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ABSTRACT 

Community structure is largely influenced by predator-prey interactions; however, 

the complex nature of anti-predator behaviours, especially when more than one predator 

is present, remains unclear. The work outlined in this thesis investigated the effect of 

experience with multiple predators on the anti-predator behaviour of juvenile Atlantic cod 

(Gadus morhua). Hatchery-reared ("na"ive") individuals lacking the experience of their 

wild counterparts may be unable to recognize or evade predators effectively. The anti­

predator behaviour of na"ive juvenile cod and two wild cod species, Atlantic cod and rock 

cod (Gadus ogac) in the presence of either one or two shorthorn sculpin, was examined. 

Both wild species demonstrated schooling behaviour in the presence of a predator, and no 

predation was observed over the course of the trials. However, effective schooling 

behaviour, as determined by relative mortality, was not observed with the na"ive Atlantic 

cod as predation was observed in 50% of the trials. 

The effect of multiple predators on schooling behaviour and mortality was also 

investigated in na"ive juvenile Atlantic cod exposed to both adult cod and sculpin in a 

substitutive design. Non-additive effects on the relative mortality of juvenile Atlantic cod 

under multiple predator threat were observed, while the effects on schooling behaviour 

were less clear. This study was the first to investigate multiple predator effects in Atlantic 

cod, and one of the first marine studies in the multiple predator effects literature. The 

results demonstrate the plasticity of prey responses and the importance of experience in 

the development of efficient anti-predator behaviours. 
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CHAPTER 1 

General Introduction 

1.1 Predator-prey interactions 

Predator-prey interactions shape the dynamics of natural communities. The 

direction of this interaction can be shaped by how prey respond to a predatory threat 

(Kerfoot and Sih, 1987; Soluk and Collins, 1988; Power, 1990; Crowder eta!., 1997; Sih 

et a!., 1998). The role of prey behavioural responses in predator-prey interactions was 

emphasized by Sih ( 1979), who suggested that the importance of predator functional 

responses had been overstated. The diversity of prey responses to predatory threat is 

impressive, as is the plasticity of those responses (Relyea, 2003). For instance, bluegill 

sunfish (Lepomis macrochirus) shoaling decreases when vegetative cover is available, 

and schools of fish are observed to become more concentrated in the presence of a 

predator (Savino and Stein, 1989; Pitcher and Parrish, 1993). Schooling is a well­

established anti-predator behaviour, reducing the per capita predation risk of prey with 

prey group size (Sih, 1987; Pitcher and Parrish, 1993). The flexibility ofthese behaviours 

reflects the sensitivity of prey to the level of predation risk and their active choice of 

avoidance behaviour. 

1.2 The role of experience in avoiding predators 

Predator avoidance behaviours have both an innate and learned component. This 

is well exemplified by observing the behavioural capacities of fish that are naive to 

predators. There exist some mixed results on both the anti-predator behaviour and 

foraging ability of naive fish. In general, naive fish initially exhibit a lack of certain 



abilities, but these abilities can be quickly learned (Benzie, 1965; Colgan et al., 1986; 

Jarvi and Uglem, 1993; Steingrund and Fem6, 1997). Milinski (1979) was able to show 

that as predators, sticklebacks with previous experience attacking high density swarms of 

prey were more effective in subsequent attempts than sticklebacks that had experience 

with only smaller swarms. This demonstrates that many of the differences between 

experienced and inexperienced fish lie not in the presence or absence of certain 

behaviours, but in the extent of their development. 

1.3 Multiple predator effects 

In recent years, the multiple predator environment has become of interest to 

behavioural ecologists in determining how prey respond to the complex predation risks. 

Studies involving multiple predators have found that predator-prey relationships are less 

clear than once imagined. While most studies on predator-prey interactions focus on 

lethal effects, the indirect effects of predator-prey interactions have become the focus of 

some interest with respect to the multiple predator environment. Prey mortality in the 

presence of multiple predators is often compared to a theoretical value for prey mortality 

attained by adding mortality in the presence of either predator alone. However, 

interactions among predator and prey are often qualitatively different when more than one 

predator is present. Emergent multiple predator effects are said to be present when the 

observed effect on prey cannot be predicted merely by summing the effects of the 

predators individually; that is, the presence of more than one predator results in either risk 

enhancement or risk reduction for the prey (Sih et al., 1998). 

Research is now finding that interactions between predator and prey are 

qualitatively different when more than one predator is present. For example, Daphnia sp., 
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an aquatic invertebrate, migrate towards the water surface at night, which is a seemingly 

inefficient anti-predator defense, as this makes them more vulnerable to predation by fly 

larvae. However, this migratory behaviour actually mitigates potential predation since 

bluegill sunfish prey upon fly larvae that hover near the water surface waiting for 

Daphnia (Gonzalez and Tessier, 1997). 

Emergent multiple predator effects (MPEs) are the result of indirect effects among 

predator and prey species. Indirect effects have been given many definitions, including all 

those effects that are not direct (Wootton, 1994 ), but in this case it refers to an effect that 

modifies the direct effect of one species on another (Kerfoot and Sih, 1987). Essentially, 

indirect effects refer to competition, interference, or facilitation between predators. In 

recent years these effects have been described using many different tenns; however, the 

most concise terminology has been set out by Miller and Kerfoot (1987). Indirect effects 

are of three qualitatively different categories: trophic linkages, whereby one species 

affects another by altering the abundance of a third species; behavioural effects, whereby 

one species affects another by altering the behaviour of a third species; and chemical 

response effects, which is a behavioural effect that has been chemically mediated (Miller 

and Kerfoot, 1987). 'MPE', then, is a broad tenn for predator-prey interactions, but in this 

thesis I am concerned with the behaviour of a single prey species in the presence of 

multiple predators of different species. 

1.4 Objectives 

This thesis examines the behavioural response and relative risk of predation of 

juvenile cod when exposed to different types and densities of predators, both from the 

applied perspective of aquaculture and the theoretical perspective of emergent effects. In 
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Chapter 2, I set out to determine whether or not differences exist in schooling behaviour 

and mortality of hatchery-reared Atlantic cod (Gadus morhua), a wild conspecific, and 

Rock cod (Gadus ogac ), when exposed to a predator based on their previous experience. 

Chapter 3 examines the theoretical question of multiple predator effects by looking at the 

schooling behaviour and relative mortality of hatchery-reared Atlantic cod in a multiple 

predator environment. Some data from Chapter 2 is used for comparison in Chapter 3; the 

purpose of this was to limit the number of fish used in the experiment. The impacts of 

previous experience on anti-predator behaviour and fitness are examined. 
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CHAPTER2 

Intra- and interspecific differences in predation risk: A comparison of wild and 
naive fish 

2.1 Introduction 

Predator-prey interactions shape aquatic communities in complex ways (Sih et al., 

1998). These interactions can have both direct and indirect effects on individuals and 

communities. Predators can directly affect prey mortality, and indirectly affect different 

behaviours, including feeding, schooling, refuge use, and habitat choice (Sih, 1987). The 

environment in which these relationships develop has fitness and behavioural 

consequences, influenced by life history and experience ofboth predator and prey. 

Differences between the anti-predator behaviour of different species are due to 

unique predation pressures. Two congenerics, juvenile Atlantic (Gadus morhua) and rock 

cod (Gadus ogac), have few morphological differences while at a young age, but very 

different early life histories (Methven and McGowan, 1998). While G.morhua spawns 

offshore and has pelagic eggs, G.ogac spawns inshore and has demersal eggs (Scott and 

Scott, 1988). Laurel et al. (2004a) suggests this difference may explain differences in 

habitat use and aggregative behaviour between the two species. These differences in 

behaviour and habitat use reflect the variation in predation pressure experienced by the 

species, and the magnitude of predatory threat in the wild from such predators as larger 

cod, sculpin and seals (Scott and Scott, 1988). Atlantic cod are also raised in hatcheries, 

where they never experience the threat of predation in a wild environment. These na1ve 

cod do not have the experience necessary to develop behavioural mechanisms that enable 

wild fish to recognize and evade predators effectively. Although anti-predator behaviours 
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are based on unlearned predispositions, for example, the fast-start startle response (Eaton 

eta!., 1977), they are also shaped through experience (Magurran, 1990; Oila eta!., 1998). 

The exact nature of hatchery-reared behavioural deficits is unknown, but likely involves 

the inability to recognize predators, to discern their level of motivation, and poor anti­

predator behaviours, including schooling (Olla eta!., 1998). In fact, Thompson and Tufts 

(1967) found that a predator may even switch from wild to reared prey when they are 

available, presumably due to the ease of their capture. Attempts to release hatchery-reared 

fish into the wild have largely been met with failure, due to high predation rates and their 

inability to forage on live prey (Svasand and Kristiansen, 1990). Skreslet eta!. ( 1999) 

concluded from a survival study on stocked wild Atlantic cod that release programs 

provided no potential for commercial fishing due to predation and cannibalism. 

Fortunately, some research shows that these anti-predator behavioural deficits can be 

corrected with predator "training"; that is, acquainting prey with a predator in either a 

contact or non-contact situation (Benzie, 1965; Jarvi and Uglem, 1993; for review see 

Maynard eta!., 1995). Jarvi and U glem (1993) were able to improve the anti-predator 

behaviour of reared Atlantic salmon smolts with one-predator non-contact training, and 

even more so with contact training. Olla et a!. ( 1992) found that coho salmon smolts that 

had previously survived predation avoided it in greater numbers upon reintroduction to a 

predator, and were also able to avoid capture longer. Even training with a predator model 

(Kanayama and Tuge, 1968) or with the visual, chemical and tactile stimuli associated 

with predation is sufficient to see some improvement in mortality rates (Olla eta!., 1998). 

Although the behavioural differences ofhatchery-reared and wild fish have been 

studied in the past, much of this research concerns salmon. Many anti-predator behaviour 
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studies involve only one predator and one or two prey at a time, which is an unlikely 

situation in the wild. Additionally, these comparison studies often expose prey to 

predators in a non-contact situation (behind a plexiglass divider or net) making 

estimations of relative mortality impossible. The two studies that do specifically address 

differences between wild and hatchery cod both only used one predator (Nordeide and 

Svasand, 1990; N0dtvedt et al., 1999), while Schoener (1989), in a review of food web 

literature, found a median of 2-3 predator taxa feeding on a given prey taxon. There has 

been some research on the behavioural differences of hatchery-reared and wild cod, but 

these studies have found conflicting results. N0dtvedt et al. (1999) found that hatchery­

reared juvenile cod maintained closer distances to an adult cod than did wild cod, in 

contrast to the findings ofNordeide and Svasand (1990) that hatchery-reared cod were 

more vigilant and stayed further away from an adult cod. 

Recent interest in aquaculture has increased due to the declining condition of fish 

stocks and fisheries worldwide (Brown et al., 2003). While some of these efforts focus on 

full-cycle ("egg to plate") aquaculture, others programs are being developed for release, 

i.e. a "put and take" fishery (Svasand et al., 1998). The mass production of cod has been 

possible since the early 1980s, and enhancement initiatives have been attempted in 

Norway, Iceland, the United States and Canada (Svasand and Kristiansen, 1990; Brown 

and Laland, 2001 ). The rates of juveniles surviving to adulthood in these initiatives have 

been notoriously low, some as little as 5% (for review see Brown and Laland, 2001 ). One 

study that investigated the mortality of released reared and wild cod found a similar 

mortality pattern, but also noted that reared cod mortality was often due to larger cod and 

short-hom sculpin (Larsen and Pedersen, 2002). However, Atlantic salmon survival from 
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egg to smolt in the hatchery can reach 50%, while it is less than I% in the wild (Piggins 

and Mills, 1985). Skreslet et al. (1999) found higher rates of angling returns for tagged 

wild cod versus reared cod, suggesting that more reared cod suffered natural mortality 

due to predation, and similar results have been found for Atlantic salmon (in Svasand et 

al., 1998). Mortality for hatchery-reared fish is highest immediately after release (Howell, 

1994; Oil a et al., 1998). For these initiatives, it is of the utmost importance that reared 

individuals are equipped for surviving in a wild environment (Olla et al., 1998). 

This study will investigate the schooling behaviour and mortality rates of wild 

Atlantic cod, wild rock cod and hatchery-reared, nafve Atlantic cod under multiple 

predator threat. I predict that the schooling behaviour of nai"ve cod will be lacking in 

comparison to wild individuals of either species, and that this will be reflected in their 

relative mortality rates. 

2.2 Materials and Methods 

2.2.1 Experimental animals 

Age 0 hatchery-reared juvenile Atlantic cod (Gadus morhua, 12.9±1.0 em, s.d.) 

were obtained from the Aquaculture Research and Development Facility at the Ocean 

Sciences Centre in Logy Bay, Newfoundland (see Brown et al., 2003 for hatchery 

protocols) in January, 2004. All wild prey were collected from Mosquito Cove, Trinity 

Bay in Newfoundland by beach seine. Wild age 0+ Atlantic cod (Gadus morhua, 

10.7 _ _!__1.7 em, s.d.) were collected in May 2003 and age 0 ro~.:k wd (Gadus uguc: 11.9.±_0.9 

em, s.d.) were collected in December of2003. In the laboratory, fish were maintained in a 

holding tank (2 m x 1.5 m x 0.4 m) lined with a sand substrate and fitted with a flow­

through system at ambient seawater temperature (8.9 _±0.3°C Standard Error of the Mean). 
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Wild and hatchery-reared fish were held separately. Wild cod (prey) were fed chopped 

herring approximately 3-5 times per week, depending on water temperature, while 

hatchery-reared prey were fed pellets daily, as per hatchery practice. These different 

feeding regimes were maintained in an attempt to preserve the "wild" and "na·ive" 

dispositions of the prey. 

When small and large Atlantic cod occur together naturally, intercohort 

cannibalism is often observed in the hatchery environment (Howell, 1984). Therefore, age 

2+ Atlantic cod (39.5±5.9 em, s.d.) were used as predators in this study, along with 

Shorthorn sculpin (Myoxocephalus scorpius 28.3±2.7 em, s.d.). Blom and Folkvold 

(1997) found that a size factor ratio of 1.6-3.2 was sufficient to observe intercohort 

cannibalism in cod, and most ofthe predators were in this range. Both species of predator 

were collected from the wild to ensure they had previous experience as predators. Older 

Atlantic cod were collected offthe eastern shore ofNewfoundland by angling. Shorthorn 

sculpin were collected by SCUBA. Adult cod and sculpin were held in separate tanks 

with a flow-through system at ambient temperature (6.7±0.2"C SEM and 8.8±0.4"C SEM, 

respectively). Predators were fed minimally (once or twice per week) with chopped 

herring over the course of the experiments to maintain predator motivation. All prey and 

predators were subject to ambient daylight light levels and photoperiod. 

2.2.2 Experimental set-up 

The experimental set-up consisted of a tank on a flow-through system ( 1 0.5:±_0.2"C 

SEM) divided into three sections: the experimental arena (2 m x 1.5 m x 0.4 m) and two 

smaller compartments (0.6 m x 0.9 m and 0.6 m x 1.1 m) that open to the experimental 

arena with a removable opaque divider. The experimental arena was fitted with artificial 
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eelgrass, constructed by attaching lengths of polypropylene rope (W: 0.8 em H: 20 em) to 

galvanized wire fencing at a density of 400 stems/m2
. Sand(< 1 mm) was washed and 

placed in the tank to cover the bottom 1 Ocm (Gotceitas et al., 1997; Laurel et al., 2004a). 

This set-up has been used successfully in previous studies (Gotceitas et al., 1995; 

Gotceitas et al., 1997; Laurel ct al., 2004a). 

2.2.3 Schooling behaviour trials 

To determine the effects of predators on schooling behaviour, naive and wild prey 

were observed in the presence of different densities of sculpin. All trials were conducted 

at the Ocean Sciences Centre in Logy Bay, Newfoundland. Each prey group (wild 

Atlantic cod, rock cod, or naive cod), composed of five individuals, was tested in three 

treatments: no predator (control), in the presence of one adult sculpin, and in the presence 

of two adult sculpin. No individual juvenile cod was exposed to more than one trial with a 

predator, although some juveniles participated in both a control and one experimental 

trial. Trials were conducted during daylight hours between July 8 and August 7, 2003 

(wild prey) and January 20-February 18, 2004 (rock cod and hatchery cod). The trials 

were conducted in a rotation that precluded the use of the same predator more than once 

in a day. A total of eight trials were run for each treatment (n=8). 

The trials were digitally video recorded by a camera fitted with a wide-angle lens 

mounted 1.9 m directly above the experimental arena, so that the view of the camera was 

directly perpendicular to the tank (Laurel et al., 2004a, 2005). The tank was illuminated 

by two 500 Watt halogen lights placed on either side of the tank. Five juvenile cod were 

selected without known bias and were transferred to the experimental arena by dip netting 

and remained undisturbed for a 15-minute acclimation period. This period allowed the 
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fish a chance to acclimate to the water temperature and settle down after the tank transfer. 

The predator(s) were also acclimated for the same duration in the smaller predator 

compartment, with the opaque partition in place. Once the partition was removed and the 

predator entered the experimental arena, the trial began. Trial duration was one hour. 

2.2.4 Video ana~ysis and computations 

For the video analysis, an hour-long trial was sampled once every 6 minutes (n = 

10 observation periods/trial), modified from Laurel ct a!. (2004a). The location of each 

juvenile in the tank and water column (x, y coordinates), angle of orientation (in degrees, 

relative to the centre of the tank) and distance to predator was determined using Matrox 

Inspector 3.0 image analysis software. Distances between fish were measured from head 

to head. All observation periods where 2 or fewer juveniles could be located were 

excluded from the analysis. This occurred when prey swam in the shadowy areas around 

the edges of the tank. 

Measures of aggregation and orientation were modified from Laurel et a!. 

(2004a). The mean inter-prey distance was calculated by taking the mean of all possible 

distances from each juvenile to any other juvenile in an observation period and averaging 

them over the course of a trial. Low values of the mean inter-prey distance indicate that 

prey were tightly aggregated, while high values indicate little aggregation. The extent to 

which juveniles were commonly orienting in the same direction was measured by 

calculating the mean inter-prey angle difference, which is the mean of the acute angle 

differences from one reference fish in an observation period averaged over the course of a 

trial. The value for absolute angle difference were adjusted by subtracting from 360 if 

they were greater than 180 degrees. Low values of the mean inter-prey angle difference 
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indicated that prey were more commonly oriented while high values ret1ected divergent 

orientations. Distance to the predator is reported as a mean distance to a predator for the 

two predator trials and all distance to predators are averaged over the course of a trial. 

2.2.5 Cod predation trials 

Mortality trials were run concurrently with the behavioural trials, where sculpin 

was the predator. Trials with cod as a predator were also conducted, with the result that 

each juvenile group (wild Atlantic, rock, and na1ve cod) was exposed to six treatments: 

the three described in the schooling experiment, plus the presence of one adult Atlantic 

cod, two adult Atlantic cod, and a mixed trial of one cod and one sculpin. Mortality was 

measured by counting the number of prey consumed by the predator over the course of 

the one hour trial. Due to ethical concerns, an "LD50-like measure" was used (time to 

mortality of 50% of juveniles) to ensure that no more that 50% of the prey were 

consumed. There was no need to terminate experiments early (the LD50) since only two 

trials saw this criterion exceeded. 

2. 2. 6 Experience trials 

Hatchery-reared Atlantic cod that had now been exposed to a predator once and 

survived were retested under the same experimental conditions. The time elapsed from 

the previous exposure ranged from a potential 1-14 days. A set of trials (n=4) was 

conducted for each of two experimental treatments (no predator, one sculpin). Trial 

duration was 15 minutes. Each trial was sampled once every 3 minutes (n = 5 observation 

periods/trial). Video analysis, computations and comparisons were conducted as 

mentioned above. 

2.2. 7 Statistics 
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All comparisons were made using the General Linear Model AN OVA, using 

Minitab v.l4.0. The residuals were examined in all cases to determine whether or not the 

assumptions (normality, homogeneity of variance and independence of residuals) of the 

model were met. In any cases where the assumptions were not met, and the obtained p­

value was close to the criterion alpha of 5% (within a factor of 5), the decision was made 

a priori to obtain a new p-value by randomization of the response variable. 

Randomization is a technique testing the chance of a type I error (rejection of a true null 

hypothesis) by repeated recalculation of a statistic with the response variable randomized 

between all treatment levels, which is then compared with the original obtained statistic. 

The p-value is the likelihood of obtaining the observed F due to chance based on the new 

distribution (more details see Sakal and Rolfe, 1995). As the new p-value in the case of 

randomization is based upon a distribution constructed from the raw data, it is free of 

assumptions regarding the distribution. A minimum of 1000 computations was used to 

create the new distribution. In the case that the assumptions were not met and the 

obtained p-value was far from alpha (greater than a factor of 5), no randomization was 

conducted since a randomized p-value in this case would not alter the decision regarding 

statistical significance. This is due to the fact that randomization rarely changes an 

obtained p-value by more than a factor of five in either direction. 

2.3 Results 

2.3.1 Schooling behaviour 

The presence of schooling was assessed by examining two aspects of this 

behaviour: aggregation (inter-prey distance, IPD) and orientation (inter-angle 

differences, lAD). The normality assumption was violated in testing for differences in 
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the IPD, therefore randomizations were carried out. In terms of the IPD, no interaction 

was found between prey type and treatment (F 4,66 = 1.53, p = 0.192 by randomization 

(1000 iterations), Figure 2.1). There was a main effect of prey type (F2,66 = 68.85, p = 

0.001 by randomization ( 1000 iterations), Figure 2.1 ), and the confidence intervals show 

the higher IPD is for nai·ve fish compared to either wild species (Clnaivc_cod {84.377 em< 

IPD < 91.779 em}= 95%, Clatlantic_cod {50.470 em< IPD < 56.344 em}= 95%, Clrock_cod 

{51.840 em< IPD < 58.711 em}= 95%). There was no effect of predator type (F2,66 = 

0.45, p = 0.641). For the lAD, all the assumptions of the GLM were met. A similar trend 

in the differences for IPD was found for differences in orientation (Figure 2.2). The 

interaction was not significant (F4,63 = 1.90, p = 0.121), but a significant main effect of 

prey type on mean lAD (F2,63 = 23.01, p = 0.001) was found, while there was no 

significant effect of the number of predators present (F2,63 = 1.46, p = 0.241; Figure 2.3). 

2.3.2 Distance to predator 

The p-values obtained through the GLM are unreliable as the normality 

assumption was violated, therefore p-values were obtained by randomization ( 1067 

iterations). The interaction of prey type and number of predators on the distance to 

predator was not significant (F2,42 = 1.56, p = 0.23 by randomization; Table 2.1 ). There 

was, however, an effect of number of predators (F 1,42 = 11.35, p = 0.0046 by 

randomization; Figure 2.4). Wild Atlantic cod had the smallest difference in distance 

from one predator to two predators. N alve cod had a larger difference, although they 

generally were closer to their predators overall and rock cod showed the greatest 

difference in distance when two predators were present. Overall, wild Atlantic cod kept 

the greatest distance from their predators, regardless of how many were present (mean 
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112.46cm±1.69 SEM). Wild rock cod and naive cod kept similar distances from predators 

(mean 1 05.43cm±1.86 SEM and 1 01.70cm±2.36 SEM, respectively), although naive cod 

remained slightly closer overall to the predator. In general, when two predators were 

present, prey were less able to keep their distance (118.99cm±1.76 SEM for one predator, 

99.73cm±1.38 SEM for two predators). 

Additionally, na1ve cod were observed to behave unusually in the experimental 

tank. They more frequently engaged in freezing behaviour (no movement) in the presence 

of a predator, and were observed swimming into tank comers. Freezing behaviour was 

noted four times in the na1ve prey trials and was not observed in the wild trials. Na1ve 

prey were also more often sighted resting at the water surface and on the sand substrate 

than wild prey, were observed to have difficulty swimming through the eelgrass and also 

became lodged in the mesh-wire base of eelgrass mats. This was also observed with wild 

prey, although less frequently (two wild fish versus 17 na1ve fish). In these entanglement 

cases, the fish were omitted from the analysis. 

2.3.3 The role of experience 

"Experienced" na1ve cod, i.e. those that had been exposed to a predator once, were 

re-examined under the same treatments in a small study (Table 2.2). The normality 

assumption of the GLM was not met for the mean inter-prey distance and mean inter­

angle difference, but due to the obtained p-values being so far from the criterion alpha, 

randomization would not alter the outcome; therefore a decision was made not to 

undertake randomization. Differences in behaviour were observed from the purely na1ve 

cod. In general, there was an effect of experience on orientation, as experienced fish were 

more commonly oriented (F 1,20 = 9 .62, p = 0.006). There was no interaction of experience 
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and number ofpredators (F1,2o = 2.97, p = 0.100), and no difference in the behaviour 

when a predator was present (treatment, F 1,2o = 0.03, p = 0.871) (Figure 2.5a). No 

significant interaction of experience and number of predators (F 1,2o = 0.1 0, p = 0. 754) was 

found on the IPD, and no main effects (F 1,2o = 0.09, p = 0. 766 for experience; F 1.2o = 

0.04, p = 0.847 for number of predators) (Figure 2.5). For distance to the predator, the 

normality assumption was violated. Experienced naive prey did differ in the distance kept 

from the predator than naive prey (67.42±3.53cm SEM for naive prey and 89.74±4.39cm 

SEM for experienced prey), although this was not statistically significant (F 1•8 = 1. 74, p = 

0.224). Given the smaller sample size for this experiment, it is possible that I did not have 

the power to detect real, but small, differences. 

2.3.4 Cod predation trials 

Predation was only observed in the na1ve prey trials, despite the fact that the first 

half of the wild Atlantic cod trials were extended for an additional 23 hours after the 

initial 1-hour videotaping. When no predation was observed in this 24-hour period, the 

extended trials were discontinued. 

Predation was observed in 50% of the na1ve prey trials ( 16 in total with a predator 

present). All mortality was due to predation by sculpins, despite the fact that the cod 

predators were much larger. Even in the mixed predator trial, sculpin were responsible for 

all mortalities (Figure 2.6). 

2.4 Discussion 

Differences in schooling behaviour were found between wild and na1ve cod. 

Na1ve cod were much more loosely aggregated than either wild species, and were 

significantly less oriented in a common direction. Ryer and Olla (unpublished, in Olla et 
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a!., 1998) found that the nearest-neighbour distance in a marine pelagic fish increased 

after a predator fright, and naive salmon smolts were found to react more rapidly to the 

presence of a predator (Jarvi and Uglem, 1993). However, both the addition of a predator 

and an increase in the number of predators resulted in increased aggregation (the mean 

inter-prey distance) for rock cod, but this was not true for naive cod. Predator presence 

decreased aggregation in wild Atlantic cod from the no predator condition, but increased 

when the second predator was added. The orientation (mean inter-prey angle difference) 

results were much less clear. In general, both wild species became less commonly 

oriented with predator presence, and the naive cod showed an initial increase in common 

orientation, but this decreased with the addition of a second predator. 

In terms of the distance maintained from the predator, a significant effect of prey 

type was found. Rock cod demonstrated heightened vigilance in response to the addition 

of, and increase in numbers of, predators. In contrast, both wild and naive Atlantic cod 

each had more subtle increases in distance. However, naive cod still approached closer to 

the predator than either wild forms, and wild Atlantic cod maintained the greatest distance 

from the predators overall. This differs from Nordeide and Svasand (1990) who found 

that reared (naive) cod kept greater distances from an adult cod predator and were slower 

to approach the predator than wild cod when exposed in a non-contact situation. 

However, N0dtvedt eta!. (1999) found that hatchery-reared (naive) cod maintained a 

shorter distance to the predator, although this distance increased with increasing length of 

exposure to a predator. Cod used as naive prey in both aforementioned studies were 

raised in the same outdoor pond using the same rearing protocol, so differences in 

behaviour must be attributable to the experimental environment. N0dtvedt et al. (1999) 
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exposed prey in a contact situation while in Nordeide and Svasand ( 1990) the predators 

were separated from prey by a transparent plexiglass divider. N0dtvedt et al. ( 1999) 

experiment had artificial habitat and that may have provided the cover necessary for prey 

to safely approach the predator, unlike the unvegetated tank ofNordeide and Svasand 

( 1990). Prey may have felt more vulnerable with no refuge despite that fact that there was 

no direct risk of predation. Additionally, the size of predator used in my study is more 

similar to the size of predators used by N0dtvedt et al. ( 1999), as opposed to the larger 

predators used by Nordeide and Svasand (1990), which may account for the similarities in 

results with N0dtvedt et al. (1999). 

It appears that familiarity, or experience, plays a role in the behaviour of naive cod 

toward a predator. Re-exposing previously-naive cod (referred to as 'experienced') in the 

same experimental design showed that even minimal experience with a predator increases 

schooling behaviour, but the power of these tests was low due to the small sample size 

and future research should seek to replicate these findings. The mean inter-prey angle 

difference decreased, indicating that prey were more commonly orienting in the same 

direction. However, no increase was seen in the mean inter-prey distance. Unlike 

N0dtvedt et al. (1999), 'experienced' prey in this experiment stayed further away from 

the predator than they did when naive, although it was not statistically significant. 

N0dtvedt et al. (1999) suggested that a 3-staged anti-predator behaviour learning process 

takes place whereby naive cod initially demonstrate little vigilance in the presence of a 

predator, then too much, and finally have an appropriate, reasonable reaction. It is 

possible that after only one hour with a predator, the 'experienced' cod have benefited 

from predator experience. Olla and Davis ( 1989) found that one round of training was 
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insutlicient, but their training period was only 15 minutes. However, in the current study, 

no predation was observed during the course of the 'experienced' trials, indicating that a 

one-hour exposure to a predator was sufficient to develop at least some vigilance. The 

anti-predator behaviours of Atlantic salmon smolts were improved by training both in a 

contact and non-contact situation (Jarvi and Uglem, 1993), and the same was found for 

hatchery-naive coho and sockeye salmon (Olla and Davis, 1989; Ginetz and Larkin, 

1976). However, improvements in anti-predator behaviours have only been evaluated in 

the laboratory, while a study attempting to reduce hatchery-reared brook trout predation 

in the wild was largely unsuccessful (Fraser, 1974). 

The artificial eelgrass posed problems for the na1ve prey that were unaccustomed 

to navigating a vegetated terrain. The "vegetated" habitat appeared to confuse some who 

got stuck both in the artificial grass and under the wire mesh to which the artificial grass 

was attached. For this reason, na1ve prey may be avoiding the grass while wild prey are 

using it as a refuge. Braithwaite and Salvanes (2005) found that experience with a cobble 

and kelp substrate promoted improved anti-predator behaviours from hatchery-reared cod 

and it is possible that prey in the experience trials benefited from the time with the 

cobble/eelgrass substrate. The 'experienced' prey gained their experience in na1ve trials, 

where some of their counterparts were eaten by sculpins, therefore these prey have also 

witnessed and survived predation. There is evidence that simply being with other prey 

that have survived predation, su\.:h as these experienced prey, may improve the anti-

predator behaviours of na1ve fish (Patten, 1977; Oil a et a!., 1998; Kelley et a!., 2003 ). It is 

possible for fish to retain this knowledge to escape direct contact with a predator at a later 

time (Brown and Laland, 2001). 
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Differences were found between wild Atlantic cod and wild rock cod, which may 

be related to their different life histories. Trials were first attempted with a mix of Atlantic 

cod and rock cod, but the species were observed to school separately, resulting in the 

separation of the wild species for the experiment. In general, rock cod responded more to 

the presence of a predator. An increase in aggregation was observed, and their degree of 

orientation fell between that of the wild Atlantic cod and their na'ive counterparts. Rock 

cod have demersal eggs, and hatch in the environment they will inhabit. However, 

Mikhail and Welch ( 1989) describe rock cod as a non-schooling species in the wild, 

which is clearly the opposite of what was found in this laboratory study, and other field 

observations (Laurel eta!., 2003). Conversely, Atlantic cod have pelagic eggs and settle 

into inshore areas as juveniles. However, given the differences in the aggregation 

response to a predator and orientation means, I conclude that there are schooling 

differences between wild Atlantic cod and rock cod when a predator is present, although 

the cause of these differences is not obvious in my study. 

Predation was observed only in the na'ive prey trials, and was seen in 50% of these 

trials. This increase in mortality by predation is not surprising given that schooling 

behaviour has long been considered to provide protection from predation by reducing the 

per capita predation risk of prey with prey group size (Godin et al., 1988; Pitcher and 

Parrish, 1993; Krause and Godin, 1995; Krause eta!., 1998). Non-schooling guppies have 

been found to have higher mortality rates (Seghcrs, 1974), and cod have been found to 

need less time catching prey alone than from a school (Radakov, 1958), an observation 

made in other fish species (Milinski, 1977). 
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All observed predation in my study was attributable to the sculpin predators; none 

was observed by older Atlantic cod. Despite the fact that juvenile cod have experience 

with cannibalism from larger juveniles in hatcheries (Howell, 1984), it is possible that 

this experience is insufficient for the development of generalized anti-predator 

behaviours. N0dtvedt et a!. ( 1999) argue that experience in the hatchery causes 

habituation, resulting in little response to the presence of other cod of any size, and that 

this may apply to other predatory species. However, we should expect that cod would 

quickly learn that larger fish should be avoided in the hatchery due to cannibalism events. 

Even if habituation to conspecifics was occurring in the hatchery, demonstrating little 

vigilance in the presence of a "novel" predator would more likely be due to lack of 

experience than to habituation. In this study, the increase in mortality may be due in part 

to exposure to a sculpin. This is especially true since cod and sculpin use different 

predatory tactics, and the naive prey would never have encountered an ambush predator 

such as sculpin. However, Nordeide and Sal vanes (1991) found that newly released 

reared cod were subject to predation mainly by large cod, pollack and ling, but suggest 

that this is due to the novelty of an unfamiliar species and the size of the predators. In my 

study, larger cod were not often observed in the artificial eelgrass, likely due to their size. 

Sogard and Olla (1993) also found that adult pollock would not enter artificial eelgrass. It 

could be that this eelgrass avoidance by larger cod offered the prey an opportunity to 

avoid predation by cod that was unavailable when sculpin were present. Oil a et al. ( 1998) 

state that predator recognition has a strong innate component that is somehow repressed 

by the rearing environment, and new research into the roles of different sensory cues has 

found that visual predator recognition skills are largely based on unlearned 
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predispositions (Kelley and Magurran, 2003). However, as demonstrated by the 

improvement of anti-predator behaviours with predator exposure in the current study (and 

others), including reduced mortality, suggest that predator recognition is more of a 

learned than innate behaviour. It is possible, as suggested by Krause et a!. ( 1998), that 

shoaling is an ineffective strategy for averting surprise (ambush) attacks, which may 

account for the predation credited to sculpin in this study. 

In addition to reduced schooling, nai·ve prey frequently skimmed the water 

surface. While the motivation for this behaviour was not apparent, the resulting increase 

in activity may have contributed to the increased frequency of predation, as prey 

locomotion is positively correlated with possibility of their detection by predators (Lima 

and Dill, 1990). In fact, although Godin et a!. ( 1988) found the shoal size that provided 

the most anti-predator benefit was 1-10 individuals, Krause and Godin ( 1995) found that 

it was not necessarily shoal size that determined what a predator would find attractive, but 

conspicuousness. N0dtvedt et al. (1999) found that predator-naive cod had higher activity 

levels than wild cod in the presence of a free-swimming predator, increasing 

conspicuousness. However, when the predator was enclosed, the trend reversed and the 

wild cod were more active. Gotceitas et a!. ( 1995) determined that juvenile wild cod are 

able to distinguish between a passive and an actively foraging predator, and it is possible 

that the wild fish were simply better able to assess the actual risk posed by the predator. 

Understanding how hatchery-rearing intluences the development of predator 

avoidance ability is crucial to "grow-and-release" aquaculture. The costs associated with 

predator training should be evaluated and weighed against the overall benefits, given that 

hatchery-rearing is an expensive undertaking (Wiley eta!., 1993). However, given the 
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costs, outplanting success tor release initiatives will be dependent upon, among other 

things, the behavioural capabilities of released fish. Therefore, it is important that 

hatchery-reared fish develop behavioural skills that reflect the life history of their species 

in the wild (Oil a eta!., 1998). Given that the hatchery-reared cod in this study were the F 1 

of wild brood stock, the differences in this study can be attributed to the hatchery 

environment, and not selective breeding, as has been suggested (Olla et al., 1992). 

Reduced schooling of na1ve cod and the increased susceptibility to predation indicate that 

current rearing protocols are insufficient for outplanting success. However, the benefits of 

schooling may also depend on the type of predator imposing the risk. Kelley et al. (2003) 

found that association with experienced conspecifics in the presence of a predator model 

improved anti-predator behaviours, including schooling, and the social transmission of 

predator recognition has been observed in a number offish species (Brown and Laland, 

2001). It may not be the sensory-deprived hatchery that causes behavioural deficits but 

the social deprivation, meaning that there may be benefit in both predator training and 

wild conspecific exposure to improve anti-predator behaviours. 
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Table 2.1 Results of GLM for the mean inter-prey distance, mean inter-angle difference and distance to predator for nai've versus 
wild prey. * Number in parentheses is the p-value obtained by randomization (1 000 iterations for IPD and 1067 for distance to 
predator). 

Response variable Source df MS (adj) F-value p-value* 
Mean inter-prey distance Prey type 2 10388.5 68.85 0.000 (0.001) 

Mean inter-angle difference 

Distance to predator 

#of predators 2 67.6 0.45 0.641 (0.65) 
Prey type*# of predators 4 230.8 1.53 0.204 (0.192) 
Error 66 150.9 

Prey type 
#of predators 
Prey type*# of predators 
Error 

Prey type 
# of predators 
Prey type*# of predators 
Error 

2 
2 
4 
63 

2 
1 
2 
42 

2296.03 
145.27 
189.87 
99.77 

386.0 
4074.0 
560.5 
359.1 

23.01 
1.46 
1.90 

1.07 
11.35 
1.56 

0.000 
0.241 
0.121 

0.351 (0.35) 
0.002 (0.0046) 
0.222 (0.23) 



N 
v. 

Table 2.2 Results of GLM for the mean inter-prey distance, mean inter-angle difference and distance to predator for nai"ve versus 
once-exposed prey. 

Response variable Source df MS (adj) F-value p-value 
Mean inter-prey distance Past experience I I6.9 0.09 0.766 

Mean inter-angle difference 

Distance to predator 

#of predators I 7.I 0.04 0.847 
Pastexperience*#ofpredators I I8.8 O.IO 0.754 
Error 20 I85.8 

Past experience 
# of predators 
Past experience*# of predators 
Error 

Past experience 
Error 

I 
I 
1 
20 

1 
8 

1419.0 
4.0 
438.2 
I47.5 

938.5 
539.7 

9.62 
0.03 
2.97 

1.74 

0.006 
0.871 
0.100 

0.224 
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Figure 2.1 Differences in inter-prey distance (IPD) between wild Atlantic, rock and naive 
cod under predation threat by zero, one or two sculpin predators. Columns represent 
group means ± SEM. See Table 2.1 for details. 
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Figure 2.2 Differences in group orientation between wild Atlantic, rock and na'ive cod 
under predation threat by zero, one, or two sculpin predators, as measured by the inter­
prey angle difference (lAD). Columns represent group means ± SEM. See Table 2.1 for 
details. 
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Figure 2.3 Main effects of prey type and predator density on the mean inter-prey angle 
difference. AC =Wild Atlantic cod, RC =Rock cod, NC =Naive cod, NP =No predator, 
OS = One sculpin, TS = Two sculpin. Points represent group means and the line 
represents the overall mean, collapsed across fish type and predator density. 
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Figure 2.4 Distance to predator under different predator densities, by prey type. Points are 
group means ± SEM. 

29 



100 

(a) 
Ol 80 Q) 

~ 
Q) 
u 
c 
~ 60 Q) 

::t= 
'6 
Q) 

C> 
c 40 «l 
>-
Q) 

9-.... 
Q) 

c 20 

0-'------

experienced naive 

Figure 2.5 Change in the mean inter-prey angle difference (a) and inter-prey distance (b) 
after one predator exposure "event". Columns represent the mean of both control and 
predator trials, as no effects of predator presence were found, ± SEM. See Table 2.2 for 
details. 
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Figure 2.6 Number of predation events observed. Columns represent the sum of all 
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CHAPTER3 

Multiple predator effects: Do non-additive effects exist on prey schooling behaviour 
and mortality rates? 

3.1 Introduction 

Predator-prey interactions have often been studied in aquatic systems in the 

presence of one species of predator despite the fact that most prey are subject to predation 

by more than one species (Sih et a!., 1998). Of those studies that do consider multiple 

predators, few consider more than one combination of predator (Relyea, 2003). Recently, 

researchers have begun to consider the fitness and behavioural consequences ofliving in 

a multiple predator environment and studies involving multiple predators have found that 

predator-prey relationships are less clear than once proposed. 

Emergent, multiple predator effects (MPEs) are said to be present when the 

observed effect on prey cannot be predicted merely by summing the effects of the 

predators individually; that is, the presence of more than one predator results in either risk 

enhancement or risk reduction for the prey. Mutual interference among predators or 

predator facilitation results in emergent effects because the interaction of predators alters 

the number or prey consumed than if either had been present alone (Sih eta!., 1998). This 

interaction is dependent on predator foraging habitat and predation style. For instance, 

two ambush predators are least likely to create risk reduction because they will rarely 

encounter one another (Sih eta!., 1998). Other important factors influencing the outcome 

ofMPE studies are predator density and habitat complexity. Prey mortality is typically 

the variable of interest in multiple predator studies, although some studies examine prey 

behaviour (Crowder et al., 1997; Gonzalez and Tessier, 1997; Peckarsky and Mcintosh, 
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1998). Interest in how prey defenses aflect MPEs has prompted the study of both lethal 

and sublethal effects of predator-prey interactions and the role of prey behaviour and the 

factors that influence it, such as habitat complexity (Sih et al., 1998). 

MPEs are influenced by many factors, including habitat complexity and prey 

defenses. Both bluegills and fathead minnows use structured habitats differently based on 

the type of predator present (Savino and Stein, 1982), and these predator-specific 

behavioural responses have also been observed in tadpoles (Relyea and Werner, 1999). 

Juvenile Atlantic cod specifically utilize areas of greater habitat complexity as a refuge 

from predators, and increased survival is observed in such habitat (Gotceitas et al., 1997; 

Laurel et al., 2004a). In the presence of a predator juvenile Atlantic cod will increase 

refuge use, differentially utilizing eelgrass compared to sand and gravel in the absence of 

a predator ( Gotceitas et a!., 1997). Recent experiments show that juvenile cod will also 

aggregate more often over sand habitat than eelgrass habitat in the presence of a predator 

suggesting habitat-specific anti-predator behaviour (Laurel et al., 2004a). It has also been 

shown that juvenile cod will occupy different areas of the water column in response to 

exposure to different predators (Laurel, 2003). These observations indicate that prey, 

including juvenile Atlantic cod, restrict their habitat use based on the habitat type and the 

degree of risk posed by the type of predator; that is, they are actively responding to the 

level of predation risk. 

Most research concerning MPEs has focused on insects as prey and other insects 

or terrestrial organisms as predators. The results from these studies vary greatly, some 

finding support for emergent MPEs (Soluk and Collins, 1988; Martinet al., 1989; Soluk, 

1993; Crowder eta!., 1997) and others non emergent effects (Van Buskirk, 1988; Sokol-
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Hessner and Schmitz, 2002). The evidence to date indicates that general principles 

describing MPEs may be inadequate or limited to certain prey and predator taxa (Soluk 

1993 ). MPE studies aid in determining the relative frequency of indirect effects (Wooton, 

1993) when a third predator is involved. Currently, no research addresses the question of 

emergent MPEs in Atlantic cod. 

This study will investigate juvenile Atlantic cod anti-predator behaviour and 

mortality under multiple predator threat in a substitutive design. Relyea's (2003) review 

paper of multiple predator studies did not find one study that controlled for predator 

density. A substitutive design allows for this as it is essentially a factorial design, with 

replacement. For this study I used the substitutive design to test the hypothesis that 

contrasting foraging strategies (pursuit versus ambush) of the predators and familiarity 

with one of the predators on the part of the prey will result in nonlinear, emergent effects 

on anti-predator behaviours and relative mortality rates. 

3.2 Materials and Methods 

3.2.1 Experimental animals 

Hatchery-reared juvenile Atlantic cod (Gadus morhua, 12.9±1.0 em, s.d.) were 

obtained from the Aquaculture Research and Development Facility at the Ocean Sciences 

Centre in Logy Bay, Newfoundland (see Brown et al., 2003 for hatchery protocols) in 

January, 2004. Wild juveniles were preferred for this experiment, but low catch rates in 

Terra Nova National Park necessitated the use ofhatchery-reared fish as prey. In the 

laboratory, fish were maintained in a holding tank (2m x 1.5 m x 0.4 m) with a sand 

substrate and fitted with a flow-through system at ambient temperature (5.7±0.2°C 
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Standard Error of the Mean (SEM)). Fish were fed pellets daily to satiation, as per 

hatchery practice. 

When small and large Atlantic cod occur together naturally, intercohort 

cannibalism is often observed (Howell, 1984). Blom and Folkvold (1997) found that a 

size factor ratio of 1.6-3.2 was suft1cient to observe intercohort cannibalism in a hatchery 

environment; therefore, the adult cod (39.5±5.5 em, s.d.) and shorthorn sculpin 

(Myoxocephalus scorpius 28.1±2.7 em, s.d.) predators in this study were mostly in this 

range. All predators were collected from the wild to ensure they had previous wild 

experience. Larger Atlantic cod were collected off the eastern shore ofNewfoundland by 

angling, and shorthorn sculpin were collected by divers. Adult cod and sculpin were held 

in separate tanks with a flow-through system at ambient temperature (5.7±0.2"C SEM, 

8.3±0.4°C SEM, respectively). Predators were fed once or twice per week with chopped 

herring over the course of the experiments. Prey and predators were subject to ambient 

daylight light levels and photoperiod. 

3.2.2 Experimental set-up 

The experimental set-up consisted of a tank on a flow-through system (8.0±0.2"C 

SEM) divided into three sections: the experimental arena (2 x 1.5 x 0.4 m) and two 

smaller compartments (0.6 m x 0.9 m and 0.6 m x 1.1 m) that open to the experimental 

arena with a removable opaque divider. The experimental arena was fitted with artificial 

eelgrass, constructed by attaching lengths of polypropylene rope (W: 0.8 em H: 20cm) to 

galvanized wire fencing at a density of 400 stems/m2
. Sand ( < 1 rnm) was washed and 

placed in the tank to cover the bottom 1 Ocm (Gotceitas et al., 1997; Laurel et al., 2004a). 
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This set-up has been used successfully in previous studies (Gotceitas eta/., 1995; 

Gotceitas et al. 1997; Laurel et al., 2004a). 

3.2.3 Behavioural trials 

To determine the effects of multiple predators on schooling behaviour, naive prey 

were observed in the presence of different densities and combinations of older sculpin 

and cod. Prey were tested in six treatments: no predators (control), in the presence of one 

type of predator (Atlantic cod or shorthorn sculpin), in the presence of another predator 

(sculpin), in the presence ofboth predators (cod and sculpin), and in the presence of two 

of the same predator. This last treatment accounted for predator density. The control, one 

and two sculpin trials were initially conducted in Chapter 2 experiments, and these data 

are being used here for comparison. This was done to limit the number of fish used as 

experimental animals, as required by animal care regulations. No juvenile cod was 

exposed to more than one trial with a predator, although some juveniles participated in 

both a control and one experimental trial. Trials were conducted during daylight hours 

between February 2-18, 2004. The trials were conducted in a rotation that precluded the 

use of the same predator more than once in a day. A total of eight trials were run for each 

treatment (n=8). 

The trials were digitally video recorded by a camera fitted with a wide-angle lens 

mounted 1.9 m directly above the experimental arena, so that the view of the camera was 

directly perpendicular to the tank (sec also Laurel eta!., 2004a, 2005). The tank was 

illuminated by two 500 Watt halogen lights placed on either side of the tank. Five naive 

juvenile cod were transferred to the experimental arena by dip netting and remained 

undisturbed for a 15 minute acclimation period. The predator(s) were also acclimated for 
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the same duration in the smaller predator compartment, with the opaque partition in place. 

This period allowed the fish a chance to acclimate to the water temperature and settle 

down after the tank transfer. Once the partition was removed and the predator entered the 

experimental arena, the trial began. Trial duration was one hour. 

3.2.4 Video analysis and computations 

For the video analysis, the hour-long trial was sampled once every 6 minutes (n = 

10 observation periods/trial), modified from Laurel et al. (2004a). The location of each 

juvenile in the tank and water column (x, y coordinates), angle of orientation (in degrees, 

relative to the centre of the tank) and distance to predator was determined using Matrox 

Inspector 3.0 image analysis software. Distances between fish were measured from head 

to head. All observation periods where 2 or fewer juveniles could be located were 

excluded from the analysis. This occurred when prey swam in the shadowy areas around 

the edges of the tank. 

Measures of aggregation and orientation were modified from Laurel et al. 

(2004a). The mean inter-prey distance was calculated by taking the mean of all possible 

distances from each juvenile to any other juvenile in an observation period and averaging 

them over the course of a trial. Low values of the mean inter-prey distance indicate that 

prey were tightly aggregated, while high values indicate little aggregation. The extent to 

which juveniles were commonly orienting in the same direction was measured by 

calculating the mean inter-prey angle difference, which is the mean of the acute angle 

differences from one reference fish in an observation period averaged over the course of a 

trial. The values for absolute angle difference were adjusted by subtracting from 360 if 

they were greater than 180 degrees. Low values of the mean inter-prey angle difference 
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indicated that prey were more commonly oriented while high values reflected divergent 

orientations. Distance to the predator is reported as a mean distance to a predator for the 

two predator trials all distance to predators are averaged over the course of a trial. 

3.2.5 Cod predation trials 

Predation was observed throughout the behaviour trials. Mortality was measured 

by counting the number of prey consumed by the predator over the course of the one hour 

trial in each of the six experimental treatments. Due to ethical concerns, an "LD50-like 

measure" was used (time to mortality of 50% of juveniles) to ensure that no more that 

50% of the prey were consumed. There was no need to terminate experiments early (the 

LD50) since only two trials saw this criterion exceeded. 

3.2.6 Statistics 

All comparisons were made using the General Linear Model ANOVA, using 

Mini tab v .14.0. The residuals were examined in all cases to determine whether the 

assumptions of the model were met. In any cases where the assumptions were not met, 

and the obtained p-value was close to the criterion alpha of 5% (within a factor of 5), the 

decision was made a priori to obtain a new p-value by randomization of the response 

variable. Randomization is a technique testing the chance of a type I error (rejection of a 

true null hypothesis) by repeated recalculation of a statistic with the response variable 

randomized between all treatment levels, which is then compared with the original 

obtained statistic. The p-value is the likelihood of obtaining the observed F due to chance 

based on the new distribution (more details see Sokal and Rohlf, 1995). As the new p­

value in the case of randomization is based upon a distribution constructed from the raw 

data, it is free of assumptions regarding the distribution. A minimum of 1000 
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computations was used to create the new distribution. In the case that the assumptions 

were not met and the obtained p-value was far from alpha (greater than a factor of 5), no 

randomization was conducted since a randomized p-value in this case would not alter the 

decision regarding statistical significance. This is due to the fact that randomization rarely 

changes an obtained p-value by more than a factor of five in either direction. 

3.3 Results 

3.3.1 Schooling behaviour 

The effect of predator type and density on schooling behaviour was assessed by 

examining the aggregation of the prey and their orientation in the presence of either or 

both types of predators (Table 3.1 ). Aggregation was assessed using the mean inter-prey 

distance (IPD), and orientation by the mean inter-prey angle difference (lAD) as 

described above. The assumptions of the GLM were not met for these variables as the 

residuals were non-normally distributed. Randomizations were undertaken ( 1000 

iterations) and these p-va1ues are reported. No interaction was found between the 

presence of cod and sculpin as predators on the IPD (F 1,28 = 2.19, p = 0.14 by 

randomization) and there were no significant main effects (F 1•28 = 1.69, p = 0.199 for 

sculpin by randomization and F 1,28 = 0.38, p = 0.532 for cod by randomization, see Figure 

3.1). Overall, a 7-13 em difference in the IPD is observed, although it is not significant 

(85.5±4.0 em SEM for one sculpin, 79.9±2.9 em SEM for one cod, 92.1±3.1 em SEM for 

cod and sculpin). In terms of prey orientation, no significant interaction was found 

between the presence of sculpin and cod (F 1,28 = 0.25, p = 0.642 by randomization). A 

main effect of the cod predator was initially observed for the lAD, but statistical 

significance was lost upon randomization (F 1,28 = 4.42, p = 0.053, by randomization). 
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However, prey were less commonly oriented in the presence of cod than either sculpin 

alone or both sculpin and cod (Figure 3.2). In concrete terms, the effect of cod presence 

on the lAD represents a 1.4 degree difference in orientation (72.7±2.7 deg SEM for one 

cod versus 71.3±3.2 deg SEM for cod and sculpin). 

To control for possible density effects, prey were tested with two of the same type 

of predator (Figure 3.1) so that it would be possible to differentiate between the effects 

due to two predators or two different types of predators. The IPD values for prey exposed 

to two sculpin or two cod were similar (88.8±3.4 em SEM and 87.7±2.7 em SEM, 

respectively), and were lower than the mixed predator trial (92.1±3.1 em SEM). This 

indicates that observed differences are not simply due to an increase in the number of 

predators present, but the type of predators present. For the lAD the two-predator 

conditions were all very similar (two sculpin 74.5±2.8 em SEM, two cod 71.3±3.1 em 

SEM, mixed 71.3±3.2 em SEM). 

3.3.2 Distance to predator 

Distance to predator was used as a measure of prey response to predatory presence 

or threat. In the case of two predators being present, the distance to each predator was 

measured. Instances where the location of a predator could not be properly identified 

were excluded from the analysis. This occurred when the predator hid in the area of the 

tank in shadow, and resulted in some trials being excluded entirely. The normality 

assumption was violated, so p-values were obtained by randomization ( 1000 iterations). 

No interactive effect (F2,42 = 0.129, p = 0.122, by randomization) between predator type 

and number of predators was found. An almost significant main effect of predator type is 

observed (F2,42 = 2.92, p = 0.058, by randomization), but the number of predators present 
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is insignificant (F 1,42 = 0.39, p = 0.537, by randomization). It is possible that my statistical 

design is not sensitive to biological differences. I suggest this because when the number 

of predators of only one type increased, I observed a reduction in the distance to the 

predator; however, in the mixed trials, with both cod and sculpin together as predators, I 

found an increase in the distance from the predator (Figure 3.3). This increase in the mean 

is largely attributable to the presence of the cod in the mixed trials (117.29 cm±4.24 SEM 

and 102.96 cm±3.45 SEM, for cod and sculpin predators, respectively). This is in contrast 

to the mostly similar means of sculpin and cod in the unmixed two-predator trials of 

97.30 cm±3.56 SEM for sculpin and 92.20 cm±2.88 SEM for cod. In a tank less than 2 

metres wide, 15 centimeters would likely be ofbiological significance. 

3.3.3 Cod predation trials 

For the mortality data, no statistical tests were conducted because I felt the 

number of mortalities was a more tangibly relevant biological number to discuss and also 

because the appropriate test required a larger sample size. This problem is typical of 

mortality studies, since mortality (due to any number of factors) is a "rare and random" 

event. 

Predation was observed in 50% of trials where a predator was present. No 

predation was observed in the cod-predator trials; all predation was by sculpin, even in 

the mixed trials (Figure 3.4). Expected values for the two-predator treatments were 

obtained by summing the number of predation events in the appropriate single-predator 

treatments (e.g. the number of mortalities in the two sculpin treatment was compared to 

the value of the one sculpin treatment times two). The validity of using this method is 

rationalized in the discussion. 
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3.4 Discussion 

Determining whether or not emergent multiple predator effects (MPEs) exist 

involves comparing the observed value for a prey variable against a theoretical value, or 

in this case, finding a significant interaction term that indicates prey are responding 

differently to both predators than either predator alone. This theoretical, or expected, 

value is estimated based on knowledge of the system. The typical theoretical model is the 

additive model, where the observed value is compared to the sum of variable values in the 

presence of each predator alone. Most MPE studies measure only mortality where the 

additive model can be problematic (Sih et al., 1998). Unrealistic comparisons arise when 

predation is measured in proportions and predators consume a high number of prey 

resulting in prey depletion (Soluk and Collins, 1988). Relyea (2003) lists this as a major 

shortcoming ofMPE studies and advocates preventing prey depletion, and Soluk and 

Collins (1988) suggest using a multiplicative model instead of an additive model. 

Preventing prey depletion by exposing prey to predators in a non-contact situation to 

prevent prey depletion would have undoubtedly affected prey behaviour as prey are able 

to discern predation risk (Lima and Dill, 1990). To avoid compromising the behavioural 

portion of my study, predators were free-swimming and some prey depletion did occur. 

However, as the depletion was minimal (average rate of depletion was 1 0%) and the total 

number of mortalities was used instead of a proportion, an additive model was used for 

the theoretical value of mortality in the present system. 

Differences in schooling behaviour, as measured by the IPD and lAD, were not 

entirely clear. No differences were observed in aggregation (IPD), although comparisons 

of the means of the mixed predator treatment with the two-cod and two-sculpin 
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treatments show that existing decreases in aggregation are due to the combination of 

predator type, not simply the increase in predator density. No interactive effect was found 

for orientation either, but the lAD was almost significantly higher when the cod predator 

was present, regardless of sculpin presence. This suggests that prey were less commonly 

orienting and aggregation (schooling) when an adult cod was present. Conclusions 

regarding schooling behaviour as a result of these differences indicate that a decrease in 

schooling is possibly occurring when an adult cod is present. 

The schooling results contrast the results for the distance to the predator, no 

significant interaction was found, but the mean differences (almost 15cm) are biologically 

relevant and it is possible that we are committing an error in accepting there is no 

significance. The increase in distance to the predator in the mixed condition was mostly 

attributable to an increase in the distance kept from the adult cod in the mixed trials. The 

almost significant effect of prey type on the distance to the predator reflects this. Thus 

prey were less commonly oriented in the presence of an adult cod, but kept a greater 

distance from them, which is seemingly contradictory. The lack of a significant 

interaction for the IPD, lAD and distance to the predator precludes the conclusion that 

emergent effects of multiple predators exist in this system when tested in a laboratory 

situation, but the inconsistent results indicate that the question merits further 

investigation. 

Emergent MPEs do exist in terms of predation risk, as measured by total 

mortality, for prey in this study. The total number of mortalities in the mixed predator 

condition is less than would have been predicted by the number of mortalities in the lone­

predator conditions. This is also the case for predator density in the case of sculpin, as the 
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addition of second sculpin predator did not result in a concurrent increase in mortality. 

However, no mortality was ever attributed to the cod predators, so this trend was not 

observed with the adult cod. It is possible that na1ve cod have a search image; that is, a 

familiarity, for only bigger cod from their experience in the hatchery and that this skewed 

the trend of increased predation by one type of predator would not be observed with wild 

prey as they have presumably encountered both predator species in the wild. 

A concern recently raised regarding multiple predators studies involves the pairing 

of a predator that poses a high risk of predation with one that poses a low risk (Relyea, 

2003). This pairing can result in a situation where the combined trial mainly reflects the 

influence of the stronger predator, but results in an interaction, over-inflating the 

occurrence of non-additive effects. The term "hierarchy control" (Mcintosh and 

Peckarsky, 1999) describes a prey response when one of two predators presents a higher 

risk than the other. In this situation, greater predator avoidance should be observed. While 

sculpin were responsible for all of the predation in this study, the mixed trial shows a 

decrease in total mortalities, reflecting a real change in the interaction between predators 

and prey, not merely the same level of predation when sculpins were the sole predator. 

Additionally, adult cod still had an effect on prey behaviour as reflected in the increased 

distance kept from the predator in the mixed trial that is mostly due to the presence of 

adult cod. It may also be that a "hierarchy of response" exists whereby anti-predator 

behaviours are ranked by their effectiveness. Krause ct al. (1998) suggested that shoaling 

is an ineffective strategy for averting surprise (ambush) attacks. This difference in attack 

strategy may explain the susceptibility of the prey to predation by sculpins, but not to the 

adult cod that use a pursuit strategy. In Chapter 2, na1ve prey were found to use schooling 
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less than their wild counterparts. For the reason that nai·ve prey were used for this study, 

distance to the predator may be the best measure of anti-predator behaviour, followed by 

schooling. Of the schooling components, inter-prey distance is likely the best measure of 

schooling behaviour, since the differences in angle of orientation were more of degree 

and not kind. However, I conclude that both predator threat and prey response interact to 

produce these conflicting results, but in general the predators chosen for this study were 

equally threatening overall. 

Few multiple predator studies have involved fish, and most of those that have did 

not involve marine organisms (Rahel and Stein, 1988; Martin et al. 1989; Soluk, 1993; 

Crowder eta!., 1997; Ekloev and VanKooten, 2001 ). Ekloev and VanKooten (200 1) 

found higher mortality for mixed predator treatments, reflecting facilitation between 

predators, while Crowder et a/. ( 1997) found reduced mortality for the two-predator 

condition. However, Crowder et al. suggest it is not predator interference, but changes in 

prey behaviour that mitigate the potential increased risk of two predators. Martinet al. 

( 1989) found non-additive effects on the behaviour of snails when exposed to both a crab 

and a fish at the same time. These results demonstrate that both predator interactions and 

prey interactions have an effect on the outcome of multiple predator environments. This is 

important, given that prey behavioural responses to predators are often ignored, even 

though they have an impact on predator-prey interactions (Sih, 1979). Evidence for non-

emergent multiple effects on behaviour was found in this study. 

Prey defenses against predators can strongly impact community structure 

(Matsuda et al., 1994 ). For instance, predator presence and motivation influences habitat 

use, diel foraging and activity levels of prey (Gotceitas et al., 1995; Grant and Brown, 
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1998). The plasticity of anti-predator behaviours is reflected in these defenses, which are 

becoming better understood through multiple predator designs (Sih, 1987). My study was 

the first to investigate multiple predator effects in Atlantic cod, and one of the first marine 

studies in the MPE literature. Non-additive effects on the relative mortality of juvenile 

Atlantic cod under multiple predator threat were found in this system, while the effects on 

schooling behaviour were less clear. These emergent effects mean that to determine the 

effect of multiple predators on prey behaviours and on prey mortality, an additive model 

that simply sums the results of single-predator studies on mortality is insufficient and that 

behaviourally it is important to consider the contribution of each predator to the prey 

response. This study contributes to a growing body of work that suggests both prey 

behaviours and predator interactions co-vary both linearly and nonlinearly to produce 

results that cannot be predicted by merely observing a one-predator threat. 
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Table 3.1 Results of GLM for the mean inter-prey distance, mean inter-angle difference and distance to predator for na!ve prey 
under different predatory threats. *Number in parentheses is the p-value obtained by randomization (1000 iterations). 

Response variabl~ Source df MS (adj) F-value p-value* 
Mean inter-prey distance Sculpin presence 1 214.9 1.69 0.204 (0.199) 

Mean inter-angle difference 

Distance to predator 

Cod presence 1 48.1 0.38 0.544 (0.532) 
Sculpin presence*Cod presence 1 278.8 2.19 0.150 (0.140) 
Error 28 127.4 

Sculpin presence 
Cod presence 
Sculpin presence*Cod presence 
Error 

Predator type 
# of predators 
Predator type*# of predators 
Error 

1 
1 
1 
28 

2 
1 
2 
42 

74.8 
500.0 
28.2 
113.2 

472.8 
63.8 
348.5 
161.7 

0.66 
4.42 
0.25 

2.92 
0.39 
2.15 

0.423 (0.403) 
0.045 (0.053) 
0.621 (0.642) 

0.065 (0.058) 
0.533 (0.537) 
0.129 (0.122) 
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Figure 3.1 Differences in the mean inter-prey distance (em) of na"ive cod in the presence 
of different types and densities of predators. Columns represent group means ± SEM. See 
Table 1 for details. Note: y-axis scale does not begin at zero. 
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Figure 3.2 Differences in orientation of naive cod under in the presence of different types 
and densities of predators as measured by the mean inter-prey angle difference. Columns 
represent group means ± SEM. See Table 1 for details. Note: y-axis scale does not begin 
at zero. 
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Figure 3.3 Differences in distance to predator (em) in the presence of different types and 
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conditions, the mean distance to each predator. See Table 1 for details. 
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number of mortalities in the individual predator conditions. 

51 



CHAPTER4 

Summary 

The influence of predator-prey interactions on prey behaviours is shown in both 

the variety of prey responses, and the flexibility of those responses. In this thesis I 

examined how previous prey experience with predators affected anti-predator behaviours 

and survival, and how multiple predators influenced prey behaviour and predation risk. 

In Chapter 2, I found that experience did improve anti-predator behaviours. Naive 

prey initially schooled less than either wild species, although this behaviour improved 

with experience. Reduced schooling behaviour may have been the cause of observing 

predation in 50% of naive prey trials. I concluded that it may not necessarily be the so­

called "sensory-deprived" hatchery environment that results in these behavioural deficits, 

but social deprivation. Nai"ve prey may need the appropriate anti-predator behaviours and 

recognition of actively foraging predators to be modeled by other fish. The results of the 

experience trials support this suggestion, where even a small increase in schooling 

resulted in a 1 00% decrease in predation. It is possible that nai"ve prey that have witnessed 

predation events "copied" the appropriate behaviours from other prey. These results 

indicate that in the future both predator training and wild conspecific exposure may 

increase the potential for survival of nai"ve fish in rearing programs intended for release, 

although an analysis must include a review of the potential costs to be appropriate for an 

aquaculture program. 

The fitness and behavioural implications of living in a multiple predator 

environment were investigated in Chapter 3. This study was the first to investigate 
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multiple predator effects in Atlantic cod, and one of the first marine studies in the MPE 

literature. Non-additive effects on the relative mortality of juvenile Atlantic cod under 

multiple predator threat were found in this system, while the effects on schooling 

behaviour were less clear. These results have important implications for how we evaluate 

anti-predator behaviours in the presence of single and multiple predators. In the case of 

cod, and other schooling species, the effectiveness of schooling as an anti-predator 

behaviour may depend on what predators are present, as schooling did not appear to 

mitigate predation by sculpin, an ambush predator, in this study. 

Future research may investigate the effect of different predator species, or 

different levels of predator motivation on anti-predator behaviours in cod. It is possible to 

improve anti-predator behavioural skills by training, but different types of training and 

the long-term implications have not been investigated. In terms of the MPE model, future 

work should include comparing the results of emergent effects in a nai"ve prey system to a 

wild prey system, where more natural results may be observed. 
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