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Abstract 

Longitudinal binary dat a has been analyzed over the last three decades eit her by 

using odds ratio or 'working' correlat ions as a measure of association between the re-

peatecl binary responses. Recently, this type of data has been analyzed by modeling 

the correla t ions parametrically and estimating the parameters by a generalized quasi­

likelihood ( GQL) approach. In this thesis, we consider a specific correlation model, 

namely, t he binary autoregressive order 1 (AR(l )) model to generate t he data, and 

study t he relative performance of the odds ratio and equi-correlations based esti­

mation approaches with the GQL approach. This comparison is mainly done by 

simulations under bot h sta tionary and non-stat ionary AR(l ) correlation models . A 

real life dat a set containing repeated asthma status of a group of children is also 

analyzed. 
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Chapter 1 

Introduction 

1.1 Background of the Problem 

Longitudinal binary data analysis is an important research topic. In this setup, binary 

responses are repeatedly collected over a small period of t ime from a large number 

of independent individuals. For example, consider a binary longitudinal study refer-

enced in Sutradhar (2003) [see also Zeger , Liang, and Albert (1988)] . A data set for 

537 children from Ohio state was examined annually from the ages 7-10. Whether the 

children had respiratory infection in the previous year was reported by the mother of 

the child . That is, the repeated response is the wheezing status (l = yes , O= no) of the 

child. The initial smoking status of the mothers (l = regular smoker, 0= not) were 
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also collected, and considered as a covariate. The interest in such a study would be 

to investigate the effect that smoking by a mother on the wheeze status of her child. 

We also refer to another longitudinal binary data study reported by Fitzmaurice and 

Lipsitz (1995). In this case, data from 51 subjects from an arthrit is clinical trial were 

collected. In this study, patients complete a self-assessment measurement of arthritis 

(0 = 'poor ', 1 ='good'). Each patient had a base-line self-assessment rneasurement at 

week 0, and then fo llow-up measurements at weeks 1, 5, 9 and 13. Patients were then 

randomly assigned to one of the two treatments. Overall , four covariates including 

the treatment were considered, t he three other covariates being gender, age, and t ime 

factor. The interest in t his particular study is whether the t reatment increases the 

possibility of a positive self-assessment. In addition, the secondary interest of such a 

study would be to investigate whether the response differs by age and gender. 

Note that the repeated binary responses, such as wheezing status of a child over 4 

years in the aforementioned first problem, arc likely to be correlated. Similarly, in the 

second problem, the binary responses, namely the arthritis status, taken repeatedly at 

four t ime points are also likely to be correlated. This type of longitudinal correlations 

must be accounted for while estimating the effects of the covariates (regression effects) 

on the binary responses. However, the modeling of binary correlations is often diffi-
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cult. Consequently, many authors have used a 'working' correlations approach. For 

example, in relation to t he second problem, Fitzmaurice and Lipsitz (1995) [see also 

Lipsitz et al. (1991)] have computed the associated covariate matrix of an individual 

by using a 'working' odds ratio approach and then using such covariance mat rices 

to construct the so-called generalized estimating equation (GEE) [Liang and Zeger, 

1986] . Some authors have used equ i-correlations instead of odds ratios to obtain 

correlation structure based regression est imates. See, for example, Prentice (1988) in 

the context of a dietary screening problem. However, this selection of equi-correlations 

was not adequately justified. Moreover, when covariates are t ime dependent, the cor­

relations for binary responses no longer follow equi-correlations (Sutradhar, 2010). In 

addition, one may argue that a correlation structure exhibiting decay in correlations 

as t ime lag increases, would be the better choice. This decaying pattern can be mod­

eled by using a Gaussian type AR(1) (autoregressive) relationship. By this token, it 

would be more appropriate to use a possible class of correlation structure (Sutradhar 

2011 , Chapter 7) that may accommodate AR(1) and equi-correlations, and so on, as 

specialized structures. 

Note t hat t he odds ratios are computed from a bivariate binary distribution for a 

pair of binary responses collected from two t ransit ing t imes. One may illustrate this 
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odds ratio computation as follows. Let Ya be the binary response, i.e Yit = 1 or 0, for 

the 'ith individual (i = 1, . .. , n) at timet (t = 1, . . . , T). Also, let nit = P(yit = 1) 

be the marginal probabilities at time t . Suppose that P (Y iu = 1, Y it = 1) is denoted 

by nt/'~). Then for all possible transitions from t ime u to t, the joint and marginal 

probabilities may be written as in Table 1.1. 

Table 1.1 : Joint probabilities in contingency table f orm. 

T imet 
T ime u 1 (y= 1) 2 (y= O) Total 

1 (y=1) 
( /.ju) 

7ri ,ll 
(tiu) 

7ri, 12 1riu 

2 (y=O) (tiu ) 
7r.i 21 

(t iu ) 
7ri 22 1 - 1riu 

Total na 1 - 1rit 1 

We may then write the log odds ratios for the ith individual as 

(t iu) (t iu) 

"'' 1 7ri ,ll 7ri,22 1 ( ) 
<f/iut = Og (t iu) (t iu) = og Tiut. 1 say . 

7ri,I 2 7ri ,21 

(1. 1.1) 

S h '\'n - d '\' n - (t iu) Wh 1 b b' l' . , . uppose t at L..-i= l Y i t - nt an L..- i=l Y iuY ·it - n 11 . en t 1e pro a 1 1t1es m 

Table 1.1 are the same for all individuals ·i = 1, . . . , n, we may consequently construct 

a contingency table using the notation I:7~ 1 Yit = n t and I:7=1 YiuYit 

example. The 2 x 2 contingency table may then be formed as 

n (tiu) for 
11 l 
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Table 1. 2: Contingency table fo ·r general time points. 

Timet 
Time u 1 (y=1) 2 (y=O) Total 

1 (y=1) (tiu) 
nn 

(t iu) 
n12 nu 

2 (y=O) (tiu) 
n21 

(t iu) 
n22 n -nu 

Total nt n- nt n 

Thus, in this situation, one can estimate the common odds ratio Tut ( Tut = Tiut) by 

(1. 1.2) 

Next, using further assumpt ion that the odds ratio are the same for any two time 

points, i.e, using Tut = T , some authors such as Lipsitz et al. (1991) [see also Fitz-

maurice and Lipsitz (1995)] computed the joint probabilities in order to construct 

the 'working' equal odds ratio based GEE. It is , however, clear that common T based 

GEE approach is not appropriate when odds ratio vary from individual to individual. 

Also, they may not be the same for all time points. But the effect of using such T 

based GEE when T;ut is appropriate is not adequately discussed in the literat ure. In 

this thesis, we revisit this inference issue and examine the performance of the GEE 

approach by generating data under a non-stationary correlation model. 

As opposed to technically using equi-correlations or odds ratio for binary responses 
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over t ime, there exist some parametric modeling to understand the correlations. For 

convenience, we explain below some of these correlation models for a specialized 

stationary case, where covariates xit corresponding to Yit are assumed to be the same 

for all t = 1, . .. , T. Let xi. = .Tit to represent this sit uation. Note t hat using this 

notation, we write 

ex;f3 
P(Yit = 1) = I (3 = 1ri ) t = 1, ... ) T, 1+ei · 

(1.1.3) 

which will be used as the marginal probabilities under all models explained below. 

1.1.1 Stationary Correlated Binary Models 

1.1.1.1 B ahadur Model 

For T 2: 2, Bahadur (1961) [see also Sutradhar 2011 , Chapter 7] introduced a joint 

probabili ty function-based correlation model given by 

!'('tic ... '{h ' ) =TIT Jry;,( l - 7r )l - y;, X [1 + "'T rf ( y;,. - rr, . ) ( 1/i t - rr ; . )] 
, ut i ' > uJ.I t = l ' · '· ~t< 11 l' t,n t [rr; .( l - rr, .)J2 [rr, .( l - rr,)]2 

(1.1.4) 

where Pi,'Ut denotes the correlation between two binary responses Yit and Yi'U · From ( 1.1.4), 

one can then show that 
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Var(Y: ) tl, 

Alternatively, (1.1.4) can also be expressed as 

7f o 
? .. 

7f:( 1 -7f·) 'L. '/, . 

* Pi,uto 

1°( ) 1 L..it<u t;ut t. to 

(

'\'T p* ( -1 )Y-it +Yiu 1f2- y;t - Yi"( 1 _ 7f )Yit+Y.;u ) 

Yn , 0 0 0 , YiT = + ( ) , 
7f,io 1 - 1fi, 

17 

(1.1.5) 

(1.1.6) 

where Y it = 0, 1 for any i and all t = 1, 0 0 0, T (Sutradhar 2011, Chapter 7, eqo 7°12) 0 

This model may however, encounter range restriction problems for correlations 

P7.out 0 To be specific , t he range for p;,,v.t may be much narrower than - 1 to 1. 

1.1.1 .2 K ante r M odel 

Suppose that Yi l "' b( 1ri.}, and let Sit and dit denote binary random variables wi th 

Pr(sit = 1) / 1, with 0 < / 1 < 1, 

Pr(dit. = 1) ( 1.1. 7) 

for t 2, 0 0 0, T. Kanter (1975) proposed that one may generate the AR(1)-type 
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correlated responses Yil , . . . , YiT by using the following model 

for t = 2, ... , T , (1.1.8) 

were EB denotes addition mod 2. Since Yit ""b(wi.) for t= 1, . .. , T , using (1.1.8) one 

may then show that 

Var(Yit) 7['· (1 - 7r ). t. 1. . 

In addition, the correlation between Yit and Yiu can t hen be found as 

where 

C .... (v· '\/ ) _ * _ Jt-uJ 
Oil I it , I iu - Pi,ut - Pi ' 

"(1 (1 - 2wi.) 
P i = --:-( 1---2-'Y-1 w-i--,-.)' 

for t =/= u, 

Note that this model also encounters range restrictions for the correlations. 

(1.1.9) 

(1.1.10) 

(1.1.11) 
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1.1.1.3 Binary Dynamic Logit (BDL) Model 

There exists a binary model where correlations are not restricted. For example, 

consider the following non-linear binary dynamic model: 

P i l Pr[yil = 1] = 1ri. = exp(x~ . fJ)/ [1 + ex:p(x~. fJ) ] 

Piiit.- 1 [ l 
exp(x~.fJ + eyi,t-d 

Pr Yii = 11 Yi ,i- 1 = ( I jJ e ) , 
1 + exp xi. + Yi,t-1 

(1.1.12) 

for t = 2, . . . , T , where e denotes the dynamic dependence parameter. 

When t = 1, Yil is assumed to be binary with mean f.Li1 = 1ri.· Let 

exp(x~ . fJ +e) -
P i tlt - l (y; t - J= l ) = 1 + ( I p +e) = P i · exp xiY 

for all t = 2, ... , T. (1.1.13) 

The unconditional mean of Yit is found using (1.1.13) as, 

fort= 2, ... , T , (1.1.14) 

along with variance of Yit as 

O'i ,u = var(Yit) = f.Lit (1 - /-Lit )· ( 1.1.15) 
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Furthermore, it can be shown that the lag (t- u) autocorrelation between Yiu and Yit 

is found as 

(1.1.16) 

[Sutradhar (2011, Eqn. (7.150))]. 

Note that even t hough this model produces correlations with full range, the mean 

under various times maintains a recursive relationship , as opposed to Bahadur (1961) 

and Kanter (1975) models. 

1.1.1.4 Linear D y namic Conditional Probability (LDCP) Model 

Some authors have modeled correlated binary data by way of the AR(1) type linear 

dynamic conditional probability (LDCP) model given by 

b( 7ri.} (1.1.17) 

PT [Yit = 11 Yi ,t-1 = Yi ,t- t] 1ri. + P(Yi,t- t - 1ri .), for t= 2, . . . , T (1.1.18) 

[Zeger , Liang, and Self (1985) , Qaqish (2003)]. This model will then yield t he following 

marginal mean and variance of Yit for all t = 1, ... , T, as 
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var(Yit ) 1f· (1-1f) 
1. . 'l.. ' 

for u < t. The lag t- 'l.l autocorrelation is given as 

C . ·['V ' ' ] _ • _ t-u Oil Iiu, 1 i t - Pi;ut- P · 

However, the lag 1 correlation must satisfy the range restriction 

:; p:; 1, 

21 

(1.1.19) 

(1.1.20) 

(1.1.21) 

but as shown by Farrell and Sutradhar (2006) , the ranges for correlation under this 

LDCP model are wider than that of Bahadur (1961) and Kanter (1975) models. 

Note that the comparison for ranges of correlation structures studied by Farrell and 

Sutradhar (2006) also include other correlation structures such as moving average of 

order (1) (MA(1)) and equi-correlation (EQC) structures. 
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1.2 Existing Estimation Approaches 

Among all of the models that were discussed in Sect ion 1.1, the LDCP approach 

appears to have more advantages. This is due to the fact that, except for non-linear 

models, as pointed out by Farrell and Sutradhar (2006) , t his linear model allows 

wider ranges for correlations than other models. For this reason, in this thesis, we 

concentrate on this model and discuss various inference issues. As far as the existing 

estimation approaches are concerned , the parameters of t his type of model ( assum­

ing correlation structure is unknown) have been estimated by using cer tain 'working' 

correlat ion approaches. Quite often, equi-correlations and odds ratio approaches are 

used. Our int ent is to see whether these two working approaches are sufficient in 

est imating t he parameters of this LDCP model ((1.1.17)-(1.1.18)) . To check this, we 

will compare their performance with an existing GQL (generalized quasi-likelihood ) 

approach. T his GQL approach (suggested by Sutradhar (2003) ) assumes a Gaussian 

autocorrela tions class which accommodates the above LDCP model. This GQL ap­

proach minimizes a generalized quadrat ic dist ance (GQD) of observations for their 

means, where the GQD is constructed by exploiting the correla tion class. 
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1.3 Objective of the Thesis 

Our main objective is to compare the performance of the existing 'working' odds ratio 

(WOR) and 'working' equi-correlation (WEQC) approaches with a recently proposed 

generalized quasi-likelihood ( GQL) approach. More specifically, in Chapter 2, we first 

provide an AR.( 1) binary model and develop the GQL estimating equation for a gen­

eral non-stationary data setup. We then described the existing estimation formulas 

for the vVOR and vVEQC approaches for the estimation of the regression effects. The 

formulas for the estimation of correlations and odds ratio are clearly provided. In 

Chapter 3, we carry out an extensive simulation study, both for stationary and non­

stationary data. The relative bias (R.B) and mean squared error (MSE) performances 

for all three approaches are presented in tables and the results discussed. In Chapter 

4, for t he illustra tion of the estimation methods, we have applied each met hod to 

reanalyze longitudinal asthma data. T he results are interpreted along the lines of the 

simulation study. T he thesis concludes in Chapter 5. 



Chapter 2 

Estimation for Longitudinal Binary 

Models 

As mentioned earlier, the main objective of the thesis is to examine the relative per­

formance of the existing 'working' equi-correlations and odds ratio based estimation 

approaches as compared to the GQL approach constructed based on known correla-

t ion class or structures. As far as the correlation structure is concerned, we assume 

that the binary dat a follow a. non-stationary AR(1) correlation model, which would be 

a generalization of the stationary AR(1) model (1.1.17)-(1. 1.18), see Sutradhar (2010) 

and Sutradhar (2011 , Chapter 7) for details on such non-stationary AR(1) structures. 

Note that the Bahad ur model given in Section 1. 1.1.1 may accommodate AR( 1) and 
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EQC structures; however t he other models, namely Kanter 's model in Sect ion 1.1.1.2, 

BDL model in Section 1.1.1.3, and LDCP model in Section 1.1. 1.4, were given for 

AR( l ) type relationships only. One of t he main reasons to consider the AR( l ) struc-

ture in this thesis is that t he correlation under such a model decreases exponentially 

as t ime lag increases, which is considered to be realistic for many practical data. 

2.1 Non-Stationary AR(l) Correlation Models and 

GQL Estimation Approach 

To consider a non-stationary AR(l ) binary correlation model , let Yu be the binary 

response at a given time point t, wit h 

t = 1, . . . , T . (2.1. 1) 

Note that this marginal probability is a function of the time dependent covariate .:cit . 

Suppose t hat t he repeated binary responses Yi l , . . . , Yit , .. . , Y iT are generated using 

the following relationships 

Pr(Yit = liY.i,t- 1) 1rit + P(Y.i,L-1 - 1ri,t- l ) ' for t = 2, . .. , T , (2.1.2) 
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where 1r;1 is given in (2. 1.1 ), for all t = 1, .. . , T . Using this model, it can t hen be 

shown t hat t he mean and variance are given as 

1-'·i = 1fit 

(2.1.3) 

fort = 1, . . . , T. 

For 11. < t , t he covariance between Yi u and Yi t can be found using the model given 

in ( 2 .1.1) as 

= E(Y;,,Y;t) - E(Yiu)E(Yit) 

= E y;" YiuEYi ,t-( t-n-1) [ · · · [EYi,t-2 [E Yi.t - 1 ['tit IYi,l.- J] IYi,i-2] · · ·] IY i ,i-(i-u- 1)] 

[ 

i - v.- 1 t - 11. - l l 
· t - u · 

= E y;, Yiu 1f·i i + L rY 1f; ,t - j + P (Yiu - 1f;u ) - L rY 1fi ,t-j 

j = l j=l 
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1.- u (1 ) = P 'lriu - 'lriu 

t-u = p ai,uu (2.1.4) 

[Sutradhar (2011, Eqn. (7.72))] . The non-stationary correlation matrix can then be 

given as 

{ 

I 

p t-u [a;,,,] 2 
a "- ,u 

corr(Yiu, Yit) = 1 

p t-u [:t,ll. J 2 
t,1/.U 

for 1.t < t 
(2.1.5) 

for u > t . 

However, the parameter p in ( 2 .1. 5) must satisfy the following range restriction 

[ 

'lrit 1 - 'lrit ] . [ 1 - 'lri t 'lrit ] max - , - ::::; p ::::; nun - , - -- . 
1- 'lri,t- 1 'lf.i, l.- 1 1- 'lr-i,t-1 'lri,t- 1 

(2.1.6) 

Note t hat because a .i,u , for example, depends on the time dependent covariates 

Xit through the relationships (2.1.3) and (2.1.1) , the correlations defined in (2 .1.5) 

are functions of time dependent covariates, and hence these correlations are non-

st a tionary. 
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2.1.1 GQL Approach for the Estimation of Regression Ef-

fects (/3) 

It is well known that by treating binary data as independent, one may exploit the 

mean and variance functions and develop a quasi-likelihood (QL) estimating equation 

for t he regression effect f3 given by 

(2.1. 7) 

[vVedderburn (1974) , Sutradhar (2011 , Eqn. (7.5))] where Jl' iL = 1ri L is t he mean, 

and CTi,LL is t he variance of Yit as in (2 .1.3). However, because the binary data under 

the AR(1) model in (2.1.2) are correlated following (2.1.5), the solut ion of the QL 

estimating equation (2.1. 7) for f3 would produce an inefficient estimate. As a remedy 

to this inefficiency problem, Sutradhar (2010) suggested a generalization of the QL 

equation (2.1. 7) to accommodate the correlations in estimating f3 . T he generalized 

quasi-likelihood (GQL) estimating equation is given by 

(2. 1.8) 

where 
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Yi (Y.il , · · · , YiT )' 

1ri = ( 1ri J, · · · , 1ri.T )', (2.1.9) 

and t he covariance matrix of Yi is denoted by L:.;ns)(,B, p) , such that 

(2. 1.10) 

where A.i is defined as 

Ai d iag[var (yH), . .. , var(Yit) , .. . , var(yiT )] 

diag[O"i, I I , · · · , O'·i,U , · · · , O'i ,TT] 

(2.1. 11 ) 

(2. 1.12) 

for u , t = 1, . . . , T , where by (2. 1.8), the (u, t)th element is given by 
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(ns)( ) 
Ci 1Lt X ·iu, Xit, p = , ' 

corr(l~·u, Yit) 

for u < t 
(2. 1.13) 

for 1t > t. 

Note t ha t even though L:ins)(,B, p) in (2.1.8) is a function of ,8, the construction of 

the estimating equation (2.1.8) assumes that ,8 in L:ins)(,B, p) is known . This is because 

when 1fit in J-Li is known, O'i,tt = 1fit( 1 - 1fit ) becomes known as well to construct the 

Ai matrix contained in I:~ns)(,B, p) . Also, the correlations given in (2. 1.13) depend on 

,8 only t hrough O'i,tt or 1fit · T hus, it is sufficient to estimate ,8 involved in the mean 

function. 

2.1.1.1 Computation of ~ 

The derivative ~j~ can be computed by using the formula for 8;;J', given by 

p X 1, (2. 1.14) 

for all t = 1, . . . , T . T hus, 
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p xT 

(2.1.15) 

where 

x:, = [xil, .. . , Xit, . .. , xiT] p X T , (2. 1.16) 

and A; is the TxT diagonal matrix as in (2.1.11) . 

2.1.1.2 Iterative Formula for GQL E stimator 

Now for known p, we can solve t he GQL estimating equation given in (2.1.8) for (3 

iteratively by using the so-called Newton-Raphson formula given by 

(2.1.17) 

where [ Jr. denotes that the expression contained within the brackets is evaluated 

at (3 = S('r ); t hat is, the Tth iterative value for (3 . Let ScQL be the final estimate 
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obtained from (2.1.17) . 

2.1.1.3 Estimation of p 

Note that in solving for /J by ( 2 .1.1 7) , we have assumed that the correlation index 

parameter p is known. In practice, this is not usually the case, and the AR( 1) index 

parameter is unknown. To est imate this parameter consistently, we first observe that 

p is in fact a lag 1 correlation index parameter. That is , if p is known, then pt-u is 

also known. 

Consequently, to estimate the lag 1 index parameter , we construct a moment 

estimating equation by equating t he sample lag 1 auto-covariance to its expected 

value. In other words, for Yit = IYit- 7r;tl/ ..,fi5i:U with a;,u = n.it (1- n it ), 

[ 
1 n T l 

E n(T _ 1) L: L: f};t.Yi, t- 1 
'1.= 1 1= 2 

by (2.1.4). Thus, 

n T 
1 L: L: E(yit - 7r;t) (Yi,t- 1 - n ;,t-d 

n(T - 1) i=l t=2 J (a; ,tt) (a;,t- l ,t-d 

n T 
1 ~ ~ pa;,t- l ,t- 1 

( ) 
L__, L__, (2.1.18) 

n T- 1 i=l 1= 2 J(a;,u )(ai,t- l ,t-1) 

i = l t = 2 

ai,t- l ,t-1 

a;,u 
(2. 1.19) 
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Next , it is clear tha t 

n T 

ELL ii~. 
i= l t=2 

n T ( )2 L L E Yit - 7ra 

i= l t= 2 C/i,U 

nT. (2.1.20) 

Now by combining (2.1.19) and (2 .1.20), we write 

(2.1.21) 
n T ,----.,----

p L i= l Lt=2 v C/i,t.- l ,t-d C/i ,U 

nT 
(2.1.22) 

yielding the moment est imate for p as 

'\"'n '\"'T - - T 
, 6i= l 6 t= 2 Y·itYi,t- 1 n 
p = '\"'n '\"'T -2 ----T--------,-1 . 

6 i=l 6 t.= l Yu 2:;~ , Lt=2 [C7i,t-l, t -J/C7.i ,uJ2 

(2.1.23) 

This estimate p will be used in (2.1.17) for p. 

Note that the purpose of the thesis is to compare the finite sample performances 

of (2.1.17) with other possible competitive estimators, such as SceE based on the 

equi-correlat ion assumption [Prentice (1988, Section 4)], and SceE based on an odds 
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ratio approach. The latter two methods are discussed in detail in the next two sec-

tions. 

Further note that /JcQL obtained from (2 .1.3) is consistent for (3 . This is because 

E(/JcQL) = (3, (2. 1.24) 

using the fact that E(Y;) = f.L; under the present AR(1) model (2.1.12) , yielding 

E [:t x;,Ai L:~ns)- 1 
((3, p)(Yi- f.-li)l = 0. 

t= l 

(2.1.25) 

Furthermore, it can be shown that (Sutradhar (2011 , Eqn. (7.87))) /JcQL has asymp-

totic covariance given by 

{ 

n }-1 
' _ • 1 1 (ns) 1 

cov(f3cQL) - hm L XiAi G; (p)A ; x i ) 
n-too 

·i= l 

(2.1.26) 

which provides bounded variances when fixed design matrices X i are chosen properly. 

Also, /JcQL has demonstrated to be more efficient than /JQL , for example, where 
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~QL is obtained by solving 
n 

L x ;(Yi - J-Li) = o, (2.1.27) 
i=l 

[see (2.1.7)] . T his can be examined by comparing the asymptotic variance of ~QL, 

given by 

(2.1.28) 

with the asymptotic variance of ~GQL given in (2.1.26). 

2.1.2 Joint GQL Estimation for (3 and p 

Since (3 is the regression effect and p is the correlation index parameter , for t heir 

joint estimation , following Sutradhar (2004) , we exploit both first and second order 

responses. For this purpose, we define ui = (y~, gn' where 

Note that we are considering only the lag 1 pairwise responses, which are appropriate 
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for any lag 1 correlation model. It is known from ( 2 .1. 9) t hat 

and by denoting E(gi) as 

E(gi) 'rli = (rJi, l2 , ... ) 'rli,i- l ,t , .. . ) 'rli,T-l ,T)', 

one can compute the general element Tli ,t- l ,t as 

''7i ,t - l, t 

cov(Yit, Yi ,t-1) + E(Yit )E(Yi ,t-t) 

O"i ,t - 1 ,t + 1fi ,t- 11fit 

(2.1.29) 

by (2.1.13), yielding 

(2. 1.30) 
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Note that in general, for lag It - ul apart responses, one may write 

(2.1.31 ) 

for time points u and t. The non-stationary AR(1) model, (2.1.31), reduces to 

T}i,ut t-u ( p . 

for u < t, (2.1.32) 

by wa.y of (2 .1.13). 

Let 

( I ') ' fl-·i' 'rl·i 

(2.1.33) 

and 

(2. 1.34) 
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where D.; is the (2T- 1) x (2T- 1) covariance matrix. T hen, for e = ((3', p )', following 

Sutradhar (2004), we write the GQL estimating equation as 

(2. 1.35) 

Computation of Di (Normality Based): 

cov(ui) = cov(~) 

[

cov(Y;) cov(Y;, .9Dj 
cov(gi) 

[ ~, ::] (2.1.36) 

To compute the covariance matrix ni, we construct each component matrix in (2 .1.36) 

as follows. 

Computation of L:i : 

Note tha.t L:; is used for L:~ns)((J,p) defined in (2.1.10) . Thus, L:i in (2. 1.36) is 

computed by (2.1.10). 
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Computation of B; and Ai: 

To compute B i and Ai, we use a normal approximation. To do so, pretend that Y·i = 

(Yil , .. . , YiT )' follows a normal distribution but with correct mean f..Li and covariance 

matrix Bi as in (2.1.10) , for the binary responses. It then follows that 

0 (2.1.37) 

where CJi ,nt, for example, is given by 

for u < t , by (2.1.4) . After some algebra., one may then write the raw third order 

moments from (2.1.37) as, 

'Yi,u.tl, (2.1.38) 
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where, for example, 

1J·i ;ut E(Yiu Yi,t) 

O"i ;ut + 1fi,t- 11fi t 

for u < t , (2. 1.39) 

by (2.1.13) . Now we compute, 

Yil 

cov Yii (YilYi2, · · · , yi,t- lYit , · · · , yi,T-lYiT) (2. 1.40) 

YiT 

where in general 

(2.1.41) 
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where 'Yi,u.tl are computed by (2 .1.38) for selected values of 'U , t , and l. Thus, Bi has 

been computed. 

Likewise, one may also write the raw fourth order moments from (2.1.37) as, 

E (YiuYitYUYim) 

(2.1.42) 

The formulas from (2.1.38) and (2 .1.42) may be used to compute Ai. To be specific, 

for t he computation of Ai, we first compute 

Yi l 2 

Yi,u- l ,u (y;12, · · · , Yi,t- JYil, · · · ,Yi,T- JYiT) , (2. 1.43) 

Yi,T- J,T 
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where in general 

(2.1.44) 

where cPi,,rtlm is computed by (2 .1.4 2 ) for selected values of u, t, l, and m, an d 'r/i ;u.t is 

given by (2 .1.39) . Thus, Ai has been computed. 

C t t
. c 8N 

ompu a IOn 10r 8o: 

i)),' 0 

To compute ae', first recall that e = ((3' , p)' and ,\i ( ~t~, rJ~)'. This implies that 

Ai = (~~ , rJ~)' . One may then write, 

such t hat 

( 

8/l' ) ; 

: (p + 1) x ( 2T - 1), (2.1.45) 

: (p+ 1)x T (2. 1.46) 
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and 

where 

and 

In (2.1.48) , 

or;~ 

ofJ 
0'17~ 
opl 

(
0J.i ) 8{3 

: (p + 1) x (T - 1), 
0J.i 
8p 

(2. 1.47) 

x ;A i as in (2.1.15). 

(
or;;,12 O'rJ~,t- l,t O'rJ~,T- l ,T ) 
ofJ ' ... ' ofJ ' .. . ' ofJ : p x (T - 1) (2.1.48) 

(cri ,ll,· · ·,CTi,t- 1,t - 1 , ... ,CTi ,T - I,T - 1 ) :1 X (T-1). (2. 1.49) 

or;;, 0CTi,t-1,t-1 O'lri,t- 1 07ra 
oj3 p o/3 + 'lrit ofJ + 'lri, t - 1 o/3 

[ 
oni,t- 1 ( oni,t-1] 

p - 'lri,t- 1 o/3 + 1 - 'lri,t-d o/3 

oni,t- 1 oni,t 
+ 'lrit ofJ + 'lri ,t - 1 oj3 

oni t oni t - 1 [ ] 
n;.,t- 1 orJ + 0~ 'lrit + p(1- 2ni,t- l) , (2.1.50) 
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with 

a>.' Thus, To has been computed. 

2.2 'Working' Correlations Based GEE Approaches 

When the correlation structure for the repeated binary data is unknown, Liang and 

Zeger (1986) have used a 'working' correlations based approach for the estimation 

of the regression parameter f3 . Because there is no guidance for the selection of 

correlation structure, some authors, such as Prentice (1988, Section 4) and Lipsitz et 

al. (1991 , Table 1, p. 158) used an equi-correlations (EQC) structure which may not 

be appropriate in many situations. This raises concerns about the correlation model 

rnisspecification effects. For this reason, we include this structure in our empirical 

study in Chapter 3 to examine its performance when repeated binary data are in 

fact generated following the most practical AR(1) model defined in (2.1.2). In the 

next section, we provide the EQC based GEE, including the estimation of the equi-

correlation parameter. 
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2.2.1 'Working' Equi-Correlations (WEQC) Based Approach 

for R egression Effects 

Similar to Section 2.1.1 , we may write the equi-correlations based estimating equation 

as 

(2 .2.1) 

where 

1f,i = ( 7r i 1 , · · · ' 7r iT ) 
1 

, (2.2.2) 

and 

(2.2.3) 

are as in (2 .1.8) , but R.i(a.) is a 'working' EQC matrix given by 

1 a. . . . a. 

1 . . . a. 
f4(a.) TxT 

1 

R(a.) say. (2.2.4) 
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Note that we have used pin (2. 1.8) as a correlation index parameter, assuming that 

the data follows an AR(1) structure as in (2.1.12), but have used a in (2.2.4) to 

indicate t hat t he 'working' correlation parameters are different than the t rue index 

parameters. T he computation of ~ is found in the same way as in Section 2.1.1.1. 

For known a, we can solve the estimating equation given in (2.2.1) for f3 iteratively 

by using t he so-called Newton-Raphson formula given by 

(2.2 .5) 

As in the GQL approach, [ ]
1 

denotes that the expression contained within the 

brackets is evaluated at f3 = /J(r-); that is, the ,.th iterative value for (3 . 

2.2.1.1 Estimation of a 

Note that by using Table 1.1 (for joint probabilities) we can write the general 

correlation between Y iu and Y it as 
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Jvar (Y;,Jvar(Y;t) 

Pr(Y;u = 1, Yit = 1) - 1ri·u 1rit 

J1riu( 1 - 1r·iu)1rit(1- 1rit ) 

47 

(2.2.6) 

As pointed out earlier, some aut hors such as Lipsitz et al. (1991, Section 4) and 

P rentice (1988, Sect ion 4.1 ) , d id not model the correla tions among the repeated 

binary responses. Instead, they have assumed constant correlat ion over time. Based 

on this assumption first for any 'U < t , by using a i,ut = CXut for all 'i , one may estimate 
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[
'\'n y· y · _ I:::'-1 Yiu L:;':... l Yit. ] 
0 i=l ·m zt n 

['\'n y2 _ (L: j'... l Yiu )
2 J ['\'n y2 _ (I::;'-1 Y·it )

2] 
0 z=l tu n 0 z=l zt n 

( t lu) 
~- nunf. 

n n 2 

J ( ~;,· ( 1 - r~, ) ) ( ·r~ ( 1 - ~) ) 
(t lu) 

Pu - PuPt (2.2. 7) 
P.n( 1 - Pu)Pt(1 - Pt ). 

Furt hermore, when it is assumed that Yiu and Yit have equi-correlation over time, one 

may exploit &1,.t from (2 .2.7) and estimate the equi-correlation a, say, by 

T T-1 

' 2 '""'"" ' a= T(T - 1) ~ ~aut · 
l.=u+l 1L=l 

(2.2.8) 

Note t hat (2.2.7) and (2.2.8) are applicable only when R;(a) = R(a) for all i = 

1, .. . , n . In such cases, /3 is obtained by 

(2.2.9) 

Furthermore, note that in the non-stationary case, covariates are time dependent. 

In addition, the covariates may change from individual to individual. T his raises 

questions with regard to the summation over i in (2 .2.7), and over time t in (2.2.8), 

to obtain an estimate of correlation a . 
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Alternative Estimation for o: 

An alternative approach may be considered to estimate the equi-correlation o: as 

(2.2.10) 

for u < t where 

(2.2.11) 

and then calculate & by using (2.2.8). The difference between the formulas denoted 

in (2.2 .7) and (2.2. 10) is t hat (2.2 .7) exploits the sample mean, whereas in (2.2.10) 

we exploit the estimated population means . 

2.2.2 'Working' Odds Ratios (WOR) Based GEE Approach 

for R egression Effects 

When the covariance matrix Ei is computed based on odds ratios, we write the 

GEE for (3 as 

(2.2 .12) 

T x T covariance matrix with its elements based on the odds ratios. 
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2.2.2.1 Construction of I:;(T): 

To compute the elements of this matrix, we first write the general covariance as 

(2.2.13) 

where 

(2.2.14) 

to be computed by taking advantage of the odds ratios. For this purpose we refer to 

the joint probabilities in Table 1.1 in Chapter 1, and write the odds ratio for the i 1
h 

individual at t ime t conditional on t he individual's response at time u, as 

(tju ) (t iu) 
7Ti ,ll 7Ti ,22 

(tiu ) (tlu) 
7Ti , l 2 7Ti,21 

(tlu)(1 (t iu) ) 
7Ti ,ll - 1T;t - 7T.i, l 2 

(t iu) (t iu) 
7Ti,l2 7Ti,21 

(t lu ) ( (t iu)) 
7T;, 11 1 - 1Tit - 1Tiu + 7Ti,ll 

( 
(tiu )) ( (I. In)) · 

1T-iu - 1T.i, ll 1Ti t - 7Ti ,ll 

The above equation can be rewritten as 

(tiu) ( 1 (t iu) ) 
7Ti ,ll - 1Tit - 1T-iu + 7Ti ,ll [( (t lu)) ( (t iu ) ) ] 

Ti ,u l. 1Tiu - 7Ti ,ll 1Tit - 1T.i, ll 

(2.2.15) 

(2.2. 16) 
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yielding 

(2.2.17) 

This in turn can be re-expressed as 

( ) 
2(tlu) ( ( ) ) (t lu) 1 - T.i ,ui 1fi,ll + 1- Kit- 1l"iu + 1f-iu + 1l"ii Ti,ui 1fi,ll - 1f-;u1fiiT.i,u.i = 0. (2.2.18) 

This further reduces to a general quadratic equation that can be written in the form 

2(ilu) + b (t lu) + _ O 
aKi,ll 7ri ,ll c - ' (2.2.19) 

where 

a 1 - Ti,ut. 

c (2.2.20) 

The solution of (2.2.19) for K?·{~) has the form 

(tlu) - b ± )b2 - 4ac 
7ri,1I = 2a · (2. 2.21) 



2.2 ' WORKING' CORRELATIONS BASED GEE APPROACHES 52 

The solution to (2.2.21) , after some algebra, is 

{ 

iJ - ( 1- r,,.,,)(rr,., + rr;t)J - [1-( l - r , ,.,, )(rr;,+rrit)J2-4r;, ., 1(r; ., 1.- l)rr;., rr ;.t 

(l ju)( ) 2(r;,,, - 1) 
7fi. ll T = 

1rin 1r-i t 

if T i ,u t /= 1 
(2.2.22) 

if T i,tt.t = 1 

[Lipsitz et al. , (1991, Eqn. (6) , p.155) , Yi and Cook(2001 , Eqn. (3) , p. 1072)], which 

will always lie in [0 , 1] . Finally, 

(2.2.23) 

u, t = 1, . . . , T . 

for t = u, 

for u < t , 

where 7ry{';•) is a function of T, as g1ven m (2.2.22). One may then construct the 

covariance matrix as 

(2.2.24) 

For the computation of ~~· , refer to (2 .1.15). For convenience, we rewrite 

(2.2.25) 
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where 

p X T , (2.2.26) 

and Ai is the T x T diagonal matrix as in (2.1.11). 

Solving the GEE (2.2.12) for fJ : 

For known T , we may then solve the estimating equation in (2.2.12) for f3 iteratively. 

Using (2.2.26) and (2.2.24), one may use the Newton-Raphson formula to find an 

estimate of /J as 

(2.2.27) 

2.2.2.2 Estimation of T 

Note that for the construction of the covariance elements O"i ,ut(T), we need to first 

compute the joint probabilities n.f,t{~) ( T) by (2 .2.22) , which in t urn requires the esti-

mates of T.i ,ut for all i , u, and t. In general, for all i, t he computation of t his odds rat io 

Ti,ut. is not possible unless one can use a model for all individuals. For this reason, 

some authors, such as Williamson et al. ( 1995, Eqn. (3)) [see also Cook and Yi (2002 , 

Eqn. (1) , p. 1072)] have used linear regression modeling as 
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(2.2.28) 

where .6. is an intercept parameter, .6., and .6.t are the marginal effects at time u and 

t , and .6.,t is the interaction. Further, x~c is a suitable vector of covariates responsible 

for the correlation of Y.iu and Yit, and~ is the effect of Xic· This extra regression model 

for association parameters , however, appears to be arbitrary. 

Constant odds ratio ( Tut ) estimation: 

Note that all individuals having constant odds ratio is equivalent to considering that 

the joint probabilities in Table 1.1 are free from i (i = 1, ... , n). Some au thors, such 

as Lipsitz et al. (1991) have used a constant odds ratio assumption and estimated this 

parameter as follows. Suppose that for given 'I.L and t , all individuals (i = 1, ... , n) 

have the constant odds ratio Tut. 

Recall Table 1.1 from Chapter 1, which contains the joint and marginal probabil­

ities for all possible transitions from time u to t. Thus, for Tut estimation, one uses 

the probabilities as in Table 2. 1 below. 
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Table 2.1: Joint probabilities in contingen cy table fo rm. 

Timet 
Time u 1 (y=1) 2 (y=O) Total 

1 (y=1) (t Ju) 
7ru 

(tJu) 
7r 12 1f.u 

2 (y=O) (tJu) 
7r 21 

(tJ·tt) 
7r22 1 - 7r.,. 

Total 7r. f. 1 - 1r.t 1 

When individuals are grouped by way of Table 2.1 , one obtains the contingency table 

in Table 1.2, which we reiterate in Table 2.2, for convenience. 

Table 2. 2: Contingency table for general time poin ts. 

Timet 
Time u 1 (y= 1) 2 (y=O) Total 

1 (y=1) (tlu) 
nu 

(t lu) 
n12 nu 

2 (y=O) , (tJu) 
n 2 1 

(t Ju ) 
n 22 n - n u 

Total n t n - nt n 

Using Tables 2.1 and 2.2, one then obtains the moment estimates for the joint prob-

abilities as 

(tJu) 
A (t in) n , l 

7ru = -­
n 
(tju) 

1r(tiu) _ n12 
12 n 

(tiu) 
A (t Ju) n 2 1 
7r?l = --

~ n 
(t j1L) 

A (t ju) n 22 
7r22 = -­

n 

(2.2.29) 

(2.2.30) 

By using (2.2.29)-(2.2.30) , it follows from (2.2.15) that the constant odds ratio may 

be estimated as 
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(2.2.31) 

Note that when the longitudinal binary data {yit } is available, the counts in Table 2.2 

may be expressed as follows: 

n 
(t ju) 

nn L YiuYit 
'i= l 

n 
( t iu) 

n 12 L Yiu( 1 - Yit) 
i=l 

n 
( t ju) 

n21 L Yit ( 1 - Y.iu ) 
i=l 

n 
( tju) 

n22 L (1 - Yiu ) (1 - Yit), (2.2.32) 
i = l 

where 

n 

n ,. L Yiu 
·i=l 

n 

n t L Y,it, 
i = l 

(2.2.33) 
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and 

(tiu) 
n22 

n n 

L Yiu - L Y·iuYil 
i=l ·i=l 

n 

"""' ·y· (1 - y· ) L.__; . m 1.t 

-i= l 

n n 

L Ya - L Y·i·u.Yit 
i=l i= l 

n 

L Yit(1 - Yiu) 
i=l 

n- n
1

- n(tlu} 
12 

n n n 

n - L Y·it- ( L Yiu - L Y.ittYit ) 
i = l i = l ·i= l 

n n n 

n - L Yit. - L Yiu + L Y.iuYit. 
i= l i= l i= l 

1/. 

L ( 1 - Yit - Yiu + YitYiu) 
i = l 

n 

L (l - Y·it/.)(1 - Y·it)· 
i=l 

57 

(2.2.34) 

(2.2.35) 

(2.2.36) 
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Constant odds ratio estimation for any two time points: 

By assuming equal odds ratios at any two time points (Lipsitz et al. (1991), Table 1, 

p. 158) , i. e., T 11t = T for all u < t, one can estimate T by 

(2.2 .37) 



Chapter 3 

Relative Performance of 

Estimation Approaches: A 

Simulation Study 

3.1 A Simulation Study for Stationary Correlation 

Model 

In this section, a special case of the non-stationary correlation model, discussed in 

Section 2.1, is explored. T he purpose of this section is to generate correlated data 
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adhering to the following AR( 1) model 

PT[YiJ = 1] 
e<f3 

1 + ex;.f3 = JT.; . 

PT[Yit. IYi,t- I] for t= 2, . . . , T , (3 .1.1) 

and estimate /3 by the three different approaches, namely, GQL discussed in Section 

2.1 , \iVEQC (working equi-correlation) based GEE which is discussed in Section 2.2.1 , 

and WOR (working odds ratio) based GEE discussed in Section 2.2.2. 

Note that in practice, the correlation model is unknown. Because the GQL ap-

proach assumes a large class of correlations, it is practical to assume that an unknown 

correlation structure may well be taken care of by using such a class. However , some 

'working' approaches do not even care for such a class and furthermore, without 

any diagnostics, this approach uses a certain 'working' correla tion model to develop 

estimating equations. Since these are arbitrary, in this thesis , we examine their per-

formance by generating data from an AR( 1) model, for the purpose of checking the 

correlation rnis-specification effect on estimation. 
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3.1.1 Simulation Design and Data Generation 

For t his simulation study, we consider t he parameters as follows: 

n 100 (3. 1.2) 

T 4 

p 1 

p 0.0, 0.3, 0.5 , 0.7. 

For t he scalar (p = 1) covariate, we choose the stationary design ( D s) covariates as 

- 1 for i = 1, . .. , n / 4 

0 fori = (n/ 4) + 1, ... , 3n/ 4 (3. 1.3) 

1 fori = (3n/ 4) + 1, .. . ,n, 

for all t = 1, ... , 4. Note that Xit is stationary, and does not depend on time t. For 

the covariate effect, we choose 

/31 = (3 = 0.0, 0.5, and 1.0. (3. 1.4) 

Next we generate the repeated binary responses. In a given simulation we generate 
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the first response Y·il for all i = 1, .. . , n , following 

Yil "' Bin( ni-) , (3 .1.5) 

with 

For a given value of p, we t hen use (3.1.1) to generate Yi2 using 

(3.1.6) 

Once yi2 is generated, we use it to generate Yi3 as 

Y·i3 ""' Bin( Ai3 = ni. + P(Yi2 - ni-)). (3.1. 7) 

We follow this above procedure and proceed to generate Yi1, . . . , YiT· 



3.1 A SI MULATION STUDY FOR STATIONARY CORRELATION MODEL 63 

3.1.2 GQL Versus WOR and WEQC Approaches for f3 Esti-

mat ion 

In a given simulation, using the responses {Y;t, t = 1, . . . , 4; 'i = 1, . .. , 100} generated 

as in Section 3.1.1 , and Xi as in (3.1.3), we compute the GQL, WOR, and \ iVEQC 

estimates of f3 by solving the respective iterative equations as follows: 

GQL Estimation: 

To obtain the GQL estimate, we use the stationary version of the iterative equation 

given in (2 .1.17) , namely, 

where in this stationary case, 

X' 
' 

: p X T 

(3.1.9) 
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where ® denotes the Kronecker product , and 1~ is the 1 x T unit vector. In addit ion , 

Yi (Yi l , · · · , YiT.)' 

A 1ri (1- 1f;. ) Ir (3.1.10) 

L:(s) ., A~dsl A ~ 
'l 't 'l.' 

with 

1 PI PT- 1 

1 PT- 2 (3.1.11) 

1 

Note t hat in order to use (3. 1.1) , we must first compute the lag correlations P1 , P2 

and p3 by using the formula for p1 (l = 1, 2, 3) obtained from (2. 1.23) under the 

present stationary case. More specifically, we compute 

'\"'n '\"'T- l - -
A L....-i= l L....- t= l YitYi ,t+l 
Pl = '\"' n '\"'T - l ,- 2 ' 

L....-i= l L....-t.= l Yit 
(3.1.12) 

where 

(3.1.13) 
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Note that v(;3) has the form 

v(;3) = (t X~AiBL:r:r;; 1 
A ,x ;-

1
, (3 . 1. 1•1) 

i= l 

which is a stationary form of (2. 1.26). WOR Estimation: 

Here we use the stationary version of the WOR based iterative equation given 

in (2.2.27). More specifically, the x: and A matrices will now have the forms: 

X' 
t (Xi., . . . , Xi., ... , Xi. ) : p X T 

(3.1.15) 

where 0 denotes the Kronecker product, and 1~. is the 1 x T unit vector, and 

as in the stationary GQL case. In this stationary case, to compute the elements of 
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we use the stationary version of (2.2.24). That is , 

Ot,ut(T) ~ { 
fort= u , 

for u < t , 

where 7r(Liu) now has the form 
'!, 11 c 

{ 

[1- 2(1-r)rr;.]- J[1- 2(1- r )n ;. J2 -4r(r-1)rr)!. 

(Liu)( ) 2(r - l ) 
1fi,ll T = 

7f2 
Z· 

if T -II 
(3. 1.16) 

if T = 1. 

WEQC Estimation: 

The stationary version of the vVEQC based estimat es are obtained by using the 

iterative equation (2.2.9), with 

X' z (Xi., . .. , X ·i · , . . . , Xi. ) : p X T 

where ® denotes the Kronecker product , and 1~ is the 1 x T unit vector, and 
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The above computations for (3 based on all three approaches, namely GQL, WOR 

and WEQC, arc repeated 500 t imes. The average of these 500 values under a given 

method is computed to obtain the final estimate. These estimates are denoted by 

/JcQL , /Jwon , and /Jw EQC, respectively. We also compute the standard error of these 

500 values. The estimates and standard errors are referred to as SM (simulated mean) 

and SSE (simulated standard error). In addition, we also compute the percentage RB 

(relative bias) and the MSE (mean squared error) of these estimates. For example, 

for t he GQL estimates, the percentage RB and MSE have the formulas 

RB( & ) = i/JcQL, - !31 x 100, 
'~ cQL SSE(f3cQL) 

(3. 1.17) 

and 

(3. 1.18) 

respectively. The simulation results for the stationary GQL, WOR, and WEQC 

estimates arc given in Tables 3.1 , 3.2, and 3.3, respectively. 

For the WEQC approach, we also use an alternative estimation method for the 

'working' cqui-correlation parameter a. In this alternative approach , we use the 
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Table 3.1: GQL estimate (/3cQ£) for the regression effect along with its standard error 
(rJfi ) , MSE, and RB, for stationary design Ds with t = 4, n = 100, and selected 

GQ L . 

values of p; 500 simulations. 

True (3 Tr ue p f3cQL (J • 
fJc L 

RI3(%) Pt P2 P3 MSE 

0.0 0.0 -0.021 0.336 6.128 0.012 0.008 0.005 0.113 
0.3 -0.009 0.438 2.078 0.315 0.11 1 0.040 0.192 
0.5 -0.021 0.680 3.506 0.524 0.283 0.156 0.463 
0.7 -0.084 1.333 6.302 0.732 0.537 0.395 1.784 

0.5 0.0 0.514 0.354 3.880 0.011 0.009 0.009 0. 126 
0.3 0.522 0.480 4.588 0.322 0.117 0.042 0.231 
0.5 0.531 0.575 5.367 0.523 0.279 0.148 0.332 
0.7 0.537 1.504 2.451 0.730 0.533 0.390 2.263 

1.0 0.0 1.033 0.394 8.319 0.013 0.009 0.004 0.156 
0.3 1.043 0.521 8.170 0.318 0.109 0.035 0.273 
0.5 1.043 0.659 6.618 0.521 0.27 0.150 0.436 
0.7 1.230 1.935 12.114 0.726 0.528 0.386 3.797 

Table 3.2: WOR based GEE estimate (/3won) for· Tegr·ession effect along with its 
standard eTTOr (rJtJwon), MSE, and RB, for stationary design Ds with t = 4, n = 100, 
and selected values of p; 500 simulations. 

Tme (3 True p f3w on (J • 
£31l:::QH 

RI3 (%) f CJ f MSE 

0.0 0.0 -0.014 0.298 4.500 1.094 0.191 0.089 
0.3 -0.012 0.541 2.300 2.790 0.747 0. 293 
0.5 -0.022 0.832 2.700 7. 151 2.585 0.693 
0.7 -0.032 1.293 2. 500 28.418 15.430 1.673 

0.5 0.0 0.509 0.354 2.600 1.247 0.241 0. 125 
0.3 0.509 0.607 1.600 3.097 0.859 0.369 
0.5 0.497 0.880 0.300 7.789 2. 739 0.774 
0.7 0.382 1.319 8.900 30.946 15.119 1.754 

1.0 0.0 1.034 0.474 7.300 1.034 0.474 0.226 
0.3 1.024 0.726 3.400 4.026 1.155 0.528 
0.5 0.954 1.057 4.400 10.084 4.043 1.1 19 
0.7 0. 787 1.455 14.600 39.436 21.795 2.162 
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Table 3.3: WEQC based GEE estimate (Sw EQC) for regression effect along with its 
standaTd er-roT ((}(3 ), MSE, and RB, for stationary design Ds with t = 4, n = 100, 

won · 
and selected values of Pi 500 simulations. 

Truc (j TI:uc p fJwEQC (J • 
f3w ec c RB(%) a MSE 

0.0 0.0 0.107 0.251 42.700 0.001 0.074 
0.3 0.113 0.294 38.500 0.192 0.099 
0.5 0.105 0.318 33.000 0.363 0.112 
0.7 0.079 0.335 23.500 0.575 0.118 

0.5 0.0 0.632 0.283 46.500 0.033 0.098 
0.3 0.637 0.331 41.312 0.217 0.128 
0.5 0.630 0.352 36.900 0.381 0.141 
0.7 0.602 0.364 28.000 0.589 0.143 

1.0 0.0 1.171 0.364 46.900 0.111 0.162 
0.3 1.181 0.427 42.300 0.278 0.215 
0.5 1.168 0.445 37.900 0.432 0.226 
0.7 1.137 0.439 31.200 0.624 0.211 

stationary version of the estimating formula (2 .2.10). That is, 

• 1 ~ ' * 
a= T(T- 1) L.....t aut> (3.1.19) 

where 

(3. 1.20) 

for u < t , where 

(3.1.21) 
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with 

ex;./3 

1 + ex;./3, 

whereas in the former WEQC approach, the estimation of o: by (2.2.7) was free from 

a (3 estimate. The simulation results for this alternat ive WEQC (AWEQC) estimates 

are given in Table 3.4. 

Table 3.4: AWEQC based GEE estimate (SAwEQc) joT Tegr·ession effect along with 
its standar-d erroT f(J' f3- ), MSE, and RB, roT stationaTy design Ds with t = 4, l ' AWEQC J ' 
n = 100, and selected values of p; 500 simulations. 

TmefJ True p (JAWEQC a -
fJ;\ \\1 1~'( G 

RB(%) R MSE 

0.0 0.0 0.026 0.192 13.300 -0.009 0.038 
0.3 0.040 0.204 19.600 -0.022 0.043 
0.5 0.053 0.219 24.300 -0.017 0.051 
0.7 0.073 0.232 31.400 -0.009 0.059 

0.5 0.0 0.537 0.217 17.200 -0.012 0.048 
0.3 0.546 0.209 21.900 -0.007 0.046 
0.5 0.561 0.215 28.200 -0.005 0.050 
0.7 0.580 0.229 34.800 0.004 0.059 

1.0 0.0 1.037 0.227 16.100 -0.014 0.053 
0.3 1.047 0.223 21.000 -0.025 0.052 
0.5 1.058 0.223 26.200 -0.017 0.053 
0.7 1.076 0.257 29.700 -0.002 0.072 

3.1.3 Simulation R esults: A Comparison 

The results from Table 3.3 show that the W EQC approach produces a biased regres-

sian estimate for (3, for all values of (3 and p. For example, when the true (3 = 0.5 and 
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p = 0. 5, the WEQC estimate is found to be g WEQC = 0.630. However, the results 

from both Tables 3.1 and 3.2 show that t he GQL and WOR approaches produce a 

nearly unbiased estimate for (3, with the exception of the GQL and vVOR estimates 

for large p. Consequently, to compare the performances of the vVEQC approach with 

the GQL and WOR approaches, we examine the relative biases (RB) of t he estimates. 

It is clear from all t hree tables that the RBs are much large in Table 3.3 as compared 

to t hose of Tables 3.1 and 3.2. Note t hat this occurred because the WEQC approach 

produces biased estimates with smaller standard errors. Therefore, the \ iVEQC esti­

mates do not appear converge to t he true value. 

Now to compare the performances of the GQL and WOR approaches, we use the 

mean squared error (MSE). T his is due to the fact that, in general,both approaches 

produce unbiased estimates. The results show that for large values of p, such as 

p = 0.7, the MSEs of the GQL estimates are, in general, larger t han those of the 

WOR approach. For example, when p = 0.7, and f3 = 1.0, the GQL approach has an 

MSE of 3.797, while t he WOR approach has an MSE of 2.162. However , for smaller 

correlation values such as p = 0.3 and 0.5, the MSEs of g GQL are 0.272 and 0.436, 

whereas the MSEs of gWOR are 0.528 and 1.119, which are much larger. Thus, the 

GQL approach appears to perform better than the WOR approach except for large 
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values of p. Note that this relative performance between the GQL and WOR ap-

proaches for large p appear . to reverse in the non-stationary case, which we discuss 

in the next s ction. The better performance of the \NOR approach in the stationary 

case for large p, however, indicates that the WOR approach is a reasonable one for 

the stationary da ta .. 

vVhen Table 3.4 is compared with Tables 3.1 and 3.2, we obtain similar results 

to those mentioned above. That is, this alternative WEQC approach also produces 

worse estimates as compared to the GQL and WOR approaches. 

3.2 A Simulation Study for Non-Stationary Cor-

relation Model 

The purpose of t his section is to generate correlated data adhering to the following 

AR( 1) model 

for t = 2, . . . , T , (3 .2.1) 
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with time dependent covariates and estimate (3 by the three different approaches, 

nam ely, GQL discussed in Section 2. 1, WEQC (working equi-correlation) based GEE 

which is discussed in Section 2.2.1 , and WOR (working odds ratio) based GEE dis­

cussed in Section 2.2.2. 

3.2.1 Simulation Design and Data Generation 

Similar to t he simulation study for the stationary case, we use the design parameters 

as in 3.1.1. T hat is, n = 100, T = 4, p = 1, and 

p = 0.0, 0.3, 0.5, 0.7. 

However , to mark the d ifference between the stationary and non-stationary models, 

unlike in t he stationary case (3. 1.3), we now choose the non-stationary design (DNs) 

covariates as 
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1 for t= 1, 2; i = 1, .. . , n / 4 2 

1 for t= 3, 4; i = 1, .. . , n / 4 

1 for t= 1; i = (n/ 4) + 1, . .. , 3n/ 4 - 2 
(3.2.2) Xit = 

0 fort= 2, 3; i = (n / 4) + 1, . .. , 3n/ 4 

1 for t= 4; 'i = (n/4) + 1, .. . , 3n/ 4 2 

t for t = 1, ... , T; i = (3n/4) + 1, ... , n . 
8 

It is clear t hat, unlike t he stationary model discussed in Section 3.1, the non-stationary 

model uses covariates that are dependent on t. For the covariate effect , we choose 

/31 = /3 = 0.0, 0.5 , and 1.0, (3 .2.3) 

the same as in the stationary case. 

Next we generate the repeated binary responses as follows. Recall that 

(3 .2.4) 
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for all t = 1, .. . , 4. Thus, to generate the first response, we use 

(3.2.5) 

Next, for a given value of p, we use (3.2. 1) to generate Yi2 using 

Yi2 rv Bin( A;2 = 1r;2 + p(y;1 - 7ril)) · (3.2.6) 

Once Y·i2 is generated , we use it to generate y;3 as 

(3.2.7) 

Vve follow this procedure and proceed to generate all responses, that is, Yil, ... , YiT · 

3.2 .2 GQL Versus WOR and WEQC A pproaches for /3 Esti-

mat ion 

In a given simulation, using the responses {Y;t, t = 1, ... , 4; i = 1, ... , 100} generated 

in Section 3.2.1 , and X;t as in (3.2.2) , we compute the GQL, WOR, and WEQC esti­

mates of f3 by solving the appropriate estimating equations from Chapter 2. 
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GQL Estimation: 

To be specific, to comput~ ScQL for {3, we use the iterative equation given in (2 .1.17), 

where x; is given as in (2. 1.16), Ai is given as in (2.1. 11), and the Ci(ns) matrix in 

L;~ns) = AfCi(ns) Af is given as in (2.1.12) and (2.1.13). In order to use the iter­

ative equation (2. 1.17), we need to compute the non-stationary correlation matrix 

cf'ns) = (ct,~l) by (2 .1.13) . For this, we need to estimate p, which we do by (2.1.23). 

WOR Estimation: 

To compute SwoH for {3, we usc the iterative equation given in (2.2.27), where 

X{ is given in (2.1.16) and Ai is t he T x T diagonal matrix as in (2.1.11). To 

use (2.2.27), in this approach, we need to compute the covariance matrix I:i(T) by 

using (2.2.23), where 1r~~j~l(T) is given in (2.2.22) . The constant odds ratio Tis esti­

mated using (2.2.37). We then use (2.2.27) to obtain SwoR· 

WEQC Estimation: 

To compute Sw eQc for {3, we use the iterative equation given in (2.2.5), where X { 

is given in (2.1.16) and Ai is the T xT diagonal matrix as in (2.2.3) . To use (2.2.5), 

we need to compute the R(a) matrix, where a is the equi-correlation parameter. This 

we have done, similar to the stationary case, by using (2.2. 7) and (2.2.8) . 
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As in the stationary case, the above computations for f3 estimation based on all 

three approaches, namely GQL, WOR and WEQC, are now repeated 500 times. The 

average of these 500 values under a given method is computed to obtain the final 

estimate. These estimates are denoted by ~GQL , ~waR , and ~w EQc , respectively. In 

addition, the standard error of these 500 values (SSE) , t he RB, and MSE are also 

computed. The percentage RB and MSE have the formulas, for example for the 

GQL, as given in (3.1.17) and (3.1.18), respectively. The simulation results for the 

non-stationary GQL, WOR, and WEQC approaches are given in Tables 3.5, 3.6, and 

3.4, respectively. Note that for f3 = 1.0 and p = 0.7, the WOR approach had conver­

gence problems and hence resul ts cannot be shown. 
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Table 3.5: GQL estimate (4cQD) for regression effect along with its standard error 
1CJ;., ) , MSE, and RB, for non-stationary design D Ns with t = 4, n = 100, and 
(' I 'GQL 

selected values of p; 500 simulations. 

True fJ Truep fJcQD (7 • 
!3c L 

RB (%) p MSE 

0.0 0.0 -0.010 0.213 4.700 0.000 0.046 
0.3 0.005 0.224 2.000 0.305 0.050 
0.5 0.004 0.221 1.600 0.506 0.049 
0.7 0.000 0.216 0.056 0.703 0.046 

0.5 0.0 0.524 0.209 11.500 -0.002 0.044 
0.3 0.493 0.229 3.200 0.307 0.052 
0.5 0.494 0.229 2.500 0.506 0.052 
0.7 0.492 0.208 3.600 0.704 0.043 

1.0 0.0 1.032 0.225 14.100 0.000 0.052 
0.3 1.014 0.234 6.000 0.306 0.055 
0.5 0.996 0.238 1.600 0.505 0.057 
0.7 0.991 0.211 4.000 0.704 0.045 

As in the stationary case, we also use an alternative estimation method for the 

'working' equi-correlation parameter a . In this alternative approach, we use the 

formula for a as given in (2.2.10), where Yit is given in (2.2.11) . The simulat ion 

results for this alternative WEQC (AWEQC) estimates are given in Table 3.8. 

3.2.3 Simulation R esults: A Comparison 

In general, all t hree approaches in the present non-stationary case produced unbiased 

regression estimates. For this reason, to examine the relative performances of the 

GQL and WOR approaches, we compare their respective MSEs. The results show 
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Table 3 . 6: Equal odds ratio based GEE estimate (bwoR) for regression effect along 
with 'its standard error (a f3· ) , MSE, and RB, fo ·r non-stationar·y design D Ns with 

WOR . 

t = 4, n = 100, and selected valttes of p; 500 sim·ulations. 

True (3 True p f3wo n a · 
~U:Qll 

RB (%) MSE 

0.0 0.0 0.009 0.462 1.984 0.213 
0.3 0.011 0.588 1.900 0.346 
0.5 -0 .012 0.697 1.771 0.485 
0.7 0.002 0.872 1.948 0.760 

0.5 0.0 0.505 0.447 1.063 0.200 
0.3 0.491 0.592 1.500 0.351 
0.5 0.504 0.690 0.532 0.461 
0.7 0.541 0.803 5.10G 0.646 

1.0 0.0 1.013 0.477 2.700 0.228 
0.3 0.992 0.639 1.300 0.409 
0.5 1.001 0.716 0.097 0.513 
0.7 

Table 3 . 7: WEQC based GEE estimate ($w EQC) for regTession effect along with its 

standard eTTOT' {as ), MSE, and RB, {oT non-stationaTy design DNs with t = 4, 
WEQ C ' 

n = 100, and selected values of p; 500 simulations. 

True (3 True p f3wEQC a · i3weoc RB (%) & MSE 

0.0 0.0 0.072 0.252 28.900 0.001 0.069 
0.3 0.174 0.265 65.700 0.192 0.101 
0.5 0.224 0.268 83.400 0.363 0.122 
0.7 0.234 0.263 89.200 0.575 0. 124 

0.5 0.0 0.612 0.255 44.100 0.008 0.078 
0.3 0.659 0.264 60.200 0.197 0.095 
0.5 0.712 0.255 82.900 0.367 0.110 
0.7 0.708 0.236 87.900 0.580 0.099 

1.0 0.0 1.123 0.274 44.700 0.024 0.090 
0.3 1.171 0.277 61.900 0.208 0. 106 
0.5 1.204 0.278 73.500 0.379 0.119 
0.7 1.195 0.251 77.700 0.592 0. 101 
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Table 3.8: AWEQC based GEE estimate (ffiAwEQc) for regression ejj"ect along with 
its standard errors (a~AwEQc ) , MSE, and RB, for non-stationary design D Ns with 
t = 4, n = 100, and selected values of p; 500 simulations. 

TI·ue (3 True p f3AWEQC ()· 
f3AWE C 

RB (%) & MSE 

0.0 0.0 0.013 0.596 2.200 -0.007 0.355 
0.3 0.055 0.605 9.200 0.006 0.369 
0.5 0.092 0.609 15. 100 0.018 0.379 
0.7 0.121 0.609 19.900 0.033 0.386 

0.5 0.0 0.425 0.616 12.200 -0.006 0.385 
0.3 0.500 0.623 0.038 0.007 0.388 
0.5 0.533 0.622 5.400 0.019 0.388 
0.7 0.560 0.617 9.800 0.033 0.384 

1.0 0.0 0.850 0.728 20.600 -0.007 0.552 
0.3 0.920 0.732 10.970 0.006 0.542 
0.5 0.950 0.734 6.700 0.018 0.541 
0.7 0.978 0.727 3.100 0.033 0.529 

that for all values of f3 and p, the MSEs for the GQL approach, given in Table 3.5, 

are quite smaller than those for the WOR approach, which are given in Table 3.6. 

For example, for true (3 = 0.0 and p = 0.7, the MSE of fficQL is 0.046, while ffiwoa 

has an MSE of 0.760. Unlike that stationary case, these results hold true for both 

small and large values of p. 

If we were to also compare the performances of t he WEQC approach to the GQL 

and WOR approaches through their respective MSEs, we would also find similar re-

sults to those discussed above. T hat is to say, the MSEs of the GQL method are much 
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lower than those of the other two approaches. For example, consider when (3 = 0.5 

and p = 0.5. The MSE for the WEQC approach is 0.110, and for the WOR approach 

the MSE is 0.461. However, for the GQL approach, when true f3 = 0.5 and p = 0.5, 

the MSE is 0.052. 

When Table 3.8 is compared with Tables 3.5- 3.7, we find that the GQL approach 

once again produces estimates with lower MSEs. 'vVe now compare between the WOR 

and AWEQC approaches. For small values of p, such as 0.0 and 0.3, the MSEs of the 

AWEQC approach are larger than those of the WOR approach. For example, when 

f3 = 1.0 and p = 0.0, the WOR approach has an MSE of 0.228, while the AWEQC 

approach has an MSE of 0.552. In this regard, the WOR approach appears to perform 

better than the AWEQC approach. When the AWEQC is compared with both the 

GQL and WEQC, one may note that the AWEQC approach produces larger MSEs 

for all f3 and p. 

In the next chapter, we provide an illustration of the relative performance of the 

GQL, WOR, and WEQC approaches for an asthma data set. 



Chapter 4 

Analyzing Asthma Data: An 

Illustration 

In Chapter 3 we discussed the relative performances of the GQL, WEQC, and WOR 

approaches t hrough a simulation study. The purpose of this chapter is to provide 

a numerical illustration of the application of these three approaches by analyzing 

an asthma data. set . To be more specific , we want to apply the GQL, WEQC, and 

WOR approaches to a data set for 537 children from Ohio state, who were examined 

annually from the ages 7-10. As mentioned in Chapter 1, this data. set considers 

whether the children had respiratory infect ion in t he previous year (as reported by 

the mother of the child). In other words, the repeated response for this data. set is the 



ANALYZING ASTHMA DATA: AN ILLUSTRATION 83 

wheezing status ( 1=yes, O= no) of the child. The initial smoking status of the mothers 

(1=regular smoker , 0= not) were also collected , and considered as a. covariate. T hus, 

for t = 1, ... , 4, 

( 1, ini tia.l smoking stat us of mother) ' . 

showing that the cova.riates are stationary. Furthermore, Y it 

1, . .. , 537; and t = 1, . .. , 4. 

1 or 0 for all i 

The scient ific interest of t he study is to examine t he effect that smoking by the 

mother has on t he wheezing status of her child. In addit ion, it is of interest to estimate 

(3 once one has taken the longitudinal correlations of the responses into account. This 

particular data. set was earlier analyzed by Zeger , Liang and Albert (1988) , Sutra.dha.r 

(2003) , and Sutradhar (2011 , Chapter 7), among others. 
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4.1 Estimation of Smoking Effect 

4 .1.1 GQL Estimation of (3 

For t he GQL estimation, we use the correlation structure 

1 P1 P2 PT-1 

1 P1 PT-2 

Ci(P) = (4.1.1) 

1 Pt 

1 

as used in Sutradhar (2003). Using the stationary GQL approach discussed in Section 

3.1.2, we obtain t he GQL estimate of (3 = ((31 , (32)' 

/31 (intercept) 

/32 (mothers smoking effect) 

-1.826 

0.263. 

and the standard errors of the regression estimates were found to be 

s.e(/31) 

s .e(/3z) 

0.111 

0.178. 
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Note that these standard errors of the regression estimates were calculated by 

exploit ing the formula 

(4.1.2) 

derived from (2.1.26) . 

The above {3 estimation was done based on the moment estimates for the lag 

correlation, which were found to be 

Pt 0.401 

P2 0.314 

P3 0.297, 

by (3.1.12) 0 

4.1.2 WEQC Estimation of /3 

Using the \tVEQC approach discussed in Section 2.1.1 , we obtain the WEQC estimate 

of j3 as 
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S, (intercept) 

s2 (mothers smoking effect) 

- 1.349 

-0.094, 

with standard errors of t he regression estimates given by 

s.e(S ,) 

s.e($2) 

0.116 

0.169. 

Note that these standard errors were cornputed from the formula 

derived from (2 .2.5) , and using equi-corrclation structure for R(a ). 

T he equi-correlation, a , is estimated using (2 .2.8) is found to be 

a 0.357. 

86 

(4.1.3) 
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Note that & wa.s computed based on &ut as 

& 12 &1:~ a14 

a23 &24 

&34 

using (2 .2.7). 

4 .1.3 W OR Estimation of (3 

0.354 0.308 0.327 

0.443 0.329 

0.381 

87 

(4. 1.4) 

Using t he WOR approach discussed in Section 2.2.2, we obtain the WOR estimate of 

j3 as 

~1 (intercept) 

~2 (mothers smoking effect) 

-1.821 

0.272, 

along wit h t he standard errors of the regression estimates given by 

s.e(~ 1 ) 

s. e(~2) 

0.111 

0.180. 
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Note that these standard errors were computed using the formula 

(4.1.5) 

derived from (2 .2.27). 

The constant odds ratio, T,.t , for u < t , is given as 

T1 2 T13 T14 7.130 5.777 7.231 

11.469 7.261 (4.1.6) 

9.972 

We then compute an estimate ofT as 

T 8.099, 

by wa.y of (2 .2.37). 

---·---
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4.2 Discussion 

All three approaches, t hat is to say, GQL, WEQC, and \VOR, produced virtu­

ally the same estimate for the intercept parameter {31 , the GQL estimate being 

~I ,GQL = - 1.826, the WEQC estimate being ~J ,WEQC = -1.349, and the WOR 

est imate being ~ I ,WOR = - 1.821. However, for the effect of t he mother 's smoking 

habit on the asthma status of her child, the GQL and WOR approaches produced 

almost the same estimate. This resul t agrees with the simulation pattern for the 

stationary case that we have discussed in Section 3.1. The WEQC based approach 

produced a negative estimate, which is counter intuitive. 

The standard errors for both ~ 1 and ~2 111 all three approaches, that is GQL, 

\t\!EQC , and WOK appear to be qui te similar . Hence, the WEQC approach appears 

to produce a different result only for t he estimation of ~2 , as compared to the GQL 

and WOR approaches. As mentioned above, this result is expected, as we saw in 

Table 3.3 t hat for the stationary case, the WEQC approach produced more biased 

estimates for t he regression parameters as compared to the other methods. 



Chapter 5 

Concluding Remarks 

In the longitudinal setup, there exists some comparisons between a recently proposed 

GQL estimation approach and the so-called 'working' correlation based GEE ap­

proaches for the estimation of the regression effect. The GQL approach, in general, 

tends to produce more efficient estimates, both for stationary and non-stationary 

data. However, there exists an odds ratio approach , where the joint probabilities are 

computed in terms of odds ratios. Yet, as a result of estimation difficulty for the odds 

ratio, some authors have used an equal odds ratio assumption for t he construction of 

the joint probability based estimating equations. In this thesis, we have made a com­

parative study between the 'working' equal odds ratio (WOR) and GQL approaches, 

and found that the GQL approach performed better than t he WOR approach in the 
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non-stationary case. In general, this was also true for the stationary case. We also 

included the 'working' EQC (WEQC) approach in the comparison. 

In addit ion to the simulation study, we have also included a real life data analysis 

for the comparison of the three approaches. The GQL and WOR approaches were 

found to produce similar estimates. 
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