implies that

Ai = (1, )", One may then write,

oN, du o, . .
50 “(89’89> c(p+1) x (2T - 1), (2.1.45)

such that

o’

ol 8
S B (p+1)x T (2.1.46)

0 o

dp




2.1 NoN-STATIONARY AR(1) CORRELATION MODELS AND GQL ESTIMATION

APPROACH

43

and

In (2.1.48),

i

ap1

X!A; asin (2.1.15).

01,

on; on;,_ oni
- (gﬁ” UESE. e 1’T> ipx(T—1)  (2.1.48)

o T 98

= (Ui,lh vy Oty - - - ,Uz',’lul,'lul) 11 x (T - 1)~
0"7f . aai,t»l,t~l aTr)’,t—l oy
(()/j - p (‘)b) + 7r’Lt a/j + ’/T’L,lf—l—ég—

- Omis—1 o1

= /){ i1 23 + (1 — 7 e-1) 93 ]

Lo Imi 41 - aTri,t

il 0/3 =1 0/3
({)7'r1- e
= Ti¢-1 aét + g5 7Ttt+p(1_27r1(—1)}7

(2.1.49)
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COV(}/i‘uv }/ﬂ)

corr }/in) Y; =
( 2 Vvar(Yy, )var(Ys)

E(YYy) = E(Yi)E(Yid)
VIEYZ = (EY, )Y|[EY? - (EY;)?]

Pr(Yiu =1Y, = 1) — Tt
\/7riu(1 - 7Tiu)7ri.t(1 - 7Tit)

B Y = mim
\/7Tm(1 - 7Tz'u)7Tit(1 - 7Ti1,)

pamnd 041' ule (2.2.6)

)

As pointed out earlier, some authors such as Lipsitz et al. (1991, Section 4) and
Prentice (1988, Section 4.1), did not model the correlations among the repeated
binary responses. Instead, they have assumed constant correlation over time. Based
on this assumption first for any u < t, by using c; 4+ = vy for all 4, one may estimate

Yy As
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T Z‘lzl Yiu Z"I:I Yit
{Zi:l Yiulit — . n :

7

n 5o via)? n iy vie)?
\/[Zi:l yizu - nJ ] [Zi:lyizt - n,J }

()
My nyny
B
7

Qi

- m)) (21— =)

1" = pupe
11 : (2.2.7)

(1 = pu)pe(1 — )

Furthermore, when it is assumed that y;, and y; have equi-correlation over time, one

may exploit &, from (2.2.7) and estimate the equi-correlation «, say, by

T T-1

& = ﬁ S b (2.2.8)

t=u+1 u=1

Note that (2.2.7) and (2.2.8) are applicable only when R;(a) = R{«) for all i =

1,...,n. In such cases, 5 is obtained by

n -1 n
Bt = B+ | Y XIAR (a)AiXi] [Z X AR ) (yi — i) (2.2.9)
i=1

i=1 r r

Furthermore, note that in the non-stationary case, covariates are time dependent.
In addition, the covariates may change from individual to individual. This raises
questions with regard to the summation over i in (2.2.7), and over time ¢ in (2.2.8),

to obtain an estimate of correlation .
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Alternative Estimation for «

An alternative approach may be considered to estimate the equi-correlation « as

Gut = ?’21 *Zi“yﬁ;/ R (2.2.10)
Zi:l Zt:] Ui /nT
for u < t where
G = —20 Tt (2.2.11)
Wit(l - 7Tit)

and then calculate & by using (2.2.8). The difference between the formulas denoted
in (2.2.7) and (2.2.10) is that (2.2.7) exploits the sample mean, whereas in (2.2.10)

we cexploit the estimated population means.

2.2.2 *‘Working’ Odds Ratios (WOR) Based GEE Approach
for Regression Effects

When the covariance matrix 3; is computed based on odds ratios, we write the

GEE for 3 as

O o
Z 8/32 1) =0, (2.2.12)

where y; = (yir, ..., yir) and y; = m; = (m,. .., mr), as before, and 3;(7) is the

T x T covariance matrix with its elements based on the odds ratios.
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2.2.2.1 Construction of ¥,(7):

To compute the elements of this matrix, we first write the general covariance as

COV(Yus Yir) = Te1y (T) = TiuTies (2.2.13)

where

T (1) = E(YiYa), (2.2.14)

to be computed by taking advantage of the odds ratios. For this purpose we refer to
the joint probabilities in Table 1.1 in Chapter 1, and write the odds ratio for the "

individual at time ¢ conditional on the individual’s response at time u, as

(thu) _(thu)
i1 7422
(t]u) _(thu)
12 T2

Tiut =

() ()
Wi,lf (1 —mi — 12 )

{the) _(t|u)
i,]’; 7Ti,21;
(t]u) (tlu)
. ﬂ"i,l'(l‘ (1 = Ty — Ty + ﬂ"i,ll{ ) (2 2 15)
- (t]) (tlu)y * -
(T — T 11 (i — UERT! )
The above equation can be rewritten as
t t t : .
71'1(,1‘111) (1 — it — Ty + 71'1(,1“11)) = Tiut [(Triu - Tri(,lllll))(ﬂ-il - 71'L(t‘lllll))] (2216)

2(t[w) (£]

'U)
= Tiut [ﬂ'z‘,ll - (7Tiu + 71'?71/)71'1',11

+ 7Tiu7rit] 3
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yielding

7T;'~)‘(1L]]‘u) + 7rz(tl!1it)(1 - T — 7Tiu) = Tiut I:W;z‘(ltllw - (7r17u, + 7ri,t) I + Trmﬂ-tf:I : (2217)

This in turn can be re-expressed as

(1 — T,-'u,t)ﬁ;z’(ltllu) -+ (1 — T — T + (7T1',1,, -+ 7T5{)Ti‘u1,>7ri(’tll11t) = M Ty Tiut = Q0. (2218)

This further reduces to a general quadratic equation that can be written in the form

ari + bl 4+ e =0, (2.2.19)
where
a = 1 - Ti,ut
b = 1- Tit — T + (7riu + Wit)Ti,ut
C = —TuTiT ut- (2220)

The solution of (2.2.19) for 7"1 ") has the form

_ Vb2 — dac
U —_— 5 < (2.2.21)
! a
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The solution to (2.2.21), after some algebra, is

== w) (et mi) = A/ = (=T ) (it mi) )2 =475 e (Ti e = Dma .
B=0=7 )t m)l= /T =0 =Tiu0) (o me)]? 47w (i = D i 70 |

() = A=t (2.2.22)

TiuTit if Tiut = 1

[Lipsitz ct al., (1991, Eqn. (6), p.155), Yi and Cook(2001, Eqn. (3), p.1072)], which

will always lie in [0, 1]. Finally,

cov(Yin, Yit) = 0iu(T) (2.2.23)
= TFL(,tl!lll) — T T4t lL,t = 1, c. ,T.
Tt (1 — i) for t = u,

t
Tri(’lllf) — T for u < t,

where Wffllll') is a function of 7, as given in (2.2.22). Omne may then construct the

covariance matrix as

2i(r) = (o1()). (2.2.24)

. eI S . .
For the computation of %ﬁ’, refer to (2.1.15). For convenience, we rewrite

oy

G XA, (2.2.25)
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where

X =2y iy a0 px T, (2.2.26)

and A; is the T x T diagonal matrix as in (2.1.11).

Solving the GEE (2.2.12) for 5:

For known 7, we may then solve the estimating equation in (2.2.12) for 5 iteratively.
Using (2.2.26) and (2.2.24), one may use the Newton-Raphson formula to find an
estimate of /3 as
n “lrog
Bt =B+ > X;A,-Ei(r)‘lAiXi] [Z XIAE(T) " Y — ) (2.2.27)
i=1 r o Li=1

r

2.2.2.2 Estimation of 7

Note that for the construction of the covariance elements o;,,(7), we need to first
compute the joint probabilities ﬂftllll') (1) by (2.2.22), which in turn requires the esti-
mates of 7;,; for all 7, w and t. In general, for all 7, the computation of this odds ratio
T;w 15 Not possible unless onc can use a model for all individuals. For this reason,
some authors, such as Williamson et al. (1995, Eqn. (3)) [see also Cook and Yi (2002,

Eqn. (1), p. 1072)] have used linear regression modeling as
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1Og Tiut = A + Au + At + Aut + fq:/i(,a (2228)

where A is an intercept parameter, A, and A; are the marginal effects at time u and
t, and A, is the interaction. Further, . is a suitable vector of covariates responsible
for the correlation of v, and w4, and & is the effect of ;.. This extra regression model

for association parameters, however, appears to be arbitrary.

Constant odds ratio (7,,) estimation:

Note that all individuals having constant odds ratio is equivalent to considering that
tlie joint probabilities in Table 1.1 are free from i (i = 1,...,n). Somne authors, such
as Lipsitz et al. (1991) have used a constant odds ratio assumption and estimated this
parameter as follows. Suppose that for given v and ¢, all individuals (i = 1,...,n)

have the constant odds ratio 7.

Recall Table 1.1 from Chapter 1, which contains the joint and marginal probabil-
ities for all possible transitions from time w to ¢t. Thus, for 7, estimation, one uses

the probabilitics as in Table 2.1 below.




2.2 “WORKING’ CORRELATIONS BASED GEE APPROACHES 55

Table 2.1: Joint probabilities in contingency table form.

Time t
Time u 1 (y=1) 2 (y=0) Total
Liy=1) =" m” m
2(y=0) myi"  mp” 1w
Total e 1—m; 1

When individuals are grouped by way of Table 2.1, one obtains the contingency table

in Table 1.2, which we reiterate in Table 2.2, for convenience.

Table 2.2: Contingency table for general time points.
Time t
Tine u 1(y=1) 2 (y=0) Total
1 (y=1) ‘n/(ltliu) ngg“) Ty,

2 (y=0) a4 il n—n,
Total iy n—mn, n

Using Tables 2.1 and 2.2, one then obtains the moment estimates for the joint prob-

abilities as

(el n(lt1|u) (i) ngtll'u)

~ 7 A u p

A _ Flwy _ M1 2.2.29

o T gt (2.2.29)
(t]u) (thu)

. T R T

By using (2.2.29)-(2.2.30), it follows from (2.2.15) that the constant odds ratio may

be estimated as
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(t) A (L)
P 7T11u7T22I
ut T (tu) A ()
Mo T
(tlu), (t]e)

_ i Moy
T e e (2.2.31)
12 21

Note that when the longitudinal binary data {y;} is available, the counts in Table 2.2

may be expressed as follows:

k17
tlu
"7/(11|l) = Zyiuyit
=1
n
tiu
= -
=1

tiu
ngl] ) = Z th(]' - yiu)
i=1
n

gy = D (=) (1 = ya), (2.2.32)

1=1

where

n

Ny = § Yiu

i=1

ke

ny = E Yits

i=1

(2.2.33)
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Constant odds ratio estimation for any two time points:

By assuming equal odds ratios at any two time points (Lipsitz et al.(1991), Table 1,

p. 158), i.c., 7y = 7 for all w < ¢, one can estimate 7 by

T T-1

. 2 )
e S (2.2.37)

t=u+1 u=1




Chapter 3

Relative Performance of
Estimation Approaches: A

Simulation Study

3.1 A Simulation Study for Stationary Correlation

Model

In this section, a special case of the non-stationary correlation model, discussed in

Section 2.1, is explored. The purpose of this scction is to generate corrclated data
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adhering to the following AR(1) model

e:ci..ﬂ
P’J'[yil - 1] = l—m = ;.
P"‘[}/j{[lyj’t_l] = T+ p(yi,t—l — 7T1'.), for t = 2, e ,T, (311)

and estimate 3 by the three different approaches, namely, GQL discussed in Section
2.1, WEQC (working equi-correlation) based GEE which is discussed in Section 2.2.1,

and WOR (working odds ratio) based GEE discussed in Section 2.2.2.

Note that in practice, the correlation model is unknown. Because the GQL ap-
proach assunes a large class of correlations, it is practical to assume t .t an unknown
correlation structure may well be taken care of by using such a class. However, soine
‘working’ approaches do not even care for such a class and furthermore, without
any diagnostics, this approach uses a certain ‘working’ correlation model to develop
estimating equations. Since these are arbitrary, in this thesis, we examine their per-
formance by generating data from an AR(1) model, for the purpose of checking the

correlation niis-specification effect on estimation.
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3.1.1 Simulation Design and Data Generation

For this simulation study, we consider the parameters as follows:

n = 100 (3.1.2)
T = 4
p =1

p = 0.0,0.3,0.5,0.7.

For the scalar (p = 1) covariate, we choose the stationary design (D, covariates as

-1 fort=1,...,n/4
Lit =i =y 0 fori=(n/4)+1,...,3n/4 (3.1.3)

1 fori=(3n/4)+1,...,n,

for all t = 1,...,4. Note that x; is stationary, and does not depend on time ¢. For

the covariate effect, we choose

B =8 =0.0,0.5,and 1.0. (3.1.4)

Next we generate the repeated binary responses. In a given simulation we generate
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the first response y;, for all i = 1, ..., n, following

ya ~ Bin(m;.),

G'El'ﬂ

= 1_|_er,-ﬂ'

7M.

For a given value of p, we then use (3.1.1) to generate y;» using

Yiz ~ B?:’I’L()\,'g = 7 + ,0(7/11 - 7Tt)) (316)

Once y;» is generated, we use it to gencrate yy as

Yig ™~ Bi?l()\ig =T; + ,0(7/12 — 7Tt)) (317)

We follow this above procedure and proceed to generate 1, ..., yir.
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3.1.2 GQL Versus WOR and WEQC Approaches for 3 Esti-
mation

In a given simulation, using the responses {yi,t = 1,...,4;¢ =1,...,100} generated
as in Section 3.1.1, and x;. as in (3.1.3), we compute the GQL, WOR, and WEQC

estimates of 3 by solving the respective iterative equations as follows:

GQL Estimation:
To obtain the GQL estimate, we use the stationary version of the iterative equation

given in (2.1.17), namely,

n -1 n
Bt = P + Zx;Aizgl(ﬁ,mAixi] X [ZX;A,iZfl(ﬁ,p)(yi*;Li) (3.1.8)
r i=1

i=1 ,

where in this stationary case,

X = (ziy..o w1 px T

1

= 2. ® 1), (3.1.9)
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where @ denotes the Kronecker product, and 17 is the 1 x 7" unit vector. In addition,

Yi = (yih R yi’]'),

Ai = 7T,i.(1—7T,i.)IT (3110)

with
L pr - pra

o) = | (3.1.11)

Note that in order to use (3.1.1), we must first compute the lag correlations pq, p2
and py by using the formula for g (I = 1,2,3) obtained from (2.1.23) under the

present stationary case. More specifically, we compute

. D ict Zf;f Yit Uit 2110
pl - n Tl ~9 ’ ( . )
Zi:l Zt:l Yit
where
o= —Bu ) (3.1.13)

7T,'.<1 - 7T7'.)
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Note that v(3) has the form
=1

’IJ(B) — (Z X;AiZZEx;‘ALx;‘,(3.1.14)

which is a stationary form of (2.1.26). WOR Estimation:
Here we use the stationary version of the WOR based iterative equation given

in (2.2.27). More specifically, the X! and A; matrices will now have the forms:

X = (xi,.o @iy 2) ipxT

= 1. @1, (3.1.15)

where ® denotes the Kronecker product, and 17, is the 1 x 7" unit vector, and

as in the stationary GQL case. In this stationary case, to compute the clements of

() = (O'i‘u((T))v
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we use the stationary version of (2.2.24). That is,

(1l — ;) for t = wu,
Oia(T) =
ﬂl(tlllf) — 2 for u < ¢,

[2
where 1) now has the form

—2(1—7)m;.]— —2(1—1)m;. 2 —Ar(r—1)m2 .
. (1-2(1=7)m ] J%;g)>]21< 1)n2 it 1
TP(r) = (3.1.16)

i1l
ifr=1.

5
T

WEQC Estimation:
The stationary version of the WEQC based estimates are obtained by using the

iterative equation (2.2.9), with

X! = (zti.,...,m,;.,...,zi.) cpx T

where ® denotes the Kronecker product, and 17 is the 1 x 7" unit vector, and

Ai = 7T7j.<1—7Ti.)IT.
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The above computations for § based on all three approaches, namely GQL, WOR
and WEQC, are repeated 500 timmes. The average of these 500 values under a given
method is computed to obtain the final estiinate. These estimates are denoted by
[}(;QL, [?WOR, and BW eQc, respectively. We also compute the standard error of these
500 values. The estimates and standard errors are referred to as SM (simulated mean)
and SSE (simulated standard error). In addition, we also compute the percentage RB
(relative bias) and the MSE (mean squared error) of these estimates. For example,

for the GQL estimates, the perecentage RB and MSE have the forniulas

RB(BaqL) = Veqr = Bl 100, (3.1.17)
SSE(fcoL)
and
MSE(fcqr) = (faqr — 8)° + SSE?, (3.1.18)

respectively.  The siimulation results for the stationary GQL, WOR, and WEQC

estimates are given in Tables 3.1, 3.2, and 3.3, respectively.

For the WEQC approach, we also use an alternative estimiation method for the

‘working’ cqui-correlation parameter «. In this alternative approach, we usc the




3.1 A SIMULATION STUDY FOR STATIONARY CORRELATION MODEL 68

Table 5.1: GQL estimate (| BGQ 1) for the regression effect along with its standard error
((r‘;(:ql‘). MSE. and RB. for stationary design Dg with t = 4, n = 100. and selected
values of p: 500 stmulations.

True 3 True p Bagr  ©

dr BB%) 5 2 s MSE
U.u 0.0 -0.021 0336 6.128 0.012 0.008 0.005 0.113
0.3 -0.009 0438 2078 0.315 0.111 0.040 0.192
05 -0.021 0.680 3.506 0.524 0.283 0.156 0.463
07  -0.084 1.333 6.302 0.732 0.537 0.395 1.784
05 00 0511 0354 3880 0.011 0.009 0.009 0.126
0.3 0522 0480 4588  0.322 0.117 0.042 0.231
05 0531 0575  5.367  0.523 0279 0.148 0.332
0.7 0537 1504 2451  0.730 0.533 0.390 2.263
1.0 00  1.033 0.394 8319 0013 0.009 0.004 0.156
03 1043 0521 8170 0.318 0.109 0.035 0.273
05 1043 0.659  6.618  0.521 0.278 0.150 0.436
0.7 1230 1935 12114 0.726 0.528 0.386 3.797

Table 3.2: WOR based GEE estimate (/?WOR ) for regression effect along with its
standard error (o5 ), MSE, and RB. for stationary design Dg with t = 4, n = 100,

Mon
and selected values of p; 500 simulations.

True 3 Trae p o Bwor Tivop 1B () T o; MSE
0.0 0.0 -0.014  0.298 1.500 1.0904 0.191  0.089
0.3 -0.012  0.541 2.300 2.790 0.747  0.293

0.5 -0.022  0.832 2.700 7.151 2.585  0.693

0.7 -0.032  1.293 2.500 28418 15,430 1.673

0.5 0.0 0.509  0.354 2.600 1.247  0.241  0.125
0.3 0.509  0.607 1.600 3.097  0.859 0.369
0.5 0.497  0.880 0.300 7.789 2739  0.774
0.7 0.382  1.319 3.900  30.946 15.119 1.754
1.0 0.0 1.034  0.474 7.300 1.034 0474 0.226
0.3 1.024  0.726 3.400 4.026  1.155 0.528
0.5 0.954  1.057 4400  10.084 4043 1.119
0.7 0.787 1455 14.600 39436 21.795 2.162
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Table 3.3: WEQC based GEE estimate (BWEQC ) for regression effect along with its
standard error (03“,0”), MSE, and RB, for stationary design Dg with t = 4, n = 100,
and selected values of p; 500 simulations.

True 3 True p Gweoc T roc RB(%) 1 NSE
0.0 0.0 0.107 0.251 42.700 0.001 0.074
0.3 0.113 0.294 38.500 0.192 0.099
0.5 0.105 0.318 33.000 0.363 0.112
0.7 0.079 0.335  23.500 0.575 0.118
0.5 0.0 (.632 (0.283  46.500 0.033 0.098
0.3 0.637 0.331 41.312 0.217 0.128
0.5 0.630 0.352  36.900 0.381 0.141
0.7 0.602 (0.364  28.000 0.589 0.143
1.0 0.0 1.171 0.364  46.900 0.111 0.162
0.3 1.181 0.427 42.300  0.278 0.215
0.5 1.168 0.445  37.900 0.432 0.226
0.7 1.137 0.439  31.200 0.624 0.211

stationary version of the estimating formula (2.2.10). That is,

. 1 - ,
0 = mZam. (3119)

where

T'L (INiu{'i n
iy = oz 'jfg/ ’ (3.1.20)
S Y yE/nT

for u < t, where

- Y — T4
Yit =
mi. (1 — 7ii-)
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with
(,1.1:,-.;3

T= —
Yl 4 enB]

whereas in the former WEQC approach, the estimation of o by (2.2.7) was free from
a 3 estimate. The simulation results for this alternative WEQC (AWEQC) estimates
arce given i Table 3.4.

Table 8.4: AWEQC based GEE estimate (/;AWEQC) for regression effect along with
its standard error (o QC), MSE, and RB, for stationary design Dg with t = 4,

Baw g
n = 100, and sclected values of p; 500 simulations.

True 4 True p Faweoc T5 o RB(%) R MSE
0.0 0.0 0.026 0.192 13.300 -0.009 0.038
0.3 0.040 0.204 19.600 -0.022 0.043

0.5 0.053 0.219 24.300 -0.017 0.051

0.7 0.073 0.232 31.400  -0.009 0.059

0.5 0.0 0.537 0.217 17.200 -0.012 0.048
0.3 0.546 (.209 21.900 -0.007 0.046

0.5 0.561 0.215 28.200 -0.005 0.050

0.7 0.580 (.229 34.800  0.004 0.059

1.0 0.0 1.037 (0.227 16.100 -0.014 0.053
0.3 1.047 (0.223 21.000 -0.025 0.052

0.5 1.058 0.223 26.200 -0.017 0.053

0.7 1.076 0.257 29.700 -0.002 0.072

3.1.3 Simulation Results: A Comparison

The results from Table 3.3 show that the WEQC approach produces a biased regres-

sion estinate for &, for all values of 3 and p. For example, when the true ;5 = 0.5 and
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p = 0.5, the WEQC estimate is found to be BWEQC = 0.630. However, the results
from both Tables 3.1 and 3.2 show that the GQL and WOR approaclies produce a
nearly unbiased estimate for 3, with the exception of the GQL and WOR estimates
for large p. Consequently, to compare the performances of the WEQC approach with
the GQL and WOR approaches, we examine the relative biases (RB) of the estimates.
It is clear from all three tables that the RBs arc much large in Table 3.3 as compared
to those of Tables 3.1 and 3.2. Note that this occurred because the WEQC approach
produces biased estimates with smaller standard errors. Therefore, the WEQC esti-

mates do not appear converge to the true value.

Now to compare the performances of the GQL and WOR approaches, we use the
mean squared error (MSE). This is due to the fact that, in general both approaches
produce unbiased estimates. The results show that for large values of p, such as
p = 0.7, the MSEs of the GQL estimates are, in general, larger than those of the
WOR approach. For example, when p = 0.7, and g = 1.0, the GQL approach has an
MSE of 3.797, while the WOR approach has an MSE of 2.162. However, for sinaller
correlation values such as p = 0.3 and 0.5, the MSEs of BGQL are 0.272 and 0.436,
whereas the MSEs of Swonr are 0.528 and 1.119, which are much larger. Thus, the

GQL approach appears to perform better than the WOR approach except for large
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with time dependent covariates and estimate § by the three different approaches,
namely, GQL discussed in Scction 2.1, WEQC (working equi-correlation) based GEE
which is discussed in Section 2.2.1, and WOR (working odds ratio) based GEE dis-

cussed in Scction 2.2.2.

3.2.1 Simulation Design and Data Generation

Similar to the simulation study for the stationary case, we use the design parameters

as in 3.1.1. That is, n =100, T'=4, p = 1, and

p=0.0,0.3,0.5,0.7.

However, to mark the difference between the stationary and non-stationary models,
unlike in the stationary case (3.1.3), we now choose the non-stationary design (Dysg)

covariates as
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% fort=1,2;0i=1,...,n/4
1 fort=3,4:i=1,...,n/4
—1 fort=1;i=(n/4)+1,...,3n/4
i = (3.2.2)
0 fort=2,3;1=(n/4)+1,...,3n/4
: fort=4;7=(n/4)+1,...,3n/4
\% fort=1,...,T;i=3n/4)+1,...,n.

It is clear that, unlike the stationary model discussed in Section 3.1, the non-stationary

modecl uses covariates that are dependent on t. For the covariate effect, we choose

B =5 =0.0,0.5,and 1.0, (3.2.3)

the same as in the stationary case.

Next we generate the repeated binary responses as follows. Recall that

i3
‘ (3.2.4)

Ty — ——————
i 1+ 9'1':’1/37
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for all t =1,...,4. Thus, to generate the first response, we use

Y ~ Bin(m;). (3.2.5)

Next, for a given value of p, we use (3.2.1) to generate y;o using

Yia ~ Bin(Ag = 72 + p(ya — ™). (3.2.6)

Once y;9 1s generated, we use it to generate y;z as

Yiz ~ Bin(Aig = Ty + p(yiz — Tia)). (3.2.7)

We follow this procedure and proceed to generate all responses, that is, y;1, ..., yir.

3.2.2 GQL Versus WOR and WEQC Approaches for § Esti-
mation

In a given simulation, using the responses {y;,t = 1,...,4;i = 1,...,100} generated
in Section 3.2.1, and iy as in (3.2.2), we compute the GQL, WOR, and WEQC esti-

mates of 3 by solving the appropriate estimating equations from Chapter 2.
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Table 3.5: GQL estimate (/S’GQL) for regression effect along with its standard error
(a/;GQL), MSFE, and RB, for non-stationary design Dyg with t = 4, n = 100, and
selected values of p; 500 simulations.

True 3 True p fBoer o5 | RB(%) p MSE

0.0 0.0  -0.010 0.213 4.700 0.000 0.046
0.3 0.005 0.224 2.000 0.305 0.050
05 0.004 0.221 1.600 0.506 0.049
0.7 0.000 0.216 0.056 0.703 0.046
0.5 0.0 0.524 0.209 11.500 -0.002 0.044
0.3 0.493 0.229 3.200 0.307 0.052
0.5 0.494 0.229 2500  0.506 0.052
0.7 0.492 0.208 3.600 0.704 0.043
1.0 0.0 1.032  0.225 14.100 0.000 0.052
0.3 1.014 0.234 6.000 0.306 0.055
0.5 0.996 0.238 1.600  0.505 0.057
0.7 0.991 0.211 4.000 0.704 0.045

As in the stationary case, we also use an alternative estimation method for the
‘working' equi-correlation parameter «. In this alternative approach, we use the
formula for « as given in (2.2.10), where ; is given in (2.2.11). The simulation

results for this alternative WEQC (AWEQC) estimates are given in Table 3.8.

3.2.3 Simulation Results: A Comparison

Iu general, all three approaches in the present non-stationary case produced unbiased
regression estiniates. For this reason, to examine the relative performances of the

GQL and WOR approaches, we compare their respective MSEs. The results show
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Table 3.6: Equal odds ratio based GEE estimate (BWOR) for regression effect along

with its standard error (o5 ), MSE, and RB, for non-stationary design Dys with

Bwon

t =4, n =100, and selected values of p; 500 simulations.

True p True p Bwor 0p,.,, RB (%) MSE
0.0 0.0 0.009 0.462 1.984 0.213
0.3 0.011  0.588 1.900 0.346
0.5 -0.012  0.697 1.771 0.485
0.7 0.002 0.872 1.948 0.760
0.5 0.0 0.505  0.447 1.063 0.200
0.3 0.491 0.592 1.500 0.351
0.5 0.504 0.690 0.532 0.461
0.7 0.541 0.803 5.106 0.646
1.0 0.0 1.013 0.477 2.700 0.228
0.3 0.992 0.639 1.300 0.409
0.5 1.001  0.716 0.097 0.513

0.7 - - - -

Table 3.7: WEQC based GELE estimate (/S’WEQC) for regression effect along with its
), MSE, and RB, for non-stationary design Dys with t = 4,

standard error (o

BwEeQc

n = 100, and selected values of p; 500 simulations.

True 3 True p  Bweoc T poc RB (%) G MSE
0.0 0.0 0.072 0.252 28.900 0.001 0.069
0.3 0.174 0.265 65.700 0.192 0.101

0.5 0.224 0.268 83.400 0.363 0.122

0.7 0.234 0.263 89.200 0.575 0.124

0.5 0.0 0.612 (.255 44.100 0.008 0.078
0.3 0.659 0.264 60.200 0.197 0.095

0.5 0.712 (.255 82.900 0.367 0.110

0.7 0.708 0.236 87.900 0.580 0.099

1.0 0.0 1.123 0.274 44700 0.024 0.090
0.3 1.171 0.277 61.000 0.208 0.106

0.5 1.204 0.278 73.500 0.379 0.119

0.7 1.195 0.251 77.700  0.592 0.101
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Table 3.8: AWEQC based GEFE estimate (/9,1;1,7;5@(; ) for regression effect along with
its standard errors (0/94\\'13(3(')’ MSE, and RB, for non-stationary design Dyg with
t =4, n =100, and selected values of p; 500 simulations.

True 5 True p Saweoc T s boc RB (%) & ISE
0.0 0.0 0.013 0.596 2.200 -0.007 0.355
0.3 0.055 0.605 9.200 0.006  0.369

0.5 0.092 0.609 15.100  0.018 0.379

0.7 0.121 0.609 19.900  0.033 0.386

0.5 0.0 0.425 0.616 12.200 -0.006 0.385
0.3 0.500 0.623 0.038 0.007 0.388

0.5 0.533 0.622 5400  0.019 0.388

0.7 0.560 0.617 9.800 0.033 0.384

1.0 0.0 0.850 0.728 20.600 -0.007 0.552
0.3 0.920 0.732 10.970  0.006 (.542

0.5 0.950 0.734 6.700 0.018 0.541

0.7 0.978 0.727 3.100 0.033 0.529

that for all values of 3 and p, the MSEs for the GQL approach. given in Table 3.5,
are quite smaller than those for the WOR, approach, which are given in Table 3.6.
For example, for true g = 0.0 and p = 0.7, the MSE of B(;QL is 0.046, while /3“,@”
has an MSE of 0.760. Unlike that stationary case, these results hold true for both

small aud large values of p.

If we were to also compare the performances of the WEQC approach to the GQL
and WOR approaches through their respective MSEs, we would also find similar re-

sults to those discussed above. That is to say, the MSEs of the GQL method are much
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lower than those of the other two approaches. For example, consider when g = 0.5
and p = 0.5. The MSE for the WEQC approach is 0.110, and for the WOR approach
the MSE is 0.461. However, for the GQL approach, when true # = 0.5 and p = 0.5,

the MSE is 0.052.

When Table 3.8 is compared with Tables 3.5 - 3.7, we find that the GQL approach
once again produces estimates with lower MSEs. We now compare between the WOR
and AWEQC approaches. For small values of p, such as 0.0 and 0.3, the MSEs of the
AWEQC approach arc larger than those of the WOR approach. For example, when
7 = 1.0 and p = 0.0, the WOR approach has an MSE of 0.228, while the AWEQC
approach has an MSE of 0.552. In this regard, the WOR approach appears to perform
better than the AWEQC approach. When the AWEQC is compared with both the
GQL and WEQC, one may note that the AWEQC approach produces larger MSEs

for all # and p.

In the next chapter, we provide an illustration of the relative performance of the

GQL, WOR. and WEQC approaches for an asthma data sct.




Analyzing Asthma Data: An

Illustration

In Chapter 3 we discussed the relative performances of the GQL, WEQC, and WOR

approaches through a simulation study. The purposc of this chapter is to provide

Chapter 4

a numerical illustration of the application of these three approaches by analyzing I
an asthima data set. To be more specific, we want to apply the GQL, WEQC, and i
WOR approaches to a data set for 537 children from Ohio state, who were examined |
annually from the ages 7-10. As mentioned in Chapter 1, this data set cousiders
whether the children had respiratory infection in the previous year (as reported by

the mother of the child). In other words, the repeated response for this data set is the
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wlheezing status (1=yes, 0=no) of the child. The initial smoking status of the mothers
(1=regular smoker, 0= not) were also collected, and considered as a covariate. Thus,

fort=1,...,4,

vie = (i, Tiry)

= (1, initial smoking status of mother)/.

showing that the covariates are stationary. Furthermore, y; = 1 or 0 for all i =
1,...,037,and t =1,...,4.

The scientific interest of the study is to examine the effect that smoking by the
mother has on the wheezing status of her child. In addition, it is of intercst to cstimate
3 once one has taken the longitudinal correlations of the responses into account. This
particular data set was earlier analyzed by Zeger, Liang and Albert (1988), Sutradhar

(2003), and Sutradhar (2011, Chapter 7), among others.
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4.1 Estimation of Smoking Effect

4.1.1 GQL Estimation of

For the GQL estimation, we use the correlation structure

L ;1 p2 -+ praa
1 m pr-2
Ci(p) = C (4.1.1)
1 P1
1

as used in Sutradhar (2003). Using the stationary GQL approach discussed in Section

3.1.2, we obtain the GQL estimate of 3 = (31, 52)’

B (intercept) = —1.826

Ba(mothers smoking effect) = 0.263.

and the standard errors of the regression estimates were found to be

s.e(f) = 0.111

s.e(fy) = 0.178.
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Bi(intercept) = —1.349

Bz(mothers simoking cffect) = —0.094,
with standard crrors of the regression estimates given by

se(f) = 0116

s.e(fz) = 0.169.

Note that these standard errors were conputed from the formula

cov /3WI*QC‘ ZXIA R 1A,‘X,’ 5 (413)

derived from (2.2.5). and using equi-correlation structure for R(cv).

The cqui-correlation, «, is estimated using (2.2.8) is found to be

a = 0.357
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Note that & was computed based on &, as

(g (3 g 0.354
Q3 Qog | ™
('\131

using (2.2.7).

4.1.3 WOR Estimation of 3

Using the WOR approach discussed in Section 2.2.2, we obtain the WOR estimate of

3 as

Ay (intercept)

/;2(1nothers smoking effect)

0.308

0.327

0.443 0.329 | » (4.1.4)

0.381

—-1.821

0.272,

along with the standard errors of the regression estimates given by

se(B) = 0.111

s.c(By) = 0.180.
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Note that these standard errors were computed using the formula

-1
(‘OV /3WQR Z X’A 2 1A.,1X,j y (415)
derived from (2.2.27).
The constant odds ratio, 7, for u < ¢, is given as
Tie Tz Tia 7.130 5.777  7.231
Py T | = 11.469 7.261 | - (4.1.6)
Taq 9.972

We then compute an cstimate of 7 as

7 = 8.099,

by way of (2.2.37).







Chapter 5

Concluding Remarks

In the longitudinal setup, there exists some comparisons between a recently proposed
GQL ostimation approach and the so-called ‘working’ correlation based GEE ap-
proaches for the estimation of the regression effect. The GQL approacl, in general,
tends to produce more cfficient estimates, both for stationary and non-stationary
data. However, there exists an odds ratio approach, where the joint probabilities are
computed in terms of odds ratios. Yet, as a result of estimation ditficulty for the odds
ratio, some authors have used an equal odds ratio assumption for the construction of
the joint probability based cstimating equations. In this thesis, we have made a com-
parative study between the ‘working’ equal odds ratio (WOR) and GQL approaches,

and found that the GQL approach performed better than the WOR approach in the
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non-stationary case. In general, this was also true for the stationary case. We also

included the ‘working’ EQC (WEQC) approach in the comparison.

In addition to the simulation study, we have also included a real life data analysis
for the comparison of the three approaches. The GQL and WOR approaches were

found to produce similar estimates.
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