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MEMORIAL UNIVERSITY OF N"B·TFOU1'IDLAND HATHEMATICS DEPARTMENT. 

OIL AND GAS EXPLORATION: STATISTICAL DECISION CRITERIA~ SUMMARY 

by Thomas Kenneth Wignall. 

Bayesian a priori probabilities are applied in the ~ield o~ petroleum 
exploration to give the optimum decision criteria in locating oilwells and 
oil-fields. 

Principal Component functions ~~d discriminant functions 
are defined which make use of in~oraation available: geological, 
geophysical, or geochemical. The field studies confirm that these 
functions are very valuable in discriminating between producers and non·­
producers, achieving up to 95% success as the results given in the 
append:! x prove • 

The principal component scores and discriminant scores may 
be allotted to control points (oil and gas wells) on a map. Contours 
may then be mapped using the ~igures as probability indices. Thus new 
wells, fields, basins and provinces might be discovered, since these 
maps could be used along with structural contour maps to pinpoint new 
wells with a high probability of success. 

The ~allowing functions defined in the thesis are all new: 
(1) A favourability factor 9 F , using saturation ration, x 3 , and shaliness, 
x2 , where F = (x 3-1.5)(3.0-x2 ), should prove most useful in helping to 
discover stratigraphic and hydrodynamic traps; also in deciding whether 
to complete a well. 
(2) Principal Component Functions which diagnose what weight should be 
given to each variate responsible for the deposits o~ petroleum. This 
function is similar to the one given by Krumbein but is more power~l. 
A rua9 using Principal components scores should help in the discovery 
of new resources. 

(3) Discriminant functions are defined which are up to 95% effective 
in discrimination between dry holes and producing we lls. Discriminant 
scores provide the most use~l mapping. The field studies indicate 
that the data of petroleum wells is particularly amenable to discriminatory 
analysis ; also the key variate or v a riates become very apparent, when an 
appropriate ~est is carried out. 

Conclusion: A :field study should now b e carried. out using the criteria 
defined. Information is difficult to collect as the Petroleum companies 
quite obviously do not wish to divulge any data which would aid their 
competitors. However, any data supplied to me will be treated as strictly 
confidential ; and I will process the data and supply results and con­
clusions to any interested bodies who are willing to ~articipate in the 
project. The more control points (wells) we have 9 the more userul the 
results will be. The data I require are two sets of stratigraphic or 
geophysical statistics from each field or basin: a set of producing 
wells and a set of non-producers. This is the project which I am now 
working upon, as a ~ollow-up to this thesis. 
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E:RRATA: 
~il and Gas Exploration: Statistical Decision Criteria, by 

Thomas Kenneth tJi~nall. 

1. Page 33, paragraph 2, line 1, anc paragraph 3, line 8 : 

for BSB'/(n
1
+ n 2 -2-p+1) read BSB'(n

1
+n

2
-2)/(n

1
+n

2
-2-p+l). 

2~ Page 33, paragraph 3, Theoren 3~1, lines 1 and 9 : 

for~¥1 - Y2~/(n1+n2-2-p+l), read (Y 1-Y2)(n1+n2-2)/(n1+n2-2-p+l). 

3. Page 44, paragraph 2, line 2: 
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1
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2
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4. Page 44, paragraph 2, lines 5,6: 

for 1.698/(22-2-3+1) read 1.698(21)/(22-2-3+1)= 1.98. Thus the 

standard error for individual wells is = 1..41. 

s. Page 44, paragraph 3, line 2: for • 349/.31=2.74 read .849/1.41==.602 • 

6. Page 44, paragraph 3, line 4 : for .0031, read .2735. 

7. Page 44, paragraph 3, line 6 : for 99~7% read 72.65%. 

8. Page 43, paragraph 2, lines 2,3 : 

forJ(6.34- 4.07)/16 = .377, read~(6~34-4.07)(19)/16 = 1.68 , 

and for ~(6.34 -4.07)/.377, read ~(6.34 - 4.07)/1.68 = .677. 

9. Page 48, paragraph 2, line 5 : for 99,8% read 74.9%. 
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INTRODUCTION 

This research arose from suggestions in Dr. Kaufman's work: 

"Statistical Decision and Related Technig_ues in Oil and Gas 

Exploration". Dr. Kaufman posed the f'oll'tiJG'ing research problems 

on which my vmrk has been concentrated: 11 
( 1) The use of polynomial 

regression schemes to isolate regional from local effects has 

recently come into vogue among geologists and geophysicists . Thus 

far the technique has been regarded as a technical tool to enable 

the expert to understand the geological nature of an area where 

well control is fairly good. However the map - be it gravity, magnetic~ 

seismic,isopach, or facies - is also one of the chief types of 

information the operator has available to him in economic decision 

making; the real purpose motivating understanding of the purely 

technical (geological) aspects of an area. In a majority of instances 

the yield in barrels of oil or MCF of gas is directly -proportional 

to the thickness of the sand stratum containing the hydrocarbon 

deposits. Sand thickness is portrayed on an isopach map. Clearly 

a regression scheme can be used to predict the expected values of 

sand thicknesses that may be encountered in a borehole within the 

limits of the area analysed. One might also wish to know whether 
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~urther experimentation is warranted before proceeding with a test drill 

hole. (2) The aevices used to gather information in reconnaissance 

exploration are highly imperfect in two senses. First, there is the 

possibility that the device will yield misleading information: e.g. a 

seismograph may indicate a structural high where there is none. 

Secondly, geological and geophysical te ts give information pertaining 

to conditions favourable to the accumulation of oil and gas; they 

never tell vThether oil or as is present. Only the drill can confirm 

the existence of oil or gas; and devices are expensive; eg . seismic 

crew costs up to $5,000. per day. Can information theory assist 

the operator in corning to a decision?" 

In this thesis we shall examine ways of Jcsc. I..I SS Lng these and 

other vital questions with which a petroleum operator is faced . We 

shall use Bayesian techniques to give decision criteria which 

maximise the expected utility (profit) . We shall formulate optimum 

decision discriminatory functions based on the information available 

which will give a discriminant score to each control point, and at 

the same time will yield partial scores such as isopach, and favorability 

factor scores~ thus several useful mappings may result from. one 

discriminant function . This plan of using a set o~ producers and a 

set of non-producers should provide stronger contours for deciding 

where to drill than any previously defined. We shall also use 
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component analysis to £ormulate the function which determines the i~osl 

s~...nral:,.\~ !leasures in predicting the presence of' commercial quantities 

of petroleur:1. 

In "Geology of PetroleillD.' , the late Dr. Levorsen noted 1'the essentii.l 

elements of oil and gas are simple: a porous, permeable rock tslled 

t~t<,. f'.e_.;~ rvo_:_r rock, is overlain by an impervious rock, called the 

roof rock, contains oil or gas, the rock being deformed or so 

constructed that the petroleum is trapped.The simplest classification 

of p etroleum de~osits is based on mode of occurrence: surface or 

suosurf'ace.Many of' the ma.jor petro1eu.TTI. provinces vere discovered 

as a result of a surface shot-ring of oil, gas, or asphalt, since these 

occurrences indicate the presence of a source rock. Petroleum 

seepages are common in the sedimentary regions of the world , and 

they are :f'requently associated with water springs. Gas seepages are 

more readily observed '\-Then they occur in swamps or through water". 

This then is therefore a direct method of searching for oil and as. 

Is Newfoundland a potential petroleum province? ~~o holes were drilled 

in the Port-au-Port :peninsula in 1965 and reached a total depth of 

4917 :feet in the Ordovician.The Grand banks region is now being 

explored, with several holes reachin~ a denth of 5000 :feet. This 

however is a true wildcat region and being belm·T the sea the chance of' 

success is only l in 20 for each hole. Thus the chance of the first three 
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being dry is (0.95) 3
,approximately 0.854; thus the chance that on 

at least 1rill produce is about 0.146, about one chance in 7. evertheless 

the information these test-bores Jive could prove o~ economic importance. 

For even i~ they are commercially unsuccess~ul, they may indicate the 

presence of a source-rock, and New~oundland would then emer e as 

a petroleum province. To summarise, oil and gas exploration is 

normally only carried out in rovinces where source rock is known 

to exist. Throughout this thesis we shall assume that this is the 

case, and that the probability o~ ~inding oil or gas in commercial 

quantities in a wildcat zone is 0.1 on land and 0.05 under water. We 

shall also limit our study to regions where there has been no proximate 

sur~ace show o~ hydrocarbons since this would bias considerably the 

iProbability o~ success.The combination of a positive seismic anomaly 

~nd the knom presence o~ petroleum indicate a much hiRher chance 

Jf discovering a commercial quantity of petroleum. ;e assQ~e then the 

perator is drilling in petroli~erous territory, and we examine the 

Ptim l decisions he s ould ake. 
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DRILLING DECISION CRITERIA 

The precise locating of a petroleum well is really a problem 

in applied probability.Using all available information we shall 

employ Bayesian techniques or utilising 'a priori' probabilities 

to maximise the expected utility {avera~e return per well). A 

wildcat petroleum explorationalist must decide whether to drill an 

exploratory hole on a site or whether to sell his drilling rights 

on the land. He might also have to consider returning some land 

to the Provincial govermnent under the "checker-board" regulations. 

He may also decide to carry out a geological and/or geophysical 

programme of" investigation such as seismic recordings. If obtained 

they should give accurate inro~ation as to the eological structure 

of the underlying strata. 

In order to arrive at a decision, we shall calculate the 

expected return that results from every decision. We shall then 

make the decision which maximises our eXPected return. To make the 

procedure perfectly clear we shall first give examples before 

proceeding to the general construction .. 

E~~LE 1.1. Decision: (i) Drill explorato~r hole. 

(ii) Sell drilling rights, do not drill. 

State of world (underlying subsurrace hydrocarbon contents): 

(i) Oil in commercial quantity. 

(ii) Dry hole. 
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Note: ~' Oil in commercial quantityn is a variable quantity -vrhich 

is distributed log-normally (Kaurroan) ; it also depends upon the 

depth o~ drilling and the cost o~ producing.Thus the state o~ the 

world is a continuous variate G, and U(drill)= J u(drillfG) p(Q) dQ. 

The average price o~ drilling a vTell is $100,000, 

Seismic and other in~ormation costs $10,000, 

The average producing well yields a profit of $310,000. 

Method :We assume a priori probabilities are 0.1 (producers),0.9 (not). 

0 

Decision Tree . 
..-·13 to ia-o.o 

0 

Calculations o~ expected returns resulting 

~rom each decision : 

Decision (i) Drill. Expected profit= 

(.l)(+$310,000) + (.9)(-$100~000) = 

-$59,000. 

Decision (ii) Sell drilling rights. 

Expected profit = 0. 

Thus the maximum expected return = 0. 

DECISION: SELL DRILLING RIGHTS, DO NOT DRILL. 

Throughout the remainder o~ the chapter,we shall consider the 

~allowing spaces,their elements, and a priori probabilities: 

Space 

D (1st Decision) 

0 (outcome of d1 ) 

Elements Interpretation 

d 
0 

Do not take seismic readings 

d1 Take seismic readings. 

No structure. 

o1 Open structure. 

o 2 Closed structure. 
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Space Elements Interpretation 

A (action: 2nd decision) a Do not drill ,sell. 
0 

al Drill~ retain 50% of' shares. 

a2 Drill, retain 100% of' shares. 

S (state of' underlying s No oil. 
0 

structure) s1 OiJ . in commercial quantity. 

Probabilities in a Wildcat Zone 

P(o0 ) = .5 P( s I 0 ) 
0 0 

= .9 P(s
1

j o0 ) = .1 

P(o1 ) = .3 P(s0 Jo1 ) = .7 P(s1 / o1 ) = .3 

P(o ) = .2 P(s /o ) = .4 P(s1 jo2 ) = .6 
2 0 2 

In example 1.2 we shall use the decision tree method to maximise 

the expected utility when the operator has a set of' two decisions to 

make. 

EXMI.PLE 1.2. D (i) do 0 ( i) 00 A (i) a s (i) s 
0 0 

(ii) d ' l (ii) 01 (ii) a2 (ii) sl 

(iii) 02 

Method : In example 1.1, we examined the best decision to take "'Then 

drilling was carried out without seismic information, and we saw 

that the maximum expected utility was 0. We will now investigate 

the expected utility vrhen the decision is :undertake seismic survey. 

Decision Tree. Calculations of' expected returns. 

;
1No structure 1! Expected pro:fi t :from 

drilling= (.1)(+$310,000) + 

( .9)(-$110 , 000) = -$689000. 

and :from selling = - $10 9 000. 
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+$16000 +$16,000 -$10,000. 
structure Drill Oil 

Calculations. 

Open structure:Expected 

profit from drilling = 

(.3)($310,000) + (.~)(-110,000) 

= +$16,0)()0 

_and from selling= -$10,000. 

Closed structure:Expected 

profit from drilling = 

(.6)(310,000) + (.4)(-$110,000) 

= +$142,000 

$1o,ooo-

and from selling= -$10,000. 

Expected profit = 

(.2)(+142,000)+(.3)(+16,000)+ 

(.5)(-$10,000) = +$28,200. 
Dec±sions 

-$10,000 

-$110,000 

'$] o,ooo 

Take seismic 

readings, and drill if 

open or closed structure is 

is revealed, otherwise sell 

the location drilling rights. 

Maximum Expected Utility = 

+$28,200. 

In actual practice, petroleum explorationists often share out the risk 

lling Shares and retaining a part interest in each hole drilled, since it 

res a large capital to drill each well; and with a probability of success only 

here is a (.9) 5 chance of drilling 5 dry holes in succession, so that the 

e of one or more producers is only .40951; hence one must spread the risk. In 

le 1.3, we illustrate the procedure using all the spaces, elements and 'a priori' 

bilities defined on pages 6 and 7. 

LE 1.3. D (i) dO 0 (i) o
0 

(ii) 01 

(iii)o
2 

A (i) a 
0 

(ii) al 

(iii)a
2

• 

s (i) s 
0 

(ii) sl 
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Method: The ~irst decision is clear; take seismic readings. Also if 

the outcome is 'no structure', we sell drilling rights as in example 1.2. 

Hence we need to investigate the decisions required to maximise the 

expected return, if the outcome of the first decision is 'open 

structure' or 'closed structure' • 

Decision Tree. Calculations of expected returns. 

o1 , a
1

: Expected profit =(.5)(.3)(+$310, 

-000) + (.5)(.7)(-$110,000) = 

+$8,000. 

Expected profit = 

(.3)(+$310,000) + (.7)(-$110,000) 

=+$16,000. 

o
2

,a
1

: Expected profit = 

(.5)(.6)(+310,000) + (.5)(.4)(-110~ 

-000) = +$71,000. 

-t$ i6SOD0 o
2 

,a
2

: Expected profit = 

(.6)(+310,000) + (.4)(-110,000) 

. -j 3lo,ooo 
I 

= +$142.,000. 

Maximum Expected Utility =(.5)(-$10,000) 

+ (.3)(+16,000) + (.2)(+$142,000) = 

+$28,200 • 

Decisions~ Take seismic readings and (i) if no structure is revealed,se1l 

drillin~ rights, (ii) if open structure or closed structure is revealed, 

drill , retaining 100% of drilling· rights. 
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We now proceed to the general construction, and we suppose that the 

petroleum operator has to make a chain of' decisions Di, each having 

a set o~ outcomes 0 .• LetS be hhe set of' states of the world, and let 
~ 

(d ) be the set of' decisions belonging to ~ach D , and (o . . ) the set 
ij i ~J 

of outcomes belonging to each 0 ; then we wish to maximise the 
i 

expected utility U( d
1

., o
1

, d
2

., o
2

, ..• ,s) . VIe achieve this aim by 

using Bayesian principles, as in examples 1,2, and 3.We then calc-

ulate the expected return :from each decision-outcome cha.lil.g~ and 

choose the one vrhich maximises the return. A typical generalised 

decision tree is depicted belm.r.P(o) and P(s.) are the probabilities 
i ~ 

of the outcomes of geological and geophysical tests, and of the state 

of the hydrocarbon contents of the reservoi~ rocks. 

Generalised Decision T~ee . 

The decision tree may be extended as down-hole (stratigraphic) 

information becomes available. The a priori probabilities dif'~er 

from province to province and each operator has his own success 

ratio in a given type o~ area~ these probabilities should be applied 

in preference to the ones given. A feature which often changes the 
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ituation is the liklihood o:f str tigraphic and hydrodynamic tr ps in 

e . so that even i:f no structure i revealed the probability o:f 

oil is relatively higher. Another :feature which would f vourably 

th, chanc o:f finding oil wo1ud be a see a e in the proximity. 

e dv ntage of using a priori urobabilities is that person l judgement 

f ctors enters into the calculation of ex ected utilities. In 

c ses~ it is better to t ckle the problem pieceme l s in examples 

2, and 3. 1e have thus decided the ~uestion whether t drill or whether 

o sell the location. 

The next ~uestion that arises fter drillin~ the explorat ry 

is the better decision take between (i) completing the well, and 

sellin the drillin ri hts. We ssume th t all the lo tests re 

exploratory hole~ so th t we m e mae an estim te of the 

of petroleum r cover ble.The better decision depends of course 

the expected return. Dr. Kau~an gives the followi function, which 

e deriv d empirically by fitting a logarithmlc curve to a set of 

ctual figures supplied by illiam Be rd & Co: 

val.ue o:f petroleum :found, and u(v) -be the util"t ( rof'it); 

u(v) is de:fined by u(v) = -263.31 + 22.093 lo (v + 150). Thus 
e 

B rd does not drill but sells the drilling rights, then u(O) is 

profit from finding $0 o:f etroleum; and u(O) = -263.31 + 22.093 log 
e 

0 + 150)= -263.31 + 263.31 = 0; ie his ay-off is 0 utiles .. 

If he drills the exploratory hole nd then abandons the pro ect 

t a cost of say $33,750 for 0 barrels of oil then u(-33~750)= -263.31 
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+22.093 log .(-33.750 +150) = -5.63 utiles. 
e 

If Beard completes a well at a cost of $100~000 dollars and finds 

x thousand barrels of oil worth $2200 profit per thousand barrels then 

u(2.2x) = -263.31 + 22.093 loge(2.2x +150- 100). 

Thus the break-even point is given when 2.2x + 50 = 150~ ie. when x = 

45.454. Beard ~rill therefore complete the well if he discovers 45~454 

or more barrels of recoverable oil. 

We have thus given the optimum decision chain for drillin and 

completing a well in wildcat territory. The next decision we need to 

take is where to drill; and this question will be answered in chapters 

2 and 3. 
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CHAPTER 2. 

\-THERE TO DRILL. 

Drilling is the most expensive operation in petroleum exploration, 

hence the decision regarding the precise location of drill-holes can be 

vital to a company. This is where all information available must be 

employed to maximise the expected return. 

The sedimentary regions of the earth are places where petroleum 

deposits have accumulated ; these places are depicted in L.G. Weeks' ma~s 

in Bulletins of the American Association of Petroleum Geologists~Vol.33 

(1949)~ and vol.49 (1965)~ the latter being the off-shore sedimentary 

basins. These off-shore basins are being actively surveyed and explored 

now· one such region is the Grand Banks off Newfoundland. 

The late Aci .Levorsen in his famous work: ' ;Geology of Petroleum-: 

gives the follo't-ring general information: ; ~Most petroleu.m has been found 

in traps that might be classed as either 1vholly or partly structural. 

The two most important features of structural traps are the wide variety 

of structural conditions that may form traps~ and the fact that a 

structural trap may extend vertically through thick sections of potentially 

productive rocks. Structural mappings have been the most consistently 

successful method of locatin~ traps. There are several ways of mapping 

structure ~ surface~ subsurface ~ core-drill, and geophysical ; each of 

these has as its objective the finding of locally high-structural 

conditions in underground reservoir rocks that might prove to be traps 

in which oil or gas or both have accumulated. 



-14-

Levorsen further states that: "Where clean, widespread or blanket 

sands occur, the regional dips are high, and where sloping piezometric 

surfaces are known, the structural traps gener lly require a closure 

to be effective. Where the reservoir rocks are lenticular and variable, 

minor deformation may be sufficient." 

Typical cases are mapped in Chapter VII, Levorsen, and the following 

example from page 595 gives maps of Paul's Valley field, Garvin County, 

Oklahoma. Map A1 is a reconnaissance reflection seismic structural map 

made in August, 1930, showing the subsur~ace structure, as construed 

from the information gathered in the seismic 
<l 

mile 

MAP ~: Seismic Survey, 1930. 

Map B1 shows the same area a:fter the field \.Yas drilled on the 

discovery of oil in April,l942, the producing sand bein Bromide 

(Ordovician). When a structure is revealed, one naturally drills first 

at the high points. 
< ~~ 

~~---r------.-----~----~~1 mile 

Key: . Oil-producer 
t'b Dry hole 

1AP B1: A:rter Drilling, 1942. 

mile 
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Geochemical maps are used for various kinds of chemical analyses 

of rocks and their fluid contents. Such maps sho\1 the surface distribution 

o:f hydrocarbons, or waxes~ or bacteria which utilize hydrocarbons.Where 

such a halo is found the inference is that there is a sho1..r u:p and 

seepage of hydrocarbons from a petroleum reservoir. Soil analysis is 

used to detect such phenomena. Other geochemical maps are made from 

data supplied by cores and drill cuttings. Ethane, propane 5 butane,and 

pentane, and higher hydrocarbon fractions are measured. 

Some oil pools show a significant increase in hydrocarbon content 

in shales immediately overlaying the reservoir rock~ and discoveries 

of oil-pools have resulted from deeper drilling after encountering 

shales with a high hydrocarbon content. 

The decision on 1-rhere to drill is made by considering the type 

of structure revealed in the survey ; also by constructing information 

entropy contours to predict the location with the highest probability 

of success. In this thesis we shall produce Mappings of discriminatory 

decision functions~ with contours which indicate the most likely 

positions for producing wells~ and those which are poorer prospects. 

Each well will have a discriminant score 3 which will be the stron~est 

probability index for that control point. This idea will be developed 

in Chapter 3. In this chapter we shall consider two kinds of information 

entropies in detail.The first was given by John Dowds in ·computers 

in Mineral Industries ,part 2 1
., a symposium at the School of Earth 

Sciences, Stanford University,California, l964.The question., "Hhat is 

information and how can it be measured? 1
;, was the subject of research 
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by Shannon and Wiener , who defined it as f'o11o't-TS in ,.Cybernetics=' (Bell). 

The deTinition of' a measure of' inf'ormation,S, for a continuous function 
I' .,. c-o 

S = - ·~ p ( x} log 
-·· - co n 

p(x) dx, and for a discrete set is is 

P_log Pi+ cy 1oj 't-) , whlZ.r~ the r;'s are t ;1e ratios of the 
1 

pr oduci r19 inte.. r~q ls to t he t otal intey·vals;qthe non-

s = -kn,~.,·-
i=1 

- I • 

S was called an entropy? since it was thought to be similar to the prouUCll 

thermodynamic entropy of' statistical mechanics. To simplifY the problem 

Dowds specified that a productive interval is not considered as a 

function o:f porosity and saturation f'( ¢ ,8
1
.;); but only that a 10 -:f't. 

interval has a hydrocarbon saturation of 60% or better. 

The information we have as we drill an exploratory hole is 

furnished by drill cuttings and by electric~logs, and radio- active 

logs Passed down-hole ; with this information we can work out an entropy 

value ror each hole, and when we have sufficient control points, 

draw in entropy contour oil-field trends. 

!n Chapter 13 ~Levorsen lists the instruments used to measure 

f'1"'.;d ~ ~ontent, porosity, permeability of rocks and other information 

vital to the operator. 

An example will serve to show how an information entropy may be 

calculated for a given hole (as illustrated). We assume there are 4 

strata A , , B, C ~ and D ~ which are productive or potentially productive. 

Each stratum is divided into 9 ten-foot intervals. 

EXAMPLltl 2.1. 
n 

Entropy = kn (~ P.1og 1 
i=1 1 

here n=·4,k is arbitrary, say k=90. 

so entropy = ( go) (4- ) ( 2/36 log 18) 
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+ 3/36 log 12 + 31/36 1 g 36/31) 

= ( 10 )( 2. 51 + 3 . 24 + 2. 00) ( 6-=f~,J 

= IOT .5 

= 10 ~ t nearest inte er . 

e Data:(2,0,0,3)·Entr py t0 3. 

In this way entr py scores may be calculated for each well. and they 

then serve as pr bability indices n which we can dr M il-potential 

regression c ntours. Dowds gives a case-history of the application 

of this method to the -1 cane-Laverne re ion of North-\.rest Oklahoma , 

a 125 square-mile fleld.The following 7 wells were the only holes in 

the region in July, 1956 (as illustr ted on the map ~ '2) 

R26.E.M. R?7.EM. R28.EM . R26 . · R25W R24W R23.\'1M. 

-----·-----y----------~-----:--~~r-------~~~-r---------~----------~ T I T 
4 : ~__,~- _150 21 
N ~ -··154-- N 

T 
3 

T 
2 
N 

Key 

• 

7----;- l.OO· 

/ 3" f 

T 
26 

T 
25 

N 

The data and relevant entropies f r the 7 wells are given in the table. 
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Hell Number Data Entropy 

1 (l!) 09 l~ 0, 0, 0? l, l) 154 

2 (l, 1) l, 0, 0, 1, 1, 1) 246 

3 (1, 1., 0, 1') 0, 0, l? 1) 154 

4 (l, 1, o:t 0, 0., 1, l, l) 154 

5 (1~ l, o, 1, 0, 1:;. 1:) 1) 208 

6 (1., 0, 0, 0, l, l, 1~ 1) 126 

7 (1, 1~ l, 0, 0, 1, 1, l) 230. 

Even with ti~is limited information,(but notll. 7 producing wells out of 7) 7 

tentative oilfield trends could be sketched by using the entropy 

scores as above. By 1961, it 1.ras shown that practically no dry hole 

could be drilled in the whole 125 square miles. The pay strata which 

produce oil and gas are from top to bottom: Council Grove of Permian 

age,Hoover,Toronto 7Tonkawa ~ Lansing-Kansas City, and Morrow of 

Pennsylvanian age ~ and finally Chester of Mississippian age.This is 

an excellent place to study the multiple strata rocks which are prod­

uctive., and the manner in which hydrocarbons crovtded together to 

form commercial reservoirs.By 1961, the Mocane-Laverne region had over 

250 producing well holes drilled ? with entropy contours sketched as 

in figure 2.Calculation of the entropies by thermo-dynamic principles 

yield similar results, as shown by the following example: 

E:X..AI--1PLF.: 2.2. Data:(2, 0, 0, 3) ;. S = k log n!/n
1

!n
2

! .. by thermo-dynamics 

S= k log 52/2!3! = 100 log 10 = 100, 

compared with 78 by information theory. 

Dowds then gives a hypothetical example in 1ofhich information entropy 
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is used to discover petroleum. In the ap the seismic recordings 

indicate closed structures and a fault running from N.W. to S.E., 

with the up side to the West and about 2000 feet displacement on 

the down side to the East. Naturally, where we drill :first depends upon 

our r~owledge o:f local conditions; but it will probably be at the 

hi her points in or near t closures. In the model ,hole 71 was drilled 

first; this was a 'dry' hole with interval values (0,0,1,0), the 

entropy being S = (100)(1)(1/36 log 36 + 35/36 log 36/35) 

= (155 . 63 + 42.7}/36 = 6 t nearest integer. 

The next hole to be drilled was number 73 with data (0,0,0,0) and so 

the entropy is 0. The next was no.136; data (0,0,1,0), entropy 6. 

Then number 216; data (0,1,3,6) and thus the entropy = 

S =(100)(10){1/36 log 36) + 3/36 log 12 + 6/36 log 6 + 26/36 log 36/26) 

= 1,285. Hole no. 216 is therefore completed as an oil-well; then 

218 and 259, all producers. After these locations have been drilled, 

where do we drill next? Other wildcatters usually move into the area 

whenever~ oil is discovered, and drill with or without information; 

and before long, one has sufficient control points to ~able one to 

sketch in entropy contours for the whole region. In this example, 30 

holes were drilled :first and the entropy scores are as indicated on 

map no.2. Entropy conoeurs can now be drawn as illustrated.The oil-pools 

indicated have been shaded ir b\o..c.k ~ On this basis an additional 52 

holes \vere drilled in this oil-field, at an average cost of' $50,000 

each, a total of $2,600,000; 70% were successful and reserves worth 

$13,150,000 were found. Of the original 30, 15 were successful and for an 
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tlay of $1,500,000!> reserves w·orth $5,100,000 were discovered. 

A second set of entropy contours we can employ is directly 

connected with the way oil deposits have accumulated. We will give 

an example of its utility.Let p
1 

= % of' shale, p
2
= % of sand-stone , 

p 3 = % of carbonate and p
4 

= % of evaporite; these statistics having 

been secured from logs and drill cuttings. t.ve define S, the facies 
~-4 

entropy, as S = -l/log 4 ..:.:.. . p log p • vJe then plot the entropy values 
i=l i i 

on the map and fit the best entropy contours. A facies entropy map 

is useful basically because it relates to the theory of how hydrocarbons 

are accumulated. The position of ancient shorelines is important in 

the generation of hydrocarbon deposits~ and in the collection and 

deposition of' porous rocks. All of them are related to energy, and 

the point of roaximlli~ energy is where air and water met: on the shoreline. 



-21-

Here th re i aximum mix· n ~the ~ ur elements. So etimes this 

· in :ror s hal e ~ect r und the ar s most f v ur ble f r 

hydrocarb n deposits oil d posits usu lly ccurring in are s of low 

entropy mixin ~ where th ixture clear9 up to sand in f' irly s all 

al it such as bed r h rizon in r ducing region.Thus the 

with t e 1 w st f' cies entropy sociated with thick str t , and hi h 

pr ducin -potenti l entre y are the places to drill first. 

The isopach map ~and entro y facies m p B~were repared. ~rom 
.......... 

d t iv n in ' Str tigr phic ppin " by Dr.Krumbein, in the j urn 1 

0~ th erican ssociation o~ Petroleum Geolo ists,l962; r produc d 

in t ble C. 
40 40 

2 -r~~-~-2::___--=3-_,..-4...:.__ __ ___::::__~6 0 mls l 
Key: ixtur~ 

Shale 

4-0u~XRKANSAS 
r 

Sand 
~ 

eas 

1AP B4- FACIES NTROPIES. 

d ict s d1 · ~:.th.. shal isoli th and s nd-sh le ratios 

f.' r +-h ~ same re ion. 

6 
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TABLE C : COORDINATES AND THICKNESSES I~T FEET OF TIIE FOUR 

COlVWONT~NTS IN THE PER~~IAN BABIN ,DENVER~ COLORADO. 

Control 
Point ~- U Coord. V Coord. 

Total 
Thickness Sand Shale 

Carbon Evapor Facies 
--ate -ite Entropy 

1 2.60 
2 2.85 
3 2.30 
4 2.20 

1.85 608 365 148 
2.35 640 224 304 
2.60 464 104 242 
4.50 532 157 238 

20 75 74 
14 98 ' 19 
18 100 82 

0 137 77 
5 2. 30 
6 1.40 

5.50 562 120 316 
5-55 530 30 461 

0 126 71 
0 39 34 

1 2.95 
8 3.30 

0.20 447 293 116 
1.15 844 451 311 

12 26 64 
42 40 72 

9 3.40 2.30 906 337 432 60 77 80 
10 3.55 3.10 845 266 350 24 205 88 
11 3.80 2.90 915 295 355 43 222 88 
12 4.00 3.60 1139 179 643 20 297 75 
13 3.65 3.70 1118 180 568 0 370 72 
14 4.20 3.85 1224 207 758 11 248 76 
15 3.45 4.80 1162 130 659 13 360 71 
16 3.30 5.10 1003 224 542 21 216 !8 
17 3.10 5.55 721 229 4oo 12 80 73 
18 3.00 6.20 775 223 477 28 47 68 
19 4.35 0.60 374 240 110 24 0 59 
20 4.30 1.15 614 255 272 28 59 79 
21 4.95 2.25 702 237 341 39 85 82 
22 5.00 2.60 933 275 435 41 182 85 
23 4o85 3.10 1001 348 450 17 186 80 
24 4.40 4.26 1204 277 610 10 301 77 
25 5.10 
26 5.50 

4.10 1144 310 520 
3.80 1048 362 510 

12 302 80 
12 164 76 

27 5.30 4.30 1114 246 528 32 308 83 
28 5.50 4.20 1023 295 501 18 209 80 
29 4.60 5.70 955 267 502 24 162 78 
30 5.10 5-75 1005 271 637 8 89 76 
31 5.80 

. ---.. ""\"7-:---e--- -· ·------, 
j I ' I I 

: _1 i. :' ·, too\::.1 
i· f . i)~ : \ 1 l......_.,. .. · ·-!l.oo\k. 
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The next i1nportant mappinP-; we consider is the mapping of 

principal cOim?onent scores~ ".-rhich vrill provide a pm..rerful tool in 

petroleUM exploration. Firstly~ho~ever~ we will consider principal 

component analysis. 

Principal companents are linear combinations o~ statistical 

variables 5 ':vhich have special properties in terms 0~ the variances. 

The first principal component") 1·rith ,.,rhich '~"..Ve shall be concerned in 

this thesis~ is defined as the normalised linear combination of the 
n 

if y= ·:; a x. .-.,. . ]_ 

i=1 l. 
"='~~':-'~ -~ frora their 

variables such that it has the maximum variance. Thus 

is the principal comuonent 'J ,.,here the xi are the data 

* then the a. are calculated to maximise the variance 
1 

of y. The principal components turn out to be the characteristic 

vectors of the covariance matrix.Thus the study of principal components 

can be considered as the statistical develoP.ment of characteristic 

roots. In effect'} transformin~ the original vector variable to the 

vector of principal components ~~ounts to a rotation of coordinate axes 

/' n<lerscn gives the follm>Jing C.:efinition: 
to a ne-vr coordinate system. · 

Definition of Principal Components~ Let S be the covariance matrix 

of the vector X= (x1 , x , .•• ~x) and let the mean vector= 0. Let 3 be 
2 n 

an n-component column vector such that B 9 B = 1. The variance of B'X is 

E(3'X)2 ; =:[( B~xxwB)= B'SB •••• (l) vJhcrc E is the expected value op..(.V"'Gtfor . 

To determine the normalised linear combination B'X with maximum 

variance~ we must find a vector B satisf.ying B'D = l which maximises (l). 

Let ~ = B'SB - L(B'B 

La~range multiplier. 

) ... - -
l = ; B.s .. B l-j ~ ~.) j 

L(j. B 2 - 1), where Lis the 
:- i 
l. 
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The vector of partial derivatives d¢/ dB.is d¢/dB = 2SB- 2LB ... (2), 
l. 

hence a vector B maximising BSB' must satisf'y expression (2) equated to O,~o rhctl ~ : 

(S- LI)B = 0 . .... (3 . 

In order to get a solution of (3) w~th B'B = l we must have S - LI 

singular, so that L must satisfy Is- LI I= 0 . . . (4); the left side of (4) 

is a polynomial of de~ree n in L~ so that {4) has n roots; let these be 

L= 
3 

= L . If we multiply (3) on the left by B' we obtain 
n 

B'SB = LB'B = L, showing that B satisfies (3) 

and B'B=l, thus the variance of B'X is L~ and so for a maxim~~ variance 

we choose L
11

the largest L. Let A be the normalised solution of 

(S - L I)B = 0, then Y = A'X is the normalised linear combination with 
l 

maximum variance. This is the first principal component.We shall employ 

an approximate method for finding L the largest characteristic root 
l 

using Kendall's method from "A ·course in >1ultivariate Anal,ysis'' (Harper, 

N.Y.) . 1tle novr appl y this analysis to find the principal components ,.y i, 

accounting for the accumulation of petroleu~. We calculate table D from 

table C to give the following correlation matrix. 

TABLE D: CORRELATION MATRIX :f'rom d :ta of TABLE C . 
x1 x2 

Total Sand 
x3 x4 

Shale Carbonate 
Thickness % % % 

X Total Thickness l - . 73 +.56 -.48 
l 

x2 Sand % -.73 l -.85 +.44 

x3 Shale % +.56 -.85 l -.42 

X Carbonate % -.48 +.44 -.42 l 
4 

x5 ~vaporite % +.67 -.76 +.33 - .1+6 

We now give Kendall's method for findin,Q; yl = alxl +ax 
2 2 

the first principal component. 

X 
Evap6rite 

% 

+.67 

-.76 

+.33 

- . 46 

l 

+ ax 
3 3 + a4x4 + a5x5 ~ 
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Adding the columns of the correlation matrix~ we have totals = 

(1.98~ -.80, +.62~ +.08, +.58) ) and dividing by the supremum gives: 

(1, - .40) +.31') +.04, +.29). y ... frite this row as column A below and 

mul tipl.y the row·s of the original matrix by the corresponding row of' A, 

A The new matrix is: B 

1 1 -. 73 +.56 - .48 +.67 1 

- .4 +.29 -.40 +.34 -.18 +.30 - .98 

+.31 +.17 - .26 +.31 -.13 +.10 +.79 

+.04 -.02 +.02 - .02 +.04 ... . 02 -.54 

+.29 +.20 -.22 +.10 -.14 +.29 +.82 

Totals = 1.64 -1.59 1.29 -.89 1.34 

Repeating the process gives col'tunn B, and iterating vTe have : 
c 

1 - .73 +.56 - .48 +.67 1 

-.29 +.40 -.34 +.18 -.30 -.71 

+.13 -.20 +.24 -.10 +.08 +.54 

+.01. -.01 +.OI -.02 +~01 -.52 

+.16 -.18 +.o8 -.11 +.24 +.73 

l..Ql. -.72 +.55 -.53 +.73 

5 more iterations gives (a1 , a
2

, a
3

, a4 ~ a
5

) proportional to 

( 1, ~ . 7, . 5 , -·.55 . 7) so that L
1 

= ( 1. )( 1) + {-. 7} (-. 73) + ( • 5 )( • 56) 

+ (-.5)(-.48) + (.7)(.67) = approxim 2.57, thus the first principal 

component accounts for 2.57/5 x 100% = 51.4% of the variation in the 

accumulation of petroleum.~ and y
1 

= x
1 

Therefore y
1 

= .63 x - .44 x 2 + .32 x 3 1 

"" ( .7 +l +.5 +.5 +.12) 
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To :find the 2nd principal component 1ve :form the matrix L1ai aj = 
1 ·-. 7 +.5 -· . 5 +.7 

~-7 +.49 -.35 +.35 -.49 

+.5 - .35 +.25 -.25 +.35 

- .5 +.35 ~.25 +.25 -.35 

+.7 -.49 +.35 -.35 +.49 

Subtracting this :from the origin::tl matrix, 1ve get the residual matrix: 
A 

0 -.03 +.06 +.02 --.03 -t-04 

- .03 +.51 -.50 +.09 -.27 -.34 

+.06 -.50 . .. 75 -.17 -.02 +.19 

+.02 +.09 -.17 +.75 -.11 1.00 

-.03 -.27 ·-~G2 -.11 +.51 +.14 

+.02 -.20 +.11 +.58 +.08 

Iterating~ \-Te have: 0 0 0 0 0 

.01 -.17 +.17 -.03 +.09 

.01 -.10 +.15 -.03 0 

.02 +.09 -.17 +.75 -.11 

0 -.04 0 -.07 +.or 

04 - 22 15 .67 +.05 

B c D 

.06 .03 .03 

-.33 .17 .12 

+.22 -.26 -.25 

1.00 1.00 1.00 

.or ·- .i8 -.16 



-27-

1\fter tuo no re i t<::rati ons, th(:- co 1 ut;ms i:eccr.1e i denti ca 1 (ra · VJ' t--h • : ... ~o d.,....) 

\-"'u<.. (a1 ,a2 ,a3 ,a4 ,a5 ) = (. 02 ,. 09 ,-.17,.75 ,-.11)/ J(.t-::12); so that y 2 , the 

s~cond principal component is given b~' : 

y 2 = .03x1 + .11x2 - .2lx3 + . gr,x,1 - .1 ftx,.., an~ L ... = . G12; thus the 
' •· :.J L 

second principal component accounts for . Cl2/5 = 12.2% of the variation 

in oil •!eposits. Si uce th-.: L; •s are i n 3escsn( in~~ orti~· r and the other 

three C01:1:;onents uccount for 36.l!-% of the vari~tion, each must = 1;??~ 

approxinately. Therefore the first rrincipC'.l compom:mt is the only 

outstantii n~ one, unJ it nust t:1erefot"e 1·:·£ ~ v~.:ry pm,Jerful exploration 

tool. Table E below gives the first principal compon~nt scores for each 

' .. ~Je 11 ; and map F over 1 C'~ f 1J i ves the ma rr i nQ i nt; i cat i n9 that the richer 

petrolew1l deposits lie in the South-East, the deposits becoming roarer 

to the dorth ana ~·Jest. T:1is pret:iction is most ili1portant ~·~hen one consi ders 

each square is f:-0 mls X i~O mls. 

TABLE E: FIRST PRH!CIPf\l CO: :pm ;E ; ~T SCORES In 

THE PEr.; 11/\l! SASl i~ , DEdVEP.,COLORAOO. 

HEll flO: 1 2 3 [} 5 c 7 (} 9 1G v 

PRir!CIPAL coqPO! ~ENT: -177,-13r- ,-23(~ ,-197,-172,-183,-2b3,-25 ,2G,-4 

HELL fiO: 11 12 13 l l! 15 1,-, .... 17 12 lS 20 

PRII-ICIPAL co; ~POi lEi :T: 33, 1 ~l:. , 133 , 21!-7. 213, 103, - 83 , -49, -331,-1CO , 

HELL fJO: ~1 22 23 24 25 2f' 27 2' .... ·-· 29 30 

P11HiCIPP.L co;;pQi'·!Ei iT: -99, 51 , 9? , 23fl, 1 £~ . 122, 173, 1111 , f7, 1JO. 
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He will defer discussion of the most useful mapping, discriminant 

scores,until the last chapter, and we return to the question of the 

best regions of exploration.In his dissertation, 11Analysis of Petroleum 

Potential through regional geological Synthesis", in the Bulletin of 

the American Association o~ Petroleum Geologists,l963, W.W. Mallory 

summaxizes the barren and producing sedimentary rocks of North America. 

He compares the Leduc oil-pool of Southern Alberta with the Norman Wells 

pool in the District of MacKenzie over 1,000 miles to the North, by 

the fact that each is producing fro~ the same cratonic sedimentary 

rocks, comprising a sequence of Devonian Reefs. Levorsen stated that the 

Devonian reefs of Western Canada may constitute a reserve far graater 

than at present suspected. In a similar way, Mallory compares the 

Western coast of Newfoundland and the off-shore region with Stony Creek 

oil and gas pool in the Moncton basin, which is producing at between 

5-10,000 feet; and also with the Gaspeneninsula with its many oil 

seepages, based on the continuity of the Mississippian and 

Pennsylvanian rocks which underlay the whole region. Regional 

geological synthesis is therefore a most usefUl tool in the search for 

petroleum deposits in unexplored territories. As drilling progresses, 

and subsurface data becomes available,regional synthesis and discriminatory 

ana~ysis provide the most reliable contours for extrapolating from 

developed petroleum reserves to the ultimate potential of a region. 

Specifically we often infer that the thinning out of sandstone to an 

impermeable rock is a stratigraphic trap. Mallory then maps and classifies 

the whole North American Continent according to its geology related in 

the following way to its petroleum potential: 
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NONE: 1. Precambrian rocks of the Canadian Shield. 

POOR: 

2. Preca~brian basement rocks beneath cratonic sedimentary 

strata. 

3. Tertiary Volcanic rocks. 

/ 1. Eugeosynclines, with the possible exception of the Gaspe 

Peninsula. 

2. ~o eosynclines, except for the Craton-marginal belts of 

Alberta,District of MacKenzie, Oklahoma, and W. Vir inia. 

GOOD TO EXCELLENT: 

1. Gulf-Atlantic coastal plain~Tertiary, Cretaceous, and Triassic 

systems. 

2. Arctic coastal plain. 

3. Basins developed on old eugeosynclines,especially Tertiary 

rocks of S.California; possibly E. Canada coastal re ion and Western 

Newfoundland. 

4. Craton~ and all Cambrian and younger strata •. 

Mallory's map then indicates the classification into the above 

catego~ies of the whole North American continent. This could give a 

more accurate estimate for the a priori probabilities in a ~iven 

location, and could be applied in our discriminatory decision function 

defined in Chapter 3. 
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CHAPTER 3. 

DRILLING DECISION DISCRIMINATORY FUNCTION 

In any articular location there are two states of the world: 

(subsurface hydrocarbon content): (l) the well ir. drilled does not 

contain oil in commercial quantities. vTe shall say that wells in this 

category belong to population (1)~ the population of non-producers. 

(2) The well does contain oil in commercial quantities. Wells in this 

category we shall say belong to population (2)~ the population of 

producers. 

We should like to formulate discriminatory decision fUnctions~ 

which will assign each location to its correct population (l) or (2). 

We shall do so using Bayesian a priori probabilities~ and two sets 

o~ data: one from a set of wells belonging to population (l); and the 

other from a set belonging to population (2). We will now consider our 

discriminatory analysis to formulate suitable functions. 

To discriminate at alJ_, we must have data on a set of' wells 

from eacb population; with these data~ we can then define a function 

which will be the most powerfUl discriminator~ and ~ther.more should 

be the best fUnction for determining the measures which lead to 

producers and those which lead to non-producers.We shall consider 

three discriminant functions; the first two by Fisher and Anderson 

are equivalent when classification into two populations is required. 

R. A. Fisher defined the first linear discriminatin ~ction, 

the L.D . F. He gave the answer to the question: what linear function of 

the \Tell data x= (X , X , •• • , X ) , X = b X 
l 2 p l l 

+b X 
2 2 

+ ••• + b X ,. will 
p p 
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maximize the ratio of the di~fere ce between the specific mearuof the 

two populations to the standard deviation within the species (the 

whole set of wells taken together). Let the differences between the 

means be (d1 ~ d
2

, .•. ,dp)' then for the linear function defined, the 

difference between the means of X for the two populations is: 

D=bd +bd + •.• +bd, 
l l 2 2 p p 

whilst the variance within the species is proportional to: 
"0 "0 

s = z.~ %~ 

i:l j=l 
b.b.S. where s1 ~ is the variance or covariance. 

1. J J.j ..... 

The linear function which best discriminates bet"'-reen the tT..ro populations 

is the one for which the ratio D
2

/S is a maximum, by independent 

variation of the coefficients b., i= 1,2, ... ,p.This gives for each 
J. 

bi 1 njs2 ( 2S dD/dbi- D dS/dbi) = 0 

so that~ dS/db_ = (8/D ) dD/dbi. 
. J. 

Nmv S/D is a factor constant for all the p unknown coefficients ~so 

that the coefficients required are pro~ortional to the eq~ation of 

the equations + 0 •• + 

•••..•..••. + 

s1Pbp = 

s2Pbp = 
...................... . ..... ~ ~ , 

+ .•.••••..••. +S b pp p = d 
p 

since S = S ~ etc. 
12 21 

which may be written more neatly in matrix notation as SB=D. 
p ij 

Thus solving by inverting the matrix S, we have b. = 1:. S d where 
J. j=l j 

sij are the terms o:f the inverse of S, and i = l ~2, ... ,p. 

The matrix S may be inverted provided it is non-singular. I:f it is 

singular, then the variables x. are not independent an ~ one or more 
J.. 

is a linear function o:f some of the others.Since these variables add 
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no nev! inforMation, they cr.n Le e liminatec.; , an ·~· thE tl iscri :.l inatory 

ant.ilysis can u~ carried out on tl ·e ren~linin9 vari ables. '!e therefore 

need to discover 1;.'h ich of original ~ varial:l0s fllQY be €xrresse· _,, as 

a linear combination of others. r;·ds is 1;2ten-:1ine.:.:. i.y the Plultiple 

correlation coeffici ent. If for cxa:.iple x1 can r.e expressed as ~· 

linear function of the other r-1 vari >'-1r:; l 2s, thsn the multiple 

correl~tion coeffici ent , '1 = 1. The closer to 1, the l'etter the fit 

of the regression pl ane: of x1 on the other v;:triuLles. Ho:,• the !-.;ultirle 

correlation coefficient, r 1, of x1 on the other variai..les is 0iven by: 
2 ri = 1 - j R I r-i \ ~·11ler2 r. is the:~ covc::riance or correl~tior; &"·latrix, 

and ;:orrison in " t·iu ltivc:riate Statistical r ·etllo~~s", pa']c ~:3, s hotJs 

. . 1 2 that th1s 1s eouiva ent to : r 1 = 1 

diagonal elenent of the i nverse of t:te covariance .:latrix. 

!lcnce variables making little or no contt"iLuti on to the 

O::iscrimination may be eliuinatec. r;:us if t;1crc arc q renuining 

variables, \·Jil ich Rre linearly indepen:Jant, the c' iscririlinant function 
q c.; .. 

may be uefinc (: on thei:1 as follotr,s: X= <!1=1 b.x.., ~·J her~-.: b.=~ 1 S1Jd. 
, 1 1 J= 'J; 

sij are the tenns in the inverse uf nat rix S, an t! cij are ti1e differ~a1ces 

between the meuns of the porulations, as before. 

The ratio of h:.1lf the r\ ifference het~Jecr. the r;leo.ns to its 

standarci error is of interest in rcli'<tion to the nrob3bility of 

misclassificc.tion of a net..• • .. Jell; nnci also to t:tc fiC.:ucial limits 

\Jhich obtain t·Jhen we assi9u a net! 'Jell usinn the discrininc.nt fut1ction. 

The standard error u i 11 a 1 so be of i mrortance in ~.~etermi ni n9 t!1e 

t.1inimur.1 number of l·!ells necciEc~ hefore a ro:Jion is under control;t!tut is 

before \·Je can set up a discri;:~inant functioD ~ :,: ·tich is sufficiently relia~lc. 
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~ !e sh~ll first require un esti ·1atc for t !·1e variance of tile 

Gi scri mi nant functi ot~ based uron t:-.c '· ~ tu of the contra 1 points 

(tvells); and t•1e shall call tl1e discrir,linant Y ifl t his section iHlt~ 
p 

SY the cstimatcti variance of V. d c ':J Y = ?. ' t 1x1 , or in r.1atri x terms 
1=1 

Y = 3X' Hherc [. is the ro•-,~ t'iatrix (t::1 , ••• , ~p) i'lil ~~ X' is tLe colurnn 

matrix (x1 : i = l, ••. ,p). 

Then SY mny be estioate:i c:s follo1·:s: Sy= 0s::=: • I {n1 + n2 - 2 - p +1), 

uhGrc Sis t!'lE: vc:rionce-covt. riancc 1mtrix, an6 B' is t ile tr<lnsposc 

of 3 , anJ uhcre the <ienoninator is the nu,nLer of dearc GS of free r~om, 

made up as follot:'S: n1 , n2 are the nuuhcr of Hells in ropulations (1), 

(2) in the S3li1ple, less 2 since t·?e use ,_! t he t~.ro JnQ~ r.s in c~lculati n:J 

S, anc: less p-1 since the re arc p-1 adjusteti rC~tios in the r 

coefficients contained in ~ . The squar2 root of Sv ~ill thus te the 
..} 

standart: error of the discri minant score uf inr.'ividual 'J1ells.r1e 

follovJin~ theorePl yiel c ~ s a sinple 1:1etho r\ of calcul <} ting S,i , Hiaich 
" 

tJe shall use in our fiel < studies: 

THEORE~; 3.1: Sy = ~ V1 - v 2 ~ I (n1 + n2 -~~ - f' + 1) l!herc Sy is 

the estir:~ated variance of ti le c!i scrir1i nant scures, at H. v1 , Y 2 a re 

the sam\)le means of por'ulc:ltions (1),(2). 

Pr:ooF: Y = ex • \'Ji1ere , ... is the rou nmtrix (b1, ••• , t--
0

) ant: x• is 

the colui!ln mC\trix (><; 
p iJ' 

i = l, ..• ,p). 

f'lot-J b; = ~ S ·:j j ; and ! 1ence n • = 
j=l 

r:tust = r: (s-1 ) I = cs-1 since s-1 is a sy.11r.ie trical r.1atrix. 

fJ o~·J, sy = DSB' I (nl + n2 - ') .. - r + 1), t:HK' ;;S :.~ I = us-1s s-1 ~. 

OSrJ' = ~L) . = v1 - Yz so that s = (Yl - v2)/(n1+n2-2-p+l). , y 

= 

(f. ED. 
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The ratio o~ the difference m~een the means to its standard 

error in individual wells is of interest in that it will help us in 

deciding how many control points (wells) we require to set up a 

suf~iciently stron discriminant fUnction~ that is before the region 

is under control. Supposing a well is misclassified if its deviation 

from the population mean exceeds half' the difference between the means 

of the two populations~ then a ain~ assumin~ normal distribution for 

X, we can be 951 cor"hd"wr this will not happen i:f 1.96 ,./S does not 
X 

exceed half the difference . betw~en the means. Thus the number of 

control points required for sufficiently accurate discrimination may 

be determined. 

Anderson used a di~ferent approach to the classification problem 

in his work: 1 An Introduction to Multivariate Statistical Analysis", 

and his discriminant is sharper in that it uses the Bayes procedure 

which takes into account a priori probabilities.He defined the best 

classification procedure as the one which minimized the average cost 

o:f misclassifications; and thus maximised the expected utility of' 

classification of wells. Anderson's theorem states: 

THEOREM 3.2: Assign a well to population (1) if c q f (x) )> c
2

q r
2

(x) 
- l l 1 2 

and to population (2) if c2~,r2 (x) ~ c
1

q
1

:r
1

(x), where x = (x1 ,x
2

, . . . ,xp) 

is the vec tor data of th~ well;r1 ,r2 are the respective frequency 

distributions of populations (1),(2)· c
1 

is the cost of classifying a 

well actually a member of pouulation (1) as coming from population (2), 

and c
2 

is similarly defined~. and q
1 

is the relative :frequency of' wells 

belonging to popula ion~(l)~that is relative to those belonging to 
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population (2), and q is the relative frequency with which wells 
2 

belongin to population (2) occur.This classi~cation procedure 

maximises the expected utility, by minimising the expected loss. 

To prove this theorem, we shaallrequire the following lemma~ 

LEMMA.3.l:The average loss from costs of misclassification is: 

L = clq~R p1 (x) + c 2q2 J Rl ~2(x)d;,where R1 is the region 

of classification as
2

from population 1), and R
2 

as from population (2). 

Proof: Since the probability of drilling a well from population (l) is q1 ~ 

~~d the probability of drilling a well from population (l) and correctly 

classifying it is ~ f 1 (x) dx ,therefore the probability of dril ling 

a well from populatio~1 (l) and misclassifying it is q
1
f R f 1 (x)dx. 

2 
Similarly the probability of drilling a well from population (2) and 

rnisclassifying it is q (n f 2 (x)dx. Therefore the expected or average 
2) "-'l 

loss from the costs of misclassification is the sum of the products 

of the costs of each misclassi~ication times the probability of its 

occurrence, it is L = c1q~R2f1(x)dx + c
2

q
2
)R

1
:r2 (x)dx. 

Q.E.D. 

It is this average loss we wish to minimise.That is we wish to 

divide the space into regions R
1

,R
2 

such that the expected loss is 

minimised. A proce~ure which mini ises L is called a Bayes procedure. 

We can now prove theorem 3.2. 

THEORE~"1 3 . 2. Proof': The probability that a well belongs to population (l), 

and that each variate is less than the corresponding component in X is 

rxp J xp-l (xlq ,1 (x)dxl dx2 ... dx , and the conditional probability of 
) .. _, - oo • . . J-eD 1 p 

a well belonging to population ( 1) is q
1
t

1 
( x) I ( q

1 
:r

1 
( x) + q

2
f

2 
( x) :, and 
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to opulation (2) is q f (x) I (q
1

f (x) + a f 2 (x)}. Now from lemma 3.1 
2 2 l -2 

the expected loss is L, and for a given well,x, we minimise the probability 

of a misclassiflcation by assigning it to the population with the 

higher conditional probability, hence we assi~ it to population (1) 

if q
1 

:r
1 

(x)) q
2

f 
2 
(x) and to population (2) if' ~f'2 (x) ~ q 1 

f
1 

(x), the well 

being assigned arbitrarily to population (2) if the two are equal from wider 

economic considerations . Similarly to minimise the cost of misclassification 

we assign a well to population (1) if c1~f1(x)) c~~2 :r2 (x) and to 

population (2) i:f c
2

q
2

:r
2

(x) ~ c
1

q
1

:r
1 

(x) .. 
Q.E . D. 

THEOREM 3. 3 : The Bayes procedure is the optimum procedure. 

* Proof': For any procedure R = (R~~ R;), the probability,y, of' 

mis c lassi:fication is,by 

proof'; y = q fR* :r1 (x) 
1 2 

= 5 R~(qlf'l(x) 

an ar~ument similar to the one given 

+ JR~ f 2(x)'ix 

- q2f2(x))dx ~• l2fR~ f 2(x)dx . 

in the last 

No¥~ rht. 4i Qrid ~-\,C1V".t.. hO f'\ ·V\~-~et\, ve.) thus R~ includes the points ,x, 

such that q
2
f z(x) ~ q

1
f'

1
(x) and excludes the points ~ such that q1 f'

1
(x) 

~ q f' (x), thus the Bayes procedure is unique. 
2 2 

We note that J mathematically, the problem vras: i ven non-nega±i ve 

constants q ,q and non-negative functions :r
1

(x), :r
2
(x), choose re , ions 

R ,R to mi~im~se c 1q rR e. (x)dx + c q (R :r
2

(x)dx, thus we choose 
1 2 x 2t~ 2 2J l 1 

R1 ~R2 such that R
1

: c q f (x) ) c
2

q f' (x) since c1 ,c are non-negative 
l l l 2 2 2 

constants, and R
2

: c2q2~2 (x) ~ c
1

q
1

r
1

(x). 

The Bayes procedure is thus the optimum procedure. 

Anderson's next theorem deals with the best classification procedure, 
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when the two populations are assumed to be nommally distributed; we 

shall see that apart from the Bayesian a priori probabilities, the 

Anderson discriminant function turns out to be identical to Fisher's 

L . D.F. 

THEOREM 3 . 4: Let (m1 ~s), (m~) be the parameters of Populations (1),(2) 

respectively, and let c ,c ,q ,q
2 

be the probabilities and costs 
1 2 l 

previously defined, then assuming the populations to be normally 

dist r ibuted with a co~~on covariance matrix S~ the following classification 

p rocedure will maximise the expected utility: 

Assign a well ,x, to population (l) if x 1S--1 (m - m0 ) - !-2(m..+ m ) 'S-1 (m
1

- m ) 
]_ L j_ 2 ' : 

) 'Loj i~:~;)J "'"'d~ ro ...,opulation ( 2) if it is less than or equal to lo~.._~ :.y; ) 
. -.,here ill , m are the mean vectors of' the two po-pulations. 

l 2 

Proof:From theorem 3 . 2, we classif'y a -vrell,x, as belon ing to opulation(l) ~ 

if' c q
1

f' (x)) c q f' (x); otherwise we classif'y it as population (2). 
1 1 2 2 2 

Now since f
1
(x),f

2
(x) are assu~ed to be multivariate normally distributed 

.. ..,e have f. (x) =(1/ [C2TI)!
2p( S \~] { exp [-~(:x. - m ) ' S-

1
(x - m. )) } i=l,2. 

l i l 

Therefore, £"
1 

(x) /f
2

(x) = exp( -~(x-m1 ) 'S-1 (x-m
1

) )- ~(x-m2 ) 'S-1 (x-m
2

)) 

=exp(~(x~' s-1 (m
1

- m
2

) - ~(m1+ m
2

)' s-1 (m
1

- m
2

)) 

Taking logarithms to base e in the classification inequality from theorem 

3.2, we assign a well,x, to population (1) if logef
1
(x)/f

2
(x) ) { o~ec2q2/c1q1 ; 

that is if: x' s-1(~-m2 ) - ~(m1+m2 fs-l(m1- m
2

) ) logec2 q
2

/c
1

g_
1

, 

otherwise we assi n the well to population (2). 
Q. E.D. 

The first term on the left side of t h e inequality is Fisher's L . D.F, 

and the second term is the discriminant score of' the "t·rell mid--v1ay bet1-1een 

the means of' the tw-o populations.In actual examples, we shall therefore use 
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Fisher's Linear discriminant ~ction together with the Bayesian a priori 

probabilities ap-plying in the oilfield where the wells are being drilled') 

to assign a new well to its corr~cr popu1ation. In general we shall 

take c
1 

to be $100,000, c
2
= $300,000 ; q

1
= .9 and q

2
= .1; so that we 

shall assign a location to population (l) i~ X - X exceeds log 1/3 = -1.1, 
e 

and to population (2) if X - X = - 1.1, where X is the discriminant score 

of the well, X is the discriminant score of the well mid-way uetween the 

means of the two ~opulations. The discriminant scores will also be 

extremely useful for mappings for predicting the locations of new oil 

wells. vle now give an actual field example to demonstrate the power of' 

the discriminant ~xnction, both in discriminating between no n-producers 

and producing wells~ and in predicting the best locations to drill next. 

I have called the oil-field the Sproule Oil-field as ~essrs 

Sproule & Associates supplied the data of the 22 wells at present 

drill~d. Information as to its actual location can be supplied by Sproul~ 

of Cal ary,Alberta. 

FIELD STUDY 3.1: Sproule Field, Alberta~ Twp ••• ,Rge 7, W4M. 

TABLE 3.1: WELL DATA 
a) PRODUCING WELLS: 

1ell Number x 1 ::feet X ::feet x~feet 
LSD. Section sub-sea:VIKING. sfib-sea:BL. s -sea:BSL QTZ. 

2 21 67 -114 -437 

6 21 65 -105 -435 

7 21 58 -109 -431 

8 21 59 -105 -440 

11 21 52 -112 -443 

6 27 63 -109 -439 



l>TELL NUMBER . 

11 27 

12 

15 

4 

2 

4 

27 

28 

29 

33 

33 

NON-PRODUCERS 

5 

5 

l 

4 

13 

4 

9 

10 

16 

4 

1 

4 

22 

22 

24 

27 

33 

33 

33 

35 

46 

46 

39 

41. 

37 

31 

60 

47 

44 

46 

31 

42 

48 
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X 
2 

-121 

-113 

-1.21 

-114 

-123 

-129 

-146 

-113 

-124 

-136 

-116 

-130 

-129 

-128 

-12f:> 

X 
3 

-455 

-448 

-442 

-443 

-459 

-449 

-533 

-525 

-433 

-490 

-619 

-483 

-455 

-478 

-467 

-520 

To find the linear discriminating fUnction we first need to 

find S, the variance-covariance matrix. Now the mean vector of the 

22 wells is (x
1

) ~~' x
3

) = ( 46, -120~ -466); subtracting from the 

x 's, and finding the sums of the squares and products (the actual 
i 

processing of the f'i ures was carried out on the I. B. .1620 

Computer in the Memorial University of' Newfoundland), -vre have the 

following variance-covariance matrix,S. 



s = 1/21 3136 

1808 

4207 

1808 4207 

2251 6886 

6886 40432. 
-l 
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Therefore the inverse = S 

.00004 

-.00063 

.00157 

-.00020 

Now, we should like the discriminant scores o:f the producing wells to 

be higher than those o~ the non-producers, so instead of the vector (m- m) 
l 2 

we shall use the vector(m2 - m1 ), and we shall assign a new well to 

population (l) o~ non-producers if its discriminant score is less than 

log ($300~000)(.2)/($100,000)(.8) = -.2877. 
e 

In this field study, (m
2

- m1 ) = (7.9, 13.5 , 57) = (d1 , a
2

, a
3

) 

Thus the coe~ficients in the discriminant function,(b , b , b
3

) = 
1 2 -

(Slld t sl2d + s13d s21d +s22a +s23q s31a +S32d +s33d ) = 
l 2 3' l 2 l 3' l 2 3 

{-.027, + .lOi, +.0085). thus the discriminant fUnction,X, is: 

X= -.027x
1 

+ .l0lx2 + .0085x3 , and the mean discriminant score,X, is: 

X= -.027(46) +(.101)(-l20) +( .0085)(-466) = -124 -12.12 -3.97 = -17.33. 

Now the discriminant score of the i'th well is X. - (-17.33}, these 
~ 

scores are given in table 3.2, to~ether with the part scores o~ the 

3 variables contributing to the discrimi_nant; this will yield 4 mappings 

whi ch will help in the discovery of stratigraphic traps. We also perceive 

that on avera~e, the variables contribute 7%,70% and. 23% towards the 

discrimination~ respectively.It appears therefore that the discrimination 

might be carried out us in~ variable x
2 

alone, and that , as a new exploratory 

hole is drilled, the depth at which we reach the BL zone is the key to 

whether we have a producer, that is if we reach the BL zone above -120 
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feet,subsea (0 being sea-level), we can be fairly happy about the 

prospect. In eneral, if one variable is mainly the cause of a well 

producing, we ay discriminate simply by assigning a well to population 

(1) if the variable is below the mean for the field, and to opulation 

(2), if it is above ~~. Furthermore, if the variable is standardised, 

we cru1 take into account the Bayesian a priori probabilities, and 

thus maximise the expected utility . 

Referring back to theorem 3.2~ we note that the costs of 

misclassification were brought in solely for economic reasons, they do 

not help in discriminating between wells that have already been drilled; 

they only help in decisions concerning a new '\>Tell, or prospective well. 

Thus in testing the power of a discriminant, we assign a well to 

population (l) if its discriminant score X is less than logeq1 /q2 , 

that is in tlris case lo el0/12 = -.1823, hence the assi!nlments in 

table 3.2. 

TABLE. 3 .2:SPROULE FIELD,ALBERTA: DI86HiMiNAJ~ SCORES,PART SCORES,& POPULATIONS. 

Discriminant. vTell Population Viking BL BSL QTZ 
Score. No. Actual Assip;ned Score Score Score 

+ . 31 2 21 2 2 -.57 .60 .28 

+1.29 6 21 2 2 - . 51 1 . 50 .30 

+1.12 7 21 2 2 -.32 1.10 .34 

+1 . 40 8 21 2 2 -.35 1.50 .25 

+ .87 11 21 2 2 -.16 .80 .23 

+ . 86 6 27 2 2 - . Sl 1.10 . 27 

- .07 11 27 2 2 -.08 -.10 .11 

+1.48 12 27 2 2 +.60 .70 .18 

+ .14 15 28 2 2 ·a.oo - . 10 .24 

+ . 83 4 29 2 2 0.00 .60 .23 



TABLE 3.2: Continued. 

DISCRIMINANT 
SCORE 

- .24 

+ .22 

-1.32 

-2.77 

+ .64 

- .67 

-3.05 

.23 

-.48 

-.67 

-.70 

-1.08 

WELL 
NO. 

2 33 

4 33 

5 1 

5 4 

1 22 

4 22 

13 24 

4 27 

9 33 

10 33 

16 33 

4 35 
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POPULATION 
ACTUAL ASSIGNED 

2 1 

2 2 

1 1 

1 1 

a* 2 

1 l 

1 1 

1 2 

1 1 

l l 

1 1 

1 1 

VIKING 
SCORE 

.19 

.35 

.24 

.41 

-.38 

-.03 

.05 

0.00 

.41 

.35 

.10 

.05 

BL 
SCORE 

-.30 

-.90 

-2.60 

.~0 

-.40 

-1.60 

.40 

-1.00 

-.90 

-.80 

-.60 

BSL QTZ 
SCORE 

.07 

.17 

-.66 

-.58 

.32 

-.24 

-1.50 

- .. 17 

.11 

-.12 

-.01 

-.53 

*Is well number #1 22 really a producer; the BSL QTZ zone producing 

interval was not tested? Its score certainly indicates production. 

Omitting this well, the discriminant function is correct in 19 wells 

out o~ 21, that is over 90.5% successful. The part scores are useful 

both for mappings and for drilling eacisions as exploratory drill-holes 

proceed. The following mappings rurther demonstrate the utility of the 

discriminant function in finding favourable locations to drill in the 

Sproule field~ (see maps A~~, C~ and D5 on page 43), theoretically 

however the main aim is to test whether a new well is a non-producer 

belonging to population (l), or a producer to popula.tion (2); and the 

decision criterion is : assign a well x =(x
1

, x2 ~ x
3

) to population 

(l) if ((x
1
-46)(-.0013) + (x

2 
+ 120)( 

• 
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and to population (2) of producing wells if X is greater than or = -.29. 

We notice that this is a perfect example for applying the idea of 

discrimination on one variable alone, for if we choose variable x
3

, 

the producing BSL QTZ sand, then the mean depth below sea-level is 

~466 feet; and subtracting this from each of the 22 '\-Tells yields the 

following discriminant scores: 

a) POPUh~TION (1) NON PRODUCERS: -69, <-61,+27~-26,-155,-19,+9,-l4,-3,-44 

b} POPULATION (2) PRODUCERS: +27,+29,+33,+24,+21,+25 9 +9,+16,+22,+21,+5,+16 

*well no.#1.22,which may be a producer: interval not tested; so that if 

we discriminate by assigning a well with a negative score to population 

(1) and otherwise to population (2), then the discrimination is correct 

in 20/21 cases ; that is over 95% accuracy.Furthermore this is a decision 

rule which can be applied on the drilling location. 

FIELD STUDY N0.1: MAPPINGS. 
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production, but me1p I 9ives the stv·on _:..:;; st tru •• :s; so tt12. t here a~ain the 

discri1:1inant scores turn out to ;·,e the r;ost useful exrloration tool. The 

0 contour r;,arl<s the tounr.iu.ry of tltc pror:ucin::_: fiel d , anc.~ so the fiel r.\ 

anay be far fro1:1 \..irillecJ. up. 

is using theore,,1 3.1:~ ~-;he re Sx =(X1 

i :mJ the di fferenc<: betueen the mei:tn scores in t his fie 1 ._~ is = 

(-.n27)(7.9) + (.I01)(13.!i) + (. co:~s }(G7) = l. G~s . so ti)at s = 
X 

l.C9f. I ( 22 - 2 - 3 • 1) = .f1c:'!} . Thus t;le stan c:;~. rd error for 

indivi ~ual uells is = .31. 

The ratio of ::alf t:1e (~ ifference bctqcen the ncans to the stc:n~ l a rd 

error in in\:iviciunl bJells is . ~i,~ ') I .31 = 2.7/: . • /\ssumin'1 the 

~iscri ~: linunt scores are nonnally G istribute ·~ , the rro ~~ai.: ility of 

misclassifying a v·e ll is .0'131, using norr.ml ~istribution ta 0les; 

thus in clu.ssifying ne'.! 'Hells uc i:l~Y exr-ect to :1ssi3n nearly 99.7% 

to their correct populutions. 

In our seconc fiel 6 sttx~~, , ' ·Je ur2 3iven the follO'Nin·J 

geological and aeophysical :.:ata: x1 is tf1e thich!ess of t:1e 

proc!ucin~ sano in feet; x2 is the s ha li r.es s factor, r.\; arld x3 

is the saturati on ratio., s I s • Ti1E) f~ C.tii. for this stuuy tms 
\' ' • \:I 

1 
collccte<~ by HOL'ar ·; Slack "ii<~ Cc:rl Ott.::: frm:1 Gilfi c l L!S in Texas an( 

Oklethcna; e nd :.-ms ~; iven in t heir paper : "El ectric l eg intcrpr c to.tions 

in exrloring for Strati:Jraphic trc;ps in shn ly s a n;;s",pui.;lisheC: in 

the Oulletin 
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of the American Association of petrdbum Geologists, 1960.They define the 

shaliness factor,x , as x = m /s where m is the concentration of ions 
2 2 r w r 

in the internal solution of the rock network in grams equivalent per litre, 

and s is the formation water saturation expressed as a fraction of the available 
w 

Pore-space. The saturation ratio,x
3

, is defined as x = s I s s is the 
3 \1. w ' ~ \¥ i 

fsand filtrate saturation of the invaded zone expressed as a fraction or. 

the pore volume. Sample calculations of these factors ~re given in the 

appendix. The following data on which we shall formulate our discriminant 

fUnction was given in the isopach and isopotential maps in their work: 

TABLE 3, 3 :TEXAS AND OKLAJIOHA OIL TRAPS IN SHALY SANDS. 

Non-producers: Population (1). Producing Wells Population (2). 

x
11

(feet) 

12 

10 

18 

19 

20* 

14 

8 

9 

17 

10 

14 

1.0 

1.6 

1.0 

0.1* 

3.4 

4.6 

4.7 

0.8 

0.8 

0.3 

X 
13 

2.3 

2.0 

1.1 

1.8 

4.1* 

2.4 

2.2 

1.0 

o.1 

3.8 

2.2 

X 
21 

20 

20 

15 

20 

17 

20 

19 

20 

16 

12 

X 
22 

o.o 

0.2 

1.5 

1.3 

0.8 

0.6 

0.9 

0.2 

0.2 

0.8 

3.2 

4.4 

2.0 

4.8 

4.5 

3.1 

3.2 

2.9 

2.0 

*This well was drilled in 1951, but the interval was not tested;the field 

was not discovered until 1955; had the 1951 hole been tested this 
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would hav~ been the discovery well· I have therefore ignored this well 

in formulating the discriminant function and substituted well ll in its 

place. Th~ above data was then processed on the I.B.~.1620 Computer, 

yielding the following results: x1 = (13.1,1.93~1.89), x2=(17.9,.65,3.4) 

s = 1/19 17.1 -3.38 1.32 )1 .162 

-3.38 1.85 -.60 .162 .908 

1.32 -.60 1.52' .217 

Let X=bx +bx + b X 
3 

be Fisher's linear discriminant 
1. 1 2 2 3 

b = 
1 

(.091)(4.80) + ( .162 )( -l. 28) + 

Similarly b
2
= -.057 and b

3
= +.79. 

Thus X= .205x + (-.057)x + .79x 
1 2 3 

(-.015)(1.51) = +.205 

Now the mean vector for the 20 wells = (15.05,1.29,2.64) 

-.015 

.217 

. 757. 

f'unction, then 

Thus X= .205(15.05) - .057(1.29) + .79 (2.64) =5.21 is the discriminant 

score of the well mid-way between the means of the two populations. 

Now, by theorem 3.4, we assign a new ~rell x=(x1 ~x ,x ) to population (l) 
2 3 

if its discriminant score ,X., minus X is less than log c
2

q I c q_ ., other1ri.se 
e 2 1 l 

we assign the new well to population (2),; let the costs of misclassification 

be as before and let q1=.8 and q2=.2, then logec2q
2
/c1q

1 
= log3/4 =-.285. 

The discriminant scores for the 20 w·ells and the results o:f the assignments 

are given in table 3.4. As before, we only take into account the costs in 

the case of a new well or prospective well, thus we have assigned a well 

to population one if x,its discriminant score is less than lo~ 10/10 = 0 

since there are 10 producing wells and 10 non-producers. As will be seen 

fTom table 3.4, the discrimination in this study is much more accurate 

since these are the data one would like to have on every well.It will be S~o~~ 
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later that we can discriminate very well on the geophysical tests data 

alone~ and of course the thickness of the producing sand is of obvious 

importance; hence the accuracy of the discriminant 

TABLE 3. 4: DISCRH.ITNANT SCORES Al\TD POPULATION 
ASSIGNMENTS OF WELLS DRILLED IN SHALY SANDS. 

a)Non-producers: Discriminant Score. Population Assigned 

-1.00 l 

- 1.64 1 

- .74 1 

.05 2 

- .64 1 

-2.10 1 

-2.75 1 

-1.70 1 

~ .21 1 

- .62 1 

b) Producing Wells +1.98 2 

+1.40 2 

~-1. 25 2 

+ .40 2 

+2.02 2 

+2.41 2 

+1.08 2 

+1.40 2 

+ .34 2 

-1.22 1 
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The discriminant function is accurate in 90% of the cases in 

this example. Slack and Otte gave the same data for 160 wells, in 

Oklahoma and Texas; in the appendix the discriminant score has been calculated 

for each well, and the ensuing population assignments are correct 

in 129 I 160 cases, ( see appendix). 

Using th~orem 3.1, the standard error for individual wells is = 
~{6.34- 4.07) I 16 = .377, and the ratio of half the difference between the 

means to the standard error = ~ {6.34 - 4.07) I .377 = 3.01 using slide­

rule. Thus the probability of correctly classifying a new well using 

the discriminant function exceeds 99.8%. 

Now referring to the petroleum-well perfonnance graph, which 

illustrates the geophysical data of the 160 wells, we perceive that 

we may discriminate using these data alone, by dividing the space into 

3 regions whose boundaries are formed by fitting rectangula hyperbolae 

by eye. We then have regions which are {!}Favourable , (2) Fairly 

favourable and {3) Unfavourable to petroleum production. 

We therefore define a favourability factor,F, as follows: 

F = (x3 - 1.5}(3- x2); and we notice that {x3 - 1.5)(3 ~ x2) ~ .15 

defines a region in which the vast majority are producers, thus if 

F = .15 or greater we can use this as our criterion for drilling a 

well, or for assigning tt to population (2) of producing wells. 

Furthenmore if ~e define F* = (x3 - 2.5)(1 - x2) we note that 

{x3 - 2.5)(1 - x2) ~ .15 defines a region in which almost every well 

is a producer. Thus F* ~ .15 defines a region of near certainty; 
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functions F and F* both being derived by fitting rectangular hyperbolae 

empirically. Now F* is the function F with origin translated from (3,1.5) 

to (1,2.5); we can therefore define the 3 regions by using F alone since 

the favourable re ion is reached "'·Then F = (2.5-1.5)(3-1) + .15 = 2.15. 

Thus discrimination using F alone is achieved by definin the following 

regions: ( l) Ttfuen F < .15 : Unfavourable for petroleum production 

(2) When 1"15 ~ F .(2.15 : Fairly favourable 

( 3) \fuen ~ 2.15: Favourable for petroleum production 

where F= (x
3
-1.5)(3.0 - x

2
) as previously defined~ and where 

at least one of the factors in the product are positive. If both x -1.5 
- 3 

and 3.0-x
2 

are negative the well belongs to the other branch of the curve 

defining a region of unfavourable prospects. Thus if both factors are 

negative, assign the well to population (1) of non-producers; without 

calculatin~ the value of F.The favourability scores for the 20 wells are: 

a)POPULATION (l) : 1.52,1.0,-.56,.6,7.44*,-.36,-1.12,both negative,-3.08, 

5.06,1.89. 

b)POPULATION (2) : 7.2,4.76,4.35,.85,7.26,7.2,3.36,4.76,3.92,1.10. 

Thus the discovery well* would easily have been found using this method, 

and furthermore when 3 regions are defined we have 20/21 correctly 

assigned, and even the incorrect one was technically a producer, it was 

non-commercial only because the producing sand was too thin. 

Hhen the favorability scores for all the 160 wells are calculated, 148/160 

were correctly assigned; and this is particularly significant as the wells 

came :from oilfields in both Texas and Oklahoma. 

The second field study was c ntinued by calculating the discriminant 

function, using all the 160 wells to try to sharpen the discrimination. 

The results were: x
1 

= (13.12~2.08,1.94); x 2= (16.35,.48,3.28), so that 
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( dl ,d2 ,d3) = (3.23,-1.60~1.34); 

s = 22.69 -1.55 .66 so that s-1 .047 .045 -.001 

1.57 -.61 .045 .777 

.66 -.61 1 .. 82 -.001 .243 

Hence (b ,b ,b)= (.081,-.771~.456) using the slide rule. 
l 2 3 

:. The discriminant function f'or the 160 control points is :X, T .. rhere 

X= .081x1 - .77lx2 + .456x
3 

and hence we assign a well to population (2) 

if' X - 1.66 ~ -.133 where 1.66 is the discriminant score midway between 

the discri~nant scores of the mean non-producer and the mean producing 

well. The results of this discrimination are given in the appendix,where 

the discriminant scores are given for all the 160 wells and 129/160 are 

correctly classified ,almost 81% accuracy. 

Since x2 , and x 3 are not alto~ether independent, a further study 

is now carried out using thickness of bed,x1 , and f'avourability factor 

F to see if' this ~ives a sharper discriminant ~ the results are: 

(x1, x2) = 

s = 22.69 
I 

2.18 

((13.12,.93),(16.35,4.73)). 

2.18\ so that s-1 =/ .044 

12.82 / ~.008 
-. 008) 

.080 

Hence, (b1 , b 2 ) = (.112, .278) and X= .112x1 + .278 F is the 

discriminant function, and, since X = 2.44 is the discriminant score 

midvray between the two populations and- .133 is loge o:f the ratio o:f the 

a priori probabilities , we assi~n a well to population (2) i:f its 

discriminant score X, is such that X-2.44 ~ -.133. 

The one hundred and sixty discriminant scores are given in the appendix, 

and 147/160 are correctly assigned if' we define 3 regions as in the f'avourability 

:factor example; ie. Unfavourable X (l.7,Fairly :favourable 1.7 ~ x < 2.7 
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and favourable: X~ 2.7. 

A second discriminant rule ay be defined by using the principal 

component scores defined in Chapter 2 .Let m
1 

be the mean component score 

of the non-producers and m
2 

the mean principal component score of the 

producing wells. Then, we may assigna new well to population (l),if 

its principal component score is less than(~ + m2)/2, and otherwise 

assign it top pulation (2). Unfortunately, ~rumbein did not specifY 

which wells produced in his paper, so that we are unable to test the 

power of the discriminant. 

A third discriminant function we shall consider is given by 

Kendall and Stuart in uThe Advanced Theory of Statistics"; and it is 

applicable only when the correlations between the x 's are equal.We 
i 

shall consider it however since this is the situation in John C. Griffiths' 

work in 11 Computers in ~·fineral Industries: a Symposi um 11 ,Stanford University, 

California entitled TIA Statistical Approach to the study of Potential 

Oil Reservoir Sandstones".W}ij shall give an account of this paper after 

we have fo ulated the discriminant function applicable. 

When the correlations are all equal to,~, then the latent roots 

__ xl " 2 · · · xn 
of the correlation matrix,R may be shovrn to be: 

r 

1 r 

X r ..... l 

b = l + (n-l)r, 
1 

b 2=b
3

= .•• =bp=(l-r) 

u p 
The variation therefore contains a main component, y = l/ ~I 

i=l 
X,' 

l 

corresponding to b 1 , and \Te take the size component ,Q,proportional to this, 

p -
Q = .r. x. = ,./p y.; and the variance of Q = pb = p(1+(u-l)r). 

i=l l 1 -

No other component is outstanding so wl! define a shape component,P, as 

p = ;rP(w. - w)x. I w ' where w = X - x2. for each i. 
l=l l l i 1i l 
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p - 2 

Then the variance of p = :r ( (w. - w)J.w ) (1-r) and the covariance of 
i=1 l 

(P,Q) = (1+(p-l)r} ~ (w. w)/w~O.Thus the discriminant X is of the 
\.. l 2 

form X= aQ + P such that it maximizes (x
1 

- x
2

) I Var.x. 

\vritinq_ D = P -P and D = Q - Q. , we have then to maximise: 
p l 2 q 1 2 

2 2 
(aD - D ) /(a var Q + 2a .cov(P,Q) + var P) 

q p 

Differentiating partially with respect to a, we have: 

2(aD 
q_ 

(aD +D )
2 

= 0 
q p 

+ 2a cov(P,Q) + var P) - (2a var Q + 2cov(P,Q)) 

Hence a =(D var P) I (D var Q) 
q_ p 

Hence a =(l-r) I (1 + (p-l)r) 

and the discriminant X= (1-r)Q I (l + (p-l)r) + P. 

l~e use the size and shape variate to discriminate as in the general method. 

FIELD STUDY NO. 3: In our 3rd field study we use the data given in John 

Griffiths' paper previously referred to , in which be ~ives data on the 

quartz grains contained in the Maxton Sandstone,(Mississippian),West 

Virginia. Griffiths gives the following correlation matrix c ncerning 

the petrographic properties of the sandstone; the 3 varmales being: 

x 1 = matrix, x~ quartz length, and x
3
= Grain breadth. 

PETROGRAPHIC PROPERTIES OF MAXTON SANDSTONE 

CORRELATION MATRIX1 AND J>JS C-~1"'\tN"t'n·: 
Since the correl tions are almost 

R = 
.8 equal, we take r=.8, and p=3 

l Thus X= .2 Q /(1 + 2(.2)) + P, 

.9 X = Ql7 + P is the 

discriminant function. Thus if we had the petrographic data on sands 

from samples of producing wells and non-producers, we could use this 

function to assign a new well to its correct population. 
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Although the discriminant functions are applicable for general 

use, ~~d for use in provinces, basins, and petroleum fields with few 

control points (wells), a sharper discriminator can be calculated f r 

each oil-field as soon as control data bee mes available. The results 

derived in this chapter dem nstrate the accuracy of the discriminant 

function and its two main uses as a decision function:(1) To assign 

a well to its c rrect population as down-hole (stratigraphic and geophysical) 

informati n bee mes available, and (2) t predict the locations favourable 

to production by pl tting the discriminant sc res. The last fUnction 

should be very useful in predicting whether a sandstone is likely 

to be barren or whether it is likely to produce, especially if it is 

found from utcr ps of the formation. One ight be able to predict more 

accurately even vTithout con:Vrol p ints. 

Whem. the exploratory hole has 

been drilled/ or is bein drilled, the discriminant function is decisive 

in predictin whether the well will produce or not; simply by calculating 

the discriminant score or part sc re. 



-54-

CONCLUSION 

Decision functions are valuable tools for use in exploration and 

development of petroleum wells, fields, basins and provinces. The general 

principals laid down in the thesis are sound, but the functions may be 

sharpened in particular locations by calculations based on data from local 

control points (wells). 

The discriminatory functions of chapter 3 are all new, and the idea 

of discriminating on the spot by merely using the point midway between 

the means of the non-producing and producing populations
1
using the high 

points of the producing sand alone is a revelation.Another valuable tool, 

enabling the petroleum operator to discriminate without the use of a 

computer when the saturation factor and shaliness factor are known,is the 

use of a ne'\v favourability factor ,F~ a location being favourable if the 

value ofF= (s I s - 1.5)(3 - m ) exceeds or = .15 , provided the factors 
wi w s 

in the multiplication are positive. Specimen calculations of the shaliness 

measure and favourability criterion are given in the appendix. 

Despite the increase in the use of the computer in the petroleum 

industry during the past decade, optimal use of well information is still 

far from being achieved.This paper has been written to dem nstrate how 

any measurable relevant information can be used for more economic 
) 

exploration and development of petroleum resources.The data one 

discriminates upon in a particular location can of course only be decided 

upon by team of petroleum experts on the spot. I have attempted to define 

how the information should be processed, when this decision has been taken. 

tfhen the exploratory hole is drilled, the discriminant function is decisive 

in predicting whether the well will produce or not. 
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APPENDIX. 

SPECIMEN CALCULATIONS: ShalinessJSaturation Ratio, and Favourability 

Factors. Part of an electric log of s shaly sand drill-hole in Oklahoma 

is sketched below. The producing interval is 4200-4217 ft. Data required 

for the calculation are as follows: 
0 

Diameter= 83/4 7
, formation temperature= 100 F =t 

Mud Resistivity= 1.2 ohm-metres; spontaneous potential, SPs= -45 m.v. 

Resistivity 16:~ Normal R ,. = 9 ohm metres a and R
64

1' = 8 ohm-metres. 
') 16 '' 0 ~ 

Resistivity of water at 100 F = R = .04 oh~-metres. w 

Spontaneous Potential Depth(ft) Resistivity(Ohms) Resistivity(Ohms) -- -- · ,.._..... -.. 
, .. I' . ; 

i----r---r-·-~---· ;) , ··; · 4J,.Q_Q___ __ ~ Shor\: .!'l.ol'!llal.J!!'!. lf; 1ng r~orm. t;,.'~. 642-.-j 

· .. ~ ; ;_ ~ 'n q \ t1 ~~~ J -

1
! 

~~----- - I '·"' ·· ~ B~sq,__ i / \ 1 

I L \ Y\L II \ I J I! q • i 

A. 'i I I ~ !~~- I ! -4150 1
1

i ,\i ~I 1 
I !\ 

l 1 i . \ r ) 1\1 

~ ~~ l Jl r i-1 : - 4200 · \ .ji ( ,. -, 
' ' ' 1 ! : I e{..l \ ~ \) \ Q \'ic:\ :; \ 11 ~ ,/) 
' .:::9= .. J. . ~s- 1 ,~ , T(l.-\-'9... . .,.. v~ l_l1, ) K 11 u ~ o_\_\1....;.____, 1,, -= ' .) · -1~\.~ ~- l I __,_ l It>- '-'\: ~b---y-

1 •'- ' ! ---- - 4217 . ; 
8'JL~~ ... ! 

: ! l : . i 0 !~ I 
, : ~ r 

1. Shaliness factor Calculation~m = 
s m /s ~ 

r 1v SP = -k log (m +2.15m ) 
s s w 

n
5 

+ 2.15m 
mp 

! 

I 
I 

. 
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From the figure, SP = -45 millivolts. s 

kt = .21 T where T is the formation temperature in 

degrees absolute (Kelvin)= ((100-32)/1.8 +273)(.21~65.3 

Now Mw= p.p.m. Na.11/58x1000 = 175000/58000 = 3 mol. wts/1itre 

R = .95 oh"'l ·metres and Mmf=4500/58000 = .078 mol. ,,rts/litre. 
mf 

Substituting in equation (l),antilog 45/65.3 = m + (2.15)(3) 
s 

m + 2.15(.078) 
s 

Therefore ms=shaliness factor=1.4 gms equiv./litre. 
2. 

Calculation of Saturation Ratio s ./s . 
"t-7"~ w 

SP = -kt log (R./Rt x S /S x (ms+2.15(s /s ))/(ms + 2.15m f) .. (2) 
s 1 wi w Wi w m 

Now R
16

;1/I\n= 9/1.2=7.5 and R64 ,; /~=8/1.2=6.7, Ri/Rm=8~ Rt/~=6.0. 

Therefore Ri/Rt=8/6=1.33 3 and substituting in (2) gives: 

antilog 45/65.3=1.3 swi/sw (1.4+2.15Swi/S~ x mmf)/(l.4 +2 . 1 5 x.078 

4.9 = 1.3 8 ./8 (1.4 +.1688 ./8 )(/)(1.4+.168) 
v.r1 w -va w 

Hence .218 (S ./8 ) 2+1.82(8 ./Sw) - 7.68 = 0 
w1 w w~ 

sothat the saturation ratio 8 ./S = 3.1 
w~ w 

3.Calculation of Favourability Criterion 3 F. 

F= (Swi/Sw- 1.5)(3 - ms) 

so that, in this example, F= (3.1 - 1.5)(3 ~ 1.4) =2.56, 

indicating since it is greater than 2.15 that this is a producing well. 


















