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Abstract 

Numerical predictive tools are frequently used in the oil and gas industry as a means 

to determine the optimal procedure to maximize the profitability of a project in a 

nondestructive and cost effective manner. The present work provides a link between 

geostatistics and risk engineering to address geological uncertainty in reservoir for­

mations. The geological properties of a reservoir influence the potential productivity 

of a well. Unfortunately the reservoir properties are never fully known with complete 

certainty. By quantifying the uncertainty in the reservoir geology a risk factor can 

be associated with the well path. This risk factor can be improved by adding mea­

surements while drilling to the geostatistical simulations. The demonstration of how 

to quantify the risk and then apply measurements while drilling to reduce the risk is 

the key focus of this research. This methodology is demonstrated through the use of 

two case studies. 
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Chapter 1 

Introduction 

The oil and gas industry depends on many numerical tools to predict , manage, and 

optimize major exploration and production (E&P) project parameters such as reserve 

capacity, reservoir management procedures, and completions schemes. Due to the 

inherent uncertainty involved in the different aspects of exploration and production 

processes in oil and gas projects , there is a need to use these tools to determine 

the scenarios that offer the most profitable benefits. These tools help quantify the 

uncertainty in the project parameters and allow the decision makers to make educated 

choices. 

During drilling is one area where a tool to quantify geological uncertainty would be 

useful. Data collected during the drilling process can have a sizable impact on the 

uncertainty and thus the risk involved with the drilling of production wells. This 

is the concept explored in the first part of this research; the methodology of how 

to incorporate these "real-time" measurements in a way that quantifies the risk as­

sociated with this uncertainty. Subsequently, applications of the methodology are 

demonstrated through two case studies. 

1 



Reducing the Risk in Drilling Production Wells Willcott, A.P. 

The use of geostatistics became popular in the 1980s and at that time it was considered 

a new approach to describe and quantify spatial dependence of reservoir attributes 

(Kelkar & Perez, 2002). The methodology is still used today in many industrial 

applications, one area being to populate grid blocks in reservoir simulation software 

packages. This particular area has research potential in the field of risk engineering 

and is currently being investigated as a means to determine and, in essence, lower the 

risk (and the cost) involved with the drilling of production wells in reservoirs. 

Risk assessment is a technique for quantifying the hazard involved with a particu­

lar activity along with its probability of its occurrence. The risk methodology is a 

stochastic tool to help guide decisions in a scientific and mathematical manner in 

common and understandable terms. Though seldom applied in geostatistical appli­

cations, risk assessment offers an alternate approach to determining locations and 

paths of well bores in reservoir formations. Geostatistics offers a method to quantify 

the spatial relationship a variable has in a geographic location. The purpose of this 

research is to present an original methodology of how to integrate the fields of risk 

engineering and geostatistics together with reservoir simulation and to demonstrate 

the concepts through the use of two case studies. The approach involves quantifying 

the risk involved with drilling a specified well path with geostatistical uncertainty. 

This quantification can then be made more precise by the addition of measurements 

acquired while drilling (MWD - measurements while drilling). 

1.1 Motivation 

Decision making tools are very important in today's petroleum industry. Historically, 

the oil industry is known for being very traditional in how wells are drilled and how 
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reservoirs are managed. This is because the tools were not previously available to 

help or guide the engineer in such areas. More recently, through the advancement of 

technology and the development of faster computers and more efficient algorithms, 

there has been an evolution of these types of tools. In petroleum production well plan­

ning, the wells are often mapped before the drilling commences. These trajectories 

and the choice of project details such as kickoff location (where the drilling begins) 

and the type of completions in the well, are often based on the available information 

from the reservoir. Pre-drill information may come from seismic data, core samples 

or well-logging techniques. Even though the information is useful and it allows for an 

"educated guess" for the best choice of project details, it fails to fully characterize the 

reservoir with a high degree of certainty. This is why it is necessary to use information 

gathered while drilling to help in the trajectory planning and modification in the case 

of unforeseen circumstances (in the scenario where the original chosen well path is 

not the optimal choice). The first step in developing a tool to help in this respect is 

to first quantify the risk involved in the process. When the risk is quantified it can 

then be compared to different scenarios to find the optimal solution. The motivation 

behind this research is to take the first step in the development of the methodology 

for such a tool that can be used in real-time while drilling. The first step is to quantify 

the risk and outline the methodology in a clear and understandable way. Methodolo­

gies that have the ability to quantify the impact of uncertainties in petroleum field 

development are still not well established due to the amount of variables that have to 

be considered (Schiozer, Ligero & Santos, 2004). Using geostatistics, many variables 

may be considered and this impact can be calculated based on the change in the flow 

simulations generated by a reservoir simulator. 

The use of geostatistics in reservoir engineering is not new. It has been used as a tool 
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to help in a number of different stages of development in reservoir fields. Risk analyses 

have also been used to help manage reservoirs as well. The two concepts, however, 

have not been used together in conjunction with real-time measurements while drilling 

to improve the mathematical field model. An improvement of the mathematical field 

model with new information while drilling would give the reservoir engineer more 

quantitative information about the attributes of the reservoir which would allow for 

more informed decision making. During drilling, information about the formation can 

be relayed to the surface and can be used to tune a geostatistical simulator to be more 

representative of the actual reservoir. The more certain a reservoir engineer is about 

the reservoir parameters, the less risk is involved in drilling the well or changing the 

trajectory while drilling. 

The complexity of exploration and production projects is increasing. They are be­

coming more ambitious and exploring more uncharted territory because technological 

advancements make it possible to do so. Traditionally, oil companies have a compart­

mentalized structure that lacks efficiency and cross-disciplinary information exchange 

(Cayeux et al., 2001). The proposed multidisciplinary approach suggests that com­

bining geostatistics with reservoir engineering would improve and reduce the risk 

involved with the drilling of production wells. 

1.2 Methodology 

The methodology proposed can best be explained through the use of a flow chart. The 

flow chart shown in Figure 1.1 gives the steps needed to go through the geostatistical 

analysis and the risk assessment of a reservoir. The following section briefly describes 

these steps. Each step is discussed in detail in the body of the report. 
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Figure 1.1 shows the process involved with t?-Sing geostatistics to predict the desired 

variable at the unsampled location. It begins with obtaining geostatistical inputs 

from various sources. These sources may include core samples, seismic data, outcrop 

information, well logs or any number of other information sources. This information 

(raw data) needs to be studied to determine if a transformation is necessary. 

A transformation is useful if more information can be obtained from transformed 

data. It may also be necessary to convert qualitative data into quantitative data. 

One example of where a transformation would be useful is for some permeability 

data. When most of the data lies at an extreme end of the data population but 

some data exists over a number of other magnitudes, then the data may appear to 

be log normal. A log transformation would allow for more information to be seen 

in the data. Once the information is in its usable format it is then necessary to 

determine the directions of maximum and minimum continuity. This is necessary for 

anisotropic reservoirs (where parameters vary in distance and direction - not isotropic 

or homogeneous). 

Figure 1.2 shows the process in determining the directions of maximum and minimum 

continuity. Where an adequate amount of information exists a variogram map may 

be created. This means that the variogram (a mathematical expression that signifies 

a variable's spatial relationship) is estimated at various incremented angles (with an 

angular tolerance) until 180 degrees is reached (since the variogram is symmetric) 

while varying the lag distance. The variogram at each angle is compared to the 

variance of the entire original sample. In the comparison, the lag distance should be 

recorded where the variogram and the sample variance are equal. The angle exhibiting 

the maximum lag is considered the direction of maximum continuity. Similarly, the 

direction of minimum continuity is the angle which shows the minimum lag distance. 
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Figure 1.1: Geostatistics /Risk Methodology 
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Max/Min 
continuity 
calculation 

Choose start angle, angular 
tolerance, angle increment. 
lag interval and tolerance 

Find lag where variograrn for 
each angle equals sample 
variance for each direction 

No 

Maximum lag is in 
direction of maximum 

continuity 

Minimum lag is in 
direction of minimum 

continuity 

Note that most often sound geological principles should be used to 
build a depositional and digenetic understanding of the formation. 
The directions of max/ min continuity should be evident from this. 
The method above is in case of ambiguity and if enough data exists. 

Figure 1.2: Continuity Direction Calculation 
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These directions are usually perpendicular to each other. It should be noted that 

sometimes there is a lack of information so a realistic variogram estimation is not 

possible. In this case sound geological theory should be used to determine these 

directions based on the information known about the facies in the location of interest 

(Deutsch, 2002). 

After the directions of maximum and minimum continuity are determined the vari­

ogram must be estimated in those directions. In this way the variogram parameters 

(angle, lag, and respective tolerances) can be optimized in order to reduce the fluc­

tuation of the variogram while retaining its shape and trend. From the variogram 

estimation, the variogram modeling can be initiated. The variogram model attempts 

to fit the variogram estimate with known models with certain mathematical proper­

ties. 

Now the well path must be stated. If different well trajectories are being explored 

then this is the step where that linkage must be made. For now it is sufficient 

to say that the well path is known at this step. Using the variogram models and 

geostatistical simulation methods, the reservoir can be populated with estimated 

data. The geostatistical simulator has the ability to create equiprobable images of the 

reservoir known as realizations on which a geostatistical analysis can be performed. 

Once the reservoir grid has been populated the reservoir simulation can take place. 

The reservoir simulator will calculate the production rates based on each realization. 

Once the simulation has been run a desired number of times on the different real­

izations the risk analysis can be completed. For this there are two parts. First the 

probability of not achieving the desired production and second, the consequences as­

sociated with not achieving the desired production. Multiplying these together yields 
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a risk factor. Since the production rates have been calculated for a number of real­

izations the risk factor has a distribution which may be analyzed to see if the risk is 

acceptable. The next procedure is introduction of the measurements while drilling to 

the methodology. Using measurements along the well bore, the geostatistical realiza­

tions can be recalculated and the risk factors can be re-evaluated. Now the reservoir 

parameters are known with a little more certainty and the project can move forward 

with more information. If this process is completed for a number of different drilling 

states, then each state should realize a reduction in risk, making the decisions that 

are made more informed. This is the main concept being proposed and developed in 

this research. 

1.3 Thesis Outline 

The present section gives a brief introduction to the thesis and it gives the reader 

insight into the motivation behind the research. Chapter 2 shows the results of a lit­

erature search in the particular areas of geostatistics, risk engineering, and reservoir 

engineering to show the work that has been done so far. Chapter 3 deals with the 

basic methodology of how to apply geostatistical concepts to determine information 

about variables at unsampled locations. It represents an introduction into the basic 

concepts of applied geostatistics so that the methodology may be fully understood. 

Chapter 4 concentrates on risk engineering concepts and demonstrates how risk en­

gineering can be a useful tool for decision making and how it can be implemented. 

Chapter 5 introduces all of the major geostatistical and risk concepts through the 

use of a simplified case study. This case study is very useful in that it shows valu­

able insight into how to apply the concepts of geostatistics to estimate unsampled 

values. It then proceeds to combine these values with the concept of risk assessment 
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to estimate the risk involved with production along a specified well path without 

using measurements while drilling. Chapter 6 contains a more detailed case study 

to further demonstrate the concepts and it also presents an original methodology on 

how to incorporate measurements while drilling into the development of the risk pro­

files. The final sections conclude the study with observations while making certain 

recommendations for future research. 
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Chapter 2 

Literature Review 

2.1 General R eview 

The application of geostatistics in reservoir characterization has been limited whereas 

it has been used extensively in mining. The transition of the application of geosta­

tistics from mining to reservoir characterization is indeed a difficult task as stated by 

Chopra, Severson and Carhart (1990) . The use of geostatistics in reservoir charac­

terization to properly define a reservoir can greatly enhance the profitability of the 

petroleum host formation and thus should be given due consideration. The power of 

geostatistics is that it can produce equiprobable images of the reservoir that incorpo­

rates data uncertainty. This creates a probable bandwidth of performance based on 

the physical formation rather than implementing a best guess approach. These images 

honor all available data which is another important advantage of using geotatistics, 

data integration. Geostatistics has the ability to integrate many different types of 

data (Qassab et al. , 2000) such that different sources of information with different 

levels of resolution can be used together. It also provides a methodology which has 

more potential to capture spatial correlations than conventional techniques such as 
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triangulation and the piecewise linear squares method (Chopra et al., 1990). 

A full scale geostatistical modeling study can be performed in a relatively short period 

of time (1-3 months if the input data is available). Once this initial model is deter­

mined, updates can be performed extremely quickly (Damsleth et al., 1997). This 

means it can be used effectively and qUickly when new information becomes available 

such as during the drilling process. Geostatistics is a very powerful tool for quanti­

fying geological uncertainty. One way in which this quantifiable uncertainty can be 

used is in a risk analysis. This would provide information on where the geological 

uncertainty causes the most monetary risk and allow for decisions to be made based 

on the monetary impact of the geological uncertainty. 

Risk analysis has been used in the past for many different applications in the oil and 

gas industry. It has been used in the planning of underbalanced drilling projects 

(Arild et al., 2004), and in scale management in deep water (Mackay et al., 2004). It 

has also been used for calculating well performance taking into account reservoir and 

completion uncertainties (Wehunt, 2003). Other applications noted in the literature 

explore the use of risk analysis to help prevent blowouts as well as explosions, fire, 

and cargo tank explosions on FPSOs (Overfield et al., 2000; Khan et al., 2004; Khan 

et al., 2002). The literature search revealed that risk analysis has not been used 

in reservoir characterization while drilling so far. This thesis provides a framework 

for the application of risk analysis to reservoir characterization during drilling at a 

preproduction stage. Subsequent sections of this chapter provide further detail on 

the subject topic. 
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2.2 Geostatistics and Reservoir Engineering 

Geostatistics uses stochastic imaging. Essentially this means that once the known 

data is fixed in a simulation the other unsampled points are allowed to vary. Each 

variation provides a new still image of the reservoir which has an equal likelihood of 

occurring. The collective set of stochastic images can be referred to as a probability 

distribution that accounts for space dependencies through the use of spatial models of 

the unknown variable. With more available information, the spread of the posterior 

distribution decreases and the images have less variation (Journel, 1990). This is 

due to the fact that the uncertainty of the distribution decreases with an increasing 

amount of information about the formation. 

Another recent study (Galli et al. , 2004) involves stochastic modeling with Bayesian 

updating. The researchers used geostatistics to honor field data with the framework 

to measure the effect of additional information. The major dilemma was the high 

level of uncertainty raised doubt to the feasibility of a certain project. Through the 

use of the development of three probable cases, the project could be evaluated and 

studied. A Bayesian approach was used to incorporate the different scenarios that 

were optimistic and pessimistic. This study provided clear evidence that geostatistics 

has an important place in reservoir engineering as a method to quantify reservoir 

uncertainties. 

Geostatistics has also been used to improve reservoir characterization by coupling 

seismic data and simulated annealing. Simulated annealing is a procedure which uses 

geostatistics and an analogy to physical metallurgy (metal annealing) to create ran­

dom realizations based on static data and simulation. In the cooling of molten metal, 

the quality of the metal depends on the temperature and the rate of cooling of the 
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metal. In essence it is based on thermodynamic principles and on obtaining an energy 

equilibrium by allowing the molecules of the metals to find the lowest energy state. 

Because simulated annealing is based on the physical analogy, knowledge of three 

analogous system components are needed; energy, temperature and interactions of a 

molecular system (Kelkar et al., 2002). By defining an objective function representing 

the energy of the process, it can then be perturbed by the interchange mechanism 

(the molecular interaction) and ultimately minimized. In the study, it was recognized 

that a strong relationship existed between seismic impedance and rock porosity (z= p 

v), so the inter-well spatial relationships in the lateral direction could be character­

ized with more accuracy using 3-D seismic attributes and transforms (Abdassah et 

al. , 1996). 

A study conducted in 1996 regarding a reservoir in the North Sea concluded that 

there is a need to improve an existing simple layer model to better represent the 

production data. This could best be achieved using geostatistics. It was found that 

through the use of geostatistics, a higher level of heterogeneity was captured and the 

model resembled the production data much more closely (Sweet et al., 1996). 

There are many helpful and useful texts which fully describe the methods of geosta­

tistics in both mining applications as well as in applied reservoir characterization. A 

complete listing of references cited in the compilation of this study is presented in the 

last chapter called References. 

2.3 Risk Analysis in Geostatistics 

This section reviews some of the literature available regarding work that has been 

completed to date in the area of risk analysis and geostatistics with an emphasis on 
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oil and gas related projects. 

Srivastava (1990) presents an early study on the combination of risk analysis and 

geostatistical methods. The presented work presents a case study that demonstrates 

a methodology that calculates the optimal volume of that gas should be injected into 

a gas injector well when the connected ·pore volume is uncertain. Using geostatistics, 

the uncertainty in the pore volume was estimated and the risk factor was computed 

based on the cost of the solvent vs. the price of oil produced (Srivastava, 1990). This 

paper does not include a real-time analysis, however, the risk approach discussed is 

valuable. 

Another work by Pathak, Ogbe et al. (2000) uses geostatistics to evaluate well place­

ments. It reviews 15 potential well locations at 3 realizations (high, medium and 

low permeability values). The reservoir development strategy focuses on maximum 

recovery, accelerating production and mitigating risk. The approach does not use risk 

analysis or a real-time use of geostatistics but it does provide insight on what factors 

to focus on when choosing an optimal well path as well as a good methodology for 

a basis for risk analysis. Similar studies include those by Yeten et al. (2003), and 

Manceau et al. (2001). 

Thayer et al. (2003) also completed a study outlining the combination of geostatistics 

and risk assessment however it was not related to oil and gas. It does provide an alter­

nate source of application to geostatistics that is refreshing in that it involves the use 

of geostatistics to quantify human and ecological risk assessment at a contamination 

site. Other important studies with similar objectives were completed by Khan and 

Husain (2002 and 2003). 
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2.4 Risk Analysis in Reservoir Engineering 

"Management scientists use a wide variety of tools and techniques to model, analyze, 

and solve complex decision problems." (Evans et al., 2002). This process becomes 

increasingly complex when dealing with parameters that have uncertainty in their 

determination scheme. For example, in reservoir characterization the parameters of 

interest include those which are determined from intrusive tests such as well logging, 

coring and data available from other non-intrusive tests such as seismic imaging. 

Porosity and permeability are the most important parameters since they have such a 

large impact on oil in place predictions and flow simulations. In order to integrate a 

large set of inputs together, a methodology must be in place. Tools in the past have 

been so cumbersome, inefficient and difficult to use that project managers would avoid 

using them even if the potential results outweighs the time commitments involved with 

such an analysis. 

One example of where many different aspects of a project were combined into a 

full-scale risk analysis was documented by Solis et al.(2004). They investigated the 

application of risk to a case study with uncertain rock parameters, different devel­

opment schedules, and capital expenditure uncertainties (such as price inflation and 

discount factors). The methodology presented concentrated on an interest in optimiz­

ing the field development scenario by balancing the risk and uncertainty to maximize 

asset profitability. Although this method is a powerful tool, it is different than the 

methodology presented in this thesis, since it fails to include detailed reservoir char­

acterization models in the stochastic simulation analysis. 

Part of the evaluation of risk involves the calculation of uncertainty. Geostatistics 

achieves this through the generation of multiple realizations, however, it is not the 
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only way to evaluate the uncertainty. In an effort to reduce the number of input 

parameters, reduce the computation time and still have reasonable uncertainty pre­

dictions, a number alternative procedures have been proposed. 

· • Scaling Analysis: This involves developing dimensionless groups which allow for 

scales that are geometrically similar, to have comparable results. The use of 

scaling results in fewer parameters than the dimensional counterpart. 

• Variable Sensitivity Analysis: This involves analyzing the problem to determine 

the effect of the inputs on the uncertainty of the problem. Techniques for com­

pleting this task include Monte Carlo simulation, first-order analysis, second 

order analysis, response surface methods, and experimental design methods in­

cluding Box-Behnken design and Taguchis' approach. The Box-Behnken design 

and Taguchi's method are approaches to experimental design with deliberate 

testing of factors (or variables) at deliberate factor levels (high, medium and 

low levels, for example) to determine the relationships between all variables in­

volved. The approaches are part of a larger field called Design of Experiments 

and more information can be found on these topics by referring to Mason et al. 

(2003) and Taguchi (1987) . 

One study found that the combination of scaling and experimental design and re­

sponse surface modeling offered the most potential to reduce computational time and 

effort (Chewaroungroaj et al., 2000). 

During the development phase of a petroleum reservoir there are many managerial 

decisions to be made. These decisions are always related to the risk involved because 

of the uncertainties involved in the process. A risk analysis is made even more critical 
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by the fact that most of these important decisions are made during the initial field 

development stages when the uncertainty is at its highest levels. The most common 

uncertainties that exist that effect the success of a project occur in the geological 

model (volume in place, faults, continuity, porosity and permeability distribution 

etc.). Development can be influenced not only by geological, economic, and techno­

logical risks but also by production strategies, schedules and management decisions. 

To obtain a level of precision necessary to fully understand the risk, numerical simu­

lation techniques are necessary (Schoizer & Ligero & Santos, 2004). 

A risk assessment was performed on a reservoir in Saskatchewan, Canada to inves­

tigate the economic feasibility of using a carbon dioxide miscible flood to improve 

recovery from the reservoir. The risk analysis included factors such as organizational 

performance, market prices, service factors, competing projects and productivity. 

This proves that a risk analysis is capable of incorporating many different types of 

information to yield a comprehensible result. The risk analysis provided an essen­

tial evaluation tool for the development of a clear understanding of the project, and 

it also provided a source of information to help reduce project exposure to critical 

risks (Barnart & Coulthard, 2000). A similar study used a risk analysis approach to 

optimize a water injection strategy on a field in Brazil (Manceau et al. , 2005). 

2.5 Model Updating 

There are many different ways to update numerical reservoir models throughout the 

life of a project. The following section explores some methods in which numerical 

models have been updated using data retrieved after the project has begun. This 

type of updating improves the reservoir accuracy by decreasing uncertainty in the 
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formation. 

The integration of dynamic data into petroleum reservoir characterization has been 

an active area of research in recent years. Integration of multiphase production his­

tory is particularly important since it is the most widely prevalent dynamic data (Xue 

et al., 1997). Traditional inversion methods involve perturbing reservoir parameters 

at all locations until the production data is matched. Such methods are computa­

tionally demanding and do not always yield realistic reservoir models. For this reason 

a two-stage approach was proposed where the original static data is used to generate 

stochastic realizations. Then specific pilot points are chosen to preserve the struc­

ture of the stochastic models. These points are perturbed and the perturbation is 

transfered to the structure through geostatistics. The methodology has decreased the 

amount of time it takes to complete an inversion problem through the use of pilot 

points. It also provides a platform for integrating dynamic and static data. In this 

case the dynamic data refers to production data. A similar study was conducted by 

Lamy et al. (1998). 

The development phase of a reservoir is dynamic with different information becoming 

available at different times. One should base decisions on all available data (Ozdogan 

et al., 2004). Well placement has a very significant impact on future recovery so care 

needs to be taken when choosing the well locations and trajectory. The study by 

Ozdogan et al.(2004) suggests an iterative process whereby the well is chosen, the 

production is estimated and recorded, a new well is chosen and the process continues 

until a desired number of wells are estimated. The optimal well is the one which 

shows the best production. To incorporate dynamic data the paper suggests using 

history matching. A similar study was completed by Fenwick et al. (2003). By 

dynamic data however, the paper refers to information gathered after wells have been 
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completed and have some production history and the results can only be used before 

drilling secondary wells. This is helpful, but the information can also be used during 

the drilling process to tune the primary wells while drilling. 

Another study used a history matching process to update reservoir models. The 

numerical model was updated such that it predicted the present and past behavior 

of the reservoir. The Kalman filter was used to implement the history matching and 

is well discussed in Brouwer et al. (2004) . Similar studies have also been completed 

by Nrevdal et al. (2003) and Gu et al. (2004). The reservoir management with 

the Kalman filter updates the model as information becomes available but it uses 

history matching with controlling values. The Kalman filter is represented by a set 

of mathematical equations. These equations use a recursive algorithm to estimate 

the state of a process in a way that minimizes the mean of the squared error. The 

filter supports estimations of past, present, and even future states, and it can do 

so even when the nature of the modeled system is not known (Welch et al., 2004). 

History matching can also be done for geostatistical realizations as well. As shown by 

Rossini et al. (1994) , a methodology exists that preserves the reservoir heterogeneity, 

maintains the static models initially created and still matches the production history. 

Their belief was that only past production can provide a guide to the most realistic 

reservoir realization. This particular procedure contributes to making the fluid flow 

model a more reliable tool for reservoir management without increasing the time for 

execution. Another study on history matching involved matching production data 

to the geostatistical data simultaneously with the upscaling of grid blocks (Fenwick 

et al. , 2003). This study does not concentrate on real-time data, however, it does 

provide some interesting insight on possible ways to improve the history matching 

process. 
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Another study focuses on assessing the uncertainty while focusing on well placement 

optimization. It is stated that "decision analysis tools are used during exploration 

and initial development stages but not in later stages because of the complexity of 

decision trees" (Giiyagi.iler et al., 2001). It defines three types of risk: risk-adverse 

(avoidance of risk), risk-prone (takes risk for financial gain), and risk-neutral (balance 

of risk and financial gain). The optimization will be based on the risk attitude of 

the experimenter. The optimization of well placement through the use of the least 

squares method to reduce the number of realizations in conjunction with geostatistics 

is suggested in another study (Pan et al., 1998). The optimization is concerned with 

the field development schedule on not a real-time optimization of a single well path. 

A net present value objective function is used in the optimization. 

Literature about utilizing information while drilling to update numerical reservoir 

models is limited. One study proposed the use of nuclear magnetic resonance tech­

nology to evaluate reservoir quality in shaly sand reservoirs. The information gathered 

while drilling was used to aid in the geosteering of the production drill string to drill 

within thin target layers (Oguntona et al., 2004). Real-time data use is also discussed 

in a recent study by Saputelli et al. (2003). 

The literature cited in this section demonstrates that work has been done linking 

geostatistics, reservoir engineering and risk engineering. All highlight advancements 

in technology and methodologies to improve the way reservoirs are characterized. The 

current study proposes a further advancement and a new methodology for combining 

the three areas of geostatistics, reservoir engineering and risk engineering along with 

measurements while drilling to reduce the risk involved with the drilling of production 

wells. 
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Chapter 3 

Geostatistical Background 

There are many tools available for the statistical analysis of natural phenomena. 

Though these studies may be useful to gain valuable qualitative insight, most classical 

statistical investigations fail to incorporate the spatial relationships in geological data 

sets (Isaaks, 1989). Geostatistics is the form of statistics that takes advantage of the 

spatial continuity of a geological data set while providing adapted classical regression 

techniques. 

It is necessary to have an estimation method for reservoir properties not only to 

carry out feasibility studies on the profitability of a reservoir but also to estimate 

the life of the reservoir, expected time to production, life of the well, along with 

many other useful pieces of information. This estimation is made more accurate by 

maximizing the use of all the available information or raw data available to help tune 

the estimation. Using raw data such as data from well logs, well-test data, 2-D and 3-

D seismic information, outcrop information and cored data, reservoir heterogeneities 

can be accounted for and the mathematical model of the reservoir can be made to 

closely resemble the actual formation. The mathematical model must honor both form 

(geological environment, rock types, etc.) and function (petrophysical properties that 
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effect performance) which is inherent in the geostatistical method of point estimation. 

Approximately 90% of geostatistical reservoir characterization studies make use of 

the concept of variograms and variogram modeling methods (Gringarten et al., 1999) . 

Variograms are a mathematical representation of the spatial relationship of a variable 

based on sample data. Once the relationship is estimated a simple model is fitted to 

the estimation. Then the desired parameters are determined using a technique known 

as kriging which may be extended to include simulation by incorporating uncertainties 

into the procedure. In order to fully understand these concepts it is necessary to be 

familiar with basic statistics, the common variogram models and common kriging 

techniques. This chapter outlines these concepts. 

3.1 Spatial Relationships 

3.1.1 Spatial Data Sets 

The basic assumption in spatial data sets is that two pieces of data located geograph­

ically close to each other are more likely to have similarities than two pieces of data 

that are further apart. These data sets have a number of differences from random 

data sets. In the case of reservoir spatial data sets, there is no random sampling. 

This is because all drilled wells are not drilled simultaneously and each new well's 

location is chosen based on the information gathered from previously drilled wells. A 

second difference is that spatial data sets have biased sampling. This is because wells 

are drilled based on the location that shows the most potential for favorable prof­

itability. This determination of potential may be based from available information 

from seismic tests, outcrop information and any other available source. A final dif­

ference in spatial data sets is the fact that local variability exists. This means that a 
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reservoir may intersect a number of different lithofacieses each of which show its own 

characteristics. This behavior must be understood so that the estimation will take it 

into account. In analyzing such data sets it is imperative to remove intrinsic biases. 

Methods exist to remove such biases. One method is denoted sample declustering. 

This method subdivides all the data into equally spaced regions whereby each data 

point in the region is assigned a weight based on the number of sample points in that 

region. The result is that regions where many sample points are available no longer 

skew the overall analysis of the data. There are methods to estimate the size of the 

sub regions however different sizes should be tried in order to find minimum reservoir 

properties. This will maximize the effect sample declustering may achieve (Kelkar & 

Perez, 2002). 

3. 1.2 Concept of Lag Distance 

To describe spatial relationships the concept of lag distance is employed. The strength 

of the relationship between a variable and its relative location is based on the co­

variance between the variable of interest (the sampled property such as porosity or 

permeability) and lag distance. The key to maximizing the use of lag distance as a 

secondary variable is choosing the appropriate lag interval where the number of sam­

ple points within the lag tolerance is minimized while maintaining an acceptable level 

of accuracy in the reservoir characteristic under study (too many points leads to data 

smearing and excessive computer time and too few points leads to high fluctuation). 

This optimization takes experience and experimentation. 
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Definition of Covariance: 

Geostatistics employs bivariate statistics very liberally. This is intuitive in the fact 

that the relationship between petrophysical properties and their relative spatialloca-

tion is a primary concern. The predominant bivariate concept is covariance: 

C(X, Y) = E(XY) - E(X)E(Y) (3.1) 

Where: 

• E is the expected value of the random variable or variable pair 

vVhich can also be written as: 

(3.2) 

Where: 

• x and y are random variables 

• n is the number of variable pairs 

Note that this is a measure of the strength of relationship between two variables. If 

covariance is positive then the variables are positively proportional, if it is negative 

they are inversely proportional, and if it is near zero then the variables are considered 

unrelated. 

This equation can be written in this form to incorporate lag distance to be used in 

computation: 
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( 
..... ) n ( L) ( ..... ) ( ..... .....) [ n ( L) ( ..... ) ] 

2 

c L = n(~) ~ X ui X ui + L - n(~) i~ X ui (3.3) 

Where: 

• rJi is the variable position vector at the ith location 

To determine the number of pairs in a lag interval it is necessary to use a lag tolerance 

and a search radius equal to the lag distance+/- the lag tolerance. Figure 3.1 shows 

one lag distance and the lag tolerances associated with it. The sample point of interest 

is in the center of the figure. The number of pairs available at this lag distance is 9 

(each point is paired to the point of interest). If the chosen lag distance or tolerance 

is too short then the model will experience high fluctuations, if the lag distance or 

tolerance chosen is too long then the model will lose important information about 

the property being studied. When estimating the variogram we use all value pairs 

within the search neighborhood using each sampled point as a reference (one at a 

time through the complete data set). Keep in mind that the search neighborhood 

is not always a radial region but it may be confined to an angular tolerance as well. 

This will be discussed in more detail later. 

3.1.3 Assumption of Stationarity 

The pnmary assumption in the application of the geostatistical procedure is the 

assumption of stationarity. This assumption means that the proposed model based 

on the sampled data can adequately describe the behavior of the population. This 

assumption has been mathematically verified in the geostatistical procedure and it 

provides a basis for the estimating methodology. This assumption is broken into two 
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Figure 3.1: Lag Distance Visualization 

parts which can be expressed mathematically: 

First Order of Stationarity: 

(3.4) 

The first order of stationarity requires local means be approximately constant. It 

is sometimes necessary to modify regions or spatial relationships in order to obtain 

satisfactory compliance with this order of stationarity. 

Second Order of Stationarity: 

(3.5) 

The second order of stationarity implies that random variables are independent of 

location and are only a function of the relative vectors between desired and sampled 

locations. This means that the variance of the population is constant and is equal to 
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the covariance at a lag distance of zero. 

(3.6) 

This can be derived from the definition of covariance when the lag distance is zero. 

In this case Equation 3.1 reduces to variance of the single variable: 

C (X (u), X (u + 0)) = E (X2
)- [E (X)] 2 = V AR (X) (3.7) 

3.2 Variograms 

3.2.1 Variograrn Estimation 

"The variogram is the most commonly used geostatistical technique for describing 

the spatial relationship" (Kelkar & Perez, 2002) . Mathematically it is defined as: 

(3.8) 

In words this means that the variogram is half the variance of the difference between 

a sampled value and its pair some lag distance away. In practice the equation can be 

written in this form (Isaaks et al., 1988): 

(3.9) 

The variogram estimation is the first step to simulating variables at unknown locations 

and it should be carried out in order to determine the type of variogram model to 
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use. Using the preceding equations the variogram is available for estimation however 

some problems may occur where some data transformation may be necessary. 

There are four basic possible problems in estimating variograms. These include: 

• Lack of sufficient pairs - More pairs mean more precision however it also means 

more computation time as well. A good starting point is to make the maximum 

lag distance half the maximum distance between sample points in the region of 

interest. The lag tolerance may also play a role in avoiding a lack of sufficient 

pairs. If not enough pairs exist then the lag tolerance should be increased. 

• Instability - Small differences in values lead to large fluctuations since the vari­

ogram estimate involves the squared difference of the variable pair. Removing 

anomalies and using a greater lag tolerance may help to avoid this problem. 

• Influence of Outliers - Points that fall well outside the range of the rest of the 

data are known as outliers. These points tend to skew the overall variogram 

results. To avoid this problem a data transformation may be necessary (such 

as a log transform) or if a physical reason exists that discounts the existence of 

such a point then the point may be removed. 

• Biased Sampling- In the case where clustering occurs (this is very common in 

spatial data sets) then variogram transforms may be employed. The general­

relative transform and the pairwise-relative transform are two of the most com­

mon (Kelkar and Perez, 2002). 
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3.2.2 Variogram Modeling 

Once the variogram is estimated a model can then be created to fit the estimation. 

The variogram estimation is needed in order to create the model but the estimation 

itself is not sufficient for point estimation. The estimation is based on a discrete set 

of data points whereas the model is continuous. 

There are two requirements for the modeling of variograms. One requirement is to use 

the minimum number of parameters to model the variogram. This is to increase the 

simplicity of the model thereby reducing computational requirements in the estima-

tion procedure. If a simple model is a good representation of the variogram estimate 

then more complicated models should not be explored. The second requirement is 

that the condition of positive definiteness should be satisfied. The positive definite 

requirement is a system condition. The system of interest in this case is the matrix 

developed by the variogram model used in the kriging process (see Section 3.3 on krig­

ing). In order for a variogram model to satisfy the condition of positive definiteness 

the following must be true: 

n n 

L L >-.i>-.j · c(ui, uj) > 0 
i=l j=l 

(3.10) 

Where: 

• >-.i, Aj are kriging weights 

• c( iii, Uj) is the covariance of two sample points located at iii, Uj from the 

sample point of interest 

Note that the kriging weights are derived in part by the evaluation of the variogram 
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models (this is demonstrated in the kriging section). The positive definite requirement 

can also be stated in terms of the variogram model instead of the form of covariance. 

This variogram form is equally sufficient. It is stated: 

n n 

- L L )..i)..j · !(ui, uj) > 0 and 
i=l j=l (3.11) 

Where: 

• !(iii, iii) is the variogram of two sample points located at iii, iii from the 

sample point of interest 

All of the common variogram models have already been tested for positive definiteness. 

Combinations of the common variogram models have been tested as well. 

The following is a summary of some of the common variogram models. 

Models with a Sill 

A sill is a constant value that the variogram reaches as the lag distance increases. 

Note that the parameter a is the range of the variogram (the lag distance where the 

sill is reached), the parameter L is the lag distance, and the variable Co is the sill 

value. 

Nugget-Effect Model: This model indicates a total lack of information with respect 

to spatial relationships. It is defined in the following manner: 
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(3.12) 

Spherical Model: This is the most common variogram model with sill. It has its 

highest slope at the origin. It is mathematically defined in the following manner: 

Msa(l) Co[~(~)-~ (~) 2] if l>a 
(3.13) 

Msa(l) Co if l<a 

1.2 Spherical Variogram Model 
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Figure 3.3: Spherical Variogram Model 
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Exponential Model: This model shows a more gradual change in the initial slope than 

the spherical model. It is defined mathematically as: 

MEa(L) = C0 [1- exp (-3~)] if L ~ 0 (3.14) 

, l Exponential Variogram Model 
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Figure 3.4: Exponential Variogram Model 

Gaussian Model: This model has a slope of zero at the origin and it reaches 95% the 

sill value. 

(3.15) 

Combination Models: Any linear combination of these models can be used. The 

following is an example: 

(3.16) 
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1.2 Gaussian Variogram Model 
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Figure 3.5: Gaussian Variogram Model 

Models Without a Sill 

Variogram estimates that exhibit trends and do not approach sill values will need a 

model without a sill to represent it. There are a number of variograms that can handle 

this behavior. Some examples of this type of variogram model include the fractional 

gaussian noise model, the fractional brownian motion model and the logarithmic 

model. The fractional gaussian noise and fractional brownian motion models are 

based on empirical parameters available in various literature sources. The details of 

these models are located in Appendix A. One common variogram without sill is the 

hole-effect model. This model is described next. 

Hole-Effect Models: Sometimes an estimated variogram exhibits a cyclic behavior. 

There are certain natural phenomena where hole effect variograms are expected to 

be applicable. If there are discrete regions where the property of interest exists in 

certain thresholds (different thresholds in different regions) then there may be natural 

cyclic behavior. This is often apparent for vertical variograms since it is common to 

have facies change in the vertical direction due to the natural formation of rock layers 

through sedimentary deposit. If this behavior is apparent in an areal data set then it 
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is useful to check maps of the data to see if the cyclic behavior is obvious. If there is 

no evident explanation for the hole effect then it may be reasonable to conclude that 

the apparent hole effect is actually undesirable noise (Isaaks, 1989). 

Sine Model: 

(3.17) 

Where: 

• a= max(-yh~))-Co < 0.212 where a is the range of the variogram 

Cosine Model: 

r(L) = C0 [1- cos(aL)] (3.18) 

For all a. 

This cosine model is applicable over a wider range of amplitudes but only in one 

dimension. 

3.2.3 Variogram - Covariance Relationship 

The relationship between the variogram and the covariance between two sample points 

is fundamental to the solution of the kriging problem. To fully understand this 

relationship we start with the definition of variance, Equation 3.7. Next we can 

define a second random variable and include this in the variance equation in the 

following manner: 

VAR(X- Y) = E [(X- Y)2
]- [E(X- Y)] 2 (3.19) 
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Expanding this equation we get: 

VAR(X- Y) = E(X)2 +E(Y)2 -2E(XY)-[E(X)] 2 -[E(Y)]2 +2[E(X)] [E(Y)] 

(3.20) 

Now realizing Equation 3.7 can also be written for the new random variable 

V AR (Y) = E (Y) 2
- [E (Y)]2 (3.21) 

and acknowledging also that covariance can be written in the form of expectation: 

C (X, Y) = E (XY)- E (X) E (Y) (3.22) 

we can substitute into Equation 3.20 to obtain: 

V AR (X - Y) = V AR (X)+ V AR (Y) - 2C (X, Y) (3.23) 

If we now assume that the variable X = X ( il) and variable Y = X ( i1 + L) then we 

get: 

V AR [x(u)- X(il + i)] = V AR [X(il)] + V AR [x(il + L)]- 2C [x(u) ,X(il + i)] 

(3.24) 

Now if we write the covariance of the lag distance in the following way: 

(3.25) 

and use the second order of stationarity (Equation 3.6) and the equation of the 

variogram (Equation 3.8) then Equation 3.24 can be rewritten: 

'Y ( L) = c (o) - c ( L) (3.26) 

This relationship is used in the kriging process. 
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3.2.4 Anisotropic M odels 

A variogram is rarely is isotropic. Anisotropy is when the variogram estimate varies 

with lag distance and direction. Both geological and variogram continuity are direc­

tion dependent. In regions where structures are prominently sedimentary, continu­

ity is noticeably less in the vertical direction than in the horizontal direction. The 

horizontal continuity depends further on the direction of deposition and diagenesis 

alteration (Deutch, 2002). The directions exhibiting the most continuity can most 

often be found by studying the geological interpretation of the initial data existing for 

the region. If not enough information is present for conclusive evidence of the direc­

tions of continuity then the variogram may be calculated in many different directions 

to search for the primary anisotropy axis. There are two basic types of anisotropic 

models; geometric and zonal. The major difference between the anisotropic models 

and the non-anisotropic models is the definition of the lag search neighborhood in 

the variogram estimation and in the kriging procedure. When modeling a structure 

where anisotropy exists, angular restrictions are necessary. In non-anisotropic models 

the lag neighborhood is a circular in that it searches a radius completely around the 

sample point of interest. In an anisotropic estimation the variogram can have an 

angular tolerance as well as a lag tolerance so the search neighborhood is more like a 

search light than a target. Once the maximum and minimum directions of continuity 

are determined (they are generally perpendicular) same procedures are followed as 

noted in the estimation section. Only the pairs that exist within both the radial lag 

tolerance and the angular tolerance will be considered. 
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Geometric Anisotropy 

If a variograrn shows similar shape and equal sill in the maximum and minimum 

directions of continuity then a geometric anisotropic model is apparent. This means 

the structure of the variogram in the two directions is the same but the range at 

which the sill is reached is different for each variogram. Once the variograms in both 

directions have been determined it is necessary to normalize them to be used in the 

kriging process since only one variogram is used during kriging. To do this we define 

a coordinate transformation. In two dimensions it occurs in the following manner. 

Lu = Lv. cos e + Lv sin e (3.27) 

Lv = - Lv. sine + Lv cos e (3.28) 

LD = (3.29) 

Where: 

• e is the maximum direction 0 f continuity 

• u and v are orthogonal directions 

• a is the sill value in the given direction 

This operation actualJ.y converts the anisotropic ellipse (with the maximum direction 

of continuity being the primary axis) into an isotropic model. This is done through the 

( 
cos e sin e ) . use of a rotation matrix: . e e and a rescalmg parameter L D ( Goovaerts, 

-sm cos 

1997). 
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Zonal A nisotropy 

When the variogram exhibits different shapes and sills in each of the maximum and 

minimum directions of continuity then the model to employ is the zonal anisotropic 

model. Zonal anisotropy is considered by some sources (Deutch, 2002) to be a limit 

case of geometric anisotropy where the range in one direction is greater than the field 

size so the variogram does not appear to reach the sill value (but the sill values are 

the same) . Other sources (Goovaerts, 1997) state that this model requires that the 

models in both directions to be the same linear combination of variogram models but 

the sill value may change. Regardless , the coordinate transformation is similar to that 

of geometric transformation where only a different normalized lag must be calculated 

for each model such that the overall variogram is the sum of the two (Perez, 2002) . In 

this case it is only important to realize that zonal anisotropy is typical in the vertical 

direction. 

3.3 Kriging 

Kriging is a linear estimating technique that estimates a variable value at an un­

sampled location. The technique involves estimating through weighting neighboring 

points to predict the value of a variable at a desired location. The primary goal of 

the technique is to calculate the weights that should be assigned to each neighbor­

ing sampled point such that the prediction uses the most applicable sampled data. 

The weights depend on the spatial relationship between the location of interest and 

the adjacent sampled points as well as the relationships among the sampled points 

themselves. Kriging works on the premise that the optimal solution is obtained using 

an a minimum-variance-unbiased-estimation (MVUE) technique. This means firstly 
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that the estimate is near or equal to the true parameter and secondly that the best 

prediction of the parameter is obtained when the variance of the local neighborhood 

is minimized. One important consideration when utilizing a kriging technique is that 

a search neighborhood must be defined around the location where the estimation is 

to be made. This search neighborhood should be chosen keeping in mind the fact 

that a large search neighborhood will result in a large number of sample points being 

generated which in turn leads to an increase in computational time to estimate the 

point. 

3.3.1 Linear Kriging Techniques 

There are a few linear kriging techniques that can be used to predict parameters at 

unsampled locations. One technique is simple kriging. Simple kriging is the easiest 

kriging technique to apply but it may not be the most practicaL The primary draw­

back with the procedure is that it requires the knowledge of a global mean. This 

global mean is seldom known with any certainty. Another problem is that the first 

order of stationarity must be strictly valid_ (local means do not vary). Other forms of 

kriging relax this restriction. Another type of kriging is universal kriging. Universal 

kriging is a technique that estimates a variable in the presence of a trend. When 

there is a trend simple kriging does not produce accurate estimates so universal krig­

ing must be used (first order of stationarity does not hold in the presence of a trend). 

To account for this, the universal kriging technique makes use of a residual parameter 

added to the estimate equation. More information regarding these techniques can be 

found in Appendix A. A final type of kriging to be noted here is ordinary kriging. It 

is described next. 
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Ordinary Kriging 

Ordinary kriging is similar to simple kriging only instead of assuming a global mean 

a local mean is used (which is different for each search neighborhood). 

The equation for estimating a desired parameter is: 

n 

X*(u~) = Xo + 2::= >.iX(ui) (3.30) 
i=l 

Where: 

• X* ( u~) is the estimate 

• X(Ui) is the sampled data 

• Xo is a calculated constant 

• >.i is a calculated weight 

Using the MVUE technique there is an unbiased condition that must be satisfied: 

E [X*(u~)- X(u~)] = 0 (3.31) 

From this a further assumption can be made such that the following is true: 

E [X*(u~)] = E [X(ui)] = m (u~) (3.32) 

Where: 

• m(u~) is a local mean at u~ 
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The constant Xa is defined in the following way: 

(3.33) 

To eliminate the local means from the equation the following restriction is imposed: 

n 

(3.34) 

With these assumptions Equation 3.30 becomes: 

n 

X*(u:) = 2:: .AiX(ui) (3.35) 
i=l 

Now the minimum variance condition is imposed. The minimum variance condition 

starts with a mathematical definition of error variance: 

(3.36) 

Expanding this into a form with covariance using Equation 3.23 the following equation 

is obtained: 

n n n 

C(u:, u:) + 2::2:: AiAjC(ui , uj)- 2 2:: AiC(ui , u:) (3.37) 
i=l j=l i=l 

To minimize this error variance the Lagrange multiplier method is used. For this a 

function F is defined: 

(3.38) 
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Where f..L is the Lagrange parameter and is multiplied by the constraint. To minimize 

the error variance partial derivatives fori = 1, ... , n are calculated and set to zero and 

the derivative with respect to the Lagrange parameter is also calculated: 

- 0 
n 

2 L AjC(ui, uj) + 2f..L- 2C(ui, uo) 
j=l 

- 0 
n 

(3.39) 

Solving these equations simultaneously is equivalent to solving the following matrix 

equation: 

C(il1, ill) C(il1, iln) 1 AI C( il1, ilo) 

C(iln, il1) C( iln, iln) 1 An C( iln, ilo) 
(3.40) 

1 1 0 f..L 1 

In this matrix equation the left covariance matrix is based on sampled data so it is 

known. It is based on the current search neighborhood at the location where the 

desired parameter is to be predicted. The covariance column matrix on the right can 

be calculated by using Equation 3.26 and the variogram model developed (since the 

experimental sill is also known- C(O)). The weights ().../s) are calculated by inverting 

the left covariance matrix equation and multiplying by the column matrix on the 

right. By calculating the weights in this manner the error variance is at a minimum. 

Finally to calculate the desired parameter estimate use Equation 3.35. 
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A Simple Example 

Consider the following information: 

Field information: 

200 

100 
4 .. 

• • • • • 
1 2 0 3 4 

Figure 3.6: Kriging Example Field Configuration 

With a variogram with the following structure: 

ry (i) l00Ms500 (L) eastjwest direction 

ry(l) 100Ms250 (l) north/south direction 

The maximum direction of continuity is zero degrees (east/west direction) 

Table 3.1: Ordinary Kriging Example 

X(m) Y(m) Sampled Data 
-200 0 30 
-100 0 20 
100 0 100 
200 0 50 

The object of this exercise is to estimate the value of the parameter are location zero. 

The first task is to deal with the anisotropy. To do this the lag parameter must be 

rotated and scaled. Looking at the first two points, the parameter LD from Equations 

3.27 and 3.28 is calculated first by calculating Lu. and Lv. These are just the difference 

between the coordinate points ( u in the x direction and v in the y direction), so 100 
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and 0 respectively: 

L: - -100- (-200) = 100 

L"""'v - 0-0 = 0 

Then calculating the parameters Lu and Lv using the rotation matrix given in Equa-

tions 3.27 to 3.29 and rescaling according to Ln it is found that the parameter Ln 

becomes 0.2: 

(
100) 

2 

( 0 )
2 

Ln = 500 + 250 = 0·2 (3.41) 

Now the variogram is calculated for this pair of points. 

-y(0.2) = 100 [~en-~ (0n '] = 29.6 (3.42) 

To compute the covariance between these two points we can use Equation 3.26 and 

solve for C(f). The sill of the sample is equal to 100 (it is the sum of the coefficients 

in the variogram model plus the nugget - in this case there is only one coefficient 

and no nugget). Solving the equation for the covariance at the given lag results in 

a value of 70.4. This process is repeated for each pair until the covariance matrices 

are complete in Equation 3.40. The left covariance matrL"'C involves only the points in 

that are sampled where the right column matrix involves a lag distance between each 

sampled point and the desired point. The matrix equation becomes: 

100.0 70.4 20.8 5.6 1 .>..1 43.2 
70.4 100.0 43.2 20.8 1 .>..2 70.4 
20.8 43.2 100.0 70.4 1 .>..3 70.4 (3.43) 
5.6 20.8 70.4 100.0 1 .>..4 43.2 
1 1 1 1 0 f.1, 1 

Solving the matrix equation by inverting the left covariance matrix and multiplying by 

the right covariance matrix the following result can be obtained: .>..1 = -0.0181, .>..2 = 
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0.518, ,\3 = 0.518, ,\4 = -0.0181, J-L = -2.14. Using this result a prediction can be 

made for the parameter from Equation 3.35. It becomes: 

X*(u:) = -0.0181 * 30 + 0.518 * 20 + 0.581 * 100- 0.0181 *50= 39.227 (3.44) 

3.3.2 Non-Linear Kriging Techniques 

There are forms of kriging which incorporate some non-linearities into them however 

the solving process is still linear. T he non-linearization comes from a transformation 

of the variables involved. This technique has a number of advantages over comparable 

linear methods. Firstly it can generate a more stable spatial relationship. It can also 

estimate uncertainty better. Finally it has the flexibility to use different types of 

data. The common types of non-linear kriging are (Perez,2002): 

• Log - Normal Kriging 

• Multi- Gaussian Kriging 

• I ndicator K riging 

• P robability Kriging 

This type of kriging has not been used in this research but it does lend itself to further 

research possibilities. 

3.4 Geostatistical Simulation Techniques 

In using kriging to estimate values of a variable at an unsampled location, the MVUE 

technique was used. T his means that a single solution is created based on the sta-
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tistical properties of the data in the sample population. This implies that the best 

solution occurs when the variance of the population is minimized by the prediction. 

The solution, however, is only one probable case out of multiple equiprobable solu­

tions. The other solutions exists due to the uncertainty in the predicted data. Not 

only is there uncertainty but there is also the fact that natural phenomena d.oes not 

always follow statistical laws of probabilities. Geostatistical simulation allows for the 

calculation of many probable solutions. 

The simulation technique used in this research is a conditional simulation technique. 

It is a part of a larger class of simulation types called Monte Carlo simulations (see sec­

tion on Risk Analysis). The conditional term refers to the fact that some information 

about the sample population is assumed to be known (or the spatial relationships in 

data pairs are honored). The conditional simulation methodology is optimized when 

as much information as possible is used and the computation time that is required 

to complete the simulation is minimized. It is for this reason that different simu­

lation methods have been developed which prioritizes different types of information 

depending on which information is considered more important. 

So where is the degree of freedom which sets simulation apart from kriging? The 

answer to this question is in the behavior of the search neighborhood and which 

sampled points are included in the prediction. In kriging only the raw data is used 

to create the realization. In simulation, previously estimated points are used in the 

prediction. 

Where do the multiple equiprobable realizations come from? They come from the 

randomization of the order in which the desired locations are visited during the esti­

mation. Consider a grid which is only sparsely populated with sampled data points. 
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Each empty grid block is assigned a number from one to the total number of empty 

grid blocks. Take this list of numbers and randomize the order in which they occur. 

Follow the order of this list to carry out the estimation of the entire grid. The es­

timation at each grid block would use raw data as well as any previously estimated 

values within the search neighborhood. This is one realization. For extra realizations, 

randomize the order and estimate all the points for the desired number of realizations. 

There are a number of features which set simulation techniques apart from kriging. 

1. Kriging uses a weighting system to compute the value of a variable at an unsam­

pled location. This means that extreme values are dampened and are difficult to 

reproduce. Simulation offers the flexibility, through the use of random variates, 

to honor initial distributions while allowing for extreme values to be possible 

outcomes. 

2. A final feature which makes simulation uniquely different from conventional 

estimation techniques is the ability to quantify uncertainty. Although conven­

tional techniques do allow for the calculation of error variance (which gives 

indications about surrounding sample configurations) it may not give a good 

representation of local uncertainty. Simulation creates local variability through 

the development of equiprobable images. 
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R isk Analysis 

This section is designed to inform about risk analysis, an essential topic for the 

understanding of the quantification of uncertainty. The following sections will describe 

the general methodology of risk assessment while outlining how it is employed in the 

analysis presented in this thesis. 

4.1 What is Risk Analysis? 

Perhaps a better starting point would be to define what risk is. Risk is simply the 

probability that an event or scenario will occur causing harm to someone or some­

thing. A risk analysis is the systematic determination of risk for a number of different 

scenarios so that problematic events may be identified or at the very least quantified. 

The comparison of the different scenarios to obtain desired information about the 

effect of uncertain parameters on an outcome can be referred to as a risk analysis. In 

other words, the risk analysis examines the impact that uncertain variables, and their 

interaction with each other, have on an output variable. This type of analysis can 

be applied in virtually any field where uncertainty exists. Some examples of typical 

49 



Reducing the Risk in Drilling Production Wells Willcott, A.P. 

fields where this type of analysis is currently being used are in operations manage­

ment (machine reliability and maintenance, project management, etc.) , finance (rate 

of return analysis , retirement planning, etc.) , marketing (sales projection, analysis 

of distribution strategies, etc.) and engineering (reliability of a spring, toxic waste, 

population risk, etc.) (Evans & Olsen, 2002). Typical examples of risks involved 

with industrial projects include uncertainties associated with new designs, manufac­

t uring risks , transportation and installation risks, market risks, contractual risks and 

delayed permits (Bernasconi, 2004). 

4.1.1 The Process of Risk Analysis 

A typical Risk Analysis can be described in six steps (Torhaug, 1990): 

1. System Definition: The scope of the problem must be defined prior to the risk 

assessment to ensure that all parameters effecting the problem are properly 

addressed. 

2. Hazard Identification: Events which have a negative effect on the situation 

under consideration should be fully explored and identified in this stage. Some 

well-known techniques that may be used for this are HAZOP studies (hazard and 

operability studies), Failure mode and effect analysis and the use of checklists 

to identify sources of danger. 

3. Cause-Consequence Analysis: This step is based on the hazards identified. The 

result of a consequence analysis is the development of all relevant accident sce­

narios and the probability of occurrence associated with them. There are models 

which may be used to help determine this information. Typical models include 
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the use of failure and accident statistics, fault tree analysis and probabilistic 

methods. 

4. Risk Estimation and Evaluation: The risk assessment is based on the combined 

results from the cause and consequence analysis. 

5. Analysis of Results: The results of a risk analysis are probability distributions 

that negative events will occur or accident scenarios will be realized. 

4.2 What is Simulation? 

The most common method of quantifying risk is through stochastic simulation. Sim­

ulation has been used for analyzing systems and aiding decision making (Evans & 

Olsen, 2002). Before modern computing capabilities arrived this simulation was very 

time consuming and labor intensive. In more recent times these possible outcomes 

can be modeled in a computer program allowing for many iterations of a simulation to 

take place in a matter of seconds. This opens up the window of opportunity for com­

pletely analyzing complex situations while incorporating uncertainty into the model. 

Simulation is now widely accepted in the business world as well as in many other 

industrial applications and in various stages of petroleum exploration and production 

businesses. 

4.2.1 Types of Simulation 

In order to use simulation as a tool, it is necessary to first create a model. The model 

is a representation of the behavior of the reality of the event or events of interest. 

A means to numerically mimic actual events in virtual space. The accuracy of the 
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risk analysis is directly related to how close this representation can come to reality 

so proper care and caution should be used in creating the model. There are many 

different types of models which may be used to represent a real system. They can be 

prescriptive or descriptive; deterministic or probabilistic; or, discrete or continuous. 

A prescriptive model is one which leads directly to the conclusion of an optimal 

solution and it suggests this conclusion. A descriptive model presents the results 

of the simulation to give a better idea on how the the system behaves while giving 

measures of system performance. In a deterministic model all parameters are known 

with certainty (which is rarely the case in reality). In this manner the outcome of 

the system is known with certainty. A probabilistic model, on the other hand, have 

certain parameters known only within a certain range or distribution. These models 

resemble reality much more closely than the deterministic models. Discrete models 

are models which have variables which change at a discontinuous rate. This may mean 

that the distribution of this variable is set at fixed points under certain conditions or 

it changes at fixed times. A continuous model is a model that changes smoothly over 

time. Many situations occur as a combination of discrete and continuous events and 

this should be taken into account during the development of the model. A good way 

to create a simulation is to create a deterministic model first (in a spreadsheet for 

example) and then give the uncertain variables realistic distributions that will change 

during each iteration of the simulation. 

4.2.2 Types of Simulation Models 

This section outlines two common simulation models, Monte-Carlo simulation models 

and systems simulation models. Monte-Carlo simulation is a type of simulation where 

the final goal is to determine the distribution of an output variable based on the 
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probabilistic properties of input variables. In this manner Monte-Carlo simulation 

can be used to determine the amount of risk involved with certain decisions. Another 

type of simulation model is systems simulation. These models handle sequences of 

events that occur over time. The major difference between the two is that Monte­

Carlo simulation is often referred to as a static model and a systems simulation is 

regarded as a dynamic model. 

4.2.3 The Simulation Process 

A simulation process comprises five essential steps (Evans & Olsen, 2002): 

1. Develop a conceptual model of the problem: The problem must be properly 

understood in this stage. It is very important that the relationships the variables 

have with each other be understood so that the model can accurately depict 

the reality of the scenario. It is also important to establish goals and objectives 

of the study as well. The best way to begin this stage is to develop a simple 

conceptual model first and add details later. 

2. Build the simulation model: This stage of the simulation process involves gath­

ering all the equations, formulas and necessary data along with the probability 

distributions of the uncertain variables. The accuracy of the distributions are 

reflected in the accuracy of the results. This may involve using a spreadsheet 

linking all the variables together. 

3. Verify and validate the model: At this stage it is important to ensure that there 

are no logical errors in the model (verification). It is also vital to show that the 

results of the situation is a representation of reality. This creates the credibility 
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the model will need and guarantee that the results that are obtained may be 

analyzed legitimately. 

4. Design experiments using the model: This is where the user determines which 

values of the controlled variables will be used in the simulations. 

5. Perform the experiments and analyze the results: Finally the simulation may 

be run and results obtained for analysis. 

4.2 .4 Advant age s and Disadvant ages of S imulation 

The advantages of simulation are numerous. Firstly, simulation allows a decision 

maker to develop scenarios with possible outcomes and analyze these outcomes before 

making a decision (or the impact of a decision may be the variable under scrutiny) . 

These outcomes can be simulated very quickly once the simulation model has been 

developed and the distribution of the uncertain variables chosen. In essence it is a 

non-destructive manner of exploring and experimenting with many different possible 

decisions. The second advantage is the simplicity of the method. Simulation is a 

quantification method that provides otherwise complex situations with real numbers 

to analyze. Systems that are generally hard to analyze can be easily understood 

with a simulation method. A third and non-exhaustive advantage for simulation 

is the capability to model any assumption, especially when analytical methods are 

inappropriate or do not exist (Evan & Olsen, 2002). 

Any method with so many advantages is sure to have disadvantages as well. One 

such disadvantage is the amount of time that is required to obtain input information, 

to develop the simulation model, and run the simulation to analyze the results. The 

substantial time and effort is a disadvantage when decisions are needed within a 
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relatively short amount of time. The simulation may take a lot of time to run, and 

the results may require time for analysis. The increase of computing speed in modern 

computers offsets this disadvantage however the analysis of the results may still be 

time consuming. The second disadvantage is the lack of precision. Simulation may 

have sampling errors. This is where results may not appear practical yet are inside 

the bounds of available solutions based on the uncertainty of the input variables. 

Analytical solutions usually do not have this sort of uncertainty. 

When analyzing a system where parameters are uncertain the outcome cannot be 

uniquely defined. The probability distribution of the parameters will produce a prob­

ability distribution of the outcome. This is concept is intuitive but how can this 

be accomplished in practice? The answer lies in the generation of random numbers. 

The use of a random number generator removes any biases from the analysis. In 

assigning distributions to input parameters and randomly drawing values from the 

distributions for the outcome calculation, a sense of variability and uncertainty can 

be developed (Voit & Schwacke, 2000). The following section gives the details on how 

random number generators work. 

4.3 Random Number Generation 

Simulation uses the generation of pseudo-random numbers to randomize different 

simulation iterations. The reason the words "pseudo-random" are used is because 

computer applications use an algorithm to generate these random numbers. This 

means that the generation of the random numbers is deterministic and that the same 

sequence of random numbers can be regenerated if desired. The sequence of numbers, 

however, does appear to be random. For a sequence to appear random is must have 
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the following properties: 

• All numbers are uniformly distributed between 0 and 1. The means that when 

the amount of numbers generated is large each value is equally likely to occur 

(the histogram should be relatively fiat). 

• Numbers in the stream have no serial correlation. Serial correlation is the rela­

tionship between any random number in the stream and the following random 

numbers. In other words there should be no patterns existing in the randomly 

generated data set. 

• The random number stream has a long cycle. This means that when the initially 

generated random number occurs only after many simulation iterations have 

occurred (and this point may never be reached) . 

4.3 .1 Random Number Generation Techniques 

There are many algorithms for generating random numbers. Two common types of 

algorithms are the midsquare technique and congruential random number generators. 

The midsquare technique takes an initial four digit number called the random num­

ber seed, squares it and takes the set of middle four digits as the next number in the 

sequence. This method takes advantage of the fact that the square of any 4 digit 

number has no more than 8 digits. The sequence of random numbers can be repro­

duced by remembering the random number seed. This was one of the first numerical 

methods to generate reproducible random numbers. It's limitation is that for certain 

random number seeds the stream of random numbers can converge to a single value 

of zero, and do so rather quickly. This yields the stream useless as a random number 
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generator. 

The congruential random number generator uses the mathematical concept of the 

modulus. If the modulus (m) is a positive integer then x mod m is simply the re­

mainder after dividing x by m as many times as possible. For example, 9 mod 4 = 

1 and 6 mod 3 = 0. The generators have the form zi+l = f (zi) mod m where the f 

is some function (typically multiplicative or linear) of the initial seed. The modulus 

computation takes advantage of the fact that the solution will always yield integers 

between 0 and m - 1. Dividing this value by m will results in values between 0 and 1, 

which will be random numbers. It has been found that the the best generators (those 

with the largest cycles) occur when the modulus is as high as possible (as high as the 

operating system allows) (Evans & Olsen, 2002) . 

Once a technique has been identified it is important to test this algorithm for unifor­

mity. A number of statistical tests may be used for this task including the Chi-Square 

test or the Kolmogorov-Smirnov test. In testing for serial correlation it is possible 

to apply the Chi-Square test to pairs of numbers a certain distance apart (Evans & 

Olsen, 2002). These tests will not be discussed any further since it is not the purpose 

of this paper to prove the algorithms of the random number generators are sufficient, 

however, some extra information on them can be found in Appendix A. The purpose 

of this section is to give general background information to bridge the knowledge gap 

to give a little more insight on how numerous simulation iterations may be realized. 

A number of computer languages and mathematical applications have the capabil­

ity of generating random numbers with internal algorithms (not seen by the user). 

Fortran and C++ for example have the RAND(x) and RANDOMIZE command re­

spectively. Other applications such as MATLAB and Excel also have built in random 

functions available to the user with algorithms similar to those used above. These 
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are the random number generators used in the development of the methodology in 

this paper. 

When the distribution of the parameter of interest is not uniform then it is necessary 

to transform the set of random numbers generated to fit the desired distribution. If 

the distribution of the parameter is similar to a simple distribution (such as expo­

nential or triangular) then a simple inversion of the uniform variates will create the 

desired distribution. What this means is that the probability density function of the 

desired distribution is explicitly inverted. For more complicated distributions with no 

closed form solution of inversion problem a numerical method is necessary. A num­

ber of methods exist for each distribution such as the Marsaglia and Bray model for 

normal distributions (Devroye, 1986) and the Wallace model CWallace, 1996). These 

generators have been included in built-in functions in computer programs such as 

MATLAB and Excel for users to use at their discretion. 

4.4 Risk Calculation 

Risk calculation is based two things. First it is based on the probability that an 

event will occur that will cause harm or have a negative effect on a person or thing. 

The second factor in the risk calculation is the consequence if such an event occurs. 

Multiplying both factors together yields a risk factor. If both factors are discrete in 

nature then both will have corresponding parts multiplying together and added in 

the end. If both factors are continuous then the functions are multiplied together. 

risk= probability X consequences (4.1) 
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Chapter 5 

C ase Study 1 

This section presents the first of two oil based production case studies. Both case 

studies demonstrate different aspects of the methodology shown in this thesis. This 

case study shows how to employ geostatistics to estimate point locations along a well 

path. These estimates are then used to estimate productivity from a field example. 

The concept of risk is then used to quantify the degree of uncertainty in the project 

in terms of monetary risk. 

5 .1 Reservoir Definition 

The first task is to initialize some of the needed reservoir parameters such as the 

dimensions of the reservoir and the estimated total :flow velocity for both oil and 

water phases together. The total :flow will be constant throughout the reservoir but 

the water saturation will change as the water front moves through. 
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5.1.1 G e ometry 

It is useful to note at this point that the reservoir is based on a field example (Kelkar 

et al., 2002) which is given in two dimensions and in field units. The calculations 

performed were all completed in SI units and the appropriate conversions were imple­

mented where necessary. The length, width and height of the reservoir are assumed 

to be 2438.4 m (8000 ft), 243.8 m (800 ft) and 50 m respectively. 

5.1 .2 R eservoir Attributes 

The total flow velocity is calculated using these dimensions and an expected flow rate 

of 2500 m 3 /day (this is the water and oil mixed velocity). The viscosities of oil and 

water are assumed to be 0.3 centipoise ( cp) and 10 cp respectively. 

The variable of interest in this study is porosity. The porosity is distributed through­

out the reservoir in a manner given in Appendix B and is taken from the field example. 

5 .1.3 Well Trajectory 

The well trajectory in this case study was chosen based on the porosity distribution 

and attempts to optimize production based on favorable porosity values. The choice 

in well trajectory in this case study is arbitrary in that the purpose of the case study 

is to demonstrate the methodology of how to quantify the risk associated with the 

geostatistical realization of a reservoir. The trajectory is noted here for completeness. 

The well follows the straight line between the two points. 
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Table 5.1: Well Trajectory: Case 1 

X(m) Y(m) 
-500 8000 

14975 212.58 

5.1.4 Assumptions 

The object of the production calculation in this study is to use the porosity data and 

a constant reservoir pressure to estimate the volume of oil produced. To do this a 

number of assumptions are used to simplify the calculation. The assumptions are used 

because the complexity of the problem is unnecessary in describing the methodology. 

The first assumption is that each porosity value calculated (one for every 25 feet 

along the x-direction) it is independent from other porosity values. In other words 

each porosity value exists in a channel or between shale layers. See Figure 5.1 for a 

representation of the 2-D reservoir. 

Shale Layers 

Water Front Flow of Oil 

X-Direction 

Figure 5.1: Reservoir Description 

This type of model is a transformation of a stream tube model. A stream tube 

model is a model where flow can be visualized to go from one location to another 
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in a group of parallel pipes. It follows that the flow through each pipe is unaffected 

by neighboring flows. Such an assumption allows the calculation of the production 

to be performed without solving complex fluid dynamics equations which may only 

be solved numerically. This model is used in many different situations to simplify 

problems in practice. It is applicable when the end point mobility ratio is near one 

(the ratio of the water mobility to oil mobility in a oil-water reservoir, where mobility 

refers to the ability of the fluid to permeate) and the fluid is incompressible. These 

assumptions are adopted for this case study as well. The traditional stream tube 

model is depicted in Figure 5.2. 

Injector 

Producer 

Figure 5.2: Stream Tube Model 

A further assumption is in reference to the reservoir saturations. It is assumed that 

the reservoir is initially completely saturated with oil and the stream tube model is 

100% efficient (there is no residual oil). This is for the sake of simplicity. 
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5.2 Reservoir Engineering Background 

In order to completely understand the problem some reservoir engineering concepts 

must be mentioned briefly. 

5. 2.1 Darcy's Law 

A fundamental law in reservoir engineering is Darcy's law. The following equation 

relates flow velocity to pressure, permeability and water saturation. Note that t he i 

can be any fluid or phase. 

vi= (5.1) 

Where: 

• Vi: volumetric flux (D arcy Velocity) 

• K : absolute permeability (the rock property that allows a liquid or gas t o 

move through it) 

• kri : relative permeability (described in the following section) 

• Sw : the water saturation (the percentage of pore space in a formation 

occupied by water) 

• Jl-i : the phase viscosity (the property of a fluid's resistance to flow) 

• Wl : the phase pressure gradient 

• p: density 
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• g : acceleration due to gravity 

• a: the angle of inclination counterclockwise from the horizontal 

5.2 .2 Relative Permeability 

In Darcy's law the permeability represents a rock property at a point. In the presence 

of numerous phases there may be different fluid fronts moving through the formation 

at different flow velocities. To account for this the concept of relative permeability is 

used. In an oil/water reservoir the relative permeabilities are: 

and (5.2) 

Where: 

• kri : phase permeability relative to overall permeability 

• ki : phase specific permeability relative to overall permeability 

• K : absolute permeability 

These relative permeabilities are a function of water saturation only as can be seen 

in the following section. 

5.2.3 Fractional Flow 

Fractional flow is a means to simplify the reservoir simulation method by removing 

one unknown from the set of equations. It is defined as: 

f 
_ Uw 

w-
ur 

(5.3) 
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Where: 

• Uw : water flux 

• ur : total flux 

Using Equation 5.3 in conjunction with Darcy's Law (Equation 5.1) the fractional 

flow reduces to: 
~ 

fw = Jl.w 
krw + kro 
Jl.o Jl.o 

(5.4) 

The relative permeabilities can be assumed to be the following functions of water 

saturation (Ahmed, 2001) . 

(5.5) 

(5.6) 

Substituting this into the fractional function yields the following: 

(Sw) 2 

f Jl.w 

W - (Sw)2 + (1-Sw)2 
Jl.w Jl.o 

(5.7) 

Noting that the viscosities are constants the fractional flow function as a function of 

water saturation will appear similar to Figure 5.3: 

5.2.4 Frontal Velocity 

As immiscible fluids flow through a reservoir the bulk velocity of the fluid is known 

as the frontal velocity. If, for example, water is injected into a well on one side of 

a reservoir to enhance the productivity on another side, then the velocity of this 

water toward the producer well is known as the velocity of the water front (frontal 
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Slop~angent 

0 

Figure 5.3: Fractional Flow Function 

velocity) . At any instant in time the fractional flow function can be plotted versus 

water saturation. The figure would resemble Figure 5.3. The frontal velocity can be 

determined in the following way: 

The frontal velocity is mathematically defined as: 

Uy 
O" =¢slope (5.8) 

Where: 

• ur : the total flux of the fluid through the formation 

• ¢ : the porosity of the formation 

• slope: the slope of the tangent of the fractional flow function 
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5.3 Solution 

In order to solve this problem, the geostatistical methods and the risk implementation 

is done through the use of MATLAB. A copy of the code is given in Appendix C. 

5.3.1 Geostatistical Analysis 

The first step for estimating the porosity along the well path is to first use the field 

data to estimate the variograms. The first assumption made is that the reservoir is 

anisotropic (as is normally the case). This means that the variogram will vary in 

distance and direction (not homogeneous or isotropic). In an anisotropic variogram 

calculation it is necessary to determine the direction of maximum continuity. Since 

no extra information exists that would allow the directions of continuity to be con­

clusively determined, it is necessary to calculate a variogram map. This requires that 

a number of variograms be calculated in a number of different directions to see which 

direction exhibits the most and least amount of continuity. The direction with most 

continuity reaches the experimental sill (variance of the sample population) at the 

largest lag distance. Consult Figure 5.4 to observe this behavior. It shows the result 

of the variogram estimate at each corresponding angular direction. 

From the figure the maximum directions of continuity are in the oo direction (indicated 

with a "O" in the figure) and the 22.5° direction (indicated with a "o" in the figure. 

Upon closer inspection of the data there are more pairs for the oo direction. Not only 

are there more pairs for that direction but there are so few for short lag distances 

at the 22.5° that it is unrepresentative of the population (there are zero pairs at the 

first lag distance and only three pairs for the second lag distance compared to five 

and thirty pairs at the same lag distances in the zero direction). For this reason, 
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Figure 5.4: Direction of Maximum Continuity 

12000 14000 

the oo, or east-west direction , is chosen as the direction of maximum continuity (the 

principal direction). The minor direction is taken perpendicular to the direction of 

maximum continuity for modeling purposes (Goovaerts, 1997). This direction is 90° 

from the horizontal or in the north-south direction. 

To estimate the variogram from the sample data, the distance between each point 

and every other point in the data set must be calculated. In this case study there 

are 68 sample points in the sample population. For this problem the two dimensional 

Cartesian distance equation is used to create a matrix of 68 elements by 68 elements. 

Each element represents the distance between that point and another point in the 

data set (the diagonal is zero since that is the distance between each point and 

itself). The variogram estimate can be tuned by altering the lag, lag tolerance, search 
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angle, and angular tolerance to optimize accuracy and decrease fluctuation. Here it 

is important to keep the essential structure of the variogram intact while minimizing 

the fluctuation. The configuration chosen was a lag of 1000 ft , a lag tolerance of 450 

ft , search angles in the direction of maximum and minimum continuity (one estimate 

for each) and an angular tolerance of 20 degrees. 

Using Equation 3.9 and searching the data methodically, the variogram can be esti­

mated at each lag distance. The estimation yields the Figure 5.5. 

The Figure 5.5 demonstrates the result of the variogram estimation as well as the 

comparable models (which will be discussed later) . As can be seen there is still some 

fluctuation in the estimates. It can also be noted that the direction does have an effect 

on the result of the variogram so the assumption that the reservoir is anisotropic is 

correct. The anisotropic model is necessary to capture the spatial variation with 

respect to the direction. One anomaly that should be noted is where the largest lag 

distances in the north-south estimate show near zero results. Upon closer inspection 

into the number of pairs existing at each lag distance it can be found that this is based 

on only one or two data pairs. These points may be neglected in the modeling process 

since they are only representative of a few points and not of the entire population. 

Another anomaly is the peak for the north model. In geostatistics there are often 

times where the variogram estimate will be difficult to model. In this case there does 

not seem to be an explanation for the peak so the modeling will attempt to achieve 

the best fit based on this estimation. 

Once the variogram is estimated the variogram model must then be chosen. Different 

models must be selected and matched to the estimation by varying the parameters 

of the model. There are two models , one for each direction. The chosen variogram 
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Figure 5.5: Variogram Estimation Vs Variogram Model 

models are linear combinations of a model with a sill. Both models are spherical 

(Equation 3.13) with a nugget (Equation 3.12). This type of structure is used since 

it is very simple in nature. When major spatial features can be captured with simple 

models then more complicated models should not be explored. More complicated 

models , even if they have a better fit, do not always lead to more accurate estimates 

( Goovaerts , 1997). Both variogram models tend toward the same sill yet at different 

rates. This is known as geometric anisotropy which is common in horizontal sample 

populations in two dimensions. 

For the East-West direction: (Principal Direction) 
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'Y ( L) = 10 + 30Ms(4ooo) ( L) (5.9) 

For the North-South direction: (Minor Direction) 

r ( L) = 10 + 30Mscloooo) ( L) (5.10) 

Figure 5.5 compares the variogram estimate to the model. As can be seen the fit 

capt ures the trend and removes fluctuations. 

We can allow for the degree of fit to be relaxed because of the lack of data pairs at cer­

tain lag distances. Geometric anisotropy is common in horizont al variograms (where 

the directional variograms advance to the same sill but over different r anges) . For this 

reason the sill for this model is the same in both directions. Zonal anisotropy for this 

two dimensional case is unlikely since the reservoir exists in a horizontal layer. Typical 

zonal anisotropic behavior occurs when comparing horizontal to vertical variogTams 

(Kelkar & Perez, 2002). 

Now that the variogram model has been verified against the estimate the kriging 

procedure can take place. In this case the interest lies in determining the porosity 

along a given path noted earlier. 

For the kriging, ordinary kriging was chosen since there is no global mean information 

and there is an absence of a trend in the variogram estimates. If a global mean was 

known then simple kriging could be used. In the presence of a trend universal kriging 

would be necessary. The first step in completing the kriging procedure is to decide on 

both the nature of search neighborhood for the prediction location and on how many 

sample points to use for the estimation. For simplicity the search neighborhood 
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chosen is an omni-directional one on the well path (and circular in nature). For 

computational reasons, four of the closest sample points were used to estimate the 

porosity at any point on the well path. A MATLAB procedure called risk.m (see 

Appendix C) is used to sort the data into the four closest points to each estimation 

location (at 25ft intervals along the x-direction on the well path). 

Next covariance for the left and right hand side of the matrix equation (Equation 3.40) 

need to be calculated. This is done by using the variogram models and Equation 3.26. 

Once all the covariance elements have been calculated the weighting parameters can 

be calculated by inverting the covariance matrix on the left-hand side of the equation 

and multiplying it by the covariance matrix on the right-hand side. Using Equation 

3.35 the estimate can then be made. This is similar to the example given in the 

chapter on Geostatistics. 

This procedure has to be repeated for each point on the well path where an estimate 

is desired. In this problem a new estimate is required every 25 feet in the x direction. 

This results in 620 estimates. For validation purposes the resulting array of estimated 

porosity values is given with the well path data and the nearest four porosity sample 

points in Appendix B. It can be seen from this data that the estimates fall within the 

range of the nearest sample points for each location. The geostatistics calculations are 

also a part of the MATLAB file risk.m. This marks the end of the use of geostatistics 

for this case study. 

5.3.2 Production Calculation 

The basic outline for estimating the total production of this particular reservoir in­

volves the calculation of the time to breakthrough of the water front into the well 
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bore. Since the formation is assumed to be completely saturated with a single phase 

oil initially, the time of water breakthrough marks the point in time that a molecule 

of water travels the entire distance of the reservoir and enters the well bore. Once 

the water breaks through into the production well, the production is assumed to end 

at that shale layer. This means that once water breaks through in a shale channel 

then oil is no longer produced locally from that channel. Of course the calculation of 

time to breakthrough for each shale layer is computed independently so there will be 

a different time to breakthrough for each shale layer. Summing up the production of 

all the shale layers at any given time will result in the total production of the reservoir 

at that time. 

The production calculations are completed in the MATLAB file pro.m. The frontal 

velocity is based on the fractional flow function. More specifially the velocity of the 

water front is equal to the slope of the tangent of the fractional flow function which 

given by the Equation 5.7. In order to calculate the maximum slope of this function 

a MATLAB numerical subroutine was created called Swbar.m and can be found in 

Appendix C. This routine calculates the value of Sw at the place of maximum slope. 

This value came to be 0.986 and the function itself car.._ be seen in Figure 5.6. Then 

the slope can be calculated by simply dividing the value of the fractional flow function 

at the location of maximum slope by the saturation at the same location (since it 

passes through the origin). This slope is constant throughout this particular reservoir 

since it is assumed that the relative permeabilities (which are rock/ fluid properties) 

are consistent throughout the formation. 

Once the velocity of the front is determined for each shale layer, the time to break­

through can be estimated simply by dividing the distance (length of the reservoir) 

by the velocity of the front. Once this is reached no more oil is produced. Using the 
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fw 
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Sw 

Figure 5.6: Fractional Flow Function 

cross-sectional area of the shale layer the total production of each layer can then be 

determined and finally a production profile can be generated. This profile is consid­

ered the baseline profile and all other profiles will be compared to it to determine 

the consequences of not achieving this baseline production. It was developed using 

geostatistics. The computation of the production volume for each channel is done in 

the following manner: 

Productioni = (HW) (a-¢) ttbti (5.11) 

Where 

• HW : cross- sectional area 
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• CJ' : frontal velocity 

• ¢ : channel porosity 

• ttbti : time to break through for a single shale layer 

5.3.3 Risk Calculation 

In order to carry out the risk calculation it is necessary to quantify both the conse­

quence of the hazardous event as well as its probability of occurring. The consequence 

for this case study is the cost associated with not achieving the desired production, 

in other words, the cost of the deviation from the baseline. The porosity distribution 

results in the production's deviation from the baseline. The total production based 

on a number of different porosity distributions was calculated. The porosity distrib­

ut ions were generated through the use of a random number generator with a normal 

distribution. The normal distribution was chosen because it most closely resembles 

the sample data set and the central limit theorem suggests that if the sample size 

is large enough the distribution of the mean can be approximated by a normal dis­

tribution regardless of the shape of the population distribution (Evans et al. , 2002). 

This allows for a realistic analysis to be carried out. A number of porosity sets (500 

sets) have been used to create 500 production profiles. The porosity was chosen in a 

manner to mimic the available sample data as much a possible with a normal distri­

bution. The mean of the sample set of porosity is 24.17% and the standard deviation 

is 4.84% which is t he same as the baseline. 

Figure 5. 7 demonstrates the degree of fit between the distribution of the porosity 

data set associated with the geostatistical analysis and 3 arbitrary randomized nor­

mal porosity data sets from the 500 available. This shows how well the geostatistical 
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realization fits the normal distribution realizations. It is also evident that the porosi-

ties developed from the normal random generation represent the geostatistical poros-

ity distribution. The mean and standard deviation of all cases are the same. The 

fit is reasonable given the fact that randomized models do not intend to fit realistic 

models but only represent the statistical properties of the original data. The goal is 

to estimate the uncertainty and risk involved with a realistic model. 
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Figure 5.7: Porosity Distribution Comparison 
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Using the porosity distributions shown in Figure 5.7, the production profiles generated 

are shown in Figure 5.8. 
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Figure 5.8: Production Distribution Comparison 

The profiles show a very close relationship with each other. Each of these profiles 

represents one possible image of the reservoir and the collective distribution represents 

a bandwidth of probable solutions to the predicted production. By taking the total 

production volume for the baseline case and the total production from each normal 

randomized production image a group of possible production volumes are formed. In 

this case study a 95% confidence level is acceptable for the risk analysis. In practice, 

a management team would have to decide on what degree of confidence is necesary 

for any given study to be accepted. To adhere to the 95% confidence level, the 95th 
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percentile is taken from the distribution of the production calculated from the normal 

randomized reservoir images. This is the value used to determine the consequences of 

not achieveing the baseline production. The 95th percentile is the production volume 

below which 95% of all the production from the normal random reservoir images 

fall. To determine the consequences, the difference is take between the percentile 

and the baseline production and multiplied by the price of oil. In this case, since a 

probabilistic analysis is not being undertaken, the price of oil is take as a constant 

value of $50 per US barrel. The uncertainty in the calculation of risk factor is 5% 

since the confidence level is 95%. The calculation of risk factor is summarized in the 

following equation: 

Risk= (Pgs - Pbase) ($0~l) (0.05) (5 .12) 

Where 

• P95 : 95th percentile of random production 

• Pbase : baseline production 

• $Oil: Price of oil per US Barrel 

• 0.05 : uncertainty 

The preceding equation calculates one risk factor for the 500 reservoir images. In 

order to determine a distribution of risk factors to better understand the risk, the 

process of generating the random images and calculating the risk factors was repeated 

500 times. The results are given next. 
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5.4 Results 

When discussing risk it is noteworthy to mention that risk is only present when there 

is a hazard or negative event occurring. This means when the calculated deviation 

between production and baseline is positive there is no inherent risk. For the sake 

of argument , this occurrence of risk that is positive will be considered advantageous 

or positive risk and will be discussed as a risk factor even though there is no risk 

involved. 

Figure 5.9 represents the cumulative distribution of risk factors for this case study. It 

can be seen from the plot that the negative risk is small at only 5%. This means that 

from the images studied only 5% of them incurred a negative risk. The remaining 

95% either had no deviation or demonstrated a profit. 

-100 -50 

Cummulative Risk Distribution 

,.,,., 
v .v 

nn 

f">"7 

nc 
v.v 

'"'"' ..., . ..., 
,... 

""" v . v 

,.,,., ..., __ 

,... . v 
-< v 

0 

~ 
/ 

I 
J 

/ 
I 

/_ 
/ 

/ 

50 100 

Risk Factor 

150 200 

Figure 5.9: Cumulative Risk Distribution 
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The mean risk factor is given as 82.34. This risk factor represents the deviation of 

the production volume in thousands of barrels of oil, multiplied by the price of oil per 

barrel and then multiplied by 5%. It is in thousands of dollars with the uncertainty 

taken into account. 

5.5 Summary 

The objective of this chapter was to demonstrate a methodology for calculating the 

risk factor associated with a geological uncertainty. This methodology incorporates 

the use of geostatistics to generate a baseline porosity image and a random number 

generator to develop alternative porosity images (images are the predicted porosity 

values along the well path) . Production volumes from the groupings of 500 im­

ages were compared to the production volume of the baseline image where the 95th 

percentile of production for each grouping was considered to have an acceptable con­

fidence level. There were 500 total groupings considered for this case study. The 

comparison was completed by multiplying the difference between the 95th percentile 

of each grouping and the baseline production by the price of oil and the uncertainty in 

the 95th percentile (5%). This calculation yields a distribution of risk factors which 

was illustrated in Figure 5.9. This case is a building block for determining the risk 

involved during well planning. The concepts shown serve as a base for the the next 

case study which provides a more detailed example of how to quantify the risk in­

volved when there is an uncertain geology. The next case will also shows how this 

risk can be improved by using measurements while drilling. 
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Chapter 6 

Case Study 2 

This case study presents an in depth account of how the concepts of risk and geostatis­

tics can be used together to help in the management of risk while drilling production 

wells in petroleum reservoirs. Compared to case study one, this case study takes 

a more complex reservoir model, analyzes the reservoir realizations more rigorously 

and computes the production profiles using a reservoir simulator instead of assum­

ing existence of shale layers (a stream tube model). It also demonstrates the use of 

measurements while drilling to show what effect the inclusion of this type of data can 

have on the risk factor of not predicting the actual production. All the simulations 

of interest in this chapter deal with forecasting. The reservoir is updated with mea­

surements while drilling throughout the drilling process before any actual production 

takes place. Comparisons can be made since the baseline reservoir realization is as­

sumed to be the fully characterized realization and the reservoir simulation associated 

with the baseline represents actual production. This chapter also shows how commer­

cially available software can be used to apply this methodology in a realistic manner. 

Before introducing the problem statement however, it is appropriate to identify the 

software used in the case. 
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6.1 Applications Utilized 

A number of commercially available computer applications have been used to apply 

the methodology in this case study. It was necessary to make use of such software 

since it is time consuming, difficult and redundant to develop such applications and 

software development is not the key component of this research. The software utilized 

is currently being used by major companies in each application 's specific area of focus. 

The first package is Eclipse (Schlumberger) , the second application is GSLIB (Statios) 

and the third is NETool. Other educational tools used include Excel (Microsoft) and 

MATLAB (Math Works Inc.). 

6.1.1 Eclipse 

Eclipse is a comprehensive reservoir simulation package widely used by major oil 

companies to mathematically model reservoirs. This program was used because of 

it s industry familiarity and its integration into the other software utilized in this 

research. The dataset used for the analysis was initially in an Eclipse format . Eclipse 

office is the application which manages all the different subprograms needed to prime 

the data for input into the Eclipse simulator. It is also used to view the results of the 

simulation as well as generate reports. It was used to export the data from the dataset 

applicable to the geostatistical analysis (this was the primary use of Eclipse for this 

research). Eclipse is a very complex and detailed reservoir simulator which requires a 

great amount of background information in reservoir engineering for it to be utilized 

to its full potential and since the objective of this research does not concentrate on 

comprehensive reservoir simulation it will only be commented on where utilized in 

the analysis . 
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6.1.2 GSLIB 

GSLIB (Geostatistical Software Library) is a piece of software developed to aid the 

the modeling of variograms and to simulate numerous realizations of a field comprised 

of spatial variables. It was developed by Statios as a platform to be used with other 

programs (as the source code is provided upon purchase) or as an educational tool. 

Statios also provides other geostatistical software and consultation to major mining 

companies. This program was used to take the spatial data acquired from Eclipse 

and to model it. Once modeled, the simulation was performed by GSLIB to develop 

as many realizations as desired. The realizations were then imported into NETool 

where the near well simulations took place. 

6.1.3 N ETool 

NETool is a reservoir simulator focusing on simulations near the well bore. In contrast 

with Eclipse, NETool runs much faster because of its concentration on information 

near the well bore. It was for this reason that NETool was used to perform the 

reservoir simulations (since the number of realizations would cause the computation 

time to be incredibly high). Working with information before there is a production 

history (during drilling) there is a lot of uncertainty. Because of this a near well 

simulator is much more efficient as it can provide information about the production 

rates much faster than a comprehensive reservoir simulator. After initial flow rates 

decline during production a more comprehensive reservoir simulator should be used 

(such as Eclipse). 
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6.1.4 MATLAB 

In order for all the commercially available software to be used together in the same 

project, there was a need for some processing of the data so that it could be read 

properly. To do this, software routines were created using MATLAB because it was 

readily available and simple and easy to use. All the routines created for this research 

are noted where they are used and can be found in Appendix C. 

6.2 Reservoir Definition 

The reservoir for this case is based on an actual reservoir. The data was obtained in 

the form of Eclipse files which is an industry standard for certain oil companies (other 

companies may use their own reservoir simulators). The information obtained was 

tuned to suit the purposes of demonstrating the methodology of this research. This 

means that the complexity of the actual formation is not fully represented in this case 

study. The reasons for this is because the main goal of this research is to demon­

strate the methodology in a realistic and understandable way. Having unnecessary 

complexity makes the demonstration more difficult to understand. 

6.2.1 Variables Selection 

The first task is to determine the variables to work with for the case study. Similar 

to the first case study the objective of this case study is to quantify the risk in the 

production capacity of the reservoir. The permeability of the field has a significant 

effect on the production of a field. A favorable permeability would allow the oil to 

flow very well throughout the duration of production. Favorable permeability does not 
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always lead to optimal production. In the case where there is water or gas injection, 

a water aquifer present or a gas cap drive mechanism, it is possible to have a water or 

gas breakthrough while there is still oil remaining in the reservoir. This would cause 

oil to be left behind in the reservoir as residual oil due to the adverse mobility ratio 

of oil to water or oil to gas. This means one phase would flow better than the other 

and leave the less mobile phase behind. Porosity also has an effect on production. 

This was the primary variable in the first case study however this property is a 

static property and one which reservoir engineers usually have a better idea about 

compared to permeability since more tools exist to measure porosity. Permeability 

normally requires some sort of estimation technique like geostatistics to determine 

its value at certain locations . It is possible to use a correlation between porosity and 

permeability as well but only if there is some relationship evident between the two 

properties. Such a correlation will be explored further in later sections. 

6.2.2 Geometry 

The geometry of the reservoir in this case study is a regular grid of 1400 m by 3250 

m by 150 m in depth. This regular grid was used due to the constraints in the 

geostatistical realization procedure. The original reservoir grid was more complex 

but it was redefined for easy integration into the geostatistical simulator. NETool 

can accept irregular grids from Eclipse but the geostatistical simulator grid must 

match it. For this reason the grids were standardized as a 28 by 65 unit grid in 50 

m square grid blocks that are 150m in height. Figure 6.1 shows the plan view of the 

grid. 

From the figure it can be seen that there are some gaps or holes in the formation. In 

these locations the porosity and permeability values are near zero or equal to zero. 
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Figure 6.1: Reservoir Geometry- Plan View 

This may mean that there is shale or calcite present or some ot her tight formation 

where oil may not flow and cannot exist. The following figures (6.2 and 6.3) give three 

dimensional representations of the permeability and porosity distributions. Another 

feature may also be seen, their layered structure. The distribution of the permeability 

in the top layer (the layer that is visible) is the same as any other layer. This is due 

to the fact that in the geostatistical modeling, three dimensional modeling is much 

more complex than two dimensional modeling. To demonstrate the methodology for 

this case study the extra complexity involved with three dimensional modeling is 

unecessary and the two dimensional case is sufficient. The thickness of the reservoir 

is small compared to the length and width of the model so it is expected to behave 

as a two dimensional model. Also the vertical variability of a formation is generally 

based on the events that occur in geological time to form the reservoir. Different 

geological layers form during different periods of geological time. By assuming that 

this reservoir occupies only a single geological layer then the apparent similarities can 
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be accounted for. 

6.2.3 Reservoir attributes 

The reservoir attributes (such as oil and water saturations) do not effect the method-

ology of the case study. The oil, gas and water saturations have simple distributions 

allowing permeability to be the most sensitive parameter of the reservoir. This allows 

the well trajectory (which is also independent from the methodology) to be chosen 

based on the permeability of the reservoir_ 

6.2.4 Well 'Trajectory 

Based on the reservoir conditions stated earlier the well trajectory can be chosen 

based on the permeability distribution. The well provides the pathway of the oil 

from the reservoir to the production location. The trajectory chosen based on the 

permeability distribution of the base case shown in the Figure 6.4 and is summarized 

in Table 6.1. 

Table 6.1: Well Trajectory: Case 2 

X(m) Y(m) Z(m) 
831.25 14.19 3050.0 
905.63 478.98 3050.0 
1019.38 730.9 3050.0 
1141.88 1071.51 3050.0 
1120.0 1287.94 3050.0 
805.0 2114.63 3050.0 
730.63 2739.08 3050.0 
761.25 3168.4 3050.0 
761.25 3242.9 3050.0 

Basically, the well trajectory was chosen along a path where the permeability was 
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Figure 6.2: Permeability Distribution 

Figure 6.3: Porosity Distribution 
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the highest. This is to maximize the production levels from the formation since 

permeability is a measure of how easily the oil can move through the formation. The 

well trajectory is approximately 3.3 km. 

Figure 6.4: Well Trajectory: Case 2 

6.3 Data Analysis 

Before beginning the geostatistical analysis it is important to first analyze the data to 

determine if there is a need for any data transformation or declustering of the data. 

This data set has some qualities which set it apart from data sets normally used when 

developing a reservoir model. Not only does this data set inherit the properties of 

a spatial data set but it is also exhaustive. This means that the reservoir grid data 

obtained is completely filled (no empty cells). In practice this will not be the case 

since the reservoir engineer will only have data from certain locations in the reservoir 

(from an exploratory analysis, seismic, and/or outcrop information). One of the steps 

in initializing a reservoir simulator such as Eclipse is the population of the grid with 

an initial distribution. This can be done with geostatistics or some other estimation 

procedure. The data obtained for this case study had this grid already populated so it 
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will be used as the exhaustive data set. Certain data points will be removed from the 

exhaustive data set so that all that remains is a sample. This sample will represent 

what the reservoir engineer has to work with. The geostatistical realizations will be 

developed from this data set and compared to the exhaustive data set (which will be 

considered the actual reservoir properties for demonstration purposes). 

6.3.1 The Exhaustive Data Set 

The data analysis section is broken into two parts. The first part deals with the 

exhaustive data set and the second part deals with the sample data set. 

Univariate Calculation 

The calculation of the univariate statistical parameters will give information on how 

the parameters of permeability and porosity are distributed independently. From this 

analysis it should be evident if any transformation should take place. It should also 

show the distribution, range and maximum and minimum values of the parameters. 

The best way to do this is to view the frequency histograms of each parameter. 

Figure 6.5 shows the frequency histogram of the permeability data. The upper right 

hand side of the figure displays the summary data for the histogram as well as some 

of the univariate properties of the permeability data set. The values of median and 

mean (35.2215 mD and 40.5255 mD respectively) show that the data is skewed to 

the right with a coefficient of variation of 0.780. This means that the maximum 

values of the permeability are having an effect on the mean which is not completely 

representative of the data, however, this skewness is not a concern since the degree 

of skewness is not high enough to warrant it. 
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Figure 6.5: Permeability Histogram 

One aspect of the distribution which should be checked is the log normality of the data. 

Often in permeability data sets log normality exists since there is often variability 

over many magnitudes. This data set does not appear to be log normal from the 

histogram of the non-transformed data but it does seem skewed toward the low end 

of the spectrum. 

From the log plot in Figure 6.6 it can be seen that the variability of the data set does 

not occur over many different magnitudes so the histogram is very steep. Compared 

to Figure 6.5, Figure 6.6 does not show as much information about the distribution 

of the data set. Another feature to note is the spike at the left side of the histogram. 

This is due to the fact that the location where zero or near zero permeability exists 

in the data set the permeability was set to a minimum value so that it could be 
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Figure 6.6: Log of Permeability Histogram 

transformed into a log domain. The failure of this data set to be log normal can also 

be seen from the log normality plot in Figure 6. 7. 

Figure 6. 7 shows the cumulative probability plot for the data. Along the y-axis is the 

probability in normal probability increments and along the x-axis is the permeability 

of the data in log increments. This proves that the data is not log normal. If the 

data was log normal then it would plot as a straight line. The normal probability 

plot of the non-transformed data shows that the data is not strictly normal either. 

It plots the cumulative probability versus the untransformed data. Figure 6.8 shows 

that the data is near normal past a certain threshold, however, there is curvature in 

the normal probability plot. 
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Figure 6. 7: Log Normal Permeability Probability Plot 

Willcott, A.P. 

1000. 

The distribution of the source data is only important if the estimation technique 

used incorporates the distribution as an assumption. Some estimation tools built on 

the assumption of normality may still even be useful when the data is not normally 

distributed. This section discusses the distribution of the data to give the reader an 

awareness of where some sources of error may occur. 

The other property, porosity, usually has less variability compared to permeability. 

This is because it only varies as a percentage rather than a physical measurable 

value (like permeability). This can be seen from the histogram in Figure 6.9 and the 
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Figure 6.8: Normal Permeability Probability Plot 

summary statistics related to the porosity values. The histogram is a figure showing 

the probability frequency of the porosity values corresponding with the porosity value 

on the x-axis. 

The plot indicates that the porosity basically exists around two thresholds, one at 

7.5% and one at 15.5%. The variability is much less as can be seen from the standard 

deviation compared to the permeability data. The mean and median do not match 

each other but this is due to the existence of what seems to be two populations. This 

information may be useful in the geostatistical simulation process. 
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Figure 6.9: Porosity Histogram 

Bivariate Calculation 

Through a univariate analysis , information describing distributions of each variable 

independently is produced. It is interesting to consider these variables together to see 

if there is a physical relationship or a correlation between them. There are a number 

of different ways to analyze the multivariate data. One way to examine the data 

is by using a q-q plot. A q-q plot is a plot which displays the quantiles from each 

distribution versus each other. 
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Figure 6.10: q-q Plot 

In this case, because we are comparing two different units (porosity as a percentage 

and permeability in mD) it is necessary to normalize the permeability into a percent­

age. After normalizing permeability using the maximum permeability the q-q plot 

becomes the Figure 6.10. This figure plots the porosity quantile values (on they-axis) 

against the permeability quantile values (on the x-axis). Note that the normalized 

permeability is not log-transformed in any of the bivariate plots. A q-q plot of iden­

tical distributions will display a straight line along x = y. The visual comparison 

presented here obviously shows that the distributions are different and the curvature 
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in the line observed proves that the relationship between porosity and permeability 

in this reservoir is weak. 

The most common way to display bivariate data is the scatter plot. This plot creates 

a cloud of data. If there is a relationship in the data then the cloud will present a 

shape and the relationship can be quantified by fitting a line of best fit through the 

cloud of data. Figure 6.11 reiterates that the relationship between the two variables 

is weak. 
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Figure 6.11: q-q Plot 

Number of data 1704 
Number plotted 1704 

Number trimmed 116 

X Variable: mean .135 
std. dev . . 032 

The scatter plot can serve a number of purposes. First it gives a qualitative view 

of how the variables are related. It is also useful for identifying data that may be 
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erroneous. An erratic piece of data may have a major impact on the estimation 

procedures later on so at this stage it is necessary to address any data point that 

appears to be an anomaly. A data point such as this would appear out of place on 

a scatter plot. Finally, the scatter plot can also be used to validate initial data and 

help in the understanding of the results later. The scatter plot here does not show 

any obvious errors nor does is show any obvious relationship in the data. If there was 

a third parameter, such as an indicator marking geological formations , perhaps these 

two porosity distributions could be separated and a conditional dependency could be 

implemented, but such data does not exist in this case. 

Correlation Coefficient: 

The correlation coefficient between porosity and permeability is calculated using: 

n 

~ l:(xi - mx)(Yi- my) 
i=l (6.1) Pc = ----------

The correlation coefficient is computed as 0.308. This deterministically shows that 

there is little relationship between permeab:lity or porosity. The estimation proce­

dure will be completed without the conditional estimation of permeability based on 

porosity. Another note to make is that from this point onwards, permeability will be 

of interest and not porosity. In the estimation and risk procedures for this case study, 

porosity is considered a known quantity with a distribution shown in Figure 6.3. This 

is to reduce unnecessary complexity. Porosity is generally a better defined variable 

since information about porosity can come from many more sources than permeability 

( eg. cores, logs and 3-D seismic). 
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6.3.2 The Sample Data Set 

The sample data set is extracted from the exhaustive data set in a random way so 

that no biases due to data selection are incurred. A simple program was developed 

in MATLAB to extract ninety percent of the data points leaving ten percent for the 

geostatistical analysis. The details of the programs responsible for this task can be 

found in Appendix C with the names samplepop.m and myrandint.m. The following 

few sections will show the data analysis for this sample population. Figure 6.12 shows 

the locations where random sampled variables exist in the data set. It is a scatter 

plot showing where all the data points for the sample population are (filled circles) 

and the exhaustive data set includes both the filled circles and the hollow circles. Out 

of 1820 data points in the exhaustive data set, the sample consists of 182 points. 

Univariate Calculation 

The histogram shown in Figure 6.13 demonstrates that the sample population is in 

good agreement with the exhaustive data set (in comparison with Figure 6.5). The 

plot gives the frequency probability versus the permeability for the sample data. The 

good agreement is most likely due to the fact that the sampling is unbiased and 

random. In practice this would most likely not be the case since sampling occurs 

in locations where the most favorable reservoir properties are believed to exist. The 

univariate summary statistics of the permeability distributions show similarity. The 

mean of the exhaustive data set (40.5255 mD) is very similar to the mean of the 

sample data set (41.5865 mD). The variability of the data, measured by the standard 

deviation, also shows good agreement. The maximum of the sample is a little lower 

than the exhaustive data set since the extreme permeability values were not sampled 
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Figure 6.12: Sample Location in the Sample Population Scatter Plot 

in the sample data set. The other univariate plot of interest is the probability plot 

(Figure 6.14). This plot shows good agreement with the exhaustive data set. It shows 

that the sample data set is near a normal distribution past a certain threshold. By 

comparison with Figure 6.8 it can be seen that both the exhaustive data set and the 

sample population exhibit the same normal probability behavior. What this means 

is that the sample set is no more or less normal than the exhaustive data set. The 

sample is a good representation of the entire population. 

There is no need to analyze bivariate distributions here since the second variable of 
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Figure 6.13: Sample Population Histogram 

porosity is not being used in the estimation. 

6.4 Spatial Description 

At this point it is important to quantify how the permeability is distributed in space. 

This distribution of the permeability can be seen in the contour plot in Figure 6.15. 

In this plot the contours are set up in 5 equally spaced thresholds (6 classes) of 

permeability. This means there is a new contour line approximately every 29 mD. It 
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Figure 6.14: Normal Probability Plot of Sample Population 

should be noted that the data missing (from Figure 6.2) has been replaced by data 

in the lowest threshold (where the permeability is near zero). 

To examine the spatial characteristics of this data set there are a number of different 

techniques. The most common technique, and the technique that will be used here, 

uses variograms. 
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Figure 6.15: Permeability Contour Plot 

6.4.1 Choosing the Variogram Parameters 

Before investigating the influence of direction on the permeability it is a good idea 

to analyze the impact of distance. This involves the calculation of what is called 

an omnidirectional variogram. An omnidirectional variogram is a variogram that 

has a directional tolerance of plus or minus 90 degrees (recall that when invoking a 

search neighborhood when estimating the variogram, only 180 degrees of direction 

needs to be addressed due to symmetry). In the omnidirectional variogram there is 
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no directional influence. This type of variogram is a good way to determine a good 

starting point for the parameters for the variogram estimate such as the lag interval, 

tolerance and number of lags (discussed in Chapter 3). Through some trial and error 

it was found that with the following parameters the variogram demonstrates relatively 

good continuity with minimal fluctuation. 

Table 6.2: Variogram Parameters 

Lag 100 
Tolerance 50 

Number of Lags 30 

Figure 6.16 shows the omnidirectional variogram for both the sample data set (in 

red) and the exhaustive data set (in blue). It reiterates that the sample data set is a 

good representation of the total population. The parameters used in the generation 

of this plot are given in Table 6.2. 

The next step in the variogram estimation procedure is to determine the angle of con-

tinuity if the formation is anisotropic (which is the assumption unless the conclusion 

can be made that the reservoir is isotropic or homogeneous). To do this a variogram 

map is calculated. The standardized variogram is estimated at a number of different 

directions (0 to 180 degrees in 22.5 degree increments for a total of 8 estimations in 

this case study). Since the variogram is standardized the sample population variance 

is equal to one (this is the sample sill). The lag distance where each variogram reaches 

the sample sill is recorded. The direction at which the variogram estimate reaches 

the sill with the largest lag is the direction of maximum continuity. Note that the 

information regarding the exhaustive data set is also included in Table 6.3 and is 

identified by (e). 
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Figure 6.16: Omnidirectional Variogram Estimates 

Table 6.3 shows the lag distance were the variogram reaches the population sill for 8 

different angles. The second row indicates the lags for the sample variograms reaching 

the sample sill and the third row indicates the variograms for the exhaustive popu­

lation reaching the exhaustive sill (for comparison). The directions of maximum and 

minimum continuity can be conclusively stated from this table. In both cases there is 

maximum continuity in the direction of 45 degrees counter clockwise from the positive 

x-axis ( 45 degrees north of east). By convention the minimum direction of continuity 

is taken perpendicular to this direction. The sample population demonstrates this 

explicitly with a minimum lag at 135 degrees. The table indicates that for the ex­

haustive data the minimum direction of continuity is 157.5 degrees counter clockwise 

from the positive x-axis. It is generally accepted that the maximum and minimum 
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Table 6.3: Maximum Lag Computation 

Angle oo 22.5° 45° 67.5° goo 112.5° 135° 157.5° 
Lag (s) 808.51 875.21 1461.73 1310.19 697.87 584.48 570.30 576.57 
Lag (e) 812.79 963.90 1823.49 987.78 745.67 601.32 512.94 473.36 

directions are perpendicular (Goovaerts, 1997) and that the maximum direction be 

located first. For this reason the maximum and minimum directions of continuity are 

taken as 45 degrees and 135 degrees respectively. The sample variogram plots for all 

directions can be found in Appendix D. 

Once the anisotropy axis has been determined the next task is to determine the 

angular tolerance to use for the estimate. The angular tolerance should be chosen 

such that the number of pairs is minimized and that the behavior of the data is not 

masked. It is also important however, to have enough pairs to reduce the amount 

of fluctuation since an erratic variogram is difficult to model. The optimal tolerance 

balances both of these effects. Table 6.4 summarizes the number of pairs in each 

variogram estimation in the directions of maximum and minimum of continuity with 

angular tolerances from ±10° to ±40°. 

Based on Table 6.4 it can be seen that by increasing the tolerance the number of pairs 

is also increasing. The maximum number of pairs occurs when the tolerance is at a 

maximum. The ±40° column exhibits the largest number of pairs for this reason. 

If the variograms are examined for each of these tolerance levels it can be seen that 

for the first three levels, the fluctuation of the variogram is higher than in the fourth 

level. The fourth level does not mask any of the behavior of the population due to 

the inclusion of the data pairs from the tolerance and therefore this tolerance level is 

chosen for the modeling procedure. This is because the variograms calculated based 

on this tolerance level exhibit the minimum amount of fluctuation while producing a 
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Table 6.4: Angular Tolerance Comparison 

±10° ±20° ±30° ±40° 
N45°E N45°W N45°E N45°W N45°E N45°W N45°E N45°W 

16 18 16 18 16 18 16 18 
16 18 57 44 57 44 57 44 
7 15 7 15 50 44 50 44 
13 14 75 78 75 78 108 103 
39 32 68 62 106 86 142 116 
43 49 67 83 90 112 113 143 
41 43 109 101 150 125 185 149 
38 46 66 71 109 129 164 181 
77 68 135 103 181 156 230 216 
30 56 115 109 196 179 252 225 
52 56 113 139 192 220 239 257 
70 47 128 117 173 157 222 208 
89 86 154 146 233 235 268 299 
47 53 107 106 160 166 231 238 
77 76 159 160 196 208 284 281 
77 67 147 139 205 189 284 246 
49 57 113 123 179 187 251 258 
49 61 112 137 159 186 236 258 
54 52 132 128 188 160 256 236 
76 69 131 114 179 164 256 239 
40 43 101 107 161 178 230 242 
41 58 105 118 167 188 228 246 
37 36 84 96 139 155 208 207 
49 42 116 111 148 165 210 219 
56 54 108 101 156 165 209 222 
35 55 74 109 136 180 188 237 
31 49 69 107 115 158 170 213 
38 38 64 75 104 130 154 189 
30 43 66 86 99 140 150 195 
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manageable amount of pairs to work with. 

In summary, the parameters chosen for the variogram estimate for which the model 

will be based on is as follows: 

• Lag Distance Increment= 100m 

• Lag Tolerance = ±50 

• Angular Tolerance = ±40° 

• Direction of Maximum Continuity= 45° 

• Direction of Minimum Continuity = 135° 

Looking ahead, the simulation method that will be used will be sequential Gaussian 

simulation (SGS) . For this the sample variogram must be based on the normal score 

transformed data. This does not change the variogram estimate parameters noted 

previously, instead it makes the structure of the variograms more interpretable. Fig­

ure 6.17 shows the normal score variogram estimates for the minimum (yellow) and 

maximum (red) continuity directions versus lag distance. From this figure it can be 

seen that the fluctuation is greatly reduced. This decrease will help in the variogram 

modeling process. 

6.4.2 Modeling the Sample Variogram 

The estimation procedure for spatial variables using geostatistics requires the model­

ing of variograms. By choosing a model that is positive definite to match the estimate, 

the kriging solution will necessarily exist. Using the models discussed earlier, the fol­

lowing variograms were developed to model the variogram estimates. The procedure 
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in determining the optimal variogram parameters was through trial and error. Other 

acceptable models which adequately model the spatial relationships within the data 

may exist. 

Variogram which represents the spatial data in the 45° direction (maximum continu-

ity): 

-r(L) ~ 0.49 + 0.33 [ ~ C~o) - ~ (t~o) '] + 0.2 [ 1 - exp ( ~0~~)] (6.2) 

Variogram which represents the spatial data in the 135° direction (minimum conti-
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Figure 6.18: Sample Variogram Models 

nuity): 

?(L) = 0.49 + 0.33 [ ~ ( 7~0) - ~ ( 7~) '] + 0.2 [1- exp ( ~~~)] (6.3) 

The variograms were found through experimentation with the different modeling pa­

rameters (the range and sill values). There were also some modeling assumptions 

made here as well. The models were chosen to reach the same sill (of 1.02). In most 

cases where only horizontal variograms are being modeled, geometric anisotropy is 

present and not zonal anisotropy. Typical zonal anisotropy exists primarily in ver­

tically layered formations (Kelkar & Perez, 2002). In this case there is not enough 

information to conclusively say that this formation has zonal anisotropy in the hor­

izontal layer so geometric anisotropy is assumed (since it is most common and the 
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data fit is reasonable). Since the direction of minimum continuity has a fluctuation 

vertically before nearing the sill, the modeled sill was taken as slightly higher then 

the sample variance (1.02 instead of 1.0) to attempt to account for this behavior. The 

direction of maximum continuity reaches the sill at approximately 1800 m (this is the 

range for the spherical contribution of the variogram). The model variogram under 

predicts the estimate in the 45° and 135° orientations so the exponential model was 

added to it to compensate for this. The effect of this part of the model has a range 

of 1000 m in the 45° orientation and 700m in the 135° orientation. The nugget was 

chosen as the variogram value where the first data pairs in the estimate yield a value. 

The variogram estimate plot shows a value of zero at a lag of zero because there are 

no data pairs. Now that the variogram models have been fitted to the data set the 

simulation can be performed. The variogram models will produce the permeability 

realizations during the simulation and the spatial distribution can be compared with 

the baseline realizations to ensure the model predicts a reasonable fit. In practice a 

more rigorous validation procedure should be applied however for the demonstration 

of this methodology, this is sufficient. 

6.5 Solution 

In order to carry out the simulation and calculation of the risk estimate for the 

production rates, the following steps will be followed. 

1. Generation of the permeability skeleton for each state. 

2. Generation of geostatistical realizations for each state (Sequential Gaussian Sim­

ulation). 
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3. Use of reservoir simulator to develop production rates for each realization. 

4. Complete the risk factor calculation. 

6.5.1 Permeability Skeleton 

The permeability skeleton is based on the sample data set. Figure 6.12 shows the 

locations of the sample points that are considered to be known before any measure­

ments while drilling are considered. Specific locations in a field are known through 

core samples and outcrop information and this is what the sample field data set is 

representing, the information which is known. This state is denoted as state zero in 

the analysis. 

The development of the permeabilities for the other five states is completed through 

the use of a MATLAB procedure (MW D .m) designed to sample data near the well 

bore from the exhaustive data set and input the data into the permeability skeleton. 

Each state is composed of the permeability from state zero plus a number of extra 

sample points along the well path. The distance along the well path where the extra 

sample points are added depends on the state being considered. For the first state, 

measurements are inserted from the initial well bore point to 650 meters along the 

well path. Each state thereafter adds permeability values another 650 meters per 

state. Since the length of the well bore is slightly larger than five times the 650 meter 

segment length the final state, state 5, is slightly larger than the other states (by 95.1 

meters). Figure 6.19 shows the permeability for state one. Similarly the other states 

were developed. The file details can be found in Appendix C for further consultation. 
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Figure 6.19: Permeability Skeleton- State 1 

6.5.2 Geostatistical Realizations 

Then next task is to develop the geostatistical realizations to fill the remaining grid 

blocks in the permeability skeletons for each state. The process of running GSLIB 

to develop the realizations was set up as a batch script and is shown in the top right 

side of the GSLIB screenshot depicted in Figure 6.20. The first three action items 

are mathematical processes and the last two are for the generation of the display for 

the user. The first process is the normal score transform. This takes the permeability 

skeleton for the given state and it transforms the data such that the mean becomes 

zero and the standard deviation becomes one. This is done to satisfy a requirement of 

the sequential Gaussian simulation technique (SGS) used here. SGS was chosen over 

other methods because it has analytical simplicity, it is a well known and respected 

technique, the transform retains the original structure of the population along with 

extreme values, and it also ensures that the uncertainty at the unsampled location 
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that the estimate is near or equal to the true parameter and secondly that the best 

prediction of the parameter is obtained when the variance of the local neighborhood 

is minimized. One important consideration when utilizing a kriging technique is that 

a search neighborhood must be defined around the location where the estimation is 

to be made. This search neighborhood should be chosen keeping in mind the fact 

that a large search neighborhood will result in a large number of sample points being 

generated which in turn leads to an increase in computational time to estimate the 

point. 

3.3.1 Linear Kriging Techniques 

There are a few linear kriging techniques that can be used to predict parameters at 

unsampled locations. One technique is simple kriging. Simple kriging is the easiest 

kriging technique to apply but it may not be the most practicaL The primary draw­

back with the procedure is that it requires the knowledge of a global mean. This 

global mean is seldom known with any certainty. Another problem is that the first 

order of stationarity must be strictly valid_ (local means do not vary). Other forms of 

kriging relax this restriction. Another type of kriging is universal kriging. Universal 

kriging is a technique that estimates a variable in the presence of a trend. When 

there is a trend simple kriging does not produce accurate estimates so universal krig­

ing must be used (first order of stationarity does not hold in the presence of a trend). 

To account for this, the universal kriging technique makes use of a residual parameter 

added to the estimate equation. More information regarding these techniques can be 

found in Appendix A. A final type of kriging to be noted here is ordinary kriging. It 

is described next. 
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visitation influences the final configuration. A new random path is created for each 

realization. The random path is chosen based on an algorithm internal to the program 

GSLIB. The next step involves the estimation of the parameter at the unsampled 

location. This estimation procedure is called kriging and was demonstrated in the 

first case study. The kriging will occur in the same way as set out in the chapter 

on Geostatistics once the random path has been selected. Once the kriging has been 

completed the back transform occurs to obtain data back into the original domain. 

This is done in preparation for input into the reservoir simulator. 

It should be noted that in practice, when new information is introduced in the form of 

measurements while drilling, the spatial characteristics of the new sample population 

should be checked. In other words , the variogram models should be verified with 

new variogram estimates based on the updated sample populat ion. In this case study 

however, since the base realization is known, the variogram models for each state are 

known to follow the baseline realization so a check is not necessary. 

Figure 6.21 shows a number of realizations compared with the base realization. In 

the figure the first realization in the top left is the base realization. To the right 

are arbitrary realizations from state one and state two. Below on the bottom row 

going from left to right is state three, four and five respectively. From this figure the 

similarities can be seen and the model is shown to be visually appropriate. The finer 

details of each state can only be evident by studying the statistics of the states or 

quantifying them in terms of risk. One way to do this is to use a numerical reservoir 

simulator and study the variation in production rates. 
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Figure 6.21: GSLIB Realizations for a Base Case Compared to Each State 

6.5.3 Reservoir Simulation 

The reservoir simulation allows for the quantification of the uncertainty in the per­

meability in terms of oil production rates based on geostatistics. Geostatistics is 

extremely useful because it allows for multiple variables to be studied with a single 

response. In this case only one variable is being studied to show the methodology of 

how to incorporate the measurements while drilling into the risk calculation. This is 
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done through the development of geostatistical realizations and a reservoir simulator 

called NETool. 

Currently NETool is capable of running batches of simulations. The limitation is that 

the output is opened into spreadsheet format which draws computer memory. This 

means that only eight realizations can be run at a single time with a limited amount 

of output before the accessible memory of the computer is exhuasted. The output 

from GSLIB is in the form of a single text file with 500 realizations. This means there 

is a need for some pre-processing before the simulation takes place so that only eight 

realizations are run at any given time. 

A MATLAB file (split.m) was created to perform the conversion of the single file 

with 500 reallzations, into 62 separate files each with eigh~ realizations in each file 

and a final file with the balance of the realizations. In practice this procedure woUld 

need to be customized depending on the number of realizations used, the capability 

of the user's computer and the numerical simulator used. Details of this procedure 

can be found in Appendix C. 

NETool requires the importation of a grid with saturations, pressures, and all other 

relative information about the formation. This comes directly from the Eclipse files 

with no need for any data processing. Once this is completed the well path should be 

S8t in NETool. Figure 6.22 shows where the input of the trajectory can be modified 

and/ or typed into NETool. The other parameters used in NETool that are necessary 

(including type of completions, global parameters , etc) are included in Appendix D. 

The output from the reservoir simulation includes the upscaled permeability along 

the well path, and the total production rates for all realizations for each state. This 

is what is being used for the risk analysis. In total there were 500 realizations for 
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Figure 6.22: NETool Well Trajectory Input 

each of the six states (one state before MWD and five states throughout the drilling 

process). 

Once the simulations were completed, some post processing was necessary to prepare 

for the risk analysis. The production rates were calculated and input into separate 

output locations. In order for the data analysis to take place the information from 

each realization was copied and pasted into Microsoft Excel. This data can be seen 

in Appendix D. 
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6.5.4 Risk Calculation 

This section describes the procedure for calculating the risk for this case study. The 

information used in the risk analysis is based on data collected from the reservoir 

simulations from the NETool output. The calculation of risk is described in the 

chapter on risk analysis. Specifically, Equation 4.1 is used to calculate the risk. The 

consequence is defined as the deviation of the production rate of the 95th percentile 

of the 500 realizations of the state, from the base case production rate, multiplied by 

the price of oil. The price of oil is taken as a constant value of $50 per barrel. Thus, 

each state has a single quantifiable consequence. Since the 95th percentile of the 

production is taken as the acceptable probability with an acceptable confidence level, 

the uncertainty involved with each calculation is 5%. Multiplying the consequence 

by the uncertainty yields the risk value. The next question is how do we analyze the 

risk. Since each state has a quantifiable risk value associated with it, the risk at each 

state can be compared. The following equation fully explains the risk calculation. 

Risk= (Pstatei95- Pbase2)($50)(0.05)) (6.4) 

Where 

• Pstatei95 : is the 95th percentile production value of the ith state in barrels of 

oil 

• Pbase2 : is the production of the baseline case in barrels of oil 

• $50 : is the price of oil per barrel 

• 0.05 : is the uncertainty in the state production 
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6.6 Results 

The calculated risk values associated with each state is summarized in Table 6.5 

Table 6.5: Summary of Risk Factors 

State 0 1 2 3 4 5 
Risk Factor -1239.15 -606.93 -476.90 -470.23 -240.32 -36.93 

Risk Improvement(%) N/A 51.02 21.42 1.40 48.89 84.64 

To put these numbers into perspective, they represent the deviation between the 

state production and the actual production, in terms of dollars, multiplied by the 

uncertainty in the state production. Each state presents some degree of risk since all 

the risk factors given in the table are negative. This means that the state production 

prediction consistently makes conservative predictions. This can be thought of as a 

safety factor. 

From the table it is evident that the risk factor is decreasing with each progressing 

state calculation. The second largest improvement is from state zero to state one. The 

reason for this may be that the decrease in variability due to the added information 

permeates through the reservoir grid. Thus the greatest improvement in risk factor 

occurs when the first measurements while drilling are incorporated since they influence 

the grid when it is populated with the least amount of data. The concept is that 

adding conclusive data where there is little certainty improves the risk more than 

adding the same amount of conclusive data where there is already a level of confidence 

existing. 

In theory, in the final state, the risk factor should near zero since the permeability 

around the well trajectory is known. In this case the predicted production should 

equal the expected production causing the deviation to be small in comparison to 
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other states. The final state in this analysis demonstrates the biggest improvement in 

reduction of risk because of the decrease in variation of permeability values along the 

well path. The reduction in variation means that the production simulation is more 

certain however the risk factor does not become zero. In this state the risk factor 

is close to -37. It is believed that the variogram models chosen, under predict the 

permeability values for the geostatistical realizations. This is because difficulties in 

modeling the variograms cause the variogram chosen to be unable to fully represent 

the peak in the direction of minor continuity. This reiterates that care and caution 

needs to be take when developing a geostatistical model and the process is not always 

straightforward. 

6.7 Summary 

This case study presents an example of how risk can be quantified in the presence 

of geological uncertainty. It then continues to demonstrate how measurements while 

drilling can improve this risk factor. 

Geostatistics was used to create equiprobable realizations of the reservoir creating a 

bandwidth of probable permeability distributions throughout the reservoir formation. 

The spatial relationship of permeability was modeled by using variograms and then 

sequential Gaussian simulation was used to create the realizations. A total of 500 

realizations were generated for each state in the drilling process where each state 

represents a time block where measurements while drilling are gathered and received. 

A baseline realization exists from the exhaustive data set and the risk involved is 

based on the deviation between this baseline and the simulated realizations. Each 

state provides a distribution of production rates. The 95th percentile was deemed an 

121 



Reducing the Risk in Drilling Production Wells Willcott, A.P. 

acceptable confidence level for this case study so the 95th percentile of the production 

rates for each state was used in the risk calculation. The risk is a function of two 

parameters, the consequence of the hazard and the uncertainty that this negative 

event will occur. The hazard is not achieving the baseline production (the difference 

in the production rates between the baseline and the 95th percentile of the state) and 

the consequence is this difference multiplied by the price of oil. The uncertainty for 

this occurrence is five percent based on the use of the 95th percentile value for the 

simulated production values. 

The utilization of measurements while drilling occurs at 5 states throughout the 

drilling process. Each state provides more information about the reservoir. The 

gathered information is used to reduce the risk involved with drilling a production 

well. The measurements while drilling were used as extra information in the geosta­

tistical simulator and it served to tune the realizations. Each state reduces the risk by 

reducing the variability in the distribution of the permeability and bringing it closer 

to the actual baseline. 

The results demonstrate a marked improvement of risk factor for each state. The more 

information utilized in the drilling process the more the risk is reduced. For this reason 

this methodology can serve as a guide on how to incorporate measurements while 

drilling to help reduce the risk in drilling production wells in petroleum reservoirs. 
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Chapter 7 

Observations and Discussion 

This research proves that there is a place in the field of geostatistics, reservoir en­

gineering and risk engineering where improvements can be made to reduce the risk 

in drilling production wells. In many cases the literature suggests that only experi­

ence may offer the best advice on how to deal with risk in field situations. Often a 

full-scale geological model requires professionals from different disciplines that have 

years of experience in their field to develop acceptable reservoir models based on the 

available information. This research shows the methodology of how measurements 

while drilling can be incorporated into the risk calculation in real-time. 

The chapters leading up to the case studies give the necessary background in the 

fields of risk engineering and geostatistics to understand the proposed methodology. 

The literature review provides a history of the work that has been done in related 

areas and with similar ambitions. The literature review demonstrated that even 

though work has been done in risk engineering and geostatistics in the oil and gas 

industry, no methodology exists to utilize measurements while drilling in real-time. 

The chapter covering geostatistical background highlights all the major concepts used 

in both case studies. It gives information about modeling spatial relationships and 
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how to estimate points at unsampled locations which is essential to understanding the 

case studies. The risk engineering chapter gives information about how to calculate 

risk. By highlighting simulation it gives insight into how risk can be calculated when 

there is uncertainty in a data set. 

7.1 Case Study 1 

The first case study demonstrated the basic concepts of geostatistics. The porosity 

field data set was used to estimate porosity at unsampled locations along the path 

of the well. Once the porosity along the well path was completely defined (kriged 

at all desired locations) the production volume for the life of the project was fully 

defined by using a stream tube model and several reservoir engineering concepts. 

This production volume image was considered the baseline image and represented 

the expected production from the formation. Other porosity images were generated 

based on a random number generator with an algorithm capable of creating a data set 

with the same mean and standard deviation of the kriged porosity data. 500 images 

were generated for each grouping and this was repeated 500 times. The production 

volume for all images was computed using the same stream tube model and this 

information was compared to the baseline production by using a risk calculation. 

The risk factor calculation was calculated according to the following equation: 

Risk= (Pgs - Pbase) ($Oil) (0.05) (7.1) 

From all the risk factors calculated there is a resulting risk distribution. The resulting 

risk profile is shown in Figure 5.9. From this figure it can be seen that there was only 

a 5% chance of risk (meaning that there was only a 5% chance of not achieveing the 
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expected production). This is shown where the distribution line crosses the y-axis 

on the figure. For the other 95% there was no risk since the deviation in production 

favored the randomized images and there is no hazard. The main purpose of this case 

study was to demonstrate a methodology for quantifying the risk in a project when 

there is uncertainty in the geology. It also demonstrates major geostatistical concepts 

used in the second case study. 

7.2 Case Study 2 

The second case study approaches the uncertainty in the geology with much more rigor 

than the first case study. In this case study there is a baseline permeability realization 

from a numerical reservoir model. For the study. 90% of the permeability values 

were removed randomly to represent a sample population. A geostatistical analysis 

of this sample population revealed an anisotropic variogram which represented the 

spatial relationship of the data. This relationship was used to create 500 realizations 

using sequential Gaussian simulation. This is the initial state of the case. Specific 

information from the baseline realization was then added into the sample population 

along the well path. This represents measurements aquired while drilling. The entire 

well path was split into 5 sections and each section represents a new state. After 

the information from the baseline realization was added to the sample population 

for a given state, the geostatistical simulation generates 500 realizations for a risk 

calculation. 

It was found that the risk for each state continuously decreased as more information 

was used in the geostatistical simulation. This is demonstrated in the following table. 

Each state experienced a marked improvement in risk over the previous state. This 
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Table 7.1: Summary of Risk Factors 

State 0 1 2 3 4 5 
Risk Factor -1239.15 -606.93 -476.90 -470.23 -240.32 -36.93 

Risk Improvement(%) N/A 51.02 21.42 1.40 48.89 84.64 

result is encouraging. It also showed that the risk reduction was most pronounced 

in the early states. The purpose of this case study was mainly to demonstrate a 

methodology of how to incorporate measurements while drilling into a risk calculation 

while drilling. It shows that by using such information the risk was significantly 

reduced. It demonstrates how the disciplines of risk engineering, geostatistics and 

reservoir engineering can be used together in a multidisciplinary way to reduce the 

risk in drilling production wells. 
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Chapter 8 

Conclusions and Recollllllendations 

This research has explored the concept of using measurements while drilling in real­

time to update geostatistical reservoir models. The main focus was to present a 

methodology on how to integrate the concepts of geostatistics, reservoir engineering 

and risk analysis and to utilize these concepts in a practical way. Through the use of 

two case studies the methodology was demonstrated in a rigorous fashion in a useful 

way. The proposed methodology is original in that it integrates a number of different 

disciplines allowing for the utilization of "real-time" data obtained throughout the 

drilling process. Such a methodology was not previously available and it provides a 

novel approach to improving decision making during the drilling of production wells . 

By utilizing information from MWD, decisions can be made based on the statistical 

and spatial characteristics of the petroleum host formation. As drilling progresses, 

the uncertainty decreases as a result of the additional information, thereby decreasing 

the risk. 

The results of the case studies indicate how the proposed methodology can provide 

a great advantage when used in real-time to reduce risk. It also demonstrates that 

geostatistics can provide a pathway to utilize the measurements while drilling to 
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decrease the uncertainty in the geology of the reservoir. 

There are a number of areas in this research where care and caution must be used 

to implement the methodology. One area where there is uncertainty in geostatistical 

methodology is in the determination of the directions of maximum and minimum 

continuity. The mathematical way to calculate these directions is through the use of 

a variogram map. This method is only suggested as a last resort; if the information 

is not available to allow for the conclusive designation of the directions. One way to 

show conclusive evidence is to have an experienced geologist who knows the location 

and geographical particulars, offer that evidence. Experience is integral. Another 

area where experience is needed is in variogram modeling. Variogram modeling is 

easy if the variogram estimate is well-behaved. In nature, however , there are often 

inexplicable fluctuations. In these cases it is up to the geoscientist to determine which 

parts of the variogram estimation are important to model and which ones represent 

some sort of removable trend or which fluctuations can be ignored. 

The validation procedures for geostatistical models are not obvious. Without a base­

line comparison (since the reservoir is usually largely uncertain) it is sometimes dif­

ficult to validate the models. One method involves removing one point at a time 

from the sample data set and kriging to see if the model can predict it correctly. The 

limitation of this method is that the estimation at the sampled location is often not 

representative of estimation at all unsampled locations. In this research a qualita­

tive validation technique was used to see if the model predictions were appropriate 

however in practice this procedure should be more rigorous. 

The following are areas where further research may be applicable: 

Up to now the geostatistics in reservoir characterization has primarily been used to 
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make decisions before the drilling of production wells . This means that the informa­

tion that is gained while drilling (from measurements while drilling) is not being used 

to tune the geostatistical models. If the measurements while drilling were used in 

the geostatistical models then the information could be used to make better decisions 

and optimize well paths while in the drilling process through the use of risk analysis. 

This may be necessary if unexpected formations appear while drilling and a change in 

drilling trajectory is needed. Some work has been completed to date regarding how 

geostatistics can be used to optimize well trajectories and manage reservoirs however 

its use in real-time has not been explored. 

Another area for future research would be to include many different types of data 

with different measurements while drilling to form a more comprehensive case study 

of how the risk factor would behave with the addition of multiple variables in the 

geostatistical and reservoir simulation and in three dimensions. 

\tVork should also be done to integrate the three fields of reservoir engineering, risk 

engineering and applied geostatistics into software that can import measurements 

while drilling. This would allow the concept of using measurements while drilling to 

update the field model in real-time more accessible. 
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Appendix A 

Extra Geostatistical Information 

Models Without a Sill 
Fractional Gaussian Noise, faNModel: 

This model uses a number of empirical parameters (available in the literature) to 
account for trends occurring in variogram estimates. Mathematically it is defined as: 

Where: 

• C5 -Scaling Parameter 

• H- Intermittency Exponent (0, 1) 

• o- Averaging Parameter 

Fractional Brownian Motion, fBMModel: 

The applicability of this model is still a topic of debate. It does however; seem to 
predict a variogram with some degree of accuracy. Mathematically it is defined as 
the following: 

(8.2) 

Logarithmic Model: 

This model is used in mining however its use in reservoir engineering is very limited. 

(8.3) 

Cross Variograms 
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Cross variograms represent the spatial relationship between two parameters located 
at a certain lag distance from each other. This is especially applicable when there 
are two parameters to consider (e.g.: porosity, and permeability) and relative spatial 
distance (lag). The equation for the cross variogram is: 

rc(l) = ~E { [x ( 0) -X ( 0 +f)] [Y ( 0) - Y ( 0 + l)]} (8.4) 

However in practice it is more convenient to use the concept in the following form: 

With these equations it should be noted that the cross-variogram is symmetric but 
the cross-covariance is not always symmetric. In most cases it can be assumed that 
the cross-covariance is symmetric and this will allow for the calculation of the cross­
covariance at an unsampled location by rearranging the following equation: 

(8.6) 

Note that this equation also holds for regular variograms and will be used in the 
following section. 

Other Types of Kriging 
Simple Kriging 

This procedure is the easiest kriging technique to apply but it may not be the most 
practical. It begins with the assumption that the value at the estimated location may 
be estimated by a linear combination: 

n 

X*(il) = A0 + L AiX(u~) (8.7) 
i=l 

Using the unbiased condition (the fact that the difference between the expected value 
of the sample and the expected value of the estimate is zero) and the first order of 
stationarity a matrix involving the covariance between two sample points, the weights 
and the covariance between the sample point and the estimate can be derived (Kelkar 
and Perez, 103). In matrix form this is: 
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(8.8) 

The covariance matrix on the left-hand side of the equation is known since it is devel­
oped completely from sample point data. The covariance matrix on the right-hand 
side of the equation can be estimated by using the variogram model and variogram­
covariance relationship. Knowing these parameters, the matrix of weighting para­
meters can be calculated. Using the unbiased condition and using the first order of 
stationarity we can estimate the constant A0 in the linear kriging equation using the 
following equation (Kelkar & Perez, 103): 

(8.9) 

Where: 

• m - Global Mean 

Now all the parameters in the matrix are known except the estimate, so the estimate 
can now be carried out. 

Universal Kriging 

X*(u~) = m(il) + R(il) (8.10) 

Where m( il) represents the trend (it can have any form - linear, quadratic, etc.). 

For this formulation the following matrix can be derived (See Kelkar & Perez, page 
125): 

C( i11, i11) C(i11, Un) fo(uo) fo(u~) >.1 C(i11, ilo) 

C(iln,ill) C( Un, Un) !L(uo) !L(u~) An C(iln, ilo) 
(8.11) 

fo(uo) fo(u~) 0 0 J.Lo fo(uo) 

!L(uo) !L(u~ 0 0 J.LL !L(uo 
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The f function is known as the trend function and lies in the function for m( il) in 
the following manner: 

n 

m(il) = L:adi(Ui) (8.12) 
i=l 

where the ai parameters are coefficient of the function fi· Note that fo( il) is defined 
to be equal to one. Universal kriging is a linear form of kriging however this is a 
misnomer since the local mean may drift according to a non-linear trend. 

Fitness Tests 
@Risk has a powerful tool that allows a user to fit a set of sample data to a distri­
bution. It calculates the parameters for each distribution (shape and/or scale pa­
rameters, mean, standard deviation depending on the distribution) that would best 
represent the data for a number of different probability distributions. Then it ranks 
the different distributions based on a number of different goodness-of-fit statistics 
such as the Chi-Squared Statistic and the Kolmogorov-Smirninov Statistic. Since it 
is up to the user to choose which statistic to use, the more prominent ones will be 
briefly discussed. 

The chi-squared statistic is the best known technique for calculating the goodness­
of-fit statistic (Palisade Corporation, 2002). After splitting the parameter into 'bins' 
the chi-squared statistic can be calculated in the following manner: 

(8.13) 

Where: 

• K, : the number of bins 

• Ni : the observed number of samples in the ith bin 

• Ei : the expected number of samples in the ith bin 

This statistic has the disadvantage of not having any guidelines of how to divide the 
sample data into bins. In some cases the statistic will change based on the selection 
of the bins. One way to help in this respect is to adjust the bin sizes such that all 
bins have an equal amount of probability 
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The Kolmogorov-Smirnov Statistic is another technique which may be used. It is 
defined in the following way: 

Dn =max (IFn(x)- F(x)l) (8.14) 

Where: 

• n : the total number of data points 

• F(x) : the fitted cumulative distribution function 

• Fn(x) = l:f:-

• Nx : the number of XIs less than x 

This statistic does not require binning but it does not detect tail discrepancies. 

Other techniques include the Anderson-Darling Statistic which is similar to the Kolm­
ogorov-Smirinov and the Root-Mean Squared Error technique which is used only for 
density and cumulative curve data. The concept for each technique i~ the same; each 
is a measure of difference between a value expected based on the chosen distribution 
and the actual value. The lower the statistic the better the fit. In this manner 
different distributions can be tested; the parameters needed for the distribution (such 
as shape and scale parameters) can be optimized and the different distributions can 
be ranked accordingly. 

In this research the chi-squared technique was used with equiprobable bin sizes. Note 
that a 1 and a 2 vary in meaning depending on the distribution. In the case of Beta 
distribution they represent shape parameters, in the Weibull distribution they rep­
resent the shape and scale parameters respectively and for the Normal distribution 
they represent the mean and standard distribution respectively. 
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Appendix B 

Case Study 1 Field Data 
leld Data 

X y c!> X y c!> 
1 21450 5180 11 .78 35 8485 4605 25.06 
2 -2280 10200 27.58 36 8559 3952 27.89 
3 -800 8320 26.63 37 10985 3477 24.83 
4 -4300 330 23.22 38 10995 4860 24.03 
5 -3630 -4950 25.59 39 12432 4944 25.14 
6 8615 4505 23.78 40 11128 3477 26.40 
7 2310 -330 27.06 41 12535 3455 26.52 
8 -3630 6260 26.57 42 15275 3530 26.03 
9 -3630 6930 24.99 43 13765 4860 22.87 

10 1925 10140 18.09 44 16960 3585 15.33 
11 9165 10140 5.94 45 2565 2200 25.16 
12 11955 10140 8.01 46 4565 2220 26.53 
13 14445 10140 17.43 47 5845 2220 31 .89 
14 16405 10140 16.18 48 7205 2316 19.49 
15 18405 10140 18.54 49 9920 2220 22.04 
16 1005 6170 30.36 50 9633 247 16.89 
17 565 7500 21 .90 51 11880 890 14.86 
18 8395 6150 28.99 52 12560 890 18.56 
19 8320 6170 21 .75 53 11125 2220 29.18 
20 9770 6170 24.32 54 11126 1750 9.59 
21 12836 7150 23.02 55 12510 890 15.61 
22 11200 6170 22.25 56 11050 2220 24.83 
23 12825 5580 27.26 57 12295 300 16.60 
24 10807 5633 26.63 58 14337 2318 25.77 
25 13765 6170 13.86 59 15170 890 29.00 
26 15125 6170 15.38 60 13765 2220 32.00 
27 3205 3530 28.60 61 15050 2195 23.19 
28 3255 4860 28.77 62 13736 856 16.21 
29 5845 3500 27.83 63 15535 225 12.54 
30 7205 3530 29.02 64 16405 2220 16.23 
31 6029 4860 27.08 65 20740 400 17.31 
32 8485 3530 30.40 66 23100 3960 15.44 
33 9845 3530 30.63 67 -4620 -1980 24.70 
34 9770 3530 23.20 68 11225 8547 13.82 

X y 

15000 200 
-500 8000 
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case Study 1 Validation oau. 

T IEs ed eta bmat 

Well Path X Well Path Y 
btimated Oist-anee from Flow Unit Flow unit 

Mat Index 
Porosity w•ll path Index Porosity 

Well Path Well Path Estimated Distance from well Flow Unit Flowunrt 
Mat Index 

X y Porosity .... Index Porosity 

-500 8000 27.528 

I 
3 26.63 1 

17 21 .90 1 
16 30.36 1 
2 27.58 1 

-475 7987.4 27.528 3 26.63 2 
1 17 21 .90 2 

16 30.36 2 
4 2 27.58 2 

7575 3936.5 26.083 549.64 30 29.02 324 
984.12 36 27.89 324 
996.65 32 30.40 324 
1129.18 35 25.06 324 

7600 3923.9 26.083 557.82 30 29.02 325 
959.41 36 27.89 325 
968.69 32 30.40 325 
1116.76 35 25.06 325 

-450 7974.8 27.528 491 .57 3 26.63 3 7625 3911 .3 26.083 567 .26 30 29.02 326 
1120.58 17 21 .90 3 93489 36 27.89 326 
2318.29 16 30.36 3 940.73 32 30.40 326 
2881.01 2 27.58 3 1104.91 35 25.06 326 

-425 7962.3 27.528 518.27 3 26.63 4 7650 3098.7 26.083 577.90 30 29.02 327 
1092.60 17 21.90 4 910.56 36 27.89 327 
2292.83 16 30.36 4 912.78 32 30.40 327 
2906.63 2 27.58 4 1093.65 35 25.06 327 

-400 7949.7 27.528 545.1 0 3 26.63 5 7675 3886.1 26.083 569.68 30 29.02 328 

i 
17 21 .90 5 
16 30.36 5 
2 27.58 5 

-375 7937. 1 27528 3 26.63 6 
17 21 .90 6 
16 30.36 6 
2 27.58 6 

-350 7924 5 27 .528 3 26.63 7 
17 21 .90 7 
16 30.36 7 
2 27.58 7 

884.83 32 30.40 328 
886.45 36 27.89 328 
1082.99 35 25.06 328 

7700 387:1.5 26.083 602.54 30 29.02 329 
856.88 32 30.40 329 
862.58 36 27.89 329 
1072.96 35 25.06 329 

7725 3861 26.063 616.39 30 29.02 330 
828.94 32 30.40 330 
!38.95 36 27.89 330 
1 35 25.06 330 

-325 7911.9 27.528 

lj 
3 2663 • 
17 21 .90 • 
16 30.36 8 
2 27.58 8 

-300 78994 27 .528 3 26.63 9 

7750 3848.4 26.083 30 29.02 331 
32 30.40 331 
36 27.89 331 

1 35 25.06 331 
7775 3835.8 26.083 30 29.02 332 

952.74 17 21.90 9 32 30.40 332 
2166.49 16 30.36 9 36 27.89 332 

2 21 .58 9 1046 78 35 25.06 332 
-275 7886.8 27.528 67 3 26.63 10 7800 3623.2 26.083 883.33 30 29.02 333 

.77 17 21 .90 10 745.1 2 32 30.40 333 
2141.43 16 30.36 10 769.85 36 Z7 .89 333 
3061 22 2 27.58 10 1039.42 35 25.06 333 

-250 7874.2 27.528 707 99 3 2663 11 7825 3810.6 26.083 880.56 30 29.02 334 
896.80 17 21 .90 11 717.19 32 30.40 334 

2116.44 16 30.36 11 747.49 36 27.89 334 
3087.11 2 27.58 11 1032.76 35 25 .06 334 

-225 7861 .6 27.528 

I 
3 26.63 12 
17 21 .90 12 
16 30.36 12 
2 27.58 12 

-200 7849 19.411 3 2663 13 

7850 3798.1 26.083 

I 
32 30.40 335 
30 29.02 335 
36 2789 335 
35 25.06 335 

7875 3785.5 26.083 32 30 .40 336 
840.88 17 21 .90 13 703.98 36 27.89 336 

2066.68 16 30.36 13 717.06 30 29.02 336 
3124.77 10 18.09 13 1021 .62 35 25.06 336 

-175 7836.5 19.411 790.22 3 26.63 14 7900 3772.9 26.083 633 .42 32 30.40 337 
812.90 17 21 .90 14 682.90 36 27.89 337 

2041 .93 16 30.36 14 736.22 30 29.02 337 
3111.10 10 18.09 14 1017 .16 35 25.06 337 

· 150 7823.9 19.411 784.93 17 21 .90 15 7925 3760.3 26.083 605.52 32 30.40 338 
817.71 3 26.63 15 662.34 36 27 89 338 

2017.25 16 30.36 15 755.94 30 29.02 338 
3109.68 10 18.09 15 1013.45 35 25.06 338 

· 125 7811.3 19.411 758.97 17 21 .90 16 7950 3747.7 25.287 577.61 32 30.40 339 
845.23 3 26.63 16 642.34 36 27.89 339 
1992.67 16 30.36 16 778.17 30 29.02 339 
3102.48 10 18.09 16 1007 .80 6 23.78 339 

-100 7798.7 19.411 n9.ot 17 21 .90 17 7975 3735.2 25.287 549.72 32 30.40 340 
872.78 3 26.63 17 822.96 36 2789 340 
1968.18 16 30.36 17 796.86 30 29.02 340 
3095.52 10 18.09 17 1001 .13 6 23.78 340 

-75 n86. t 19.411 701.05 17 21 .90 18 8000 3722.6 25.287 521 .84 32 30.40 341 
900.36 3 26.63 18 604.25 36 27.89 341 
1 16 30.36 18 817.99 30 29.02 341 

10 18.09 18 995.19 6 23.78 341 
-50 7773.5 19.411 17 21 .90 19 8025 3710 25.287 493.96 32 30.40 342 

3 26.63 19 586.28 36 27.89 342 
1919.48 16 3036 19 839.52 30 29.02 342 
3082..32 10 18.09 19 990.01 6 23.78 342 

-25 7761 19.411 645.14 17 21 .90 20 8050 3697.4 25.287 466.11 32 30.40 343 
3 26.63 20 569.12 36 27.89 343 
16 30.36 20 861 .43 30 29.02 343 
10 18.09 20 985.60 6 23.78 343 

0 7748.4 19.411 617.19 17 21 .90 21 8075 3684.8 25.287 438.26 32 30.40 344 
98323 3 26.63 21 552.84 36 27.89 344 
1871 .18 16 30.36 21 883.67 30 29.02 344 
3070.09 10 18.09 21 981 .97 6 23.78 344 

25 7735.8 19.411 589.24 17 21 .90 22 8100 3672.3 25.287 410.44 32 30.40 345 
1010.89 3 2663 22 537 .53 36 27 .89 345 
1847.20 16 30.36 22 906.24 30 29.02 345 

I 
10 18.09 22 

50 7723.2 19.411 17 21 .90 23 
3 26.63 23 
16 30.36 23 
10 18.09 23 

75 7710.6 19.411 17 21 .90 24 
3 26.63 24 

16 30.36 24 
10 18.09 24 

979.12 6 23.78 345 
8125 3659.7 25.287 382.64 32 30.40 346 

523.27 36 27.89 346 
929.09 30 29.02 346 
977 .07 6 23.78 346 

6150 3647.1 25.287 354.88 32 30.40 347 
510.14 36 27.89 347 
952.23 30 29.02 347 
975.82 6 23.78 347 

100 7698 1 19.411 505.43 17 21 .90 25 8175 3634.5 28.818 327 14 32 30.40 348 
1093.99 3 26.63 25 498.25 36 27 .89 348 
1775.95 16 30.36 25 975 37 6 23.78 348 
3048.55 10 18.09 25 975,61 30 29.02 348 

125 7685.5 19.411 477.50 17 21 .90 26 8200 3621.9 28.818 299.46 32 30.40 349 
1121 71 3 26.63 26 487 67 36 27.89 349 
1752.45 16 30.36 26 975.72 6 23.78 349 
3043 .79 10 18.09 26 999.24 30 29.02 349 

150 7672.9 19411 449.58 17 21 .90 27 8225 3609.4 28.818 271 .84 32 30.40 350 
1149.45 3 26.63 27 478.50 36 27 .89 350 
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1n9.09 16 30.36 27 976.87 6 23.78 350 
303927 10 18.09 27 1023.08 30 29.02 350 

175 7660.3 19.411 421 .67 17 2190 26 8250 3596.8 25.115 244.30 32 30.40 351 
1177.20 3 26.63 26 470.81 36 27.89 351 
1705.86 16 30.36 28 978.83 6 23.78 351 
3035.01 10 18.09 28 1035.25 35 25.06 351 

200 7647 7 19.411 JSJ.n 17 21 .90 26 8275 3584 .2 25.175 216.88 32 30.40 352 
1204.96 3 26.63 26 464.69 36 27 89 352 
1682.78 16 30.36 26 981 57 6 23.78 352 
3031 .00 10 18.09 26 1042.18 35 25.06 352 

225 7635.2 19.411 365.88 17 21.90 30 8300 3571.8 25.175 189.62 32 30.CO 353 
1232.73 3 2663 30 460.19 36 27.89 353 
1659.85 16 30.36 30 985. 11 6 23.78 353 

10 18.09 30 35 25.06 353 
250 7622.6 19.411 17 21 .90 31 8325 3559 25.175 32 30.40 354 

1 3 26.63 31 • 36 2789 354 
1637.08 16 30.36 31 989.42 6 23.78 354 
3023.74 10 18.09 31 1058.13 35 25.06 354 

275 7610 19.411 

I 
17 21 90 32 
3 26.63 32 
16 30.36 32 
10 18.09 32 

300 7597.4 19.411 17 21 .90 33 
3 26.63 33 
16 30.36 33 
10 18.09 33 

6350 3546.5 25.175 136.00 32 30.40 355 
456.24 36 27.89 355 
994.50 6 23.78 355 
1067.12 35 25.06 355 

8375 3533.9 25.1 75 110.07 32 30.40 356 
456.82 36 V .89 356 
1000.35 6 23.78 356 
1076.76 35 25.06 356 

325 7584 .8 19.411 • 17 21 .90 34 
3 26.63 34 

16 30.36 34 
10 18.09 34 

8400 3521 .3 25.175 85.45 32 3040 357 
459.12 36 27 .89 357 
1006.93 6 23.78 357 
1087 04 35 25.06 357 

350 7572.3 19.411 226.82 17 21.90 35 8425 3508.7 25.175 63.67 32 30.40 358 
1371.72 3 26.63 35 463.10 36 27.89 358 
1547.69 16 30.36 35 1014.25 6 23.78 358 
3012.30 10 1809 35 1097 93 35 25.06 358 

375 7559.7 19.411 199.15 17 21.90 36 8450 3496.1 25.175 48.71 32 30.40 359 
1399.54 3 26.63 36 468.72 36 27.89 359 
1525.81 16 30.36 36 1022.27 6 '23.78 359 
3010.08 10 18.09 36 110942 35 25.06 359 

400 7547.1 19.411 171 .59 17 21.90 37 8475 3483.5 25.1 75 47.52 32 30.40 360 
1427.37 3 26.63 37 475.92 36 27.89 360 
1504.13 16 30.36 37 1031 .00 6 23.78 360 
3008.12 10 18.09 37 1121 .50 35 25.06 360 

425 7534.5 19.411 144 .19 17 21 .90 38 8500 3471 25.175 60.91 32 30.40 361 • 3 26.63 38 
16 30.36 38 
10 18.09 38 

450 7521 .9 19411 17 21.90 39 

484.64 36 27.89 361 
1040.41 6 23.78 361 
1134 .13 35 25.06 361 

8525 3458.4 25.1 75 82.03 32 3040 362 
1461.42 16 3036 39 494.78 36 27.89 362 
1483.04 3 26.63 39 1050.48 6 23.78 362 
3004 .98 10 18.09 39 1147 31 35 25.06 362 

475 7509.4 19.411 90.48 17 2190 co 8550 34-45.8 25.175 106 37 32 30.40 363 
1440.41 16 30.36 co 506.27 36 27.89 363 
1510.88 3 2663 co 1061 . 19 6 23.78 363 
3003.80 10 18.09 co 1161.Q1 35 2506 363 

500 7496.! 19.41 1 65 .08 17 21.90 41 8575 3433.2 25.115 132.1 6 32 30.40 364 
1419.63 16 30.36 41 519.02 36 27.89 364 
1538.73 3 2663 41 10n.52 6 23.78 364 
3002.88 10 18.09 41 1175.23 35 25.06 364 

525 7484.2 19.411 17 21 .90 42 8600 3420.6 25.06 158.69 32 30.40 365 
1 16 30.36 42 532.93 36 27 .89 365 

1 3 26.63 42 1084 .46 8 23.78 365 
3002.22 10 18.09 42 

550 7471 .6 19.411 

j 
17 21 .90 43 
16 30.36 43 
3 26.63 43 
10 18.09 43 

575 7459 19.411 1 17 21 .90 .. I 
34 23.20 365 

8625 3408.1 25.06 32 30.40 366 
36 27 .89 366 
6 23.78 366 

- 34 23.20 366 
8650 3395.5 25.06 212.88 32 30.40 367 

1358.86 16 30.36 .. 563.91 36 27.89 367 

It 
3 2663 .. 
10 18.09 .. 

600 7446.5 19.411 17 21 .90 45 
16 30.36 45 
3 26.63 45 

3001 .80 10 18.09 45 

1110.07 6 23.78 367 

I 
34 23.20 367 

8675 3382.9 24.898 32 30.40 368 
36 27.89 368 
34 23.20 368 

- 6 23.78 368 
625 7433.9 19.411 89.26 17 21 .90 46 6700 3370.3 24.898 267 .81 32 30.40 369 

1319.76 16 30.36 46 36 27.89 369 
1678.05 3 26.63 46 34 23.20 369 

10 18.09 46 1 6 23.78 369 
650 7421 .3 19.411 17 21 .90 47 8725 3357.7 27.572 265'2 32 30.40 370 

16 30.36 47 617.01 36 27.89 370 
3 26.63 47 1059. 10 34 23.20 370 
10 18.09 47 1133.11 33 30.63 370 

675 7408.7 19.411 17 21 .90 .. 8750 3345.2 27.572 323.09 32 30.40 371 
1281.91 16 30.36 .. 636.19 36 V .89 371 
1733.80 3 26.63 .. 1036.61 34 23.20 371 
3003.74 10 18.09 .. 1110 .49 33 30.63 371 

700 7396.1 19.411 170.34 17 21.90 49 8n5 3332.6 27.512 350.82 32 3040 372 

I 
16 30.36 49 
3 26.63 49 
10 18.09 49 

725 7383.5 19.411 17 21 .90 50 
16 30. 36 50 
3 26.63 50 
10 18.09 50 

750 7371 19.411 17 21 .90 51 

656.00 36 27.89 372 
1014 .40 34 23.20 372 
1088.06 33 30.63 372 

8800 3320 27.S72 378.58 32 30.40 373 
676.39 36 27 .89 373 
992.47 34 23.20 373 
1065.89 33 30.63 373 

8825 3307.4 27.572 406.38 32 30.40 374 
1227.74 16 30.36 51 697.31 36 27.89 374 
1617.46 3 26.63 51 970.86 34 23.20 374 
3008.02 10 18.09 51 1044 00 33 30.63 374 

775 7358.4 19.411 

I 
17 21 .90 52 
16 30.36 52 
3 26.63 52 
10 18.09 52 

800 7345.8 19.411 17 21 .90 53 
16 30.36 53 

8850 3264.8 27.572 434.20 32 30.40 375 
718.71 36 27 89 375 
949.58 34 23.20 375 
1022 .41 33 30.63 375 

8875 3282.3 27.572 462.03 32 30.40 376 
740.55 38 27.89 376 

187325 3 26.63 53 928.66 34 23.20 376 
3012.17 10 18.09 53 1001 14 33 30.63 376 

825 7333.2 19.411 308.89 17 21.90 54 8900 32697 27.572 48989 32 30.40 377 

I 
16 30.36 54 
3 26.63 54 
10 18.09 54 

850 7320.6 19.411 17 21 .90 55 
16 30.36 55 

762.79 36 27.89 377 
908.11 34 23-20 377 
980.20 33 30.63 377 

8925 3257. 1 27.512 517 76 32 30.40 378 
785.40 36 27 89 378 

1929.04 3 26.63 55 88798 34 23.20 378 
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875 7308.1 

900 7295.5 

925 1282.9 

950 7270.3 

975 7257.7 

1000 7245.2 

1025 7232.6 

1050 7220 

1075 7207.4 

1100 7194.8 

1125 7182.3 

1150 7169.7 

1175 7157.1 

1200 71445 

1225 7131 .9 

1250 7119.4 

1275 7106.8 

1300 7094.2 

1325 7081 .6 

19.411 

19.411 

19.411 

19.411 

19.411 

19.411 

19.411 

19.411 

19.411 

19.411 

19.411 

19.411 

19.41 1 

28.745 

28.745 

28.745 

28.745 

28.745 

28.745 

3017.35 
364 .61 
1145.47 
1956.95 
3020.32 
392.49 
1130.37 
1984.85 
3023.56 
420.39 
1115.77 
2012.76 
3027.05 
448.30 
1101.70 
2040.67 
3030.79 
476.22 
1088. 16 
2068.58 
3034 .78 
504.15 
1075.17 

49 
03 

1062.77 
2124.41 
3043.53 
560.02 
1050.96 
2152.32 
3048.28 
587.97 
1039.78 

643.86 
1019.35 
2236 09 
3064.02 
671 .82 
1010.14 
2264 .01 
3069.76 
699 .77 
1001.63 
2291 .94 
3075.75 
727.13 
993.83 
2319.86 
3072.79 
755.69 
986.77 
2347.79 
3046.73 
783.66 
980.46 

2375.72 
3020.71 
811.62 
974.91 
2403.65 
2994.73 
839.59 
970.13 

2431 .58 
2968.78 
867.55 
966.15 
2459.52 
2942.87 

1350 895.52 
962.96 

1----+---+----+---;2487.45 

7069 28.745 

1375 7056.5 

1400 7043.9 

1425 7031 .3 

1450 7018.7 

1475 7006.1 

1500 6993.5 

1525 6981 

1550 6968.4 

28.745 

28.745 

28.745 

28.745 

28.745 

28.745 

28.745 

28.745 

2515.39 
2891 .16 
951.46 
959.00 
2543.33 
2865.37 
958.24 
979.43 

2571 .26 
2839.61 
958.30 
1007.41 
2599.20 
2813 .90 
959.17 
1035.38 
2627.14 
2788..24 
960.86 
1063.35 
2655.08 
2762.62 
963.36 
1091 .33 
2683.03 
2737 04 
966.67 
1119.30 
2710.97 
2711 .52 

10 
17 
16 
3 
10 
17 
16 
3 
10 
17 
16 

10 
17 
16 
3 
10 
17 
16 

10 
17 
16 
3 

10 
17 
16 
3 
10 
17 
16 

10 
17 
16 

10 
17 
16 
3 
10 
17 
16 
3 
10 
17 
16 
3 
10 
17 
16 
3 
10 
17 
16 
3 
28 
17 
16 
3 

28 
17 
16 
3 
28 
17 
16 
3 
28 
17 
16 
3 
28 
17 
16 
3 
28 
17 
16 
3 
28 
17 
16 
3 
28 
17 
16 
3 
28 
16 
17 
3 
28 
16 
17 
3 

28 
16 
17 
3 

28 
16 
17 
3 
28 
16 
17 
3 
28 
16 
17 
3 
28 

18.09 
21 .90 
30.36 
26.63 
18.09 
21 .90 
30.36 
26.63 
18.09 
21 .90 
30.36 
26.63 
18.09 
21 .90 
30.36 
26.63 
18.09 
21 .90 
30.36 
26.63 
18.09 
21 .90 
30.36 
26.63 
18.09 
21 .90 
30.36 
26.63 
18.09 
21 .90 
30.36 
26.63 
18.09 
21.90 
30.36 
26.63 
18.09 
21 .90 
30.36 
26.63 
18.09 
21.90 
30.36 
26.63 
18.09 
21 .90 
30.36 
26.63 
18.09 
21 .90 
30.36 
26.63 
18.09 
21 .90 
30 .36 
26.63 
28.77 
21 .90 
30.36 
26.63 
28.77 
21.90 
30.36 
26.63 
28.77 
21 .90 
30.36 
26.63 
28.77 
21 .90 
30.36 
26.63 
28.77 
21 .90 
30.36 
26.63 
28.77 
21 .90 
30.36 
26.63 
28.77 
21 .90 
30.36 
26.63 
28.77 
21.90 
30.36 
26.63 
28.77 
30.36 
21 .90 
26.63 
28.77 
30.36 
21.90 
26.63 
28.77 
30.36 
21 .90 
26.63 
28.77 
30.36 
21 .90 
26.63 
28.77 
30.36 
21 .90 
26.63 
28.77 
30.36 
21 .90 
26.63 
28.77 

55 
56 
56 
56 
56 
57 
57 
57 
57 
58 
58 
58 
58 
59 
59 
59 
59 
60 
60 
60 
60 
61 
61 
61 
61 
62 
62 
62 
62 
63 
63 
63 
63 
64 
64 
64 
64 
65 
65 
65 
65 
66 
66 
66 
66 
67 
67 
67 
67 
68 
68 
68 
68 
69 
69 
69 
69 
70 
70 
70 
70 
71 
71 
71 
71 
n 
n 
n 
n 
73 
73 
73 
73 
74 
74 
74 
74 
75 
75 
75 
75 
76 
76 
76 
76 
77 
77 
77 
77 
78 
78 
78 
78 
79 
79 
79 
79 
80 
80 
80 
80 
81 
81 
81 
81 
82 
82 
82 
82 
83 
83 
83 
83 

8950 

8975 

9000 

9025 

9050 

9075 

9100 

9125 

9150 

9175 

9200 

9225 

9250 

9275 

9300 

9325 

9350 

9375 

9400 

9425 

9450 

9475 

9500 

9525 

9550 

9575 

9600 

9625 
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959.62 33 30.63 378 
3244.5 27.572 545.64 32 30.40 379 

808.34 36 27.89 379 
868.27 34 23.20 379 
939.43 33 30.63 379 

3231 .9 27.572 573.54 32 30.40 380 
831.59 36 27.89 380 
849.04 34 23.20 380 
919.64 33 30.63 380 

3219.4 27.512 601 .44 32 30.40 381 
830.30 34 23.20 381 
855.13 36 27.89 381 
900.29 33 30.63 381 

3206.8 27.572 629.34 32 30.40 382 
812. 10 34 23.20 382 
878.93 36 27.89 382 
881.41 33 30.63 382 

3194.2 28.208 657.26 32 30.40 383 
794.46 34 23.20 383 
863.01 33 30.63 383 
902.97 36 27.89 383 

3181.6 28.208 685.18 32 30.40 384 
777.43 34 23.20 384 
845.15 33 30.63 384 
927.23 36 27.89 384 

3169 28.208 713.11 32 30.40 365 
761 .05 34 23.20 385 
827.84 33 30.63 385 
951 .69 36 27 .89 385 

3156.5 28 208 741 .04 32 30.40 386 
745.36 34 23..20 386 
811.13 33 30.63 386 
976.35 36 27.89 386 

3143.9 28.208 730.41 34 23.20 387 
768.97 32 30.40 387 
795.06 33 30.63 387 
1001.18 36 27.89 387 

3131 .3 28.208 716.24 34 23.20 388 
779.66 33 30.63 388 
796.91 32 30.40 388 
1026.17 36 27.89 388 

3118.7 28.208 702.89 34 23.20 389 
764.97 33 30.63 389 
824.85 32 30.40 389 
1051 .31 36 27.89 389 

3106.1 28.208 690.43 34 23.20 390 
751.04 33 30.63 390 
852.80 32 30.40 390 
1076.59 36 27 .89 390 

3093.5 23.314 678 .89 34 23.20 391 
737.91 33 30.63 391 
880.75 32 30.40 391 
1100.90 49 22.04 391 

3081 23.314 668.32 34 23.20 392 
725.62 33 30.63 392 
908.70 32 30.40 392 
1075.77 49 22.04 392 

3068 .4 23.314 658.78 34 23.20 393 
714.22 33 30.63 393 
936.65 32 30.40 393 
1050.79 49 22.04 393 

3055.8 23.314 650.30 34 23.20 394 
703.75 33 30.63 394 
964.60 32 30.40 394 
1025.96 49 22.04 394 

3043.2 23.314 642.92 34 23.20 395 
694.24 33 30.63 395 
992.56 32 30.40 395 
1001 .30 49 22.04 395 

3030.6 28.745 636.69 34 23.20 396 
685.75 33 30.63 396 
976.82 49 22.04 396 
1020.52 32 30.40 396 

3018.1 28.745 631 .65 34 23.20 397 
678.31 33 30.63 397 
952.53 49 22.04 397 
1048.48 32 30.40 397 

3005.5 28.745 627.81 34 23.20 398 
671 .95 33 30.63 398 
928.44 49 22.04 398 
1076.44 32 30.40 398 

2992.9 28.745 625.20 34 23.20 399 
666.71 33 30.63 399 
904.59 49 22.04 399 

1104.40 32 30.40 399 
2980.3 28.745 623.84 34 23.20 400 

662.80 33 30.63 400 
880.97 49 22.04 400 
1132.36 32 30.40 400 

2967.7 28.745 623.73 34 23.20 401 
659.67 33 30.63 401 
857.62 49 22.04 401 
1160.33 32 30.40 401 

2955.2 28.745 624 .87 34 23.20 402 
657.91 33 30.63 402 
834.56 49 22.04 402 
1188.29 32 30.40 402 

2942.6 28.745 627.27 34 2320 403 
657.33 33 30.63 403 
811 .80 49 22.04 403 
1216.26 32 30.40 403 

2930 28.745 630.89 34 23.20 404 
657.95 33 30.63 404 
769.38 49 22.04 404 

1244 .23 32 30.40 404 
2917.4 28.745 635.73 34 23.20 405 

659.76 33 30.63 405 
707.33 49 22.04 405 
1272.20 32 30.40 405 

2904.8 28.745 641 .76 34 23.20 406 
662.74 33 30.63 406 
745.67 49 22.04 406 
1300. 16 32 30.40 406 



1575 6955.8 26.027 970.77 16 30.36 84 9650 2892.3 28.745 648.93 34 23.20 407 
1147.28 17 21.90 84 &66.89 33 30.63 407 
2686.04 28 28.77 84 724.45 49 22.04 407 
2738.91 3 26.63 84 1328. 13 32 30.40 407 

1600 6943.2 26.027 975.66 16 30.36 85 9675 2879.7 28.745 657.22 34 23.20 408 
1175.25 17 21.90 85 672.18 33 30.63 408 
2660.61 28 28.77 85 70J.70 49 22.04 408 
2766.86 3 26.63 85 1356.10 32 30.40 408 

1625 6930.6 26.027 981.32 16 30.36 86 9700 2867. 1 28.745 666.59 34 23.20 409 
1203.23 17 21 .90 86 678.58 33 30.63 409 
26l5.24 28 28.77 86 683.47 49 22.04 409 
2794.80 3 26.63 86 1384.08 32 30.40 409 

1650 6918.1 26J)27 987.74 16 30.36 87 9725 2854.5 25.272 663.80 49 22.04 410 
1231.21 17 21.90 87 676.98 34 2320 410 
2609.91 28 28.77 87 686.06 33 30.63 410 
2822.75 3 26.63 87 1405.38 37 24.83 410 

1675 6905.5 26027 994.91 16 30.36 88 9750 2841 .9 25.272 644.75 49 22.04 411 
1259.19 17 21 .90 88 688.36 34 23.20 411 
2584.65 28 28.77 88 694.59 33 30.63 411 
2650.70 3 26.63 88 1388.72 37 24.83 411 

1700 6892.9 26.027 1002.80 16 30.36 89 9775 2829.4 25.272 626.37 49 22.04 412 
1287.16 17 21 .90 89 700.66 34 23.20 412 
2559.44 28 28.77 89 704.13 33 30.63 412 
2878 65 3 26.83 89 1372..42 37 24.83 412 

1725 6880.3 26.027 1011.41 16 30.36 90 9800 2816.8 25.272 608.72 49 22.04 413 

I 
17 21 .90 90 
28 28.77 90 
3 26.63 90 

1750 6867.7 26.027 16 30.36 91 
17 21 .90 91 
28 28.77 91 
3 26.63 91 

m5 6855.2 26.027 16 30.36 92 
. 17 21.90 92 

713..86 34 2320 413 
714.64 33 30.63 413 
1356.51 37 24.83 413 

9825 2804.2 25.272 591.87 49 22.04 414 
726.08 33 30.63 414 
727.89 34 23.20 414 
1341.00 37 24.83 414 

9850 2791 .6 25.272 575.88 49 22.04 415 
738.40 33 30.63 415 

2484.16 28 28.77 92 742.71 34 23.20 415 
2962.50 3 26.63 92 1325.89 37 24.83 415 

1800 6842.6 26.027 1041 .34 16 30.36 93 9875 2779 24.379 560.84 49 22.04 418 
1399.08 17 21 .90 93 751.57 33 30.63 416 
2459.20 28 28.77 93 758.27 34 23.20 416 
2990.45 3 26.63 93 1301 .21 56 24.83 416 

1825 6830 26.027 

I 
16 30.36 .. 
17 21.90 .. 
28 28.77 .. 
3 26.63 .. 

1850 6817.4 26.027 16 30.36 95 
17 21 .90 95 

9900 2766.5 24.379 546.82 49 22.04 417 
765.53 33 30.63 417 
774.54 34 23.20 417 
1273.23 56 24.83 417 

9925 2753.9 24379 533.89 49 22.04 418 
780.24 33 30.63 418 

2409.46 28 28.77 95 791.46 34 23.20 418 
3046.35 3 26.63 95 1245.25 56 24.83 418 

1875 6804.8 26027 1077.00 16 30.36 96 9950 2741.3 24.379 522.15 49 22.04 419 
1483.02 17 21 .90 96 795.67 33 30.63 419 
2384.70 28 28.77 96 808.99 34 23.20 419 
3074.30 3 26.63 96 1217.27 56 24.83 419 

1900 6792.3 26.027 1090.06 16 30.36 97 9975 2728.7 24.379 511 .67 49 22.04 420 
1511 .00 17 21.90 97 811 .77 33 30.63 420 
2360.01 28 28.77 97 827.1 0 34 23 20 420 
3102.26 3 26.63 97 1189 29 56 24.83 420 

1925 6779.7 26 027 1103.68 16 30.36 98 10000 2716 .1 24.379 502 .54 49 22.04 421 
1538.98 17 21.90 98 828.50 33 3063 421 
2335.39 28 28.77 98 845.75 34 23.20 421 
3130.21 3 26.63 98 1161.31 56 24.83 421 

1950 6767.1 26.027 

I 
16 30.36 99 
17 21 .90 99 
28 28.77 99 
3 26.63 99 

1975 6754.5 26.027 16 30,36 100 
17 21 .90 100 
28 28.77 100 
3 26.63 100 

10025 2703.5 24379 494.82 49 22.04 422 
845.83 33 30.63 422 
864.90 34 23.20 422 
1133.33 56 24.83 422 

10050 2691 24.379 488.58 49 22.04 423 
863.71 33 30.63 423 
884.52 34 23.20 423 
1105.36 56 24.83 423 

2000 6741.9 26.027 1147.67 16 30.36 101 10075 2678.4 24.379 483.88 49 22.04 424 

I 
17 21.90 101 
28 28.77 101 
3 26.63 101 

2025 6729.4 26.027 16 30.36 102 
17 21.90 102 
28 28.77 102 

882.13 33 30.63 424 
904.58 34 23.20 424 
1077.38 56 24.83 424 

10100 2665.8 24.379 480.77 49 22.04 425 
901 .03 33 30.63 425 
925.06 34 23.20 425 

3242.03 3 26.63 102 1049.40 56 24.83 425 
2050 6716.8 26.027 1179.40 16 30.36 103 10125 2653.2 24.379 49 22.04 426 

1678.89 17 21.90 103 33 30.63 426 
2213.51 28 28.77 103 34 23.20 426 
3269.99 3 26.63 103 1021 .43 56 24.83 426 

2075 6704.2 26.027 1195.94 16 30.36 104 10150 26406 24.379 479.42 49 22.04 427 

I 
17 21 .90 104 
28 28.77 104 
3 26.63 104 

2100 &691.6 26027 16 30.36 105 
17 21 .90 105 
28 28.77 105 
3 26.63 105 

2125 6679 28.363 16 30.36 106 
17 21 .90 106 

940.20 33 30.63 427 
967.14 34 23.20 427 
993.45 56 24.83 427 

10175 2628.1 26.356 481.19 49 22.04 428 
960.41 33 30.63 428 
965.47 56 24.83 428 
988.69 34 23.20 428 

10200 2615.5 26.616 484.57 49 22.04 429 
937.50 56 24.83 429 

2141.44 28 28.77 106 981.00 33 30.63 429 
3329.08 27 28.60 106 100600 53 29.18 429 

2150 6666.5 28.363 1247.99 16 30.36 107 10225 2602.9 29.442 489.53 49 22.04 430 
1790.82 17 21 .90 107 909.53 56 24.83 430 

=t! 
28 28.77 107 
27 28.60 107 

2175 6653.9 28.363 16 30.36 108 
17 21.90 108 

978.07 53 29.18 430 
1001 .95 33 30.63 430 

10250 2590.3 29.442 496.02 49 22.04 431 
881 .55 56 24.83 431 

2093.89 28 28.77 108 950.14 53 29.18 431 
3289.30 27 28.60 108 1023.24 33 30.63 431 

2200 6641.3 28.363 m 16 30.36 109 
17 21.90 109 
28 28.77 109 
27 28.60 109 

10275 2577.7 29.442 503.99 49 22.04 432 
853.58 56 24.83 432 
922.21 53 29.18 432 
1044.84 33 30.63 432 

2225 6628.7 28.363 1303.39 16 30.36 110 10300 2565.2 29.442 513.36 49 22.04 433 
1874.77 17 21 .90 110 825.61 56 24.83 433 
2046.76 28 28.77 110 894.29 53 29.18 433 

i 
27 28.60 110 

2.250 6616.1 28.363 16 30.36 111 
17 21 .90 111 
28 28.77 111 
27 28.60 11 1 

1066.74 33 30.63 433 
10325 2552.6 29.442 524.06 49 22.04 434 

797.64 56 24.83 434 
866.38 53 29.18 434 
1088 92 33 30.63 434 

2275 6603.5 28.363 1341 .96 16 30.36 112 10350 2540 15.682 536 00 49 22.04 435 
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1930.73 17 21 .90 112 769.68 56 24.83 435 
2000.09 28 28.77 112 838.47 53 29.18 435 
3211.17 27 28.60 112 1107.37 54 9.59 435 

2300 6591 28.363 1361 .70 16 30.36 113 10375 2527.4 15.682 549.12 49 22.04 436 
1958 .72 11 21 .90 113 741 .71 56 24.83 436 
1976.94 28 28.77 113 810.56 53 29.18 436 
3191.95 27 28.60 113 1080.92 54 9.59 436 

2325 6578.4 28.363 1381 .73 16 30.36 114 10400 2514 .8 15.682 563.32 49 22.04 437 
1953.91 28 28.77 114 713.74 56 24.83 437 
1986.70 17 21 .90 114 782.66 53 29.18 437 
3172.86 27 28.60 114 1054.54 54 9.59 437 

2350 6565.8 28.363 1402.03 16 30.36 115 10425 2502.3 15.682 578.53 49 22.04 438 
1931 .01 28 28.77 115 
2014.68 17 21.90 115 
3153.91 27 28.60 115 

2375 6553.2 28 .363 

I 
16 30.36 116 
28 28.77 116 
17 21 .90 116 
27 28.60 116 

2400 6540.6 28 .363 4 16 30.36 111 

ji 
56 24.83 438 
53 29.18 438 
54 9.59 438 

10450 2489.7 15.682 49 22.04 439 
657.82 56 24.83 439 
726.88 53 29.18 439 

1002.05 54 9.59 439 
10475 2477.1 15.682 611.66 49 22.04 440 

1885.63 28 28.77 117 629.86 56 24.83 440 
2070.65 17 21 90 117 699.00 53 29.18 440 
3116.41 27 28.60 111 975.95 54 9.59 440 

2425 6528.1 28.363 1464.45 16 30.36 118 10500 2464.5 15.682 601.90 56 24.83 441 
1863. 15 28 28.77 118 629.43 49 22.04 441 
2098.63 17 21 .90 118 671 .13 53 29.18 441 
3097.87 27 28.60 118 949.95 54 9.59 441 

2450 6515.5 28.363 1485.73 16 30.36 119 10525 2451 .9 15.682 573.95 56 24.83 442 
1840.83 28 28.77 119 643.27 53 29.18 442 
2126 62 11 21.90 119 647.93 49 22.04 442 
3079.47 27 28.60 119 924.07 54 9.59 442 

2475 6502.9 28.363 1507.22 16 30.36 120 10550 2439.4 15.682 546.00 56 24.83 443 
1818.66 28 28.77 120 615.42 53 29.18 443 
2154.60 11 21 .90 120 667. 10 49 22.04 443 
3061 .22 27 28.60 120 898.32 54 9.59 443 

2500 6490.3 28.363 1528.93 16 30.36 121 10575 2426.8 15.682 518.05 56 24 .83 444 
1796.66 28 28.77 121 587.58 53 29.18 ... 
2182.58 17 21 .90 121 686.86 49 22.04 ..... 
3043.11 27 28.60 121 872.71 54 9.59 444 

2525 6477.7 28.363 1550.84 16 30.36 122 10600 2414 .2 15.682 490.11 56 24.83 445 
1774 .82 28 28.77 122 559.76 53 29.18 445 
2210.57 11 21 .90 122 707.19 49 22.04 445 
3025.16 27 28.60 122 847.25 54 9.59 445 

2550 6465.2 28.363 1572 .94 16 30.36 123 10625 2401 .6 15.682 462.18 56 24 .83 446 
1753.16 28 28.77 123 531 .96 53 29.18 446 
2238.55 17 21 .90 123 728.02 49 22.04 446 
3007.36 27 28.60 123 821 .95 54 9.59 446 

2575 6452.6 28.363 1595.23 16 30.36 124 10650 2389 15.682 434 .25 56 24.83 447 
1731.68 28 28.77 124 504. 18 53 29.18 447 
2266.54 17 21 .90 124 749.31 49 22.04 447 
2989.71 27 28.60 124 796.83 54 9.59 447 

2600 6440 28.363 1617 69 16 30.36 125 10675 2376 .5 15.682 406.33 56 24 .83 448 
1710.39 28 28.77 125 47642 53 29.18 448 
229-C .52 11 21 .90 125 771 .04 49 22.04 448 
2972.23 27 28.60 125 77191 54 9 .59 448 

2625 6427.4 28 363 1640.32 16 30.36 126 10700 2363.9 21.877 378 42 56 24.83 449 
1689.29 28 28.77 126 448.69 53 29.18 449 
2322 .50 11 21 .90 126 747.20 54 9.59 449 
2954 .90 27 28.60 126 793.16 49 22.04 449 

2650 6414.8 28.363 1663.12 16 30.36 127 10725 2351 .3 21 .877 350.52 56 24.83 450 
1668.40 28 28.77 127 421 .00 53 29.18 450 
2350.49 17 21 .90 127 722.74 54 9.59 450 
2937.74 27 28.60 127 815.64 49 22.04 450 

2675 6402.3 28.363 1647.71 28 28.77 128 10750 2338.7 21 877 322 .63 56 24.83 451 
1686.07 16 30.36 128 393.34 53 29.18 451 
2378.47 17 21 .90 128 698.54 54 9.59 451 
2920.75 27 28.60 128 838.45 49 22.04 451 

2700 5389.7 28.363 1627.25 28 28.77 129 10775 2326.1 21 .877 294.17 56 24.83 452 
1709.18 16 30.36 129 365.74 53 29.18 452 
2406.46 17 21 .90 129 674.63 54 9.59 452 
2903.92 27 28.60 129 861 .56 49 22.04 452 

2725 6377. 1 28.363 1607.01 28 28.77 130 10800 2313.5 21.877 266.93 56 24 .83 453 
1732.42 16 30.36 130 338.20 53 29.18 453 
24.34.44 17 21 .90 130 651 .05 54 9.59 453 
2887 .28 27 28.60 130 884.96 49 22.04 453 

2750 6364.5 28 .363 1587.01 28 28.77 131 10825 2301 21 .877 239.13 56 24.83 454 
1755.81 16 30.36 131 310.73 53 29.18 454 
2462.43 17 21 .90 131 627.83 54 9.59 454 
2870.80 27 28.60 131 908.61 49 22.04 454 

2775 6351 .9 28.363 1567 25 28 28.77 132 10850 2288.4 21 .877 211.37 56 24.83 455 
1779.33 16 30.36 132 283.38 53 29.18 455 
2490.41 17 21 .90 132 605.01 54 9 .59 455 
2854.51 27 28.60 132 932.51 49 22.04 455 

2800 6339.4 28.363 1547.75 28 28.77 133 10875 2275.8 21 .877 183.68 56 24.83 456 
1802.97 16 30.36 133 256.15 53 29.18 456 
2518.40 17 21 .90 133 582.64 54 9.59 456 
2838.40 27 28.60 133 956.63 49 22.04 456 

2825 6326.8 28.363 1528.50 28 28.77 134 10900 2263.2 21 .877 156.10 56 24.83 457 
1826.74 16 30.36 134 229.11 53 29. 18 457 
2546.38 11 21 .90 134 560.78 54 9.59 457 
2822 47 27 28.60 134 980.95 49 22.04 457 

2850 6314.2 28.363 1509.54 28 28 77 135 10925 2250.6 21 .877 128.70 56 24.83 458 
1850.63 16 30.36 135 202.33 53 29.18 458 
2574.37 17 21.90 135 539.49 54 9.59 458 
2806.73 27 28.60 135 1005.47 49 22.04 458 

2875 6301.6 28.363 1490.85 28 28.77 136 10950 2238.1 21 .877 101.62 56 24.83 459 
1874 .63 16 30.36 136 175.93 53 29.18 459 
2602.35 17 21 .90 136 518.83 54 9.59 459 
2791 . 19 27 2860 136 1030.16 49 22.04 459 

2900 6289 28.363 1472.47 28 28.77 137 10975 2225.5 21 .877 75.20 56 24.83 460 
1898.73 16 30.36 137 150.10 53 29.18 460 
2630.34 17 21 .90 137 498.88 54 9.59 460 
2775.84 27 28 .60 137 1055.01 49 22.04 460 

2925 6276.5 28.363 1454.38 28 28.77 138 11000 2212 9 21 .877 50.50 56 24 .83 461 
1922.95 16 30.36 138 125.20 53 29.18 461 
2658.32 17 21 .90 138 479.75 54 959 461 
2760.69 27 28.60 138 1080.02 49 22.04 481 

2950 6263.9 28 . .363 1436.62 28 28.77 139 11025 2200.3 21 .877 31 .82 56 24.83 462 
1947 26 16 30.36 139 101.92 53 29.18 462 
2686.31 17 21 .90 139 461 .51 54 9.59 462 
2745.74 27 28.60 139 1105.18 49 22.04 462 

2975 6251 .3 28.363 1419. 19 28 28.77 140 11050 2187.7 21 .877 32.26 56 24.83 483 
1971.68 16 30.36 140 81 .64 53 29.18 483 
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-=- _6~:18. : 

3050 6< l.S !3 .• 29 

1100 6188.4 23.429 

3200 6138. 3.429 

1.45 

~100,~ 

3300 6087. '" 

1375 6050 '·" 

3450 601: '·" 

3550 

3600 5936.8 ' .53 

3650 5911.6 30.005 

11075 2175.2 21 .877 

11100 2162.6 21.877 

11125 2150 21.877 

11150 2137.4 21.877 

11175 2124.8 21.877 

11200 2112.3 21877 

11225 2099.7 21 .877 

11250 2087.1 21 .877 

11275 2074.5 15.149 

1 1300 2061 .9 15.149 

11325 2049.<4 15.149 

...... .29 
1130.46 
51 .34 
67.16 

428.21 
1155.87 
62.63 
76.14 

413.40 
1181.40 

70.00 
102.59 
40000 
1207.03 

86.28 
129.69 
388.16 
1232.77 
107.50 
157.10 
378.03 
1258.60 
131.28 
184.68 
369.74 
1284.53 
156.45 
212.37 
363.42 
1310.54 
182.45 
240.13 
359.18 

54 9.59 463 
49 22.04 463 
56 24 .83 464 
53 29. 18 464 
54 9.59 464 
49 22.04 464 
53 29.18 465 
56 24.83 465 
54 9.59 465 
49 22.04 .o465 
53 29.18 466 
56 24.83 466 
54 9.59 466 
49 22.04 466 
53 29.18 467 
56 24.83 467 
54 9.59 467 
49 22.04 467 
53 29.18 468 
56 24 .83 468 
54 9.59 468 
49 22.04 468 
53 29.18 469 
56 24.83 469 
54 9.59 469 
49 22.04 469 
53 29.18 470 
56 24.83 470 
54 9.59 470 
49 22.04 470 
53 29.18 U1 
56 24 .83 471 
54 9.59 471 
49 22.04 471 
53 29.18 472 
56 24 .83 472 

357.09 54 9.59 472 
1330.08 51 14.86 472 
235.82 SJ 29.18 473 
295.78 56 24.83 473 
357.18 54 9.59 473 

1307.61 51 14.86 473 
262.91 53 29.18 474 
323.&4 56 24.83 474 
359.46 54 9.59 474 

~~~l~~~~~~l~~1285.35;----i-~51<---+-,014"'.86;:--+-~·.,74;---t 11350 2036.8 15.149 53 29.18 475 
56 24 .83 475 
54 9 .59 475 
51 14.86 475 

11375 2024.2 15. 149 317.55 53 29.18 476 

11400 2011 .6 15.1 49 

11425 1999 15.149 

11450 1986.5 15.149 

11475 1973.9 15.1 49 

11500 1961 .3 15.149 

11525 1948.7 15.149 

11550 1936.1 15.149 

11575 1923.5 15.149 

11600 1911 15.149 

11625 1898.4 15.149 

11650 1885.8 15.149 

11675 1873.2 15.149 

11700 1660.6 15.149 

11725 1848. 1 15.149 

11750 1835.5 15.1 49 
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370.38 54 9.59 476 
379.43 56 24.83 476 
1241 .54 51 14.86 476 
345.04 §3 29.18 477 
378.84 54 9 59 477 
407.34 56 24.83 477 
1220.01 51 14.86 477 
372.59 SJ 29.18 478 
389.12 54 9.59 478 
435.26 56 24.83 4 78 
, 198.74 51 14.86 478 
400.21 53 29.18 479 
40U 1 54 9 .59 479 
463.19 56 24.83 479 
11n.1s st 14.86 479 
414 .63 54 9 .59 480 
427.88 53 29.18 480 
491.13 56 24.83 480 
1157.07 51 14.86 480 
429.56 54 9.59 481 
455.58 53 29.18 481 
519.07 56 24.83 481 
1136.69 51 14.86 481 
445.74 54 9.59 482 
483.32 53 29.18 482 
547.01 56 24.83 482 
1116.64 51 14.86 482 
463.06 54 9 .59 483 
511 .08 53 29.18 483 
574.96 56 24.83 483 
1096.94 51 14.86 -'83 
481.37 54 9.59 484 
538.87 53 29.18 484 

I 
1058.67 
520.60 
594.50 
658.83 
1040.13 
541 .31 
622.34 
686.79 
1022.02 
562.66 
650.19 
71 ... 76 
1004.37 
584-57 
678.06 
74Z.72 
987.19 
606.97 
705.93 
no.sg 
970.52 
629 83 
733.81 
798.66 

56 2 .... 83 484 
51 14.86 484 
54 9.59 485 
53 29.18 485 
56 24.83 485 
51 , ... _86 485 
54 9.59 486 
53 29.18 486 
56 24.83 486 
51 14.86 486 
54 9.59 487 
53 29.18 •87 
56 2 ... 83 487 
51 14.86 487 
54 9 .59 488 
53 29.18 488 
56 24.83 488 
51 14.86 488 
54 9.59 489 
53 29.18 489 
56 24 .83 489 
51 14.86 489 
54 9.59 490 
53 29.18 490 
56 24.83 490 
51 14.86 490 
54 9.59 491 
53 29.18 491 
56 24.83 491 



71 16 
3700 58865 30.005 76 28 

27 
2545.16 31 
2709.88 16 

3725 5873.9 30.005 1117.51 28 
2400.86 27 
2517.21 31 
2736.07 16 

3750 5861.3 30.005 1116.96 28 
2394.15 27 
2489.26 31 
2762.30 16 

3775 5848.7 30.005 1117.12 28 
2387.74 27 
2461.31 31 
2788.57 16 

3800 5836.1 30.005 1117.97 28 
2381.65 27 
2433.37 31 
2814.87 16 

3825 58235 30.005 • 28 
27 
31 
16 

3850 5811 30.005 1121.77 28 
2370.41 27 
'ZJ77.47 31 
2867.57 16 

3875 5798.4 30.005 • 28 
31 
27 
16 

3900 5785.8 30005 1128.34 28 
2321 59 31 
2360.44 27 
2920.38 16 

3925 5773.2 30.005 1132.64 28 
2293.64 31 
2355.94 27 

I 
16 

3950 5760.8 27.886 28 
31 
27 
29 

3975 5748.1 27.886 28 
31 
27 
29 

4000 5735.5 27 886 1149.56 28 
2209.82 31 
2344 39 27 
2898.52 29 

4025 5722.9 27.886 1156.50 28 
2181.88 3 1 -1341 20 27 
2872.93. 29 

4050 5710.3 27.886 1164.08 28 
2153.95 31 
2338.34 27 
2847 38 29 

4075 56977 27.886 1172.27 28 • 31 
27 
29 

4100 5685.2 27.886 28 
2098.08 31 
2333.61 27 
2796.42 29 

4125 5672.6 27 886 1190.46 28 
2070.15 31 
2331.75 27 
2771.01 29 

4150 5660 27.886 1200.43 28 
2042..21 31 
2330.22 27 
2745.66 29 

4175 5647.4 27.886 

I 
28 
31 
27 
29 

4200 5634.8 27.886 28 
6 31 

2328.17 27 
2695.10 29 

4225 5622.3 27.886 1233.67 28 
1958.4, 31 

I 
27 
29 

4250 5609 7 27 886 28 
31 
27 
29 

4275 5597.1 27.886 28 
31 
27 
29 

4300 5584.5 27.886 28 
1 31 

27 
29 

4325 5571.9 27.886 28 
31 
27 
29 

4350 55594 27.886 1299 28 
1818.83 31 

I 
27 
29 

4375 55468 27.886 28 
31 
27 

2519.96 29 

30.36 168 
28.77 169 
28.60 169 
27.08 169 
30.36 169 
28.77 170 
28.60 170 
27.08 170 
30.36 170 
28.77 171 
2860 171 
27.08 171 
30.36 171 
28.77 172 
28.60 172 
27.08 172 
30.38 172 
28.77 173 
28.60 173 
27.08 173 
30.36 173 
28.77 174 
28.60 174 
27.08 174 
30.36 17< 
28.77 175 
28.60 175 
27.08 175 
30.36 175 
28.77 176 
27.08 176 
28.60 176 
30.36 176 
28.77 177 
27.08 177 
28.60 177 
30.36 177 
28.77 178 
2708 178 
2860 178 
30.36 178 
28.77 179 
27.08 179 
28.60 179 
27.83 179 
28.77 180 
2708 180 
28.60 180 
2783 180 
28.77 181 
2708 181 
28.60 181 
27.83 181 
28.77 182 
27.08 182 
28 60 182 
27.83 182 
28.77 183 
27,08 183 
28.60 183 
27.83 183 
28.77 184 
27.08 184 
28.60 184 
27.83 184 
28.77 185 
27.08 185 
28.60 185 
27.83 185 
28.77 186 
27.08 186 
28.60 186 
27.83 186 
28.77 187 
27.08 187 
28.60 187 
27.83 187 
2877 188 
2708 188 
28.60 188 
27.83 188 
28 77 189 
27.08 189 
28.60 189 
2783 189 
28.77 190 
27.08 190 
28.60 190 
27.83 190 
28.77 191 
27.08 191 
28.60 191 
27.83 191 
28.71 192 
27.08 192 
28.60 192 
27.83 192 
28.77 193 
27.08 193 
28.60 193 
27.83 193 
28 77 194 
27.08 194 
28.80 194 
27.83 194 
28.77 195 
27.08 195 
28.60 195 
27.83 195 
28.77 196 
2708 196 
28.60 196 
27.83 196 

954.38 51 14.86 491 
11775 1822.9 15.149 653.08 54 9.59 492 

761.70 53 29. 18 492 
826.63 56 24.83 492 
938.79 51 14.86 492 

11800 1810.3 15. 149 676.69 54 9.59 493 
789.60 53 29.18 493 
854.60 56 24.83 493 
923.79 51 14.86 493 

11825 17977 15.1oil9 700.63 54 9.59 494 
817.50 53 29.18 494 
882.57 56 24.83 494 
909.41 51 14.86 494 

11850 1785.2 23.841 724.85 54 9 .59 495 
845.41 53 29.18 495 
895.66 51 14.86 495 
910.54 56 24.83 495 

11875 1772.6 23.841 7.C9..34 54 9.59 496 
873 32 53 29.18 496 
882.59 51 14.86 496 
938.51 56 24.83 496 

11900 1760 23.841 774.06 54 9.59 497 
870.23 51 14.86 497 
901..24 53 29.18 497 
966.49 56 24.83 497 

11925 1747.4 23.841 799.00 54 9.59 498 
858.60 51 14.86 498 
929.16 53 29.18 498 
994 46 56 24.83 498 

11950 1734.8 15.544 82.4.1-4 54 9.59 499 
847.73 51 14.86 499 
957.08 53 29.18 499 
1013.58 55 15.61 -499 

11975 1n2.3 837.66 51 14.86 500 
849.45 54 9.59 500 
985.01 53 29.18 500 
989.38 55 15.61 500 

12000 1709.7 16.228 828.41 51 14.86 501 
874.93 54 9.59 501 
965.39 55 15.61 501 
992.71 52 18.56 501 

12025 1697.1 16.228 820.02 51 14.86 502 
900.56 54 9.59 502 
941 .61 55 15.61 502 
968.31 52 18.56 502 

12050 1684.5 16.228 812.50 51 14.86 503 
918.07 55 15.61 503 
928.32 54 9.59 503 
944.12 52 18.56 503 

12075 1671 .9 11.198 805.88 51 14.86 504 
894.79 55 15.61 504 
920.13 52 18.56 504 
952.21 54 9.59 504 

12100 1659.4 11.198 800.19 51 14.86 505 
871 .78 55 15.61 505 
896.39 52 18.56 505 
978.21 54 9.59 505 

~1~2~12~5-+~1~~~·~·8-+~1~1~1~~-+----7~-~---1---;~~1--~~~~:~~61~~--~~--~ 

12150 1634.2 11.198 

12175 1621.6 11.198 

12200 1609 11.193 

12225 1596.5 11.198 

12250 1583.9 11.198 

12275 1571.3 11.198 

12300 1558.7 11.198 

12325 1546.1 11.198 

12350 1533.5 16.-483 

12375 1521 16.483 

12400 1508.4 16.483 

12425 1495.8 16.483 

12450 1483.2 
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1030 53 
788.85 
804.66 
826.73 
1056.83 
783.01 
787.02 
804.12 
1083.21 
761 .n 
781.86 
786.19 
1109.67 
740.98 
759.97 
788.38 
11.36.21 
720.68 
738.50 
787.52 
1162.81 
700.91 
717.48 
789.67 
1189.48 
681 .71 
696.94 
792.80 

1216.21 
683.14 
676.95 
796.90 

1234.77 
64.5.25 
657.53 
801.96 
1223.59 
628.09 
638.75 
807.96 
1212.94 
611 .74 
620.67 
81488 
1202.85 
596.25 
603.34 
822.69 
1193.34 

52 18.56 506 
54 9.59 506 
51 14.86 507 
55 15.61 507 
52 18.56 507 
54 9.59 507 
51 14.86 508 
55 15.61 508 
52 18.56 508 
54 9.59 508 
55 15.61 509 
51 14.86 509 
52 18.56 509 
54 9.59 509 
55 15.61 510 
52 18.56 510 
51 14.86 510 
54 9.59 510 
55 15.61 51 1 
52 18.56 511 
51 14.86 511 
54 9.59 511 
55 15.61 512 
52 18.56 512 
51 14.86 512 
54 9.59 512 
55 15.61 513 
52 18.56 513 
51 14.86 513 
54 9.59 513 
55 15.61 514 
52 18.56 514 
51 14.86 514 
54 9.59 514 
55 15.61 515 
52 18.56 515 
51 14.86 515 
57 16.60 515 
55 15.61 516 
52 18.56 516 
51 14.86 516 
51 16.60 516 
55 15.61 517 
52 18.56 517 
51 14.86 517 
57 16.60 517 
55 15.61 518 
52 18.56 518 
51 14.86 518 
51 16.60 518 
55 15.61 519 
52 18.56 519 
51 14.86 519 
57 16.60 519 



4400 5534.2 

5521.6 

4450 5509 

4475 5496.5 

4500 5483.9 

4525 5471 .3 

5458.7 

4575 5448.1 

4600 

4625 5421 

4650 54084 

4675 5395.8 

4700 5383.2 

4725 5370.6 

4750 5358.1 

27 886 

27.886 

27.886 

27.886 

27.886 

27.886 

28.471 

28.471 

28471 

28.471 

28.471 

28.471 

28.471 

28.471 

28.471 

1328.74 
1763.00 
2333.41 
2495.19 
1344.11 
1735.09 
2335.58 
2470.49 

1376.03 
1679.28 
2340.90 

28 28.77 197 
31 27.08 197 
27 28.60 197 
29 27.83 197 
28 28.77 198 
31 27.08 198 
27 28.60 198 
29 27.83 198 
28 28.77 199 
31 27.08 199 
27 28.60 199 
29 27 83 199 
28 28.77 200 
31 27.08 200 
27 28.60 200 
29 27.83 200 
28 28.77 201 
31 27.08 201 
27 28.60 201 
29 27.83 201 
28 28.77 202 
31 27.08 202 
27 28.60 202 
29 27.83 202 
28 28.77 203 
31 27.08 203 
29 27.83 203 
27 28.60 203 
28 28.77 204 
31 27.08 204 
29 27.83 204 
27 28.60 204 

1 28 28.77 205 
30 31 27.08 205 
70 29 27.83 205 
98 27 28.60 205 

1480.40 28 28.77 206 
1511.92 31 27.08 206 
2275.64 29 27.83 206 
2364.77 27 28.60 206 
1484.04 31 27.08 207 
1498.92 28 28.77 207 
2251 .66 29 27.83 207 
2369.89 27 28.60 207 
1456.16 31 27.08 208 
1517.72 28 28.77 208 
2227.78 29 27 83 208 
2375.32 27 28.60 208 
1428.29 31 27 08 209 
1536.81 28 28.77 209 
2203.99 29 27.83 209 
2381.07 27 28.60 209 
1400.42 31 27.08 210 
1556. 17 28 28.77 210 
2180.30 29 27 83 210 
2387 13 27 28.60 210 
1372..56 31 27 08 211 

t---+----l----f---..,'575.78;-+--~~:----l--ii~~O':~:;~,-+-...;~;,'::-: -I 
27 28.60 211 

4775 5345.5 28.471 31 27.08 212 
28 28 77 212 
29 27.83 212 

2400.18 27 28.60 212 
4800 5332.9 28.471 1316.84 31 27.08 213 

1615.75 28 28.77 213 
2109.87 29 27.83 213 

~~4~~~5~~5~,~~-,~~~2·~-·~7~1~~~
2

~
7

j
1

'~J!~li~r~j!~~~r~-~~,~~~~~~:~ ~ 27.83 214 
27 28.60 214 

4850 5307.7 28.471 31 27.08 215 
28 28.77 215 
29 27.83 215 
27 28.60 215 

4875 5295.2 28.471 

4900 5282.8 28.471 

4925 5270 28.471 

4950 5257.4 28.471 

4975 5244.8 28.471 

5000 52323 28.471 

5025 5219.7 28.471 

5050 5207.1 28.471 

5075 5194.5 28.471 

5100 5HI19 28.471 

2438.15 
11n.61 
1719.59 
1994.82 
2446.63 
1N9.86 
1740.97 
1972.19 
2455.40 
1122.06 
1762.53 
1949.71 
2464.46 
1094.27 
171W.26 
1927.37 
2473.80 
1066.48 
1806.17 
1905.17 
2483.43 
1038.71 
1828.25 
1883.14 
2493.33 
1010.95 

31 27.08 216 
28 28.77 216 
29 27.83 216 
27 28.60 216 
31 27.08 217 
28 28.77 217 
29 27.83 217 
27 28.60 217 
31 27.08 218 
28 28.n 218 
29 27.83 218 
27 28.60 218 
31 27.08 219 
28 28.77 219 
29 27.83 219 
27 28.60 219 
31 27.08 220 
28 28.77 220 
29 27.83 220 
27 28.60 220 
31 27.08 221 
28 28.77 221 
29 27.83 221 
27 28.60 221 
31 27.08 222 
28 28.77 222 
29 27.83 222 
27 28.60 222 
31 27.08 223 
28 28.77 223 
29 27.83 223 
27 28.60 223 
31 27.08 224 
28 28.77 224 
29 27 83 224 
27 28.60 224 
31 27.08 225 

12475 1470.6 16.483 

12500 1458.1 16..483 

12525 1445.5 16.483 

12550 1432.9 16.483 

12575 1420.3 16..483 

12600 1407.7 16483 

12625 1395.2 16.483 

12650 1382.6 16.483 

12675 1370 16483 

12700 1357.4 16483 

12725 1344.8 16.367 

12750 1332.3 16.367 

12n s 1319.7 16.367 

12800 1307.1 16.367 

12825 1294.5 1~.787 

12850 1281.9 15.787 

12875 1269.4 15.787 

12900 1256.8 15.787 

12925 1244.2 15.787 

12950 1231.6 15.787 

12975 1219 16.665 

13000 1206.5 16.665 

13025 1193.9 16.665 

13050 1181.3 16.665 

13075 1168.7 16.665 

13100 1156.1 16.665 

13125 1143.5 16.665 
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581.70 
586.!3 
831.37 
1184.40 
568.15 
57122 
840.89 
1176.07 
555.69 
55659 
851.23 
1168.35 
543.00 
544.37 
862.l5 
1161.25 
530.53 
53429 
874.22 
1154.78 
519.28 
525.51 
586.82 
1148.96 
509.33 
518.09 
900.12 
1143.80 
500.74 
512.09 
914.08 
1139.30 

• 504.56 
943 86 
1132.33 
483.84 
503.09 
959.64 
1122.98 
481 .34 
503.18 
975.96 
1095.00 
480.47 
504 82 
992.80 
1067.01 
481 .22 
508.01 
1010.13 
1039.03 
483.59 
512.70 
1011.05 
1027.94 
487.56 
518.86 
983.07 
1046.19 
493.09 
526.-44 
955.08 
1064.86 
500.12 
535.37 
927.10 
1083.94 
5011.60 
545.60 
899.12 
1103.39 
518.46 
557.05 
871 .14 
1123.21 
529.61 
569.64 
843.16 
1143.25 
541 .98 
583.30 
815.18 
1148.34 
555.48 
597.97 
787.20 
1154.08 
570.04 
613.56 
759.22 
1160.47 
585.58 
630.00 
731.24 

1167.50 
602.02 
647.24 
703.26 

1175.15 
619.28 
665.22 
675.28 

55 15.61 520 
52 18.56 520 
51 14.86 520 
57 16.60 520 
55 15.61 521 
52 18.56 521 
51 14.86 521 
57 16.60 521 
55 15.61 522 
52 18.56 522 
51 1486 522 
57 16.60 522 
52 18.56 523 
55 15.61 523 
51 14.86 523 
57 16.60 523 
52 18.56 524 
55 15.61 524 
51 14.86 524 
57 16 60 524 
52 18.56 szs 
55 15.61 525 
51 14.86 525 
57 16.60 525 
52 18.56 526 
55 15.61 526 
51 14.86 526 
57 16.60 526 
52 18.56 527 
55 15.61 527 
51 14.86 527 
57 16.60 527 
52 18.56 528 
55 15.61 528 
51 14.86 528 
57 16.60 528 
52 18.56 529 
55 15.61 529 
51 14.86 529 
57 16.60 529 
52 18.56 530 
55 15.61 530 
51 14.86 530 
62 16.21 530 
52 18.56 531 
55 15.61 531 
51 14.86 531 
62 16.2 1 531 
52 18.56 532 
55 15.61 532 
51 14.86 532 
62 16.21 532 
52 18.56 533 
55 15.61 53J 
51 14.86 533 
62 16.21 533 
52 18.56 534 
ss 15.61 534 
62 16.21 534 
51 14.86 534 
52 18.56 535 
55 15.61 535 
62 16.21 535 
51 14.86 535 
52 18.56 536 
55 15 61 536 
62 16.21 536 
51 14.86 536 
52 18.56 537 
55 15.61 537 
62 16.21 537 
51 14.86 537 
52 18.56 538 
55 15.61 538 
62 16.21 538 
51 14.86 538 
52 18 .56 539 
55 15.61 539 
62 16.21 539 
51 14.86 539 
52 18.56 540 
55 15.61 540 
62 16.21 540 
57 16.60 540 
52 18 56 541 
55 15.61 541 
62 16.21 541 
51 16.60 541 
52 18.56 542 
55 15.61 542 
82 16.21 542 
57 16.60 542 
52 18.56 543 
55 15.61 543 
62 16.21 543 
57 16.60 543 
52 18.56 544 
55 15.61 544 
62 16.21 5-44 
57 16.60 544 
52 18.56 545 
55 15.61 545 
62 16.21 545 
51 16.60 545 
52 18.56 546 
55 15.61 546 
62 16.21 546 



29 27.83 225 656.a. 52 1858 548 
28 28.77 225 703.13 55 1561 548 
27 28SO 225 1201 .73 57 18.80 548 

5125 51894 28.471 31 27.08 228 13200 11058 16.665 591.35 62 16.21 549 
29 27.83 228 875.41 52 18.58 549 
28 28.77 228 722.96 55 15.61 549 
27 28SO 228 1211.75 57 16.60 549 

5150 5158.8 28.471 31 2708 227 13225 1093.2 18.665 58338 62 18.21 550 
29 27.83 227 695.38 52 18.56 550 
28 28.77 227 743.32 55 1561 550 
27 28.eo 227 1222.34 57 16.60 550 

5175 5144.2 28.471 31 27.08 228 13250 1080.6 16.665 53541 62 16.21 551 
29 27.83 228 715.85 52 1858 551 
28 28.77 228 764.18 55 1561 551 
27 28SO 228 123346 57 18.60 551 

5200 5131.6 28.471 31 27.08 229 13275 1068.1 18.665 507.44 82 1621 552 
29 2783 229 73654 52 1858 552 
28 28.77 229 785.45 55 15.61 552 
27 28.eo 229 1245.12 57 16.60 552 

5225 5119 28.593 31 27.08 230 15300 1055.5 28.942 47947 62 16.21 553 
29 27.83 230 758.28 52 1858 553 
28 2877 230 807.15 55 1561 553 
3IJ 29.02 230 125392 so 3200 553 

5250 5108.5 28.593 31 27.08 231 13325 1042-9 28.942 451.50 62 16.21 ... 
29 27.83 231 780.13 52 18.56 554 
28 28.77 231 82922 55 1.561 554 
3IJ 29.02 231 1256.6.5 so 32.00 ... 

5275 5093.9 28.593 31 27.08 232 13350 1030.3 28.942 423.54 62 16.21 555 
29 27.83 232 802.37 52 18.56 555 
28 28.77 232 851.64 55 15.61 555 
3IJ 2902 232 1259.98 eo 32.00 555 

5300 5081 .3 28593 31 27.08 233 13375 10177 28.942 39558 62 16.21 558 
29 27.83 233 824.95 52 18.56 558 
28 28.77 233 87-4.38 55 15.61 556 
30 29.02 233 1263 93 so 32.00 558 

5325 5088.7 28.593 31 27.08 234 13400 1005.2 28.942 367.62 62 16.21 557 
29 27.83 234 847.86 52 18.56 557 
28 28.77 234 
30 29.02 234 

5350 5056.1 28.593 31 27.08 235 
29 27.83 235 
28 28.77 235 
3IJ 29.02 235 

5375 50435 28.593 31 27.08 236 I 
55 15.61 557 
so 32.00 557 

13425 992.58 28.942 62 16.21 558 
52 18.56 558 
55 1.5.61 558 
so 32.00 558 

13460 960 28.942 . 62 16.21 559 
29 27.83 236 89454 52 18.56 559 
28 28.77 236 0...30 55 15.61 559 
30 29.02 236 1279.38 so 32.00 559 

5400 6031 28.593 31 27.08 237 13475 967-42 28.942 283.79 62 16.21 580 
29 27.83 237 918.27 52 1856 580 
28 28.77 237 968.10 55 15.61 580 
30 29.02 237 1285.71 so 32.00 580 

5425 50184 28.593 31 27.08 236 13500 ...... 28.942 255.86 62 16.21 581 
29 27.83 236 942.23 52 18.56 581 
28 28.77 236 992.12 55 15.61 581 
3IJ 2902 236 1292.62 so 3200 581 

5460 5005.8 28.590 31 2708 239 13525 942.26 28-942 22795 62 16.21 582 
29 27.83 239 .... 1 52 18.56 582 
28 28.77 239 1016.34 55 15.61 582 
3IJ 2902 239 130009 eo 3200 582 

5475 •• 932 28.593 31 2708 240 13550 929.86 28942 20006 62 16.21 583 
29 27.83 240 99079 52 1858 583 
28 28.77 240 1040.76 55 15.61 583 
3IJ 29.02 24<l 1308.11 so 32.00 583 

5500 •oeo.s 28.46 31 27.08 2'1 13575 917.1 28.942 1n.20 62 16.21 ... 
29 27.83 241 1015.36 52 18.56 ... 
3IJ 29.02 241 1065.34 55 15.61 ... 
28 28.77 241 1316.68 so 32.00 ... 

5525 .... 1 28.46 31 27.08 242 13600 904.52 28.942 144.39 62 16.21 585 
29 2783 242 1040.10 52 18.56 585 
3IJ 2902 242 1090.10 55 15.61 585 
28 28.77 242 1325.79 so 32.00 585 

5550 4955.5 2846 31 27.08 243 13625 89UM 28942 11667 62 16.21 586 
29 27.83 243 106500 52 18.56 586 
3IJ 29.02 243 111500 55 15.61 586 
28 28.77 243 133542 so 32.00 586 

5575 042.9 28.46 31 27.08 2 .. 13650 879.35 28.942 89.11 62 16.21 587 
29 27.83 2 .. 1090.05 52 18.56 587 
30 29.02 2 .. 11-40.05 55 15.61 567 
28 28.77 2 .. 1345.57 so 32.00 567 

5800 4930.3 28.48 31 27.08 2 .. 13675 88677 28.942 61 .94 62 16.21 586 
29 27.83 245 1115.24 52 18.56 586 
30 29.02 2 .. 1165.23 55 15.61 568 
28 28,77 2 .. 135622 so 3200 568 

5825 49177 28.46 31 27.08 246 13700 854.19 28942 38.0S 62 16.21 589 
29 27.83 246 11-40.56 52 18.56 569 
30 2902 246 1190.S4 55 15.61 589 
28 28.77 246 1367.35 eo 32.00 569 

5650 ••o02 28.46 31 27.08 247 
29 27.83 247 
3IJ 29.02 247 
28 2877 2'7 

5875 4692.8 28.46 31 27.08 246 
29 27.83 246 

13725 341 .61 28.942 

• 
62 16.21 570 
52 1856 570 
55 1561 570 
eo 32.00 570 

13750 82903 28.942 62 16.21 571 
52 1856 571 

30 2902 246 124150 55 15.61 571 
28 2877 246 1391.05 eo 32.00 571 

5700 4880 28.46 31 27.08 249 13775 816.45 25.276 55.54 62 16.21 572 
29 27.83 249 1217.22 52 18.56 572 
30 2902 249 1267 14 55 15.61 572 
28 2877 2'9 1396.94 59 29.00 572 

5725 468H 2846 31 27.08 250 13800 803.87 25.276 8254 62 16.21 573 
29 27.83 250 1242.99 52 18.56 573 
30 2902 250 1292.87 55 15.61 573 
28 28.77 250 1372.70 59 29.00 573 

5750 46548 28.46 31 27.08 251 13825 7!111 .29 252 76 110.04 62 16.21 574 
29 27.83 251 1268.85 52 18.56 5r. 
30 29.02 251 131870 55 15.61 57• 
28 28.77 251 1348.62 59 29.00 57• 

5775 .... 2.3 28.46 31 2708 252 13650 778.71 17 . .53 13713 62 16.21 575 
29 27.83 252 1294.79 52 18.56 575 
3IJ 2902 252 132-4.68 59 29.00 575 
28 28.77 252 1344.61 55 15.61 575 

5800 4629.7 28.48 31 2708 253 13675 766.13 1 .53 165.52 62 16.21 578 
29 27.83 253 130091 59 29.00 576 
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191395 30 29.02 253 1320.82 52 18.56 576 
2545.18 28 28.77 253 1370.81 55 15.61 576 

5825 4817.1 28.48 .. 31 27.08 254 13900 753.55 17.53 193.37 62 16.21 5n 

ii 
29 27.83 254 
30 2902 254 
28 28.n 254 

5850 46045 31.135 18740 31 27.08 255 

1277.31 59 29.00 5n 
1348.93 52 18.56 5n 
139668 55 15.61 5n 

13925 740.97 17.S3 22.1 .25 82 16.21 578 
1304 53 29 27.83 255 1253.89 59 29.00 578 

I 
30 2902 255 
47 31.89 255 

5875 4791.9 31.135 31 27.08 258 
29 2783 258 
30 29.02 258 

25n.tt " 31.89 258 

1373.11 52 1856 578 
1422.83 55 15.61 578 

13950 728.39 17.53 - 62 16.21 570 
59 29.00 579 
52 18.56 579 
55 1561 579 

5900 4n9.4 31 .135 31 27.08 257 13975 71581 17.53 62 16.21 580 
1 29 27.83 257 59 29.00 580 

30 29.02 257 52 16.56 580 

" 31.89 257 55 15.61 560 
5925 .766.8 31.135 31 27.08 258 14000 703.23 1753 62 16.21 561 

29 27.83 258 59 29.00 561 
30 2902 258 52 18.56 561 

" 31.89 258 55 15.61 561 
5950 4754.2 31.135 31 27.08 259 14025 690.85 17.53 62 16.21 562 

29 27.83 259 59 29.00 562 
30 2902 259 52 18.56 562 
47 31 .89 259 1 55 15.61 562 

5975 4741 .6 25.837 31 27.08 260 14050 878.06 15.881 360.91 62 18.21 563 
29 27.83 260 1139.88 59 29.00 563 
30 29.02 260 1505.00 52 18.56 563 
35 25.06 260 83 12.54 563 

6000 4729 25.837 134.14 31 27.08 281 14075 685.48 18.385 62 16.21 564 
1238.n 29 27.83 281 59 29.00 564 
1699.91 30 29.02 281 83 12.54 564 
2488.09 35 25.06 281 1 52 18.56 564 

6025 4716.5 25.837 143.60 31 27.06 282 14100 652.9 18.385 418.83 62 18.21 565 
1229.70 29 27.83 282 109595 59 29.00 565 
1873.34 30 29.02 282 1497.44 83 12.54 565 

35 2506 282 15581. 52 1856 565 
6050 4703.9 25.837 31 27.08 283 ,.125 64032 18.385 44470 62 16.21 566 

29 27.83 283 107441 59 29.00 566 
30 29.02 283 146990 63 12.54 568 
35 25.06 283 1584.79 52 18.58 566 

6075 4891.3 25.837 31 27.06 264 14150 627.7. 18.385 4n.76 62 16.21 587 
29 27.83 264 105318 59 29.00 567 
30 29.02 264 1442.37 63 12.54 567 
35 25.06 264 

6100 4878 7 25.837 31 2708 265 
29 27.83 265 
30 29.02 265 
35 2506 265 

6125 4666.1 25.837 31 27.08 266 
29 27.83 266 I 

52 18.56 567 
14175 615.16 18.385 62 16.21 566 

59 29.00 568 
83 12.54 566 
52 18.56 568 

14200 602.56 18.385 62 16.21 569 
59 29.00 569 

30 29.02 266 1387.37 83 12.54 569 
35 25.06 266 1665.00 52 18.56 569 

6150 4653.5 25837 31 27.08 287 14225 590 18.385 55667 62 16.21 590 
29 27.83 287 99148 59 2900 590 
30 2902 267 1359.90 83 12.54 590 
35 25.06 287 1691.81 52 18.56 590 

6175 4641 25837 31 27.08 266 14250 sn.42 29.785 564.64 82 16.21 591 
11 29 27.83 266 97165 59 2900 591 
1 30 29.02 266 133245 83 12.54 591 

35 25.06 266 1712.69 60 3200 591 
6200 46284 25837 31 27.08 289 14275 564.84 29.785 612.61 62 16.21 592 

1182.91 29 27.83 289 gsz.24 59 29.00 592 
1 30 29.02 289 1305.03 83 12.54 592 

35 2506 289 1131.95 60 32.00 592 
6225 4615.8 25.837 31 27.08 270 14300 552.26 29.785 64059 62 16.21 593 

11 29 2783 270 93326 59 29.00 593 
1 30 2902 270 83 12.54 593 

35 25.06 270 60 32.00 593 
8250 4603.2 25.837 31 27.08 271 14325 539.66 29.785 62 16.21 594 

29 27.83 271 59 29.00 594 
30 29.02 271 1 63 12.54 594 
35 25.06 271 60 32.00 594 

8275 4590.6 25.837 31 27.08 272 14350 527.1 2 • . 874 82 16.21 595 
11 29 27.83 2n 59 29.00 595 

30 2902 2n 83 12.54 595 
35 25.06 2n 56 25.n 595 

8300 4578,1 25.837 31 27.08 273 14375 514.52 24.87. 82 18.21 596 
29 27.83 273 59 2900 596 
30 29.02 273 1 83 12.54 596 
35 25.06 273 1 56 25.77 596 

8325 4565.5 25.837 31 27.08 274 14400 501.94 22.85 752.50 62 16.21 597 
116861 29 27.83 274 882.28 59 2900 597 
1358.91 30 29.02 274 1168.30 83 12.54 597 
2160 36 35 25.06 274 1813.55 61 23.19 597 

8350 4552 •• 25.837 -444.2. 31 27.08 275 14425 489.35 22.85 780.48 62 16.21 596 
1167 75 29 27.83 275 845.90 59 29.00 598 
1333.18 30 29.02 275 ,.1 04 83 12.54 596 
2135.64 35 25.06 275 1816.55 61 23.19 598 

8375 4540.3 25837 -H1.07 31 27.08 278 14450 •1e.n 22.85 80648 62 16.21 599 
1167.55 29 27.83 278 831:U5 59 29.00 599 
1307.54 30 2902 278 1113.83 83 12.54 599 

I 
35 25.06 278 

6400 4527 7 25837 31 27.08 2n 
29 27.83 2n 
30 29.02 2n 

3 35 25.06 2n 
6425 45152 25837 0 31 27.08 278 

7 29 27.83 278 
30 29.02 278 
35 25.06 278 

6450 .502.6 25.837 31 27.08 279 
29 27.83 279 

181997 81 23.19 599 
14-475 .s4.19 22.85 815.07 59 29.00 600 

83644 82 1621 600 
1086.65 83 12.54 600 
182382 61 23.19 600 

14500 •5t.61 22.85 60068 59 29.00 601 
88442 82 16.21 601 

1059.52 83 12.54 801 
1828.09 61 23.19 601 

14525 439.03 22.85 787.02 59 29.00 602 
892.40 82 1621 602 

1231.23 30 2902 279 1032.43 83 12.54 602 
2037.58 35 25.06 279 t832.n 61 23.19 602 

6475 4490 25837 57050 31 27.08 280 14550 428•5 22.85 n•.t3 59 29.00 603 
117346_ 29 27.83 280 92038 82 18.21 603 

• 30 29.02 280 
35 25.06 280 

6500 44n.< 25.837 31 27.08 281 
29 2783 281 

1 30 29.02 281 

1005.39 63 12.54 603 
1837.87 81 23.19 603 

14575 413.87 2285 76205 59 2900 604 
94837 82 16.21 604 
978-'0 83 12.54 604 
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1989.10 35 25.06 281 1843.38 61 23.19 604 
6525 4484.8 25.837 634 .17 31 27.08 282 14600 401 .29 22.85 750.82 59 29.00 605 

1155.99 30 29.02 282 951 .47 63 12.54 60S 
1180.39 29 27.83 282 976.35 62 1621 605 
1965.01 35 25.06 282 1849.30 61 23.19 605 

6550 4452.3 25.837 661 .58 31 2708 283 14625 388.71 22.85 740.48 59 29.00 606 
1131 .19 30 29.02 283 924 .61 63 12.54 606 
1184.83 29 27.83 283 1004.33 62 16.21 606 
1941.02 35 25.06 283 1855.62 61 23.19 606 

6575 4439.7 25.837 689.05 31 27.03 2&4 1<650 376. 13 22.85 731 .07 59 29.00 607 
1106.53 30 2902 2&4 897 81 63 12.54 607 
1189.91 29 2783 2&4 1032.31 62 16-21 607 
1917.14 35 25.06 2&4 1882.34 61 23.19 607 

6000 4427.1 25.837 716.55 31 27.08 285 14675 363.55 22.85 722.62 59 29.00 608 
1082..04 30 29.02 285 871.09 63 12.54 608 
1195.63 29 27.83 285 1060.30 82 16.21 608 
1893.38 35 25.06 285 1869.45 61 23.19 608 

6625 4414.5 25.837 744.09 31 27.08 286 1<700 350.97 22.85 715.16 59 29.00 609 
1057.72 30 29.02 286 84445 63 12.54 609 
1201 .97 29 27.83 286 1088.28 62 16.21 609 
1869.73 35 25.06 286 1876.95 61 23.19 609 

6650 4401 .9 25.837 771.66 31 27.08 287 14n5 338.39 22.85 708.73 59 29.00 610 
1033.58 30 29.02 287 817.90 83 12.54 610 
1208.93 29 27.83 287 1116.26 62 1621 810 
1&46.20 35 25.06 287 1884.84 61 23.19 610 

6675 .. 389.4 25.837 79926 31 27.08 288 14750 325.81 22.85 703.36 59 29.00 611 
1 30 29.02 288 791 .45 63 12.54 611 
1 29 27.83 288 1144.25 62 16.21 611 

35 25.06 288 1893. 12 61 23.19 611 
8700 4376.8 25.837 31 27.08 289 14ns 313.23 22.85 59 29.00 612 

30 29.02 288 83 12.54 612 
1224.65 29 27.83 289 62 1621 612 
1799.53 35 25.06 288 61 23.19 612 

6725 .. 364.2 25.837 850.54 31 27.08 290 14800 300.65 22.85 59 29.00 613 
962.43 30 29.02 290 63 12.54 613 
1233.38 29 27.83 290 62 1621 613 
1776.40 35 25.06 290 1910.78 61 23.19 613 

6750 4351 .6 25.837 88221 31 27.08 291 14825 288.06 22.85 693.79 59 29.00 61< 
939.19 30 29.02 291 712.80 63 12.54 61< 
1242.69 29 27.83 291 1228.20 82 1621 614 
1753.41 35 25.06 291 1920.16 61 23. 19 614 

6n5 4339 25.837 909.90 31 27.08 292 14850 275.48 22.85 686.86 53 12.54 615 
916.21 30 29.02 292 692.84 59 29.00 615 
1252.55 29 27 83 292 1256. 18 62 16.21 615 
1730.56 35 25.06 292 1929.91 61 23.19 615 

6800 4326.5 25.837 893.51 30 29.02 293 14875 262.9 22.85 661 .09 53 12.54 616 
937.61 31 2708 293 693.02 59 29.00 616 
1262.95 29 27 .83 293 1284.17 62 16.21 616 
1707 87 35 25 .06 293 1940.01 61 23.19 616 

6825 4313.9 25.837 871 .12 30 29.02 294 14900 250.32 22.85 635.50 63 12.54 617 
96534 31 27.08 294 69433 59 29.00 617 
1273.89 29 27.83 294 1312.15 62 16.21 617 
1685 .34 35 25.06 294 1950 45 61 23.19 617 

6850 4301 .3 25.837 849.07 30 29.02 295 14925 237.74 22.85 610.13 63 12.54 618 
993.07 31 27.08 295 696.75 59 29.00 618 
1285.34 29 27.83 295 1340.14 82 16.21 618 
1662.97 35 25.06 295 1961.25 61 23.1 9 618 

6875 4288.7 25.837 827.37 30 29.02 296 14950 225.16 22.85 585.00 63 12.54 619 
1020.83 31 27.08 296 700.29 59 29.00 619 
1297.29 29 27.83 296 1368.12 62 16.21 619 
1640.77 35 2506 296 t9n.3a 61 23.19 619 

6900 4276. 1 25.837 806.06 30 29.02 297 14975 212.58 22.85 560.14 53 12.54 620 
1048.59 31 27.08 297 704.93 59 29.00 620 
1309.73 29 27.83 297 1396. 11 82 1621 620 
1618.76 35 25.06 297 1983-84 61 23.19 620 

6925 4263.5 25.837 785.17 30 29.02 298 
1076.37 31 27.08 298 
1322.65 29 27.83 298 
1596.93 35 25.06 298 

6950 4251 25.837 764.73 30 2902 299 
1104.16 31 27.08 299 
1336.03 29 27.83 299 
1575.30 35 25.06 299 

6975 4238.4 25.837 744.79 30 29.02 300 
1131 .95 31 27.08 300 
1349.86 29 27.83 300 
1553.87 35 25.06 300 

7000 4225..8 25.837 ns.JB 30 29.02 301 
1159.76 31 27.08 301 
1364.12 29 27.83 301 
1 35 25.06 301 

7025 4213.2 25.837 30 29.02 302 
1 31 27.08 302 
1 29 27.83 302 
1511 .65 35 25.06 302 

7050 4200.6 25.837 688.32 30 29.02 303 
1215.40 31 27.08 303 
1393.89 29 27.83 303 
1490.88 35 2506 303 

7075 4188.1 25.837 670.78 30 29.02 304 
1243.23 31 27.08 304 
1409.37 29 27.83 304 
1470.35 35 25.06 304 

7100 4175.5 25.837 653.97 30 29.02 305 
1271.06 31 27.08 305 
1425.24 29 27.83 305 
1450.07 35 25.06 305 

7125 4162.9 27 .934 637.94 30 29.02 306 
1298.91 31 27.08 306 
1-430.05 35 25.06 306 

I 
29 27.83 306 

7150 4150.3 27 .... 30 29.02 307 
31 27.08 307 
35 25.06 307 
36 27.89 307 

7175 4137.7 27 .... 30 29.02 308 
1354.61 31 27.08 308 
1390.84 35 25.06 308 
1396.·H 36 27.89 308 

7200 41252 27 .009 595.18 30 29.02 309 
1369.99 36 27.89 309 
1371 .67 35 25.06 309 
1382.47 31 27.08 309 
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7225 4112.6 29.378 

I 
30 29.02 310 
36 27.89 310 
35 25.06 310 
32 30 . .0 310 

7250 4100 29.378 30 29.02 311 
1317.34 36 27.89 311 • 35 25.06 311 

32 30.40 311 
7275 4087.4 29.378 30 29.02 312 

36 27.89 312 
1318.05 35 25.06 312 

i 
32 30.40 312 

7300 4074.8 29.378 30 29.02 313 
36 27.89 313 
35 25.()6 313 
32 30.40 313 

7325 4062.3 26.0153 30 29.02 314 
36 27.89 314 
32 30.40 314 
35 25.06 314 

7350 4049.7 26.003 30 29.02 315 
36 27.89 315 

1248.31 32 30.40 315 
1263.57 35 25.06 315 

7375 4037.1 26.083 534.83 30 29.02 316 

I 
36 27.89 316 
32 30.40 316 
35 25.06 316 

7400 4024.5 26.083 30 29.02 317 
36 27.89 317 
32 30.40 317 
35 25.06 317 

7425 401 1.9 26.083 30 29.02 316 
36 27.89 3 18 

1 164.41 32 30.40 318 
1214.63 35 25.06 318 

7450 3999.4 26.083 52945 30 29.02 319 
1110.01 36 27.89 319 
113645 32 30.40 319 
1199.18 35 25.06 319 

7475 39868 26_()83 530.61 30 29.02 320 
10&4.56 36 27.89 320 
1108 49 32 30.40 320 

I 
35 25.06 320 

7500 3974.2 26063 30 29.02 321 
36 27.89 321 
32 30.40 321 
35 25.06 321 

7525 3961.6 26.083 30 29.02 322 
1034.0<1 36 27.89 322 
1052.56 32 30.40 322 
1155.66 35 25.06 322 

7550 3949 26.083 542.78 30 29.02 323 
1009.00 36 27.89 323 
1024 .60 32 30.40 323 
1141.16 35 25 06 323 
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Appendix C 

MATLAB Files 
See MATLAB files on the following pages. 
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% Thesis Project 
% Gaussian Simulation in 2-D 
% Using Ordinary Kriging 
% By Ashley Willcott 
% ~ 

-----------------------------------------------------------------------~ 

clear; 
% 
% file=input('What is the name of the input file? ', 's'); 
% inputdata=load (file); 
inputdata=load('FU5POR.txt'); 

% inputdata=load('krig.txt') 
wellpath 

maxdistance=O; %This loop calculates the maximum distance ~ 
between any two points in the data loop. 
for i=l:length(inputdata) % By definition the maximum lag should be ~ 
half the maximum distance 

for j=l:length(inputdata) 
distance(i,j)=dis(inputdata(i,l) ,inputdata(j,l),inputdata(i,2),~ 

inputdata(j,2)); 
maxdistance=max(max(distance)); 

end 
end 
datavar=var(inputdata(:,3)); 

OK=O; 
while OK==O 
% lag=input('Choose the lag distance : '); %500 
% tolerance=input('Choose the lag tolerance :'); %250 
% atol=input('Choose the angular tolerance :'); %20 

lag=lOOO; 
tolerance=450; 
atol=20; 

angulartol=deg2rad(atol); 
NoLag=round((maxdistance/2)/lag); 
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Jul y 1 2 , 2005 

startangle=O ; 
% Nd i r=2 ; 
% inc=90; 
Ndir=8; 
inc=2 2 . 5 ; 

covterm=O; 

for var = l : NoLag+l 

end 

for var2=1:Ndir 
count(var2,var} =0 ; 
porsquaresum(var2 , var}=O; 
sumdistance(var2,var}=O ; 
h(var}=O ; 

end 

Page 2 

11 : 46 : 43 AM 

%This loop sets up the estimate for the variogram firstly to calculate ~ 
the 
% direction of maximum continuity 
for i=l : length(inputdata} 

for j=l:length(inputdata) 
if distance(i,j} - 0; 

angle=makeposl(inputdata(i,l} , inputdata(j , l) ,inputdata(i,2} , ~ 
inputdata(j , 2)) ; 

for fill=O:NoLag 
if (distance(i , j} > fill*lag-tolerance) & (distance(i,j) < ~ 

fill*lag+tolerance) 

1 ) ; 

for dir=l : Ndir 
theta(dir)=deg2rad(startangle)+deg2rad(inc)*(dir-~ 

if (angle >= theta(dir) - angulartol) & (angle<=~ 
theta(dir}+angulartol) 

fill+l ) +porsquare ; 

+distance(i , j} ; 

count(dir , fill+l} =count(dir , fill+l)+l ; 
porsquare=(inputdata(i , 3) - inputdata(j,3})A2 ; 
porsquaresum(dir , fill+l}=porsquaresum(dir , ~ 

sumdistance(dir , fill+l)=sumdistance(dir , fill+l) ~ 
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end 
end 

end 

end 

end 
end 

end 

xl=O:lag: (NoLag)*lag ; %Array of lag distances 

% This loop estimates the variogram from previous loop 
for fill=l:NoLag+l 
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for dir = l:Ndir 
v(dir,fill)=l/(2*count(dir,fill))*porsquaresum(dir,fi~l); 

avgdis(dir,fill)=sumdistance(dir,fill)/count(dir,fill); 
direction(dir)=(dir-l)*inc; 

vrninusvar(dir)=datavar-v(dir,fill); 
if vminusvar(dir) <0 

if count(dir,fill)>20 

contlnuity(dir,fill)=xl(fill) ; 

end 
end 

end 

end 

% Color strings are 'c', 'm', 'y', 'r', 'g', 'b', 'w', and 'k'. 
% These correspond to cyan, magenta, yellow , red, green, blue, white ,~ 
and black. 
% Line style strings are '-' for solid, 
dotted, '-.' for dash-dot. 
% Omit the line style for no line. 

1 for dashed, 1 
• ' for ~ 

% The marker types are '+', 'o', '*' and 'x', and 
% the filled marker types are 's 1 for square, 1 d' for diamond, I A I for ~ 

up triangle, 
% 1 V 1 for down triangle, '>' for right triangle, 1 <' for left ~ 
triangle, 
% 

for no marker. 
% 

load test.mat 

'p' for pentagram, 'h 1 for hexagram, and none ~ 
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OK=l; 
figure 
plot(xl,datavar+xl*O); hold on 
plot(xl,v(l, :), 's-') 
plot (xl, v ( 2, :) , 'd-') 
plot(xl,v(3, :), 'v-') 
plot (xl, v ( 4, :) , 'p-') 
plot(xl,v(S, :), 'h-') 
plot (xl, v (6,:), 'o-') 
plot(xl,v(7, :) , 'x-') 
plot(xl,v(8, :) , '+-')%,xl,v(9, :) ) ; 
xlabel('lag Distance (ft) ') 
ylabel ( 'variogram') 
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legend('sample variance',num2str(direction(l)),num2str(direction(2)),~ 
num2str(direction(3)),num2str(direction(4)),num2str(direction(5)), ~ 
num2str(direction(6)),num2str(direction(7) ),num2str(direction(8)))%,~ 
num2str(direction(9) )) 
title('Variogram Estimation, Choose the maximum direction of~ 
Continuity') 

figure 
plot(xl,datavar+xl*O); hold on 
plot(xl,v(l, :), 's-') 
plot(xl,v(S, :), 'v-') 
xlabel('lag Distance (ft) ') 
ylabel('variogram') 
legend('sample variance' ,num2str(direction(l)),num2str(direction(2))); 
title('Variogram Estimation, Choose the maximum direction of~ 
Continuity') 
% fprintf('This plot had a lag distance of %i \n',lag) 
% OK=input('is this plot OK? "1" if yes, "0" if no :'); 
% if OK==O 
% clear ( 'v' ) ; 
% fprintf('please change paramters to tune the estimate \n\n') 
% end 

end 

%This loop calculates the variogram model 
for fill=l:NoLag+l 
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July 12, 2005 

v1(fill)=VsphN(10,30,10000,x1(fill)); 
v2(fill)=VsphN(10,30,4000,x1(fill)); 

end 

%fills data array 
counter = 0; 
for k=1:620 

for i=1:68 
% well path counter 
% Data counter 

Page 5 
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counter=counter+1; 
data(counter,1)=dis(path(k,l),inputdata(i,l),path(k,2), ~ 

inputdata(i,2)); 
data(counter,2)=i; 
data(counter,3)=k; 

end 
end 

mat=sortrows(data, [3,1]); %Sorts data array 

% Takes top 4 entries at each point i n the well path 
j=O; 
i=O; 
counter = 0; 
for k=1:620 

end 
% 

while counter < 4 
i=i+1; 
j=j+1; 
counter = counter + 1; 
newmat(j,1,k)=mat(i,1); 
newmat(j,2,k)=mat(i,2); 
newmat(j,3,k)=inputdata(mat(i,2),3); 

end 
newmat(j+1,1,k)=path(k,1); 
newmat(j+1,2,k)=path(k,2); 
newmat(j+1,3,k)=O; 
counter = 0; 
j=O; 
i=i+64; 

Sill=40; 
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July 12 , 200 5 

for k=l:620 
for i=l : 4 

for j=l : 4 

Pa ge 6 

11 : 46 : 43 AM 

Ll =inputdata(newmat(j , 2 , k) , l) - inputdata(newmat(i , 2 , k) , 1) ; 
L2 =inputdata(newmat(j , 2 , k) , 2)-inputdata(newmat(i , 2,k) , 2) ; 

LDl=anisLD(4000 , 10000 , Ll , L2 , deg2rad(90)) ; %theta is angle ~ 
of maximum continuity - min cant is assumed perpendicular 

a=l 

end 
end 

end 

Vl =VsphN(lO,Sill,l,LDl) ; %note for anisotropic variograms ~ 

CovO(i , k) =Sill - Vl ; 
Cov(i , j , k) =Sill-Vl ; 

if i==j 
Cov ( i , j , k) =Sill ; 

end 

for k=l : 620 

end 

for z=l:4 
Cov(S,z , k) =l ; 
Cov(z , S , k)=l ; 

end 

Cov0(5 , k)=l ; 
Lam ( :, k) =inv (Cov ( :, : , k)) * (CovO (:, k) ); 
x(k , l)=dot (Lam( :, k) , newmat( :, 3 , k) )/100; 
Var(k) =Sill - dot(Lam( :, k) , CovO( :, k )); 

[mu , s , muci , sci] = normfit(x) ; %these variables calculate the normal ~ 
fit parameters for the random number generation in the rish assessment 

figure 
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July 12, 2005 

plot(xl,v(l, :), 's-');hold on 
plot (xl, vl, 's: ') 
plot(xl,v(5, :) 1 'v-') 
plot (xl,v2, 'v: ') 
xlabel('lag Distance (ft) ') 
ylabel ( 'variogram' ) 
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legend('Estimate (east)', 'Model(east)' 
(north) ') 

'Estimate (north)' 'Model~ 

title('Model vs Estimation Comparison') 
figure 
plot(xl,v(l, :) ,xl,v(2, :) ) ; 
xlabel('lag Distance (ft) ') 
ylabel ( 'variogram') 
legend(num2str(direction(l)),num2str(direction(2))) 
title('Model vs Est i mation Comparison') 

savefile='test.mat'; 

save~ 

(SaVefile, 1 X 1 
1 

1 mU 1 
f 

1 S 1 
f 

1 Xl 1 
f 

1 datavar 1 
f IV If 1 directiOn 1 

1 
1 Vl 1 

1 
1 V2 1 

1 
1 N0Lag 1 ~ 
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July 12, 2005 11:47 : 35 AM 

% Safety and Risk Term Project - type ''pro" to run 
% For Safetly and Risk Engineering Term Project 
% Coded by: Ashley Willcott 
% July 20 2004 
% Revised: June 16 2005 

-----------------------------------------------------------------------~ 

clear; 

load test.mat % This command loads the porosity matix (note that Risk.m ~ 
must be run first) 

slope=fw(Swbar)/Swbar; %Calculates slope from fractional flow ~ 
function 

% Initalizing Reservoir Variables 
L=8000*0 .3048; % Leng~h of the reservoir (m) 
W=800*0.3048 ; % Wid~h of the reservoir (m) 
H=SO; % Height of the reservoir (m) 8.53 
q=0.02894; % Flux of the oil (mA3/s) 70; 2500 mA3/day 
ut=q/(W*H); %Total flux velocity (m/s) 

% For risk analysis we need 50 sets of normally distributed porosity ~ 
data 
% Get parameters from Excel Descriptve statistics 
% Mean = 0.24, 
% Standard Deviation = 0.02 

for numrisk=l:l 
normpor=normrnd(mu,s, [620 500]); 

for i=l : 281 
production(i)=O; 
for j=l:SOO 

normprod(i,j)=O ; 
difference(i , j)=O; 

end 
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end 

% This loop is for calculating original time to breakthrough for~ 
kriged 
% porosity 
for i=1:620 

var(i,1)=x(i); %index 1 is porosity 
var(i,2)=3.0*10A(-10)*x(i)l(1-x(i))A2; %index 2 is Permeability 
var(i,4)=utlx(i)*slope; % vf is velocity of the front 
var(i,3)=Livar(i,4)1(3.1536*10A7); %index 3 is Time to ~ 

Breakthrough (years) 
ttbt=var(i,3); 
%var(i,4)=H*W*vf*ttbt*3.1536*10A7*6.28974I620; % index 4 is total~ 

production (barrels) for each layer % 8.53 
end 

% This loop is calculating time to breakthrough for all other ~ 
porosity data sets 
for i=1:620 

for j=1:500 
perm(i,j)=3.0*10A(-10)*normpor(i,j)l(1-normpor(i,j))A2; % ~ 

Permeability 
vf(i,j)=utlnormpor(i,j)*slope; 

of the saturation front 
t tb t ( i , j ) = L I v f ( i, j ) I ( 3 . 15 3 6 * 1 0 A 7 ) ; 

breakthrough 

end 

q(i,j)= H*W*vf(i,j)*ttbt(i,j)*3.1536*10A7*6.28974I620; 
end 

% This is the calculation of all the production profiles 
time = 0; 
count = 0; 

while time < 14.05 
count = count +1; 
for i=1:620 

% Velocity ~ 

% Time to ~ 

if var(i,3) > time 
production(count)=production(count)+H*W*var(i,4)*var(i,1) ~ 
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*6.28974/620*60*60*24; 

end 

% note that 620 is number of segments 
% note that 6.28974 is barrels in 1 mA3 
% var(i ,l) is porosity, var(i,4) is velocity of the front 
% this is to sum production in all shale layers 

for j=l:SOO 
if ttbt(i,j) >time 

if count < 281 
normprod(count,j)=normprod(count,j)+H*W*vf(i,j)*normpor ~ 

(i,j)*6.28974/620*60*60*24; %in barrels of oil %q(i,j);%/10A6; %in~ 
Millions of barrels of oil 

end 

end 
end 

end 

end 

if count>l 
ttlgeoprod(count,l)=ttlprod(count-l,l)+production(count); 

else 
ttlgeoprod(count,l)=production(count); 

end 

for k=l:SOO 

end 

if count>l 
ttlprod(count,k)=ttlprod(count-l,k)+normprod(count,k) ; 

else 
ttlprod(count,k)=normprod(count,k); 

end 

t(count)=time; 
time = time + 0.05; 

geoprodmax=max(ttlgeoprod); 
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for i=1:500 
norm100(i,1)=ttlprod(28l,i); 

end 
totalsorted=sort(norm100); 

% 95th percentile 
alpha=round(0.95*size(norm100,1)); 
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Risk(numrisk)=(totalsorted(alpha)-geoprodmax)*50*0.05/1000; %Risk ~ 

Factor 
numrisk 
end 

% figure 
% subplot(2,2,1); hist(x,50) 
% xlabel ( 1 Bins 1 

) 

% ylabel( 1 Frequency 1
) 

% title ( 1 Porosity Histogram (geo) 1
) 

% axis([O 0.4 0 100]) 

% 

% subplot(2,2,2); hist(normpor(:,1) ,50) 
% x1abel ( 1 Bins 1

) 

% ylabel( 1 Frequency 1
) 

% title( 1 Porosity Histogram (norm) 1
) 

% axis([O 0.4 0 100]) 
% 

% subplot(2,2,3); hist(normpor(:,50),50) 
% xlabel ( 1 Bins 1 

) 

% ylabel( 1 Frequency 1
) 

% title( 1 Porosity Histogram (norm) 1
) 

% axis([O 0.4 0 100]) 
% 

% subplot(2,2,4); hist(normpor(:,100),50) 
% xlabel ( 1 Bins 1 

) 

% ylabel( 1 Frequency 1
) 

% title( 1 Porosity Histogram (norm) 1
) 

% axis([O 0.4 0 100]) 
% 

% z=l:1:500; 

% figure 
% hist(Risk,50) 
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% 
% figure 
% scatter(z,Risk) 
% xlabel('Realization Number') 
% ylabel('Risk Factor') 
% legend('Risk Factor') 
% title('Risk Factor') 

figure 
subplot(2,2,1);plot(t,production) 
xlabel('Time (years)') 
ylabel('Vol Produced (US Barrels)') 
legend('Production (Barrels)') 
title('Production Profile (geo) ') 

subplot(2,2,2);plot(t,normprod(:,l)); 
xlabel('Time (years)') 
ylabel('Vol Produced (US Barrels)') 
legend('Production (Barrels)') 
title('Production Profile (normal)') 

subplot(2,2,3);plot(t,normprod(:,50)); 
xlabel('Time (years)') 
ylabel('Vol Produced (US Barrels)') 
legend('Production (Barrels)') 
title('Production Profile (normal)') 

subplot(2,2,4) ;plot(t,normprod( :, 100)); 
xlabel('Time (years)') 
ylabel('Vol Produced (US Barrels)') 
legend('Production (Barrels)') 
title('Production Profile (normal)') 
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% Simple Well path generator 
xwell=- 500 : 25:15500 ; 
for iwell=1 : 620 
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path(iwell,2)=- (78/155)*(xwell(iwell))+240200/31 ; % x coordinates ~ 
of well 

path(iwell,l)=xwell(iwell) ; % y coordinates of well 
end 
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% Distance equation in 2-D 
%~ 
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-----------------------------------------------------------------------~ 

function [dis)=dis(xl,x2,yl,y2) 
dis=((xl-x2)A2+(yl-y2)A2)A(0.5); 
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% Length Calculation for Anisotropic Variogram 
function [anisLD] = anisLD(al,a2,Ll,L2,theta); 

Lu=Ll*cos(theta)+L2*sin(theta); 
Lv=-Ll*sin(theta)+L2*cos(theta); 

anisLD=sqrt((Lu/al)A2+(Lv/a2)A2); 
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% Convert asin angle to be between 0-360 deg 
%.t 
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---------------------------------------------- - ------------------------1{ 

function [makepos]=makepos(xl,x2,yl,y2) 
xy=dis(xl,x2,yl,y2); 

ang=asin((y2-yl)/xy); 
cosangle=(x2-xl)/xy; 
sinangle=(y2-yl)/xy; 

xbar=x2-xl; 
ybar=y2-yl ; 
makepos=atan2(ybar,xbar) ; 
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% Combination Variogram (spherical with nugget) 
function [VsphN] = VsphN(N , Co , a , x) 
if x<a 

VsphN=N+Co*( (3/2*(x/a)) - 1/2*((x/a)A3)) ; 
else 

VsphN=N+Co ; 
end 
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% Swbar 
function [Swbar]=Swbar 

flag = 1; 
Sw=O; 
slopeold=fw(0)/0.01; 

while flag == 1 

end 

Sw=Sw+0.001; 
slopenew=fw(Sw)/Sw; 
check=slopenew-slopeold; 
if check < 0 

flag = -1; 
Swbar=Sw; 

end 
slopeold=slopenew; 
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% Fractional flow function 
function [fw]=fw(Sw) 

muo=0 . 0003 ; 
muw=O . Ol ; 
Krw=Sw"2 ; 
Kro=(l-Sw)"2; 
uw=Krw/muw ; 
uo=Kro/muo ; 
fw=uw/(uw+uo); 
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% This file chooses the sample points to remove from the Exhaustive ~ 
data 
% set. It uses a MATLAB file created by MATLAB Central (Mathworks) 
clear 
data= load ('permxMLAB.txt'); 

x=1:1:1820; 
y=90; 

% remove y% of the data 
N=fix ( (y/100) *1820); 
index=myrandint(1,N,x, 'noreplace'); 

for i=1:1820-N 
sample((i*3-2) )=data(index(i) ,1); 
sample((i*3-1) )=data(index(i) ,2); 
samp1e(i*3)=data(index(i) ,3); 
newdata(i,l)=data(index(i) ,1); 
newdata(i,2)=data(index(i) ,2); 
newdata(i,3)=data(index(i) ,3); 

end 

figure 
scatter(data(:,1) ,data(:,2),10); hold on 
scatter(newdata( :, 1),newdata(:,2),35, 'filled') 

% GSLIB/MATLAB format 
fid=fopen('Sample Population.txt', ' w'); 
fprintf(fid, 'Regular Reservoir Sample Population \n 3 \n xcoord \n ~ 
ycoord \n permx \n '); 
fprintf ( fid, '%12. 2f %12 . 2f %12 . 6f \n', sample); 
fclose(fid) ; 
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function ranint = myrandint(outputRow,outputCol,outputRange,varargin) 
% MYRANDINT(M,N,RANGE) is an M-by-N matrix with random integer entries 
% drawn with replacement from elements of vector RANGE. The elements ~ 
in 
% vector RANGE do not need to be contiguous or unique. 
do 

(Actually, they ~ 

% not even need to be integers: The function works the exact same way ~ 
with 
% noninteger elements, but a warning is generated to alert the user ~ 
that 
% noninteger elements are being sampled.) 
% 

% To specify a contiguous integer range from Xlow to Xhi, use RANGE = ~ 

[Xlow: Xhi] . 
% 

% MYRANDINT(M,N,RANGE, 'noreplace') is an M-by-N matrix with random ~ 
integers 
% drawn without replacement . 
% 

% This function is based around RAND and RANDPERM, and is intended as a 
%modest imitation of Comm Toolbox's RANDINT. 
% Note that this function was found on the Mathworks website 

rand('state',l5);% this is to keep the state constant for ~ 
recalculation of the same random numbers at a later date 

if isequal(size(outputRange), [1 2]) && -isequal(outputRange(l), ~ 

outputRange(2)-l), 
warning('To specify a range [low high] use [low:high] .') 

end 
if -isequal(round(outputRange) ,outputRange), 

warning('Specified RANGE contains noninteger values.') 
end 
if -isequal(length(outputRange) ,length(outputRange(:))), 

error('Range must be a vector of integer values.') 
end 

numElements outputRow*outputCol; 
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if isempty(varargin) , 

ranlnt 
randlx 

zeros(outputRow,outputCol); 
floor((length(outputRange))*rand(size(ranint))) + 1; 

ranlnt outputRange(randix); 
if -isequal(size(randix),size(ranint)), 

ranlnt = reshape(ranint,size(randix)) ; 
end 

elseif isequal(varargin{l} , 'noreplace'), 

if numElements > length(outputRange), 
error('Not enough elements in range to sample without ~ 

replacement.') 
else 

% Generate full range of integers 
XfullShuffle = outputRange(randperm(length(outputRange))); 
% Select the first bunch: 
ranlnt = reshape(XfullShuffle(l:numElements),outputRow, ~ 

outputCol) ; 
end 

else 
error('Valid argument is ''noreplace' '.') 

end 
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% This program aims to populate geostatistical realizt i ons with MWD 

% 
% This program was written by : 
% Ashley Willcott 
% Memorial University of Newfoundland 
% Masters Candidate 
% 
% ~ 

------------------------ ---- ------------------------ ------------------- ~ 

clear ; 
% Initialization 
% This block loads original data 
data= load ( ' permxMLAB . txt ' ) ; 
sample= load ( ' Sample Population Mlab.txt') ; 
well= load ( ' well bore . txt ' ) ; %paste the trajectory nodes here 

NumNodes = length(well) ; 
nearness = 60 ; 
the grid block for MWD 

% this is the number of trajectory points 
% this is the distance from the well bore to ~ 

phase = 1; % this is the current phase of the drilling ~ 
process (note 1 is the minimum phase) {Phase = stage} 
sectionsize=650 ; 

% counters 
q=l ; 
equal 0 
count=l ; 
segrnent=O ; 
old=O ; 
id=l ; 
countid=O; 
% ~ 

% this is the mD of each phase 

% if you want to skip the loop set q not ~ 

----------------------------------------------------------------------- ~ 

% This loop is a standalone loop to check against NetTool 
while q==O % this loop is a quick checking program to compare with ~ 
Net Tool 

x=input ( ' x-coordinate from NetTool : ' ) ; 
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end 

y=input ('y-coordinate from NetTool :'); 
i=(x+25)/50; 
j=(y+25)/50; 
block=i+(j-1)*28 ; 
ans=data(block,3)/1000 
q=input ( ' q (0 to repeat) : '); 

% this loop discretizes the well path segments 
for i=1:NumNodes-1 

deltax=we1l(i+1,1)-well(i,1); 
deltay=we1l(i+1,2)-well(i,2); 
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N=10; % this is the number of segments in between trajectory points 
deltaxi=deltax/N; 

end 

deltayi=deltay/N; 
for j=1:N+1 

end 

xi(count)=well(i,1)+deltaxi*(j-1); 
yi(count)=well(i,2)+deltayi*(j-1); 
count=count+1; 

Nodes=length(xi); % this loop calculates running mD up to the end of a ~ 
given phase 
for i=1:Nodes-1 

segment=segment+1; 

end 

new=dis(xi(i) ,xi(i+1),yi(i),yi(i+1)); 
mD(segment)=o1d+new; 
old=mD(segment); 
if mD(segment)/phase<sectionsize; 

phasemD(segment)=mD(segment); 
end 

%This loop checks for grid blocks near the wellbore to input MWD 
sizephase=length(phasemD); 
for i=1:sizephase 

for j=1:length(data) 
if dis(xi(i) , data(j,1),yi(i),data(j,2)) <nearness 

blockid(id)=j ; 
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id=id+l; 

end 

end 
end 
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blockid=sort(blockid); % this loop records the block id for the nrear ~ 
well bore blocks 
for i=l:length(blockid)-1 

end 

a=O; 

if blockid(i+l)-= blockid(i) 
countid=countid+l; 

id(countid)=blockid(i); 

end 

for i=l:length(id) 

end 

a=O; 

a=a+l; 
add(a)=data(id(i) ,1); 

a=a+l; 

add(a)=data(id(i) ,2); 
a=a+l; 
add(a)=data(id(i),3); 

for i=l:length(sample) 

end 

b=O; 

a=a+l; 
newsample(a)=sample(i , l); 
a=a+l; 
newsample(a)=sample(i,2); 

a=a+l; 
newsample(a)=sample(i,3); 

count=a; 
for i=count:length(add)+count-1 

a=a+l; 

b=b+l; 
newsample(a)=add(b); 
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% %II( 
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_______________________________________________________________________ .,( 

% % FILE CREATION- *.txt files created in desire formats 
% % 
% GSLIB format 
fid=fopen('newsampleGSLIB.txt', 'w'); 
fprintf(fid, 'Regular Reservoir Base Case \n 3 \n xcoord \n ycoord \n .t 
permx \n'); 
fprintf ( fid, '%12. 2f %12. 2f %12. 6f \n', new sample); 
fclose(fid); 

% MATLAB format 
fid=fopen( 'newsample.txt' , 'w'); 
fprintf(fid , '%12.2f %12.2f %12.6f \n' ,newsample); 
fclose(fid); 

% % This plots the locations of the MWD along with the sample .t 
population 
load ('newsample.txt'); 
figure 
scatter(newsample(:,l),newsample(:,2)); hold on 
plot(xi,yi); hold off 
xlabel ( 'X (m) ' ) 
ylabel ( 'Y (m) ') 
title('Permeability Skeleton- Stage 1 ') 
% 

% figure 
% scatter(sample(:,l) ,sample( :,2)) 
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% This program aims to split realization files into sets of 8 ~ 

realizations 
% per file 
% 

% This program was written by : 
% Ashley Willcott 
% Memorial University of Newfoundland 
% Masters Candidate 
% 
% ~ 

-------------------------------------------------------------------- --- ~ 

clear ; 
% Initialization 
% This block loads original data 
data= load ( ' realization500stage5.dat ' ) ; 

NumReal = length(data)/1820 ; 
the file 

% this is the number of realizations in ~ 

NumSp lit=8; 
split file 

% t his is t h e Number of realization s i n each ~ 

% counters 
b =O; 
c=O; 
% ~ 

----------------------------------- - -- - - -------------------------------~ 

for j=l : round(NumReal/NumSplit) 
a=O ; 
c=O ; 
for i=l : NumSplit 

c=c+l ; 
while a<c*1820*2 

a=a+l ; 
b=b+l; 
if b<length(data ) 
f i le(a,l , j)=data(b,l) ; 
a=a+l ; 
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end 
end 

end 

file(a 1 1 1 j)=data(b 1 2); 

end 

savefile='perm.mat'; 

save(savefile 1 'data') 

% MATLAB format 
fid=fopen('real10stage01.dat' 1 'w'); 
fprintf ( fid 1 '%12. Sf %12. Sf \ n' 1 file (: 1 : 1 1)); 
fclose(fid); 

fid=fopen('real10stage02.dat' 1 'w'); 
fprintf(f i d 1 ' %12. Sf %12.Sf \n' 1 file(: 1 : 1 2 )); 
fclose(fid); 

fid= fopen('re a l 10stage03 .dat' 1 'w'); 
fprintf(fid 1 '%12.Sf %12.Sf \n' 1 file(: 1 : 1 3)); 
fclose(fid); 

fid=fopen('real10stage04.dat' 1 'w'); 
fprintf(fid 1 '%12.Sf %12.Sf \n' 1 file(: 1 : 1 4)); 
fclose(fid); 

fid=fopen('reallOstageOS.dat' 1 'w'); 
fprintf(fid 1 ' %12.Sf %12.Sf \n' 1 file(: 1 : 1 S)); 

fclose(fid); 

fid=fopen('reall0stage06.dat' I 'w'); 
fprintf(fid 1 '%12.Sf %12.Sf \n' 1 file(: 1 : 1 6)); 
fclose(fid); 

fid=fopen('reall0stage07.dat' 1 'w'); 
fprintf(fid 1 '%12.Sf %12.Sf \n' 1 file(: 1 : 1 7)); 
fclose(fid); 

fid=fopen('real10stage08.dat' 1 'w'); 
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fprintf(fid , 1 %12 . Sf %12.Sf \n 1 ,file( :, :,8)); 

fclose(fid) ; 

fid=fopen( 1 r eal10stage09.dat 1
, 

1 W1
) ; 

fprintf(fid , 1 %12.Sf %12 .S f \n 1 ,file(:,: , 9)) ; 

fclose(fid) ; 

fid= fopen( 1 real10stage010.dat 1
, 

1 W 1
); 

fprintf (fid, 1 %12. Sf %12. Sf \n 1 , file ( :,:, 10)) ; 
fclose(fid) ; 

fid=fopen( 1 real10stage01l . dat 1
, 

1 W 1
); 

fprintf(fid, 1 %12.Sf %12.Sf \n 1 ,file( : ,: , ll)) ; 

fclose(fid) ; 

fid=fopen( 1 r eal10stage012 . dat 1
, 

1 W 1
); 

fprintf (fid, 1 %12. Sf %12 .Sf \n 1
, file (:, : , 12)) ; 

fclose(fid) ; 

fid=fopen( 1 real10stage0 1 3 . d a t 1
, 

1 W 1
); 

fprintf (fid, 1 %12. Sf %12. Sf \n 1 , file (:,: , 13)) ; 

fclose (fid) ; 

fid=fopen( 1 real1 0stage014.dat 1
, 

1 W 1
); 

fprintf (fid, 1 %12. Sf %12. Sf \n 1 , file (: ,:, 14)); 

fclose(f i d) ; 

fid=fopen( 1 real10stage01S .dat 1
, 

1 W 1
); 

fprintf(fid , 1 %12.Sf %12 . Sf \n 1 , file(:, :, 1S)) ; 

fclose(fid) ; 

fid=fopen( 1 real10stage016 . dat 1
, 

1 W 1
); 

fprintf (fid, 1 %12. Sf %12 . Sf \n 1
, file (:, :, 16)) ; 

fclose ( fid) ; 

fid=fopen( 1 real10stage017 . dat 1
, 

1 W 1
); 

fprintf(fid, 1 %12.Sf %12 . Sf \n 1 , file(: ,:, 17)) ; 

fclose(fid) ; 

fid= fopen( 1 real10stage018.dat 1
, 

1 W 1
); 
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fprintf(fid 1 '%12.Sf %12.Sf \n' 1 file(: 1 : 1 18)) ; 

fclose(fid) ; 

fid=fopen( ' real10stage019 . dat' 1 ' w ' ) ; 
fprintf(fid ,' %12.Sf %12.Sf \n',file(: 1 : , 19)) ; 

fc1ose(fid) ; 

fid=fopen( ' rea110stage020 . dat ' 1 ' w') ; 
fprintf (fid 1 ' %12 . Sf %12. Sf \n' 1 file ( : 1 : 1 20)) ; 
fclose(fid) ; 

fid=fopen( ' real10stage02l.dat ' 1 ' w ' ) ; 
fprintf(fid 1 ' %12 . Sf %12.Sf \n' 1 file( : 1 : 1 21)) ; 
fclose(fid) ; 

fid=fopen( ' real10stage022.dat ' I ' w ' ) ; 
fprim.f ( fid 1 ' %12 . Sf %12. Sf \n' 1 file (: 1 : 1 22)) ; 
fclose(fid) ; 

fid=fopen('real10stage023.dat' 1 'w'); 

fprintf(fid 1 ' %12.Sf %12.Sf \n ' 1 file( : 1 : 1 23)) ; 
fclose(fid) ; 

fid=fopen( ' real10stage024.dat ' 1 ' w ' ) ; 
fprintf(fid 1 ' %12 . Sf %12.Sf \n ' 1 file(: 1 : 1 24)) ; 
fclose(fid) ; 

fid=fopen( ' real10stage02S . dat ' 1 ' w ' ) ; 
fprintf (fid 1 ' %12 . Sf %12 . Sf \n ' 1 file ( : 1: 1 2S)) ; 
fclose(fid) ; 

fid=fopen( ' real10stage026 . dat ' 1 ' w' ); 
fprintf (fid l ' %12. Sf %12. Sf \n' 1 file ( : 1 :1 26)) ; 
fclose(fid) ; 

fid=fopen( ' real10stage027.dat ' 1 ' w ' ) ; 
fprintf(fid 1 ' %12.Sf %12 . Sf \n ' 1 file( : 1 : 1 27)) ; 
fclose (fid) ; 

fid=fopen( ' real10stage028.dat' 1 ' w ' ) ; 
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fprintf (fid, ' %12. Sf %12. Sf \n ' , file ( : , : , 28)) ; 

fclose(fid) ; 

fid=fopen('real10stage029 . dat ' , ' w ' ) ; 
fprintf (fid, ' %12 . Sf %12. Sf \n' , file ( :,: , 29)) ; 

fclose(fid) ; 

fid= fopen( ' real10stage030.dat ' , ' w ' ); 
fprintf ( fid, ' %12. Sf %12 . Sf \n ' , file (: , :, 30) ) ; 

fclose(fid) ; 

fid=fopen( ' real10stage031 . dat ' , ' w') ; 
fprintf(fid,' %12 . Sf %12 . Sf \n',file( :,:, 31)) ; 

fclose(fid) ; 

fid= fopen('real10stage032.dat ', ' w') ; 
fprintf(fid,'%12.Sf %12.Sf \n',file(:,:,32)) ; 

fclose(fid); 

fid=fopen( ' real10stage033.dat', 'w') ; 
fprintf (fid , ' %12 . Sf %12. Sf \n', file (: , : , 33)) ; 
fclose(fid) ; 

fid=fopen( ' real10stage034.dat ', ' w') ; 
fprintf(fid , '%12.Sf %12 . Sf \n ', file( : , : ,34) ) ; 
fclose (fid) ; 

fid=fopen('real10stage03S.dat ', ' w ' ) ; 
fprintf (fid, ' %12. Sf %12 . Sf \n ' , file (:, :, 3S) ); 

fclose(fid) ; 

fid=fopen( ' real10stage036.dat ' , ' w') ; 
fprintf(fid ,' %12.Sf %12.Sf \n ' ,file(: ,: ,36)) ; 
fclose(fid) ; 

fid=fopen( ' real10stage037.dat ' , ' w'); 
fprintf (fid , ' %12 . Sf %12 . Sf \n ' , file ( :,:, 37) ); 

fclose (fid) ; 

fid=fopen('real10stage038.dat', ' w') ; 
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fprintf(fid, 1 %12.Sf %12 .Sf \n 1 ,file(:,:,38)); 

fclose (fid); 

fid=fopen( 1 real10stage039.dat 1
, 

1 W 1
); 

fprintf (fid, 1 %12 . Sf %12 . Sf \n 1 , file (:,:, 39)); 

fclose(fid); 

fid=fopen( 1 real10stage040.dat 1
, 

1 W1
); 

fprintf(fid, 1 %12.Sf %12.Sf \n 1 ,file(:,:,40)); 

fclose(fid); 

fid=fopen( 1 real10stage041.dat 1
, 

1 W1
); 

fprintf (fid, 1 %12 . Sf %12. Sf \n 1 , file (:, :, 41)); 
fclose(fid); 

fid=fopen( 1 real10stage042.dat 1
, 

1 W 1
); 

fprintf (fid, 1 %1 2. Sf %12 . Sf \n 1 , file (:,:, 42)); 

fclose(fid); 

fid=fopen( 1 real10stage043.dat 1
, 

1 W1
); 

fprintf (fid, 1 %12 . Sf %12 . Sf \n 1 , file (:,:, 43)); 

fclose(fid); 

fid=fopen( 1 real10stage044.dat 1
, 

1 W 1
); 

fprintf (fid, 1 %12 . Sf %12 . Sf \n 1 , file (:, :, 44)); 

fclose(fid); 

fid=fopen( 1 real10stage04S.dat 1
, 

1 W 1
); 

fprintf(fid, 1 %12.Sf %12 .Sf \n 1 ,file(:,:,4S)); 

fclose(fid); 

fid=fopen( 1 real10stage046.dat 1
, 

1 W1
); 

fprintf(fid, 1 %12 .Sf %12 .Sf \n 1 ,file(:, :,46)); 

fclose(fid); 

fid=fopen( 1 real10stage047.dat', 'w'); 
fprintf(fid, 1 %12.Sf %12 .Sf \n 1 ,file(:,:,47)); 

fclose(fid); 

fid=fopen( 1 real10stage048.dat 1
, 

1 W1
); 

186 



C:\Documents and Settings\Ashley\My ... \split.m 

July 12, 2005 

fprintf ( fid, '%12. Sf %12. Sf \n', file (:, :, 4 8)) ; 

fclose ( fid) ; 

fid=fopen('reall0stage049.dat', 'w'); 
fprintf (fid, '%12. Sf %12. Sf \n', file (:,:, 49)); 

fclose ( fid) ; 

fid=fopen('reallOstageOSO.dat', 'w'); 
fprintf ( fid, '%12. Sf %12. Sf \n', file (:, :, 50)) ; 

fclose(fid); 

fid=fopen('reall0stage05l.dat', 'w'); 
fprintf (fid, '%12. Sf %12. Sf \n', file (:,:,51)); 

fclose(fid); 

fid=fopen('reall0stage052.dat', 'w'); 
fprintf(fid,'%12.5f %12.5f \n',file(:,:,52)); 

fclose (fid); 

fid=fopen('reall0stage053.dat', 'w'); 
fprintf(fid,'%12.5f %12.5f \n',file(:,:,53)); 

fclose(fid); 

fid=fopen('reall0stage054.dat', 'w'); 
fprintf ( fid, '%12. Sf %12. Sf \n', file (:, :, 54) ) ; 

fclose(fid); 

fid=fopen('reall0stage055.dat', 'w'); 
fprintf (fid, '%12. Sf %12. Sf \n', file (:,:,55)); 

fclose(fid); 

fid=fopen('reall0stage056.dat', 'w'); 
fprintf (fid, '%12. Sf %12. Sf \n', file (:, :, 56)); 

fclose(fid); 

fid=fopen('reall0stage057.dat', 'w'); 
fpr i ntf(fid,' %12.5f %12.5f \n',file(:,:,57)); 

fclose (fid); 

fid=fopen('reall0stage058.dat', 'w'); 

187 

Page 7 

11:57:14 AM 



C:\Documents and Settings\Ashley\My ... \split.m 

July 12 , 2005 

fprintf(fid , 1 %12.5f %12.5f \n 1 ,fi1e(:, :, 58)) ; 

fc1ose(fid) ; 

fid= fopen( 1 real10stage059.dat 1
, 

1 W1
) ; 

fprintf (fid, 1 %12 . Sf %12. Sf \n 1
, file (:,:,59)); 

fclose(fid) ; 

fid=fopen( 1 real10stage060 .dat 1
, 

1 W 1
); 

fprintf (fid , 1 %12. Sf %12. Sf \n 1
, file ( :,:, 60)); 

fclose(fid) ; 

fid=fopen( 1 real10stage061.dat 1
, 

1 W 1
); 

fprintf (fid , 1 %12. Sf %12. Sf \n 1
, file (:,:, 61)) ; 

fclose(fid) ; 

fid=fopen( 1 reall0stage062.dat 1
, 

1 W 1
); 

fprintf ( fid, 1 %12. Sf %12. Sf \n 1
, file (:, :, 62) ) ; 

fclose (fid) ; 

f i d=fo per. ('reall0stage06 J .dat 1
, 'w 1

) ; 

fprintf(fid , 1 %12.5f %12.5f \n 1 ,file(:,:,63)) ; 

fclose(fid); 
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Figure 8.1: Sample Variogram Estimate- 0 Degrees 
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Figure 8.2: Sample Variogram Estimate - 22.5 Degrees 
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Figure 8.3: Sample Variogram Estimate- 45 Degrees 
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Figure 8.4: Sample Variogram Estimate - 67.5 Degrees 
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Figure 8.5: Sample Variogram Estimate- 90 Degrees 
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Figure 8.6: Sample Variogram Estimate - 112.5 Degrees 
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Figure 8. 7: Sample Variogram Estimate - 135 Degrees 
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Figure 8.8: Sample Variogram Estimate- 157.5 Degrees 
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Case Study 2 Data Summary 
Total Production (100 nodes) 
Base Case 

Oil rate 
8705.42 

Mean 7508.65308 
STD 441.3016076 
Realizations Stage 0 

1 7961 .19 
2 7788.54 
3 7083.24 
4 7912.51 
5 7418.69 
6 7331.71 
7 7787.07 
8 7679.76 
9 7220.05 

10 6941.77 
11 7662.89 
12 8442.84 
13 7016 
14 7319.86 
15 6996.29 
16 8075.25 
17 7720.06 
18 7255.39 
19 7530.68 
20 7012.12 
21 6845.48 
22 7652.68 
23 7654.18 
24 7610.59 
25 7680.83 
26 6847.66 
27 7381 .96 
28 6871 .99 
29 7549.65 
30 7901.05 
31 7517.78 
32 7665.46 
33 7831 .35 
34 7363.7 
35 8241.96 
36 7175.01 
37 8378.37 
38 7411.98 
39 7843.1 
40 7921 .54 
41 7496.66 
42 7464.61 
43 8164.77 
44 7391.46 
45 7702.09 
46 7362.29 
47 7071.41 
48 6689.51 
49 7259.88 
50 7078.74 

Oil rate 
7996.53502 8138.9778 
286.298854 237.71587 

Stage 1 Stage 2 
7709.16 8030.57 
8034.47 7876.32 
8676 .85 8291 .96 
8215.49 7872.02 
7893.03 8016.8 
8030.41 7846.38 
7991 .61 8387.03 
7569.9 8063.98 
8274.8 7870.91 

8109.13 7638.14 
8041 .24 8457.92 
8588.46 8344.97 
7546.54 7770.2 
7576.1 8196.6 

8178.54 8232.4 
8138.9 8093.49 

7866.58 7978.84 
7281.84 7741 
8051.63 7841 .74 
8213 .85 8255.61 
8128.71 7748.3 
8128.71 8432.69 
7468.69 7988.67 
8132.8 8083.6 

8805.23 8735.79 
7801.74 7766.14 
7675.64 8135.34 
8356.53 8544.01 
8267.42 8182.65 
7922.3 8161 .48 

7840.14 7915.82 
8371.86 8315.27 
7788.16 7613.79 
8292.59 8207.12 
8433 .78 7819.28 
7812.91 8219.83 
7778.39 7918.93 
7607.56 8014.77 
7566.47 8073.17 
7792.76 8517.36 
7674.14 8250.29 
8201.13 8269.18 
7803.97 8404.55 
7656.6 8263.24 

7669.08 8170.02 
7531 .31 8339.59 
7976.96 7956.49 
7391 .2 8482.66 

8139.62 7843.46 
8016.51 8267 .51 
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8173.3029 8272.6142 8377.9465 
213.302256 205.80067 43 197.04078 

Stage 3 Staqe 4 Staqe 5 
8067.51 8377.08 8348.31 
8166.37 7820.31 8800.73 
8124.59 8143.6 8131.92 
8070 .06 8141.67 8229.65 
8322.77 8236.8 8296.19 
8355.34 8417.38 8166.77 
8019.89 7871 .11 8359.83 
8341.54 8038.62 8039.96 
8180.75 8194.35 8112.72 
7800.46 8185.14 8300.45 
8168.88 8075.73 8610.22 
8185.4 8505.99 8341 .79 

7966.38 8347.3 1 8671.1 
8459.41 8329.84 8391 .05 
8251.47 8186.07 8376.08 
8412.22 7988.53 8333.6 
8261 .71 8167.79 8507.32 
8262.32 8280 .36 8398.55 
8488.31 8274 .97 8405.3 
8339.31 8524.25 8523.34 
8161.18 8066.38 8257.58 
8103.24 8841 .36 8309.48 
7929.09 7952.8 8496 .2 
8198.4 8396.26 8077.72 

8208.04 8218.93 8196.18 
8284.64 8445.84 8186.43 
8214.72 7724.35 8086.39 
8505.32 8038.7 8402.66 
8470.05 8326.3 8581.45 
8252.28 8572.76 8465.95 
8073.49 8247 .29 8264.61 
8016.06 8505.75 8294.11 
8085.67 8332.95 8360.5 
8589.79 8446.79 8550.09 
8538.16 8349.18 8614.09 
7899.07 8202.97 8310.07 
8125.7 8420 .71 8391 .19 

7886.51 8485.52 8561.14 
8492.4 8584.08 8671.18 

8108.72 8121 .7 8365.57 
8396.38 8570.06 8277.58 
8110.46 7927.33 8030.74 
7878.25 8378.87 8064.7 
8039.47 8120.05 8530.65 
8270.7 8237.19 8736.45 

8000.21 7915.87 8501 .53 
8014.08 8615.58 8447.32 
8220.95 8395.74 8396.67 
8393.05 8341 .78 8474.87 
8278.65 8369.16 8262.18 



51 8314.8 7945 7948.67 8271 .94 8186.45 8364.26 
52 7126.65 7962.61 8006.19 7799.9 8219.55 8354.18 
53 7071.29 7625.99 8213 .92 8105.35 8243.21 8623.1 7 
54 7283.26 8075.85 8341 .88 8780.69 8261 .52 8690.65 
55 7487.8 7942.92 7709.36 8176.55 8369.29 8624.51 
56 6811 .72 8305.46 8116 .58 8319.34 8337.46 8539.14 
57 7117.45 8322.9 8141 .88 8431 .1 9 8201 .98 8547.94 
58 7027.26 7888.01 8122.22 8276.84 8528.43 8501.02 
59 7309.44 8208 7676.3 8323.89 8044.88 8449.3 
60 7286.68 8269.07 7820.1 4 8137.1 4 8343 8376.54 
61 7489.67 7982.32 8355.58 8338.78 8699.03 8527.79 
62 8105.26 8151 .24 8336.54 8286.53 8483.73 8410.89 
63 7105.97 8028.12 8184 .58 8270 .1 9 8021.48 8289.28 
64 8229.95 7981 .05 8409.95 8082.72 8543.9 8270.15 
65 7290.78 7785.1 9 7960.85 8193.06 7870.58 8808.81 
66 7109.78 7553.3 8372.44 8125.51 8181 .3 8311.04 
67 6721 .8 7985.08 8170.22 8064.3 8216.25 8472.76 
68 7375.19 7551.24 7952.22 8183.33 8301.01 7994.83 
69 7629.74 7692.16 8049.1 6 8425.94 8116.53 8275.63 
70 7495.72 7708 .68 8438.04 8226.51 8371 .55 8048.42 
71 7971.6 8208.41 8249.46 8089.39 8674.34 8212.77 
72 7082.98 8285.94 8093.36 7972.74 8171 .87 8700.89 
73 7551.96 7824.37 8310.49 8350.75 8157.38 8074.56 
74 7050.97 8590.76 8025.69 7868.3 8173.61 8222.55 
75 7510.68 8320.55 8122.29 8542.1 2 8029.23 8465.6 
76 7250.7 7529.64 7997.1 8345.95 8685 .34 8827.86 
77 7962.56 8221 .35 8162 7720.4 8044.83 8371.76 
78 7422.56 7964.16 8179.77 7790.43 8481.15 8180.73 
79 7398.12 8053.89 8578.86 8220 .57 8027.74 8557.73 
80 7886.95 7728.49 7942.2 8224.83 8288.13 8417.03 
81 7946.66 8117.17 8179.8 8364.06 8124.43 8274.32 
82 7768.36 7846.3 8315.95 8434.99 8279.81 8623.01 
83 6841 .88 8580 .63 8098.24 8379.67 8350.97 8391 .03 
84 7491.82 8521.85 7803 .1 6 8188.45 8327.09 8487.03 
85 8008.13 8235.56 8370.42 8431 .89 8391 .1 2 8547.3 
86 8444.56 7884.07 8050.2 7913.45 8291.41 8505.86 
87 6837.26 7993.09 7918.03 8294.78 8450.1 8368.72 
88 7625.53 7545.75 8079.8 8161 .03 8380.72 8352.06 
89 6974.66 7939.42 8018.12 8110.53 8192.67 8258.14 
90 6873.43 7687.24 8044.39 8009.79 8086.16 8266.71 
91 7963.99 7864.01 7820.27 8061.45 8303.61 8253.04 
92 7527.44 8247 .5 8103.96 8300.99 8369.77 8005.94 
93 7889.94 8098.11 8231.46 7820.11 8109.29 8411 .18 
94 7368.16 8697.93 7935.6 8017.57 8275.36 8585.79 
95 7353.56 7774.43 7523.89 8450.63 8137.15 8641.44 
96 7272 7863.1 7 7804.17 7915.39 8510.24 8544.51 
97 7455.68 8350.12 8058.15 8490.42 8106.41 8517.74 
98 7615.02 8075.01 8093.39 8196.7 8345.15 8101 .09 
99 7177.29 8100.95 7744.66 8287.06 8165.55 8403.61 

100 8022.61 8161 .26 8550.71 8242.96 8208.16 8492.93 
101 8456.45 8043.73 7947 .58 8412.57 8484.3 8043.03 
102 7924.66 8142.92 8020 .1 4 8514.44 8477.96 8318.61 
103 7501.45 8391 8313.5 8127 .1 7 8360.03 8715.9 
104 7879.34 8332.63 8192 .73 8373.52 8581 .56 8673.45 
105 7688.52 7987.78 8319.97 8325.27 8286.61 8320.04 
106 7669.2 7995.61 8125.38 8368.45 7969.66 8267.08 
107 7719.3 7925.55 8207.56 8219.51 8647.93 8570.53 
108 7732.56 7812 .34 8514.66 8501 .91 8309.99 8555.03 
109 7137.71 8083.5 8257.92 8237.65 8465.18 8457.25 
110 7535.8 7851 .6 8427.16 7967.06 8206.74 8066.98 
111 6862.5 8122.91 7764.91 7826.46 8266.86 8560.11 
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112 6709.83 8136.4 7478.52 8129.05 8089.82 8172.47 
113 7912.97 8086.31 7984.49 8221.71 8024.46 7994.62 
114 7422.6 7773.43 8497.27 8541.45 8293.01 8643.23 
115 7389.4 8255.55 7482.77 8354.36 7935.66 8010.55 
116 7463.89 8025.33 8165.88 8019.07 8253.66 8508.47 
117 7702.2 8111 .03 8332.92 7928.49 8450.51 8478.63 
118 6602.12 8036.47 8361.43 8333.75 8609.29 8493.89 
119 7022.36 7861.69 8072.97 8130.22 8212.19 8366.52 
120 7697.19 7853.01 8336.78 8418.8 8397.08 8138.93 
121 8167.84 7945.94 8093.61 8214.65 8561.36 8417.48 
122 7488.13 8196.91 7781.19 8006.07 8359.65 8295.32 
123 6711 .33 8368.48 8275.23 8478.32 8261.89 8185 
124 7607.79 7593.57 8520.04 7955.34 8046.72 8473.75 
125 7277.01 7934.58 7937.54 8196.33 8046 .72 8439.02 
126 6826.54 7820.13 8093.35 8435.31 8535.8 8213.82 
127 7457 8145.53 7887.32 8020.57 8207.07 8418.72 
128 7464.57 7853.4 7982.59 8293.34 8172.47 8148.47 
129 8016.35 7792.33 7950.03 8063 .87 8596.54 8392.09 
130 8055.11 8431.49 8722.85 8256.52 8135.05 8359.95 
131 6915.61 7730.58 8134.39 8238.88 7959.07 8311.05 
132 7074.72 8086.33 8199.61 7992.12 8242.28 8376.91 
133 7347.58 7842.57 8370.85 7920.49 8196.5 8587.64 
134 7389.66 7986.81 7868.09 7959.81 8389.57 8387.27 
135 7923.36 8285.66 7999.14 7945.53 8282.31 8461 
136 7265.42 8211.6 8420.68 8322.28 8172.03 8280.23 
137 6676.99 7989.92 7938.28 8123.84 8370.94 8206.25 
138 7127 .55 7996.59 7839.95 8231 .78 8004 .57 8370.67 
139 7646.55 7550.36 8214.79 8651 .97 7990.07 8418.23 
140 6842.17 8367.01 8016.2 8562.1 8062.86 8233.23 
141 7826.02 8139.53 8194.99 8229 .28 8551.79 8549.42 
142 7383.26 8375.47 8164.65 8322 .75 8522 .84 8479.43 
143 7538.3 8204.91 8424.45 7813.52 8478.72 8102.8 
144 7315.76 7315.75 8503.87 8138.46 8117.15 8324.69 
145 6929.22 8085.28 8124.55 7835.06 8333.46 8301.18 
146 7168.59 8163.2 7961.93 7800 .95 8421.54 8229.77 
147 6983.5 7850.44 7795.88 8049.81 8216.8 8312.2 
148 7764.53 8123.3 7960.81 8273.38 8373.74 8408.81 
149 7776.85 7610.26 8381 .56 8408.06 7900.9 8430.92 
150 7338.44 8126.1 8213.85 8180.55 8509.18 8133.08 
151 7554.17 7270.88 8225.58 8527.81 8014.71 8431.87 
152 7070.53 7707.45 8082.23 8246.56 8486.9 8481 .07 
153 7856.1 7791.43 8174.11 8118.98 8402.28 8564.62 
154 7932.61 7784.52 8320.35 8041.14 8336.42 8509.19 
155 6963.06 7992.93 8302.32 8171 .92 8186.69 8758.5 
156 7525.57 8267.21 7873.48 7961 .64 8374.47 8475.17 
157 7818.55 8131.01 8180.56 8083.53 8072.7 8444.24 
158 6948.28 7763.1 7865.47 7913.49 8461.68 8607.41 
159 7014 8263.34 8351 .71 7785.49 8303.98 8458.53 
160 7149.76 8034.29 8158.52 8353.58 8118.51 8597.08 
161 6893.49 8390 .02 8172.07 8286 .74 8239.41 8518.36 
162 8109.45 8183.96 7967.55 8310.18 7964.46 8413.12 
163 8309.7 8109.54 8332.47 8251 .71 7779.41 8414.47 
164 7366.6 8359.46 7810.84 8035.22 8020.11 8491.83 
165 7394.47 7811.4 8049.78 8047.99 8249.03 8630.35 
166 7694.22 7830.68 8213.94 8485.24 8493.15 8375.64 
167 7675.13 7917.4 7946.69 8040.2 8283.7 8463.57 
168 7358.56 8246.34 8029.81 7936.99 8368.67 8523.07 
169 7590.75 8486.53 7816.1 8010.64 8097.56 8513.71 
170 7680.66 8308.79 8425.56 8203.28 8633.94 8552.77 
171 7843.02 7774 .39 8376.19 8138.08 7948.31 8643.04 
172 7346.42 7763.35 8066.28 7802.07 8425.68 8286.17 
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173 7528.49 7946.43 8004.74 7735.14 8009.86 8454.59 
174 6698.42 7759.2 8552.67 7815.31 8322.29 8438.99 
175 7577.78 7823.59 8009.07 8089.03 8038.36 8508.3 
176 7564.99 7790.77 8243.15 7826.59 8289.5 8571.48 
177 7189.99 8132.66 7565.39 8253.15 8273.4 8170.87 
178 6395.41 8484.4 8469.25 8146.79 8483.66 8302.9 
179 7109.75 8009.96 8129.39 8247.61 8114.4 8620.2 
180 8326.66 8071 .01 7785.08 8051.26 8288.4 8236.57 
181 7430.17 7732.83 7678.53 8393.81 8271 .92 8358.93 
182 7614.74 7732.83 8046.7 8085.87 8367.62 8501 .94 
183 7747.88 8478.64 7641 8286.87 8015.36 8303.61 
184 6908.51 8208.39 8129.73 8406.28 8383.34 8854.35 
185 8070.76 7978.74 8005.16 8080.1 8287.68 8370.37 
186 6867.82 7840.4 8172.43 8222.54 8364.14 8600.88 
187 7987.5 7975.08 8097.66 8212.34 8445.04 8490.46 
188 7899.31 7613.11 7984.28 8063.6 8391.3 8095.11 
189 7248.25 7918.77 8037.97 8020.26 8308.69 8585.16 
190 7641 .86 7286.1 7925.62 7932.15 8109.18 8210.04 
191 8037.15 8525.26 8247.56 8201 .87 8263.94 8294.62 
192 7771 .24 7818.93 7932.82 8642.48 8427.24 8472.7 
193 7566.28 8395.2 8162.16 8199.91 8717.26 8511 .47 
194 7171 .5 7811 .58 8144.81 7952.58 8564.97 8347.02 
195 7098.54 8100.72 8732.39 8152.77 8292.81 8512.43 
196 7954.61 7713.29 7961 .85 8320.39 8735.02 7942.35 
197 7560.67 7692.53 8454.14 7680.65 8052.59 8145.15 
198 6960.38 8322.6 8430.87 7733.93 7959.88 8182.1 
199 6709.64 7678.53 8196.5 7647.08 8357.26 8363.38 
200 7640.92 7630.15 8379.54 8278.64 8089.8 8438.15 
201 7773.7 7739.12 8269.89 8648.22 8273.91 8163.67 
202 7152.55 7964.91 7903.33 8503.02 8370.01 8385.5 
203 7093.14 8703.22 7833.25 8393.08 8332.34 8123.1 
204 7367.65 8378.22 7823.08 8223.34 8307.96 8618.39 
205 7722.53 8251 .93 8217.69 8334.83 8232.83 8070.03 
206 8120.6 7606.06 8657.86 7993.64 8347.19 8693.68 
207 7258.18 7606.06 8449.66 8354.61 8399.33 8465.4 
208 7259.88 8239.27 8246.37 7986.14 8150.89 8130.96 
209 8083.61 7821 .77 8055.73 8579.72 8571.4 8569.17 
210 7514.28 7887.36 8080.76 8229.77 8173.98 8376.19 
211 7836.39 8351 .52 8305.95 8383.29 8221 .66 8383.41 
212 7286.37 7918.04 8242.28 8547.01 8257.25 8601 .32 
213 8058.89 8077.54 8455.12 8363.56 8513.03 8163.03 
214 7873.85 7946.58 8061 .25 8340.75 8199.22 8043.5 
215 7778.11 8033.22 7879.85 8477.95 8191.67 8340 
216 7651.21 7662.85 8017.88 7843.44 8003.07 8027.73 
217 7531 .35 7797.54 8694.14 8108.13 8506.49 8270.18 
218 6658.38 8150.55 8331 .89 8116.63 7955.45 8623.77 
219 7632.13 7701.48 8137.21 8058.25 8306.01 8361 .81 
220 8324.5 8202.66 8567.35 7926.4 8148.5 8139.2 
221 7166.32 8025.16 7995.95 8265.36 8226.11 8602.23 
222 7860.21 8040.89 8491 .59 7905.75 8235.59 8367.56 
223 8324.73 7759.18 7913.32 8242.74 8254.02 8432.1 
224 7753.51 8363.94 8063.09 8364.63 8171 .64 8621 .25 
225 7047.24 8419.58 8181 .32 8282.54 8410.02 8835.91 
226 8006.7 7791 .17 7975.1 8316.29 8255.49 8162.52 
227 6906.11 8043.4 8323.94 8261 .26 8301.96 8233.85 
228 7508.67 8039.54 7693.26 7725.38 8223.96 8412.35 
229 6791 .84 8548.3 7821 .43 7770.52 8018.99 8134.07 
230 7759.68 7999.49 8411 .15 7970.84 8563.06 8444.98 
231 7144.06 8195.72 8103.64 8091 .96 8344.38 8336.72 
232 8039.79 8090.44 8250.91 8149.47 8277.2 8419.72 
233 7757.32 7577.45 8095.11 7852.22 7997.5 8509.7 
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234 7443.69 8155.83 7994.73 8244.6 8328.38 8282.57 
235 7057.74 8322.48 8319.49 8143.71 8090.34 8538.71 
236 7077.47 8259.74 7756.09 8461 .87 8075.67 7924.79 
237 8039.01 8002.58 7958.67 7989.78 8122.08 8433.03 
238 7567.74 7950.94 8457 .33 8012.86 8387.89 8347.22 
239 7560.8 7960.05 7918 8559.25 8300.06 8063.56 
240 7763.1 6 8620.39 8165.95 7889.05 8562.1 3 8130.77 
241 6827.84 7891.83 8360.48 8023.05 8340 8117.1 4 
242 8139.87 7788.94 8360.41 8440.8 8368.2 8301.99 
243 7907.89 7806.28 7793.71 8246.14 7892.93 8725.85 
244 6608.21 7999.52 8147.75 8149.66 7955.14 8398.83 
245 7815.2 8090.39 7914.21 8085.1 9 8511.97 8496.09 
246 7844.34 8289.98 8025.95 8240.1 6 7862.57 8738.56 
247 8115 8626 8187.96 8130.59 8565.62 8518.15 
248 8142.31 8030.22 8314.17 8357.31 8410.67 8373.1 6 
249 7975.48 8366.65 8075.61 8239.74 8250 .97 8774.77 
250 8199.39 7884.68 8222.82 7746.05 8343.2 8379.87 
251 7110.66 8075.98 8251 .08 811 9 .78 7897.22 8433.13 
252 7647.98 8088.95 8437.98 8324.77 8287.3 8266.81 
253 7746.1 6 8360.35 7958.58 7955.59 8149.91 8300.84 
254 6939.42 8122.22 8343.62 8125.01 8473 .88 8215.52 
255 6865.85 7998.75 7976.65 8244.23 8527.33 8504.1 
256 7542.59 7474.1 3 8341 .24 8420.83 7944.64 8437.3 
257 8123.58 8323.22 8558.37 8003.66 8321 .81 8353.24 
258 7638.06 8286.42 7785.4 8394.82 8080.5 8419.8 
259 7424.21 8360.02 8106.63 7945.63 8794.59 8157.77 
260 7493.83 7593.44 8379 .38 8512.09 7952.15 8559.1 3 
261 6577.33 8159.34 8443.59 8204.93 8386.85 8289.85 
262 7643.08 7919.72 8067.56 8010.47 8249.86 8136.62 
263 7653.75 8182.12 8110.1 8358.71 8068 .37 8329.51 -
264 7302.76 7877.83 7950.75 8329.31 8273.68 8592.02 
265 7513.75 8343.48 7807.42 8171.96 7982.6 8573.88 
266 7428.4 7923 .1 8135.79 8313.68 8367.1 9 8178.94 
267 7769.34 7668.79 7985.86 7865.44 8325.21 8248.76 
268 7638.67 7932.62 8020.76 7959.32 8653.88 7996.86 
269 8050.43 8420.78 7881 .1 7 7926.34 8525.92 8196.54 
270 7249.59 7872.33 8312.04 8158.58 8756.29 8341 .1 9 
271 7023.21 7652.4 7888.59 7813.25 8017 .13 8579 
272 7025.1 5 8231.64 8403.79 8355.37 8385.68 8548.77 
273 7725.92 7685.22 8278.55 7761 .98 8409.7 8861.42 
274 8094.35 7276.15 8019.15 8610.18 7975.25 8412.19 
275 8066.75 8321.41 8219.1 7 8010.03 8513.26 8150.1 
276 7779.33 7622.1 8417.1 9 8834.32 8207 .52 8688.95 
277 7388.32 8325.31 8275.48 7913.52 8375.15 8044.6 
278 7538.06 7993.6 8096.84 8106.81 8298.35 8462.6 
279 7900.22 7853.5 8148.87 8057.5 8336.21 8475.81 
280 6271.82 8398.42 7995.7 8388.04 8188.23 8412.64 
281 7482.51 7914.3 7837.28 7828.2 8457.49 8577.87 
282 7492.81 7880 .32 8341 .87 8296.04 7890.22 8482.2 
283 7975.79 7507.81 8494.47 7990.28 7607.74 8049.34 
284 6709.57 7808.68 7775.51 8327 .3 7993.09 8499.99 
285 7683.27 7590.73 8183.81 8449.85 8575.11 8429.09 
286 6963.24 8403.81 8154.01 8239.09 8459.04 8201 .65 
287 7956.1 4 7721 .18 7846.57 8193.3 8515.61 8389.1 3 
288 7503.14 7809.55 8267.36 7906.08 8005.54 8331.33 
289 6784.96 7803.77 8125.68 8343.1 4 8059.26 8402.94 
290 7363.18 7995.67 7878.1 9 7738.12 8035.91 8268.03 
291 8277.4 8365.2 8084.28 8394.07 8186.25 8307.41 
292 8211 .81 8409.47 8267.79 8251.11 8252.67 8488.37 
293 8075.7 8187.42 8199.99 8180.84 8318.34 8471 .52 
294 7037.09 8368.94 8471 .9 8543.09 8395.17 8254.78 
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295 7401.32 8509.55 8225.34 8152.19 8377.55 8251 .64 
296 6777.54 8354.1 8 8042.49 8406.49 7972.93 8035.92 
297 8227.85 8222.85 8352.56 8375.53 8345.59 8567.1 
298 7339.71 7928.88 8233.83 8112.69 8238.94 8551.32 
299 7418.99 7886.68 8250.53 7980.76 8449.81 8570.69 
300 7509.78 7372.17 8118.06 8448.22 8013.7 8289.63 
301 7228.35 8038.88 8202.5 7939.06 8262.05 8859.29 
302 7754.4 7926.2 7905.3 8197.89 8216.02 8460.68 
303 6334.3 7685.25 7978.18 7989.98 8546.03 8664.27 
304 8195.27 8413.52 8134.37 8289.9 8063.69 8359.45 
305 7136.79 7899.36 8251 .78 8017.53 8253 .66 8437.45 
306 7505.07 8189.52 7354 .82 8139.12 8029.06 8667.47 
307 7847.97 8540.19 8583.34 8214.95 8192.71 8587.59 
308 7216.22 8098.05 8387.39 8373.49 8501 .23 8260.01 
309 7926.96 7758.43 8332.47 8321 .06 8288.97 8357.85 
310 6854.26 7872.21 8162.71 8134.2 8518.87 8112.48 
311 7147.69 8568.17 8365.35 8429.4 8506.71 8076.8 
312 7200.13 7950.39 8048.11 8214.81 8151 .78 8396.88 
313 8028.08 7907.07 8234.67 7896.61 8432.37 8123.62 
314 7712.33 8129.37 8313.12 8338.86 8226.63 8399.83 
315 7580.41 7842.59 8224.15 8545.14 8418.25 8537.16 
316 7758.26 7924.8 8174.37 7996.47 8002.48 8338.6 
317 7298.1 8159.45 8073.99 8133.42 7801 .35 8345.65 
318 8671 .3 7498.13 8512.34 8106.73 8418.92 8005.3 
319 6689.1 7972.93 7855.91 7926.95 8296.48 8343.96 
320 7934.99 7622.54 8014.95 7757.78 8457.27 8127.29 
321 7408.5 7658.86 8244.28 8257.63 8184.17 8350.88 
322 7244.93 8224.25 7935.74 8036.1 8792.45 8360.01 
323 7131 .57 7709.61 8101.62 8139.49 8196.71 8464.67 
324 7479.'64 7767.92 8133.69 8009.3 8417.74 8667.77 
325 7633.76 8098.33 7943.22 8130.08 8374.11 8396.86 
326 7840.46 8260.84 8095.75 8197.39 8225.54 8507.47 
327 7185.43 8140.17 7967.49 7958.45 8053.37 8818.59 
328 8316.57 8574.79 8494.96 7719.34 8019.75 8402.22 
329 7179.31 8345.56 8433.45 8361 .29 8075.89 8368.79 
330 7877.37 7391.96 8140.72 7638.68 8155.93 8323.42 
331 8010.6 8398.87 7911 .9 8143.77 8210.86 8425.81 
332 7609.85 7724.24 8708.1 7786.8 8209.66 8321.26 
333 8025.7 7962.07 8235.39 8497.68 8317.28 8439.39 
334 7610.66 7802.8 8176.26 8122.45 8241.07 8478.87 
335 5740.61 7681 .16 8265.45 7702.27 8023.13 8041 .67 
336 7686.23 7953.09 8225.69 7822.32 7941 .08 8651.96 
337 8126.76 7820.84 8300.71 8299.72 8358.16 8228.61 
338 7808.12 8186.14 8081 .55 8313.78 8440.55 7888.91 
339 7774.31 7935.82 8136.19 7719.41 8324.03 8154.8 
340 7707.08 7727 8281.93 8318.42 8286.24 7909.55 
341 7662.12 8252.07 8481.5 8244.95 8093.92 8447.51 
342 7339.27 7219.98 8177.14 7975.09 8010.89 8062.04 
343 8111.18 8185.84 7889.75 8456.04 8182.06 8306.76 
344 7299.82 7827.07 8403.27 8166.97 8232.35 8270.71 
345 7183.7 8142.56 8013.19 8544.93 8604.25 8071.93 
346 8056.38 7902.7 8217.6 8604.08 8378.95 7930.11 
347 7026.2 7930.99 8418.75 8250.4 8754.7 8271.44 
348 7711.42 7799.36 8490.42 8432.42 8169.97 8068.79 
349 7680.67 7495.53 7743.79 8242.45 8433.14 8473.98 
350 8055.08 7396.45 8447 7919.22 7913.38 8566.07 
351 6968.78 8204.12 7916.95 8257.85 8164.28 8189.19 
352 7404.39 7328.59 8365.82 8083.66 8227.19 8370.74 
353 7988.94 8158.77 8356.16 8008.87 8291.14 8322.24 
354 6922.01 8141 .95 8157.27 8442 8197.63 8542.21 
355 7514.92 8089.96 7891.7 8066.39 8189.97 8268.79 
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356 7961.82 8212.29 8234.99 7982.78 7926.6 8518.25 
357 8044.67 7923.71 8194 .05 7888.15 7885.48 8075.04 
358 7767.75 8090.17 7970.85 8093.9 8823.98 7887 .59 
359 7149.07 8086.44 8608.18 8078.55 8093.85 8480.52 
360 7173.41 7698.74 8646.31 8203.46 8067.44 8252.71 
361 7068.08 8455.31 8094.66 8096 .32 8429.57 8549.83 
362 8126.95 7613.57 7923.65 8297 .56 8315.04 8205.86 
363 6997.43 7493.93 7757.5 8044.35 8621.12 8447.22 
364 7945.5 8010.62 8421.3 8241.8 8404.44 8602.24 
365 7576.53 8308.82 7923.85 8065.75 8075.77 8256.8 
366 6902.27 8311 .2 8277.46 7978.76 8359.87 8061.19 
367 7898.22 7859.01 7869.05 8353.04 8163.06 8764.13 
368 7371.58 7951 .98 8368.08 8209.03 8440.56 8323.56 
369 7110.65 7501.66 7893.44 7705.07 8027 .59 8375.27 
370 8249 8160 .12 8014.48 8281 .95 8650.08 8584.37 
371 8209.76 7970.2 7935.69 8395.02 8296.74 8407.71 
372 6754.34 8133.75 8476.28 8113.19 8207.09 8191.69 
373 8124.16 7699.46 8327.62 8176 .56 8113.17 8132.63 
374 7439 7861 .27 7866.23 8376 .72 8217 .21 8637.01 
375 7388.23 7874.4 8108.57 8539.63 8290 .58 8166.39 
376 7653.66 8034.47 7695.14 8253.38 8411.33 8473.27 
377 8219.81 7897.27 7934.76 8233.52 8281 .31 8431 .66 
378 7720.76 7720.15 7885.99 8097 .87 8452.23 8611.42 
379 8256.66 7861 .9 7743.44 8184.77 8638.45 8549.03 
380 7635.4 7877.48 7940.14 8609.3 8182.95 8346.49 
381 7785.86 8265.88 8178.83 8110.43 8267 .94 8561 .99 
382 8206.04 8038.9 7783.08 8164.52 8316.05 8119.33 
383 7097.04 8379.19 8137.41 8373.29 8416.7 8279 
384 7005.91 7962.15 8137.41 8555.31 8379.05 8451.45 
385 7316.49 7817.73 8609 .58 8 142.89 8003.29 8739.52 
386 7571 .39 7805.79 8228.59 7792.62 8082.05 8407.24 
387 7957 .56 7871.73 8050.31 8273.54 8135.36 8380 .4 
388 8145.33 7934 .8 8219.78 8383.24 7994.08 8417.02 
389 7279.06 7827.22 7971.64 8382.9 8537.4 8398.68 
390 7066.62 8052.43 7741.66 8260.1 8545.43 8465.34 
391 7963.59 8063.31 8365.18 8271 .65 8040.61 8523.23 
392 7186.42 8230.1 7883.62 7909.41 8068.41 8607.72 
393 7079.19 8034.54 8102.2 7790.19 8044.98 8693.34 
394 7358.02 8162.12 7996.08 8088.9 8579.43 8523.98 
395 7878.97 7765.16 8008.57 8324.1 8300.24 8424.18 
396 8145.39 7634.6 8098.92 7955 .71 8265.13 8691.02 
397 7041 .03 7693.68 8040 .64 8147.01 8159.5 8505.28 
398 7227.92 7733.09 8091.58 8360.93 8474.79 8614.27 
399 7700.16 7688 .5 8191.87 8158.12 8511.17 8093.87 
400 6862.57 7482.1 8185.67 7968.63 8121 .81 8251.51 
401 6814.72 7628.74 8606.29 7955.7 8055.88 8141 .16 
402 7781.36 8171.09 7863 8289.36 8694.7 8449.42 
403 7956.51 7779.2 8375.94 8067.22 8514.84 8459.15 
404 7773.66 8200 .12 8129.85 8205.73 8463.73 8566.78 
405 7341 .33 8174.92 7936.82 8310.66 8189.53 8272.65 
406 7455.05 8158.58 8059.69 8341.57 8193.02 8409.54 
407 7414.42 7966.64 7759.33 8234.64 8172.65 7999.5 
408 8124.58 8208.02 8423.13 8367.7 8529.12 8400.87 
409 7657 .95 7564 .38 8327.32 8012.05 8093.95 8617.52 
410 7895.49 8303.34 8454.07 8135.5 8670.28 8697.37 
411 7644.65 7852 .33 7991.4 8493 .02 8140.87 8326.34 
412 7296.04 8466.17 7907.87 8024.86 8548 8441 .77 
413 7374 .21 8388.42 7939.23 7957.2 8382.48 8046 .52 
414 7707.29 7750.38 8182 .26 8171 .89 8435.06 8149.6 
415 7643.6 8603.32 8125.8 8562 .32 8354.05 7868.71 
416 6909.61 8267.91 8000.45 8035.09 8403.92 8245.16 
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417 7183.35 7699.76 8173.99 8200.52 8294.61 8216 
418 8148.7 8206.87 8513.79 8253.69 8395.99 8386.46 
419 6864.32 7805.45 7953.27 8130.44 7993.05 811 0 .22 
420 7596.5 7854.24 8105.73 8259.16 8654.77 8736.48 
421 8223.1 7899.56 7775.81 7977.18 8014.86 8361 .41 
422 6925.14 8254.09 7719.83 8494.47 8003.79 8151 .97 
423 8502.85 8253.7 7822.76 8517.33 8295.83 8653.33 
424 7595.16 8031 .45 8197.4 8510.36 8203.95 8287.81 
425 7428.31 8386.59 7966.73 8255.48 8130.82 8381 .83 
426 7275.82 8450.59 8232.18 8107.95 8527.6 8508.55 
427 7390.59 8154.15 8482.68 8026.8 8334.31 8438.9 
428 7477.8 8462.65 8066.53 8144.15 8108.87 8416.68 
429 7586.84 7932.46 8009.96 8087.8 8602.99 8454.35 
430 7823.75 8172.86 7620.15 7824.15 8765.56 8428.5 
431 7560.35 8533.68 7785.36 8332.76 7971 .44 8669.02 
432 6879.71 7449.5 8376.87 8223.31 8610.82 8551.89 
433 8000.24 7766.18 8382.03 8172.62 8369.61 8047.25 
434 7719.94 8338.28 7850.75 8325.39 8531 .16 8281 .38 
435 7856.05 8673.6 8421 .74 8205.17 8424.03 8491 .08 
436 7711.77 8204.54 7770.17 8313.12 8265.69 8292.31 
437 6953.94 7850.84 8328.15 8035.21 8355.03 8357.03 
438 7757.46 7856.04 8431 .62 8225.35 7934.67 8480.48 
439 7742.97 7695.07 8223.14 8127.38 8479.92 8164.43 
440 7687.84 8056.35 8190.85 8142.94 8291 .77 8247.9 
441 7870.67 7798.69 8611 .85 8293.39 8681 .66 8416.38 
442 7649.26 7908.79 8621 .86 7916.32 8166.67 8399.1 
443 8254.45 7793.33 8394.99 8253.82 8439.49 8434.87 
444 7846.93 7640.37 7772.49 8285.21 8431.6 8282.47 
445 7580.13 8062.07 8058.53 8186.99 7980.63 8109.54 
446 7410.43 7864.06 8122.65 8577.33 8509.19 8672.86 
447 7339 7654.04 8082.84 8427.06 8057.73 8618.91 
448 6877.72 8429.98 7541 .69 8130.2 8196.83 8291.81 
449 7991.72 8015.33 8108.84 8174.21 8129.75 8316.8 
450 7709.98 8204.02 8526.58 7892.07 8397.23 8270.48 
451 7269.28 7478.22 8190.24 8300.69 8101.55 8344.39 
452 7586.4 8108.14 8470.75 7823.98 8250.23 8389.75 
453 7217.26 7979.17 7983.72 8108.81 8231.28 8678.65 
454 7488.85 7852.78 8289.73 8263.54 7952.04 8252.44 
455 7171 .59 8148.4 8283.62 8264.33 8175.47 8569.73 
456 6630.85 7950.1 8136.41 8171 .38 7959.56 8220.75 
457 8183.74 8191 .84 8100.2 8355.5 7920.76 8606.64 
458 6919.49 7684.74 8205.18 8046.97 8304.52 8066.82 
459 8185.55 7904.56 8304.11 7989.96 8299.03 8296.96 
460 7997.05 7889.46 8318.39 7809.84 8148.19 8480.04 
461 7398.15 8324.3 7990.53 8359.38 8200.37 7975.17 
462 8059.17 7639.66 8498.19 8019.63 8291.64 8663.59 
463 7098.17 8088.53 8250.71 8289.56 8198.95 8191 .91 
464 7306.28 8398.04 8376.96 8502.5 8514.47 8344.48 
465 7183.04 8162.72 8202.2 8627.68 8303.24 8435.81 
466 6674.5 7823.47 7880.44 8275.01 8259.39 8392.52 
467 7022.31 8380.87 8355.11 7927.92 8114.1 8782.74 
468 7128.04 7790.4 8326.65 7854.68 8502.36 8510.18 
469 7269.44 8152.34 8298.68 8408.76 8227.91 8124.44 
470 7601.46 7854.34 8279.9 7856.63 7916.6 8007.99 
471 7151.75 7476.1 7 8193 8209.47 7877.28 8213.84 
472 7440.95 7814.63 8295.15 8039.48 8376.89 8098.81 
473 7428.08 8344.03 8148.24 8056.46 8307.29 8219.97 
474 7214.54 7767.62 7927.7 8161.45 8405.63 8427.66 
475 7689.04 8177.53 8116.28 7984.74 8402.44 8192.57 
476 8382.22 8134.44 8078.79 7918.23 8294.21 8132.65 
477 7594.31 8173.24 7862.1 8288.53 7797.89 8109.89 
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478 7218.76 7574.17 8432.52 8001.86 8586.54 7999.1 
479 7931.45 7875.54 8243.1 8151.46 8404.88 8538.49 
480 7628.4 1 7892.22 8432.29 8307.27 8172.35 8331.45 
481 7455.78 7782.6 8498.31 7929.49 8495.99 8351 .33 
482 8004.4 8138.92 8210.26 8399.86 8004.73 8720.22 
483 8332.65 7903.83 8260.38 7807.29 8524.93 8454.99 
484 7362.31 8150.85 8199.26 7755.02 8137.82 8287.17 
485 7479.83 7922.91 7865.42 8078.68 8388.4 8438.38 
486 7745.72 8090.86 8118.21 8124.38 8066.21 8595.93 
487 7534.2 7914.7 8368.9 8039.18 8257.17 8316.62 
488 7255.31 7681.55 8118.55 8128.91 8291 .65 8221 .1 
489 6904.87 7957.53 8141.75 8041 .76 8264.81 8788.03 
490 7655.16 7764.67 8120.84 8013.7 8361 .23 8343.29 
491 6991.12 8055.81 8109 8094.52 8617.7 7872.63 
492 7823.55 7632.15 8247.91 8169.22 8142.83 8143.01 
493 7362.79 7537.03 8071.26 8456.11 8188.23 8506.46 
494 7922.97 8106.62 8602.43 8011 .81 8334.29 8020.42 
495 7208.32 8006.08 8312.6 8487.8 8400.43 8398.48 
496 6873.24 8222.39 8520.94 8038.19 8190.88 8374.24 
497 6998.13 8514.99 7989.56 7921 .84 8176.05 8469.13 
498 6792.03 8538.6 7874.42 8162.61 8181 .13 8545.13 
499 8421.7 8008.63 8316.93 8115.76 8444.02 8640.22 
500 7633.45 7699.67 8624.68 8325.88 8299.15 8669.66 
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