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The advent of low-power wireless sensor technology has opened the door for new power 
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Experiments (DOE) statistical regression analysis and is then investigated further by 

physical experimentation. 
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Chapter 1 

Introduction 

Structural health monitoring has grown immensely in popularity over the past few 

years. Such monitoring enables both the industrial and scientific community to obtain 

large amounts of information which help explain the underlying phenomena present 

in modern civil structures. Unfortunately, today's monitoring systems consist of only 

a few high-powered, high-priced sensors that are hardwired to a central system. This 

leads to structural health monitoring systems that are extremely expensive, difficult 

to instalL and even more difficult to maintain. 

The method proposed to eliminate these issues lies in the formation of low-cost 

wireless sensor networks. However, the main problem with these networks is that of 

power. Even very expensive batteries, regardless of use, will degrade substantially 

within 2-5 years after installation [1]. As a result, changing thousands of batteries 

in hard-to-access places is not always feasible. Fortunately, a new engineering stan­

dard, IEEE 802.15.4 (Zigbee), promises to alleviate the problem by incorporating 

new technologies that drastically reduce power usage for wireless sensor applications. 

The advent of this technology has now made battery-free wireless communication and 

sensing feasible using advanced energy harvesting techniques. 

The main advantage of a Zigbee-based energy harvesting system is that such a 

sensor network will continue to produce its own energy from the environment for the 
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entire lifetime of the structure, thus eliminating the need to replace batteries. These 

plug-and-play wireless systems will enable thousands of distributed sensors to replace 

existing localized sensor networks. These networks will pave the way for real time 

finite element modeling of structures which has the potential to produce massive cost 

savings for companies who agree to adopt the technology. The notion of real time 

accurate modeling can provide invaluable information to maintenance personnel, engi­

neers, accident investigators, structural inspectors, and insurance companies who rely 

heavily on large amounts of detailed data to carry out their respective responsibilities. 

1.1 Energy Harvesting Techniques 

There are many ways to convert one form of naturally occurring energy into electrical 

energy. Table 1.1 gives a comparison of the energy densities associated with various 

energy harvesting techniques. 

Power Density Power Density 
(p,Wjcm3 ) (J.LW/cm3

) 

1 year lifetime 10 year lifetime 
15,000 - direct sun 15,000 - direct sun 

Solar (Outdoors) 1 150 - cloudy day 150- cloudy day 
Solar (Indoors) 1 6 - office desk 6 - office desk 

0.003@ 75 Db 0.003@ 75 Db 
Acoustic Noise 0.96@ 100 Db 0.96@ 100 Db 
Daily Temp. Variation 10 10 
Temperature Gradient 15@ 10 deg C 15@ 10 deg C 
Vibrations 200 200 
Batteries (non-recharge. Lithium) 45 3.5 
Batteries (rechargeable Lithium) 7 0 
Hydrocarbon fuel (micro heat engine) 333 33 
Fuel Cells (methanol) 280 28 
Nuclear Isotopes (uranium) 6 X 10° 6 X 10° 

Table 1.1: Comparison of energy scavenging and energy storage methods [2] 

1Solar power density is in units of pW/cm2 
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1.1.1 Solar 

During peak hours, the pmver density of solar radiation on the Earth's surface is 

approximately 100mW/crn2 [2]. This seems very promising as silicon solar cells are 

a relatively mature technology with efficiencies ranging from 12%-25% [2]. How­

ever, this option is not practical in most industrial environments. In most industrial 

settings, sensors of interest are most likely placed on steel girders that are usually en­

cased by walls or other coverings, thus eliminating most useful light. Also, solar cells 

need to be kept relatively clean in order to have direct access to the sun. This rules 

out most outdoor applications as rain, dirt, debris, and snow will cause substantial 

power losses on the solar cell's surface. 

1.1.2 Acoustic 

There is far too little air-borne acoustic noise in most civil structures to generate 

any significant amount of power. This section was included in the discussion for the 

sake of completeness iu covering most common forms of energy harvesting and is not 

considered a viable energy producing source at this time. 

1.1.3 Temperature 

Temperature gradients are actually quite common on many structures and can be a 

viable source of energy. Applied Digital [3}, a New York-based company, is currently 

making great strides in developing thermopile technology for use in wireless sensor 

and Zigbee applications. A recent press release claims that a 9.6rnrn diameter ther­

mopile can produce lOOJ1ll' of DC power with only a 5 degree Celsius temperature 

difference [3]. This technology may find its way into certain civil structure monitor­

ing applications: however, it is more likely to be used in circumstances where there is 

an abundant temperature difference. These applications may include large industrial 

motors, muffler manifolds, building heating and cooling ducts, as well as furnaces 
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and heating elements. In fact, the United States Department of Energy is currently 

funding projects in which thermoelectric energy harvesters obtain power from the 

temperature gradients between sea water cooled ship hulls and the surrounding air. 

Although this may be a very viable technology, it is currently quite expensive and 

has energy densities far less than other alternatives. 

1.1.4 Vibration 

Vibrational energy appears to have great potential for industrial applications where 

vibrating equipment. machinery, and structures are commonplace. For marine appli­

cations, diesel engines in marine vessels cause the entire ship hull to vibrate and open 

the doors for potential vibrational energy harvesting techniques. Also, aircraft wings, 

automobiles, and rail tracks provide high vibration levels that have great potential 

for converting \vasted vibration energy into electrical power. Although much research 

has gone into vibrational energy harvesting using magnetic resonators, piezoelectric 

vibrational energ~· han-esters have proven to be much more efficient over the past few 

years. The research in this area has evolved from passive human power (piezoelectrics 

in shoes) for army applications to multi-resonant high efficiency cymbal energy har­

vesters for high vibration applications. 

1.1.5 Nuclear 

One of the most promising technologies to tackle the wireless sensor powering problem 

is that of micro nuclear batteries, also know as betavoltaics. Although betavoltaic 

batteries have been around since the 1950's, they were very inefficient until recent 

years. Sun, et al (2005), released a paper in which they tested chemically etching 

deep pores in the p-n junction of the porous silicon used to turn the beta rays of 

the radioisotope into electricity. The pores increased efficiency by over 200 times in 

its crude form [4]. In fact, the authors of the paper have since formed a Houston­

based company, known as Betabatt Inc [5]. The company claims to be developing 
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batteries for industrial applications that will produce up to 125p,Wjcm3 of power and 

last between 12 and 100 years, depending on the application. Other researchers have 

also experimented with utilizing piezoelectric biomorph beams with nuclear isotopes 

[6]. This technique is discussed further in the literature review section. Although 

nuclear batteries may be looked upon as a dangerous technology, they are actually 

quite safe as the beta rays emitted by most isotopes being used in the devices will 

not even penetrate a piece of paper. This technology seems very promising and much 

work should be done in this field if a truly economic solution to the wireless sensor 

powering challenge is to be developed. 

1.1.6 Batteries 

Batteries, as well as fuel cells, share the same problem of having to be recharged. 

In addition to this problem, a battery undergoes oxidization over time and after a 

few years will become unchargeable and will have to be replaced. This is a very 

impractical and uneconomical practice, especially in a harsh industrial environment. 

However, in some applications, one may \vant to use an energy harvester to trickle­

charge a battery that may be used very infrequently but require a lot of power. Some 

organizations, including the Defense Advanced Research Projects Agency (DARPA), 

are researching solid state Lithium thin-film batteries that have extra long lifetimes 

and can be charged tens of thousands of times with minimal leakage [7]. Other new 

technologies that have emerged are small super-capacitors that have a very large 

capacitance and can also be recharged almost indefinitely. 

1.1. 7 Conclusions Regarding Long-Life Micro-Power Sources 

The choice of energy harvesting depends on the application. Solar, acoustic, and 

traditional lithium batteries seem very impractical for most industrial civil structure 

monitoring applications. Thermopiles have undergone many advancements in recent 

years and may prove to be quite adequate for some applications, especially high-
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temperature gradient industrial applications. However, it is the author's opnuon 

that either a combination of vibrational energy harvesters with thin-film batteries 

or nuclear batteries will be the future for powering wireless sensor networks in a 

civil structure monitoring environment. Vibrational energy harvesters may find their 

way in many applications in which a large vibration level is present. However, for 

more static applications, such as building monitoring, nuclear batteries may be more 

reliable and effective at powering such sensor networks. 

1.2 Vibration Energy Harvesting Theory 

There are three main methods that are typically used to harvest energy from vibra­

tion. They are electromagnetic (inductive), electrostatic (capacitive), and piezoelec­

tric. These methods are typically used to create actuators or sensors, but can also 

be used for energy conversion. Before any specific discussion on these techniques can 

take place, the generic mechanical-to-electrical power conversion model must first be 

discussed. 

1.2.1 Generic Mechanical-to-Electrical Power Conversion 

An excellent discussion on mechanical-to-electrical power generation is given in a 

1995 journal by Williams and Yates [8] and is thoroughly investigated by Roundy [2]. 

Figure 1-1 gives a schematic of a generic vibration energy harvester, and the equation 

of motion is given by Equation 1.1. 
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where 

Figure 1-1: Schematic of generic vibration converter [2] 

rni +(be+ bm) z + kz =-my 

rn =mass [kg] 

z = mass deflection [m] 

be = electrical damping [N sjrn] 

bm =mechanical damping [N sjrn] 

k = spring constant [N/m] 

y = input displacement [m] 

( 1.1) 

The model states that any energy conversion that takes place is due to net move­

ment of the mass relative to the generator housing. The power converted to the 

electrical system is equal to mechanical power removed from the system by the elec­

trically induced damping. In other words, the conversion of mechanical-to-electrical 

energy looks like a linear damper from the mass-spring system [2]. Although this 

linear model is not exactly correct for some types of converters, it does aid in drawing 

meaningful conclusions regarding generators as a whole. If broadband frequencies are 

ignored and it is assumed that the generator is excited by only a single frequency in 
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the form y(t) = Y0cos(wt), then the output power is given as 

where 

IPI = magnitude of power [WJ 

(e = electrical damping ratio [-J 

Wn = natural frequency of the system [rad/ s] 

w = frequency of the base driving vibrations [rad/ s] 

Y0 = displacement of the base driving vibrations [m] 

(r =total damping ratio ((r = (e + (m) [-] 

(1.2) 

If the resonant frequency of the generator is equal to the frequency of the input 

driving vibrations, then Equation 1.2 can be simplified to form 

(1.3) 

(1.4) 

where 

A0 = magnitude of input acceleration [m/ s2
] 

Equations 1.3 and 1.4 can also be used to determine the maximum potential 

power that can be extracted from a vibration source. Normally, a harvester that 

could produce power near 50% of this maximum value would be considered excellent. 

Power optimization of a particular generator for a specific input vibration is fea-

sible if certain design criteria are kept in mind. Roundy [2] provides the following 
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functional relationships necessary for optimal converter design. 

1. The system should be designed to resonate at the target driving frequency. 

2. Power output is proportional to the square of the driving vibration acceleration. 

3. Power output is proportional to the mass attached to the system assuming me­

chanical constraints are not violated. This implies that scaling down a converter 

can be quite a daunting task. 

4. Assuming equal acceleration, the power output is inversely proportional to the 

frequency. Therefore, designing for lower frequencies in a given frequency spec­

trum is preferred assuming the same or greater acceleration. 

5. The energy removed by the electrical load looks like damping to the system. 

The load can be designed such that the level of effective electrically induced 

damping maximizes power transfer to the load. This condition occurs when 

(e = (m· It should be noted that there is a large penalty when (m > (e; however 

there is only small penalty when (m < (e. 

6. A system with a low total damping ratio, (r has the potential for a higher 

output power; however, a system with a high (r has a larger bandwidth. In 

other words, if the exact frequency of the driving force is constant, then a low 

damping ratio is optimal. However, if the input frequency changes slightly, a 

highly damped system will produce less power loss as the system deviates from 

resonance. 
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1.2.2 Electromagnetic Energy Conversion 

Faraday's Law states that any change in the magnetic environment of a coil of wire 

placed in a magnetic field will cause au emf (voltage) to be iuduccd in the coil. 

Faraday's Law, a direct result of Maxwell's equations, is given in Equation 1.5 as. 

where 

d<J>B 
emf=-N­

dt 

emf = electromagnetic force [VJ 

N = number of turns in the inductor [ -] 

<I> B = magnetic flux [Wb] 

(1.5) 

Electromagnetic energy harvesters take advantage of this law by placing a wound 

coil (inductor) on the bottom of a small spring-anchored mass. The mass and coil are 

then placed directly over a small permanent magnet, separated by an air gap. When 

motion causes the mass to vibrate, the changing gap distance causes the magnetic 

field experienced by the coil to be altered. The resultant open circuit voltage is given 

as 

where 

Voc = open circuit voltage [VJ 

B = strength of the magnetic field [T] 

l = length of a single coil (2nr) [m] 

y = distance the coil moves through the field [m] 

(1.6) 

Electromagnetic converters do not require any boot circuitry and are quite simple 

to construct. However, the voltage levels produced by such devices are normally on 
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the order of mV, which can make AC-DC rectification very difficult due to losses in 

the circuit. Figure 1-2 shows an example of an electromagnetic converter that was 

developed by Amirtharajah and Chandrakasan [9]. 

-- -. "···-~ 
( ) __ 

! ~.. . 
- --_;;,: / ; .. spring, k 

mass, m --- ~-fa, 

: =---J'~;;c~~j _ _ w1m coil, 1 

permanent ... :~_.1::,- ___ . ;:;-:'- 1 magnet, B , --- ··-- · ·· · ; 
·- -"" 

Figure 1-2: Schematic of an electromagnetic energy converter [9] 

1.2.3 Electrostatic Energy Conversion 

A capacitor, a device which is able to store charge, consists of two parallel plate 

conductors separated by a dielectric. The basic equation for capacitance is 

where 

C = capacitance [F] 

Eo = 8.854 X 10-12 [F/m] 

C = ErEoA 

d 

Er = relative dielectric constant [ -] 

A = area of the electrode [m2
] 

d = plate separation distance [m] 

(1.7) 

When one parallel plate is held stationary and the other is free to vibrate, a 

change in the plate separation causes the capacitance to change. If the charge of the 

capacitor is held constant and the separation distance is changed, a voltage difference 
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can be observed and is given by 

where 

Q 
Vac = C 

Vac = voltage across the capacitor [V) 

Q = charge across the capacitor [F) 

( 1.8) 

One distinct disadvantage of an electrostatic generator is that an external power 

source is needed. This is because the capacitor must first be charged up to an initial 

voltage in order to start the mechanical-to-electrical conversion process [2]. Figure 

1-3 shows an example of an electromagnetic converter that was developed by Roundy 

using .tviEMS microfabrication techniques [2]. 

I 

II 

----+1 
II 

Tilfip:n 

I 

II 
Figure 1-3: Schematic of an electrostatic energy converter [2] 

1.2.4 Piezoelectric Energy Conversion 

The piezoelectric effect states that an AC current can be extracted from a piezoelectric 

material when a dynamic strain (vibration) is applied to the material. The most 

common types of piezoelectric materials are Lead Zirconate-Titanates (PZTs) which 

are solid structures composed of lead zirconate and lead titanate. These materials are 

created by mixing the compounds together at 800-1000 degrees Celsius. This creates 
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a powder whkh i.~ 1 hem 111ixcd with a binding agent and :;int<•r(>(l into ~hape. Once 

cooled, t he piezoelccuic materia] must be poled in I he AJ)propriatc direction in order 

for il. to take on piezoelectric properli<'S. (lOJ 

Poling is the act of heating the m~tt.E'r ia.l ovCi' the Curie Temperature and ttpplying 

a large electric field which ('tl\11;(':; t lw cry:,tals inside the material to align then•s<•I\'P.S in 

only one specified dir('(·t ion. H<'nting the material above the Curie t.empE'rat urc allows 

the molecuiPs f.t> move more freely and thus makes the poling of th(' material much 

easi('r. Onoo the matel'ial cools and the e}('(·t rit fit>1d is removed, the crystals remain 

ft..li.gncd in one direction and the geomPtrv of the unit cell remains asymmetrkaL 

Now, when the material is fur<'('(l into compression. a voltage with t he sfuuP po-­

lill'ity as the poling volto.gt> will np))ear across the electrodt>f:i. If tt tf'usiiP force is 

applied to the mtttPrhLI, ~'n opposite voltage will be produe+>d tt('~" the electrodes. 

This i.s knowu u • .:; 1 he direct piezoelectric effect (10). If a volh\ge is applied to the 

E->h.><· t rml~ in the same direction as the poling diro<·tion of che piczoolectrlc materittl. 

lit(' ntntea·ial wi11 compress. lr a \'OIHtg(' opJ)():>ite to that of the poling dirN·tinn is 

applied to the elettrode.">, tit(> utat<.'rinl will be forced into tension. This is called the 

com·erse piezoele('t ric.': Pfftx:t. 

:i 'r :tJ f 

(a) Poled Disk (b) Oir<'l."t F.lf~t 

• 
t 
T 

(•) 

Figure 1·4: Pit'7A.le1ectric di:;;;k (A) after poling. (b) during comprf!~iou a ud ccnsion, 
(<-) with npplicd voltage )ll) 

T hP constitutive equations for a linE->ar i\iPzoelcctl'ic material in reduced-matrix 

form os presented in Tzou 1121 an~ 
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where 

{S} = [sEJ {T} + [d]1 {E} 

{D} = [d] {T} + [t:r] {E} 

{ S} = strain vector [mlm} 

{T} =stress vector [Nim2
] 

{E} =electric field vector [Nim2
] 

{ D} = electrical displacement vector [C 1m2
] 

[ sEJ = elastic compliance matrix at constant electric field [m2 I Nj 

[d] = matrix of piezoelectric strain coefficients [rniV} 

[ t T] = dielectric constant matrix at constant stress [ F I m J 

( 1.9) 

(1.10) 

Equation 1.9 represents the converse piezoelectric effect. In fact, if the piezoelec­

tric coupling term, dE, is omitted, Equation 1.9 is simply Hooke's Law. Equation 1.10 

reprPsents the direct piezoelectric effect. Similarly, without the coupling term, dT, 

Equation 1.10 becomes Gauss' Law for electricity. The piezoelectric coupling provides 

a means by which energy conversion can take place in the piezoelectric material. The 

electric field across the material affects its mechanical behavior. while the stress in 

the material affects its Jiclectric properties [2]. The effects of these two phenomena 

are extremely dependent on their orientation to the poled axis. As a result, standard 

axis numbering must be established before continuing further with any piezoelectric 

theory. 

l\Iost piezoelectric coefficients of any kind are usually labeled v;ith a double sub­

script, such as dij· The first subscript, i, is the electrical (poled) direction and the 

second subscript, j, is the mechanical direction. Figure 1-5 shows the three reference 

axis labeled X, Y, and Z. The X and Y axis are usually referenced by the numbers 
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poled l z (3) 

X (1) 

Figure 1-5: Piezoelectric axis orientation 

1 and 2 respectively, while the Z axis, the pooled axis in Figure 1-5, is referenced by 

the number 3. There are also four other less-commonly used reference numbers. The 

numbers 4, 5, and 6 represent shear around the X, Y, and Z axis respectively, while 

the letter P represents radial vibration. With this nomenclature, it is now possible 

to discuss piezoelectric modes. A piezoelectric mode refers to the direction of the 

electrical and mechanical effects. The most widely used mode for piezoelectric energy 

harvesters is mode-31. This mode implies that the piezoelectric material is poled 

along the 3-axis with the electrodes placed on the surface of the material perpendic­

ular to the 3-axis. The piezoelectric material experiences a one-dimensional stress 

along the 1-axis only. Although stresses along the 3-axis and along the 5-axis are 

much more efficient, a thin mode-31 material is much more compliant and requires a 

much smaller input force to cause the material to strain. This approach is also very 

useful in lowering the resonance frequency of the energy harvester. 

S1 = s~ T1 + d31E3 

D3 = d31Tl + Ej3E3 

15 

(1.11) 

(1.12) 



If only mode-31 is considered, the multi-modal matrices in Equatioll 1.9 and Equa­

tion 1.10 can be reduced to Equation 1.11 and Equation 1.12. These new equations 

are now scalar quanti ties and are much easier to work with. Although these assump­

tions may produce small errors as not all mechanical stresses are being considered, 

these errors are deemed insignificant. 

Pic7nclcctri.: ( jcncrator 
r-------------------• : ( : 
• I 
I 
I 
I 

:v(J{ ,..., R~u.d 
I 
I 
I L----

Figure 1-6: Piezoelectric circuit representation [2] 

If the piezoelectric element in Figure 1-6 is subject to an open circuit condition, 

the electrical displacement in the poling direction, D 3 , becomes zero. Equation 1.12 

can now be reordered to solve for the open circuit voltage by substituting E3 = Vac/t 3 

and y31 = d3I/t.33 . The resulting open circuit voltage equation becomes 

where 

Vac = open circuit voltage [V] 

t 3 = piezoelectric material thickness in the poling direction [m] 

g31 = piezoPlectric voltage coefficient [V mj NJ 

(1.13) 

If the piezoelectric element undergoes a sinusoidal stress, an AC voltage appears 

across its terminals. If the AC voltage is then connected to a resistive load, the 

maximum average power in the piezoelectric material becomes 

P, Vf~ad 
max= ~R 

load 

16 

(1.14) 



P _. • maximum poow.-er tnm...;f('ft'tt to tbf'! lcwl IU 1 
I ,_. • ~wl "'Ita&" ;q 
fl..,. - loAd re<JStllll('(" l!li 

I his uu,ximum po\1o1'r • ransfer ()('('Un> wh('n \ ;....., • ! \,.. Ancl l"' '' dir{'C"t resuJt 

uf lcNVI rt,.l~tl\nrr c•qnnling the internal n._...btuJl('(' of tl11' pirrm·lr•c·Hk C'lrment. This 

phPHUIIIPIHl b• nmmi\Jiy referred to A..~ im)X'drut«' uultduu).t nnd bi wry importrm1 in 

dn·ult <IP!oilo(n. fn fnN, EA1untioo 1.14 also is 1:\(lplit•,,hh· w bot h thr inclmtivc nnd 

1·npuc·iti\''' f'Uf•rgy hnrvro!-!t ing tochniques di'iC'"US."A'tl in till' pf('\'if)ll~ .. N·ticms_ 

,\lthuu~l• AIIN"hin~ an AC pov.-"er har .. ·rl:itinst ~{'111'1'1\tnr (hrN'tlv tn n n-si.-;tor is an 

unhlo·h: l'l1'1M.no. 11 dot-,; ~ive a refen>nC'f' for nnupanng du•JH)\\'f'l' output o( different 

bnnDfi'T 817~,.. lilu\pt":'t n.nd materiAl--. A 11111~ b morr hkrly !lf·•·rlllrio l .. thn( thP po\\l'f' 

bnn'l.,.tl't "'Otllcl bf. ronnKtffi IO ~Ultr form of ..\C.· [X• tonWnk•ll rirt'llitr)" tulfl then 

to 11 ni.J*'IIor or to A (·hArgin~ ben~· Th15 erlclitinn.ttol c·-.r.·ultn• -.;U lM> di.-.c~ 

furthrr ln (•nurt> chRpt~-

(--~--W!t~MII 

FtJt,llfl" l·i" Pw.l.Of'loctric t"Rnli~'t'l' beam f"Df'fK.'. lulr\'t~("r »hc,...n in A {I\) 2-0 \"iew' 
.... (b) 3-0 , ...... 

17 



There are two typical types of mode-31 piezoelectric energy harvesters. The first 

consists of n layers of rectangular piezoelectric material sandwiched around a thin 

metallic shim. If only one end is fixed and the other is free to float with an attached 

mass, the device is known as a Cantilever Beam energy harvester. When the base 

of the cantilever is excited with an oscillatory forcing function, the mass also begins 

to oscillate. If the mass is in its downward position, as shown in Figure 1-7(b), the 

bottom side of the shim experiences a compressive stress while the top side is forced 

into tension. If wired appropriately, piezoelectric layers placed on top and bottom 

of this shim will generate a voltage as per equation 1.13. Layer selection and wiring 

considerations will be discussed in detail in Sections 3.2.1 and 3.2.2. 

Mass 

Conical 

(a) 2-D View (b) 3-D View 

Figure 1-8: Piezoelectric cymbal energy harvester shown in a (a) 2-D view and (b) 
3-D view 

The second type of energy harvester is known as a Cymbal energy harvester. A 

cymbal energy harvester consists of a thin cylindrical piezoelectric material sand­

wiched between two conical end caps. The base of the bottom end cap is fixed to the 

vibrating structure while the top face of the top end cap holds a small mass. When 

the mass oscillates relative to the base, the end caps transfer the vertical motion into 

horizontal stress across the piezoelectric disk. As with the cantilever beam, this stress 

produces a voltage via Equation 1.13. Figure 1-8 shows a cymbal energy harvester. 
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1.2.5 Conclusions Regarding Vibrational Energy Harvesting 

Techniques 

Piezoelectric generators can practically be produced with energy densities of 17. 7mJ I cm3 

while electrostatic and electromagnetic generators have densities closer to 4mJ I cm3 

[2]. In addition, piezoelectric generators do not require a separate voltage source to 

begin the conversion process and can be constructed to produce any desired voltage 

by selecting the appropriate number of piezoelectric layers. However, one disad­

vantage is that microfabrication of such devices is quite uifficult given touay's ClVlOS 

processes [2]. This implies that mass-integration into PCBs may he a significant chal­

lenge. Conversely, electrostatic generators are very easily integrateu into electronic 

microsystems; however, they need a separate energy source to boot the circuit and 

charge the system before power conversion can begin. This is a major disadvantage of 

electrostatic generators. Electromagnetic generators are both hard to integrate into 

electronic systems and produce very lmv voltages that make AC-DC rectification very 

difficult if not impossible. 

It would appear that a piezoelectric energy harvesting structure seems quite 

promising as it has a large energy density and does not require any boot circuitry. 

Consequently, it was decided that a piezoelectric generator be chosen as the main 

focus for the research discussed in this thesis. 
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Chapter 2 

Review of Related Work 

2.1 Early Piezoelectric Energy Harvesting 

Umeda [13], et al (1996), attempted to construct a device that could be used to charge 

portable electronics. The device consisted of a 27mm diameter bronze disk that is 

connected to a piezoelectric patch. When a small steel ball is dropped from a distance 

of 5mm from the disk and allowed to bounce, a bending vibration is produced in the 

disk. This vibration is then passed on to the piezoelectric patch and a voltage is 

produced. The researchers were able to generate a piezoelectric energy harvester 

with a maximum efficiency approaching 35%. 

In a subsequent paper, Umeda [14], et al (1997), expanded on their previous re­

search by dropping a ball from 20mm. The researchers calculated that the ball had 

67.5% of its kinetic energy after the bounce. In order to harness this unused en­

ergy, the authors determined that if the ball would stay in contact with the plate, a 

generator efficiency of over 52% could be achieved. In addition to these results, the 

researchers pointed out that the total output power of such a device is highly depen­

dant on the load resistance. In fact, there exists an optimal load resistance which 

gives maximum efficiency. The researchers also point out that the efficiency of the de­

vice increases with an increase in mechanical quality factor, Q, and electromechanical 
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coupling codficient, k. 

Kymissis [15], et al (1998), investigate three different methods to harvest wasted 

energy from a person's step. The first method attempted to pamsitically harvest 

energy due to the bending motion of the sole in a person's shoe. The second method 

attempted to harvest energy from a person's heel strike. To accomplish this, a small 

piece of piezoelectric material was connected to a curved section of thin steel. When 

the person ·s foot in the shoe presses the steel fiat, the stress across the piezoelectric 

material produces a voltage. The third method involved a electromagnetic generator. 

When the heel comes in contact with the ground, a small lever cranks a rotary genera­

tor. Although this device generated almost two orders of magnitude more power than 

the piezoelectric generators, it did prove to be very cumbersome. The piezoelectric 

generators, however, were easily integrated into a running sneaker and were barely 

noticeable. The paper concludes by discussing the potential for incorporating RFID 

technology into the shoes by giving a full circuit diagram and experimental results 

of such a system. Figure 2-1 shows a schematic of a circuit that is used to store 

energy and then transmit an RFID when sufficient energy has been harvested. The 

work done by Kymissis was most likely the first time the properties of piezoelectric 

materials were explored for use in a practical energy harvesting application. 

Figure 2-1: Schematic diagram showing power conditioning electronics and encoder 
circuitry of a self powered RFID tag [15] 
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2. 2 Piezoelectric Cantilever Beam 

Kasyap [16], et al (2002), investigated the feasibility of using strain energy induced 

in a vibrating cantilever beam as a source for energy reclamation using a flyback 

converter circuit. The researchers attached a 50.8mm long section of PZT-5H to a 

203.2mm aluminum cantilever beam. The beam was then excited at 59Hz and the 

output was passed through a flyback converter with a switching frequency of 5.9kH z. 

A purely resistive load was then attached to the device and varied until a maximum 

power output was obtained. The results were then compared to a lumped element 

model and seemed to be in good agreement. The results also showed that the flyback 

converter exceeded an efficiency of 80%. 

Ottman [17], et al (2002), investigated interface circuitry designed specifically 

for piezoelectric energy harvesting applications. An important step in piezoelectric 

energy harvesting is AC-DC rectification. However, due to the inherent nature of 

piezoelectric materials, the voltages produced are normally quite high and need to 

be lowered by a DC-DC converter in order to operate common electronics or trickle­

charge a battery. Ottman noted that there exists an optimal switching frequency of 

the DC-DC converter that allows for maximum power transfer. The authors tested 

this hypothesis and the results appeared promising. However, Ottman realized that 

this optimal switching frequency relies heavily on the mechanical excitation level 

of the piezoelectric generator. To accommodate this phenomena, Ottman designed 

an algorithm in Simulink [18], shown in Figure 2-2, to actively tune the switching 

frequency for optimal power transfer regardless of the mechanical excitation. To 

test the algorithm, a small off-the-shelf cantilever was excited and the algorithm was 

implemented through a dSpace [19] controller board. Experimental results revealed 

that use of the adaptive DC-DC converter increases power transfer by over 400% as 

compared to when the DC-DC converter is not used. 

In a subsequent paper, Ottman [20], et al (2003), built upon their existing research 

to implement their adaptive algorithm in stand-alone circuitry in order to trickle-
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Figure 2-2: Adaptive controller implementation in Simulink [17] 

charge a small battery. The researchers realized that at high mechanical excitation 

levels, the optimal duty cycle becomes essentially constant. Therefore, the stand­

alone circuitry was designed to have a high excitation mode and a low excitation 

mode. When high excitation exists, the circuitry drops the voltage using a constant 

optimal DC-DC converter duty cycle. This circuitry requires very low power and can 

actually be powered by the piezoelectric material. However, when the excitation level 

is low, the optimal duty cycle is varying substantially and a more complex adaptive 

algorithm must be implemented. At these low excitation levels, losses in the DC-DC 

converter can easily exceed the power produced by the piezo, therefore; the DC-DC 

converter is bypassed and the battery is instead charged by a pulse-charging circuit. 

The threshold level of mechanical excitation that divides the two modes of operation 

will depend on the power produced by the piezoelectric element, the losses of the 

step-down converter, the power consumption of the control circuitry, and the optimal 

duty cycle stabilization at higher excitations. The authors reported that a stand­

alone version of their earlier algorithm would be feasible under the right conditions. 

Experimental results showed an increase in harvested power of over 325%. 

Eggborn [10], (2003), attached small amounts of piezoelectric material on large 

cantilever beams to explore three piezoelectric modeling techniques. The Pin-force, 

Enhanced Pin-force, and Bernoulli method were evaluated to determine the most 

accurate way to model the system. Through experimentation it was shown that the 

Bernoulli method was superior to the other two methods. By using the Bernoulli 
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method, Eggborn utilized Matlab [18] and Mathematica [21] to model different sizes 

of piezoelectric material on a large vibrating cantilever. Eggborn proved that for 

long beams, there existed an optimal length and thickness of piezoelectric material. 

Through experimentation, the researcher proved that at the far end of the beam the 

material began to act as a load and began to actually remove power from the system. 

This is because the piewclectric material is now adversely affecting mechanical beam 

parameters by increasing the thickness of the beam, increasing the overall elastic 

modulus, and affecting resonance frequencies. This work showed the importance of 

optimal piezoelectric material design when dealing with long cantilever beams. 

Roundy [22], et al (2002), discussed the potential for power scavenging from a 

variety of sources. Roundy concluded that although vibration is not the most abun­

dant power source for energy scavenging, it does have the potential to produce large 

amounts of power in situations where solar cell cannot be used. The author then 

explores in detail the power spectral densities of various low-level vibration sources, 

such as microwave ovens and windows on a house. Roundy concludes that most of 

these commonly occurring vibration sources produce significant energy at 100-120H z. 

After both quantitatively and qualitatively proving that piezoelectric generators have 

distinct advantages over electromagnetic and electrostatic converters, a small piezo­

electric cantilever beam prototype is constructed. The prototype is capable of produc­

ing 2501-lW/cm3 from a vibration source with an acceleration amplitude of 2.5m/s2 

at 120Hz. 

Lal [6], et al (2004), used the charged particles emitted from a radioisotope to 

generate energy from a cantilever beam. The researchers placed a 4mm2 thin film 

63 Ni radioisotope a small distance below a silicon cantilever beam. By charge con­

servation, the radioisotope will have a positive charge as it radiates electrons onto 

the cantilever. The attraction between the two oppositely charged surfaces causes 

the beam to approach the 63 N i film. Eventually, the two touch and the charge is 

neutralized. This causes the cantilever to spring back and begin to vibrate. 
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Figure 2-3: Emitted electrons collecting on a cantilever beam [6] 

The addition of a piezoelectric material to the cantilever is used to convert me­

chanical energy into electrical energy as the device oscillates. In addition to this, the 

study also showed that the device simultaneously creates an RF pulse. The cantilever, 

built from a material with a high dielectric constant, had metal electrodes on its top 

and bottom. An electric field formed inside the dielectric as the bottom electrode 

charged. When it discharged, a charge imbalance appeared in the electrodes, making 

the electric field propagate along the dielectric material. The cantilever thus acted like 

an antenna that periodically emitted RF pulses, the interval between pulses varying 

according to the pressure. This led the researches to create self-powered RF pressure 

sensors and microprocessors. Due to the fact that 63 N i has a half life of 100.2 years, 

these devices have the potential to last for an extremely long time without the use of 

external power sources. 

Roundy [23}, et al (2004), used a electrical circuit modeled to represent the behav­

ior of a piezoelectric biomorph beam. This model allowed the researchers to calculate 

the expected electrical output based on critical beam dimensions. In Figure 2-4, the 

inductor, Lm, represents the mass or inertia of the generator. The equivalent resistor, 

Rb, represents the mechanical damping, and the capacitor, Ck, represents the me­

chanical stiffness of the beam. The stress generated as a result of the input vibration 

is shown as (Jiw The variable n represents the turns ratio of the transformer, while Cb 

is the capacitance of the piezoelectric bender. The entire model can be represented 
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by the equations 

where 

S = cantilever strain [m/m] 

V = piezoelectric voltage [V] 

i = piezoelectric current [A] 

mechanical electrical 

Figure 2-4: Electrical model of piezoelectric cantilever beam [23] 

(2.1) 

(2.2) 

The authors of the article point out that most vibrations seen in industrial equip­

ment vibrate at accelerations of approximately 0.2-lOm/ s2 at frequencies of 60 -

-lOOH z. For the purposes of this paper, two different lcm3 size piezoelectric bi­

morph beams are fabricated and are excited at 2.5m/ s2 at 120Hz. The first design 

was wider while the second design was longer. The researchers were able to obtain 

over 200ttW and 350tLW respectively from the two designs. Both designs had a proof 

mass attached to the far end to increase strain and control the resonance frequencies. 

The second design was chosen to be the power source for a small pico-radio as a proof 

of concept for minute self-powered wireless sensor network nodes. 
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2.3 Piezoelectric Cymbal 

Dogan [24], et al (1997), used finite element analysis to identify areas of high stress 

concentrations in the end caps of the traditional "moonie" actuator. This led re­

searchers to develop a means by which these high stress areas could be reduced in 

order to transfer the stress more uniformly and efficiently by use of two new designs, 

the "grooved moonie" and the "cymbal" transducer. The cymbal transducer allowed 

for larger displacement, larger generative forces, and more cost-effective manufactur­

ing. The experimental results of the cymbal used in this study showed a 40 times 

higher displacement by using a cymbal than by using a simple piezoelectric material 

by itself. In addition, the research showed that a cymbal could produce nearly twice 

as much displacement as the same sized moonie transducer. These three actuator 

shapes are shown in Figure [?]. 

Cymbal 

Figure 2-5: Comparison of the displacement values of different end cap designs [24] 

Tressler [25], et al (1998), also conducted finite clement analysis on both the 

moonie and cymbal end cap design. However, Tressler's work focused on resonance 

frequency design of such devices. This work showed how the different end cap dimen­

sions, such as the cap thickness, diameter, and cavity depth could be manipulated 

in order to control the ultrasonic cap resonance frequency. Tressler conducted both 
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in-air and in-water experiments which matched well with calculated data. 

Kim [26], et al (2004), investigated the use of Soft PZT, Hard PZT, and High­

G PZT in energy harvesting design. The researchers placed a piezoelectric cymbal 

energy harvester on a shaker and loaded the device with an 85g payload. The energy 

harvester was then base loaded with a cyclic 7.8N force at lOOH z. The results 

showed that the High-G PZT gave a voltage peak of 374V, while the Hard PZT and 

Soft PZT gave 260V and 178V respectively. The results showed that in order to 

obtain maximum voltage from a piezoelectric material, the product of the effective 

piezoelectric field constant, deff, and the piezoelectric voltage constant, 9eff, should 

be maximized. As a result, Kim et al concluded that the High-G PZT material was 

best suited for energy harvesting applications. 

1\1. I End-Cap 

d.:Ct-----
~ I I 

tp 
I I I I 
I I I I 
I 1<1111 .p, ... I I 

PZT I I I I 
I I I I 
I~ ... I I 

<j) 
I 

I I 
I I 

(a) Cymbal Transducer (b) Experimental Holder 

Figure 2-6: Diagram of (a) dimensions of the cymbal transducer and (b) designed 
holder for a cymbal transducer [26] 

In addition, the work stated that the deff value of the piezoelectric material could 

be amplified significantly by the use of cymbal end caps. In fact, the cymbal end cap 

design has the advantage of combining both the d33 contributions with the amplified 

d31 contributions in order to create a very large deff· This large value of deff is given 

by the equation deff = d33 - Ad31 , where A is the amplification factor. The negative 
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s1gn is used to negate the conventional negative value of d31 . The amplification 

factor can be very large, in the range of 10-100, depending on the design of the end 

caps. The research showed that both the cavity depth and cavity diameter play a 

large role in the amplification factor as well as the resonance frequency of the device. 

The researchers further tested the High-G transducer and concluded that a 29mm 

diameter by lmm thick piezo could produce 39mW of power when excited by the 

above mentioned forces. Figure 2-6 shows the cymbal transducer and experimental 

setup used by the authors. 

Deng [27], et al (2004), also developed a cymbal energy harvester for use in low 

frequency environments. However, the cymbal fabricated in this study was designed 

to vibrate at its resonance frequency. This had the advantage of a reduced mass size 

that still allowed the cymbal energy harvester to achieve significant power increases. 

The research in this area was very successful. as the conversion efficiency claimed 

in the journal is over 50%. However, the Deng realized that in most applications, 

the exact resonance frequency is either changing or unknown. Deviations from the 

resonance frequency result in catastrophic power losses. To counteract this, Deng 

proposed a two degree of freedom system with two cymbal energy harvesters placed in 

series. This would broaden the range of frequencies that would excite the device. The 

journal discusses a mechanical model of The end caps of both cymbals are adjusted 

dimensionally to control the mechanical spring constants, K 1 and K 2 . The result of 

such a design is a much broader frequency spectrum. 
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Chapter 3 

Design Investigation 

A cantilever beam is a very compliant structure when used in a bending mode. As 

a result, designing for low resonance frequencies is not difficult. However, cantilever 

beams often suffer from highly localized mechanical-to-electrical energy conversion 

due to a non-uniform distribution of the deformation. In contrast, cymbal energy 

harvesters feature a uniform stress distribution, but designing for low resonance fre­

quencies can prove to be quite difficult. In order to find a compromise between the 

two designs, a third energy harvester design is proposed. This design will be referred 

to as a Carriage Spring energy harvester and is shown in Figure 3-1. The main ob­

jective of this design is to combine both the low resonant frequency characteristics 

of a cantilever with the high mechanical- to-electrical conversion ratio of the cymbal 

design. The low resonance is achieved in a cantilever by allowing for a long, slen­

der design while the high mechanical-to-electrical conversion of a cymbal design is 

achieved through the use of end caps. By designing appropriate rectangular end caps 

to fit on a long, slender section of piezoelectric materiaL it is hypothesized that a 

carriage spring design 'viii produce a very efficient low frequency energy harvester. 

This design will be thoroughly investigated and compared to the other two types of 

piezoelectric energy harvesters in the sections to follow. 
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I 

(a) 2-D Vie•• (b) 3-0 Vie•• 

Figure 3-t: Pie:eot>i('('tri<· <·nn ingt' ~->pring Pnf>rgy hnn~l+-r s hown in A. (n) 2-D vi~w 
and (b) 3-D view 

3 .1 M od eling in A NSYS 

1'hc Ansys 128] oomputcr program is a multipurpose finite element program which is 

used to solve se\·eral da..."5es of engineering problems. The analysis c:a})(lbiJitit>S of An-

sys include the ability to l:iOkf' st.tttk l.llld dymlmic· ~'>I ru<·l maJ prohJ(•ms, stE'!Uiy-:-;tlll41' 

and tnmsienL h~;>»t 1 nu.sfc·r prohiC>ms, nl()(l<'-fl'f'<lllcncy and buckling eigenvalue prob­

f('ms, st ~nic or t ime-vnrying magnetic analy.-.is. piezoelectric analysis. and numerous 

other types of field and coupled-field applications. The Ansys program bas been in 

commercial use since 1970. and has been used extensively in the aerospace, automo-­

tive, construction, electronic1 ener&)' servi('(':S, mauuftlcturing, m •clt>.tll\ phtstk:.;, oil, 

and steellndustries. In addit ion, many ronsulting finnJ; tlnd hundr(>(ls or univf'rsil i<-:; 

use Ansys for analy~Lco, rese{•rc·h, und Pdu<'al ionaJ u.-w. 

The AIL''>,)'S P1E:-'m(>nl lihrary conlnins more than sixty clements for static and dy­

euun ic> annlysis, ovc·r 1 \\'enty for heat nnnsfcr analysis, and includes numerous mag­

n('1ic, piczoelcctl'ic, and special purpose elements. This variety of elements aJJows 

the Ansys program to analyze 2-D and a.D frame structures. piping systems. 2-D 

plane and axisymmetric solids, 3-D solids, fltlt pltltt'!:i, axisymmetrie nnd 3-D shPIIs 

and nonlinear problems inch•ding ('Qnt.~.U.·t {int.-rfut·('s) Altd CAl>](-:;. 
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The input data for an Ansys analysis are normally prepared using a preprocessor. 

The general preprocessor (PREP7) contains the solid modeling and mesh generation 

capabilities, and is also used to define the geometric properties, material properties, 

constraints, and loads. The analysis results are reviewed using postprocessors, which 

have the ability to display distorted geometries, stress and strain contours, flow fields, 

safety factor contours, contours of potential field results ( t hcrmaL electric, magnetic), 

vector field displays mode shapes and time history graphs. A graphical user interface 

is available throughout the program, although writing script or batch files is the 

method of choice for most users. 

Piezoelectrics are modeled in Ansys using a method known as coupled-field anal­

y:::;i:::;. Coupled-field analysis allow:::; one to couple the mechanical and electrical effect:::; 

of a system into one set of compatible finite element equations. By using this method, 

a piezoelectric structure can be modeled either statically or dynamically in Ansys to 

determine both its mechanical and electrical characteristics. The sections below out­

line the procedures used to write a script to statically and dynamically model various 

piezoelectric structures in Ansys. 

3.1.1 Ansys Preprocessing 

The first step in Ansys modeling is to enter the preprocessor (PREP7) and define 

the variables of interest that will be used throughout the script. Defining various 

dimension variables allows one to dynamically alter the size and shape of the structure 

under test at only one place in the code. This makes modifying and testing different 

designs very quick and simple. After defining the user variables, the coordinate 

systems are defined and the geometry of the structure is laid out. This is normally 

achieved by drawing keypoints in order to create lines. Once the lines are created, 

areas can be constructed to segregate the various sections of the structure to be 

meshed in a later step. For a cantilever beam, the separate areas are the top and 

bottom piezoelectric layer, the shim, and the mass. A cymbal design or carriage spring 
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will have two additional areas for the top and bottom end caps. Once the appropriate 

areas are glued (rigidly attached) together in Ansys, the geometry is complete. It is 

worthwhile to note that although Ansys does have 3-D capabilities, modeling simple 

structures in 2-D is preferred to lower the element count and speed up simulation 

time. As a result, all 3-D structures discussed in this thesis are modeled via their 2-D 

Ansys equivalent. 

3.1.2 Element Selection 

The next step is to select the finite element that will be used in order to model 

the energy harvester. The element chosen to model the piezoelectric material was 

the plane223 coupled-field element. The plane223 element is a 2-D solid element 

with structural, thermal, electrical, thermoelectric, piezoresistive, and piezoelectric 

capabilities. The element has eight nodes with up to three degrees of freedom per 

node. The main reason for choosing this element is for its piezoelectric and mechanical 

capabilities. The plane223 clement allows for the analysis of many structural effects, 

such as stress and strain. but also has the capability to couple these effects to an 

equivalent electrical voltage. In addition, the element has axisymmetric capabilities 

which is useful for modeling a cylindrical cymbal energy harvesters. Both cantilever 

beams and carriage spring generators make use of the plane stress option of the 

plane223 element instead. 

Although this element is perfect for mechanical-to-electrical coupling, it is also a 

very good mechanical modeling element. Consequently, this element is also used to 

model the mass, center shim, and end caps of the various energy harvester designs as 

well. The only difference is that the plane223 element used for these sections contains 

Jiffcrcut material cou::;tants anJ is voiJ of any piezoelectric capabilities. 
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3.1.3 Material Selection 

The end caps and center shim are made out of brass. There are two reasons for this 

:-;election. First, bra:-;s is a very strong, yet flexible material. This allows for energy 

harvester designs with a lowered resonance frequency than would be possible with 

a stronger material, such as steel. The second reason is that brass is a very good 

conductor of electricity and is easily solderable. This means that the end caps can be 

very easily soldered to the piezoelectric material and can double as electrodes. 

The material selection for the mass is quite arbitrary as long as the mass value is 

correct. Therefore, the mass is modeled as a steel section with an exaggerated density. 

The reason for increasing the density is to make the physical mass size smaller in order 

to decrease the element count. In addition, a smaller mass allows the figures to be 

positioned more appropriately for display purposes. This modification has no impact 

on the results obtained from Ansys. 

Selecting the appropriate piezoelectric material, however, is a little more involved. 

There are four main piezoelectric material properties that are important when choos­

ing a specific piezoelectric material. The strain coefficient (d) relates the strain to the 

electric field and the coupling coefficient ( k) is an indication of the materials ability 

to convert mechanical energy to electrical energy or vice versa [2]. It is normally 

desirable to select materials with high strain and coupling coefficients to maximi7:e 

their energy conversion potential. The elastic modulus (Y) of a material affects the 

stiffness of the energy harvester design. \Vhen designing for low resonance frequen­

cies, as is normally the case, this value is best kept as low as possible. Finally, a 

higher dielectric constant (KT) is also preferred as it lowers the source impedance 

of the generator [2]. A low source impedance is desirable when designing interface 

circuitry to lower the voltage necessary for maximum power output. Table 3.1 shows 

the various piezoelectric properties associated with different piezoelectric materials. 

The elastic modulus of PVDF is very lmv, which makes this material useful for 

sensor and actuator designs in which low resonance is desirable. However, the poor 
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Property Units PVDF PZT-5A PZT-5H PZN-PT 
Strain c:oefficient ( d31) 10-1<mjV 20 190 320 1000 
Strain coefficient ( d33) 10 um/V 30 390 650 2000 
Coupling coefficient (k3!) CV/Nm 0.11 0.35 0.44 0.51 
Coupling coefficient ( k33) CV/Nm 0.16 0.72 0.75 0.91 
Elastic modulus (Y) 10wN/m"L 0.12 6.6 6.2 2.2 
Dielectric constant (K 1 ) f/fo 12 1800 3800 7500 

Table 3.1: Comparison of different piezoelectric materials [29], [30], [31] 

energy conversion shown by the strain and coupling coefficients make it quite imprac­

tical for energy harvesting. PZT materials are the most commonly used piezoelectric 

material. PZT-5A is very durable and is quite insensitive to temperature variations; 

however, PZT-5H has a slightly lower elastic modulus and a much higher dielectric 

constant. In addition. PTZ-5H has a much higher strain and coupling coefficient than 

PZT-5A. PZN-PT is a new piezoceramic that is very expensive and quite new to the 

market. This material has extremely good electrical and mechanical characteristics 

that make it a very promising research topic for energy harvesters in the future. Un­

fortunately, due to economic cost and availability constraints, it was decided that a 

PZT -5H piezoceramic purchased from Piezo Systems Incorporated would be the best 

material in which to model and construct an energy harvester. 

3 .1.4 Defining Material Constants 

Table 3.2 gives the material constants used for Ansys modeling. The data for the 

piezoelectric properties were obtained from the manufacturer, Piezo Systems Inc., 

with a tolerance of ±10%. However, data denoted by a* symbol were not obtainable 

from the manufacturer and was therefore completed by using generic PZT-5H data 

found in [32]. 

The data for the brass and steel material was easily entered in Ansys using stan­

dare} material property commands. However, entering the material properties to 

accurately model the piezoelectric layers involves appropriately initializing the piezo­

electric matrices. The first piezoelectric matrix to be assembled is the piezoelectric 
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Property Units PZT-5A Brass Steel 
Compliance ( sf-1) 10 1 ~ms~ /kg 16.1 7.69 5.0 
Compliance ( s§'-3) 10 l"msL /kg 20.0 7.69 5.0 
Compliance (sf2 ) 10 -umsL /kg -4.78* - -

Compliance ( sf:3) 10 -ums"jkg -8.45* - -

Compliance ( s;f4 ) 10 1"msL jJ.~g 43.5* - -

Strain coefficient ( d31) 10 lLmjV -320 - -

Strain coefficient ( d33) 10 -J~rn/V 650 - -
Strain mcfficiPnt (drs) 10 lLmjV 741 * - -

Dielectric constant (K{1 ) fn/to 3130* - -

Dielectric constant (K33 ) t33/ to 3800 - -

Density (p) kgjm0 7800 8400 7850 

Table 3.2: l\laterial constants used for Ansys modeling 

compliance matrix evaluated at constant strain, [ sE]. Ansys allows the user to en­

ter either a compliance matrix or a stiffness matrix, [ sEr
1 

and is purely a matter 

of preference. For the Ansys program written in Appendix A, a stiffness matrix is 

entered in the standard symmetric form outlined in [33]. The next step is to set up 

the piezoelectric matrix of strain coefficients, [d]. The user has the option of entering 

this matrix as either strain or stress per electric field. The stress per electric field 

option is utilized in Appendix A. Finally, the dielectric constants in the X, Y, and Z 

directions must be defined. 

Constructing any one of the above mentioned matrices in Ansys can be quite 

complicated as Ansys does not necessarily follmv the exact standard form outlined in 

most literature. For an excellent discussion on how to convert standard piezoelectric 

data into appropriate Ansys matrices, please refer to [32}. 

3.1.5 Meshing 

The next step in the modeling of piezoelectric energy harvesters involves meshing. 

Meshing allows Ansys to break down the structure into thousands of small plane223 

elements. The reaction of each element to any given disturbance can then be compiled 

into large matrices using standard finite element techniques. The element sizes used 

in the modeled piezoelectric energy harvester range from 7()-lOOJLm., depending on 
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the material. vVhen meshing piezoelectric material it is very important to use the 

appropriate coordinate system. Defining two local coordinate systems offset by 180 

degrees allows the user to control the poling direction of the piezoelectric layer easily. 

This technique is quite convenient when changing from the series to parallel-poled 

energy harvesters discussed in Section 3.2.2. 

3.1.6 Solving the Problem 

Ansys has the capability to perform static, modal, harmonic, and transient solutions. 

In order to utilize the static analysis, a load must be applied to some part of the 

structure. For the maximum voltage investigation discussed in Section 3.2.3, a small 

displacement is applied to the top of the structures and the output voltage is noted. 

For the mechanical investigation in Section 3.2.4, the modal analysis option, which 

utilizes the Block Lanczos method, is used to determine the first resonance frequency 

of the different energy harvester structures and configurations. 

3.1. 7 Analysing the Results 

The final step in the Ansys investigation is to view the results. This is done through 

the use of the general Ansys postprocessor (POSTl). This Ansys postprocessor has 

the ability to graphically display and animate the motion and distribution of a variety 

of mechanical and electrical responses. The POSTl processor was used to create the 

various color-mapped graphical Ansys figures displayed throughout this thesis. 
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3.2 Energy Harvester Design Comparison 

Piezoelectric energy harvesters can be classified by the way in vvhich they stress a 

section of piezoelectric material. Typically, cantilever energy harvesters are referred 

to as bending generators whereas cymbal and carriage spriug energy harvesters are 

referred to as extension generators. Due to the fact that a cymbal and carriage spring 

generator stress piezoelectric material in exactly the same manner, by extending it, it 

can be assumed that both of their 2-D (thin slice) piezoelectric voltage distributions 

are identical. Consequently, when discussing electrical phenomena, such as piezoelec­

tric poling and mechanical-to-electrical energy conversion, it is convenient to adopt 

this nomenclature and group both cymbal and carriage spring designs together. How­

ever, when discussing mechanical phenomena, such as resonance, the three designs 

are best compared separately. 

3.2.1 Piezoelectric Layering Selection 

As mentioned in previous sections, piezoelectric energy harvesters can haven layers of 

piezoelectric material that may or may not be separated by a metallic shim. Piezoelec­

tric materials are normally very brittle and are quite difficult to work with. Adding a 

thin metallic shim provides mechanical strength as well as extends the lifetime of the 

piezoelectric material. However, adding a shim does increase the resonance frequency 

significantly. Depending on the application, the designer must weigh the tradeoffs of 

lowered resonance with structural strength of different styles of energy harvesters. A 

center shim is almost always used with a cantilever beam, but hardly ever used with 

a cymbal transducer. This is because a cantilever beam, being a very soft structure, 

needs extra support in order to accommodate the required mass necessary to stress 

the piezoelectric material. In addition, bending a thin, brittle piezoelectric material 

without producing cracks is very challenging. A cymbal structure, on the other hand, 

is normally quite rigid due to the end caps. As a result, the end caps themselves can 

38 



3.2.2 Poling Configurations 

There t'IH' 1 \'lO ma.iu JK)Iiu.g ol'icmations fo1' dua).Jayered piezoelectric mlttt"rial<L ThE:" 

firJo>t. is 1.0 Juwc both the top and bottom layer PQied in thP samP dil'('{·tiou. Thi.. .. 

configuration is used for tonnectmg fiiJof'ndi•tg gt>nt•ralor for pAJ'allcl operation and an 

extension generat-or ror M>riffi operation. The second is to have the top ond bottom 

lttvt•r JK>IPd io opposite dil·ections. This is used for conneC"tiug a twnding g ... nPraun· in 

series and au extension g('uen.llor iu pnnt..ll~l. Figure 3-2 ~hows the different poling 

configurat ions for both bending and extending generators. The dit'(>('tion of JK)Iiug 

for each piczociC<'trlc layer is shown by t hf' arrow:;. 
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figure 3-2: Poling dirt>(•tiuns for S('r ics and parallel extender and bender designs 

Thf' rt>}L-.;(}11 for 1 he I'C\'Cl's.l.\1 or electrical connections for the t \'lO (mling oriE-l II at iuns 

i..~ thm a when a cantilever beam bends, t ht> top lav4~r exH•nds while the bottom 

layer simultaneo\Jsly rontnu·ts. The::if' t,wo nee ions produce cwo equal but op])()Sitely 

ori(:'nt('(l vultagt·s if the Ioyer::. are oriented in the same directJon. Therefore, a <'E>ntE>r 

tAl) can be used lO extrude the low voltflge IP\'E"I frmn th(' C'C-'ntc~r shim. Figure 3-3 
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shows the horizontal stress and corresponding voltage output of a bending generator 

wired for parallel operation. \Vhen a cymbal or carriage spring generator extends, 

both the top and bottom layer extend together. Therefore, t,,.o oppositely poled layers 

are needed in order to extract the center tap voltage from the center shim. Figure 

3-4 shows the horizontal stress and corresponding voltage output of an extending 

generator wired for parallel operation. 

3.2.3 Mechanical-to-Electrical Power Conversion 

The generators shown in Figures 3-3 and 3-4 were both constructed of identically sized 

and shaped sections of piezoelectric material with identical material properties. To 

keep consistent, the same active piezoelectric region was maintained in both designs. 

To clarify. the extension generator sacrifices two 2.5mm sections of active piezoelectric 

regions on each side of the piezoelectric material in order to attach the end caps. To 

stay consistent, the bending generator was anchored with a 2.5mm clamp and the 

mass wa.s positioned to use 2.5mm of piezoelectric space. Because neither one of 

these 2.5mm sections experiences a stress in the X-direction, no voltage is produced. 

Therefore, both the extending and bending generator have the exact same amount of 

usable piezoelectric material left over with which to generate electricity. 

Both generators were then excited with a static force on their mass to simulate the 

movement that would be experienced in a transient vibration scenario. The force was 

adjusted for both such that no point on the piezoelectric layer experienced a strain 

larger than the manufacturers' suggested maximum strain of 500pc As can easily be 

seen in Figure 3-3. the stress in the X-direction of a cantilever beam is not constant. 

The stress is greatest at the clamping point of the bending generator and it is weakest 

at the point closest to the mass. Because voltage output is directly proportional to 

stress, as shown in Equation 1.13, the voltage drops signific-antly along the length 

of the beam. Historically, researchers using cantilever beams for energy harvesting 

overcame this problem by placing the top and bottom electrodes only on the section of 
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the pieZQ('IE.'<·triC' 111Ht(•rial 11Cat the c:lrunp. Because a piezot>le('trit mntE>rittl(mtdm·Ps 

power only in the region that is CO\'ered by nn t>l(>(-t mdt>, 1 ht) voll ~\g<' was kept high 

while the rest of the piezoE>Iectrif' maiPrinJ wa.~ u~d simply (or mechanical purposes. 

Obviously, this is a IE>Ss tluw oplifunl design llS only a fraction of the piezoele(•trit 

matf;'rlal is hPiog used for energy harvesting. 
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The extf'uding gt>rwratm . s hown in figure ~4. bas a constant s;tre;s dL..-tr ihut iun 

m t ltt• X-dir<'clion. This leads to a \'CI)' ron"isteut voltage• di. ... tr ibution t hroughom 

the entire piezoelectnc layer. As a. rf'su lt , LOO){. of the useable piezoelectric material 

is being utilired for energy han~l ing. 
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In addition, because the stre~ ts ("'nstrull , t he· device- can casiJ.v be designed to 

stre!OS at its mt'Xinuun wht·t~ tc'~\Ch molecule of pit"I.O('Iectric materinl is prod\u:-ing n 

vrrv hugf> nruoun1 of cle<-trical power The voltage distrihutiou fur ho1h th(' bender 

ruul ('X1-<'ndcr generator ore given in F1gure 3-5 ns a ftnwtiun of 1 he pct·ccmagc: di.:,tancc 

frorn one end of the pie-./..OCle..-tric mal4•rinlt.o t l1c other. The tn·crage voltage produced 

by the ben<lit•g gE>•t<•nnor i.-. only 22.8V. This is less t han one half of the 47V produced 

by Lhc extending generator. However, be('lltlsE> E>IPC·t ri('A.I power i.:, proportional to t he 

square of t he vohug4', a ... in E<1uation 1.14. the potentlol power produced by this 

pnrticuJaJ' bending genet•ator wliJ be only one Q\Ull'tf'r of t he powC•r produced by the 

extending generfltor t\."-"ttmiug I hill th(' internal resistance remains essentially the 

Sillllf'. 
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3.2.4 Resonance Prcqucncy Design 
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P~lttwtUI'l~::. are affoctrd hy tlH l•·u~th ulthe piezoek><-trlr nuut•riul lH'IIII!, tl:!.C<.L The 

t l• rt"(• different energy ronh~ltrnt 1utts lmd their length•ttrwldt h r,u to ndJU~tcd in order 
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the other two designs. In fact, the surface area, A, is instead dependent on only the 

radius, r, by the relation A= 11r2 . Consequently, the cymbal only has one resonance 

frequency for the given piezo surface area. Also, this frequency is quite high when 

compared to the others as a cymbal is an extremely stiff structure. The carriage 

spring, on the other hand, had a wide range of resonance frequencies obtainable by 

simply designing for a longer, more slender structure. Although the carriage spring 

cannot obtain low resonances as easily as the cantilever, it does have the ability to 

have a highly adjustable resonance frequency by simply lowering the stiffness of the 

structure by adjusting the piezo and cap length. However, given the correct microma­

chining fabrication equipment, it is believed that resonances frequencies equivalent 

to those of the cantilever beam could be achieved by simply lowering the cap height 

and thickness of the carriage spring energy harvester. 
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3.2.5 Conclusions Regarding Energy Harvesters 

It would appear that there are three different criteria which will determine the proper 

energy harvester design to use in any given situation. These criteria are mechanical­

to-electrical conversion efficiency. resonance frequency level, and durability. \Vhen 

high mechanical-to-electrical conversion efficiency is required, the best device would 

be an extending generator. Both the cymbal transducer and the carriage spring design 

have the exact same conversion capabilities. When a very low resonance frequency is 

required, a cantilever beam configuration would most likely be best suited. However, 

a carriage spring also offers thf' ability to have a low resonance frequency, with the 

added benefit of excellent mechanical-to-electrical conversion properties. Finally, for 

high frequencies and environments with high acceleration levels, the cymbal would 

be by far the stiffest and most durable structure. The next best structure would be 

the carriage spring, ami the worst structure would be the cantilever beam. In fact, 

many cantilever beam energy harvesters have been proven to produce small cracks at 

cyclic frequencies as low as 50-lOOH z [26]. 

No matter what the environment, the carriage spring design is quite promising. 

This design is a solid compromise between the low resonance properties of a cantilever 

and the high electrical efficiencies of the cymbal and definitely warrants further in­

vf'stigation. As a rf'sult, the thesis will now change focus from investigating different 

energy harvester structures to taking a closer look at the carriage spring design. The 

following sections will thoroughly investigate the properties of this previously unex­

plored design. 
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3.3 Detailed Carriage Spring Resonance Investi­

gation via DOE 

Design of Experiments, commonly referred to as DOE, is a methodology for system­

atically applying statistics to experimentation [34]. The main advantage to DOE is 

that it helps researchers develop mathematical models that predicts how input values 

interact to create output variables or responses in a process or system. One specific 

type of DOE is Response Surface :Methodology (RSM). 

RSJ\1 is a collection of mathematical and statistical techniques that are useful for 

the modeling aiH1 analysis of proLlems in which a response of interest is influenced by 

several variaLles and the objective is to optimize the response [34]. Every experiment 

begins with some type of conjecture, or hypothesis, which motivates the experiment. 

Next, the appropriate factors and levels, also know as treatments, that will be used 

in the experiment must be selected. A factor normally refers to a variable which 

is chosen in an experiment. \vhilc the level refers to the numLer of different values 

selected for each factor. The nomenclature common for describing such a setup is ak, 

where a is the number of levels and k is the number of factors. The next step in the 

procedure is to carry out the experiment and collect the results. Once the results are 

collected the analysis of the data can begin. 

The first process in the statistical analysis of the data is to complete an Analysis 

of Variance (ANOVA) table. This table uses the statistical techniques outlined in 

Montgomery [34] to determine which factors and which interaction between factors 

are statistically significant. The primary objective of an ANOVA analysis is to test 

the hypotheses about the equality of the treatment means by partitioning the total 

variability in the response variable into components that are consistent with a model 

for the experiment. Once the ANOVA table is finalized, an equation can be developed 

to predict the response of changing the values of the different factors. The process 

used to develop these equations is known as regression analysis. The analysis is 
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usually ('0111plc>ted will• SQIIIE' form of opt imizHtinn in whic h frutors <'•)n he>< ht~n 10 

f:'illwr maximi<'.t', miuimi?A\ o r targc·t A response-. 

3.3.1 Setting uv the Problem 

An txpt)rimcn1 is :.et up in order to develop insight into the proposed phenomena. For 

Litis .:.Ludy, the experiment consisted of mathematic..1.1ly modeling the energy harvester 

in the finite element software package Ansys. A modal ana.lysJs usmg the Block 

LanC'ZOS method was utilized by Am:iyl:i i n order lo dt>tenuiue thE> fin;t rE>sQul'ln<,.. 

freqU{'IIC'Y or thE' SJW<·ific· I rf'at 1111'>111 IC>\'(>1. 'fh(> diiO('Il:.ional va.Ju(!N outlined in ·rnble 3.3 

wc•rf• 1 hPo thaugc·d in ncoordnncc with the treatments suggested by the DOE software 

prograul Design Expert [35j. The objective for this experiment is to gain insight into 

the effect of changing different end cap parameters on the first resonanoo freqtten<:y 

of the energy htuvester. Therefore. in order to keep lhf' f:'XJWrimE>nt ~iruplifif'<l, tl1P 

pie:to sizE> ami thit•knE>:;s wt>rf' hf'ld c·(mstauL 1hroughout Lh<' <•xpcrimf'nt. Jn fot1, 

th<' pi<'zoclcctric 11latcrial d imensions and material are exactly the same as those 

prcviousry used in past investigations within tlus document. 

{H 

.,._s_ . 
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Factor Symbol Units Level 1 Level 2 
l\lass l\I g 50 130 
Cap Height H mm 0.5 2.0 
Cap Thickness T mm 0.25 0.4 
Surface Length s mm 7.5 11 

Table 3.3: Levels, factors, and ranges for 24 design 

The specific DOE analysis utilized for this experiment was a 24 face-centered RSM 

Central Composite Design (CCD). A CCD is similar to other RSM designs in which 

runs are completed at different factor levels. However, a CCD also contains alpha 

points which normally extend beyond the range of the factor levels in order to test 

for curvature and to fit a second order model. A face-centered design is chosen for 

this experiment in which the alpha values are located at the midpoint of the different 

levels. This type of design has the advantage of increased accuracy for the range of 

levels under test. The experiment conducted for the initial trial included 25 runs with 

only one center point. The appropriate factors and levels are shown in Table 3.3 and 

the corresponding labels are shown in Figure 3-7. 

3.3.2 Sum of Squares 

The Sequential Model Sum of Squares table is developed by the DOE software to de­

termine what model is best suited to describe the output. The objective is to choose 

the highest order polynomial where additional terms are significant and not aliased. 

Aliasing refers to combining phenomena together such that the experimenter is not 

sure what effect actually caused the output. This occurs when the CCD model does 

not have enough runs to support the model that it is attempting to match to the 

output. This phenomena is evident in the cubic model shown in Table 3.4. Conse­

quently, the highest unaliased model that is statistically significant is the Quadratic 

model with a p-value much less than 0.05. Selecting a model with a p-value less than 

0.05 is a typical way to prove statistical significance. In other words, the chance of 

wrongfully rejecting the null hypothesis is less than 5%. 
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Sum of Mean p-value 
Source Squares df Square F Value Prob > F 
l\Iean 4114.3 1 4114.3 
Linear 265.16 4 66.29 165.84 < 0.0001 
2 Factor Interactions 6.47 6 1.08 9.91 0.0002 
Quadratic 1.34 4 0.34 18.45 0.0001 Suggested 
Cubic 0.18 8 0.023 110.48 0.0090 Aliased 
Residual 0.0004104 2 0.0002052 
Total 4387.46 25 175.5 

Table 3.4: Sequential model sum of squares 

3.3.3 ANOVA Analysis 

The next step is to analyze the Analysis of Variance (ANOVA) table. They key 

objective here is to find effects where the p-value is less than 0.05 to be included in 

the model. If any of the effects or interactions are deemed insignificant, those effects 

must be removed from the model and the analysis must be redone. Luckily, Design 

Expert makes this quite a simple process. Table 3.5 shows the ANOVA table after all 

insignificant effects are removed. It can easily be seen that all effects shown in this 

table have a p-value less than 0.05. 

One thing to notice is that the sum of squares value for the cap height is very large 

compared to the sum of squares of the other variables. This means that cap height 

has the largest effect on the system. The mass and surface length have a moderate 

effect on the system, while the cap thickness has very little effect on the system. 

The adjusted R2 value given in the analysis states that 99.82% of the variability 

in the resonance frequency is explained by the mass, cap height, cap thickness and 

surface length. The most important of all data given by the ANOVA analysis is the 

predictability of the model given new data. In this case, the predicted R2 
, based on 

the PRESS (Predicted Error Sum of Squares) value, is excellent at 99.61%. However, 

the only way to test this for certain is to try new runs using different values than those 

previoulsy selected in the DOE experiment in order to verify the model. In addition, 

in order for the model to bf' considered statistically significant, it must pass a series 
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Sum of Mean p-value 
Source Squares df Square F Value Prob > F 
l\'lodel 272.91 12 22.74 1106.34 < 0.0001 significant 
A-1\lass 42.29 1 42.29 2057.37 < 0.0001 
B-Height 159.38 1 159.38 7753.13 < 0.0001 
C-Thickness 9.81 1 9.81 477.31 < 0.0001 
D-Surface 53.68 1 53.68 2611.37 < 0.0001 
A~ 0.42 1 0.42 20.59 0.0007 
D2 0.12 1 0.12 5.76 0.0335 
AB 2.00 1 2.00 97.39 < 0.0001 
AC 0.13 1 0.13 6.25 0.0279 
AD 0.67 1 0.67 32.69 < 0.0001 
BC 1.32 1 1.32 64.28 < 0.0001 
BD 2.91 1 2.91 106.62 < 0.0001 
CD 0.16 1 0.16 7.58 0.0175 
Residual 0.25 12 0.021 
Cor Total 273.16 24 

Table 3.5: ANOVA table 

of statistical tests which are normally conducted by means of diagnostic plots. The 

diagnostic plots relevant to this study are shown and explained in Appendix B 

3.3.4 Results 

After the AN OVA analysis is complete, the path of steepest ascent method is utilized 

by Design Expert to determine an equation for the resonance frequency. The equation 

produced by Design Expert is 

( )

2 

16.69732 - 0.081827M + 9.29751H + 25.8759T- 1.814755 

!res= +0.0002271\12 + 0.06277552
- 0.011791M H- 0.029879MT 

+0.002928M5- 5.10896HT- 0.28199H5- 0.75205TS 

(3.1) 
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Now that an equation has beE."n d~?vt> lop(>( l 1u d1:-:;('rill<' how the mass. cap height , 

cap thkkness. and sur[tt('E.' lenglh a ll'(>('L 1h~ a·cscmautc frequenc.v of the energy har­

vester. various intert«.:lion gr.-phs ('au ))(> created to see how these dimensional vari­

ables interact to prodU("e diff't"~nl r<':;Ouflnte frequencies. figure 3-8 s hows a 2-

DimensionaJ ttnd 3-Dim('IL..,ional view of how the a·c:mnance frequency clHUigeti \vhl• 

a dumging nu\ . ..;s a nd tap height. In figure 3-8 (a), the red Line repr~nts t he 1'np 

lwighl AI iLs high level, 2mm. while the black Line reprt'&'nts t hP f'ap hPighl a1 iLs low 

level, 0.5mm. It should be noted that the:;P gr~;tphs maintaill a constant cap thickness 

and surface length of 0.33mm And 9.25mm rc.-.pcclivcly. These values are chosen to 

be the midpoint vl'llm>s of t he rnngcs sclcctcd in Table 3.3 

lnttrKCIOn Graph 
~ 61WJ't 

otHI-

~t·~ 

~ 

i 
I'""' • • • -.. 

•• , 1'10 • 
• 

-~ 

(<~) 2-D Gmph (b) 3-0 Criiph 

F'igure J..S: f'. lass aud cap height vs. re.souRnct' fn>c:iuPnQ' \' i ~' {a) 2-D graph and (b) 
3·0 graph 

It is easily oiJSE."rved ll•tH fo r a ny gi\'CI\ tfi)> height, an increase in mass results in ~ 

decrease of resommc."e frf'f(uPn<'y. However, by observing figure 3~8 (a) more elosely, 

it is E."vidt>nt t lutt tit(> high and low lc\•el lines are not parallel. T his implies t iHlL 1\1\ 

intf)rac·Lion i::: occurring. It is quile evident from the graph thal t lw c'tlp lu'iglu plays 
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a more c•·ucialrole when the ma..c;;.s is Low tlnd l e~,..., of a ml~ wh(•u th<' l lld •• 'i:S is high. 

Another way to describe the phenomena \\"Ould hl' to sfLV thl\t it is C<l.'>icr {0 control 

the resonance frequency of t he E."nerg)' luuv£>St~r by adjusting Lhe cap height when 

the mass is low However, a tradeoH' l.>etwt.-.•n lh(• 1wu ~xists as a device with a larger 

Ill~ ultimately bas a lower re.•;oufmtt) rr«iiiCDCy. figure 3--8 {b) gi\•es a view of the 

frequency respOILW ovE>r I hfl' <· Ill ire range of possible cap heights. 

'"~ 

m •1• 

' ~1.,. • • • • 
"'}'" 

-

. . 
~- . ---

(a) 2·0 Cra.pb (h) 3-D CrA.ph 

Figure 3·9: 1\lttss tt..nd 4'ap 1hif·kness vs. resonance frequency via {a) 2-0 graph ttnd 
(b) :1-0 graph 

FigurE." 3-9 shows how tit(> re:,ooancc frequency is affected by changing thE." rn~;~-o:;s 

and <'np t hickucs.-.. The red line in Figure 3-9 (a) represent~ the ('ap thickn<':'is at ib 

height level of 0.4mm ~ while the black line shows thE." <-.ap t hi<'klt('S.'> at its low level of 

0.25uun. Once again. the other factor:;, t he c.·ap height t\nd ~urfe\CC length. are kept 

at their midpoint values or 1.25mm rmd !).25mm r<'sJWCt ivcJy. It is observed that a 

lhinner cap ultimately produceo; a I0\\1:'r n>SOmHt<'fl' fn.•qucncy a... there is only a sUght 

interactlon occurring in Figurf' 3-9 (a). Howe\'CI', once again there exists a tr;:~deoff. 

Although a \'t'ry t hiu ('tt.p is id<·nl, there is obviously a limit to how much force il 
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cun witlL..-tand before it hPgins lo htKkll•. Thf'r(>fore lhNX:' is a uadc'Off between low 

frc.-'<:(tu>ttc.·y <lc•sig11 t ltrou~h <'»P 1 hie'kncss find .:.ti'Uctural integri{y. 

UHJ 

·J.~ ~ " 

~m~ 
• 
IU~ 

• r 
•e.;:,r 

'~ 

(b) 3--0 Graph 

F'igurE> 3-10: Surffh~C' length and cap height vs. resonance frequenC'y via (a) 2-D groplt 
and (b) ~D graph 

F'ig:\trf' 3·1 0 detnonstratcs t he effect of surface length ~nd C.'tlJ:t llf'igltl un I h<' CArriage 

spring resonance frequency. The red line ut figun> 3·1 0 (H) :-bows the surface at 

1 bnm, "''hile the black line repre;ents t hf' surfaC'C' lt'tlglh at 7.5wm. All other factors 

are held ~t their midpoinl valu£>:; or OOg and O.:J.Jmm respectively for the rna.~ ftlu l 

cap lhitkll f'-~. Figur(' 3-10 (a) shows a ra{her strong inter~ction twt\\rt"tln t h(• cnp 

hPight flnd surface Jength. For a small c~p height, t tw !-iUrfac~ hmgJh is less crucial 

than when the cap height is large. llowever, iu E>iLhf•r C'A.'>e. a larger surface area helps 

to dccrca.....c the resonance frequency of the devicE>. 
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3.3.5 Optimization 

After completing the analysis, the final step is to optimize based on the desired design 

criteria. Optimization can be performed in Design Expert to minimize or maximize a 

response, hit a target value, or hit a range of required responses based on a range of 

input values. Table 3.6 gives ten optimized possible designs in order to minimize the 

resonance frequency of the energy harvester given the ranges used in the experiment. 

Num Mass Height Thickness Surface Resonance Desirability 
1 134.52 0.50002 0.25000 11.000 46.608 0.99805 
2 135.00 0.50000 0.25000 10.789 47.697 0.99239 
3 134.01 0.50000 0.25000 10.620 48.690 0.98728 
4 135.00 0.50003 0.26411 11.000 48.744 0.98700 
5 104.47 0.50000 0.25000 11.000 50.254 0.97933 
6 134.97 0.50000 0.25000 10.221 51.131 0.97493 
7 98.810 0.50000 0.25000 10.998 51.624 0.97248 
8 130.89 0.50000 0.28508 11.000 52.238 0.96943 
9 134.94 0.50024 0.33476 11.000 60.228 0.93134 
10 135.00 0.50000 0.37269 10.996 66.902 0.90142 

Table 3.6: Optimized designs for lowest resonance frequency 

1\Iany times it is desirable to target a specific resonance frequency. Table 3. 7 give 

ten optimized designs where the objective is to minimize the mass while maintaining 

a resonance frequency of 100Hz. It should be noted that it is possible to extend 

the optimization outside of the ranges used for the experiment; however, there is no 

guarantee that the model will hold for such values. 
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Num Mass Height Thickness Surface Resonance Desirability 
1 50.000 0.52408 0.25944 9.4113 100.00 1.0000 
2 50.000 0.79134 0.25817 10.956 100.00 1.0000 
3 50.000 0.51822 0.33019 10.669 100.00 1.0000 
4 50.000 0.52090 0.25371 9.2923 100.00 1.0000 
5 50.000 0.50577 0.34974 10.976 100.00 1.0000 
6 50.000 0.50053 0.27738 9.5968 100.00 1.0000 
7 50.000 0.53021 0.26012 9.4582 100.00 1.0000 
8 50.000 0.50000 0.25000 8.6110 108.99 0.97941 
9 50.000 0.50001 0.38913 10.959 110.78 0.97537 
10 50.001 0.51799 0.25000 8.3621 115.84 0.96401 

Table 3. 7: Optimized designs for 100Hz resonance frequency with minimal mass 

3.3.6 Conclusions Regarding DOE 

In conclusion, it \vould appear that in order to minimize the resonance frequency of 

a carriage spring energy harvester, the designer should aim to make the mass large, 

the cap height small, the cap thickness small, and the surface length large. However, 

any energy harvester designer should take into consideration the physical limits of 

such a design. For example, the device should have enough clearance such that the 

piezoelectric element does not contact the end caps during operation. In addition, 

the structural integrity of the device should be considered, as a cap that is too thin 

with a surface area that is too large will almost always result in a buckle or may 

introduce new undesirable resonances into the system. No matter what the criterion 

or limits of design, one must always appreciate how the interactions between all these 

variables will aflect both the resonance frequency as well as the structural integrity of 

the device. The resonance frequency equation of the carriage spring energy harvester 

as a function of mass, cap height, cap thickness, and surface length was shown to be 

( 

16.69732- 0.081827 M + 9.29751H + 25.8759T- 1.814755 ) 
2 

!res = +0.000227 M 2 + 0.06277552 
- 0.011791M H - 0.029879MT 

+0.002928M5- 5.10896HT- 0.28199H5- 0.75205T5 

(3.2) 

57 



It iihould be noted that the goal of this chapter W<lli to inveiitigatc the transducer 

design, identify critical parameters, and unearth sensitivities and cross-correlations 

that are of interest to future designers with large monetary resources and an interest 

in this field. Consequently, the design parameters used in the following chapter are 

chosen to coincide with typical off-the-shelf piezoelectric parameters provided by the 

manufacturer, instead of the optimal designs outlined in this chapter. Although the 

author realizes that the device in the next chapter will be sub optimal, it is still 

worthwhile to undertake such an investigation to produce a proof-of-concept device. 
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Chapter 4 

Experimental Results 

4.1 Prototype Design 

A carriage spring prototype was fabricated in order to study the power producing 

potential of such a device. The piezoelectric material used in the prototype had a 

length of 31.9mm and a width of 6.4mm. The piezoelectric material was constructed 

from two layers of 0.14mm thick PZT-5H sandv.:iched on top of a 0.13mm thick brass 

center shim purchased from Piezo Systems Inc. Although, ideally, an energy harvester 

without a center shim would more easily obtain a lower resonance frequency, it was 

ultimately decided that a piezoelectric device with a center shim would provide more 

mechanical strength and reduce the risk of cracking the brittle ceramic piezo. The 

end caps were fabricated from two 31.9X6.4mm brass sheets of 0.325mm thickness. 

The brass sheets were then carefully bent using a break and roll into the desired 

dimensions. Table 4.1 gives the dimensions for the end caps which are shown in 

Figure 4-1. 
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h "'hnuM be ootOO tbnl till:' f'l ... l « 'P"' "fff" ('OI'lnflt·tt..:l to tb(' pir·L•-.clt-.tri•· t•k·mcm 

h\' IL~· or" .. pecial solcit~r llUCI tlta.x. IJilfl" ha ........ j From I h(• rnanur~-lurt·r. \Inn• ....... ~:ifk·ally. 

tl•·~ I'Ooltler was U...<if'fl to c·uuuc•t"l th~· hnttmn of the end <'ftP"' w tlu· lmkd dcctrodeo:;. 

t ltnt wc·r~ fm•d ou 1 h<' lop nnd IH)I Iulu sudnt.'(' of the pi("mrlc.,.·t l'ic- tuatN ial A It hough 

uhNunl•n• sululiOn_:,, Sllth ns \'!\I'I(IIL .. t·ytutoncrylates n ud 1•pu:d1'l'!, would 1tiNn pmduce 
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tric ~J ' •lll)("("tion a..., \\1'11 1 hi" v.•»ulclallow ft.•r lhi> OOUJl(>('tion ,,f 1ht•lt•1ul wire:-, to the 
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between the end c~p nnd thE> piE"I.C) t'>)('('trodes. Also, if the cc-nte1· tap wire should 

happen to di:;counf'f•t during t hf' c·xpcl'imcnt. there was enough room left to reattach 

the wire without lwvillg 10 disa.sscmble {he prototype or experimental setup. As a 

result, the reromwc·£> fr(>(lu<'ncy of the device is higher than the resonances of typi­

cal ind\Jst ri l'l l vilm\liOit sources. A prototype of the caniage spring energy ltlln~ler 

is shown in Figure 4-2. Figure 4--2 (a) shows tbt> actual prototvpr lhl'lt.. w>as usc•d 

throughout the entire experimentation phase while F'igun> 4-2 (h) show:-. a Cou\pul cr 

Aided Design (CAD) represeulnt ion of llw d.-.vi<X" 1ha1 was u.:.ed Cor the purposes of 

explaining to the rul'lnuftlclur<~r exactly where to drill fo1· the center tap. 

(a) Actual (h)C'AJ) 

Figure 4-2: Carriagf' lipring cnd car>:> t\Sscmbly showing ('a) actua1 assembly and (b) 
CAD r4"prCSCitlation 
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4.2 Experimental Setup 

o.~~n•ng the protot\lJP \\'it.: n11h HIH "h'l) ln the exJ)f'rinwmnl .Oil sm~... A mount­

InK bruckel h3d to hf> c-•m .. t ruct1-cl to hold the dt:'\"ic'(' 1Ul1l mrn·d lv 1\hgn 1 bf> mA..."-". 

while n test bed twcl tn h1• rnhnn,h '<l iu ordc1· to accommo<lnu• tht' mounting lmu-kPt 

uud tht> exdter. A fh'tailf•d di•\RI'Uill or the mountmg hnH'kN, ... hnkf'l', And l;('ltsUrs 

io~ .;hown 111 Figure> ·1-3. The• I'Xpt·mn(·ntalJon prO<'t'S..;, IS clf'~·rllwd t hurun!!,hlv in lilt' 

(nllowut)!. ~'<·1 io1b and " flowc h.ut df""('nhmg •J:w. pi'ON'(Iun• IS mlllil".d in fi~re 4-4 

Accelerometer 

Energy Harvester Mass 

--Shaker 

F~Ul'(' +:!. OeuuiNI ciii\KI'IIIJI or 111f)U ill ing lmu·k··t ... tltlk•·l . und !oo('lll:K)J'S 
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4.2.1 Mechanical Sl'hop 

Aft<'l' ron"t •·uc·ting l he proto! vp••, ,_ )nouutiug hnwkN WtlS roust•w·u...-1 uut u£ u Polyvinyl 

Chlonclf' (Jl\'(') mat(>rial M .. IJn~o~. u in Figur{> 1-;• llu~ mountmg hrtlc '-"' w.-~.~ dt'!"J.gn{'d 

to bolcf thr MN!it\' ban1••!1f'f M \\t•U ~ prm-..1.- a 11~ b\· v.~h11 h lu ( 'UIJtrol the dt­

f('('Uon n( Ulo{luU o( thP IIIII.,., lu t\CC'Ompli!>ih lin .. il !'llf)g UI(L.<;::;. WtL., t Ut out o£ COJ>Pf'f. 

T lnl-i t'OIIIWI' mru;s thf'u ltftd twn ("((\Ulllv l'>iz<'tl hulc~ dniiE"tl un C'itlu'r t~ldt' 'iO that it 

c•ould l'llidf' fn'(•lv iu only Onf' chi'!'( 11011 a long tlw iwu "'111"-ll plastic- rod!'l l'lhnwu in Fig­

ure 4-5 T\\'o 2.5crn uUl ptA .. uc 1 ..... ,.~ \\-eft' tht>n dt ~-bt>d to ibP m1w. cv ... ude u'ith 

tbt> mu.. ........ •lnu~ the plastw ffML.. I be-e plasuc ....... ,-.~ aloog "lth a ... u.,u &IUOUDt or 

greA.<;f>, v.vn• UhoCd to p rPwut tlw UJl\.,.., from lnuctm~ 011 thf' rod.., dunnK t'XtWnmenta­

t ion. Tlu• mt~...-; was thr•u ~ltwd 11tllllg tl strung <')'jlHOllC'ryhltE;> glm1 tu tlw top t~e(•tion 

of Llw 10pPuci rAp, la be-led ftl'l 111 m 111 Fit;ur<' ~ I 

(~1) Attuill (b) CAD 

FigurP J~r, ('Mriage spnnR muunhug bnukf'l .. hnwmg (~) ~·l ual ..L.._.UJhly and (h) 
CAD rt1JU"!!t"h1A1l(>1L"> 

~t·XI. th~· hot tom (•ml c.·Ap \JiJ'I."! ~lu{'( ( to a <'Of'(W'r 1nnunt, wbirh WIL" ~lm"!:l 10 tht· 

lm.~ uf ttu• ntounf ing hrtKkN . lt l'lhuuld b<> noLrd i hnt IU! tul Altcrnflll \'4' IUN£Tt•ws, g lut' 

wB:-. u*CI whPn•wr J)Q~ibleo w rnuntx·t thr varlou~ l'i( t ion~ of thl" mnuu1111~ hracket 

togc.•tht"f 1 hL .. •·a:, dollt' ... tiKI 11~ acct'"k-romf"lt'N "ould not pt•·k up tlM raul£> of 

the~""'" dunn~ excitattun IIJJ(IIIllt.'ffere 11.1th ttlf" t·XtM'fiUtt"'Dtal n••·,otll\ltn' frt.'quency 



(a) A('tU.cl l (b) ('\I> 

Futnrl" J-6: Su"t'lt~r I.JC"'d ~·mhh· "ho'\nm; (a) actual IL~mhlv aud I h) CAD repn>­
~W·III;Uioo 

ln additlon to th Hill"" lwm~ cvr~traint"d to onh· \'f>rfl41\lulnlwu tht· mounting 

hmrk1•t tll<;O had w he• m u:-;l riUm'fl to purelv w·rti('tt] moliuu Lu at't'Ompl~h this, 

huh•" W('rP tfriJit•d a)OI\,g 1 hi' , jlJf'lo4 o f 1)11' IIIOIIIIling hl'llCkf'l Sltl'h I I lilt t h<• bWC'ket ('0111<1 

muw fr('('ly along thr "H'f'l rndto. uf th<• h'~lbcd shown in Fisr.urC' 1·6. Figun· 4-5 (a) 

w1c.l (b) are o:;;hg)ltlr rliff<•n•nt wic h t t'!-o.P<"('t to these hole-... Th<• tJI'IKIII!ll desi~l called 

fell two hole" to be• dri1J<,1 dO"An tbf> f'Dt&re distanC'1' frum Itt.- tup n£ tht> mounting 

hr~Mkr>t to tlw hott<;m uf dw uwuotmg hractPt a:; shfn~o·n 111 l'u~,ur1• .t..S (b) HCJ'\"e\'\"f 

dnlhng tht-. pm\'l..:l ro J,.. murt• dtthc·uh th.an orig.in.a.Jh tlHtiOJ.._h-..1 Con...~UE'Iltl~·. 

f'11lhng R small ~·tion or P\'C from f':U'h !oild f' or tht• bnu lo·l .tiiC->~t-d thf' drill bJt to 

uol hnw w rNnOvi' as muth muu·rml ti11L-. ~illlplifyin~ llw fuhnn\11011 pnX'f'&'\. ThE> 

uduaJ momuing brac-krt lli -.ltowu 111 Figur<' 4-5 (a). Finallv, l~ ~mnll thwttdPd holt' 
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was drilled in the bottom of the mounting bracket in order to connect the bracket to 

the exciter through a threaded steel stinger. 

The test bed was constructed of heavy duty 1.27 em steel and placed on a rub­

ber mat on a steel frame to reduce the unwanted vibration sources that perpetuate 

throughout the lab. The testbed was quite simple in design. It consisted of a simple 

frame with two steel rods used for the accommodation of the mounting bracket. The 

exciter was firmly screwed to the base of the test bed .. and the test bed was securely 

fastened to the steel frame. Figure 4-6 shows a small bungee wrapped around the 

mounting bracket and test frame. The purpose of this is to try to reduce the weight 

of the mounting bracket on the exciter to reduce the interference of the mounting 

brackefs mass with the internal mass of the exciter. The bungee allows the mounting 

bracket to "'hang freely" and is consistent with generally practiced resonance analysis 

techniques found in [36]. 

4.2.2 Electrical Setup 

Figure 4-7 shows the electrical equipment used throughout the experimentation pro­

cess. The equipment shown in the figure includes a function generator and a large 

power amplifier used to control the frequency and amplitude of the exciter vibration. 

The figure also shows a smaller power amplifier which is used to amplify the signal 

of the force transducer positioned between the stinger and the mounting bracket in 

Figure 4-5. 

In addition, there are a few multimeters, cable buses, oscilloscopes, and other 

miscellaneous electronic equipment shown in the figure. However, the most utilized 

piece of equipment shown is the Fast Fourier Transform (FFT) analyzer located on the 

far right of Figure 4-7. This FFT analyzer is very useful in determining the resonance 

frequencies and damping ratios of various test specimens. Consequently, the use of 

this FFT analyzer will be discussed more thoroughly in the following section. 
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Figul"(> 4-7: Various elC<"uical equipment utilized during experimentat ion 

4.3 Experimentation 

4.3.1 Resonance Frequency Analysis 

·rhe l)l'Occdure to determine the resonance frequeu('ies nnd dl'lnl(>ing rat ius or differcnl 

energy harvesters is as fo11ows. First, n Hl ll t~ll ac<~IProlll('h~r wAs mlacllcd to the copper 

ma..-.s with generit postPr put ty, a ud A force transducer was screwed tightly between 

tlw thrf'ndPd sling('r flnd JftOunting bracket. A (unction generator was then ('Onnt"C:"t('(i 

10 the cxdtcr through a power ampJifier Both outputs of t he ~:ux·P len>mf't<"r a ud force 

transduce•· were then connected to the FF'T aut~ly:tRr. 

Next, the function generl;l.tor wAs sPI 10 :-.wt~e-p a siuusoidal bandwidth of 10 -

-400/J z O\'t'r a two-~·ond 1 imPHJ)I\.11 fif1tl tlw FFT analyzer was initialized with the 

same time Stalto. Qu('f' I hE-> rmt<'l iou g(•tlPralor began ~weeping the frequencies, thto 

FFT aunl)-ter re('QrdPd 1 hP A('N•Ieromct Cl' results and conducted a standard Ff'f 

t rnnsronn 10 dPtt1'10i11C' 1 he frequency I'CSponse of the system. The frequency l'('!;pOllst> 
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of the above mentioned prototype with a 55g mass is shown in Figure 4-8 (a). A very 

distinct frequency peak of 154.5H z can be seen in the graph. 

Harmontc Response of Energy Harwster 
14,-~--~~~~--~~--~--, 

1 2 

0 8 

06 

04 

02 

160 200 
Frequeoc:y (Hz) 

(a) Resonance 

correlatiOn of Energy Harvester 

0.6 

0.4 

0.2 

60 100 160 200 2fil Dl 3fil o![X) 

Frequeooy (Hz) 

(b) Correlation 

Figure 4-8: Energy harvester (a) frequency response and (b) correlation 

In order to calculate the damping ratio, the amplitude, Ap, of the peak was ob­

served and the frequencies at which an amplitude of ~ occurred on either side of 

the peak were reordered. These two frequencies were used in the Equation 4.1 to 

determine the damping ratio. The damping ratio for this particular prototype with 

a 55g mass was calculated to be 4.91 %. The reason for this high damping ratio value 

is most likely due to frictional forces between mass and the plastic rods. A damping 

ratio of this magnitude has the disadvantage of requiring a larger input accelleration 

in order to generate power; however, the energy harvester does have the advantage 

of an increased operating bandwidth. 

( 4.1) 

where 
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( = damping ratio [-] 

h = ~ frequency value to the left of Ap [Hz] 

h = ~ frequency value to the right of AP [Hz] 

The purpose of the force transducer was to measure the exact input force into the 

system. This allowed the FFT analyzer to combine the accelerometer output with 

the force transducer output to produce a correlation factor. This correlation factor 

basically explains how much of the observed frequency response is explained by the 

input vibration of the exciter. As can be seen in Figure 4-8 (b), the correlation is 

extremely close to one (100%) over most of the frequency range. However, there 

apears to be a large dip in correllation after 300Hz. This is most likely due to various 

unwanted resonances within the mounting bracket inself, such as screws and various 

other connection points. Regardless, the graph shows a very high correlation over the 

frequency span of interest. 

200 

50 

First Resonance Frequency vs Mass 

6 Experimental 
- ANSYS 
-DOE 

OL-----L-----~----~----~-----L-----L----~ 
50 6J 70 EO 9J 100 110 120 

Mass (g) 

Figure 4-9: Energy harvester resonances vs. mass 
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To ddnminc the different rcRommcc frcqucncicR of the protot~·pc with diH.crcnt 

masses, the procedure described above was carried out for a 55g, 69g, 83g. 97y. and 

1llg mass. The original 50g mass was increased by incrementally securing smaller 

14g masses on top of the 50g mass with high grade double-sided tape. The mass is 

actually recorded as 5g heavier in order to account for the additional mass of the 

accelerometer. Figure 4-9 shows the experimental results along with the Ansys and 

DOE model results. The experimental results seem to be in good agreement with the 

theoretical results: however, they seem consistently lower than the models. This is 

most likely due to the fact that the piezoelectric tolerances given by the manufacturer 

are only accurate to within ±10%. Also, in order to attach the smaller 14g masses to 

the 50y mass, a small amount of pressure had to be applied to get the m&'3S to stick 

properly. This, ultimately, may have compressed the height of the end caps, thus 

lowering the resonance frequencies. The same argument can be said for attaching the 

accelerometer to the mass. This is the main reason why the results for the 50g mass 

in Figure 4-8 (a) do not exactly match the results in Figure 4-9 as the results for 

Figure '1-8 (a) were recorded after the resonance frequency vs. mass experiment had 

been completed. Nevertheless, the experimental values were all within 2.35% of the 

modeled values, thus providing very promising validating of the mechanical models. 

4.3.2 Electrical Analysis 

Figure 4-13 shows a sample voltage output of the prototype energy harvester with 

a 55g mass excited at its resonance frequency of 154.5H z with a base acceleration 

of 1.4g's. The energy harvester achieved an AC open circuit output voltage of ap­

proximately 10.8V. Figure 4-10 (c) shows this output and Figure 4-10 (a) shmvs the 

simple circuit schematic used to acquire this data. A bridge rectifier was aJJed to 

convert the AC voltage to DC voltage and is shown in Figure 4-10 (b). The output 

of the bridge, in Figure 4-10 (d), shows that all negative voltages of the sinusoid have 

been converted into positive voltages. 
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(b) Vbridge Circuit 
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(d) Vbridge 

Figure 4-10: Energy harvester DC (a) Vac circuit, (b) Vbridge circuit, (c) Voc output 
voltage, and (d) Vbridge output voltage 

However, in order to achieve a proper DC signal, a capacitor must be added, as 

shown in Figure 4-11 (a), to smooth out the signal. Notice that this circuit's corre­

sponding signal, shown in Figure 4-11 (c), now has a voltage magnitude of approxi­

mately 9.5V, which is approximately 1.3V less than the maximum voltage observed 

in Figure 4-10 (c). This is quite consistent with what is expected to occur after a 

sinusoidal signal passes through a bridge. An "ideal" diode has a voltage drop of 

approximately 0.7V. Due to the fact that two diodes are always experiencing their 

on-state at any given time during the AC-to-DC transformation, a voltage drop of 
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1.4V (0.7V + 0.7V) is expected. The 0.1 V discrepancy between the theoretical and 

experimental values is due to the fact that in actual practice a diode is rarely ever 

"ideal". 
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(a) Vcap Circuit 
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(c) Vcap 

(b) Vapt Circuit 

Optimal OC:: vonage Output of Energy Harvester 
12,---~--~----------, 
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0o~-~o~oo~s-~o7o1-~o7o175--~o.=~-~o~5 
Time(s) 

(d) Vapt 

Figure 4-11: Energy harvester DC (a) Vcap circuit, (b) Vapt circuit, (c) Vcap output 
voltage, and (d) Vapt output voltage 

Figure 4-11 (b) shows the schematic used in order to obtain maximum power 

transfer to a load resistor. The optimal DC output voltage, Vapt, necessary to obtain 

maximum power transfer is always one half of the open circuit voltage observed 

across the DC terminals, Vcap· As a result, adjusting Vopt = ~ Vcap should produce 

the maximum DC power. Figure 4-11 (d) shows a DC voltage of approximately 

4.8V, which is the optimum voltage needed to obtain maximum power transfer. The 
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maximum DC power is obtained via the standard electrical power equation shown in 

Equation 4.2. 

where 

P =power [W] 

V = voltage [V] 

R = resistance [OJ 

Output Voltage vs. Load Aesrstanoe 

Resrstance (Ohms) 

(a) Voltage 

(4.2) 

Output Po'ller vs Load Resrstance 
o.s,--~-..:...--~-~--~-------, 

Resrstance (kOhms) 

(b) Power 

Figure 4-12: Energy harvester DC (a) voltage output and (b) power output 

Figure 4-12 shows how the resistance value changes the voltage and power output 

obtainable from the device. Figure 4-12 (a) shows the observed output voltage while 

4-12 (b) shows the output power. For this experiment it should be noted that with 

the same acceleration and frequency input values as those used previously, the out­

put across the bridge increased slightly from 9.5V to 10.1 V due to slight resistance 

fluctuations generated by the self-heating of the piezoelectric element. Consequently, 

the optimal voltage shown in Figure 4-12 (a) is approximately 5V, which is nearly 
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one half of the DC open circuit voltage as expected. The optimal resistance shown in 

112 (b) is 36.1k0, \vhich produces a maximum power of 0.7lmW. It is worth noting 

that although there is high penalty for having a resistance lower than optimal, there 

is only a slight penalty for having a resistance that is more than optimal. This means 

that any resistive circuit connected to a piezoelectric energy harvester should be de­

signed to have a resistance equal to or above the optimal resistance. Additionally, 

any other type of circuit, such as a capacitive battery charging circuit, should always 

be designed to charge at one half the open circuit voltage across the DC terminals or 

slightly above. 

4.3.3 Maximum Mechanical-to-Electrical Conversion 

To determine the maximum average power that could be harvested from the device, 

the prototype was excited at its resonance frequency. The manufacturer suggests that 

the maximum strain be kept under 500pE which has been shown in previous Ansys 

models to be equivalent to an open circuit voltage of approximately 47V. In order 

to ensure that the piezo did not break, 4.9g's was a sufficient acceleration to produce 

40V across the energy harvester terminals and was deemed adequate for the tests. 

Both AC and DC experiments were conducted to investigate how the losses from 

the AC-DC circuitry affected the output power and efficiency. Figure 4-13 (a) and 

Figure 4-13 (b) shmv the simple AC circuit setups that were used to produce Figure 4-

13 (c) and Figure 4-13 (d) respectively. Notice that for maximum AC power transfer, 

the voltage across the resistor is one half the open circuit voltage across the AC 

terminals. This is shown in Figure 4-13 (d). The average AC and DC power details 

are shown in Table 4.2. It should be noted that the AC power was calculated using 

the average power Equation 1.14. 

By observing the maximum AC and DC power obtainable from the PZT piezo 

purchased from Piezo Systems Inc., it is quite obvious that a large amount of power is 

lost in the AC-DC conversion process. In fact, for this experiment, almost 29% of the 
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Figure 4-13: Energy harvester AC (a) Vac circuit, (b) Vapt circuit, (c) Vac output 
voltage, and (d) Vapt output voltage 

AC power was lost through the rectification circuitry. This is the main reason why 

AC-DC rectification is still the main hurdle in low-power energy harvesting through 

vibration. Fortunately, a lot of work has gone into this area recently. Attempts to 

produce switch-based as apposed to diode-based rectification, such as Siebert's work 

in [37], looks promising for the future. 
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Description Symbol Units DC Value AC Value 
Input Acceleration ii g's 4.9 4.9 
Input Frequency fin Hz 154.5 154.5 
Damping Ratio ( % 4.91 4.91 
Open Circuit Voltage Vac v 40.6 40.0 
Optimal Load Voltage Vapt v 19.75 20.0 
Optimal Resistance Rapt kf/. 24.7 9.0 
l\laximum Power Pmax mHl 15.79 22.22 

Table 4.2: Experimental maximum power data 

4.3.4 Efficiency Investigation 

In order to observe the behavior of the prototype energy harvester over a variety of 

diflerent base excitation levels, a small experiment \vas set up. The prototype was 

fitted with three different masses and the resonance frequencies and damping ratios 

were recorded. The prototypes were then excited and the resistance adjusted for each 

in order to obtain rnaxirnurn power transfer. Once the optimal voltage and resistance 

\vere obtained, the maximum power could be obtained via Equation 4.2. The data 

for a prototype loaded with a 55g, 83g, and lllg mass is shown in Table 4.3. 

Description Symbol Units 55g 83g lllg 
Resonance Frequency fres Hz 158.78 127.96 105.72 
l\lechanical Damping Ratio (m % 4.91 7.29 9.78 

Table 4.3: Data pertaining to prototypes loaded with three diflerent masses 

The table shows that the resonance frequency decreases with increasing mass 

and the damping ratio increases with increasing mass. To determine the maximum 

theoretical power that can be achieved for a 100% efficient energy harvester, Equation 

1.4 is used. This equation only holds when the frequency of the base driving force 

exactly matches the resonance frequency of the the energy harvester. It should be 

noted that in order to determine the rnaxirnurn achieveable power, the total damping 

ratio, (r, was set to equal 2(m. This relation holds only for maximum power for the 

reasons discussed in Section 1.2.1. To reiterate, the maxinnun power transfer occus 

when (e = (m· Because we know (m through the FFT frequency analysis, we also 

know that (e will have the same value when maximum power output is occuring. Due 
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to the fact th~t the optimtll re:;istt'IIU'E->, whi<'h is d irf>c·tlv proJH>r-1 iom•l hl (,., is Hhmvs 

du:k-;C-'11 for this H~•rit>s of l••sts, wt\ t·~Ln as...,ume> I hat t l u~ l'<'l.lliOn ( T = 2(m will hold. 

[ 
0016 

I 0.01 

000$ 

·3~----~.----~.~----~.----~,~----~.----~. 
loOOele .. iO!'I ~2) 

Figure -1·14: ThoorNit.al(lQ\\'f'r ,·s. b~w nc·c•f>IPrAtiu•• 

Figure 4-L4 shows the theoretical power that can be produced for the three masses 

at their corresponding resonance frequeucit'S. One may exp(>(·t tht\1 a hem•if'r lllt\SS 

would be able to prodU('E-> more powE>r, nnd wil h all ot hc•r fac·ltm; hf'iug <>qual iL dot:>s. 

Howr,·c_.,., iu Lhis c·fL-;t\ Lhl· C'lntnging lhO:>.'l aiTC'cLs lhc damping l'lltio and resonance 

fmtHf'Otic•s, whid\ luwc o major impact on the power that can be produced. This is 

the reason why measul'ing efficiency in this way <'an be quite misleading. Assuming il 

prototype wJth a decreasf'd damping rat1o were created bv n;omoving thE." plastic· rods 

that are used to tllig11 the ma.'-"'i, thE-> thf'OrE>tinll powPr would he• imT('iL.o.;~•d d r-iulutt i­

Ctllly. This L._ wl'._"-' it is impor-lfUII CO OLI'()fully Nh)t(> Lhflt lbt) IMLxiuuun f>O\\'l)l' :.hown 

in F'igm·~ ·1-14 is 1 hP rm\xiunun obtajnnblc poY.'Cr at that r)artu:ular damr)il~9 mlio. 

f\f'wrlhPIP:=;s, F'igurc .J-.14 docs provide o good benchmark co gouge how well the real 

energy honrcster G. performing. 

fig;ure 4-15 shows the experimental AC and DC maxunum power distributions 
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MW.Ji[ {T ..... J I 'hr (%) · tJIK" 1"'-1 

"' "-"'2 J6.J .. ... J I -.. ..:. 9.6.) h 
Ill 19 r.6 •• 3 ,. 

f tgJlW 1-16 ~hows lllf' t•ffi(' lf'llt' 11'!'1 ror llw Lltr«' difft'rent ('IIPI'I(\' hiU , ...... , {'1'... II would 

upp<•1u· t lmt th<"' li,ght<'r, l t~t-..'l-dntupt•tl t•m•rg,v harvcsteJ'S AJ'r t lu• tuc~l t•ftld<"'ul . This 
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JUid (b) DC clrcuH 

nu\k<~ iulllitive sen5f' m; Hn t'IU't"J{V harvn.;lpr with I<'Ss d11mpinP. luUt" wu('b steeper 

n•od1\J peak that will produc:c• mun· JlClwt•r. lltcrcfort". it IS rf'''-"'onnhh• to a. ... ..,ume thai 

t•fhd••m·,- rAn 1w iJl(·rt""a .... -ct 1.,- )OY."I'flll.W. tlu• dampmg rM 10 Ill ~ c1_,,, of l~;~nng a .. malk·r 

INn,.h~t:ultb. lhe ma..ximum Mfu·to-IM lt'!!o, lift(' <~tnd 'lDC· for tlw ddft"'"t"fll protniYJb are 

outhm>tl iu Table- -t 4 Tht• e•tlid.-ncy for tiM> lwo dt"\"it~ nre ~IUI1t• k;... . lhb \'&I~ 

C'o~11d ht· mcreased b\· u .. ulS bt·tte·r pwtot'k('tn( n.aateriab f'hmm.ttiiiJt th'L" n·uter .. him. 

untll'Liminatmg thE> 1111\.'i~ .. hdlnl( rnd!'! r!U' DC efficienl'y c·ottl~l ht I nought d06er to 

t lw AC effidenc·y hy add mg 1\dtlit imml t•llx tronic compmwnl .. , l'iUC h ~.~s 1 ho!->e d1sc•uss(-.l 

h~· Dl•ug in l27j, or by iO\'C'stigntinSt way~ to remo\'e thf' )>U\\'i' r~IIIIUJI.IY hmlgt• n•c·tifi<>r, 

lVI prnpcN·d in Appendi..'! C 

79 



• 
c \ 

!· \ 

J. • 

.. 
• 

" • • 

-.. ~· 

• 

• • • _ ..... 
(•) AC 

·•· 

• • 
• • 
• • 

• • • • • • • 
• 

•• • • • • • 
-~ ...... 
(b) IX' 

Figure 4-17: Optimal Tf-"il-ttt.•n·P vs. base acceleration for an (a) AC cirt'uit and (h) 
DC c.·in·uil 

Fig~nf' 4-17 sho'Mo. how the optimal resonance fr(>(J.l.lfllQ' for rM·h prototype is 

~;tfff'<' l c•d hy 1hc input excitation. It \vould flppe-t~r lhnt •11.. low ~xcita1iou:.. whcl\ the 

device is attempting to overcome it!i tritic·ul mN·hauicaJ druoping value. the optima) 

resistance is ''ery high. Thi. .. IPruL .. to ' 'cry low power initia11y. However, it would 

appear that nftE.'r t hp s\'st<'m Ita.-, overcome this hurdle. the optimal r(:':-' i!;hm<~ b()gins 

to stabilizE:" to ~ t•onsl fU\t value and the power begms to in<'rea.w dnumu il·nJiy. Thb 

pJwnornE'nfi is very (ortunate as it leads to Circuitry dE>Sigu t lun <·fu\ produce optimal 

power over an ah:nost unlimited range of ex('italiou •unplitudcs. 
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Chapter 5 

Conclusions and Future Work 

5.1 Energy Harvester Design Conclusions 

Through the experimentation conducted, several phenomena of interest can be seen 

which dictate how one should design an energy harvester based on certain criteria. If 

the excitation levels are extremely high, and the base frequency constantly changing, 

one should design an energy harvester to have the following features: 

1. The energy harvester resonance should match the base frequency as closely 

as possible. Also, given the same input acceleration, designing for the lowest 

frequency in the spectrum will produce the most power 

2. The energy harvester should have mechanical stops to prevent the device from 

breaking. 

3. A large mass will ensure that large amounts of power are produced. 

1. The damping ratio should be large to accommodate the changing base frequency 

(Consider a cymbal or carriage spring design). 

5. For capacitive battery charging, always design circuity such that the battery 

or capacitor is always charging at one half the DC open circuit voltage of the 
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p1ezo. For resistive loads, designing the circuitry at or slightly above the optimal 

resistance will ensure that the load voltage is one half the DC open circuit 

voltage and therefore transferring maximum power. 

6. Increased bandwidth. not efficiency is the primary goaL 

If the excitation level is lmv and the base frequency is relatively constant, one 

should design this type of energy harvester to have the following features: 

1. The energy harvester resonance should match the lowest-frequency highest­

amplitude frequency in the base excitation spectrum as closely as possible 

2. A small mass will ensure that some amount of power can be produced even at 

low excitation levels as the critical damping will be easier to overcome. 

3. The damping ratio should be small in order to obtain as much power as possible 

from the given input vibrations (Consider a cantilever beam or carriage spring 

design). 

4. For capacitive battery charging, always design circuity such that the battery 

or capacitor is always charging at one half the DC open circuit voltage of the 

piezo. For resistive loads, designing the circuitry above the optimal resistance 

will ensure that a greater amount of power can be obtained during very low 

excitations. 

5. Efficiency is the primary goal here. not increased bandwidth. 

Unfortunately, the most common situation that arises in structural health mon­

itoring is a very small input vibration occurring at a fluctuating frequency. The 

best approach to deal with this situation would be to follow the guidelines of the 

low-excitation, constant-frequency spectrum approach. However, the damping ratio 

should be adjusted in order to increase the bandwidth to an application-specific fea­

sible amount without compromising the ability of the harvester to produce significant 
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amounts of pmver. An alternative to increasing the damping ratio would be to actively 

adjust the resonance frequency of the device to accommodate a changing frequency 

spectrum. However. doing this requires adjusting physical properties of the device, 

which ultirnately requires large amounts of electrical power to move motors, tighten 

shape memory alloy wire, alter l\lagneto-Rheological (l\1R) fluid, etc. The amounts 

of power required to do this usually far exceed the power actually being produced by 

the device. 

No matter what excitation environments exist, energy harvester design has the 

potential to be quite difficult. A designer must carefully study the design criteria and 

prioritize which features are most important given the vibration levels and application. 

Ultimately, a good understanding of how piezoelectric energy harvesters work coupled 

with a great amount of planning and common sense should lead to a good design. 
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5.2 Future Investigation 

This thesis began by taking a very broad look at energy harvester design for the 

purposes of energy harvesting for structural health monitoring systems. Although 

the work conducted here drew meaningful conclusions and recommendations on how 

to design an energy harvester for different environments. it did not specifically focus 

on how to design for a real structural health monitoring situation. The experimental 

work showed that effective power harvesters could be used given very high accelera­

tion environments found mostly on high powered industrial equipment. However, in 

order to design an energy harvester that nms on the low frequency ( < 50Hz), low 

acceleration ( < lg) levels found on most civil structures. quite a different strategy is 

needed. As a result, the following should be further investigated by anyone who has 

a great deal of interest in this subject. 

• Calculate the total possible power that is harvestable from different structural 

environments in order to determine if power harvesting is feasible given common 

energy harvesting techniques and materials. Some environments of interest 

could include ship hulls, FPSOs, aircraft wings, spacecraft, and raihvays. 

• Determine both the mechanical and electrical tradeoffs between a carriage spring 

design and a cantilever beam design at low frequency levels. For low frequency 

environments, a cymbal would be quite unfeasible. 

• Scalability is a major area for future research. Scaling down the energy har­

vesters discussed in this thesis and modeling them in Ansys would be a very 

interesting endevour. As discussed in Section 5.1, the best solution would have 

low damping, low mass, and small size. Also, the piezo material should be as 

small as possible to produce a significant amount of voltage. Bringing these 

values to their physical limits would help to investigate whether or not it is 

feasible to overcome the inertial damping present in these energy harvesters to 

produce any significant power. 
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• Investigate new piezoelectric materials that have higher mechanical to electrical 

conversion efficiencies, such as PZN-PT, in order to design the most efficient 

energy harvester possible. 

• Investigate possible solutions to automatically adjust the resonance frequency of 

the device to match the dynamically changing vibration frequency of the input 

vibration. Also, investigation into cascading generators to increase bandwidth, 

such as those proposed by Deng in [27], would prove worthwhile. 

• Investigate ways to remove the bridge rectifier circuitry. which is the primary 

cause of power loss during AC-DC power conversion. In fact, for generating 

very low amounts of power from small vibration sources, the diode loss hurdle 

(1.4V) must be overcome in order to generate any power at all. This is, in 

the author's opinion, the most important area for future research for vibration 

energy harvesting from civil structures. A potential solution to this problem is 

proposed by the author in Appendix C. 

Great strides will be made in mechanical-to-electrical power harvesting only when 

these items are given the necessary attention by the scientific community. \\Tireless 

solutions, such as Zigbee wireless sensor networks, continue to make large strides in 

power efficiency; however, the physical limits imposed by today's current batteries 

are not equipped to handle the large scale wireless sensor networks envisioned by 

industrial engineers and companies. Consequently, it is believed by the author that 

these technologies will serve only on a limited basis until realistic energy harvesting 

techniques are discovered. The ONLY way to achieve this is through the conglomer­

ation of knowledge pertaining to this subject across three major scientific disciplines, 

namely mechanical engineering, electrical engineering, and material science. 
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Appendix A 

Ansys Carriage Spring Code 

/title, Static Analysis of Carriage Energy Harvester 

/filname,bw3 

/nopr 

/com 

/Prep7 

/RGB,INDEX, 100, 100, 100, 0 

/RGB,INDEX, 80, 80, 80, 13 

/RGB,INDEX, 60, 60, 60, 14 

/RGB,INDEX, 0, 0, 0, 15 

!---------------------------------------------

! User Variables 

1---------------------------------------------

m = 275e-3 

h = 1e-3 

a = 2.5e-3 

b = 10.9e-3 

c = 2.5e-3 

w = 6.4e-3 
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tpiez 

tshim 

.13e-3 

.12e-3 

tcap = .254e-3 

massDens = 1700000 

disp = -.22e-3 

! Calculated Variables 

!w 3.14*b/2 

hm m/(a*W*massDens) 

tp tpiez 

ts tshim/2 

tt ts+tp 

t = tcap 

1---------------------------------------------

! Draw Device 

!---------------------------------------------

local, 11 

local,12,,,,,180 

csys, 11 

!-----------Draw Keypoints for cap 

Coord. system for lower layer: polar axis +Y 

Coord. system for upper layer: polar axis -Y 

Activate coord. system 11 

k,1,0,h $ k,2,a,h $ k,3,a+b,O $ k,4,a+b+c,O $ k,5,0,h+t 

k,6,a,h+t $ k,7,a+b,O+t $ k,8,a+b+c,O+t 

!-----------Draw Lines for cap 

1,1,2 $ 1,2,3 $ 1,3,4 $ 1,5,6 $ 1,6,7 $ 1,7,8 $ 1,1,5 $ 1,4,8 
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!-----------Draw Cap Area 

al,all ! draw areas by lines 

AGEN,2,ALL,,,,tt,,,,1 ! make room for piezo 

arsym,y,all ! reflect area 

!-----------Draw Keypoints for Mass and Piezo 

k,17,0,h+t+hm+tt $ k,18,a,h+t+hm+tt $ k,19,0,tt $ k,20,0,-tt 

k,21,0,ts $ k,22,0,-ts $ k,23,a+b+c,ts $ k,24,a+b+c,-ts 

!-----------Draw Lines for Mass and Piezo 

1,5,17 $ 1,6,18 $ 1,17,18 $ 1,19,21 $ 1,21,22 $ 1,22,20 

1,4,23 $ 1,23,24 $ 1,24,12 $ 1,19,3 $ 1,20,11 $ 1,21,23 $ 1,22,24 

!-----------Draw Mass and Piezo Area 

al,4,17,18,19 ! draw areas by lines for mass 

al,20,26,28,3,23 ! draw top piezo 

al,22,29,27,11,25 ! draw bottom piezo 

al,21,28,29,24 ! draw shim 

aglue,all ! glue areas 

1---------------------------------------------

! Define Material Constants 

1---------------------------------------------
EMUNIT,EPZR0,8.85E-12 ! free space 

!-----------Defin Material 

et,1,plane223,1001 

et,2,plane223,1001 

symmetric element 

symmetric element (for mass check) 
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!-----------Defin Material Properties for cymbal and mass 

mp,ex,1,130e9 ! Young's modulus for material ref. no. 1 (Brass Cap/Shim) 

mp,ey,1,130e9 

mp,dens,1,8400 

mp,prxy,1,0.33 

! density for material ref. no. 1 (Brass Cap/Shim) 

Poisson's ratio for material ref. no. 1 (Brass Cap/Shim) 

MP,PERX,1,5 ! Low permittivity for center shim 

MP,PERY,1,5 

MP,PERZ,1,5 

mp,ex,2,2e11 Young's modulus for material ref. no. 2 (Steel Mass) 

mp,dens,2,massDens ! density for no. 2 (Steel Mass) - Exaggerated for display 

mp,prxy,2,0.3 ! Poisson's ratio for material ref. no. 2 (Steel Mass) 

MP,PERX,2,0 

MP,PERY,2,0 

MP,PERZ,2,0 

!mp,ex,3,62e9 ! Young's modulus for material ref. no. 3 (Piezo) 

!mp,dens,3,7800 ! density for material ref. no. 3 (Piezo) 

!mp,prxy,3,0.3 ! Poisson's ratio for material ref. no. 3 (Piezo) 

tb,anel,3 ! Stress matrix for ref. no. 3 (Piezo) 

TBDATA,1,1.4357E+11,1.0108E+11,9.5678E+10 

TBDATA,7,1.3541E+11,1.0108E+11 

TBDATA,12,1.4357E+11 

TBDATA,16,2.2989E+10 

TBDATA,19,2.2989E+10 

TBDATA,21,2.3946E+10 
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tb,piez,3 ! Piezoelectric matrix for ref. no. 3 (Piezo) 

TBDATA,2,-10.8559 

TBDATA,5,23.3268 

TBDATA,S,-10.8559 

TBDATA,10,17.0345 

TBDATA,15,17.0345 

MP,PERX,3,1704 

MP,PERY,3,1302 

MP,PERZ,3,1704 

!---------------------------------------------
! Meshing 

!---------------------------------------------

type,1 

!-----------Mesh Caps 

lsel,all $ lesize,all,1e-4,,,,1 $ MAT,1 $ amesh,1 $ amesh,2 

!-----------Mesh Shim 

lsel,all $ lesize,all,.5e-4,,,,1 $ MAT,1 $ amesh,6 

!-----------Mesh Piezo 

lsel,all $ lesize,all,.4e-4,,,,1 $ MAT,3 

esys,11 $ amesh,4 $ esys,12 $ amesh,5 

!-----------Mesh Mass 

type,2 
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lsel,all 

lesize,all,1700e-4,,,,1 

MAT,2 

amesh,3 

!-----------Define Nodes of Intrest 

nMass = NODE(O,h+t+tt+hm,O) 

nBotShim NODE(O,-ts,O) 

nTopShim NODE(O,ts,O) 

nBotPiez NODE(O,-tt,O) 

nTopPiez NODE(O,tt,O) 

nBotPiezEnd = NODE(a+b+c,tt,O) 

nelec = 100 

*dim,ntop,array,nelec 

11 = 0 

!12 = (b+c)/nelec 

12 = (a+b+c)/nelec 

*do,i,1,nelec 

nsel,s,loc,y,O 

!nsel,r,loc,x,c+l1,c+l2 

nsel,r,loc,x,l1,12 

cp,i,volt,all 

*get,ntop(i),node,O,num,min 

l1 = 12 + ts/10 

!12 = 12 + (b+c)/nelec 

12 = 12 + (a+b+c)/nelec 

*enddo 

Number of electrodes on top surface 

Initialize electrode locations 

Define electrodes on top surface 

Get master node on top electrode 

Update electrode location 
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1---------------------------------------------

! Modal Analysis 

1---------------------------------------------

!-----------Find Solution 

!/solu 

!dl,7,,symm $ dl,16,,symm $ dl,17,,symm 

!dl,20,,symm $ dl,21,,symm $ dl,22,,symm 

!nsel,s,loc,y,-(h+t+tt) ! select bottom of device 

!d,all,all,O 

!nsel,all 

!antype,modal ! modal analysis 

!modopt,lanb,2 ! number of modes to extract 

!mxpand,2 ! number of modes to expand 

!solve ! solve 

!fini 

!-----------Display Results 

!/post1 

!set,list ! show results 

!set,first ! select first set 

!pldisp,1 ! display deformed shape 

1---------------------------------------------

! Static Analysis 

!---------------------------------------------
/solu 
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dl,7,,symm $ dl,16,,symm $ dl,17,,symm 

dl,20,,symm $ dl,21,,symm $ dl,22,,symm 

antype,static ! transient analysis 

acel,,9.8! apply gravity 

nsel,s,loc,y,-(h+t+tt) ! select bottom of device 

d,all,uy,O ! constrain uy 

nsel,all ! select all 

nsel,s,loc,y,-tt 

d,all,volt,O 

nsel,all 

Define bottom electrode 

Ground bottom electrode 

nsel,s,loc,y,tt 

d,all,volt,O 

nsel,all 

Define top electrode 

Ground top electrode 

! apply load if necessary 

d,nMass,uy,disp 

!f,nMass,Fy,-mass*9.8 

solve 

finish 

!-----------Display Results 

/POST26 

ansol,2,nBotPiez,epel,x,botStrain 

ansol,3,nTopPiez,epel,x,topStrain 

NSOL,4,nMass,U,Y, UY_3 

/com, Spring Constant %-m*9.81/uy(nMass)% N/m 

/com, - Defelection ratio = %-ux(nBotPiezEnd)/uy(nMass)*100%% 
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ntot = 0 

*do,i,1,nelec 

/com, - Electrode %i% Voltage %volt(ntop(i))% 

ntot = volt(ntop(i)) + ntot 

*enddo 

/com, - Electrode Average Voltage %ntot/nelec% (Volt) 
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Appendix B 

DOE Diagnostic Analysis 

In orde-r to detenniue if the model Jl:i attuttllv s l al i.-;1 il'nlly vfLiid, a nun1bcr of confidence 

interval cnteria must be met. Tlw t(':iling for this t~1)C of significance is normally 

<'arned out g rttphic·ally hy t in} us<> of nol'lnaJ probability and residual· based diagnostic 

plo1 s. 
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figure B.l is a normal probnbili1y pint of the- u\odcl. The normal percent proba­

bility values of tht> ditta tl r E> rE>pn-•St'HI tJd hy the S((Uarc boxes. while a standard normal 

probability graph i.s repr~ntt>d hy the diagonal line. In essence. tlus plot rt>present:; 

how well the response followH a noruHl.l distribution. It is quite obvious that the 

response is quite "normal'". 

Figure B.2 showg the n•siduals \'S. predicted plot. This plot shows how the residu­

als differ from t lw tm•di(·I('(J ~port.:.e and is a measurt' of how well t he tnodel pr(>l( li<ts. 

Ideally, o 1w ·would like to see these values as dose to zero ns possihlt•. However, it is 

<'ommOil practice to be satisfied with t he results a.~ 1oug as the residuals fall within 

1 h~ -3 and +~ as shown by the red liueH un 1 ht> graph. 
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Figure B.2: Residuals vs. predicted 
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In adrl:mon. tt~· plot ur r'"'~l111d .. ,..... rtm. ~-n m F'tgur•· U ~1- .lllt" 001 funnel 

.. hllpt"'J 1 An<l il c·att tbc·u·forf" hr R."'lttm~t cl:w.t the J)I'04"h ... l""'n~ !Oincl-.-d did not dnft 

(II hf.romP mow t·rrau; owr 11111+ It nlJJ a6o be a.~~•HnNlthl\1 till• mdepend('D('(' &..'>-­

~mnphon ttncl c"Cnl:;tnm \'f\rinnc"C' W•I<~Umplluu t)o'Pic-al to tin .. 1\'fH' of ar~tllysis are valid 

m; tlu~ n':-'l<lnl'll plutN On' l'llruc tl l tt'lt·s.~ nml rontain no )>Ill iPrn~ rcw tht• most pan. 

Resoduals vs. Run ,. ~---=====-----==1 
• 

i •• • • , 
•• • 

~ • • "' • • ! ... • • • 
• •• " •• • • 0 , 

Ill • • ... 
• • 

,. 
' I I a I 

• ' " " " •• " " 
RunNU'nber 

FlAIIN' IJ .~I: R('"idua1s vs nm 

Tbt> pn"'linOO ,.s. Aft un) ,1\:l'li.ph whown in Figure B I :;hnw"' 1 hnl tl1t• 111odel appeAr.., 

to prrochc l quite \\'t'll whf'll rill' t 'CJUA1iun b l.IS("(i to pn'i'1il'l tlw vahJt~ !-b0\\"0 td tht> 

c-hff•·tNd (auor level-. Tlw 'I•J:iiM tiM" daiR point... fullc)\\ a •HtnJ,1lt hoP. the lwtlt.'f 

th•· modif'l_ Tb~ figure,,.._,.,. lhdl the ~I "iPf'11L .. tltllh• an·ural•• ftnrl , .. 111 good 

"g""·mt·nt ";tb tbP pn·,·ao~lr nwnHont>d R1 \1\ln.:-
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Appendix C 

Bridge-Free AC-DC Power 

Conversion 

l\Iany researchers have tried to remove the bridge rectifier from the power harvesting 

circuitry with limited success. Unfortunately, these researchers have been tackling the 

problem by trying to remove the diode bridge electrically by using electronic switches 

and the like. Unfortunately, these switches require either boot energy or require far 

more energy than is actually produced by the energy harvester. Hmvewr, the vertical 

motion of any vibrational energy harvester lends itself to the possibility of being a 

mechanical switch. Consequently, a method is proposed to eliminate the switch using 

l\1El\Is technology. Figure C.l (a) shows a proposed unimorph cantilever design. The 

only difference between this cantilever and previously discussed cantilevcrs is that 

there are two thin flexible wires attached to the cantilever: one on the top electrode 

of the cantilever, and one on the bottom electrode of the cantilever. The wiring scheme 

is shown in C.l (b). This wiring scheme shows four separate electrodes, two on top 

and two on bottom, connected to a storage capacitor. The top left electrode connects 

to the positive terminal of the capacitor, while the top right electrode connects to the 

negative terminal. The bottom two electrodes are also wired to the capacitor, but 

are reversed. 
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(11) Ctlnlilt•vt't" IK'IUU 

F'i.l(ntv (' I: llropost•cl ut('("h.anicaJ.electrical cir .. ign ~ohowitiR (a) tltill l'unduction fila~ 
mt•nt.~ oil a ntuliJ<'V<"f beam and (b) f'lr<-tric·"'l Wlnll!-4 

J'lu- J•toc,.,.,_ .. wutk._..., a:; follo\\'s, frrq, thf' c-amik·\'··r lJ4·1uu L ... J)Uooition('(i directly m 

Ill(" •'l"'llt"J uf tit•• fuur ekx:trodes .,-uh ~·11l14·r <•f ll2o U•·x1ltl•• •uf"5 111&king Any oont8C1 

•·tth dth• r rk-c:trod-:- \\lK-n tbf' hPAm i. ... nr ttf'd .u~l tWo t*'DCI of tbr lwam lM"gin.-; to 

uu.l\t' ''l"''atd, the two flf'xillW win-:-. t-unt.u·t tlu·ar """l"""'"" ~~~n.ght ~t.ud to~lc(t 
t•lf, tro•Jo"M_ llu.; ~·Wl"i thf• fin.l lu\Jf C_\T~' o( tht• \'nltll'tf' pnwiUn'\"l tJ,- lht• pll'zo tO tbf' 

t ntMntm wlurh l."i JK:t--iti\'(' in sign. Thb l~ ~hown IU l'a~ur·· c· 2 {a). l'bof' path of 

c·urrt•nl flow I!>! xhnwu hy the colored ~rHon., of wir-t' iu 1 ht· <liuKr~uu. [he red wire 

t'(·prt'""''n1 ... tlw lu11 wir<>. while the black t'f>Pff'<o,('lll" t lw jJ,rouud wh•t• 

l'\c•x1. lilt' downward 1notion begm-, ~nd tlw fl1•x1hlt• wh''' hook mto the1r two 

rl"'l>f'Hiw lJOUom electrodes as -.howu in Fi~nn> ('.2 (h}. On{'(-' ag.aJu, thr pohll'il v 

n( t i ll' \'Cih4~(' ~ "howu bv tht> c•oJnn'<l !>f't·liou .. u( whi• 111 the• diAgram Thr oJllv 

tlifli-H'IU'f' lwt Wt>f•n t lw upw~d ami dwonwnrd c.·nlc- 1~ 1 h.tl dullltg I ht• clowuward C\'r1<'. 

tt ... \'tlh<'J4" lwt.'""' o~fJw polaritv Ho\\l·n·r, l:M"'l·HIL""'' lhf'""' f"i!'C:tJY)(II·!-. IUl' wirrd in 

n·wr.- <•rtJ••r 1 liP Df'&Ain-.. \"'h.tgt• a.JJV' <lh> ·"-~ " J)()fllll\"• • \nh IlK'' ru·n..,.-. 1 hr C'.ttpacitor 

.\uy,, br.·a11~ tbr pol11-nl\· Lo, al~1l~~ po-.iti\'t" at'rtl!ti 1ht- r"J)ftator, it nm d1~(" With 

c·bw- tu no JKA\"1'r lo~,.,.... Tlw ouh- k)'.~ oa:ill lw duruJ£ lit•• pennci wh..,u IIW' bt•am b. 

in u~ Hlblpomt ~If Jon nnd lhP win':', art Oul IOUII hmg f'lllwr t•(.,C"InHit•. Ho'o\'t'ver, 
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this problf>m t•H\ he> ovc!'oomc by using ~~E~ls te('hnology to m•\k~ the electrode gap 

and fif>xihiE> wii'<'S A.~ Sllla11 as possible. In fact, with a vt>ry slllA.II dcx-trodc gap, the 

opt>n <'irc·uit oulput o£ the energy harvestt>r would look idt)ul itA.I lO the output of the 

bridge shown iu Figun~ 4-10 {d). 

(a) Upv;ard p06ilion 

Figure C.2: Proposed medtani('al-t>h.•c..tri<"AI de . .,ign showing (a) upward position ~;~ml 
{b) downward p0l5ition 
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Although the design shown in Figure C. I is a unimorph beam, any number of lay­

ers can be used if wired correctly. Also, a cantilever design is shown for explanation 

purposes: however, a cymbal, carriage spring, inductive, capacitive. or magnetic en­

ergy harvester could all use a similar technique to mechanically eliminate the bridge. 

It should be noted that alternate designs could also be used. such as letting the flexi­

ble wires slide along the electrodes, or simply wiring all four electrodes appropriately 

and using a mercury switch. No matter what technique is used for a specific energy 

harvester, it is hypothesized that a vibration-excited energy harvester can be used as 

a mechanical switch to eliminate the bridge with little to no effect on the mechanical 

characteristics of the device. If this design could be implemented in practice, it is 

believed by the author that small amounts of useful power could be harvested from 

almost any vibration source, no matter how small. This concept of using mechanical 

switches instead of a bridge definitely warrants further investigation and wonld be an 

excellent area for future research. 
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