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ABSTRACT 

Little is known about the response of lichens to sudden changes in the 

concentration and source of sulphur in the atmosphere despite an interest in lichens as 

tools in envirorunental monitoring. A transplant study was perfonned to detennine this 

response in two species of pendulous epiphytic lichens by monitoring changes in their 

sulphur isotopic composition and sulphur concentration. 

Branches covered with the lichens, Alectoria sarmentosa and Bryoria capillaris. 

were taken from the Bonavista Peninsula and transplanted into the Memorial University 

of Newfoundland (MUN) Botanical Garden, St. John's. Two separate transplant 

experiments were perfonned between June 1997 and September 1998. Experiment I 

involved monthly sampling from June 1997 to June 1998. Experiment II involved 

weekly sampling from June 1998 to September 1998. 

The initial sulphur isotopic compositions and concentrations of the local lichens 

from the Bona vista Peninsula and St. John's were significantly different, providing an 

ideal opportunity to observe significant changes. The lichens in the Bonavista area had 

high isotopic compositions (- +15%o) from seaspray sulphur and lichens in St. John's 

exhibited low isotopic compositions (- +5-6 %o) from anthropogenic sources. 

The results from this study showed that the transplanted lichens, A. sarmentosa 

and B. capillaris, acquired sulphur isotopic compositions and concentrations approaching 

those of the annosphere surrounding the MUN Botanical Garden over the one year study 

period. For all transplants at all sites, the sulphur isotopic composition decreased while 

the sulphur concentration increased. Experiment I detennined that one year is an 
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insufficient amount of time to allow the transplanted lichens to achieve exactly the same 

sulphur isotopic composition and sulphur concentration as the local lichens. It is 

estimated that a minimum additional six months would provide enough time for the 

lichens to completely equilibrate with their new surrounding environment. Experiment II 

showed that natural variation in isotopic composition and concentration occurred on a 

weekly basis and three months is insufficient to reveal any significant patterns. 

This investigation is the first attempt to monitor lichen response to changing 

atmospheric conditions using stable sulphur isotopes. It has provided essential 

information for further lichen studies and sulphur isotopic studies in particular. It also 

has important implications for environmental monitoring and assessment. 
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1.1 Scope aod Objectives 

CHAPTER I 

INTRODUCTION 

The amount of sulphur in the atmosphere has been an issue of concern over the 

past two decades. Such environmental problems as acid precipitation and global 

warming are scientifically linked to the overall amount of sulphur present in the 

atmosphere. These environmental problems have, in tum, led to significant changes in 

ecosystems such as lake acidification, poor forest and agricultural production, and hann 

to human and animal health. Due to the continued public concern surrounding these 

potentially harmful environmental effects, much research within the scientific community 

has been directed toward the investigation of atmospheric sulphur. 

In the past, a wide variety of methods has been used to perfonn comprehensive 

studies of atmospheric sulphur. Analysis of both wet and dry deposition gives a good 

representation of the sulphur in the atmosphere. The most commonly used techniques to 

monitor atmospheric deposition include precipitation samplers, air filters and various 

fonns of biomonitoring. 

In this particular study, lichens are used as bioindicators of atmospheric sulphur. 

Biomonitoring is defined by Sloof (1993) as "the use of properties of an organism or a 

part of it to obtain information on a certain quantity in a cenain pan of the biosphere". 

The characteristics of an ideal biomonitor include: (1) the capability of accumulating the 

element or compound of interest in detectable amounts, (2) availability in suitable 

quantities throughout the study area, (3) the possibility for sampling throughout the year, 
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(4) accumulation of substances must be directly related to exposure levels, (5) cost 

effective sampling, ( 6) accumulation of elements must occur principally from 

atmospheric sources, (7) element accumulation should be unmediated by biological 

processes (Puckett, 1988; Sloof, 1993). Consideration of the above criteria indicates that 

lichens are ideal organisms for atmospheric deposition monitoring. 

The analysis of sulphur stable isotopes in lichens has provided interesting results 

concerning atmospheric sulphur (for example: Krouse, 1977; Case & Krouse, 1980; 

Krouse et al., 1984; Wadleigh et a/., 1996; Wadleigh & Blake, in press). Sulphur 

isotopes have been recognized as a powerful tool for tracing sulphur sources to the 

atmosphere because each source has a specific isotopic signature that is not significantly 

changed during transport through the atmosphere (Forrest & Newman, 1977). For 

example, the sulphur isotopic composition of seawater today is constant at 21 %o (section 

1.2.1) (Rees et al., 1978). For central and eastern North America, typical anthropogenic 

S34S (section 1.2.1) values range from +3%o to +6%o (Jamieson, 1996). 

The use of vegetation, in particular lichens, has been a tool in sulphur isotopic 

ratio analysis for many years. Recently, a study by Wadleigh & Blake (in press) analysed 

the sulphur stable isotopic composition of lichen samples throughout Newfoundland. It 

was found that lichens along the coastline displayed high isotopic compositions (­

+ 15o/oo) while the lichens sampled around point-sources of anthropogenic sulphur had low 

isotopic compositions (- +4%o). These findings led to the conclusion that along the 

coastline the sulphur in the atmosphere is mainly from sea salt while the results around 

industrial point-sources are consistent with anthropogenic sulphur. It is evident that the 

2 



epiphytic lichens assume the sulphur isotopic signature of the surrounding atmosphere 

whether the contributing sources are natural or anthropogenic. However, little is known 

about the rate at which lichens respond to changes in source and concentration of 

atmospheric sulphur. 

The objective of this study is to determine the response time of epiphytic 

pendulous lichens to changes in the isotopic signature of the atmospheric sulphur. This 

objective was achieved by transplanting lichens from the Bona vista Peninsula where the 

sulphur isotopic composition is quite high(- +15%o) to the MUN Botanical Garden in the 

city of St. John's where the isotopic composition is low(- +5-6%o). Transplanted lichens 

were sampled at specific time intervals and the rate at which pendulous epiphytic lichens 

accumulate sulphur was detennined. 

1.2 Background 

1.2.1 Sulpbur 

Sulphur is found globally throughout the lithosphere, biosphere, hydrosphere and 

atmosphere. It occurs in the oxidized state as sulphate in oceans and evaporite rocks, in 

the reduced state as sulphides from biological and non-biological origin and in the native 

state in cap rock of salt domes and associated with rocks of active volcanic regions 

(Faure, 1986). There are four stable isotopes associated with the element sulphur: 32S, 

34S, 33S, 36S; the natural abundance of each isotope is 95.02%, 4.21%, 0.75% and 0.02% 

respectively (Trust & Fry, 1992). 
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Various processes lead to the separation or partitioning of isotopes due to the 

differences in mass. This process is known as fractionation and will be discussed in more 

detail below (section 1.2.1.1 ). 

The two most abundant isotopes, 32S and 34S, are the ones most frequently used in 

stable isotopic analysis (Trust & Fry, 1992). Sulphur isotopic compositions are expressed 

in the standard o notation as shown by the following equation: 

l 
-l X 1000 

L J 

Values are expressed in units of per mil which is pans per thousand (%o). Samples are 

compared to the international standard, COT (Trust & Fry, 1992). This standard is an 

iron sulphide (FeS) from the Canyon Diablo meteorite and is believed to represent the 

primordial value with the ratio of S34/S32 being 1122.22 (Hoefs, 1987). Positive o34S 

values mean that the samples are enriched in 34S relative to the meteoritic troilite, while 

negative o34S values mean that the sample has less 34S than the meteoritic standard 

(Krouse et a/., 1984 ). 

1.2.1.1 Fractionation Mechanisms 

In the early 1930's, small differences in the chemical properties of isotopes were 

discovered by Urey and his coworkers (Faure, 1986). These differences arise from the 
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differences in mass and are collectively termed 'isotope effects'. The laboratory 

measurement of isotope effects has developed into a useful tool for investigating the 

mechanisms of chemical reactions (Thode, 1991 ). In nature, samples will have variable 

isotopic compositions that reflect differences in their chemical, biological and geological 

histories (Thode, 1991 ). 

Isotope fractionation is a function of the relative masses of reacting molecules. It 

has been found that heavier isotopes (i.e., 34S) have lower zero-point energies so they 

tend to be bonded more strongly and thus react less readily than lighter isotopes (i.e., 32S) 

(Hoefs, 1987). Fractionation is represented by the symbol alpha (a) and defined by the 

following equation: 

where RA and Ra are the ratios of the major isotope to the minor isotope (i.e., 34S/32S) in 

substances A and B respectively. In chemical systems, isotope fractionation may occur 

during either equilibrium or kinetic processes (Thode, 1991 ). 

lsotopic exchange is an example of an equilibrium isotope effect. It involves the 

exchange of isotopes between substances, phases or molecules in a system at chemical 

equilibrium (Jamieson, 1996). An example of isotopic exchange can be seen between 

sulphur dioxide (S02) and hydrogen sulphide (H2S): 

.. .. 
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The equilibrium constant K may be expressed as follows: 

K = 
e4S02] I e2S02] 

[H2
34S] I [Hl2S] 

This expression shows that when K is not unity, the ratio 34S/32S will not be the same in 

the two equilibrated phases (Thode, 1991). Therefore, the extent to which K differs from 

unity is a n1easure of the equilibrium isotope effect (Thode, 1991). For the system above, 

the equilibrium constant or a is 1.0064 at 800K. Thus, at BOOK under equilibrium 

exchange conditions, the o34S value of S02 will be 6.4%o heavier than that of H2S (Thode, 

1991 ). 

Unidirectional processes typically produce a kinetic isotope effect. Isotopic 

fractionation in a unidirectional process results from differences in reaction rates of the 

different isotope species (Thode, 1991 ). The isotopic fractionation factor between the 

instantaneously generated product and the remaining reactant is simply given by the ratio 

of rate constants for the two competing isotopic reactions (Thode, 1991). The ratio of 

rate constants (k32/k34) or a. for the following competing reactions of sulphate to 

hydrogen sulphide is 1.022 at room temperature (Thode, 1991). 
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Since 32So/- reacts faster than the 34
S04

2
-, the H2S produced at any instant is depleted in 

34S by about 22o/oo relative to the remaining S04 
2
• (Thode, 1991 ). Since lighter isotopes 

react more quickly, reactions tend to give products depleted of the heavy isotopes (Hoefs, 

1987). 

1.2.1.2 Atmospheric Sulphur Cycle 

As a result of both natural and anthropogenic processes, various sulphur 

compounds; such as, hydrogen sulphide (H2S), dimethyl sulphide (CH3SCH3), carbonyl 

sulphide (COS), carbon disulphide (CS2), sulphite (SOl), sulphur dioxide (S02) and 

sulphate (S04 2.) enter the atmosphere (Ryaboshapko, 1983 ). 

Many authors have tried to quantify the fluxes of sulphur between various 

reservoirs including the oceans, continents and atmosphere on a global scale. However, 

this task has proven to be complicated leading to a wide range of proposed estimations. 

Figure 1.1 illustrates the annospheric sulphur cycle as estimated by Brimblecombe et al. 

( 1989). 

Sulphur isotopic compositions have been measured from -65%o to +90%o, 

however, the majority of samples fall between -40%o to +40%o (Nielson 1979; Hoefs, 

1987). Figure 1.2 illustrates the isotopic compositions for a number of sources that 

contribute sulphur to the atmosphere. 
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Figure 1.1 Atmospheric sulphur cycle (from Jamieson, 1996 modified from 
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1.2.1.2.1 Natural Sources 

Natural inputs into the global sulphur cycle result from three main sources -

marine, biogenic and volcanic (Meagher, 1980; Ryaboshapko, 1983). Other localized 

episodes such as aeolian weathering (i.e., wind-raised dust) and biomass burning also 

contribute to the amount of natural sulphur in the atmosphere (Ryaboshapko, 1983). 

These natural sources have a wide range of isotopic signatures (Figure 1.2). It is 

important to note that uncertainty still surrounds some of these isotopic compositions due 

to the difficulty associated with direct o34S measurement of natural sources globally. 

The marine environment has a substantial impact on the global sulphur cycle. 

The oceans contain a vast amount of sulphate (1.3 x 1015 metric tons in total; Faure, 

1986). A significant direct source of particulate sulphur to the marine atmosphere is from 

the production of sea salt aerosol at the ocean surface (Andreae, 1985). These particles 

are produced from droplets that are fonned when air bubbles burst at the surface 

(Andreae, 1985). Under very high wind conditions, these droplets can be taken from the 

surface of the water into the surrounding atmosphere (Andreae, 1985). Most sea salt 

entering the atmosphere is deposited back into the ocean, however, it is estimated that as 

much as 10% may be carried over continents and deposited on land near the coastline 

(Andreae, 1985). The sulphur isotopic composition of seawater today is constant at 21 %o 

(Rees et al., 1978). It is believed that only a small amount of fractionation occurs during 

the formation of sea salt particles, thus, it is expected that these particles should maintain 

the same isotopic composition as the seawater from which they originated (Luecke & 

Nielsen, 1972). 
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Biogenic sulphur production refers to the fonns of reduced sulphur released by 

biological organisms from both oceanic and continental areas. For example, it has been 

shown that a main source of reduced sulphur over the open ocean is dimethyl sulphide 

(OMS) released during the assimilation and reduction of sulphate by phytoplankton 

(Andreae, 1985). Isotopic compositions for OMS have not been measured directly, 

however, a study by Calhoun et a/. ( 1991) measured the isotopic composition of sulphate 

aerosols, which are believed to represent the sulphate produced by the oxidation of OMS, 

to be+ 15.6 ± 3.1 %o (standard deviation (1<1)) (Calhoun et al., 1991). 

On land, soil and vegetation emit reduced sulphur, often in the fonn of hydrogen 

sulphide that contributes to the total atmospheric sulphur (Andreae, 1985; Ryaboshapko, 

1983). cS
34S estimates for biological sulphur emissions are estimated to range from -2 to 

+ 3o/oo (Nriagu eta/., 1987). 

Volcanoes and geothennal areas emit a number of sulphur gases as well as 

sulphate aerosol during both eruptive and noneruptive phases. Gases emitted include 

S02, H2S, COS and CS2 (Andreae, 1985). Also, it has been found that particulate 

sulphate emitted by volcanoes contributes to the global sulphur cycle (Andreae, 1985). 

The isotopic compositions of volcanic emissions are extremely variable. They generally 

cluster around O%o but may differ by as much as ± 1 S%o (Nielson et a/., 1991; Castleman 

et al., 1974). 

Finally, sporadic events of aeolian weathering and biomass burning also 

contribute to sulphur in the atmosphere. It is very difficult to quantify these events 

because of their localized nature, however, it is important to specify that these sources are 
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contributing on a small scale to the total natural sulphur in the annosphere. The o3"S 

values of these events reflect the composition of the source rock and are generally 

enriched with 34S. 

In general, the natural sources of sulphur emissions to the atmosphere are 

substantial. The approximate percentage contributions of the main sources of natural 

sulphur emissions are given in Table 1.1. An estimation of the contribution of seaspray is 

excluded from Table 1.1 because approximately 90% of seaspray sulphate is cycled back 

into the oceans (Whelpdale, 1992). It is important to note that the fluxes of sulphur from 

natural sources exhibit high spatial and temporal variability. Therefore, many 

uncertainties arise when extrapolating from a few point measurements to the global scale 

(Whelpdale, 1992 ). 

1.2.1.2.2 Alltbropogeaic Sourees 

The present day biogeochemical cycle of sulphur is significantly affected by 

anthropogenic processes (Brimblecombe et al., 1989). Brimblecombe et al. (1989) 

estimated the flux of anthropogenic sulphur emissions (S02, S04 
2
) into the atmosphere 

to be 93TgSa"1 (Figure 1.1). 

The main human activities resulting in sulphur emissions to the atmosphere are 

the combustion of fossil fuels for the production of energy, smelting of ferrous and non­

ferrous ores, oil processing and production of sulphuric acid for industrial use 

(Ryaboshapko, 1983). 
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Table 1.1 Percentage contributions of the main sources of natural sulphur emissions 
to the atmosphere (from Whelpdale, 1992). 

NATURAL SOURCES PERCENTAGE CONTRIBUTION 
TO ATMOSPHERE 

Open ocean biogenic production 46% 
Volcanoes 18% 
Aeolian weathering 16%, 
Terrestrialplants and soils 13% 
Biomass burning 4% 
Coastal zone and wetland bio2enic sources 3% 
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Sulphur occurs in all fossil fuels but its content varies. For example, natural gas 

is regarded as the "cleanestn fuel with respect to sulphur having a low average sulphur 

concentration of 0.05o/o (by weight). However, there are exceptions such as the sources 

in Alberta that contain 80% hydrogen sulphide in gas (Ryaboshapko, 1983 ). African oils 

have sulphur concentrations between 0.3-0.5%, by weight whereas Venezuelan oils often 

exceed 5o/o (Ryaboshapko, 1983 ). The sulphur content of coals averages 2.2o/o (by 

weight) throughout the world (Ryaboshapko, 1983). 

The isotopic composition of anthropogenic sulphur displays a wide range of B3"S 

values. It is expected that the o34S values resemble those of the source from which the 

sulphur emissions originated. For example, the sour-gas wells of Albena are used to 

produce elen1ental sulphur. The sulphur emissions from this process display a range of 

834S values from +5 to + 30%o (Ryaboshapko, 1983 ). The combustion and refining of oil 

and gas produces o34S values that range from -5 to + 30%o. From previous studies, it was 

found that the majority of o34S values for oil fall between 0 and + 1 O%o with an average of 

+5o/oo (Krouse et a/., 199la). For central and eastern North America typical 

anthropogenic B34S values range from + 3 to +6%o (Jamieson, 1996). 
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1.2.1.3 Atmospheric Sulphur Processes 

1.2.1.3.1 Sulphur Transport 

Once sulphur is released into the atmosphere, its subsequent transport is affected 

by several different scales of motion in the atmosphere, each scale dominated by different 

physical processes (Whelpdale, 1992). On a global scale, transport is largely dependent 

on the general circulation of the atmosphere; the westerlies of the mid-latitudes and the 

easterlies of the subtropics (Whelpdale, 1992). On the next smaller scale, transport is 

influenced by synoptic disturbances such as various low and high pressure systems 

(Whelpdale, 1992). Finally, at increasingly smaller scales; such as, regional, local and 

micro, the transport depends on the orography and nature of the underlying surface 

(Whelpdale, 1992). Thus, due to the numerous factors acting on the sulphur in the 

atmosphere, it is possible to have both long-range and short .. range transport. The specific 

amount of time that a sulphur compound can stay in the atmosphere is detennined by the 

Mean Residence Time (MRT). The MRT is defmed by the following equation: 

MRT =Mass I Flux 

where flux may be either the input to or loss from the reservoir (Schesinger, 1991 ). Thus, 

the distance of transport ultimately depends on the efficiency of the mechanisms, wet and 

dry deposition, to remove sulphur from the atmosphere. Table 1.2 estimates the 

residence times of the most prominent sulphur compounds released into the atmosphere. 
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Table 1.2 Residence times ('t) and transport distances for different sulphur 
compounds in the atmosphere (compiled by Jamieson, 1996). 

H2S 
OMS 
cos 
cs1 
so1 
so4z-

PlanetaO' Boundarv Layer 
~(days) transport 

1 
<0.5 
500 
10 
1 
4 

distance 
3 (10 km) 

0.5 
<0.2 

Global 
5 

0.5 
2 

16 

Free trqpospbere 
t (days) transport distance 

longitudinal latitudinal 
3 3 (10 km) _(10 km) 

2 4 1 
<1 <2 <0.5 
500 Global Global 
20 Global 5 
10 Synoptic 3 
15 Global 4 



1.2.1.3.2 Sulphur Transformations 

The atmosphere is a system with oxidative properties, thus the majority of 

reduced sulphur compounds become oxidized to so2 and then sulphate (Ryaboshapko, 

1983). A variety of factors, including humidity, temperature and pH influences the 

nature and rate of the reactions. Sulphur dioxide may follow one of two pathways: the 

homogeneous (gas phase) pathway or the heterogeneous (aqueous phase) pathway. 

The sulphate ion is the ultimate end-product of the oxidation of sulphur dioxide, 

however, depending mainly on pH, many intennediate products such as bisulphite ion, 

bisulphate ion, sulphite ion and sulphurous acid may result. 

When the sky is relatively clear with only a few clouds in the troposphere, the 

predominant mechanism for the conversion of S02 to H2S04 is the homogeneous (gas 

phase) pathway (Baird, 1995). The mechanism for conversion consists of the following 

sequential steps: 

1) addition of the hydroxyl radical to the sulphur dioxide molecule (S02) 

O:=:S=O + OH" ---.. 
sulphur dioxide 
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2) removal of hydrogen atom by oxygen molecule ((h) to form sulphur trioxide (SOJ) 

6 
I 

0 

O==S +0! _... 
\ 
OH 

# 
HOO· + O==S 

\ 
0 

sulphur trioxide 

3) combination of sulphur trioxide molecule (S03) with gaseous water molecule to form 

4) the sulphuric acid molecule (H2S04<1>) reacts with water (mist; water vapour) to form 

droplets of aqueous sulphuric acid (H2S04(aq)) 

The sequence of steps from gaseous S02 to aqueous H2S04 is summarized below: 

SOz + oH· _.. Hsol· 

Hso)· + Oz __,... S03 + HCXY 

sol+ H2o ---- HzS04(g) 

HzS04(g) 
H. tO Hz504(aq) .. 

The heterogeneous (aqueous phase) pathway occurs when there is a significant 

amount of cloud, fog or mist content in the air (Baird, 1995). Since sulphur dioxide is 

soluble in water, the following reaction occurs: 
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The dissolved sulphur dioxide is oxidized to sulphate ion by trace amounts of the well­

known oxidizing agents, hydrogen peroxide (H202) and ozone (OJ), that are present in 

the airborne droplets (Baird, 1995). Dissolved hydrogen peroxide oxidizes dissolved 

sulphur dioxide by attacking all three of the species, H2S03, HS03. and S03 2" (Figure 1.3) 

(Baird, 1995). 

1.2.1.3.3 Sulphur Removal Processes 

Sulphur compounds in the atmosphere can be brought to the earth's surface by 

two main processes: wet deposition or dry deposition. 

Wet deposition processes use precipitation as the deli very mechanism 

(Whelpdale, 1992). Sulphur dioxide gas can dissolve in cloud and rain drops or adsorb 

onto frozen precipitation elements (Whelpdale, 1992). Sulphate particles, on the other 

hand, are efficient condensation nuclei and are incorporated into precipitation by 

nucleation or as a result of in-cloud or sub-cloud scavenging (Whelpdale, 1992). The 

efficiency of wet deposition as a sulphur removal process depends largely on the fonn of 

sulphur present, and the type, duration, intensity and frequency of the precipitation in a 

given location (Whelpdale, 1992). 

Dry deposition processes do not involve precipitation. Gases such as sulphur 

dioxide absorb on the swface of panicles and simply fall from the atmosphere due to 

gravitational pull. 

Overall, the amount of fractionation of atmospheric sulphur due to transpon, 

transformation and removal is very small. Theoretically, the expected fractionation of the 
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Figure 1.3 Heterogeneous aqueous phase pathway of sulphur oxidation. 
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homogeneous {gas phase) pathway leaves the resulting sulphate slightly depleted in 34S. 

In contrast, the heterogeneous (aqueous phase) pathway results in the enrichment of 

sulphate in 34S (Saltzman et al., 1983). Based on the expected theoretical fractionation of 

the oxidation pathways, o34S values could change significantly, thus could not be used to 

delineate sources accurately in studies. However, the oxidation process is not reversible 

in the atmosphere and field measurements of so2 in a smelter plume show that sulphur 

isotopic compositions change by only 1%o or 2%o relative to their sulphur source (Forrest 

& Newman, 1977). In general, then, the sulphur isotopic composition of atmospheric 

sulphur compounds reaching vegetation has not changed significantly from that of the 

source where the sulphur compounds originated. 

1.2.2 Lichens 

Lichens have been found to inhabit a wide range of areas from the low tidal zone 

on seashores to the tops of high mountains, from hot deserts to the Arctic and Antarctic 

(Richardson, 1992; Hawksworth & Rose, 1976). A lichen is a symbiotic association 

between two organisms - a photosynthetic green alga, or less often a cyanobacterium, 

and a fungus (Richardson, 1992). The fungal panner of most lichens belong to a group 

known as the Ascomycetes (Richardson, 1992). 

1.2.2.1 Nature of Symbiosis 

Lichens display a very highly organized symbiosis. The fungal component 

(mycobiont) has successfully established a symbiotic relationship with the algal 
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component (phycobiont) (Hale, 1967). A mass of hyphae of the mycobiont form the 

vegetative thallus, while the phycobiont consists of a thin layer of algal cells just below 

the surface of the thallus (Hale, 1967). 

Experiments have shown that the phycobiont "leaks" sugars and sugar derivatives 

to the mycobiont thus providing nutrition (Richardson, 1992). The mycobiont acts as a 

matrix in which the algae can survive in very severe environments (Hale, 1974). Many 

lichenologists prefer to view the lichen symbiotic relationship as mutualistic in nature, 

whereas others describe the relationship as a "controlled parasitism" of the lichen alga by 

the fungus (Richardson, 1974). Overall, it is evident that these very different organisms 

have evolved to live together and function as a single organism. 

1.2.2.2 Morphology 

Lichens are traditionally classified into three major growth forms: ( 1) crustose, 

(2) foliose and (3) fruticose. 

Each growth fonn is characterized by a particular arrangement of fungal/algal 

cells which defines the overall shape of the organism. Also, each growth form has 

varying degrees of attachment to the substrate (Hale, 1967). 

The two lichens chosen for this experiment, Alectoria sarmentosa and Bryoria 

capil/aris, are fruticose lichens. They are characteristically pendant, hair-like, shrubby 

and very highly branched (Vitt et a/., 1988). The thallus of A. sarmentosa is yellow­

green in colour. A. sarmentosa most commonly grows hanging from branches of 

coniferous trees in moist, coastal, montane and boreal regions (Vitt et al., 1988). The 
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second lichen, B. capillaris, has a pale greenish-gray thallus and also grows most 

commonly on coniferous trees. The internal structure of these lichens is more or less 

radial with a dense outer cortex, a thin algal layer, a medulla and a hollow center (Figure 

1.4) (Amhadjian, 1967). Most importantly, both A. sarmentosa and B. capllaris are 

epiphytic lichens and, because of this, it is thought that both A. sarmentosa and B. 

capi//aris take nutrients directly from the atmosphere. (Sloof & Wolterbeek, 1993). 

1.2.2.3 Biocbemic:al Processes UtiliziDg Sulphur 

All vegetation, including lichens, requires sulphur as an essential macronutrient to 

grow. There is a wide variety of sulphur-containing compounds in vegetation, however, 

the essential compounds include sulphur amino acids, glutathione, thiamine, vitamin B, 

biotin, ferredoxin, lipoic acid, coenzyme A and the sulpholipids of the chloroplasts 

(Krouse et al., l99lb). It has been found that the sulphur amino acids (cysteine and 

methionine) contain approximately 90% of the sulphur in vegetation (Krouse et al., 

199lb). Thus, it is evident that vegetation must have the ability to convert sulphur from 

the surrounding environment to sulphur-containing amino acids needed by all organisms. 

This biochemical process by which inorganic sulphur compounds get reduced to organic 

sulphur compounds is called assimilatory sulphate reduction (Roy & Trudginer, 1970). 

As was stated earlier, sulphur compounds are removed from the atmosphere by 

wet and dry deposition. Plants and lichens differ significantly in the method by which 

they accumulate sulphur. Vascular plants absorb most of their sulphur nutritional 

requirements through the root system. The aerial parts of higher plants are equipped with 
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Figure 1.4 Cross-section of fruticose lichen thallus 
(fromAhmadjian, 1967). 
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protective mechanisms such as a cuticle and stomata that will only allow minimal 

amounts of sulphur into the organism (Marschner, 1995). Higher plants have the ability 

to control the amount of sulphur that enters the plant by utilizing a negative feedback 

control system (Marschner, 1995). Lichens, on the other hand, lack roots so surface 

absorption of rainfall is the primary mechanism of obtaining the required amount of 

nutritional sulphur. Sulphur in the air can enter lichen thalli both in solution (as sulphate, 

sulphite, bisulphite and sulphurous acid) and in gaseous fonn (sulphur dioxide and 

sulphur trioxide) (Hawksworth & Rose, 1976). Lichens are disadvantaged when sulphur 

is excessive because they cannot control the amount of sulphur that enters through the 

thallus. 

A wide range of sulphur compounds in the atmosphere may be deposited on 

lichen surfaces. Most of these compounds become oxidized when they encounter water 

on the thallus and form sulphate. This sulphate then enters the cells where it is reduced 

and incorporated into useful organic compounds (Roy & Trudginer, 1970; Taiz & Zeiger, 

1991 ). 

The following sections detail the steps in the assimilatory sulphate reduction 

pathway. This process involves the fonnation of several intermediate sulphur compounds 

prior to the incorporation of sulphur into amino acids (Taiz & Zeiger, 1991). 
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1.2.1.3.1 AssimUatory Sulpbate Reduction Patbway 

Step #1: Activation of Sulphate 

The cellular metabolism of sulphate begins by a series of activation reactions with 

adenosine triphosphate (A TP) (Ciba, 1980). Primarily, adenosine S' -triphosphate (ATP) 

reacts with sulphate to form the first activated sulphur intermediate, adenosine 5'-

phosphosulphate (APS), and pyrophosphate (PPi): 

ATP+S042
- 1111 + APS+PPi 
A TP sulphurylase 

(energy unfavourable) 

The adenosine 5-phosphosulphate (APS) then reacts with another adenosine 

triphosphate (ATP) to form the second activated sulphur intennediate, 3'­

phosphoadenosine 5' -phosphosulphate (PAPS) and adenosine diphosphate (ADP): 

APS+ATP • PAPS+ADP 
APS kinase 

(energy favourable) 

The first equation is not energetically favourable for product formation, however, 

this problem is overcome by coupling it to the second favourable equation. Essentially, 

the formation of PAPS drives the sulphate activation (Taiz & Zeiger, 1991). Another 

driving force is the constant hydrolysis of pyrophosphate (PPi) to 2 moles of inorganic 

phosphate (2Pi): 
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(energy favourable) 

Step # 2: Reduction of Sulphate to Sulphide 

The next step in sulphur assimilation is the reduction of the activated form to 

sulphide (Taiz & Zeiger, 1991 ). Eight electrons are required to change the oxidation 

number of sulphur from +6 to -2 (Taiz & Zeiger, 1991 ). For some time~ it was believed 

that the PAPS-activated form was the sole compound involved in the reduction of 

sulphate to sulphide (Muth & Oldfield, 1970), however, it has been found that 

assimilatory sulphate reduction exhibits two alternative paths: ( 1) utilizing APS as the 

activated sulphur intermediate or (2) utilizing PAPS as the activated sulphur intermediate 

(Taiz & Zeiger, 1991 ). 

The first pathway utilizing APS as the activated sulphur intermediate is found in 

most oxygen-evolving photosynthesizers, including all eukaryotic algae, some 

prokaryotic blue-green algae and all higher plants (Ciba, 1980). The second pathway 

utilizing PAPS as the activated sulphur intennediate is prominent in bacteria and certain 

cyanobacteria, but is only of minor importance to higher plants (Ciba, 1980). 

All plants utilize the first pathway {APS), thus, it will be examined in greater 

detail. First, PAPS is converted back to APS, which then serves as the substrate for 

reduction (Taiz & Zeiger, 1991 ). This occurs due to the hydrolysis of the 3' -phosphate 

groups of PAPS by the enzyme, 3'-phosphonucleotidase (Taiz & Zeiger, 1991). 

Therefore, it appears as though the formation of PAPS in plants simply occurs to drive 

the energetically unfavourable reaction of APS formation (Taiz & Zeiger, 1991 ). 
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In the reduction of APS to sulphide, reduced ferredoxin acts as an electron donor: 

APS + 8Fdm~+ 5W --•• sulphide+ AMP+ 8Fdn + 3H,O 

There is evidence that this overall reduction reaction may involve the production of 

sulphite as a protein·bound intermediate (Taiz & Zeiger, 1991). The reduction of APS 

can take place in the roots where light is not present, however, the reactions occur much 

faster in leaves in the presence of light. This stimulation by light could be due to the 

enhanced production of reduced ferredoxin by the photosystems (Taiz & Zeiger, 1991). 

In non-photosynthetic cells, NAD(P)H is the likely donor of electrons (Taiz & Zeiger, 

1991). 

Ste.p # 3: Incomoration ofSulpbjde into Sulphur-containing Alnino Acids 

The sulphide produced by the reaction of APS does not accumulate in the plant 

cell, rather it is rapidly incorporated into the sulphur·containing amino acids (Taiz & 

Zeiger~ 1991 ). Primarily, the sulphide reacts with a three-carbon acceptor (0-

acetylserine) to fonn cysteine and acetate: 

0-acetylserine +sulphide -----~~~ cysteine + acetate 

From this point, cysteine is used in the synthesis of most other sulphur-containing 

compounds such as coenzyme ~ methionine, biotin, lipoic acid and glutathione (Trust & 

Fry, 1992). 
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Figure 1.5 is a complete diagram of the "assimilatory sulphate reduction" 

mechanism. 

The majority of photosynthetic organisms, including lichens, mosses and higher 

plants, undergo assimilatory sulphate reduction (Figure 1.5) to meet their sulphur 

nutritional requirements (Taiz & Zeiger, 1991 ). However, due to the increasing amounts 

of atmospheric sulphur from anthropogenic activities, vegetation in general and lichens in 

particular are having to expend enormous amounts of energy simply convening inorganic 

sulphur compounds to useful organic compounds. The excessive amounts of sulphur in 

the atmosphere have changed from being beneficial, facilitating growth, to being 

detrimental by banning the chlorophyll in the organisms and in many cases leading to 

damage or death (Hale, 1983). 

1.2.3 

1.2.3.1 

Lichens and Sulphur Stable Isotopes 

Fractionatioa of Sulphur Stable Isotopes iD V egetatioa 

By utilizing sulphur stable isotope studies, it has been found that there is little 

isotopic discrimination during sulphate assimilation and reduction by vegetation (Trust & 

Fry, 1992). Generally, plants have 834S values that average about 1.5%o lighter than that 

of environmental sulphate (Trust & Fry, 1992). This information is pivotal for this 

particular study because it verifies the fact that the sulphur isotopic composition of 

vegetation remains virtually unchanged, thus reflecting the sulphur isotopic composition 

of atmospheric sulphur. 

If each step of assimilatory sulphate reduction is examined with respect to 

isotopic fractionation of sulphur, only one part of the reaction process has the potential to 
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allow any significant amount of fractionation (Trust & Fry, 1992). Very little 

fractionation is expected in the first and second steps of the reaction in which the sulphate 

is taken up by the plant and then activated by the ATP (Figure 1.5) (Trust & Fry, 1992). 

The third step, on the other hand, has the potential to produce large fractionations due to 

the actual reduction steps in which the sulphur/oxygen bonds are broken (Figure 1.5) 

(Trust & Fry, 1992). From numerous studies that will be examined later, it is evident that 

large fractionations do not occur (Krouse et al., 1991 b), thus, the rate and completion of 

reactions are responsible for the small amount of fractionation (Trust & Fry, 1992). 

Sulphate reduction in plants must be limited either by the uptake or the activation of 

sulphate with ATP (Trust & Fry, 1992). If the reaction were limited by the reduction 

step, larger fractionations would be observed (Trust & Fry, 1992). It is evident that 

higher plants allow only small amounts of sulphate to enter the system to be reduced at 

one time. Due to the energetically-favourable reactions discussed earlier, the small 

amount of sulphate completely reacts at a relatively quick pace, not allowing large 

amounts of fractionation to occur. 

It is important to note that higher plants and lichens may emit isotopically light 

hydrogen sulphide and other reduced sulphur compounds in response to high sulphur 

loading, thus altering their isotopic signature (Trust & Fry, 1992). This release of H2S is 

considered an important mechanism for the detoxification of sulphur dioxide (Marschner, 

1995). In studies by Case & Krouse (1980) and Krouse et al. (1984) it was found that 

lichens and coniferous trees in an area with high industrialS~ emissions displayed o34S 

values considerably higher than those of available sulphur sources. Evidently, when 
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isotopically light H2S was emitted, there was a subsequent increase in the isotopically 

heavy sulphur in the lichens and coniferous trees (Case & Krouse, 1980; Krouse et a/., 

1984). This concept of hydrogen sulphide emission by vegetation should be taken into 

consideration when analysing isotopic results. 

1.2.3.2 The Use of Higher Plants and Bryophytes in 
Sulphur Stable Isotope Studies 

There is evidence available to support the concept that there is only a small 

amount of fractionation during sulphate assimilation and reduction by plants. An early 

study by Mektiyeva et al. (1976) demonstrated this concept. The sulphur content and 

isotopic composition of five perennial plants (linden, poplar, meadow-sweet, spruce, 

pine) were investigated from a region south of Moscow (Mektiyeva et a/., 1976). The 

plants were all grown in similar soil that had a o34S value of between +3.9%o and +4.0o/oo 

(Mektiyeva et al., 1976). It was found that the total sulphur in the photosynthetic tissue 

of the plant (needles or leaves) was slightly depleted in S34 relative to the soil sulphate. 

The data indicated that the plants had practically the same sulphur isotopic composition 

as the sulphate in the surrounding medium - the soil (Mektiyeva et a/., 1976). In this 

study the influence of atmospheric sulphur was negligible because there was no industrial 

point source anywhere in the region (Mektiyeva et al., 1976). 

A more recent case study of the West Whitecourt Forest Ecosystem, Alberta, 

clearly displayed the interactions occurring among the four main components of the 

ecosphere (hydrosphere, abnosphere, lithosphere, biosphere). The objective of the study 

was to determine bow the sulphur-gas emissions from the Amoco Canada Petroleum 
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Company Limited West Whitecourt Sulphur Recovery Gas Plant affected the boreal 

forest ecosystem as a whole (Krouse eta/., 1984). In this study, sulphur isotopes could 

be used as tracers because there was a large discrepancy between the o34S values of 

sulphur-gas emissions (+22%o) and the pre-industrial soil at a depth of 60 em (Oo/oo), 

representing the natural environmental background (Krouse et al., 1984). The air 

samples confirmed that the West Whitecourt Gas Plant was the major source of sulphur­

gas emissions to the forest ecosystem in the study area (Krouse et a/., 1984). The soil 

data indicated that industrial sulphur compounds penetrated the soil to a depth of one 

meter in exposed, dry areas lacking biological cover while, in the case of light forest 

cover, penetration to 60 em had not occurred (Krouse et al., 1984). The extent to which 

industrial sulphur had penetrated the soil, thus increasing the o34S values, was a function 

of a number of factors such as biological cover, location and distance from the sulphur­

gas emission source (Krouse et al., 1984). The o34S values of the sulphur compounds in 

the surface water approached a value of +22%o (Krouse et al., 1984), demonstrating that 

the sulphur-gas emissions affected the hydrosphere as well. Finally, the vegetation (jack 

pine needles and moss) displayed o34S values slightly lower than those obtained from the 

sulphur-gas emissions (Krouse et a/., 1984). Evidently, the vegetation was receiving 

sulphur from the atmosphere as well as inputs from the root system. The moss, 

Polytrichum juniperinum, clearly depicted how each part of the organism was 

isotopically affected by the source of surrounding sulphate (Figure 1.6). The upper 

portion of the moss had 534S values near +20%o showing the direct influence of sulphur­

gas emissions (Krouse er al., 1984). The humus surrounding the rhizoids was much 

33 



Figure 1.6 a:ws values for different portions of a moss, 
Po/ytrichum juniperinum (from Krouse et a/., 1984). 
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lighter isotopically at 13%o. Thus, the value obtained for the rhizoids ( + 19%o) indicated a 

mixing of the two contributing mediums- soil and air (Krouse eta/., 1984). Essentially, 

each part of the plant displayed 534S values very close to their surrounding environment. 

This evidence supported the concept that sulphur stable isotope fractionation is very 

limited during the assimilation and reduction of sulphate in vegetation, due to the fact 

that the vegetation retained o34S values close to that of the surrounding sulphur in the 

environment. 

1.2.3.3 The Use of Lichens in Sulpbur Stable Isotope Studies 

The previous examples of isotopic studies utilized bryophytes and higher plants as 

a means to detennine sulphur isotopic composition, however, these are not the only types 

of vegetation that have been used in stable sulphur isotopic studies. Recently, the use of 

lichens as a tool by which to detennine the extent of pollutant sulphur in the surrounding 

environment has emerged (Trust & Fry, 1992). 

Lichens represent a specialized group of organisms that can be utilized very 

effectively in sulphur stable isotopic composition studies. In general, lichens have been 

demonstrated to be effective bioindicators of pollution, being sensitive to both sulphur 

and trace metal concentrations in the abnosphere (Richardson, 1992). They have a very 

slow growth rate and effectively absorb soluble and insoluble mineral nutrients from the 

air and precipitation. Sulphur isotopic measurements made on epiphytic lichens, such as 

Alectoria, match those of dissolved sulphate in precipitation from the same location 

(Evans, 1996). 
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In a study by Krouse ( 1977), it was found that lichens had an isotopic 

composition that coincided closely with that of S(h in the atmosphere. This showed that 

lichens take up sulphur from the air directly (Krouse, 1977). Also, it was demonstrated 

that pine needles (Pinus contorta) had isotopic compositions approximately 1 Oo/oo lighter 

than the 834S values of air and lichens (Krouse, 1977). This large discrepancy between 

the pine needles and lichens was explained by the fact that trees have a root system that 

transports sulphate upwards from the soil, as opposed to solely annospheric uptake 

(Marschner, 1995). The uptake of sulphur from a combination of sources produces 

isotopic ratios in the pine needles that are weighted averages of the isotopic ratios of the 

individual sources (Trust & Fry, 1992). Thus, because pine needles derive sulphur from 

both soil and air, intennediate a34S values are obtained (Krouse, 1977). The sulphur 

isotopic variations among air, lichens and pine needles can be seen in Figure 1. 7. 

A study by Case and Krouse (1980) investigated variations in stable sulphur 

isotopic composition and sulphur content of vegetation near a sulphm dioxide source at 

Fox Creek, Alberta. Again, it was confinned that lichen samples displayed higher o34S 

values than the pine needles. This supported the concept that lichens derive most of the 

sulphur from the atmosphere while pine needles derive sulphur from two sources; air and 

soil. Total sulphur content and o34S values for epiphytic lichens clearly revealed the 

trend of increasing values closer to the gas plant, while pine needles did not display this 

trend (Case & Krouse, 1980). In this particular case, the soil remained untouched by the 

S02 emissions due to the great amount of forest cover. Evidently, the pine needles 

absorbed most of their sulphur from the soil by the root system (Case & Krouse, 1980). 
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Figure 1. 7 Sulphur isotope variations in air, lichens and pine needles 
collected near a sour-gas producing area of 
Ram River, Alberta (from Krouse, 1977). 
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A series of experiments throughout Newfoundland has provided additional 

isotopic data on lichens. Samples of the epiphytic lichen, Alectoria sarmentosa, were 

taken from sites throughout the entire island and analyzed for their sulphur isotopic 

composition and sulphur concentration (Wadleigh & Blake, in press). It was found that 

A. sarmentosa across Newfoundland had isotopic compositions ranging from + 3. 7%o to 

+16.6o/oo (Wadleigh & Blake, in press). Generally, the compositions increased as the 

coast was approached. Throughout the island, there were areas that showed the influence 

of sulphur from anthropogenic sources and areas of little anthropogenic influence. For 

example, the lichens sampled around the Come By Chance Oil Refinery had very low(­

+4o/oo) sulphur isotopic compositions consistent with anthropogenic sulphur (Wadleigh & 

Blake, in press). On the other hand, the lichen samples collected from along the coastline 

displayed higher (- +15o/oo) compositions, leading to the conclusion that along the 

coastline sulphur is mainly from sea salt (Wadleigh & Blake, in press). In this 

experiment there was a correlation between sulphur concentration and sulphur isotopic 

compositions in lichens. The sulphur concentrations were highest (>600 ppm) close to 

the point sources and lowest (<400 ppm) far away from them. However, sulphur 

concentrations were also high at sites along the coast ( 400-600 ppm). Therefore, it is 

important to use both isotopic compositions and concentrations as a good indicator of 

sulphur impact (Wadleigh & Blake, in press). 

Based on the above research, this study was undertaken. It is known that 

epiphytic lichens assume the sulphur isotopic signature of the surrounding atmosphere 

whether the contributing sources are natural or anthropogenic, however, the rate at which 

38 



lichens acquire sulphur from the atmosphere remains vague. It is not clear from the 

sulphur isotopic literature if the signature of lichens gives the isotopic composition at a 

particular moment in time or if the isotopic signature accumulates over a period of time. 

If the latter is the case, it is important to know if the response time of A. sarmentosa and 

B. capillaris is weeks, months or years. 

1.2.4 Lichen Transplant Studies 

The examples discussed previously all utilized indigenous organisms, which are 

those plants that are already present in the field and act as biomonitors (Powell, 1997). 

This section will discuss a second method of biomonitoring where orgarilsms are 

collected from one location and transplanted to another. In contrast to the previous 

studies, this transplantation system allows for the exposure time to be controlled, so that 

both temporal and spatial environmental changes can be detennined (Powell, 1997). The 

objective of this study was to detennine the rate at which the lichens, A. sarmentosa and 

B. capil/aris, accumulate sulphur from the atmosphere, thus a transplant procedure was 

chosen for this particular study. 

Lichen transplant studies have long been used as a method of assessing 

atmospheric pollution in a certain area. Transplant studies involve the relocation of 

lichen samples to sites of interest. Usually a sample of lichen is collected and analysed 

initially to detennine element concentrations. Samples are then collected at specific time 

intervals for the time period of interest. The majority of transplants provides a way of 

studying the effects of current air pollution on lichen survival or to assess what 
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substances are being emitted at different times of the year (Richardson, 1992). At the end 

of a transplantation period, it is also possible to perform a variety of physiological tests. 

The most common tests include electrolyte leakage, ash content and chlorophyll content 

(Richardson, 1992). 

In addition to the above-mentioned physiological tests, numerous transplant 

studies have measured the accumulation of air-borne mineral elements by lichens (Sloof, 

1995; Garty eta/., 1996; Garty eta/., 1997 Loppi eta/., 1998; Bennett eta/., 1996; 

Makholm & Bennett, 1998). 

One such example is a lichen transplant study performed in The Netherlands by 

Sloof ( 1995). The lichen, Parmelia sulcata, was exposed to the abnosphere for periods 

of up to 12 months. Also, bulk (wet and dry) deposition was collected on a monthly 

basis. This study yielded accumulation factors for cobalt, scandium and zinc. The 

lichens were detennined to be effective biomonitors because they reflected the metal 

content of the bulk deposition. Temporally, the results indicated that at least 12 months 

of exposure was required to distinguish the concentration of the exposed lichen from the 

starting concentration of the material used in this study. 

Another study by Loppi eta/. (1998) in central Italy measured a variety of metals 

(Cd, Cr, Cu, Pb, and Zn) in transplanted samples of the lichen, Evernia prunastri. Lichen 

samples were moved from an unpolluted area into an urban environment. The objective 

of this study was to determine the amount of time the transplanted lichens needed to 

accumulate the metals. It was found that after only 2 months, concentrations of all 

elements were statistically higher in transplanted lichens than in control samples. It was 
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suggested that motor traffic was the main source of Cr, Cu and Pb. The Cd and Zn, on 

the other hand, were believed to originate from the use of fertilizers and pesticides in the 

surrounding fannlands. 

Finally, a study by Makholm & Bennett (1998) measured the accumulation of 

mercury in transplanted samples of the lichen, Hypogymnia physodes. at varying 

distances from a chlor-alkali plant in central Wisconsin. Lichen samples were tested 

quarterly for 1 year. It was found that the lichens effectively accumulated mercury. The 

concentrations of mercury decreased with increased distance from the chlor-alki plant. 

Elevated tissue concentrations of mercury were detected after 3 months at all distances. 

The mercury concentration continued to increase over the one .. year study period at the 

sites closest to the chlor-alki plant. It is unclear from the data whether or not mercury 

would continue to accumulate beyond the duration of this study in transplanted lichens. 

It was suggested that if the lichens were exposed longer than 12 months, they might have 

accumulated higher levels of mercury. 

All of the above transplant studies measured metal content. Literature involving 

the measurement of sulphur in transplant studies is not as abundant as literature 

measuring metal content. 

A lichen transplant study by Canas et al. ( 1997) measured the chemical response 

of Pannotrema austrosinense and Parmotrema conferendum. Samples were moved from 

a non-polluted area and transplanted to a downtown site in Cordoba, Argentina. A 

variety of chemical responses including pigments, malondialdehyde, hydroperoxy­

conjugated dienes and sulphur was measured over an exposure period of six months. 
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Changes were observed throughout the exposure period in both species and in both sites. 

In particular, the sulphur concenttation in the thalli of P. austrosinense showed a large 

increase in the urban site during the sixth month of exposure. However, the statistical 

analysis of the sulphur levels did not determine if the change in sulphur levels was due to 

the transplantation site or the exposure period. 

A study by Bennett et al. ( 1996) measured elemental concentrations in the lichen 

Hypogymnia physodes transplanted along Lake Michigan. The study was performed to 

determine whether the air quality has improved enough so that lichens could recolonize 

in Indiana Dunes National Lakeshore Park. Samples of H. physodes were transplanted 

from Door County, Wisconsin to the national park and three other sites along the western 

shore of Lake Michigan. The lichens were sampled for 3 years and tissue concentrations 

of 20 chemical elements (AI, As, B, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, 

Pb, S, Se, Zn) were measured. It was found that all but two elements (K and B) increased 

in concentration as the national park was approached from north to south. The greatest 

increase occurred in the third year of the experiment. Of particular interest is the element 

sulphur that increased 91% from north to south in the third year. 

A study by Garty eta/. (1997) measured the elements S, V and Ni in local and 

transplanted lichen samples to determine the environmental impact of pollutants on 

vegetation emitted by combustion of heavy fuel oil. The site of the study was the town of 

Ashdod in southwestern Israel that was polluted by the Eshkol heavy oil-fueled power 

plant and oil refineries, as well as other industrial sources. Samples of the lichen, 

Ramalina duriaei, from the peripheral region of the town and the HaZorea Forest located 
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100 km away from the town~ were analysed and compared. Also, lichen thalli were taken 

from the HaZorea Forest and transplanted into the Ashdod region for a 10 month period. 

At the end of the study period, the elemental contents as well as other tests were 

perfonned on the local and transplanted lichens. High concentrations of S~ V and Ni 

were found in the Ashdod region that corresponded with previous measurements of S02 

and V in the Ashdod region. It was found that 10 months was sufficient time to observe a 

significant increase in the three measured elements of the transplanted lichens. 

Finally, a transplant study by Palomlki et al. (1992) determined the rate of 

accumulation of sulphur and fluoride by measuring the concentrations of these elements. 

For this experiment, healthy lichens were collected from unpolluted environments and 

transplanted near a fertilizer plant and a strip mine {Palomlki et a/., 1992). This 

transplant experiment had two main objectives. First, it aimed to assess the rate of 

accumulation of sulphur and fluorides in Hypogymnia physodes thalli. Secondly, it 

aimed to study the relationship between the accumulation of toxic elements and the 

fonnation of visible and ultrastructural injuries in lichens (Palomaki et al., 1992). The 

transplanted lichens were collected periodically and analysed for total sulphur and 

fluorides. It was found that after 5-6 months, the transplanted lichens had the same 

sulphur and fluoride contents as the original lichens growing at the same sites. There was 

a definite increase in the rate of accumulation of sulphur as industrial point ... sources were 

approached. Also, injuries appeared in all samples when the sulphur content had 

increased by 200 ... 300 ppm from the control level (Palomiki et al., 1992). 

43 



As can be seen from the above examples, the literature gives a wide range of 

exposure times that a variety of transplanted lichen species need to accumulate sulphur. 

Thus, the purpose of our transplant experiment was to determine the rate at which the 

pendulous lichens, Alectoria sarmentosa and Bryoria capillaris, acquire sulphur from the 

surrounding atmosphere in the lichen thallus by monitoring the changing sulphur stable 

isotopic signatures and sulphur concentration. There was no relevant literature available 

measuring these parameters using the transplant technique. 

1.3 Meteorological Considerations 

This study also incorporated meteorological data to help explain the change in 

isotopic compositions throughout the period of the experiments. Lichens have evolved as 

a successful group of organisms mainly due to the fact that they can survive very harsh 

conditions. For example, during very dry periods, lichens become dormant by slowing 

their metabolic rates significantly. During these donnant periods, elemental 

accumulation is reduced greatly. Reports indicate that lichens accumulate sulphur 

efficiently only when they are moist (Palomlki et al., 1992). Therefore, it is important to 

incorporate meteorological data into this study to detennine periods of extreme dryness 

and wetness that may help explain why sulphur is accumulated at different rates at 

different times. 
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CHAPTER2 

METHOD 

2.1 Transplant Sites and Techniques 

Lichen samples of A. sarmentosa and B. capillaris were taken from the Bonavista 

Peninsula and transplanted into the MUN Botanical Garden in St. John's. Previous 

isotopic studies by \Vadleigh & Blake (in press), Jamieson (1996) and Evans (1996) 

demonstrated that both rainwater and lichen samples from the Bonavista Peninsula 

displayed significantly elevated sulphur isotopic compositions (- +15%o), whereas the 

rainwater sulphur isotopic composition from the city of St. John's was significantly lower 

(- +7o/oo). Due to the large difference in atmospheric isotopic compositions, the Bonavista 

Peninsula and St. John's were the two sites chosen for this experiment (Figure 2.1 ). 

Theoretically, the range between the isotopic compositions of the two locations provided 

an ideal situation in which to see a definite change in sulphur isotopic composition of the 

lichen samples. 

2.1.1 Booavista Peninsula 

The Bonavista Peninsula is located on the eastern portion of the island (Figure 

2.2). It is bounded on the west by Bonavista Bay and on the east by Trinity Bay. The 

peninsula is about 95 km in length and less than 16 km in width. It was an ideal location 

from which to collect the lichens for the transplant experiment for three main reasons: 1) 

the sulphur isotopic composition of the lichens was high as a consequence of the 

abundance of seaspray sulphate present in the atmosphere; 2) the area consisted of 
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numerous coniferous trees bearing the lichens, A. sarmentosa and B. capillaris. in great 

abundance; and 3) the Bonavista Peninsula was accessible throughout the year. 

Three sampling sites (X, 15 and 17) were chosen along the Bonavista Peninsula 

using information from forest inventory maps produced by the provincial Department of 

Forestry (Figure 2.2). Each site demonstrated the following criteria: 

• numerous coniferous trees (balsam fir (Abies ba/samea), black spruce (Picea 

mariana)) between 40-60 years of age 

• A. sarmentosa and B. capil/aris present in great abundance 

• located at least 50 m from the nearest road 

• located in a non-sheltered environment in order to intercept a natural amount of 

atmospheric deposition 

• no industrial point sources in the vicinity 

Site 17 was located in the town of Bonavist~ while sites X and 15 were located off the 

main highway along the Bonavista Peninsula. 

In June 1997 and June 1998, approximately 100 branches of balsam fir and black 

spruce ( 1 0-20mm diameter) containing A. sarmentosa and B. capillaris were detached 

and placed in large clear plastic storage bags for transport. To reduce the number of 

variables affecting the results, branches with attached lichen were only taken from living 

trees. To prevent contamination of the lichen, non-powdered latex gloves were worn. 

The branches containing the lichen were transported to the MUN Botanical Garden, St. 

John's, for transplantation. 

48 



2.1.2 MUN Botanical Garden, St. Jobn's 

St. John's, the capital city of Newfoundland, is located on the Avalon Peninsula 

(Figure 2.2). The population of the city of St. John's is approximately 102~000. As with 

most eastern North American cities, the atmosphere surrounding the city is 

anthropogenically-influenced {Jamieson, 1996). 

The MUN Botanical Garden was considered to be an ideal location in which to 

transplant the lichens (Figure 2.3 ). The isotopic composition of the atmosphere is 

significantly different from that of the Bonavista Peninsula. Also, the MUN Botanical 

Garden was located very close to Memorial University of Newfoundland, thus it was 

accessible throughout the time period of the experiment for collection at specified time 

intervals. Finally, there was a great abundance of pendulous epiphytic lichens already 

growing in the Botanical Garden, therefore it was deduced that this location was suitable 

for growth of the transplanted lichens. 

Three sites along the trails of the Botanical Garden (A,B and C) were chosen for 

this experiment (Figure 2.4). The three sites chosen at the Botanical Garden contained 

local A. sarmentosa, thus the sites were suitable habitats to ensure growth and minimize 

the amount of stress on the transplanted lichens. 

The branches containing lichen from the Bonavista sites were hung with string on 

the trees present in each site at the Botanical Garden. 
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2.1.3 Experimental Design 

In the design of the primary experiment (Experiment I) some thought was given 

to the possibility of lichens dying through the course of the study. Three collection sites 

and three transplant sites were chosen so that in the event of the failure of one or more 

samples/sites there would still be a chance to complete the experiment. Lichens were 

collected from three separate sites along the Bonavista Peninsula expecting that at least 

one of the sites would have lichens with an isotopic composition higher than that of the 

Botanical Garden and close to 1 S%o. One·third of the lichen-covered branches from each 

Bonavista site (X, 15, 17) were then transplanted to each of the botanical garden sites (A, 

B, C). 

The primary transplant experiment commenced in June 1997. On a monthly basis 

for a period of one year, a composite sample of approximately three lichen thalli from 

each site was collected and brought to the laboratory for analysis. 

Based on preliminary analytical results a second transplant experiment 

(Experiment II) was started in June 1998 after the first experiment ended. This 

experiment lasted for three months with sample collection every week. 

2.1.4 Control Measures 

In order to detennine if the sulphur isotopic compositions in Experiment I and n 

changed because of differences in the atmosphere surrounding the lichens, it was 

necessary to perform two control experiments. 
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The first control experiment was perfonned to test for natural variation in the 

sulphur isotopic composition and concenttation of A. sarmentosa originally growing in 

the MUN Botanical Garden. Native lichens were sampled periodically for one year to 

determine the sulphur isotopic composition and concentration. 

A second control experiment was perfonned to ensure that the act of 

transplantation (i.e., moving lichens from one location to another) did not influence the 

isotopic compositions of Experiments I and ll. Five branches containing A. sarmentosa 

originally growing in the MUN Botanical Garden were moved from one site and 

transplanted to another site in the Botanical Garden. This transplanted lichen was then 

sampled every two weeks for the period of three months. 

2.2 Lichen Identification 

The transplant study was designed to utilize pendulous epiphtyic lichens mainly 

due to their great abundance across Newfoundland. Also, the majority of the lichens 

utilized in previous Newfoundland studies were of this type, thus there was a significant 

amount of data already collected that could aid in analysis. 

In the field, the pendulous lichens from each of the three sites along the Bona vista 

Peninsula looked very similar upon initial observation. The lichens collected from sites 

X and 15 were identified as Alectoria sarmentosa while those from site 17 were 

identified as Bryoria capillaris. 

The A. sarmentosa samples had a definite pendant yellow-green thallus lacking a 

central cord. The chemistry of the site X lichens yielded a KC+ red reaction with the 
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medulla. The samples from site 15, on the other hand, displayed a KC- reaction in the 

medulla. Evidently, the A. sarmentosa from site 15 were a relatively uncommon 

chemical race lacking alectoronic acid (Brodo et al., in preparation; Brodo & 

Hawksworth, 1977; Richardson, 1992). 

The Bryoria capi/Jaris samples had a greenish-gray pendant thallus. The two 

distinguishing characteristics that led to accurate identification included the presence of 

distinct pseudocyphellae and a K + bright yellow reaction with the thallus (Brodo et al., in 

preparation; Brodo & Hawksworth, 1977; Richardson, 1992). 

Even though the epiphytic pendulous lichens used in this study belonged to two 

different genera, it was expected that they would react similarly due to their similar 

morphology and overall ecology. Any difference in results between the two genera 

would be interesting for interpretation purposes. 

2.3 Stable Isotopic Analysis 

Preparation of lichen samples for stable isotopic analysis is quite extensive 

(Figure 2.5). Each step in the procedure will be described briefly below. 

2.3.1 Sample Collection 

At specified time intervals, samples of A. sarmentosa and B. capillaris were 

collected from the group of transplanted lichens placed in the MUN Botanical Garden. To 

prevent contamination of the sample, non-powdered latex gloves were worn when 

removing the lichen from the branch. To ensure homogeneity in the sample, composite 
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Figure 2.5 Summary of stable isotopic analysis procedure. 
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samples consisting of thalli from approximately three different plant-bodies were 

collected. The specimen was placed in a plastic ZiplocTM storage bag when processed 

immediately. To store a sample for later use, paper·sampling bags are preferable to 

prevent mold growth. 

After the collection of A. sarmentosa and B. capillaris in the field, the specimens 

were transported to the laboratory, spread out on a clean surface, covered by large lint­

free Kimwipe™ towels and allowed to air dry for approximately one week or until the 

lichens were brittle to touch. 

2.3.2 Sample Cleaning and Crusbiag 

When the samples were completely dry, all detritus such as twigs, insects and 

other lichen species was removed using clean stainless steel forceps and a large 

magnifying lamp. The lichen samples were crushed into a tine powder using a tungsten 

carbide puck mill. The powder was transferred into 20 ml vials, labeled and stored at 

room temperature. The puck mill was thoroughly cleaned with quartz sand and denatured 

alcohol before use and between samples to prevent cross-contamination. 

2.3.3 Sample Combustion by Parr Oxygen Bomb 

The Parr Oxygen Bomb is a stainless steel container able to withstand high 

pressure and temperature. The powdered lichen sample is combusted by the ignition of 

nickel alloy fuse wire under 30 atmospheres of oxygen. As in all combustion reactions, 
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many products result including C02, H20 and S02. However, for the purpose of this 

experiment only the resultant sulphur compounds were utilized for further analysis. 

Before the ignition of the fuse wire, a mixture of deionized water and 50% 

hydrogen peroxide was added to the bottom of the Parr bomb container to ensure that all 

oxidized sulphur was in the fonn of soluble sulphate after combustion. A series of 

washings with deionized water resulted in a solution containing all oxidized sulphur from 

the lichen sample. A more detailed description of the Parr Oxygen Bomb procedure can 

be found in the Appendix I. 

Due to the fact that lichens contain a relatively small amount of sulphur, it was 

necessary to combust 3-4 g of powdered lichen sample to obtain enough sulphur for 

analysis. Thus, 3-4 separate Parr bomb combustions were performed on each lichen 

sample. 

2.3.4 Aliquot Retrieval for Chemical Analysis 

The total washings from 3-4 combustions were collected in one beaker and 

filtered through 0.45 J..LID cellulose nitrate membrane filters. 

After filtration, the solution was brought to a known volume (i.e.~ 200 ml or 500 

ml) in a volumetric flask with deionized water. The solution was mixed well and a small 

amount (approximately 15 ml) was transferred into a vial and refrigerated until analysis 

by ion chromatography (see Section 2.4). The remaining solution was utilized in the next 

step to obtain the BaS04 precipitate. 
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2.3.5 Precipitation of BaS04 

The filtered solution was placed in a beaker and acidified to a pH of 4 by adding 

2-3 drops of 8N HN03 (nitric acid) to ensure optimal conditions for BaS04 precipitation. 

The solution was placed on a hot plate and allowed to come to a boil. When the solution 

came to a boil, 10 ml of 10% O.SM BaCh (barium chloride) was added producing a white 

BaS04(s) precipitate. 

After 2-3 hours, the solution was filtered through Fisher Quant ashless filter paper 

to collect the precipitate. Two hundred fifty ml of warm water was poured through the 

filter to remove any cr (chloride ions) that may have been present. The filtrate was 

discarded and the filter paper with the precipitate was dried in an oven. 

The dry filter paper and precipitate was placed in a VYCOR ™ crucible and the 

filter paper was slowly removed by heating over a Bunsen burner, leaving pure BaS04 

powder. 

2.3.6 Production of S02(1) for Isotopic Allalysis 

The barium sulphate (BaS04(s>) obtained from the Parr bomb procedure was 

further processed for isotopic analysis. so2(J) is the form of sulphur needed for isotopic 

analysis in the mass spectrometer. Thus, it was necessary to extract the sulphur from the 

barium sulphate powder and convert it to sulphur dioxide gas. This extraction was 

achieved by two methods due to a change in the lab equipment available for use. These 

were: (1) Conventional Sulphur Vacuum Line and (2) Continuous Flow-IRMS. When 

this experiment began in 1997, we used the conventional off-line method to convert the 

58 



barium sulphate powder into gaseous sulphur dioxide. The sulphur dioxide sample then 

was introduced into the mass spectrometer through the dual inlet system. In February 

1998, the Isotope Ratio Mass Spectrometry lab at Memorial University acquired an 

elemental analyser and ConFlo II interface that upgraded the lab to the on-line continuous 

flow method. This apparatus allows BaS04{s) to be combusted in an elemental analyzer 

and the so2(g) is separated from the other combustion gases by gas chromatography. The 

S02cg> enters the ion source of the mass spectrometer through a split interface (Giesemann 

eta/., 1994). 

The major advantage of the on-line method is a reduction in the time- and 

chemical-consuming preparation of sulphur from organic samples associated with the off­

line method. It was found by Giesemann et a/. (1994) that the on-line method required a 

much smaller amount of sulphur and the o34S values obtained by the on-line method were 

identical within the standard deviation range to the off-line method. 

Both the on-line and off-line methods were utilized during this experiment 

therefore each method will be explained separately. 

2.3.6.1 Sulphur Vacuum Line 

Thermal decomposition of BaS04 bas been used for several years as a reliable 

method to prepare S02(J> for sulphur isotopic analysis (Y anagisawa & Sakai, 1983). A 

mixture of barium sulphate (BaS04{s)), vanadium pentoxide (V 20s) and silica (Si~) is 

combusted at - 950°C and the gaseous products from the combustion reaction moved 

through a network of glass tubing. By using cryogenic separation, S02(g> is purified and 
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collected for analysis. The procedure as outlined in Yanagisawa & Sakai (1983) was 

followed to collect so2(g) for isotopic analysis. 

2.3.6.2 Continuous Flow-IRMS 

For on-line analysis, a Carlo Erba NA 1500 elemental analyzer was connected to 

a Finnigan MAT 252 mass spectrometer through a split interface (Figure 2.6). The 

BaS04<s> samples were wrapped together with 0.1 mg of V 20s in tin capsules and flash 

combusted at 1 050°C with a pulse of oxygen in the elemental analyzer. All gases 

produced during the combustion were carried in a stream of helium (80 ml/min flow rate) 

through a column packed with tungstic oxide, elemental copper and quartz wool to trap 

any excess 02 and oxidize any traces of S03 produced from the combustion to S04. A 

desiccant trap filled with anhydrous Mg(Cl0,)2 removed all water vapour. At this point, 

the remaining gas passed through a Teflon GC column (heated to 90°C) where S02<s> was 

separated from N2<s> and C02ca>· The S02<s> leaving the elemental analyzer was routed 

through the split interface to the ion source of the mass spectrometer. 

2.3. 7 Mass Spectrometry 

The sulphur isotopic analysis was perfonned on a Finnigan MAT 252 isotope 

ratio mass spectrometer. Depending on the method used to obtain the S02cg> (off-line vs. 

on-line), either the dual-inlet or interface system was used to introduce the gas to the 

mass spectrometer. The so2 samples obtained from the sulphur vacuum line entered the 

mass spectrometer by the dual inlet system. This system consisted of a symmetrical dual 
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Figure 2.6 Schematic of on-line analysis using a Carlo Erba NA 1500 elemental 
analyzer connected to a Finnigan MAT 252 mass spectrometer through a 
ConFlo II split interface (modified from Finnigan MAT Application Flash Report). 
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set-up enabling alternating measurements of sample and standard gases. The internal 

standard was MUN pyrite. 

After the sample was introduced into the mass spectrometer via dual inlet, it 

encountered an electron impact source. Samples were ionized by collision with a stream 

of electrons produced by thermionic emission of a tungsten filament (Potts, 1992). The 

beam of electrons from the filament was directed between two parallel plates and 

collimated using a weak magnetic field. An electric field drew the positive ions out of 

the electron beam and accelerated them towards the analyzer. 

The mass analyzer split the ion beams emerging from the source according to 

their mass/charge ratios (Potts, 1992). The ions were injected into a magnetic field where 

the heavier and lighter ions were separated and followed different trajectories (Figure 

2.7). 

After passing through the magnetic field, the separated ions were collected in ion 

detectors called Faraday cups. The two Faraday cups used for sulphur analysis collected 

ions with mass 66 and 64. The ion detectors were grounded through a high capacity 

resistor. As the current went to ground, the potential drop in the resistor acted as a 

measure of the ion current. Ion beams resulting from the various masses of interest were 

collected simultaneously and their respective ratios were measured. The ion current of 

the masses 66 and 64 in the sample gas was compared to the corresponding ion currents 

of an internal reference gas. Each sample was analyzed for ten sampling intervals during 

which time both the standard and the sample were measured. The ISODAT software 

calculated the isotopic ratios as well as raw a values and corrected a values to the 
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international CDT standard. Along with the lichen samples, the international NIST 

standard, NBS-127, was analyzed to ensure accuracy throughout the analysis. 

The so2 samples produced by the on-line method entered the mass spectrometer 

through a ConFlo IT split interface. This system consisted of a capillary tube that directs 

helium carrier gas and S02 from the EA into the mass spectrometer (Figure 2.8). Once 

inside the mass spectrometer, the sample so2(g) was ionized and followed the same path 

as described above with the dual inlet system. 

The reference gas originated from a separate reservoir attached to one of the inlet 

valves used in the dual inlet method. It was injected for a specified time interval when 

the sample gas was not being measured. The software then measured and integrated the 

areas underneath the peaks to determine the isotope ratio. Numerous standards (NBS-

127; BaS04 #10) were analysed with each set of samples. These were used to calibrate 

the raw data and calculate a corrected 534S value for each sample. 

2.4 Chemical Aoalysis by Ion Chromatography 

The sulphur concentration of each lichen sample was also detennined. The small 

aliquots of Parr bomb aqueous solutions were analyzed for soi- using 1.8mM sodium 

carbonate (Na2C03) + 1. 7mM sodium bicarbonate (NaHC03) solution as eluent flowing 

at a rate of 1.5 mllmin through an AS4A resin-packed column on a Dionex DX-100 ion 

chromatograph. The ion chromatograph was calibrated using National Institute of 

Standards and Technology (NIST) stock standard solutions. To ensure accuracy 

throughout the run, United States Geological Survey (USGS) reference waters, M108, 
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MilO, and Mll2~ were used. The concentration of sulphate was measured in pans per 

million (ppm). By utilizing the sample calculation detailed in Appendix II~ the 

concentration of sulphur in the lichen sample was detennined. 

2.5 Error Associated with Analytical Procedures 

The 834S values obtained by using the conventional off-line method have a 

maximum error of• 0.4%o (standard deviation (lcr)). Five samples ofBaS04<Sl obtained 

from the same lichen samples were analysed consecutively by Blake ( 1998) and it was 

found that the sample preparation led to an error of approximately 0.4%o. The majority of 

this error was due to a slight difference in the crushing method utilized. Blake (1998) 

used liquid nitrogen to crush the lichen samples as opposed to the puck mill utilized in 

this study. It is believed that crushing of lichen samples utilizing the puck mill results in 

a more homogeneous sample as a fine powder. Thus, the error associated with the o34S 

values obtained by the conventional method is actually better than • 0.4o/oo. 

The o34S values obtained using the on-line method have an associated error of± 

0.31 o/oo. Thirty BaS04(S) samples obtained from the same lichens were run consecutively 

using the on-line method and the measured value was +5.9 • 0.31 %o. 

Finally, the error associated with the ion chromatograph was also calculated. A 

total of four samples of the M108 standard and five samples of the M112 standard was 

analysed for sol·. The measured value of M108 was 182 ± 2ppm while the accepted 

value is 185.1 • 3.2ppm. The measured value of M112 was 25.0 ± 0.3ppm while the 
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accepted value is 30.4 • 0.4ppm. There is an error of approximately 5% associated with 

each sulphur concentration. 

2.6 Meteorological Considerations 

As was stated in Chapter One, the weather patterns of a specific location can 

significantly affect the amount of sulphur taken up by the lichen thallus. For this reason 

weather information was collected throughout the time span of this study. The St. John's 

Airport was the nearest location to the MUN Botanical Garden that produced weather 

infonnation daily. To determine if the St. John's Airport weather data was similar to that 

of the MUN Botanical Garden, a comparison of temperature, relative humidity and wind 

speed was perfonned. 

A total of 34 weather-testing events were taken over 14 days. The relative 

humidity at the MUN Botanical Garden was measured using a sling psychrometer. 

Triplicate readings of the wet and dry bulbs were averaged and the relative humidity was 

then determined using these values on a psychrometric chart. 

The temperature at the MUN Botanical Garden was recorded as the average of the 

three dry bulb readings from the sling psychrometer. 

Wind speed was measured using a wind anemometer. 

Data on the weather at the St. John's Airport were accessible through the 

Environment Canada web page (bqp;//www ns ec.gc.catwgthqD. At specific times daily, it 

was possible to compare measurements of temperature, relative humidity and wind speed 

at the MUN Botanical Garden and the St. John's Airport. 
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3.1 Control Measures 

CHAPTER3 

RESULTS 

In the first control experiment, it was found that the sulphur isotopic compositions 

and concentrations in the native lichens of the Botanical Garden changed over the course 

of the year (Table 3.1). The mean of the B34S values of lichens originally growing in the 

MUN Botanical Garden was +5.8 ± 0.8%o while the mean of the concentrations was 500 

± 7 4 ppm. There was no obvious trend but clearly natural variation occurred which 

exceeded the analytical error of the experiment. This experiment also provided important 

baseline information about the lichens originally growing in the MUN Botanical Garden. 

In the second control experiment, it was found that the isotopic compositions did 

not change significantly after the actual transplant (Table 3.2). The delta value of the 

lichen prior to this transplant was 6.9%o. Two weeks after the transplant the delta value 

was 7. Oo/oo. For 12 weeks following the transplant procedure the isotope signature 

remained within the range of± 0.4%o which can be attributed to error associated with the 

analytical technique. Thus, it was concluded that the act of transplantation did not 

contribute to any observed change in isotopic composition of Experiments I and ll. 
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Table 3.1 o34S and [S] values of local Botanical Garden lichens over a one year period 
(Control Experiment n. (n = 4) 

MONTH a:ws C"-l (SI (ppm) 
Jun-97 5.1 594 

Nov-97 5.8 457 
Jan-98 5.2 521 
May-98 6.9 427 

Table 3.2 834S and [S] values of local lichens moved from one site to another site in the 
Botanical Garden (Control Experiment ll). (n = 7) 

WEEK a:ws C"-l (SJ (ppm) 
0 6.9 427 
2 7.0 439 
4 7.3 448 
6 6.7 424 
8 6.6 485 
10 6.9 443 
12 7.5 470 
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3.2 Experiment I 

Lichens from three sites along the Bonavista peninsula (site X. 15, 17) were 

transplanted into three sites at the MUN Botanical Garden (site A, B, C) in June 1997 

(Figures 2.2 and 2.4; Section 2.1.3). Sampling took place at the MUN Botanical Garden 

on a monthly basis. 

A designated label identified each sample. The first letter (A, B or C) signified 

the Botanical Garden site from which the sample was collected. The second unit (X, 15 

or 1 7) signified the site in Bonavista where the sample originated. The third 

digit (0,1,2, ... ) signified the month when the sample was collected with July being month 

1. Therefore, the sample labeled A/X/3 was originally taken from site X on the Bonavista 

Peninsula and then placed in site A at the MUN Botanical Garden. The sample was 

collected from the Botanical Garden in the third month after the experiment commenced 

(i.e., September 1997). 

It is important to note that certain data points are missing from the data set 

because the supply of transplanted lichens was becoming depleted. It was necessary to 

conserve the lichen by sampling some sites less often to ensure that the experiment lasted 

for a period of a year. 

Throughout the one-year experiment a total of 82 samples was collected from all 

sites at the Botanical Garden and analysed for sulphur isotopic composition and sulphur 

concentration. Complete tables of all analytical results for Experiment I can be found in 

Appendix III. 
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Figure 3.1 graphically illustrates the o34S values and sulphur concentrations 

obtained for all lichen samples from Experiment I. The o34S values of site X lichens (A. 

sarmentosa) in site A decreased over a year from 9.0%o to 6.7%o (Figure 3.la). Site X 

lichens in site B decreased from 9.0%o to 7.3%o (Figure 3.1a). Site X lichens in site C 

decreased from 9.0o/oo to 6.9%o (Figure 3.1a). 

Site 15 lichens (A. sarmentosa) in site A decreased over a year from 13.3o/oo to 

8.6o/oo (Figure 3.1b). Site 15 lichens in site B decreased from 13.3%o to 8.7o/oo (Figure 

3.1b). Site 15 lichens in site C decreased from 13.3%o to 8.0o/oo (Figure 3.1b). 

Site 17 lichens (B. capillaris) in site A decreased over a year from 12.0%o to 9.4%o 

(Figure 3.lc). Site 17 lichens in site B decreased from 12.0%o to 9.1 %o (Figure 3.lc). 

Site 17 lichens in site C decreased from 12.0%o to 8.5%o (Figure 3.lc). 

In all cases the isotopic compositions decreased over the one·year study period. 

The sulphur concentrations of site X lichens (A. sarmentosa) in site A increased 

over a year from 242 ppm to 399 ppm (Figure 3.ld). Site X lichens in site B increased 

from 242 ppm to 412 ppm (Figure 3.1d). Site X lichens in site C increased from 242 ppm 

to 413 ppm (Figure 3.ld). 

Site 15 lichens (A. sarmentosa) in site A increased over a year from 234 ppm to 

457 ppm (Figure 3.1e). Site 15 lichens in site B increased from 234 ppm to 330 ppm 

(Figure 3.1e). Site 15 lichens in site C increased from 234 ppm to 452 ppm (Figure 3.le). 

Site 17lichens (B. capillaris) in site A increased over a year from 494 ppm to 844 

ppm (Figure 3.1 f). Site 17 lichens in site 8 increased from 494 ppm to 928 ppm (Figure 

3.1 t). Site 1 7 lichens in site C increased from 494 ppm to 945 ppm (Figure 3 .l f). 
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In all cases the concentrations increased over the one-year study period. 

It is evident from Figure 3.1 that the sulphur isotopic compositions and sulphur 

concentrations of each of the Bonavista lichens (X, 15, 17) reacted very similarly in the 

three Botanical Garden sites (A, B, C). Thus, statistical analysis as described in the 

following section was used to detennine if the three sites in the Botanical Garden were 

similar enough to average. 

3.2.1 Statistical ADalysis or Experiment I Data 

Statistical analysis was perfonned using SPSS Graduate Pack 9.0 for Windows. 

The level of significance (a) is 0.05. Two separate two-way analysis of variance 

statistical tests were applied to the sulphur isotopic compositions and sulphur 

concentrations collected from Experiment I. 

The two-way analysis of variance of the sulphur isotopic compositions indicated 

that there was no interaction among the means from the Bonavista sites and the means 

from the Botanical Garden sites with a p-value of 0.924 (> 0.05). From this resul~ it was 

then possible to inspect the results of the Botanical Garden sites and Bonavista sites 

separately. As was expected, the means of the Bonavista sites were significantly 

different from each other with a p-value of 0.000 {< 0.05). This result was due to the 

difference among the starting isotopic compositions of the lichens from the Bonavista 

sites. Also from the two-way analysis of variance test, it was detennined that the means 

of the Botanical Garden data were similar, with a p-value of 0.846 (> 0.05). There was 

no significant difference in transplant response between the three Botanical Garden sites 
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(A, B or C). Therefore, it is acceptable to average the isotopic data according to 

collection site in the Botanical Garden. The complete results for the two-way analysis of 

variance using the Experiment I isotopic data can be seen in Table 3.3. 

The two-way analysis of variance of the sulphur concentration data for 

Experiment I displayed similar results as the statistical analysis of the isotopic data. 

Again, the statistical analysis demonstrated that there was no interaction between the 

means from the Bonavista sites and the means from the Botanical Garden sites with a p­

value of 0. 737 (> 0.05). From this, the Bonavista means were found to be significantly 

different with a p-value of 0.000 (< 0.05) while the Botanical Garden means were found 

to be very similar with a p-value of 0. 753 (> 0.05). From this analysis .. it was again 

acceptable to average the concentration data collected from the three Botanical Garden 

sites. The complete results for the two-way analysis of variance using the Experiment I 

concentration data can be seen in Table 3.4. 

It is important to note that the above p-values of both analysis of variance tests are 

accurate because the sample size was large (82), and the residuals were homogeneous and 

normally distributed. 
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Table 3.3 Two-way analysis of variance results of sulphur isotopic data for Experiment I. 

TYPEW DEGREES MEAN F P-VALUE OBSERVED 
Source SUM OF OF SQUARE STATISTIC POWER 

SQUARES FREEDOM 
Corrected 95.721 8 11.965 7.198 0.000 1.000 

Model 
Intercept 7526.649 1 7526.649 4521.645 0.000 1.000 
Source 93.657 2 46.829 28.170 0.000 1.000 

Location 0.551 2 0.278 0.167 0.846 0.075 
Source* 1.491 4 0.373 0.224 0.924 0.096 
Location 

Error 131.328 79 1.662 
Total 8163.350 88 

Corrected 227.049 87 
Total 

Table 3.4 Two-way analysis of variance results of sulphur concentration data for 
Experiment I. 

TYPEW DEGREES MEAN F P-VALUE OBSERVED 
Source SUM OF OF SQUARE STATISTIC POWER 

SQUARES FREEDOM 
Corrected 2605632.8 8 325704.10 38.183 0.000 1.000 

Model 
Intercept 22135217 1 22135217 2594.957 0.000 1.000 
Source 2568484.7 2 1284242.4 150.554 0.000 1.000 

Location 4866.306 2 2433.153 0.285 0.753 0.094 
Source* 17014.870 4 4253.717 0.499 0.737 0.163 
Location 

Error 682407.33 80 8530.092 
Total 23161154 89 

Corrected 3288040.1 88 
Total 
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3.2.2 Sulphur Isotopic Compositioa 

The average isotopic compositions over the period of one year for each original 

Bonavista site can be seen in Table 3.5. Graphically, it is evident that the three groups of 

lichens display decreasing isotopic compositions over the period of one year. Site X 

lichens (A. sannentosa) had a starting isotopic composition of 9.0%o and decreased to 

7.0%o after 12 months (Figure 3.2). Site 15 lichens (A. sarmentosa) began at 13.3%o and 

decreased to 8.4%o (Figure 3.3). Site 17 lichens (B. capillaris) began at 12.0o/oo and 

decreased to 9.4o/oo (Figure 3.4). 

The error bars surrounding each data point in Figures 3.2, 3.3 and 3.4 represent 

the ± 0.4o/oo error associated with analytical methods. It is impottant to note that in all 

three cases the starting isotopic composition is significantly different from the final 

isotopic composition. However, based on the results of the control (section 3.1 ), the 

transplanted lichens were given insufficient time to reach the isotopic signature of the 

local lichens growing in the Botanical Garden (+5.8 •0.8%o). 
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Table 3.5 Average o34S values for lichens moved from Bonavista sites 15, X and 17 to 
the Botanical Garden over a one year period (Experiment 1). (n = 33) 

MONTH o34s (~) 
Site 15 Site X Site 17 

JUN-97 13.3 9.0 12.0 
JUL-97 10.6 8.7 11.4 
AUG-97 12.0 9.3 11.4 
SEP-97 10.2 8.5 10.9 
OCT-97 10.4 8.6 
NOV-97 10.2 9.2 10.5 
DEC-97 10.3 9.1 
JAN-98 9.1 7.9 8.9 
FEB-98 9.2 7.5 
MAR-98 8.7 7.2 
APR-98 7.5 7.2 
MAY-98 7.8 7.8 9.4 
JUN-98 8.4 7.0 
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Figure 3.2 Average o34S values for lichens moved from Bonavista site X to the 
Botanical Garden over a one year period (Experiment 1). 
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Figure 3.3 Average o34S values for lichens moved from Bonavista site 15 to the 
Botanical Garden over a one year period (Experiment I). 
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Figure 3.4 Average cS34S values for lichens moved from Bonavista site 17 to the 
Botanical Garden over a one year period (Experiment I). 
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3.2.3 Sulphur Concentration 

As was stated earlier, the statistical analysis demonstrated that it was acceptable 

to average the sulphur concentration values from the three Botanical Garden sites (Table 

3.6). Each group of lichens from Bonavista increased in sulphur concentration over the 

period of one year. Site X lichens (A. sarmentosa) began with a starting concentration of 

242 ppm and ended with a concentration of 408 ppm (Figure 3.5). Site 15 lichens (A. 

sarmentosa) began at 234 ppm and increased to 413 ppm (Figure 3.6). Site 17 lichens (B. 

capillaris) began at 494 ppm and increased to 844 ppm (Figure 3.7). 

Recall in section 2.5 that there is a 5% error due to analytical methods associated 

with each concentration shown by the error bars in Figures 3.5, 3.6 and 3.7. It is evident 

that in all cases, the starting concentrations are significantly different from the final 

concentrations. However, based on the results of the control experiment (section 3.1 ), the 

transplanted lichens were given insufficient time to reach the sulphur concentration of the 

local lichens growing in the Botanical Garden (500 ± 74 ppm). 

82 



Table 3.6 Average [S] values for lichens moved from Bonavista sites 15, X and 17 to the 
Botanical Garden over a one year period (Experiment 1). (n = 33) 

MONTH lSI (DDM) 

Site IS Site X Site 17 
JUN-97 234 242 494 
JUL-97 352 406 829 
AUG-97 331 395 852 
SEP-97 327 374 827 
OCT-97 377 368 
NOV-97 317 404 829 
DEC-97 371 418 
JAN-98 415 424 939 
FEB-98 427 430 
MAR-98 402 477 
APR-98 445 456 
MAY-98 406 522 844 
JUN-98 413 408 
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Figure 3.5 Average [S] values for lichens moved from Bonavista site X to the 
Botanical Garden over a one year period (Experiment 1). 
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Figure 3.6 Average [S] values for lichens moved from Bonavista site 15 to the 
Botanical Garden over a one year period (Experiment I). 

85 



1000 

900-

! 800- ' ! ~ 

E 
c. 700-c.. 
~ - 600-rl1 -

500 i 
400 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
~§ ~~~oe"'d.JIJ ~~~'filii ~i 

Date (montblyear) 

Figure 3.7 Average [S] values for lichens moved from Bonavista site 17 to the 
Botanical Garden over a one year period (Experiment I). 
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3.3 Experiment II 

Experiment ll began in June 1998 and ran for a period of three months until 

September 1998. Samples of A. sarmentosa and B. capillaris were collected from the 

same three sites along the Bonavista Peninsula (site X, 15, 17) that were utilized for 

Experiment I. These lichens were transplanted into two sites at the MUN Botanical 

Garden (site A~ 8}. Sampling at the MUN Botanical Garden took place weekly. This 

experiment was performed to complement and reinforce the results obtained from 

Experiment I. 

Each sample collected throughout Experiment II was identified similarly to the 

samples of Experiment I. Thus, the sample labeled B/15/W4 was originally taken from 

site 15 in Bonavista and then placed in site Bat the MUN Botanical Garden. This sample 

was collected from the Botanical Garden during the fourth week of the experiment. 

As was the case in Experiment I, it is imponant to note that certain data points are 

missing from this data set because the supply of transplanted lichens was becoming 

depleted. 

A total of 67 samples was collected throughout the three-month period and 

analysed for both sulphur isotopic composition and sulphur concentration. Complete 

tables of all analytical results for Experiment II can be found in Appendix IV. 

Figure 3.8 graphically illustrates the S34S values and sulphur concentrations 

obtained for all lichen samples from Experiment ll. The S34S values of site X lichens (A. 

sarmentosa) in site A changed over a 12 week period from 7.8%o to 9.1%o (Figure 3.8a). 

Site X lichens in site B changed from 7.8%o to 9.7%o (Figure 3.8a). 
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Figure 3.8 834S values for lichens moved from Bonavista sites (a) X (b) 15 (c)l7 
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Site 15 lichens (A. sarmentosa) in site A changed over a 12 week period from 

14.6o/oo to 12.1 o/oo (Figure 3.8b). Site 15 lichens in site B changed from 14.6o/oo to 13.7%o 

(Figure3.8b). 

Site 17 lichens (B. capillaris) in site A changed over a 12 week period from 12.6o/oo 

to 12.7o/oo {Figure 3.8c). Site 17 lichens in site B changed from 12.6%o to 12.5%o (Figure 

3.8c). 

The sulphur concentrations of site X lichens (A. sarmentosa) in site A changed over 

a 12 week period from 387 ppm to 370 ppm (Figure 3.8d). Site X lichens in site B 

changed from 387 ppm to 383 ppm (Figure 3.8d). 

Site 15 lichens {A. sarmentosa) in site A changed over a 12 week period from 246 

ppm to 326 ppm (Figure 3.8e). Site 15 lichens in site B changed from 246 ppm to 339 

ppm (Figure 3.8e). 

Site 17 lichens (B. capillaris) in site A changed over a 12 week period from 776 

ppm to 724 ppm (Figure 3.8f). Site 17 lichens in site B changed from 776 ppm to 709 

ppm (Figure 3.8f). The large difference in the initial sulphur concentration values of the 

site 17 lichens for Experiment I (494 ppm) and Experiment ll (776 ppm) will be 

explained in the discussion. 

As was the case in Experiment I, statistical analysis was once again perfonned on 

both the isotopic compositions and concentrations separately to determine if the data 

from the two sites in the Botanical Garden (A, B) were similar enough to average. 
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3.3.1 Statistical Analysis of Experimeat D Data 

Two separate two-way analysis of variance statistical tests were perfonned on the 

sulphur isotopic compositions and sulphur concentrations collected from Experiment II. 

The two-way analysis of variance of the sulphur isotopic compositions indicated 

that there was no interaction among the means of the three Bonavista sites and the two 

Botanical Garden sites with a p-value of 0.151 (> 0.05). From this result, it was then 

possible to inspect the results of the Botanical Garden sites and Bonavista sites 

separately. Again, it was confirmed that the means of the Bonavista sites were 

significantly different with a p-value of 0.000 ( < 0.05). Also, it was detennined that 

means of the Botanical Garden data were very similar, demonstrating a p-value of 0.088 

(> 0.05). There was no significant difference between the two Botanical Garden sites (A, 

B). As was the case in Experiment I, it was acceptable to average the isotopic data for 

the Botanical Garden. The complete results for the two-way analysis of variance using 

the isotopic data from Experiment ll can be seen in Table 3.7. 

The two-way analysis of variance test of the concentration data from Experiment 

II displayed different results from the previous two-way ANOVA tests. In this case, 

there was a slight interaction between the means of the concentration data from the 

Bonavista sites and the Botanical Gardens sites indicated by a p-value of0.047 (< 0.05). 

With this significant interaction term it was not accurate to accept the p-values for the 

Bonavista sites and Botanical Gardens sites separately. To determine if any particular 

group of data was contributing to the interaction, three separate one-way analysis of 

variance tests were perfonned on each Bonavista location separately. The p-value of the 
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Table 3.7 Two-way analysis of variance results of sulphur isotopic data for Experiment II. 

TYPEm DEGREES MEAN F P-VALUE OBSERVED 
Source SUM OF OF SQUARE STATISTIC 

SQUARES FREEDOM 
Corrected 250.191 5 50.038 75.072 0.000 

Model 
Intercept 8741.470 1 8741.470 13114.686 0.000 
Source 245.602 2 122.801 184.237 0.000 

Location 2.001 1 2.001 3.002 0.088 
Source* 2.592 2 1.296 1.944 0.151 
Location 

Error 42.659 64 0.667 
Total 9138.730 70 

Corrected 292.850 69 
Total 

Table 3.8 Two-way analysis of variance results of sulphur concentration data for 
Experiment II. 

TYPEW DEGREES MEAN F P-VALUE 
Source SUM OF OF SQUARE STATISTIC 

SQUARES FREEDOM 
Corrected 2025791.0 5 405158.20 311.439 0.000 

Model 
Intercept 13164525 1 13164525 10119.384 0.000 
Source 1993731.9 2 996865.95 766.277 0.000 

Location 1.234E-02 1 1.234E-02 0.000 0.998 
Source* 8342.506 2 4171.253 3.206 0.047 
Location 

Error 81958.060 63 1300.922 
Total 13940698 69 

Corrected 2107749.1 68 
Total 
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one-way ANOV A for the site 15 concentration data for both Botanical Garden sites was 

0.776 (> 0.05). Thus, for this group of data it was evident that there was no significant 

difference between sites A and Bat the Botanical Garden. Similar results were obtained 

for the site 17 concentration data with a p-value of 0.248 ( < 0.05). The problem arose 

with the site X concentration data at both Botanical Garden sites. The p-value obtained 

from the one-way ANOV A was 0.032 (> 0.05) indicating that the means of the 

concentration data at sites A and B for the site X lichens were significantly different. It 

was decided to perform a two-way ANOV A on the site 15 and 17 concentration data 

from both sites at the Botanical Garden. The site X concentration data were omitted from 

this test. The results indicated that there was no interaction among the means of the 

Bona vista and Botanical Garden sites with a p-value of 0.357 (> 0.05). With this result it 

was possible to inspect the Bonavista and Botanical Garden sites separately. As was 

expected, the means of the concentration data for the two Bonavista sites 15 and 17 were 

significantly different with a p-value ofO.OOO (< 0.05). The results for the two Botanical 

Gardens sites were found to be similar with a p-value of0.219 (> 0.05). Again, there was 

no significant difference between sites A and B at the Botanical Garden. Thus, it is 

acceptable to average the concentrations from both Botanical Garden sites for sites 15 

and 17 lichens only. The complete results for the two-way and one-way analysis of 

variance tests using the concentration data can be seen in Tables 3.8, 3.9 and 3.1 0. 
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Table 3.9 One-way analysis of variance results of sulphur concentration data for 
Bona vista sites (a) X (b) 1 5 (c) 17 lichens. 

(a) 

SUM OF DEGREES MEAN FSTATISTIC P-VALUE 
SQUARES OF SQUARE 

FREEDOM 
Between 92.346 1 92.346 0.083 0.776 
Groups 
Within 26708.308 24 1112.846 
Group_s 
Total 26800.654 25 

(b) 

SUM OF DEGREES MEAN FSTATISTIC P-VALUE 
SQUARES OF SQUARE 

FREEDOM 
Between 2768.256 1 2768.256 1.443 0.248 
Gro~p_s 

Within 28776.214 15 1918.414 
Groups 
Total 31544.471 16 

(c) 

SUM OF DEGREES MEAN FSTATISTIC P-VALUE 
SQUARES OF SQUARE 

FREEDOM 
Between 5700.962 1 5700.962 5.168 0.032 
Groups 
Within 26473.538 24 1103.064 
Groups 
Total 32174.500 25 
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Table 3.10 Two-way analysis ofvariance results of sulphur concentration data for 
Experiment II (excluding site X values). 

TYPEm DEGREES MEAN F P-VALUE OBSERVED 
Source SUM OF OF SQUARE STATISTIC POWER 

SQUARES FREEDOM 
Corrected 1886359.2 3 628786.42 441.973 0.000 1.000 

Model 
Intercept 9854112.9 1 9854112.9 6926.443 0.000 1.000 
Source 1867392.4 1 1867392.4 1312.588 0.000 1.000 

Location 2223.222 1 2223.222 1.563 0.219 0.230 
Source* 1237.793 1 1237.793 0.870 0.357 0.149 
Location 

Error 55484.522 39 1422.680 
Total 10585561 43 

Corrected 1941843.8 42 
Total 
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3.3.2 Sulphur Isotopic Composition 

From the above analysis of variance results, it was acceptable to average the 

isotopic compositions obtained from the two Botanical Garden sites (Table 3.11 ). When 

transplanted lichens are sampled weekly as opposed to monthly, the isotopic results are 

much more variable. The starting composition for site X was 7 .8%o and increased 

slightly over 12 weeks to 9.4%o (Figure 3.9). The starting composition for site 15 was 

14.6o/oo and decreased slightly to 12.9%o (Figure 3.10). Finally, the starting isotopic 

composition for site 17 was 12.6%o and ended after 12 weeks at a similar value of 12.7%o 

(Figure 3.11 ). 

In this experiment, there were no consistent trends over time as was the case in 

Experiment I. Site 15 lichens were the only group to show a decrease perhaps due to the 

higher initial isotopic composition. It is evident that weekly sampling reveals many 

increases and decreases within the data set. These results are important because they give 

an indication of how much variability among the isotopic compositions actually occurs 

from week to week. 

3.3.3 Sulphur Conceatration 

As was stated in section 3.3.1, it was acceptable to average the concentrations 

from both the Botanical Garden sites for only the sites 15 and 17 lichens from the 

Bonavista Peninsula. The average concentrations can be seen in Table 3.12. The 

concentrations of the sites 1 S and 17 lichens were variable over 12 weeks. The site 15 
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Table 3.11 Average 834S values for lichens moved from Bonavista sites 15, X and 17 to 
the Botanical Garden over a twelve week period (Experiment ll). (n = 36) 

WEEK a34s c~> 
Site 15 Site X Site 17 

0 14.6 7.8 12.6 
1 12.5 8.2 12.4 
2 13.3 8.1 12.2 
3 12.2 7.9 12.9 
4 13.5 9.9 13.2 
5 13.4 8.9 12.9 
6 12.5 9.2 
7 12.7 9.2 11.8 
8 11.9 8.9 
9 12.1 8.5 
10 12.3 9.0 12.2 
11 13.0 9.7 11.9 
12 12.9 9.4 12.7 
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Figure 3.9 Average S34S values for lichens moved from Bonavista site X to the 
Botanical Garden over a twelve week period (Experiment II). 
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Figure 3.10 Average o34S values for lichens moved from Bona vista site 15 to the 
Botanical Garden over a twelve week period (Experiment II). 
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Figure 3.11 Average o34S values for lichens moved from Bonavista site 17 to the 
Botanical Garden over a twelve week period (Experiment II). 
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Table 3.12 Average [S] values for lichens moved from Bonavista sites 15 and 17 
(excluding site X values) to the Botanical Garden over a twelve week period 
(Experiment IT). (n = 23) 

WEEK rs1 (J,pm) 
Site IS Site 17 

0 246 776 
1 289 691 
2 259 676 
3 263 737 
4 235 718 
5 277 667 
6 295 
7 292 702 
8 312 
9 241 
10 300 715 
11 288 651 
12 332 724 
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lichens (A. sarmentosa) began with a starting concentration of 246 ppm and increased 

slightly over 12 weeks to a final concentration of 332 ppm (Figure 3.12). The site 17 

lichens (B. capillaris) did not change significantly over the 12 week period. The initial 

concentration was 776 ppm and the final concentration was 724 ppm (Figure 3.13). 

Recall in section 2.5 that there is a 5% error due to analytical methods associated 

with each concentration shown by the error bars in Figures 3.12 and 3.13. It is evident 

that there is only a slight increase in concentration for site 1 S lichens over a 12 week 

period. The site 17 lichens did not demonstrate a significant increase, essentially the 

concentrations remained very similar. 

3.4 Meteorological Considerations 

The sites at the MUN Botanical Garden experienced unique microclimates that 

varied from the St. John's Airport with respect to temperature, relative humidity and 

wind speed {Appendix V). 

In the forested sites at the Botanical Garden, it was found that the temperatures 

were similar to those recorded from the St. John's Airport with means of3.9°C and 3.6°C 

respectively. The maximum variation in temperature between the Botanical Garden and 

the St. John's Airport was 2.2°C in one case while all other temperature variations fell 

below this value. 

The mean relative humidity at the Botanical Garden (88.3%) was found to be 

significantly higher than that of the St. John's Airport (77.6%). The site at the Botanical 

Garden where the weather measurements were taken was in a densely forested area very 
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Figure 3.12 Average [S] values for lichens moved from Bonavista site 15 to the 
Botanical Garden over a twelve week period (Experiment II). 
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Figure 3.13 Average [S] values for lichens moved from Bonavista site 17 to the 
Botanical Garden over a twelve week period (Experiment II). 
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near a pond. Evidently, there was significantly more water in the atmosphere because of 

the nearby pond and the transpiration of the numerous trees. 

Finally, the wind speed in the site at the Botanical Garden was consistently 

measured at 0 m/s for 27 out of the 34 weather-recording events. The other 7 remaining 

events did not reach wind speeds greater than 1.5 rnls. These results vary greatly from 

those of the St. John's Airport where the wind speeds ranged from 2.5 mls to 13.3 m/s. 

Obviously, the densely forested site was blocking the wind that was being detected in an 

open area at the St. John's Airport. 

Overall, this relatively small comparison study of the MUN Botanical Garden and 

St. John's Airport weather recordings indicated that the climate of the MUN Botanical 

Garden sites differed from that of the St. John's Airport. 
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4.1 Transplant Sites 

CBAPTER4 

DISCUSSION 

The island of Newfoundland was an ideal location for this study. The sites 

chosen for the transplant experiments were the Bonavista Peninsula and the city of St. 

John's due to the difference in sulphur isotopic compositions of lichens at each location. 

From a previous study by Wadleigh & Blake (in press) lichens along the Bonavista 

Peninsula were found to have a high sulphur isotopic composition (- + 1 So/oo) while the 

lichens in the city of St. John's had a lower sulphur isotopic composition(- +7o/oo). To 

support the choice of locations, rain studies by Evans (1996) and Jamieson (1996) were 

also used. Evans (1996) found that the 834S values of six rain events in the town of 

Bonavista ranged from 6.2%o to 18.5%o with a weighted average of 14.3o/oo. Jamieson 

(1996) analysed rain samples in the city of St. John's with 834S values ranging from 

2.2o/oo to 18.6%o with an average of7.1%o. 

4.1.1 Booavista Peninsula 

The initial sulphur isotopic compositions from the three sites in Bonavista were 

slightly different than expected, however, it is possible to explain the differences by 

considering specific sites characteristics. The sulphur isotopic compositions of the 

lichens from sites 15 and 17 were relatively high (+13.3%o and +12.0%o respectively) and 

close to the expected value of 15%o obtained from Wadleigh & Blake (in press). The 
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sulphur isotopic composition of site X lichens, on the other hand, was a little lower at 

9.0%o. 

Site 17 was located in the town of Bonavista along the coastline of the Atlantic 

Ocean (Figure 2.2). The lichens in this particular site were evidently accumulating 

sulphur from the seaspray that exhibits a fairly constant isotopic composition of+ 21 o/oo as 

determined by Rees et al. ( 1978). The rest of the sulphur in these lichens probably 

originated from the day-to-day anthropogenic activities around the town of Bonavista 

leaving a mixed isotopic composition of 12.0%o. 

Site 15 also exhibited a high sulphur isotopic composition of 13.3%o. This site 

was located along the Bonavista Peninsula about 1 km away from the main highway on 

the edge of a forest clearing (Figure 2.2). These lichens were clearly subjected to the 

atmosphere that contained sulphur originating from seaspray. The anthropogenic sulphur 

accumulated in the lichen possibly originated from the exhaust of numerous vehicles 

travelling along the Bonavista highway causing a mixed composition of 13.3o/oo., however, 

the amount of anthropogenic sulphur was limited due to the distance between the 

highway and the actual site of collection. 

The fmal site along the Bonavista Peninsula, site X, exhibited the lowest isotopic 

composition (+9.0%o) of the three sites. This particular site was located close(- 50 m) to 

the Bonavista highway (Figure 2.2). It is evident that the sources of sulphur in these 

lichens originated from both seaspray and the anthropogenic vehicle exhaust emissions 

produced along the Bonavista highway. 
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A transplant study by Tuba and Csintalan ( 1993) measured the accumulation of 

metals in the lichen, Cladonia convoluta, at specific distances away from a main 

highway. All metals studied were found in highest concentrations in samples closest to 

the road (1 qt) and their concentrations gradually decreased with distance from the road. 

However, samples furthest from the road (90 m) still contained higher amounts of all 

metals than the control sites. This study by Tuba and Csintalan ( 1993) tested metal 

concentrations thus it cannot be directly compared to this study that analysed sulphur, 

however, it does verify that pollution from road traffic can have an impact on vegetation 

greater than 90 m away from the highway. As was stated previously, it is possible that 

anthropogenically-derived sulphur from road traffic isotopically influenced the lichens in 

site X located only 50 m from the Bonavista highway. 

4.1.2 MUN Botanical Garden, St. Jobn 's 

The lichens originally growing in the MUN Botanical Garden have an average 

isotopic composition of +5.8o/oo that varied by as much as 1.8%o over the course of one 

year (Table 3.1 ). The isotopic compositions did not change in any particular pattern over 

the study period. This increase and decrease of isotopic compositions can likely be 

attributed to natural variation influenced by a number of events some of which can be 

explained and some of which are beyond the scope of this study. 

It is possible that numerous physiological features of lichens such as thallus 

morphology, thallus exposure and species variation may lead to slight natural variation in 
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isotopic compositions, however, the majority of physiological features are not 

investigated in this study. 

The natural variation in isotopic compositions of local lichens may be influenced 

by variations in source strengths of sulphur contributions to the atmosphere that will be 

explained in more detail. At any given time, sulphur in the atmosphere may have 

originated from a variety of sources. The low sulphur isotopic composition obtained for 

the local MUN Botanical Garden lichens (+5.8%o) suggests that the majority of the 

sulphur in these lichens is from an anthropogenic source. 

There are a number of sources contributing anthropogenic sulphur to the lichens 

in the Botanical Garden. The largest point source is the stack located at the Utilities 

Annex on the Memorial University of Newfoundland campus <1 km southeast of the 

MUN Botanical Garden. S02<s> is emitted from the stack through burning of Bunker C 

fuel and may be transponed under favourable wind conditions into the atmosphere 

surrounding the MUN Botanical Garden. 

A study by Ennis (1999) analysed the sulphur isotopic composition of the Bunker 

C fuel consumed in the Utilities Annex. A series of 17 samples of fuel yielded isotopic 

compositions ranging from -2.98%o to 0.17%o with an average of -1.51 %o. It is evident 

that the Utilities Annex is contributing to atmospheric sulphur, however, the fuel isotopic 

compositions are lower than the rain and lichen isotopic compositions (-7%o) obtained by 

Wadleigh & Blake (in press) and Jamieson (1996). Part of the difference in isotopic 

compositions may be due to the fractionation of the fuel sample during the combustion 

process, during subsequent atmospheric oxidation or simply different fuel shipments. 
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The difference in isotopic compositions is also an indication that the Utilities Annex is 

not the sole contributor of anthropogenic sulphur to the Garden. 

Two years prior to the time period of this study, a new four-lane highway was 

constructed around the outer property line of the Botanical Garden. Over a period of 5 

months (April 1995- September 1995), heavy equipment (i.e., dump trucks) commuted 

into the MUN Botanical Garden on a regular basis to dump organic material from the 

highway construction site in a designated pit (pers. comm. Charlie Horwood). These 

large vehicles primarily utilized diesel fuel that has a high sulphur content. Thus, the 

exhaust from the heavy equipment and the day-to-day construction of the highway may 

have contributed significantly to the anthropogenic signal detected by the lichens 

originally growing in the MUN Botanical Garden. 

Another source of anthropogenic sulphur may be the vehicle emissions 

originating from Mt. Scio Rd. that runs alongside the MUN Botanical Garden property. 

Also, the everyday industrial activities throughout the city of St. John's contributed to the 

amount of sulphur in the atmosphere surrounding the MUN Botanical Garden. Finally, it 

is important to note that seaspray sulphur originating from the nearby Atlantic Ocean can 

also greatly influence the atmosphere at any given time. 

Due to the numerous contributions of sulphur sources to the atmosphere, natural 

variation in isotopic compositions should be expected and taken into consideration in 

subsequent interpretations. 
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4.2 Effect of Transplaatadoa Procedure 

The results of this transplant study suggest that the actual transplant procedure did 

not affect the isotopic compositions of the transplanted lichens (Table 3.2). It was 

expected that the transplant procedure would not affect the isotopic compositions because 

the epiphytic pendulous lichens used in this study do not receive nutrients from the 

substrate on which they grow. Thus, detaching the branch from the tree and attaching it 

to another tree should not have affected the lichen. Also, extreme caution was taken 

when detaching, transporting and reattaching the branches to ensure contamination was 

not introduced during this process. 

A study by Loppi et al. (1998) transplanted Hypogymnia physodes in their 

original site and analysed for elemental concentrations after one year. The mean trace 

element concentrations in control lichens analysed at the beginning and end of the 

experiment did not differ significantly (p < 0.05). Thus, the influence, if any, of the 

transplant process was negligible and the element concentrations were not affected by the 

transplant procedure. 

Another study by Bennett et al. (1996) also tested the effects of the act of 

transplantation on the element concentrations of the lichen, Hypogymnia physodes, at a 

control site. In this case, local lichens were not transplanted but rather elemental 

concentrations of local lichens were simply compared to transplanted lichens. It was 

found that variation in concentration was greater in local lichens sampled three times 

throughout 1992 than the transplanted lichens sampled from 1993-1995. Statistical 

analysis (one ... way analysis of variance) of the data indicated that once again the influence 
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of the transplant procedure was negligible. Other studies (Garty et al., 1996; Evans & 

Hutchinson, 1996) have found similar results to confinn that the act of transplantation 

does not significantly alter the chemistry or physiology of the various lichen species 

examined. 

4.3 Transplant Experiments 

4.3.1 Experiment I 

As detailed in section 2.1.3, the primary experiment involved transplanting 

lichens from the Bonavista Peninsula into the MUN Botanical Garden. Samples were 

collected monthly and analysed for both sulphur isotopic composition and sulphur 

concentration. 

4.3.1.1 Sulphur Isotopic Composition 

As expected, the delta values of each group of Bonavista lichens decreased 

significantly over the period of one year. Figures 3.2, 3.3 and 3.4 all begin with high 

isotopic compositions and decrease to significantly lower isotopic compositions, 

however, there is not a consistent amount of decrease each month. 

While each group of lichens from the Bonavista Peninsula reacted independently. 

there are similar trends between the three groups of lichens. These will be discussed 

later. The site 15 isotopic data displays the clearest trend of the three sites. A. 

sarmentosa from site 15 had the highest initial starting isotopic composition ( + 13 .3%o) 

providing an ideal situation to see the most pronounced changes in isotopic compositions 

112 



over the period of one year. At the end of this experiment it was found that site 15 

lichens exhibited the largest difference between the initial and final isotopic compositions 

of all three groups of lichens. The site 15 lichens are therefore considered to represent 

the most successful of the three experiments and will be discussed in most detail. 

''fhe site 15 lichens decreased by 4.9%o over the course of one year. However, 

throughout this time period the isotopic compositions rose and fell from month to month. 

Much of this increase and decrease in isotopic compositions over the one year period can 

be attributed to natural variation as was the case with the local lichens growing in the 

MUN Botanical Garden. 

A study by Jamieson (1996) demonstrated that individual rain events are quite 

variable in S04 concentration, o34S value and the amount of sea salt they contain. Thus, 

it would not take much of a difference in the atmosphere to alter the isotopic composition 

of the local and transplanted lichens by l-2%o. At any given time, the majority of sulphur 

in the atmosphere may be anthropogenically-derived leading to a decrease in sulphur 

isotopic compositions. Each decrease in isotopic compositions cannot be attributed to a 

sole pollution event, but rather a combination of numerous activities such as emissions 

from the stack of the Utilities Annex, vehicle exhaust, highway construction and general 

industrial activity throughout St. John's. On the other hand, it is also possible that the 

majority of sulphur in the atmosphere at a cenain point in time may have originated from 

the seaspray of the nearby Atlantic Ocean leading to an increase in sulphur isotopic 

compositions. 
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Even though there is natural variation among the isotopic compositions~ site 15 

lichens demonstrated a net decrease of 3.1 %o over the first three months. This net change 

is significant and should be attributed to more than natural variation. This large initial 

decrease can be explained by the fact that the transplanted lichens were immersed into an 

atmosphere with a significantly different source of sulphur than the atmosphere from 

where they originated. Evidently, the transplanted lichens were greatly influenced by the 

anthropogenically-derived sulphur in the atmosphere surrounding the Botanical Garden 

over the first three months. 

The lichens from sites X and 17 reacted similarly to the site 15 lichens. however 

the changes were not as pronounced. As was the case with the site 15 lichens, there are 

increases and decreases in the isotopic compositions throughout the one-year period. 

Again, these changes can be attributed primarily to natural variation. 

Interestingly, the isotopic compositions of sites X, 1 5 and 1 7 lichens decreased 

significantly between December 1997 and January 1998 (Figure 3.2, 3.3 and 3.4). In both 

site X and 15 lichens there was a decrease of 1.2%o. The site 17 lichen supply was 

becoming depleted so a sample was not taken during December 1997. However, the 

difference between the November 1997 and January 1998 samples was 1.6%o. A smaller 

decrease of 0.6o/oo was also seen in the local lichens between November 1997 and January 

1998 (Table 3.1 ). This parallel between transplanted and local lichens indicate that a 

seasonal change occurred. Personal communication with Mr. John Dunne of the Utilities 

Annex of Memorial University of Newfoundland detennined that the fuel consumption 

increased during the winter months over the time period of this study (Table 4.1 ). A 
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Table 4.1 Monthly fuel consumption by the Utilities Annex over a one year period. 

MONTH FUEL CONSUMED (els) 
JUN-97 123,933 
JUL-97 97,480 
AUG-97 101,770 
SEP-97 112,290 
OCT-97 168,803 
NOV-97 189,732 
DEC-97 216,570 
JAN-98 291,266 
FEB-98 214,817 
MAR-98 211,596 
APR-98 185,915 
MAY-98 147~988 

JUN-98 120,663 
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decrease in temperature during the fall and winter led to increased heating demands. This 

increase of anthropogenic sulphur to the atmosphere from the Utilities Annex, along with 

increased fuel consumption by other sources throughout St. John's, contributed to the 

observed decreasing isotopic compositions in local and transplanted lichens during 

December 1997. 

It is important to note that site 17lichens belong to the genus Bryoria, unlike sites 

15 and X that belong to the genus Alectoria. Even though the site 17 lichens belong to a 

different genus, there was no difference in the movement of isotopic compositions over 

the one year period when compared to Alectoria. 

As was stated in section 4.1.2, it is possible that numerous physiological features 

of lichens may lead to a slight natural variation in isotopic compositions. The majority of 

physiological features are beyond the scope of this study, however, it was decided that 

desiccation/rehydration cycles of the lichens would be examined using available 

meteorological data. Reports indicate that lichens accumulate sulphur efficiently when 

they are moist (Palomiiki et al., 1992). Thus, total precipitation data recorded at the St. 

John's Airport for the time period of this study was compared to the isotopic 

compositions obtained from Experiment I to identify any apparent relationships or 

patterns with periods of extreme wetness or <Lwyness. Figure 4.1 indicates that no 

relationship between isotopic compositions and total precipitation is evident. This can be 

explained by the fact that the sites at the MUN Botanical Garden experience a unique 

microclimate that differs from that of the St. John's Airport (section 3.4). The 

transplanted lichens were placed in sites that were not subjected to extreme dry periods. 
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Figure 4.1 Plot of total monthly precipitation and average S34S values for lichens moved from 
Bona vista sites (a) X (b) 15 (c) 17 to the Botanical Garden over a one year period 
(Experiment I). 
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Even when the total precipitation was low, the lichens remained moist. All three sites 

were located very close to a pond that constantly contributed to the moisture content in 

the atmosphere. Also, the three sites were located in the interior of a densely forested 

area which has been found to be more favourable for retaining thallus water probably due 

to the less evaporative conditions within forests (Renhom et al., 1997). The transplanted 

lichens did not encounter extended periods of dryness in this particular study so wet/dry 

cycles cannot be used to explain the changes in isotopic compositions. 

While there was a significant decreasing trend in each case over the period of one 

year, the results of this transplant experiment did not establish a definitive length of time 

for pendulous epiphytic lichens to assume the sulphur isotopic signature of the 

surrounding atmosphere. As was discussed, the local lichens growing in the Botanical 

Garden exhibited an average o34S value of +5.8 • 0.8%o. The isotopic compositions at 

the end of the one year study period for sites X, 15 and 17 were 7.0o/oo, 8.4%o and 9.4o/oo, 

respectively. In each case the final isotopic compositions after the one-year period did 

not fall within the ambient range. It is evident that the transplanted lichens needed more 

than one year to exhibit the same isotopic compositions as those of the lichens originally 

growing in the Botanical Garden ( +5.8 • 0.8%o). It is difficult to estimate the additional 

amount of time that would be needed to completely allow the transplanted lichens to 

assume the isotopic signature of the Botani~al Garden atmosphere because of the amount 

of natural variability. However, if the isotopic compositions continue to decrease in a 

linear fashion as was the case with the site 15 lichens (i = 0.8279), a minimum additional 

six months would be needed to allow the transplanted lichens to assmne the isotopic 
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signature of the local lichens in the Botanical Garden. It is expected that when this is 

accomplished the isotopic compositions would level-off and remain fairly constant over 

time. Only slight changes would occur due to natural variation from numerous events 

occurring around the Botanical Garden which alter the isotopic signature of the 

atmosphere. A long-tenn transplant study for a period of at least 2 years would likely 

clarify this. 

There is a gap in the literature concerning the use of sulphur stable isotopes to 

determine the amount of time for lichens to accumulate sulphur. Thus, comparisons with 

other studies are not possible, however, there are studies that estimated the accumulation 

time of sulphur by measuring sulphur concentration. These comparisons will be made in 

the following section. 

4.3.1.2 Sulphur Concentration 

The results from the concentration data for Experiment I are detailed in section 

3 .2.3. The sulphur concentrations of each group of Bona vista lichens increased 

significantly over the period of one year. The graphs in Figures 3.5, 3.6 and 3.7 all began 

with low concentrations and increased to significantly higher concentrations, however, 

they exhibited a great amount of natural variability. 

In all three cases, the greatest amount of increase in sulphur concentration 

occurred within the first month of the experiment. Site X lichens increased by 164 ppm. 

Site 15 lichens increased byll8 ppm. Site 17 lichens increased by 335 ppm. This 

increase in concentration immediately after the transplant procedure can be explained by 
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the fact that the lichens were immersed in an annosphere with a much higher total 

sulphur concentration. Evidently, the lichens were encountering significantly more 

sulphur, thus they were forced to process this sulphur at a faster rate and in greater 

quantities. The lichens utilized the first month to acclimatize to the new and different 

surrounding atmosphere. After this initial intense acclimatization period, the lichens 

apparently accumulated sulphur at a much slower rate that varied somewhat from month 

to month. 

The transplant study by Canas et al. ( 1997) showed contrasting results. The 

lichens, Parmotrema austrosinense and P. conferendum. transplanted in a non-polluted 

site and an urban site demonstrated a slight decrease in sulphur concentration during the 

first month of exposure. Other studies that tested sulphur concentration did not do so on 

a monthly basis and therefore could not be compared. 

When the sulphur concentrations of all three groups of lichens are compared, it is 

difficult to find similarities other than the initial significant increase in each case. 

Evidently, there is a great amount of natural variability associated with the sulphur 

concentrations. This variability is expected because the sulphur concentration of the 

lichens reflects the sulphur concentration of the attnosphere. Thus, if anthropogenic 

activities contribute sulphur to the abnosphere, it will be reflected in the lichen sulphur 

concentrations. For example, if the stack of the Utilities Annex contributes sulphur 

dioxide emissions to the abnosphere and these emissions are moved toward the Botanical 

Garden, the lichens will directly reflect this increase in the sulphur concentrations. 

Numerous anthropogenic activities contribute daily to the amount of atmospheric sulphur 
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such as vehicle exhaust, fire burning, highway construction and industrial activity thus 

altering sulphur concentrations. 

Total precipitation data from the St. John's Airport were compared to the sulphur 

concentrations from Experiment I. Figure 4.2 demonstrates that there is no evident 

relationship between total precipitation and concentration. The changes in sulphur 

concentration cannot be attributed to wet/dry cycles because, as was stated in section 

4.3.1.1, the lichens in this particular study were not subjected to periods of extreme 

dryness. 

The transplanted lichens X and 15 had insufficient time to reach the level of 

sulphur concentration of the lichens originally growing in the Botanical Garden (500 ± 74 

ppm). The final concentrations for sites X and 15 lichens were 408 ppm and 413 ppm, 

respectively. Both groups of lichens were close to the local level. Again, it is difficult to 

estimate the additional amount of time that would be needed to completely allow the 

transplanted lichens to assume the sulphur concentration of the Botanical Garden 

atmosphere because of the amount of natural variation. However, if the sulphur 

concentrations continue to increase in a linear fashion as was the case with the site 15 

lichens (~ = 0.6769), a minimum additional three months would be needed to allow the 

transplanted lichens to achieve the same concentration as the local lichens in the 

Botanical Garden. 

In comparison to previous transplant studies, the exposure time of 12-15 months 

falls within the range of commonly-used exposure periods. The transplant studies 
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Figure 4.2 Plot of total monthly precipitation and [S] values for lichens moved from 
Bonavista sites (a) X (b) 15 (c) 17 to the Botanical Garden over a one year 
period (Experiment 1). 
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discussed in Chapter One utilized exposure times ranging from 2 months to 3 years to 

measure the accumulation of a variety of elements. 

It was determined by Gailey & Lloyd ( 1986) that metal accumulation by the 

lichen, Hypogymnia physodes, occurred after as little as 2 months. A period of 2 months 

was detennined to be an appropriate length of exposure because it met the following 

criteria: detectable accumulated concentrations, reliable values with high replicability and 

within the limits of practical consideration {Gailey & Lloyd, 1986). These findings were 

reinforced by Loppi et a/. (1998). 

On the opposite end of the spectrum, a transplant study by Bennett et a/. ( 1996) 

utilized an exposure period of three years to allow the accumulation of 20 chemical 

elements. The exposure period of this study was almost three times longer than the 

majority of transplant studies with exposure periods from 30-214 days, thus comparison 

was difficult. It was found that increase in element concentrations fell in the same 

general range as those studies with shorter exposure periods. 

In the middle of the range, a transplant study by Sloof ( 1995) measuring cobalt, 

scandium and zinc determined that an exposure period of at least 12 months was required 

to distinguish the concentration of the exposed lichen from the initial concentration of the 

lichen used in this study. 

It is evident from the literature that questions still remain concerning the 

accumulation of a variety of elements in transplanted lichens. The accumulation rate of 

sulphur in particular remains unclear. The study by Palomiki et al. (1992) found that 

after a period of 5-6 months the transplanted lichens had the same sulphur concentration 
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as the original lichens growing at the same sites. On the other hand, the study by Garty et 

a/. (1997) found that 10 months was sufficient time to observe a significant increase in 

sulphur concentration of transplanted lichens. There are numerous transplant exposure 

periods reported in the literature, thus it is possible that a wide range of factors affect the 

accumulation rate of sulphur such as distance from a pollution point source, degree of 

thallus wetness and difference in lichen species. 

The site 17 lichen, Bryoria capil/aris, demonstrated interesting sulphur 

concentration results. It is important to note that B. capillaris initially had higher sulphur 

concentrations than both groups of A. sarmentosa. The starting concentration of the site 

1 7 lichens was 494 ppm, only 6 ppm away from the average concentration of the lichens 

originally growing in the Botanical Garden. Over the year, the concentrations increased 

to a very high level of 844 ppm. 

Evidently, B. capillaris has the ability to accumulate and process greater amounts 

of sulphur than A. sarmentosa. However, this excess accumulation of sulphur by B. 

capi//aris led to physiological damage. Upon initial collection of B. capillaris, the thalli 

of the lichen samples were greenish-gray in colour and had a fine texture. After B. 

capil/aris was transplanted to the MUN Botanical Garden, the thalli changed from 

greenish-gray to a dull brown. The thalli became so brittle that the samples crumbled 

when they were touched. Thus, the data set for B. capillaris is incomplete for both 

Experiment I and ll because this lichen was more apt to fragment and blow away. 

This finding of physiological damage to B. capillaris is reinforced in a study by 

Holopainen (1984). The lichens, Hypogymnia physodes and Bryoria capil/aris. were 
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transplanted to the proximity of a paper miWfertilizer complex in central Finland. In the 

highly polluted so2 sites, acute injury, including cell organelle degeneration and 

plasmolysis, was observed. Further away from the point source in a lower level of S02 

pollution, chronic injury including changes in chloroplast and vacuolar shapes as well as 

swelling of the algal mitochondria was observed. It was estimated in the Holopainen 

( 1994) study that, in less polluted areas, months or years might be necessary before 

macroscopic changes would be evident. 

The above estimation by Holopainen (1984) proved to be accurate with respect to 

this transplant study because visible macroscopic changes in the colour and texture of the 

transplanted B. capillaris were evident 3-4 months after the transplant procedure. The 

degeneration in appearance continued over the period of the one-year study, however, 

microscopic examination of the lichen at the end of the study period indicated that it did 

not die. 

In contrast, the transplanted A. sarmentosa samples (sites X and 15) were bright 

yellow-green in colour with stiff basal attachment and flaccid hollow branches that 

remained unchanged macroscopically throughout the study period. The stability of 

appearance in A. sarmentosa can be attributed to the initial lower concentrations of 

sulphur than that of B. capillaris. 

4.3.1.3 Sulphur Isotopic Composition aad Sulphur Concentration 

Figures 4.3, 4.4 and 4.5 graphically illustrate that the sulphur isotopic 

compositions decrease while the sulphur concentrations increase over the period of one 
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year in all three groups of lichens. The anthropogenic sulphur surrounding the Botanical 

Garden was being accumulated by the pendulous epiphytic lichens as reflected by the 

decreasing isotopic compositions and increasing concentrations. Figure 4.6 

demonstrates the relationship between the decreasing sulphur isotopic compositions and 

increasing sulphur concentrations for the site 15 lichens. The rl for the regression of 

834S on [S] is 0.8047. If the trendline is extended it will intercept at the isotopic 

composition (+5.8 • 0.8o/oo) and concentration (500 ± 74 ppm) of the local lichens in the 

MUN Botanical Garden. 

The most noticeable observation when considering both the isotopic data and 

concentration data together is that during the first month of the experiment as the sulphur 

concentration increased greatly, the sulphur isotopic compositions decreased in each case. 

A significant adjustment occurred within the first month with respect to both sulphur 

isotopic composition and sulphur concentration. The transplanted lichens were immersed 

into an atmosphere influenced by a different source of sulphur in greater total amounts. 

Thus, it was expected that a change in isotopic compositions and concentrations would 

result almost immediately after the transplant procedure. After this initial introductory 

period, the isotopic compositions continue to decrease while the concentrations continue 

to increase with natural variation among the isotopic and concentration data. 

4.3.2 Experiment 0 

A second transplant experiment was performed to complement the results 

obtained from Experiment I. Lichens were again moved from the Bonavista Peninsula 
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into the MUN Botanical Garden. Samples were collected weekly and analysed for both 

sulphur isotopic composition and sulphur concentration over a period of three months. 

4.3.2.1 Sulphur Isotopic Composition 

The most significant observation from section 3.3.2 is the great amount of 

variability in the isotopic data that occurs from week to week in all cases. The increases 

and decreases in the isotopic data on a weekly basis can be attributed to natural variation. 

At any given time, the annosphere may be anthropogenically-influenced by a variety of 

sources including emissions from the Utilities Annex, vehicle exhaust, road construction 

and fire burning leading to a decrease in isotopic compositions. On the other hand, 

increases in isotopic compositions are most likely due to sulphur originating from the 

marine environment being carried into the annosphere surrounding the Botanical Garden. 

Site 15 lichens exhibited the highest initial starting isotopic composition 

(+14.6o/oo). There was an overall decrease of a total of 1.7%o over the three months, 

however, the amount of variability is significant. 

Sites X and 17 lichens did not decrease over the three-month period. Evidently, 

these lichens needed a longer time to assume the isotopic signature of the atmosphere 

surrounding the Botanical Garden. Interestingly, the greatest amount of natural variation 

among the isotopic compositions for site X, 15 and 17 lichens (2.1 %o, 2. 7o/oo and 1.4%o 

respectively) is close to the maximum amount of variation established for the local 

lichens ( 1.9%o). 
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4.3.2.2 Sulphur Conceatration 

The results from the concentration data for Experiment II are detailed in section 

3.3 .3. Again, the three· month period of this experiment did not show any significant 

patterns for the concentration data of the site 15 and 17 lichens. The concentrations for 

site X lichens were very variable thus they could not be averaged and were not included 

in the analysis (section 3.3.1 ). 

Site 15 lichens exhibited a slight increase in concentrations over three months. 

Site 1 7 concentrations remained fairly constant, beginning and ending with similar 

values. However, the amount of variation in each case was great once again. 

Evidently, anthropogenic or natural activities occurring on a weekly basis and 

contributing sulphur to the atmosphere are subsequently reflected in the lichen samples. 

It is important to note that the concentrations of this experiment did not increase greatly 

over the first month as was the case in Experiment I. Apparently, the initial shock after 

the transplant procedure was less extensive in the second experiment. 

4.3.2.3 Sulphur Isotopic Composition and Sulphur Cooceatntion 

The three-month period did not provide enough time to see any significant 

changes in isotopic or concentration data (Figures 4. 7 and 4.8). The most significant 

observation was that on a weekly basis there is a great amount of variability in both the 

isotopic compositions and concentrations. Due to this great amount of natural variability, 

there is no definite relationship between the sulphur isotopic compositions and sulphur 

concentrations (Figure 4.9) during this short experiment as was the case in Experiment I. 
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Figure 4. 7 Plot of average S34S values and [S] values for lichens moved from 
Bona vista site 15 to the Botanical Garden over a twelve week 
period (Experiment II). 
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Figure 4.8 Plot of average 634S values and [S] values for lichens moved from 
Bonavista site 17 to the Botanical Garden over a twelve week 
period (Experiment II). 
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Figure 4.9 Average o34S values plotted against average [S] values for lichens from 
Bonavista sites (a) 15 (b) 17 over a twelve week period (Experiment ll). 
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4.3.3 Experiment I and II 

It is obvious that Experiment l demonstrated imponant findings. The one-year 

study provided a sufficient amount of time to see a definite change in both isotopic 

compositions and concentrations. The transplanted lichens began to react to the new 

environment within the first month and continued to change throughout the year. From 

this experiment it was determined that pendulous epiphytic lichens need mqre than one 

year to attain the same isotopic signature and sulphur concentration of the surrounding 

environment. 

The second experiment was less significant however it showed that more than 

three months are needed to see a definite change in isotopic compositions and 

concentrations. Most imponantly, it demonstrated the great amount of variability that 

takes place on a weekly basis. When this is taken into consideration~ it is evident that a 

small amount of natural variation on a monthly basis can be expected. 

Overall, the two experiments determined that the pendulous epiphytic lichens 

used in this study need over one year to attain the isotopic composition and sulphur 

concentration of the new surrounding atmosphere. These results are significant because 

they demonstrate that while lichens continuously accumulate sulphur from the 

atmosphere, more than one year is required for them to be representative of the 

atmosphere if its sulphur isotopic signature is suddenly altered. 
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5.1 Overview 

CHAPTERS 

CONCLUSIONS 

The main objective of this transplant experiment was to determine the length of 

time it takes pendulous epiphytic lichens to achieve the sulphur isotopic composition and 

sulphur concentration of the surrounding atmosphere. This study is the first attempt to 

monitor changes in sulphur isotopic composition of transplanted lichens. This 

information is essential to complement lichen studies, in general, and stable isotopic 

studies with lichens, specifically. 

Two transplant experiments were performed. The primary transplant extended for 

a period of one year with sampling on a monthly basis. The secondary transplant ran for 

a three-month period with sampling on a weekly basis. 

From Experiment I it was found that the isotopic compositions decreased while 

the concentrations increased over the one-year period for each group of lichens. These 

results confirmed that transplantation of pendulous epiphytic lichens into an area with a 

high content of anthropogenic sulphur in the annosphere will indeed cause a decrease in 

isotopic compositions and a subsequent increase in sulphur concentrations. It was found 

consistently in each group that a significant decrease in isotopic compositions occurred 

during the month of December 1997. The concentration, on the other hand, increased 

greatly during the first month of the experiment. It is important to note that there is 

natural variability among the isotopic and concentration data, apparently unrelated to 

transplantation, as was demonstrated by Experiment ll. 
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From the results of Experiment I, it was detennined that one year was insufficient 

time for the transplanted pendulous epiphytic lichens to assume the same isotopic 

composition and concentration as the lichens originally growing in the Botanical Garden. 

It is estimated that a minimum additional six months would allow the transplanted lichens 

to reflect the sulphur isotopic composition and sulphur concentration of the new 

surrounding atmosphere. 

The implications of this study for environmental monitoring and assessment are 

significant. It is possible to measure significant changes in sulphur isotopic compositions 

and sulphur concentrations over time without waiting extended periods for macroscopic 

indications of damage to the lichen. From this study, it was determined that lichens 

constantly react to various sulphur sources in the atmosphere. If the atmospheric sulphur 

is significantly altered isotopically, this will be seen in the isotopic signature of 

pendulous epiphytic lichens. Thus, isotopic and concentration monitoring of lichens 

around areas of proposed development provide a definitive measure of the impact of 

emissions on the surrounding vegetation over time. 

5.2 Future Work 

This study has laid the foundation for further research. A longer-.term study of 

approximately 2-3 years would confirm the results obtained from this study and 

definitively determine the length of time transplanted pendulous epiphytic lichens need to 

reach the same sulphur isotopic composition and concentration of local lichens. 
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A reciprocal study where lichens from the MUN Botanical Garden are 

transplanted into the sites along the Bonavista Peninsula would provide valuable 

complementary results to this study. 

It would also be interesting to perform a similar transplant study utilizing other 

abundant lichen species such as Cladonia to detennine if various species react similarly. 

Finally, the implications of this study for environmental monitoring and 

assessment are great. There are numerous industrial point·sources throughout 

Newfoundland and Labrador that emit pollutants into the surrounding atmosphere, thus 

calling for regular environmental monitoring. Studies involving transplanted and local 

lichens can effectively monitor improvement as well as deterioration in aunospheric 

quality surrounding industrial point-sources such as the Come By Chance oil refinery, 

Holyrood thennal generating station and proposed Voisey's Bay Nickel mine and smelter 

sites. 

Overall, studies of atmospheric pollution utilizing lichens as effective 

bioindicators have provided significant findings in the past and should continue in the 

future. 

139 



REFERENCES 

Amhadjian, V., 1967. The Lichen Symbiosis. Blaisdell Publishing, Massachusetts. 

Andreae, M.O., 1985. The Emission of Sulphur to the Remote Attnosphere: Background 

Paper in The Biogeochemical Cycling of Sulphur and Nitrogen in the Remote 

Atmosphere. Edited by J.N. Galloway, R.J. Charlson, M.O. Andreae and H. 

Rodhe. D. Reidel Publishing, Dordrecbt, The Netherlands. pp. 5-26. 

Baird, C., 1995. Environmental Chemistry. W.H. Freeman & Company, New York. 

Bennett, J.P., Dibben, M.J., & Lyman, K.J., 1996. Element Concentrations in the Lichen 

Hypogymnia physodes after 3 Years of Transplanting along Lake Michigan. 

Environmental and Experimental Botany 36, 255-270. 

Blake, D.M., 1998. Attnospberic Sulphur Deposition Monitoring in Newfoundland Using 

Lichens. Unpublished M.Sc. Thesis, Memorial University of Newfoundland. 

Brimblecombe, P., Hammer, C., Rodhe, H., Ryaboshapko, A., & Boutton, C.F., 1989. 

Human Influence on the Sulphur Cycle in Evolution of the Global 

Biogeochemical Sulphur Cycle, SCOPE 39. Edited by P. Brimblecombe & A.Y. 

Lein. John Wiley & Sons, Chichester. pp. 77-121. 

Broda, I.M., Duran Shamoff, S., & Shamoff, S., Tbe Licbeas of North America. Yale 

University Press. In preparation. 

Broda, I.M., & Hawksworth, D.L., 1977. Alectoria and Allied Genera in Nonh America 

Opera Botanica 42, 1-164. 

140 



Calhoun, J.A., Bates, T.S., & Charlson, R.J., 1991. Sulphur Isotope Measurements of 

Submicrometer Sulphate Aerosol Particles over the Pacific Ocean. Geophysical 

Research Letters 18, 1877-1880. 

Canas, M.S., Orellana, L., & Pigna~ M.L., 1997. Chemical Response of the Lichens 

Parmotrema austrosinense and P. conferendum transplanted to Urban and Non­

polluted Environments. Annales Botanici Fennici 34, 27-34. 

Case, J.W., & Krouse, H.R., 1980. Variations in Sulphur Content and Stable Isotopic 

Composition of Vegetation near a S(h Source at Fox Creek, Alberta, Canada. 

Oecologia 44,248-257. 

Castleman, A.W. Jr., Munkelwitz, H.R., & Manowitz, B., 1974. Isotopic Studies of the 

Sulphur Component of the Stratospheric Aerosol Layer. Tel/us 16, 222-234. 

Ciba Foundation Symposium 72, 1980. Sulpbur ia Biology. Excerpta Medica, 

Amsterdam. 

Ennis, L., 1999. Isotopic Composition of Bunker C Fuels from Major Anthropogenic 

Sulphur Sources in Newfoundland. Unpublished B.Sc. (Hons.) Thesis, Memorial 

University of Newfoundland. 

Evans, A.N.G., 1996. Characterizing Atmospheric Sulphur Using Lichen and Rain in 

Eastern Newfoundland. Unpublished B.Sc. (Hons.) Thesis, Memorial University 

of Newfoundland. 

Evans, C.A., & Hutchinson, T .C., 1996. Mercury Accumulation in Transplanted Moss 

and Lichens at High Elevation Sites in Quebec. Water, Air and Soil Pollution 90, 

475-488. 

141 



Environment Canada Web Page ( http://www.ns.ec.gc.ca/weather/) 

Faure, G., 1986. Principles of Isotope Geology, 2•d ed. John Wiley & Sons, New York. 

Finnigan MAT Application Flash Report No. 025. 1997. 34S I 32S in Micrograms ofS in 

Pine Needles by Direct Combustion. 

Finnigan MAT 252 Operator Course Notes, Nov. 17-21,1997 

Forrest, J., & Newman, L., 1977. Oxidation of Sulphur Dioxide in the Sudbury Smelter 

Plume. Atmospheric Environment 1 J, 517-520 

Gaily, F.A.Y., & Lloyd, O.Ll., 1986. Methodological Investigations into Low 

Technology Monitoring of Atmospheric Metal Pollution: Part 2 The Effects of 

Length of Exposure on Metal Concentrations. Environmental Pollution 12, 61-74. 

Garty, J., Kloog, N., Cohen, Y., Wolfson, R., & Kamieli, A., 1997. The Effect of Air 

Pollution on the Integrity of Chlorophyll, Spectral Reflectance Response, and on 

Concentrations ofNickel, Vanadium and Sulphur in the Lichen Ramalina duriaei. 

Environmental Research 74, 174-187. 

Garty, J., Kauppi, M., & Kauppi, A., 1996. Accumulation of Airborne Elements from 

Vehicles in Transplanted Lichens in Urban Sites. Journal of Environmental 

Quality 15, 265-272. 

Giesemann, A., Jager, H-J., Nonnan, A.L, Krouse, H.R., & Brand, W.A. 1994. On-Line 

Sulphur Isotope Determination Using an Elemental Analyser Coupled to a Mass 

Spectrometer. Analytical Chemistry 66,2816-2819. 

142 



Hale, M.E., 1983. Tbe Biology of Lichens, 3'd eel. Edward Arnold Publishers, London. 

Hale, M.E., 1974. Tbe Biology of Lichens, 2•d eel. Edward Arnold Publishers, London. 

Hale, M.E., 1967. Tbe Biology of Lichens, 111 eel. Edward Arnold Publishers, London. 

Hawksworth, D.L., & Rose, F., 1976. Lichens as Pollution Moniton. Edward Arnold 

Publishers, London. 

Hoefs, J ., 1987. Stable Isotope Geochemistry, 3nl ed. Springer-Verlag, New York. 

Holopainen, T.H., 1984. Cellular Injuries in Lichens Transplanted to Air Polluted Areas. 

Nordic Journal of Botany 4, 393-408. 

Jamieson, R.E., 1996. A Stable Isotopic Study of Natural and Anthropogenic Sulphur in 

Precipitation in Eastern Canada. Unpublished M.Sc. Thesis, Memorial University 

of Newfoundland. 

Krouse, H.R., Grinenko, L.N., Grinenko, V.A., Newman, L., Forrest, J., Nakai, N., Tsuji, 

Y., Yatswnimi, T., Takeuchi, U., Robinson, B.W., Stewart, M.K., Gunatilaka, A., 

Chambers, L.A., Smith, J.W., Plumb, L.A., Buzek, F., Cerny, J., Sramek, J., 

Menon, A.B., Iyer, G.V.A., Venkatasubramanian, V.S., Egboka, B.E.C., 

Irogbenachi, M.M., & Eligwe, C.A., 1991a. Case Studies and Potential 

Applications in Natural and Anthropogenic Sulphur in the Environment, SCOPE 

43. Edited by H.R. Krouse & V .A. Grinenko. John Wiley & Sons, Chichester. pp. 

307-422. 

143 



Krouse, H.R., Stewart, J.W.B., & Grinenko, V.A., 1991b. Pedosphere and Biosphere in 

Natural and Anthropogenic Sulphur in the Enviro11ment, SCOPE 43. Edited by 

H.R. Krouse & V.A. Grinenko. John Wiley & Sons, Chichester. pp.267-306. 

Krouse, H.R., Legge, A.H., & Brown, H.M., 1984. Sulphur Gas Emissions in the Boreal 

Forest: The West Wbitecourt Case Study V. Stable Sulphur Isotopes. Water, Air 

and Soil Pollution 22, 321-347. 

Krouse, H.R., 1977. Sulphur Isotope Abundance Elucidate Uptake of Atmospheric 

Sulphur Emissions by Vegetation. Nature 265, 45-46. 

Loppi, S., Pacioni, G., Olivieri, N., & Giacomo, F.D., 1998. Accumulation of Trace 

Metals in the Lichen Evernia prunastri Transplanted at Biomonitoring Sites in 

Central Italy. The Bryologist 101, 451-454. 

Luecke, W., & Nielsen, H., 1972. Isotopenfraktionierung des Schwefels in Blasenspriih. 

Fortschr Mineral SO, 36-37. 

Makholm, M.M., & Bennett, J.P., 1998. Mercury Accumulation in Transplanted 

Hypogymnia physodes Lichens Downwind of Wisconsin Chlor-Alkali PlanL 

Water, Air and Soil Pollution 102,427-436. 

Marschner, H., 1995. Miaeral Nutrition ofHigber Plants. Academic Press, London. pp. 

255-264. 

Meagher, J.F., 1980. Natural and Anthropogenic Sources: Overview in Atmospheric 

Sulphur Deposition: Environmental Impact and Health Effects. Edited by D.S. 

Shriner, C.R. Richmond & S.E. Lindberg. Ann Arbor Science Publishers, 

Michigan. pp. 33. 

144 



Mektiyev~ V.L., Gavrilov, E.Ya., & Pankina, R.G., 1976. Sulphur Isotopic Composition 

in Land Plants. Geochemistry /ntemationa/13, 85-88. 

Memorial University of Newfoundland Botanical Garden Pamphlet 

Memorial University of Newfoundland Botanical Garden Web Page 

(http://www .mun.calbotgardenl) 

Muth, O.H., & Oldfield, J.E., 1970. Symposium: Sulphur iD Nutrition. The AVI 

Publishing Company, Connecticut. 

Nielson, H., 1979. Sulphur Isotopes in Lectures in Isotope Geology. Edited by E. Jager, & 

J.C. Hunziker. Springer-Verlag, Berlin Heidelberg, pp. 283-312. 

Nielson, H., Pilot, J., Grinenko, L.N., Grinenko, V.A., Lein, A.Y., Smith, W.J., & 

Pankin~ R.G., 1991. Lithospheric Sources of Sulphur in Natural and 

Anthropogenic Sulphur in the Environment. SCOPE 43. Edited by H.R. Krouse & 

V.A. Grinenko. John Wiley & Sons, Chichester. pp. 65-132. 

Nriagu, J.O., Holdway, D.A., & Coker, R.D., 1987. Biogenic Sulphur and the Acidity of 

Rainfall in Remote Areas of Canada. Science 137, 1189-1191. 

Palomaki, V ., Tynnyrinen, S., & Holopainen, T ., 1992. Lichen Transplantation in 

Monitoring Fluoride and Sulphur Deposition in the Surroundings of a Fertilizer 

Plant and a Strip Mine at Siilinjirvi. Anna/es Botanici Fennici 19,25-34. 

Potts, P.J. 1992. A Hudbook of Silicate Rock Analysis. Chapman & Hall, London. 

145 



Powell, R.L., 1997. The Use of Vascular Plants as "Field" Biomonitors in Plants for 

Environmental Studies. Edited by W. Wang, J.W. Gorsuch & J.S. Hughes. Lewis 

Publishers. Boca Raton. pp. 344. 

Puckett, K.J., 1988. Bryophytes and Lichens as Monitors of Metal Deposition in Lichens. 

Bryophytes and Air Quality. Edited by T.H. Nash & V. Wirth. Berlin. 

Rees, C.E., Jenkins, W.J., and Monster, J., 1978. The Sulphur Isotopic Composition of 

Ocean Water Sulphate. Geochimica et Cosmochimica Acta 42,377-381. 

Renhom, K-E., Esseen, P-A., Palmqvist, K., & Sundberg, B., 1997. Growth and Vitality 

of Epiphytic Lichens: Responses to Microclimate Along the Forest Edge-Interior 

Gradient. Oecologia 109, 1-9. 

Richardson, D.H.S., 1992. Pollution Monitoring with Lichens. Richmond Publishing, 

England. 

Richardson, D.H.S., 1974. Tbe Vanishing Lichens. Hamer Press, New York. 

Roy, A.B., & Trudinger, P.A., 1970. The Biochemistry of Inorganic Compounds of 

Sulphur. Cambridge University Press, Cambridge. 

Ryaboshapko, A.G., 1983. The Atmospheric Sulphur Cycle in The Global 

Biogeochemical Sulphur Cycle, SCOPE 19. Edited by M.V. Ivanov & J.R. 

Freney. John Wiley & Sons, Chichester. pp. 203-296. 

Saltzman, E.S., Brass, G.W., & Price, D.A., 1983. The Mechanism of Sulphate Aerosol 

Formation: Chemical and Sulphur Isotopic Evidence. Geophysical Research 

Letters 10, 513-516. 

146 



Schesinger, W.H., 1991. Biogeochemistry: An Analysis of Global Cbaage. Academic 

Press, San Diego. pp. 464 7. 

Sloof, J.E., 1993. Environmental Lichenology: Biomonitoring Trace Element Air 

Pollution. PhD Thesis, Delft University of Technology. 

Sloof, J.E., 1995. Lichens as Quantitative Biomonitors for Atmospheric Trace Element 

Deposition using Transplants. Atmospheric Environment 29, 11-20. 

Sloof, J.E., & Wolterbeek, B. Th., 1993. Substrate Influence on Epiphytic Lichens. 

Environmental Monitoring and Assessment 25, 225-234. 

Taiz, L., & Zeiger, E., 1991. Plaut Physiology. The Benjamim/Cummings Publishing, 

California 

Thode, H.G., 1991. Sulphur Isotopes in Nature and the Environment: An Overview in 

Natural and Anthropogenic Sulphur in the Environment, SCOPE 43. Edited by 

H.R. Krouse & V.A. Grinenko. John Wiley & Sons, Chichester. pp.l·26. 

Trust, B.A. & Fry, B., 1992. Stable Sulphur Isotopes in Plants: A Review. Plant. Cell and 

Environment 15, 1105-1110. 

Tuba, Z., & Csintalan, Z., 1993. Bioindication of Road Motor Traffic Caused Heavy 

Metal Pollution by Lichen Transplants in Plants as Biomonitors: Indicators for 

Heavy Metals in the Terrestrial Environment. Edited by B. Markert. VCH, 

Weinheim. pp. 329-341. 

Vitt, D.H., Marsh, J.E., & Bovey, R.B., 1988. Mosses, Lichens&, Ferns of Nortbwest 

North America. Lone Pine Publishing, Edmonton. pp. 249-251. 

147 



Wadleigh, M.A., Blake, D.M., & Evans, N.G., 1996. Measuring the Sulphur Isotopic 

Composition of the Atmosphere using Epiphytic Lichens. Association of Applied 

Biologists, Society for Experimental Biology and British Ecological Society. 

University ofNewcastle upon Tyne: 9-11. 

Wadleigh, M.A., & Blake, D.M., in press. Tracing Sources of Atmospheric Sulphur 

Using Epiphytic Lichens. Environmental Pollution. 

Whelpdale, D.M., 1992. An Overview of the Atmospheric Sulphur Cycle in Sulphur 

Cycling on the Continents: Wetlands, Te"estrial Ecosystems and Associated 

Water Bodies, SCOPE 48. Edited by R.W. Howarth, J.W.B. Stewan & M.V. 

Ivanov. John Wiley & Sons, Chichester. pp. 5-26. 

Yanagisawa, F., & Sakai, H. 1983. Thennal Decomposition of Barium Sulphate -

Vanadium Pentaoxide ... Silica Glass Mixtures for Preparation of Sulphur Dioxide 

in Sulphur Isotope Ratio Measurements. Analytical Chemistry 55, 985-987. 

148 



Appendix/ 

149 



Parr Bomb Proeedure 

• Accurately weigh 0.75 - 1 g of crushed lichen and place into a clean combustion 

capsule. 

• Attach nickel alloy fuse wire to the electrodes emerging from the bomb lid shown in 

the following diagram. 

Fuse wire 

• Place 1 0 ml of deionized water and 3-5 drops of SO% hydrogen peroxide into the 

bottom of a clean Parr bomb container. 

• Place combustion capsule with lichen into circular ring on the lid portion of the 

bomb. 

• Adjust the fuse wire so it is positioned close to but not touching the lichen sample. 

• Gently slip the lid into the bomb container (should rest -l-2 mm above lip of 

container). 

• Screw containment-ring onto the bomb container. 

• Attach the connection fitting of the oxygen tank to the inlet valve on the Parr bomb 

\vith the holes aligned. 

• Flush bomb with ~ for three seconds. 

• Fill bomb with 30 atmospheres of~. 

• Attach the wires of the ignition unit to the bomb lid. 

• Submerge bomb in cold water bath and check for leaks. 
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• Ignite bomb and allow to cool in the water bath for 15 minutes. 

• Remove bomb from the water bath and slowly release the pressure. 

• Remove the screw cap and separate the bomb lid from the container. 

• Rinse all bomb components with deionized water into a 500 ml beaker. 

• Remove any excess fuse wire and clean the Parr bomb thoroughly for the next 

combustion. 

• Filter the Parr bomb washings through 0.45 J.lDl cellulose membrane filters. 

• BaS04<s> is precipitated from the washing solution. 

Note: Non-powdered latex gloves must be worn during this procedure to prevent 
contamination. 
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Sample Calculation of Total Amount of Sulphur in a Lichen Sample 

Exam pie using sample A/15/1: 

< 0.0040751 kg 

< 0.50 ml 

< 8.802 ppm 
-( 33.4°/o 

8.802 mg 

lL 

~ total amount of crushed lichen combusted in Parr oxygen 
bomb 

~ washing solution from Parr bomb procedure was diluted 
to this known volume for ion chromatography 

~ sulphate concenttation obtained from ion chromatography 
~ percentage of sulphur in a sulphate molecule 

Xmg 
= 

O.SO L 

= 4.401 mg of sulphate in 0.50 L of solution 

4.401 mg X mg 
= 

0.0040751 kg 1 kg 

= 1079.97 ppm of sulphate in total lichen 

1079.97 ppm x 0.334 

= 361 ppm of sulphur in total lichen 
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Table III. 1 S34S and [S] results for Experin1ent I. 

MONTH s].ls ("-> IS) ( ~pm) 
Site A/IS Site B/IS Site C/IS Average Site A/IS Site BitS Site C/IS Average 

JUN~97 13.3 13.3 13.3 13.3 234 234 234 234 
JUL·97 11.0 11.3 9.6 10.6 361 307 387 352 
AUG-97 11.3 11.8 13.0 12.0 325 296 372 331 
SEP-97 9.8 10.8 9.9 10.2 369 310 303 327 
OCT-97 10.4 10.2 10.7 10.4 431 362 338 377 
NOV-97 11.0 10.6 9.1 10.2 283 322 345 317 
DEC-97 9.5 10.7 10.7 10.3 358 325 430 371 
JAN-98 9.6 8.7 8.9 9.1 394 354 497 415 
FEB-98 9.2 9.3 9.0 9.2 422 337 521 427 
MAR-98 8.7 - - 8.7 402 - - 402 
APR-98 7.4 7.6 - 7.5 416 473 - 445 
MAY-98 7.8 - - 7.8 406 - - 406 
JUN-98 8.6 8.7 8.0 8.4 457 330 452 413 

Site A/X Site B1X SlteC/X Average Site A/X Site BIX SlteCJX Average 
JUN-97 9.0 9.0 9.0 9.0 242 242 242 242 
JUL-97 8.9 8.1 9.1 8.7 430 373 415 406 
AUG-97 9.3 9.3 9.3 9.3 383 420 381 395 
SEP-97 8.4 8.8 8.4 8.5 433 383 307 374 
OCT-97 8.4 8.3 9.2 8.6 340 383 381 368 
NOV-97 9.6 9.2 8.7 9.2 434 387 389 404 
DEC-97 8.8 9.5 9.0 9.1 425 425 405 418 
JAN-98 7.8 8.3 7.6 7.9 434 429 407 424 
FEB-98 7.8 7.2 7.5 1.5 466 441 382 430 
MAR-98 1.5 6.8 - 7.2 525 429 - 477 
APR-98 7.1 7.3 - 7.2 464 448 - 456 
MAY-98 8.1 - 7.5 7.8 490 - 554 522 
JUN-98 6.7 7.3 6.9 7.0 399 412 413 408 



Table Ill. I (continued) 

MONTH 334S (%.) ISJ (ppm) 
Site A/17 Site B/17 SiteC/17 Averaae Site A/17 Site B/17 SiteC/17 Averaae 

JUN-97 12.0 12.0 12.0 12.0 494 494 494 494 
JUL-97 11.6 11.7 11.0 11.4 737 853 897 829 
AUG-97 11.7 II. I 11.5 11.4 877 853 827 852 
SEP-97 11.3 11.2 10.1 10.9 850 811 820 827 
OCT-97 - - - - - - - -
NOV-97 - 10.8 10.2 10.5 828 893 767 829 
DEC-97 - - - - - - - -
JAN-98 9.0 9.1 8.5 8.9 944 928 945 939 
FEB-98 - - - - - - - -
MAR-98 - - - - - - - -
APR-98 - - - - - - - -
MAY-98 9.4 - - 9.4 844 - - 844 
JUN-98 - - - - - - - -
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Table IV .1 B34S and [S] results for Experiment II. 

WEEK 534S (%.) lSI (ppm) 
Site A/15 Site B/15 Average Site A/15 Site 8/15 Average 

0 14.6 14.6 14.6 246 246 246 
1 12.8 12.1 12.5 324 253 289 
2 14.6 12.0 13.3 236 282 259 
3 11.6 12.7 12.2 259 266 263 
4 13.9 13.1 13.5 246 225 235 
5 13.3 13.4 13.4 292 261 277 
6 12.2 12.7 12.5 294 296 295 
7 12.4 13.0 12.7 293 291 292 
8 12.1 11.7 11.9 299 325 312 
9 11.3 12.8 12.1 227 255 241 
10 12.0 12.5 12.3 301 298 300 -u. II 13.9 12.0 13.0 261 316 288 

00 12 J2.1 13.7 12.9 326 339 332 
Site A/X Site BIX Average Site A/X Site 8/X Average 

0 7.8 7.8 7.8 387 387 387 
I 7.3 9.1 8.2 429 293 361 
2 7.1 9.1 8.1 366 331 349 
3 6.8 8.9 7.9 417 357 387 
4 9.9 9.9 9.9 311 345 328 
5 8.9 8.8 8.9 324 341 332 
6 9.2 9.2 9.2 389 387 388 
7 8.9 9.5 9.2 347 346 347 
8 8.0 9.8 8.9 352 324 338 
9 8.0 9.0 8.5 387 361 374 
10 9.2 8.8 9.0 379 284 332 
II 8.9 10.4 9.7 382 316 349 
12 9.1 9.7 9.4 370 383 376 



Table IV. I (continued) 

WEEK &34S ("-1 lSI (pi!_m) 
Site A/17 Site B/17 Average Site A/17 Site B/17 Average 

0 12.6 12.6 12.6 776 776 776 
1 12.4 12.4 12.4 718 663 691 
2 11.7 12.6 12.2 650 702 676 
3 13.0 12.7 12.9 732 741 737 
4 12.8 13.6 13.2 659 777 718 
s 12.8 12.9 12.9 646 689 667 
6 - - - - - -
7 12.0 11.6 11.8 694 709 702 
8 - - - - - -
9 - - - - - -
10 11.9 12.5 12.2 715 - 715 
II 11.9 - 11.9 651 - 651 
12 12.7 - 12.7 724 - 724 
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Table V .I Meteorological data. 

BOTANICAL GARDEN ST. JOHN'S AIRPORT 

Date Time Temp. Relative Wind Speed Wind Speed Temp. Relative Wind Wind 
(•C) Humidity (Parking Lot) (Site) (•C) Humidity Speed Direction 

(•!.) (mls) (mls) (%) (mls) (mls) 

02/11/98 I 0:30am 12.0 100 0.0 0.0 12.0 100 2.5 WSW 
02/11/98 3:30pm 10.0 100 0.0 0.0 10.0 93 3.1 w 
03/11/98 9:30am 6.5 100 3.0 0.0 6.0 93 5.0 E 
03/11/98 1:30pm 7.1 100 2.0 0.0 6.0 100 7.8 E 
03/11/98 4:30pm 7.2 100 1.0 0.0 7.0 93 5.0 ESE -0\ 04/11/98 9:30am 6.5 92 1.0 0.0 8.0 81 6.1 sw - 04/11/98 1:30pm 7.8 88 0.0 0.0 8.0 71 5.0 WSW 
04/11/98 4:30pm 7.3 91 0.0 0.0 6.0 75 3.1 sw 
05/11/98 9:30am 6.2 100 0.0 0.0 6.0 93 4.2 ssw 
05/11/98 I 2:30pm 7.7 82 0.0 0.0 8.0 71 s.o w 
05/11/98 4:30pm 6.0 89 0.0 0.0 6.0 70 7.8 w 
06/11/98 I 0:30am 5.3 94 0.0 0.0 s.o 81 7.8 WNW 
09/11/98 9:30am 1.7 91 0.0 0.0 2.0 64 4.2 WSW 
09/11/98 I 2:30pm 3.5 77 0.0 0.0 4.0 56 5.6 WSW 
09/11/98 3:30pm 3.0 85 0.0 0.0 3.0 60 4.7 w 
10/11/98 9:30pm 1.9 94 0.0 0.0 2.0 69 3.1 WNW 



Table V.l (continued) 

BOT ANI CAL GARDEN ST. JOHN'S AIRPORT 

Date Time Temp. Relative Wind Speed Wind Speed Temp. Relative Wind Speed Wind 
(•C) Humidity (Parking Lol) (Site) (•C) Humidity (mls) Direction 

(%) (m/s) (m/s) <"·) (m/s) 

1011/98 1:30pm 2.6 85 0.0 0.0 2.0 69 4.7 NW 
10/11/98 3:30pm 2.1 83 0.0 0.0 1.0 69 3.1 N 
16/11/98 1:30pm 2.5 90 3.0 1.5 2.0 69 13.3 WSW 
16/11/98 4:30pm 0.4 100 2.0 1.0 0.0 69 10.3 WSW 
17/11/98 11:30am 4.1 80 1.5 1.5 4.0 65 12.2 w -0\ 17/11/98 3:30pm 3.9 79 1.0 1.0 3.0 70 8.3 w 

N 18/11/98 8:30am -0.2 100 0.0 0.0 -2.0 93 1.9 w 
18/11/98 I 2:30pm 2.1 98 1.0 0.0 1.0 86 5.0 NNE 
18/11/98 3:30pm 1.7 97 0.0 0.0 1.0 80 5.0 NNE 
19/11/98 9:30am 0.0 . 2.0 0.0 -1.0 74 11.4 NW 
19/11/98 I 2:30pm 0.1 - 1.5 0.0 0.0 69 10.3 WNW 
20/11/98 I 0:30am -2.3 - 0.0 0.0 -2.0 69 5.6 WNW 
20/11/98 I 2:30pm -0.6 - 0.0 0.0 -2.0 69 4.7 w 
22/11/98 I 0:30am 2.1 98 1.0 0.0 2.0 87 5.0 NW 
23/11/98 9:30am 2.7 91 2.0 1.5 3.0 75 8.6 WSW 
23/J J/98 I 1:30am 3.7 83 1.5 1.0 3.0 15 9.2 ssw 
23/11198 2:30pm 4.2 80 1.0 1.0 4.0 15 8.6 sw 
23/11/98 3:3Qpm 4.2 83 0.0 0.0 4.0 75 6.7 sw 












