EFFECTIVENESS OF REACTIVE POWER SOURCES FOR POWER SYSTEM PERFORMANCE ENHANCEMENT

LEI WENG

Effectiveness of Reactive Power Sources for Power

System Performance Enhancement

By

Lei Weng, B. Eng.

A thesis submitted to the School of Graduate Studies

in partial fulfillment of the requirements for the

degree of Master of Engineering

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

June 2011

St.John's Newfoundland and Labrador Canada

Abstract

Increased load demand can severely deteriorate the performance of a power system. Building new generation and transmission facilities are not easy due to economic and environmental constraints. As a result, power systems are operated close to their limits. The probability of blackouts during contingencies is high when the power system is operating under stressed conditions. The power system biould be operated in such a way that the voltage limits and thermal limits of equipments are not violated. In addition, the possibilities of voltage collapse and voltage sublity problems must be considered.

Reactive power planning is an important aspect of power system planning and operation when a power system is highly stressed. The most important requirement of a power system for maintaining desired performance is the existence of a sufficient amount of reactive power reserve in the proper location of the power system. Installing devices that supply reactive power (like capacitors, static VAR compensator etc.) can enable the power system to be operated closer to their limits and thus make it possible to get the 'best' from the existing resources. Optimal Power Flow (OFF) is used to optimize the promer system performance.

This thesis shows the effectiveness of reactive power supply for the performance enhancement of power systems. The problems considered are related to maintaining acceptable voltage profile and ensuring adequate voltage stability margin during a contingency is within an acceptable level. Case studies are presented throughout the thesis to show the effectiveness of reactive power supply. These techniques are well known when considering a specific problem individually. However, there remains a major childrage to determine the best locations and controls for reactive power discuses to provide maximum benefits to the power system as a while during normal operation as well as during contingencies.

Acknowledgements

I am heartily thankful to my supervisor, Dr. Benjamin Jeyasurya, whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject.

Special appreciation is given to the Natural Sciences and Engineering Research Council of Canada and to Memorial University of Newfoundland for the financial support, which made this research possible. Thanks are given to the Faculty of Engineering at Memorial University for providing the resources to carry out this research.

Lastly, I offer my regards and blessings to all those who supported me in any respect during the completion of the thesis.

Contents

Abstract	i
Acknowledgements	ш
Table of Contents	iv
List of Figures	ix
List of Tables	xi
List of Abbreviations and Symbols	

1	Introduction	1
	1.0 Background of the Research	1
	1.1 Objectives of the Research	2
	1.2 Organization of the Thesis	3
2	Reactive Power Transmission and Compensation	5
	2.0 Introduction	5
	2.1 Reactive Power in Power Systems	5
	2.2 Power Transmission Using Elementary Models	7
	2.2.1 Case Study of Reactive Power Transmission	9
	2.3 Shunt Compensation for Reactive Power Flow Control	12
	2.3.1 Case Study of Shunt Compensation	13
	2.4 Conclusion	17

3	Ap	plication	1 of O	ptimization Methods in Power Systems	18
	3.0	Introdu	ction		18
	3.1	Optimia	zation	Formulation of Problems	19
		3.1.1	State	ment of an Optimization Problem	19
		3.1	1.1	Design Vector	20
		3.1	.1.2	Design Constraints	20
		3.1	.1.3	Objective Function	21
		3.1.2	Class	ification of Optimization Problems	21
		3.1.3	Appl	ication of Optimization in Power System	23
	3.2	Optima	l Dispi	atch of Generation	24
		3.2.1	Open	ation Cost of a Thermal Plant	24
		3.2.2	Econ	omic Dispatch Neglecting Loss and No Generation Limits	25
		3.2	2.1	Economic Dispatch Case Study 1	27
		3.2.3	Econ	omic Dispatch Including Loss and Generation Limits	28
		3.2.	3.1	Economic Dispatch Case Study 2	32
	3.3	Optimal	l Powe	r Flow	36
		3.3.1	Math	ematical Formulation of Optimal Power Flow	36
		3.3.2	Objex	tive Function	38
		3.3.	.2.1	Active Power Loss	38
		3.3.	.2.2	Total Fuel Cost	39
		3.3.	.2.3	Voltage Deviation.	39

	3.3.2 Control Variables	40
	3.3.4 Operational Constraints	40
	3.3.4.1 Equality Constraints	41
	3.3.4.2 Inequality Constraints	42
	3.3.5 The Solution of Optimal Power Flow	43
	3.3.6 Optimal Power Flow: Cost Minimization	44
	3.3.6.1 Case Study of Cost Minimization	45
	3.3.7 Optimal Power Flow: Loss Minimization	46
	3.3.7.1 Case Study of Loss Minimization	47
	3.6 Conclusion	49
í	Voltage Profile and Reactive Power Compensation	50
	4.0 Introduction	50
	4.1 Test Power Systems and Tools for Studies	52
	4.2 Case Study	55
	4.2.1 Case Study 1: the Stressed 6-Bus Power System	56
	4.2.1.1 Minimum Loss	57
	4.2.1.2 Minimum Cost	59
	4.2.1.3 Minimum Voltage Deviation	61
	4.2.2 Case Study 2: the Stressed 26-Bus Power System	62
	4.2.2.1 Minimum Loss	63
	4.2.2.2 Minimum Cost	65

	4.2.2.3 Minimum Voltage Deviation	67
	4.3 Conclusion	68
5	Voltage Stability Margin and Reactive Power Compensation	71
	5.0 Introduction	71
	5.1 Voltage Stability Margin	73
	5.2 PV Curves	73
	5.3 Test Power Systems and Tools for Studies	75
	5.4 Case Studies	77
	5.4.1 Case Study 1: the 5-Bus Power System	78
	5.4.2 Case Study 2: the Stressed 39-Bus Power System	79
	5.5 Conclusion	82
6	Conclusion and Future Work	83
	6.0 Recap of the Thesis	83
	6.1 Summary of the Research and Contribution of the Thesis	84
	6.2 Recommendations for Future Work	85
Re	ferences	87
Ap	opendix A 7-Bus Power System Data	91
Ap	opendix B 6-Bus Power System Data	93
Ap	opendix C 26-Bus Power System Data	95
Ap	opendix D 5-Bus Power System Data	98
Ap	pendix E IEEE 39-Bus Power System Data	100

List of Figures

Figure 2.1	Model of the Transmission Line	7
Figure 2.2	One Line Diagram of the 2-Bus Power System	9
Figure 2.3	Receiving End Voltage vs. Transferred Power	10
Figure 2.4	Reactive Consumption vs. Transferred Power	11
Figure 2.5	A Fictitious Generator Used to Supply Reactive Power	13
Figure 2.6	Local Reactive Power Compensation vs. Power Transfer	15
Figure 2.7	Power Transfer vs. Power Angle	16
Figure 3.1	Plants Connected to a Common Bus	25
Figure 3.2	One Line Diagram of the 7-Bus Power System	45
Figure 4.1	One Line Diagram of the 6-Bus Power System	52
Figure 4.2	One Line Diagram of the 26-Bus Power System	53
Figure 4.3	Voltage Profiles of the 6-Bus Power System (Minimum Loss)	58
Figure 4.4	Voltage Profiles of the 6-Bus Power System (Minimum Cost)	60
Figure 4.5	Voltage Profiles of the 6-Bus Power System (Minimum VD)	62
Figure 4.6	Voltage Profiles of the 26-Bus Power System (Minimum Loss)	64
Figure 4.7	Voltage Profiles of the 26-Bus Power System (Minimum Cost)	66
Figure 4.8	Voltage Profiles of the 26-Bus Power System (Minimum VD)	68
Figure 5.1	One Line Diagram of the 2-Bus Power System	74
Figure 5.2	PV Curves for Three Different Cases.	74

Figure 5.3	One Line Diagram of the 5-Bus Power System	76
Figure 5.4	One Line Diagram for the 39-Bus Power System	76
Figure 5.5	Comparison of Voltage Stability Margins for the 5-Bus System	78
Figure 5.6	Comparison of Voltage Stability Margins for the 39-BusSystem	80
Figure 5.7	PV Curves of Bus 8 (the 39-Bus Power System)	81
Figure A.1 G	One Line Diagram of the 7-Bus Power System	91
Figure B.1 C	Dne Line Diagram of the 6-Bus Power System	93
Figure C.1 C	Dne Line Diagram of the 26-Bus Power System	95
Figure D.10	the Line Diagram of the 5-Bus Power System	98
Figure E.1 C	One Line Diagram of the 39-Bus Power System	100

List of Tables

Table 2.1	Active Power Transfer vs. Receiving End Voltage	10
Table 2.2	Power System Performance vs. Reactive Power Compensation	14
Table 3.1	OPF Cost Minimization of the 7-Bus System	46
Table 3.2	OPF Loss Minimization of the 7-Bus System	48
Table 4.1	Operational Constraints for the Stressed 6-Bus System	53
Table 4.2	Operational Constraints for the Stressed 26-Bus System	54
Table 4.3	Base Case Summary for the Stressed 6-Bus System	57
Table 4.4	Summary of Minimum Loss for the Stressed 6-Bus System	58
Table 4.5	VAR Allocation of Minimum Loss for the Stressed 6-Bus System	59
Table 4.6	Cost Coefficients of the 6-Bus Thermal Plants	59
Table 4.7	Summary of Minimum Cost for the Stressed 6-Bus System	60
Table 4.8	VAR Allocation of Minimum Cost for the Stressed 6-Bus system	61
Table 4.9	Base Case Summary for the Stressed 6-Bus System	61
Table 4.10	Base Case Summary for the Stressed 26-Bus System	63
Table 4.11	Summary of Minimum Loss for the Stressed 26-Bus System	64
Table 4.12	VAR Allocation of Minimum Loss for the Stressed 26-Bus System	64
Table 4.13	Cost Coefficients of the 26-Bus Thermal Plants	66
Table 4.14	Summary of Minimum Cost for the Stressed 26-Bus System	66
Table 4.15	VAR Allocation of Minimum Cost for the Stressed 26-Bus System	66

Table 4.16	Summary of Minimum VD for the Stressed 26-Bus System	68
Table 5.1	Summary of the 5-Bus and Stressed 39-Bus Power System	77
Table 5.2	Summary of VAR Allocation at Selected Buses	79
Table 5.3	Summary of Voltage Stability Margin Analysis	80
Table A.1	Generation Schedule and Limits for the 7-Bus Power System	91
Table A.2	Load Demand for the 7-Bus Power System	92
Table A.3	Generator Fuel Cost Coefficients for 7-Bus Power System	92
Table B.1	Generation Schedule and Limits for the 6-Bus Power System	93
Table B.2	Load Demand for the 6-Bus Power System	94
Table B.3	Generator Fuel Cost Coefficients for the 6-Bus Power System	94
Table C.1	Generation Schedule and Limits for the 26-Bus Power System	96
Table C.2	Load Demand for the IEEE 26-Bus Power System	96
Table C.3	Generator Fuel Cost Coefficients for the 26-Bus Power System	97
Table D.1	Generation Schedule and Limits for the 5-Bus Power System	98
Table D.2	Load Demand for the 5-Bus Power System	99
Table D.3	Generator Fuel Cost Coefficients for the 5-Bus Power System	99
Table E.1	Generation Schedule and Limits for the 39-Bus Power System	101
Table E.2	Load Demand for the 39-Bus Power System	101
Table E.3	Generator Fuel Cost Coefficients for the 39-Bus Power System	102

List of Abbreviations and Symbols

IP	Integer Programming
LP	:Linear Programming
NLP	:Nonlinear Programming
OPF	:Optimal Power Flow
p.u.	:Per Unit
Q	:Reactive Power
QP	:Quadratic Programming
SVC	:Static VAR Capacitor
VD	:Voltage Deviation
SQP	:Sequential Quadratic Program
Y	:Bus Admittance Matrix
S/hr	:Dollar per Hour
MW	:Mega Watt
MVAr	:Mega Volt Ampere Reactive
MVA	:Mega Volt Ampere
	No. in the second secon

Chapter 1

Introduction

1.0 Background of the Research

Insufficient reactive power supply can result in voltage collapse, which has been one of the reasons for some major blackouss. For example, the US-Canada Power System Outage Task Force states in its report that insufficient reactive power was an issue in the August 2003 blackout, and recommended strengthening the reactive power and voltage control practice in all North American Electric Reliability Contail Readons [11].

The traditional solution was to install new costly transmission lines to meet the constant increase in power demand that are often faced with environmental extrictions and economic infrashilty. Hamile of reactive power compensation has changed the way utility industry handles the increased load and extremely low voltages. Local reactive power compensation that will allow a power system to addry manage a load increase it to allocate that tractive power to system loads. This mitigates reactive power that must be produced by generators and transformed over the transmission infrastructure. By providing reactive power locally, load transformed over the transmission infrastructure. By providing reactive power locally, load withous costs be reactive volume adultion can be ontoxed on transmission volume local transformed and the volume adultion can be ontoxed on transmission volume local and the system local system power local to advect the providence of the system local transformed by the system of the system power local to advect the system local system local to advect the system power local to advect the system local system local to advect the system local to advect the system local system local to advect the system local to advect the system local system local to advect the system local to advect the system local system local to advect the system local to advect the system local system local to advect the system local system local to advect the system local system local system local to advect to system local system local system local to advect the system local system local system local to advect the system local system local system local system local system local system to system local system local system local system to system local system local system local system to system used more effectively as the negative effects of reactive power transmission are significantly reduced [2].

This thesis presents a conventional optimization algorithm to minimize the full cost, minimize the transmission loss, and minimize the voltage deviation once a time in a way that meets the limitations of the equipments and other operating constraints. The goal is achieved by proper adjustment of generators' power output to support a particular load demand at the lowest possible field cost or transmission loss. This optimization problem in known as the optimal power flow (OPF) problem. To solve the optimization problem, a number of conventional optimization techniques have been researched. These include Non-linear Programming (NEP), Quadratic Programming (QP), and Linear Programming (LP). Though these techniques have been suscessfully applied for solving the QPF problem, some difficulties are still associated with them.

1.1 Objectives of the Research

Reactive power planning in a sub-problem of optimal power flow (OPT), which has objectives of improving the system voltage portific, reducing operation cost, and minimizing the system transmission. This is achieved through redistribution of reactive power in the power system through optimal settings of generative terminal voltages, reactive power outputs, and output of other compensation devices such as capacitors, static Volto-Ampere Reactive (VAR) compensators, systemonic acodensers and so on. The objective behind the present study is to explore the impact of the reactive power compensation devices on the system voltage posifie and active power transmission loss by solving each OPF objective. The principle goals of this reaceach are summarized as follows:

2

- Review the applications of the optimization techniques in the power system engineering field.
- Discuss the constrained optimization methods for power system economic dispatch and optimal power flow.
- Recognize the negative impacts of the remote transmission of reactive power and how reactive compensation can mitigate them.
- Describe the general formulation of the OPF and perform case studies that demonstrate the effectiveness of reactive power supply for the performance enhancement of power systems.
- 5. Investigate the effect of reactive power compensation on power system voltage stability.

1.2 Organization of the Thesis

Chapter 2 focuses on the fundamental concept of reactive power compensation. The difficulties of remote reactive power transmission are described and illustrated using a 2-Bus case study. The concept and benefit of shunt reactive power compensation techniques are discussed.

Chapter 2 presents the important background of optimization problems, which covers its definition, classification, conditions and algorithm. The classification, theories and features of operand optimization techniques are hiefly presented. Care studies discuss and literature classic economic dispatch problem by distinguishing it from a conventional power system optimization problem called optimilar power flow (OPP). A brief review of OPF along with a care study on the 7-bas power system is presented. Chapter 4 starts with an observation of power system response when systems are overloaded. The single objective optimization method is applied to solve each objective of OPF during systems' stressed scenario. The additional reactive power supply in applied to perform a comparison of power system response. A stressed 6-the power system and a stressed 26-Bus power systemare used to perform these case studies and to illustrate the effectiveness of reactive power compensation on maintaining acceptable voltage porfile.

Chapter 5 extends reactive power compensation study on voltage stability analysis. A 5-Bus system and a stressed IEEE 39-Bus system are employed to illustrate the effectiveness of reactive power compensation on ensuring adequate voltage stability margin.

Chapter 6 recaps and highlights the key contributions of the research presented in this thesis along with suggestions for future work.

Chapter 2

Reactive Power Transmission and Compensation

2.0 Introduction

The remote generation and transmission of reactive power from bod demands has a strong negative impact on power system operations. This chapter presents an overview of the challenges associated with the transmission of reactive power over a power system network. It will first give a bief overview of reactive power in power systems in section 2.1. The derivation of generated, transmitted and consumed reactive power will be presented in section 2.2 based on an elementary transmission system model. Section 2.3 will give a fundamental understanding of shant reactive power compensation and how it can be used to miligate the negative effects of remote reactive power transmission. Section 2.4 concludes this therpter.

2.1 Reactive Power in Power Systems

It is recognized that the management of reactive power is fundamental to power systems [3]:

· The Source of Reactive Power

"Power" refers to the energy-related quantities flowing in the distribution network. Instantaneously, power is the product of voltage and current. When voltage and current are not in phase, there are two components which is real or active power that is measured in Watts. Reactive power, referred to as imaginary number, is measured in VAR. The combination is complex power or apparent power. The term "power" normally refers to active power.

The Need of Reactive Power

Reactive power is required to maintain the voltage to deliver active power (Watts) through transmission lines. Motor loads and other loads require reactive power to convert the flow of electrons into useful work. When there is not enough reactive power, the voltage sages down and it is not possible to push the power demanded by loads through the lines.

· The Importance of Reactive Power

Reactive power refers to circulating power in the grid that does not do useful work. It results from energy storage elements in the power grid (mainly inductors and capacitors). It also has a strong effect on system voltages. Besides that, it must have balance in the grid to prevent voltage problems. Lastly, reactive power levels have an effect on voltage.

· Reactive Power Limitation

Reactive Power does not travel very far. It is usually necessary to produce it close to the location where it in needed. A supplier or source close to the location of the need is in a much better position to provide reactive power versus one that is located far from the location of the need. Reactive power supplies are closely lied to the ability to deliver real or active power.

Implementation of Reactive Power Control

6

Reactive power injections regulate and control voltage to a desired nominal value at the location of the injection. Reactive power control effects tend to be localized.

2.2 Power Transmission Using Elementary Models

The need for reactive power compensation of a transmission line can be seen by taking an elementary model shown in Figure 2.1.

Figure 2.1 Model of the Single Transmission Line

Figure 2.1 shows the simplified model of a power transmission system. Two bases are connected by a transmission line which is assumed lossless and represented by the reactance X. $E_{x} c\delta a m U_{x} c\lambda$ represent the sending end and receiving end voltages with voltage phase angle δ between the two. P_{x} and Q_{x} represent the active power and reactive power at the load bus. The current in the transmission line is given by D2:

$$I = \frac{E_s cos \delta + j E_s sin \delta - V_r}{j X}$$
(2.1)

The apparent power at the receiving end can be calculated as:

$$S_r = P_r + jQ_r = V_r I^* = V_r \left[\frac{E_s cos\delta + jE_s sin\delta - V_r}{jX} \right]^* = \frac{E_s V_r}{X} sin\delta + j \left[\frac{E_s V_r cos\delta - V_r^2}{X} \right] \quad (2.2)$$

The active power and reactive power atthe load bus are given by:

$$P_r = \frac{E_s V_r}{\chi} sin\delta = P_{max} sin\delta$$
, $Q_r = \frac{E_s V_r cos \delta - V_r^2}{\chi}$ (2.3)

7

Similarly, the active power and reactive power at generator bus are given by:

$$P_s = \frac{E_s V_r}{\chi} sin\delta = P_{max} sin\delta$$
, $Q_s = \frac{E_s^2 - E_s V_r cos\delta}{\chi}$ (2.4)

Equations (2.1) through (2.4) indicate that the current flow, as well as the neitive and reactive prover can be regulated by controlling the voltage magnitudes, phase angles and line impodance of the transmission system. From Equation (2.3) and (2.4), $F_{\rm eff}$, $F_{\rm eff}$, $F_{\rm have the same expression$ under the assumption of the lossless transmission line; the active power flow will reach themaximum when the phase angle 6 is 90°. In practice, a small angle, usually key below 45°, isused to keyp the system stable from the transient and dynamic oscillations [14]. For small angles,use cold <math>B = 1.2, $Q_{\rm eff}$ $Q_{\rm eff}$ and $P_{\rm eff}$ is the second stable of the system stable of the system stable as the system stable of the transient and $P_{\rm eff}$ is the second B = 1.2, $Q_{\rm eff}$ $Q_{\rm eff}$ $Q_{\rm eff}$ $Q_{\rm eff}$ is the system stable of the transient and $P_{\rm eff}$ is the system stable of the transient and $P_{\rm eff}$ $P_{\rm eff}$

$$Q_r = \frac{V_r(E_s - V_r)}{X}, \quad Q_s = \frac{E_s(E_s - V_r)}{X}$$
(2.5)

Equation (2.5) states that reactive power transmission depends mainly on voltage magnitudes and flows from the highest voltage to the lowest voltage, Q and P are closely coupled. To better understand how the voltage has an impact on the reactive power, Q_i and Q_i can be calculated using Equations for an angle of 30^o. A substantial voltage gradient of 10% is between the two ends, E_i , one he 10.40 m s. and V_i can be Q so.

$$Q_g = \frac{E_g^2 - E_g V_F cos \delta}{X} = \frac{0.22}{X}, \quad Q_F = \frac{V_F (E_g - V_F)}{X} = -\frac{0.03}{X}$$
 (2.6)

The amount of reactive power goes into the transmission line; none of it comes out from the line at the receiving end. The negative value of the Q_2 means that the transmission line domainds $\frac{2}{4T}$ from the load end. The transmission line becomes a drain on the transmission system. The reactive loss through the transmission line the sum of the reactive power solution to the line. $\frac{0.25}{x}$ p.u.. Similar to the minimization of real power loss, reactive power loss should also be minimized for the sake of economic consideration. The reactive power loss is given by:

$$Q_{loss} = I^2 X = \overline{I} \cdot \overline{I}^* X = \left(\frac{P - jQ}{\overline{V}^*}\right) \left(\frac{P + jQ}{\overline{V}}\right) X = \frac{P^2 + Q^2}{V^2} X$$
 (2.7)

The derivation shows that it is possible to minimize reactive power loss by keeping the load voltage high. The following two case studies are analyzed in PowerWorld Simulator.

2.2.1 Case Study of Reactive Power Transmission

Case 1 considers the lossless two bus system with base values (500 MVA and 735 KV) shown in Figure 2.2. It is given the values of 0.15 p.a. for the reactance of the transmission lines, and 2.5 p.a. for the shunt changing of the transmission lines with a costomer load demand (1230 MVi)/Id4 MVA/D. It is assumed that the voltage at the generator bus is 1.0 per unit at zero decrete shus antic.

The load demand (1230 MW+j404 MVAr) is varied gradually by each step k of 0.1 starting from 0 to 1.0. The corresponding receiving end voltages and transferred powerare shown in Table 2.1.

k	power (MW)	reactive power (MVAR)	Vr[p.u.]
0	0	0	1.23
0.1	123	40.4.	1.22
0.2	246	80.8	1.2
0.3	369	121.2	1.19
0.4	492	161.6	1.17
0.5	615	202	1.15
0.6	738	242.4	1.13
0.7	861	282.8	1.1
0.8	984	323.2	1.07
0.9	1107	363.6	1.04
1	1230	404	0.99

Table 2.1 Active Power Transfer vs. Receiving End Voltage

Figure 2.3 The Receiving End Voltage vs. the Transferred Power

With a slow increase in the system demand, a voltage characteristic at the load bus looks like the graph in Figure 2.3. PowerWorld Simulation [15] results demonstrate that as load increases, the load voltage drops.

Figure 2.4 Reactive Consumption vs. Real Power Transmission

As the load gradually increases, the reactive power absorbed by transmission line (the black line) and reactive power generated by the generator (the gravy line) are demonstrated in Figure 2.4. It indicates that the reactive power generated by the generator cannot unsply the reactive power consumed by the transmission line. This shortage of reactive power surply is getting more sever as more load demund is required. This remote surply and transmission of reactive power from the generator to the load is difficult; the load voltage cannot be kept clone to the nominal voltage 10.0 µ a. At the prese maximum power tunnels of 2120 MW, the generator can only suply half of the reactive power consumed by the transmission line. The reactive power absorbed by the transmission line starts to increase rapidly as the voltage at the load bue begins to dep. Figure 2.4 also reveals that if the reactive power support reaches the linit, the system will eventually leads to a shortage of reactive power support reaches the linit, the system will be seen from the plot of the voltage at the load eventually leads to a shortage of startive power rans the power tanged 3.0 m and the power of voltage collapse point. Thus, the increasel load demund eventually leads to a shortage of exactive power and declined voltage. This phenomenon can also be seen from the plot of the voltage at the load event and power transferred. The posts The reason that the load hus voltage level decreases as load demand increases is that the transmission reactance has its own reactive power requirement for carrying load power demand. This reactive requirement comes in the form of $l^2 X$ loads, which depresses system voltages. In order to enhance the dopped voltage magnitude at the load while the system is still able to meet the load demand, the dorategrar density over needs to be compensated.

Lead reactive power compensation is a convention and common method to control reactive power flow to meet the desired load voltage level. Most compensation devices come in the form of working in didnect or capacitor banks that are instabile in parallel to volvion load centers throughout a power system. Their purpose is to supply or absorb reactive power to loads such that the generation and transmission systems are unbudged by load reactive power demand. While there are many forms of reactive power compensation devices used as shart capacitors, synchronica generators, systemiosus condensers or static reactive power generators (Mr. C). The effectiveness of reactive power compensation on voltage variation is investigated in the following case study.

2.3 Shunt Compensation for Reactive Power Flow Control

Reactive power compensation is the common practice to stabilize and support the voltage in power systems and its provision was transitionally considered to be part of the daties of the system dispatching active power. The their proposes the provision of reactive power by the load that enables them to inject reactive current to support the voltage locally. As shown in the previous section, reactive power transmission has a negative impact on many aspects of power system operations. Which the proper control of reactive power, a power system can be forced to operate in ways that threaten the systems voltage and its efficiency. The major objectives that the control of reactive power must satisfy to achieve reliable and efficient power system operation are [16]:

- Bus voltages should be within an acceptable limit to ensure that all equipments connected to the buses are operating in the conditions for which they were designed.
- Reactive power flow is minimized to reduce both active and reactive losses over transmission systems. This will ensure existing transmission infrastructure is utilized more efficiently.
- · Increase power system stability by utilizing the transmission system more effectively.

Shunt reactive power compensation is a convenient and common method to control reactive power flow to meet the mentioned objectives. Voltage and reactive power based on local operation of the voltage and reactive power control equipment are investigated in further detail in this section.

2.3.1 Case Study of Shunt Compensation

Case 2 assumes that reactive power compensation is provided at the load bus as shown in the diagram in Figure 2.5. The fictitious generators supplies reactive support at the load to keep the load voltage fixed at 1.00 p.u.; synchronous machines are indicated at both routs transmission line have an earliveder reactione 0.15 p.u., and but charring 2.5 p.u..

Figure 2.5 A Fictitious Generator Used to Supply Reactive Power

13

In order to stress the load bus, the load demand is gradually increased by the small step $k \neq 0.1$, from the full load 1220 MW to 3444 MW. PowerWorld Simulator determines the reactive power demanded at the load while meeting the load demand and ensuring voltage at the desired nominal level (1.00 p.a.) The phase angle difference between these two bases δ is also studied. The simulator results for each head level is recorded in Table 2.2.

k	real power (MW)	reactive power (MVAR)	compensated (MVAR)	Delta (degrees)
1	1230	404	14	21.654
1.1	1353	644	105	23.948
1.2	1476	485	205	26.283
1.3	1599	525.43	309	28.666
1.4	1722	565.85	420	31.104
1.5	1845	606.267	538	33.607
1.6	1968	646.6845	665	36.185
1.7	2091	687.1	800	38.851
1.8	2214	727.52	944	41.621
1.9	2337	767.94	1099	44.515
2	2460	808.356	1267	47.561
2.1	2583	\$48.77	1450	50.796
2.2	2706	889.19	1651	54.272
2.3	2829	929.61	1875	58.071
2.4	2352	970	2130	62.326
2.5	3075	1010.445	2432	67.297
2.6	3198	1050.4	2820	73.637
2.7	3321	1090.8	3511	85.043
2.8	3444	1131.2	4022	90

Table 2.2 Power System Performance vs.Reactive Power Compensation

It is seen in Figure 2.6 that the compensated reactive power is dramatically increased to meet the gradually increased load demand and to maintain the voltage magnitude at a constant level of 1.00 µ.m. The plot of reactive power requirement versus power transfer graphically appears as below.

Figure 2.6 Reactive Power Compensation vs. Power Transfer

The plot indicates initially no reactive power injection at the full load. To stabilize the constant load voltage, reactive power injection is correspondingly required to support the increased power inference of the stabilized stabilized by the system base the stars and power 4022 MVAr reactive power is locally domanded. Further, the 2800.8 MVAr reactive power produced by the generator is injected into the system to acuse the transmission line requirements for transport of the required active power as well as to reduce the generator's reactive power anyot. The effect of this local injection of reactive power keeps load bus voltage constant as 1.00 pta. and the increased active load demand can be met without any dimansic chargers in current generator and line configurations. Thus, reactive compensation has a direct economic and loadings ashift) by sentir to a transmission system. Additionally, the first extra Q support the system to carry the extra 55% active power, the second extra 500 MVAr only enables the system to transfer 30% nore active power. The reactive power injection does not linearly scale in proposition scale '20% nore active power.

Figure 2.6 Power Transfer vs. Power Angle

The observation shows that the transmitted power can be significantly increased, the peak point shifts from 20° to 50°, and the maximum power transfer occurs at 90° of power angle. Both derivation and numerical cases revealed the fact that tractive power is difficult to transmit across large power angles even with substantial voltage magnitude gradients. High angles are due to toon lices and high real power transfer.

The main purpose of reactive power support is to increase system active power transfer capability, while at the same time maintaining a certain desired voltage profile if it is summer that only power transfer capability and voltage traffility are a conserved for reactive power compensation are diverse. Shart capacitors are the simplest and most widely used from of reactive power compensation due to the low implementation and equipment cost. It is considered to be an efficient modulo to assume the neglementation and equipment costs.

2.4 Summary

The chapter has discassed the basic foundations on the difficulties of reactive power transmission. The study presented aboved that transmitting reactive power through transmission time affects power years the pofermatese. It is necessary to produce it does to the location where it is needed. It was also shown that system bas voltages through a system are negatively impacted by remote reactive power transmission. A simple 2-thus power system was used to librature the concepts reading reactive power.

An effective and highly used approach to increase the efficiency of a power system was described. The use of local reactive power comparation devices that can greatly increase the difficult of a power system to moret a wide variety of load domands while emuring the system works within a specified voltage profile. This is an attractive option to power system planners as the costs associated with it are significantly lower than intailing new transmission or generation systems to satisfy the increasing spower domands.

Chapter 3

Application of Optimization Methods in Power Systems

3.0 Introduction

Optimization is the process of determining the host results or methods from a set of alternatives under certain given circumstances. It has been wildly applied to the engineering field to define comminal residues, seever, efficient systems as well as to device plants and procedures to improve the operation of the existing systems. For example, the real and reactive power provided by the generators can be adjusted within certain limits to meet the device load semand with minimum field cost. This is also known as Optimal Power Flow (OPF). It can be achieved by minimizing the dot, plants for known as Optimal Power Flow (OPF). It can be achieved to be constraints that the sum of the powers generated must equal to the sum of the transmission loss and the power consumed by the load. Economic depatch is a special case of OPF, which meters the transmission limits.

This chapter defines the concept of engineering optimization problems and some associated applications. Section 3.1 presents a general review of optimization methods. Section 3.2 focuses on the economic dispatch. It starts with introducing the theory of economic dispatch and tytical economic dispatch problems. The economic dispatch of generation for minimization of the total economic dispatch problems. The economic dispatch of generation and economical section 3.3 gives a fundamental understanding OPF problems. The formulation and conventional algorithms of OPF are introduced. OPF problems for minimizing the fuel cost and minimizing the transmission loss are demonstrated through the 7-Bus Power System. A conclusion of this chapter is given in section 3.4.

3.1 Optimization Formulation of Problems

3.1.1 Statement of an Optimization Problem

Optimization is defined as the process of finding the conditions that give the maximum or minimum value of a function. In the simplest cases, optimization means solving problems in which one seeks to minimize or maximize an objective function by systematically choosing the values of variables within certain constraints [27-29]. Mathematical programming techniques are useful in finding the maximum or minimum of a function of several variables under a prescribed set of contraints. An optimization or a ambematical programming problem can be stated as follows.

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, which optimize f(x)$$
(3.1)

Subject to the constraints

$$g_i(x) \le 0, j = 1, 2, ..., m$$
 (3.2)

$$h_k(x) = 0, k = 1, 2, ..., p$$
 (3.3)

$$x_i^{max} \le x_i \le x_i^{min}, i = 1, 2, ..., n$$
 (3.4)

19
Where

x is an n-dimensional vector called the design vector.

f(x) is termed the objective function.

 $g_i(x)$ and $h_b(x)$ are known as inequality and equality constraints.

x₁^{max} and x₁^{min} are an upper and lower bound.

The number of variables n and the number of constraints m and/or p need not be related in any way. The problem stated in Equation (3.1) is called a constrained optimization problem. Some optimization problems that do not involve any constraints are called unconstrained optimization problems.

3.1.1.1 Design Vector

Any engineering system or component is defined by a set of quantifies nown of which are viewed as variables during the denigr process. Certain quantifies are usually fixed at the other and these are called pre-assigned parameters. All the other quantifies are transled as viriables in the design process and are called design or decision variables in x_i . The design variables are collectively represented as a design vector x_i [27]. The goal is to find the x value that satisfies some caliform, if there are several values of x that satisfy the criterion, then x_1, x_2, x_3 are used to distinguish then [28].

3.1.1.2 Design Constraints

In many practical problems, the design variables cannot be chosen arbitrarily. They have to satisfy certain specified requirements. The restrictions that must be satisfied to produce an acceptable design are collectively called design constraints [27]. In a power system, constraints that represent limitations on the behavior or performance of the system are termed behavior or functional constraints. Optimization problems applied in power operation systems will be illustrated in the outmin dower. Row reodense.

3.1.1.3 Objective Function

The conventional design procedures aim at finding an acceptable or adseauce design which satisfies the requirements of the problems. The purpose of optimization is to choose the best one of the many acceptable designs available. Thus a criterion has the bedwen for comparing the different alternative acceptable designs and for solecting the best one. The criterion with respect to which the design is optimized, when expressed as a function of the design variables, is known as the objective function. The choice of the objective function is governed by the nature of problem [27, 29].

3.1.2 Classification of Optimization Problems

Optimization problems can be classified in several ways based on different enteriors, such as the existence of constraints, the nature of the design variables, the physical structure of the problem, the nature of the equations involved, the permissible useds of the design valuables and so on. From the computational point of view, the classification based on the nature of the equations involved is extremely useful, since there are many specific methods available for the efficient solution of a particular class of problems [27]. Classification of optimization poblems is based on the nature of expressions for the objective functions and constraints. According to this classification, optimization problems can be classified as linear, nonlinear, and quadratic programming problems [28].

- Linear

If the objective function and all the constraints are linear functions of the design variables, the mathematical programming problem is called a linear programming (LP) problem. A linear program is often stated in the following standard form:

d
$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_n \end{bmatrix}, \text{ which optimize } f(\mathbf{x}) = \sum_{i=1}^n c_i \mathbf{x}_i \quad (3.5)$$

$$\sum_{i=1}^{n} a_{ij}x_i = b_i, j = 1, 2, ..., m \qquad (3.6)$$

$$x_i \ge 0, i = 1, 2, ..., n$$
 (3.7)

Where c_l , a_0 , and b_l are constants.

- Quadratic

A Quadratic programming problem is a nonlinear programming problem with a quadratic objective function and linear constraints. It is usually formulated as follows:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \text{ which optimize } f(x) = c + \sum_{l=1}^{n} q_l x_l + \sum_{l=1}^{n} \sum_{j=1}^{n} Q_{lj} x_l x_j \quad (3.8)$$

Find Subject

$$\sum_{i=1}^{n} a_{ij} x_i = b_j, j = 1, 2, ..., m \qquad (3.9)$$

$$x_i \ge 0, i = 1, 2, ..., n$$
 (3.10)

Where c. qLQU, au and biare constants.

- Nonlinear

If any of the functions among the objective and constraint functions is nonlinear, the problem is called a nonlinear programming (NLP) problem. This is the most general programming problem and all other problems can be considered as special cases of the NLP problem.

3.1.3 Application of Optimization in Power Systems

This section briefly summaries the application of optimization techniques in the power system.

- Linear and quadratic programming methods are used to solve power systems problems with regards to optimal power flow, load flow, reactive power planning and active and reactive power dispatch [20, 39].
- Nonlinear programming method has been applied to various areas of power system for optimal power flow, security constrained optimal power flow and hydrothermal scheduling [19, 51, 52].
- Integer and Mixed-Integer Programming method is employed to solve power system problems with regards to optimal reactive power planning, power system planning, unit commitment, and generation scheduling [52].
- Dynamic Programming method has been applied to various areas of power systems such as reactive power control, transmission planning and unit commitment [52].

3.2 Optimal Dispatch of Generation

Usually the generating tations are located hundreds of kilometers away from load centers and their fael cost is different. Also, under normal operating conditions, the generation capacity is more tann the total add centual and loss. Tous, there are many options for scheduling and planning generation [18]. Economical Dispatch (ED) is the most common and simple way to optimize generation of the electricity without considering the voltage deviation and transmission limits.

3.2.1 Operating Cost of a Thermal Plant

The majority of generators in power systems are of three types – meters: hydro, and fossil (coal, sil, and gases). Nuclear plants stud to be operated at contant output levels and hydro plants have essentially no variable operating coal. Thus, the components of cost that full under the category of dispatching procedures are the cost of the fact humin in the fossil plants [19]. The factors influencing power generation at minimum cost are operating efficiencies of generators, fact cost, and transmission loss. The most efficient generator in the system does not guarantee minimum cost as it may be located in an area where fact cost is high. Also, if the plant is located far from the load center, transmission loss may be considerably higher, which causes the plant to operate in an uneconomic fashion. Therefore, the problem is to determine the generation of different plants, such that the total operating cost is minimized. Various simulators are discussed to illustrate how the operating cost plays an important role in the costoring: scheduling. In all practice cases, the fact cost of generator the lossil plant can be expressed in a quadratic

function form of real power generation [18, 20, 24].

$$C_i = a_i + b_i P_i + c_i P_i^2$$

(3.11)

Where

a, b and c are cost coefficients, and i is the total number of generating units.

3.2.2 Economic Dispatch Neglecting loss and No Generator Limits

The simplest economic dispatch problem is the case when transmission line loss is neglected. The model in Figure 3.1 assumes that the system has only one bus and all generation and loads are connected to it.

Figure 3.1 Plants Connected to a Common Bus (taken from [22])

Since transmission loss is neglected, the total demand P_D is the sum of all generation. A cost function c_1 is assumed to be known for each plant. The problem is to find the real power generation for each plant such that the total production cost is minimized. The minimum total production cost is defined by the objective function [20]:

$$C_t = \sum_{i=1}^{n_g} C_i = \sum_{i=1}^{n} \alpha_i + \beta_i P_i + \gamma_i P_i^2$$
 (3.12)

Subject to the constraint

$$\sum_{l=1}^{n_{g}} P_{l} = P_{p}$$
(3.13)

Where

C_t is total production cost.

C₁ is the production cost of ith plant.

P₁ is the generation of ith plant.

Pois the total load demand.

 $n_{\rm g}$ is the total number of dispatchable generating plants.

A typical approach is to augment the constraints into objective function by using the Lagrange multipliers.

$$\mathcal{L} = C_t + \lambda (P_D - \sum_{i=1}^{n_g} P_i) \qquad (3.14)$$

The minimum of this unconstrained function is found at the point where the partials of the function to its variables are zero.

$$\frac{\delta \vec{x}}{\delta \vec{x}_i} = 0$$
 (3.15)
 $\frac{\delta \vec{x}}{\delta \vec{x}} = 0$ (3.16)

The first condition given by Equation (3.15), results in

$$\frac{\partial C_t}{\partial P_i} = \lambda(0-1)$$
$$\frac{\partial C_t}{\partial P_i} = \frac{dC_i}{dP_i} = \lambda$$

Therefore, the condition for optimum dispatch is

$$\frac{dC_i}{dP_i} = \lambda i = 1, ..., n_g$$
 (3.17)

The second condition given by Equation (3.16), results in

$$\sum_{i=1}^{n_g} P_i = P_D$$
(3.18)

Equation (3.18) is the equality constraint that was to be imposed. In conclusion, when loss is neglected with no generator limits, for most economic operations, all plants must operate at equal incremental production cost while satisfying the equality constraint given by Equation (3.18).

3.2.2.1 Economic Dispatch Case Study 1

For the 7-Bus Power System, the fuel cost for each plant in B7FLAT power system [15]:

$$\begin{split} &C_4^{-7}61.94+2.04^{+}(7.62^{+}P_1^{+}+0.0013^{+}P_1^{-3})\\ &C_2^{-8}31.84+2.061^{+}(7.52^{+}P_1^{-}+0.0013^{+}P_2^{-3})\\ &C_3^{-5}30.03^{+}2.093^{+}(7.84^{+}P_3^{+}+0.0013^{+}P_3^{-3})\\ &C_4^{-8}31.92^{+}2.139^{+}(7.57^{+}P_4^{+}+0.0013^{+}P_4^{-3})\\ &C_4^{-5}00.08+2.574^{+}(7.77^{+}P_4^{-}+0.00194^{+}P_4^{-3}) \end{split}$$

According to Equation (3.17), the minimum total operation cost occur when

$$\frac{dC_1}{dP_1} = \frac{dC_2}{dP_2} = \frac{dC_3}{dP_3} = \frac{dC_4}{dP_4} = \frac{dC_5}{dP_5} = \lambda$$

Incremental production cost for each plant

15.5448+0.005304P1=λ 15.49872+0.00560592P2=λ 16.40912+0.005605924P3=λ 16.19223+0.00560418P4=λ 19.99998+0.00998712P2=λ P1+P1+P1+P2+P2=765.6

In matrix form

[1	1	1	1	1	0	$[P_i]$		765.6
0.0053	0	0	0	0	1	P.		-15.5448
0	0.0056	0	0	0	1	P_1		-15.4987
0	0	0.0056	0	0	1	P.	-	-16.4091
0	0	0	0.0056	0	1	P.		-16.1922
0	0	0	0	0.01	1	$-\lambda$		- 20.0000

Solutions,

P1=337.1492(MW)

 $P_2=327.2111(MW)$ $P_3=164.7138(MW)$ $P_4=203.5640(MW)$ $P_5=-267.0380(MW)$ $\lambda=17.3330(S/MWhr)$

The power output of any generators should not exceed its rating nor should it be below that which is necessary for stable boiler operation. The calculated negative power output of generation plant 5 is against the real power generation situation. Thus, the generations are restricted to be within even minimum and maximum limits.

3.2.3 Economic Dispatch Including Loss and Generator Limits

When transmission distances are very small and load density is very high transmission loss may be neglected and the optimal dispatch of generation is achieved with all plants operating at equal incremental production cost. However, the common practice for including the effect of transmission loss is to express the total transmission loss as a quadratic function of the generation power outputs. The quadratic function of the

$$P_{L} = \sum_{i=1}^{n_{g}} \sum_{j=1}^{n_{g}} P_{i}B_{ij}P_{j} + \sum_{i=1}^{n_{g}} B_{0i}P_{i} + B_{00} \qquad (3.19)$$

Where B11 is loss coefficients or B-coefficients, which are assumed constant.

Using the Lagrange multiplier and adding additional terms to include the inequality constraints, the equation can be generated

$$\mathcal{L} = C_t + \lambda (P_D + P_L - \sum_{i=1}^{n_g} P_i) + \sum_{i=1}^{n_g} \mu_{i(max)}(P_i - P_{i(max)}) + \sum_{i=1}^{n_g} \mu_{i(mix)}(P_i - P_{i(min)}) \quad (3.20)$$

If the constraint is not violated, its associated μ variable is zero and the corresponding term does not exist, which means $\mu_{l(min)} = 0$ when $P_l > P_{l(min)}$; $\mu_{l(max)} = 0$ when $P_l < P_{l(max)}$. The

28

constraint only becomes active when violated. The minimum of this unconstrained function is

found at the point where the partials of the function to its variables are zero.

$$\frac{\partial \ell}{\partial p_i} = 0$$
 (3.21)

$$\frac{\partial \mathcal{L}}{\partial \lambda} = 0$$
 (3.22)

$$\frac{\partial \ell}{\partial \mu_{i(min)}} = P_i - P_{i(min)} = 0 \qquad (3.23)$$

$$\frac{\partial \varepsilon}{\partial \mu_{i(max)}} = P_i - P_{i(max)} = 0 \qquad (3.24)$$

The first condition, given by Equation (3.21), results in

$$\begin{split} &\frac{\partial C_t}{\partial P_l} + \lambda \left(0 + \frac{\partial P_L}{\partial P_l} - 1 \right) = 0 \\ &C_t = C_1 + C_2 + C_3 \cdots + C_{n_g} \end{split}$$

$$\frac{\partial c_i}{\partial P_i} = \frac{d c_i}{d P_i}$$

Therefore, the condition for optimum dispatch is

$$\frac{dC_i}{dP_i} + \lambda \frac{\partial P_i}{\partial P_i} = \lambda i = 1, ..., n_g \qquad (3.25)$$

The term $\frac{\partial P_L}{\partial P_c}$ is known as the incremental transmission loss.

The second condition, given by Equation (3.22), results in

$$\sum_{l=1}^{n_{B}} P_{l} = P_{D} + P_{L} \qquad (3.26)$$

Equation (3.26) is the equality constraint that was to be imposed. Equation (3.25) is rearranged

$$\left(\frac{1}{1-\frac{dP_i}{dP_i}}\right)\frac{dC_i}{dP_i} = \lambda i = 1, ..., n_g \qquad (3.27)$$

$$L_i = \frac{1}{1 - \frac{\delta \sigma_L}{\delta \sigma_i}}$$
(3.28)

The effect of transmission loss is to introduce a penalty factor L_i of plant *i*. Equation (3.25) shows that the minimum cost is obtained when the incremental cost of each plant multiplied by its penalty factor is the same for all plants.

The incremental production cost is given by Equation (3.11), and the incremental transmission loss is obtained from the loss formula Equation (3.19), which yields

$$\frac{\partial P_{i}}{\partial P_{i}} = 2 \sum_{j=1}^{n_{g}} B_{ij}P_{j} + B_{0i} \qquad (3.29)$$

Substituting the expression for the incremental production cost and the incremental transmission loss in Equation (3.25) results in

$$\beta_i + 2\gamma_i P_i + 2\lambda \sum_{j=1}^{n_g} B_{ij} P_j + B_{0i}\lambda = \lambda \operatorname{or} \left(\frac{\gamma_i}{\lambda} + B_{ij}\right) P_i + \sum_{\substack{j=1\\j\neq i}}^{n_g} B_{ij} P_j = \frac{1}{2} \left(1 - B_{0i} - \frac{\beta_i}{\lambda}\right)$$
 (3.30)

Extending Equation (3.21) to all plants results in the following linear equations in matrix form

or in short term

$$EP = D$$
 (3.32)

To find the optimal dispatch for an estimated value of $\lambda^{(1)}$, the simultaneous linear equation given by Equation (3.32) is solved. The iterative process is continued using the gradient method. To do this, from Equation (3.31), *P*, at the kth iteration is expressed as

$$P_{i}^{(k)} = \frac{\lambda^{(k)}(1-B_{(k)}) - \beta_{i} - 2\lambda^{(k)} \sum_{j \neq i} B_{ij} P_{j}^{(k)}}{2(\gamma_{i} + \lambda^{(k)} B_{(i)})} \qquad (3.33)$$

Substituting for P1 from Equation (3.32) in Equation (3.26) results in

$$\sum_{l=1}^{n_{g}} \frac{\lambda^{(k)}(1-\pi_{0l}) - \beta_{l} - 2\lambda^{(k)} \sum_{l \neq l} B_{ll} P_{l}^{(k)}}{2(\gamma_{l} + \lambda^{(k)} B_{ll})} = P_{D} + P_{L}^{(k)} \qquad (3.34)$$

or

$$f(\lambda)^{(k)} = P_D + P_L^{(k)}$$
 (3.35)

Expanding the left-hand side of the above equation in Taylor's series about an operating $point(\lambda)^{(0)}$, and neglecting the higher-order terms results in

$$f(\lambda)^{(k)} + \left(\frac{df(\lambda)}{d\lambda}\right)^{(k)} \Delta \lambda^{(k)} = P_D + P_L^{(k)}$$

(3.36)

Or

 $\Delta \lambda^{(k)} = \frac{\Delta P^{(k)}}{\left(\frac{d^{\ell}(k)}{d\lambda}\right)^{(k)}} = \frac{\Delta P^{(k)}}{\Sigma \left(\frac{d^{\ell}(k)}{d\lambda}\right)^{(k)}} \quad (3.37)$

Where

$$\sum_{i=1}^{n_g} \left(\frac{\delta p_i}{\delta \lambda}\right)^{(k)} = \sum_{l=1}^{n_g} \frac{\gamma_l (1-B_{(k)}) + B_{(l)} \beta_l - 2\gamma_l \sum_{j \neq l} B_{(l)} p_j^{(k)}}{2(\gamma_l + \lambda^{(k)} B_{(l)})^2}$$
(3.38)

Therefore,

$$\lambda^{(k+1)} = \lambda^{(k)} + \Delta \lambda^{(k)}$$
(3.39)

Where

$$\Delta P^{(k)} = P_D + P_L^{(k)} - \sum_{i=1}^{n_F} P_i^{(k)} \qquad (3.40)$$

The process is continued until $\Delta P^{(Q)}$ is less than a specified accuracy. If an approximate loss formula expressed by

$$P_{L} = \sum_{i=1}^{n_{g}} B_{ii}P_{i}^{2}$$
(3.41)

 $B_{11} = 0$, $B_{00} = 0$ and solution of the simultaneous equation given by Equation (3.33) reduces to

31

the following simple expression

$$P_{i}^{(k)} = \frac{\chi^{(k)} - \beta_{i}}{2(\gamma_{i} + 2^{(k)}B_{ii})} \qquad (3.42)$$

and Equation (3.38) reduces to

$$\sum_{l=1}^{n_g} \left(\frac{d p_l}{d \lambda} \right)^{(k)} = \sum_{l=1}^{n_g} \frac{\gamma_l + B_{ll} \beta_l}{2 (\gamma_l + \lambda^{(k)} B_{ll})^2} \qquad (3.43)$$

3.2.3.1 Economic Dispatch Case Study 2

Consider the 6-Bus power system to illustrate optimal dispatch of generation considering loss and generator limits [20]. The fuel cost in \$/h of three thermal plants of a power system are:

$$C_1 = 200 + 7.0P_1 + 0.008P_2^2(\$/h)$$

$$C_2 = 180 + 6.3P_2 + 0.009P_2^2(\$/h)$$

$$C_3 = 140 + 6.8P_3 + 0.007P_1^2(\$/h)$$

P1, P2, and P3 are in MW. Plant outputs are subject to the following limits as:

$$10(MW) \le P_1 \le 85(MW)$$

 $10(MW) \le P_2 \le 80(MW)$
 $10(MW) \le P_3 \le 70(MW)$

Assume the real power loss is given by the simplified expression as:

$$P_{L(py)} = 0.0218P_{1(py)}^2 + 0.0228P_{2(py)}^2 + 0.0179P_{3(py)}^2$$

The loss coefficients are specified in per unit on a 100 MVA base. The optimal dispatch of generation is determined when the total system load is 150 MW.

In the cost function P_l is expressed in MW. Therefore, the real power loss in terms of MW generation is

$$P_{L} = \left[0.0218 \left(\frac{P_{1}}{100}\right)^{2} + 0.0228 \left(\frac{P_{2}}{100}\right)^{2} + 0.0179 \left(\frac{P_{3}}{100}\right)^{2}\right] \times 100 (MW)$$

$$= 0.000218P^{2} + 0.000278P^{2} + 0.000179P^{2} (MW)$$

For the numerical solution using the gradient method, assume the initial value of $\lambda^{(1)} = 8.0$. From coordination equations, given by Equation (3.33),

$$\begin{split} \mu_1^{(1)} &= \frac{8.0 - 7.0}{2(0.008 + 8.0 \times 0.000218)} = 51.3136 \, (MW) \\ \mu_2^{(1)} &= \frac{8.0 - 6.3}{2(0.009 + 8.0 \times 0.000228)} = 78.5292 \, (MW) \\ \mu_3^{(1)} &= \frac{8.0 - 6.8}{2(0.007 + 8.0 \times 0.000179)} = 71.1575 \, (MW) \end{split}$$

The real power loss is

 $P_L^{(1)} = 0.000218(51.3136)^2 + 0.000228(78.5292)^2 + 0.000179(71.1575)^2 = 2.886$ Since $P_0 = 150 MW$, the error $\Delta P^{(1)}$ from (3.31) is

$$\Delta P^{(1)} = 150 + 2.8864 - (51.3136 + 78.5292 + 71.1575) = -48.1139$$

From Equation (3.34)

$$\sum_{l=1}^{3} {\binom{\partial P_l}{\partial \lambda}}^{(1)} = \frac{0.008 + 0.000218 \times 7.0}{2(0.008 + 8.0 \times 0.000218)^2} + \frac{0.009 + 0.0002288 \times 6.3}{2(0.009 + 8.0 \times 0.000228)^2} + \frac{0.009 + 0.0002288 \times 6.3}{2(0.009 + 8.0 \times 0.000228)^2} + \frac{0.009 + 0.0002288 \times 6.3}{2(0.009 + 8.0 \times 0.000228)^2} + \frac{0.009 + 0.0002288 \times 6.3}{2(0.009 + 8.0 \times 0.000228)^2} + \frac{0.009 + 0.0002288 \times 6.3}{2(0.009 + 8.0 \times 0.000228)^2} + \frac{0.009 + 0.0002288 \times 6.3}{2(0.009 + 8.0 \times 0.000228)^2} + \frac{0.009 + 0.0002288 \times 6.3}{2(0.009 + 8.0 \times 0.000228)^2} + \frac{0.009 + 0.0002288 \times 6.3}{2(0.009 + 8.0 \times 0.000228)^2} + \frac{0.009 + 0.0002288 \times 6.3}{2(0.009 + 8.0 \times 0.000228)^2} + \frac{0.009 + 0.0002288 \times 6.3}{2(0.009 + 8.0 \times 0.000228)^2} + \frac{0.009 + 0.0002288 \times 6.3}{2(0.009 + 8.0 \times 0.000228)^2} + \frac{0.009 + 0.0002288 \times 6.3}{2(0.009 + 8.0 \times 0.000288)^2} + \frac{0.009 + 0.000288 \times 6.3}{2(0.009 + 8.0 \times 0.000288)^2} + \frac{0.009 + 0.000288 \times 6.3}{2(0.009 + 8.0 \times 0.000288)^2} + \frac{0.009 + 0.000288 \times 6.3}{2(0.009 + 8.0 \times 0.000288)^2} + \frac{0.009 + 0.000288 \times 6.3}{2(0.009 + 8.0 \times 0.000288)^2} + \frac{0.009 + 0.000288 \times 6.3}{2(0.009 + 8.0 \times 0.000288)^2} + \frac{0.009 + 0.000288 \times 6.3}{2(0.009 + 8.0 \times 0.000288)^2} + \frac{0.009 + 0.000288 \times 6.3}{2(0.009 + 8.0 \times 0.000288)^2} + \frac{0.009 + 0.000288 \times 6.3}{2(0.009 + 8.0 \times 0.000288 \times 0.000288)^2} + \frac{0.009 + 0.000288 \times 6.3}{2(0.009 + 8.0 \times 0.000288 \times 0.000288)^2} + \frac{0.009 + 0.000288 \times 0.000288 \times 0.000288}{2(0.009 + 8.0 \times 0.000288 \times 0.000288} + \frac{0.000288 \times 0.000288 \times 0.000288}{2(0.000288 \times 0.000288 \times 0.000288 \times 0.000288} + \frac{0.000288 \times 0.000288 \times 0.000288}{2(0.000288 \times 0.000288 \times 0.000288} + \frac{0.000288 \times 0.000288 \times 0.000288 \times 0.000288}{2(0.000288 \times 0.000288 \times 0.000288 \times 0.000288 \times 0.000288} + \frac{0.000288 \times 0.000288 \times 0.000288}{2(0.000288 \times 0.000288 \times 0.000288 \times 0.000288 \times 0.000288} + \frac{0.000288 \times 0.000288 \times 0.000$$

From Equation (3.28)

$$\Delta \lambda^{(1)} = \frac{-48.1139}{152.4924} = -0.31552$$

Therefore, the new value of λ is

$$\lambda^{(2)} = 8.0 - 0.31552 = 7.6845$$

Continuing the process, for the second iteration,

$$\begin{split} P_{1}^{(2)} &= \frac{7.6845 - 7.0}{2(0.008 + 7.6845 - 0.0002118)} = 35.3728(MW) \\ P_{2}^{(2)} &= \frac{7.6845 - 6.3}{2(0.009 + 7.6845 - 6.3000228)} = 64.3821(MW) \\ P_{1}^{(2)} &= \frac{7.6845 - 6.8}{7.0022 + 7.6845 - 6.8} = 52.8015(MW) \end{split}$$

 $P_L^{(2)} = 0.000218(35.3728)^2 + 0.000228(64.3821)^2 + 0.000179(52.8015)^2 = 1.717$ Since $P_D = 150$ MW, the error $\Delta P^{(2)}$ from Equation (3.31) is

 $\Delta P^{(2)} = 150 + 1.7169 - (35.3728 + 64.3821 + 52.8015) = -0.8395$

From Equation (3.34)

$$\begin{split} &\sum_{t=1}^{3} \binom{d^2 P_t}{dk}^{(t)} = \frac{0.068 \pm 0.00218 \times 7.0}{2(0.008 \pm 7.684 \times 0.000218)^2} + \frac{0.069 \pm 0.000228 \times 6.3}{2(0.009 + 7.684 \times 0.000228)^2} \\ &+ \frac{0.067 \pm 0.00179 \times 6.8}{2(0.007 + 7.6845 \times 0.000179)^2} = 154.588 \end{split}$$

From Equation (3.28)

$$\Delta \lambda^{(2)} = \frac{-0.8395}{154.588} = -0.005431$$

Therefore, the new value of λ is

$$\lambda^{(3)} = 7.6845 - 0.005431 = 7.679$$

For the third iteration,

$$\begin{split} P_{1}^{(1)} &= \frac{7.679 - 7.0}{2(0.008 + 7.679 \times 0.000218)} = 35.0965(MW) \\ P_{2}^{(0)} &= \frac{7.679 - 6.3}{2(0.009 + 7.679 \times 0.000228)} = 64.1369(MW) \\ P_{2}^{(1)} &= \frac{7.679 - 6.8}{2(0.009 + 7.679 \times 0.000170)} = 52.4834(MW) \end{split}$$

The real power loss is

 $P_{L}^{(1)} = 0.000218(35.0965)^{2} + 0.000228(64.1369)^{2} + 0.000179(52.4834)^{2} = 1.699$ Since $P_{0} = 150$ MW, the error $\Delta P^{(3)}$ from Equation (3.31) is

$$\Delta P^{(3)} = 150 + 1.6995 - (35.0965 + 64.1369 + 52.4834) = -0.01742$$

From Equation (3.34)

$$\sum_{l=1}^{3} \left(\frac{\partial P_l}{\partial \lambda}\right)^{(2)} = \frac{0.008 + 0.000218 \times 7.0}{2(0.008 + 7.679 \times 0.000218)^2} + \frac{0.009 + 0.000228 \times 6.3}{2(0.009 + 7.679 \times 0.000228)^2} \\ + \frac{0.007 + 0.00179 \times 6.8}{2(0.007 + 7.679 \times 0.000179)^2} = 184.625$$

From Equation (3.28)

$$\Delta \lambda^{(3)} = \frac{-0.01742}{184.624} = -0.0001127$$

Therefore, the new value of λ is

$$\lambda^{(4)} = 7.679 - 0.0001127 = 7.6789$$

Since $\Delta \lambda^{(3)}$, is small the equality constraint is met in four iterations, and the optimal dispatch for

 $\lambda = 7.6789$ are

$$\begin{split} P_1^{(4)} &= \frac{7.6789 - 7.0}{2(0.008 + 7.679 \times 0.000218)} = 35.0907(MW) \\ P_2^{(6)} &= \frac{7.6789 - 6.3}{2(0.009 + 7.679 \times 0.000228)} = 64.131(MW) \\ P_3^{(4)} &= \frac{7.6789 - 6.3}{2(0.007 + 7.679 \times 0.000179)} = 52.4767(MW) \end{split}$$

The real power loss is

 $P_{L}^{(4)} = 0.000218(35.0907)^{2} + 0.000228(64.1317)^{2} + 0.000179(52.4767)^{2} = 1.699$ The total fuel cost is $C_t = 200 + 7.0(35.0907) + 0.008(35.0907)^2 + 180 + 6.3(64.1317) + 0.009(64.1317)^2$

 $+140 + 6.8(52.4767) + 0.007(52.4767)^2 = 1,592.65(\$/hr)$

Matlab Optimization Tool box [15] issued to simplify the calculation, determine real power output of each generator unit, and the total production cost in order to minimize total cost.

3.3 Optimal Power Flow

Economic dispatch is a special case of the OPF, which neglects the transmission limits. In practical utilities, power systems are subject to the constraints that the sum of the power generated must equal to the sum of the transmission loss and the power consumed by the load. Under normal operating confilions, the generation capacity is more than the total load demand and loss. Thus, there are many options for scheduling and planning generation [18]. This means that the real and reactive power provided by the generators can be adjusted within certain limits to meet the desired load demand with minimum face cost. This is also known as OPF. OPF is an extension of the coversional economic diputch to determine the optimal activitys for courted variables while respecting various constraints [18, 27]. OPF provides a useful support to the operators overcome many difficulties in the real time control and operation planning of power systems [12-Jo]. It optimizes the generation while embrying the transmission line, which enversome the drawtock of the economic distance shared active plane active plane active by the spectra of the spectra of

3.3.1 Mathematical Formulation of Optimal Power Flow Problems

OPF problems can be formed as a set of nonlinear equations, which can be stated as [6, 18]:

Find the vectors
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
, $u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$

36

Which minimizing or maximizing:

$$f_1(x, u), f_2(x, u), \dots f_n(x, u)$$
 (3.44)

Subject to:

$$g(x, u) = 0$$
 (3.45)

$$h(x, u) \le 0$$
 (3.46)

$$(x, u)^{\min} \le (x, u) \le (x, u)^{\max}$$
 (3.47)

It can be described as minimizing the general objective function $f_{\mu}(x, u)$ while satisfying the constraints g(x, u) = 0 and $h(x, u) \leq 0$, where g(x, u) represents nonlinear equality contraints (gener flow equations) and h(x, u) is nonlinear inequality constraints (transmission line limits) on the vector x and v. The vector x contains the dependent variables including bus voltage magnitudes and phase angles and the power output of generators designed for bus voltage control. The vector x also includes fits parameters, such as the slack host angle, non-controlled generators' active power output and reactive power output, non-controlled [6, 59]:

- Active and reactive power generation
- Phase shifter angles
- Load MW and MVAR (load shedding)
- DC transmission line flows
- Control voltage settings
- LTC transformer tap setting
- Line switching

Typical goal of OPF problems are minimization of the total fuel cost, minimization of the active power loss, and minimization of the load voltage deviation.

3.3.2 Objective Functions

The OPF problems capture both technique and economic aspects of power operation system. The optimization problem of power system performance can be examined by solving the following objective functions.

- Minimization of the transmission loss: the active power transmission loss can be translated into the difference between the generated power and the consumed power.
- Minimization of the total fuel cost: the most efficient and low cost operation of a power system is determined by dispatching the available electricity generation resources to supply the load on the system.
- Minimization of the load voltage deviation: the quality of power service is directly related to the difference between the actual voltage profile and a desired voltage profile.

3.3.2.1 Active Power Loss

The active power loss is also known as the transmission loss, which is a form of wasted power and must be minimized for economic purposes. Transmission loss minimization can be expressed as minimization of difference between active power output only of generatives and the power load demands. The loss expression also can be expressed as voltage polar forms. The mathematical formulation for transmission loss minimization is adopted by the more straightforward expression as the difference between generation power and load demands, as shown below 1.381:

$$P_{loss}(x, u) = \sum_{l=1}^{N_c} P_{Gl}(x, u) - \sum_{l=1}^{N_L} P_{Ll}$$
 (3.48)

Where

 P_{cl} is the active power output of the generator at the *i*th bus.

Pii is the active power consumed at the ith load.

Gi is the generator at the ith bus.

Li is the load at the ith bus.

N_G is the number of the generator buses.

N_L is the number of the load buses.

3.3.2.2 Total Fuel Cost

The total fuel cost of system generator units is derived from the fuel cost of thermal plants, which can be expressed as:

$$F = \sum_{l=1}^{N_c} a_l + b_l P_{Gl} + c_l P_{Gl}^2 \qquad (3.49)$$

Where

a_i, b_i and c_i are the cost coefficients of the ith generator.

Per is the active power output of the generator at ith bus.

N_G is the number of the generator buses.

3.3.2.3 Voltage Deviation

Voltage deviation (VD) refers to the deviation of load bus voltages from their nominal value (1.00 p.u.). Reactive power transfer is highly dependent on system bus voltage levels (as discussed in Chapter 2). By keeping load bus voltages close to their nominal values, less reactive power will be transferred to each load bus in the system. This has the effect of reducing line currents which also reduces the power loss I^2R . The I^2R loss as a ferm of waated power has a toget framed impact. Additionally, power systems that have their load bus voltages close to their nominal values are more resilient to voltage instability scenarios due to unforescent contingencies such as a line outage. The calculation of the load bus voltage deviation, V_{day} used in this thesh is given buy the following exercises [4, 40]:

$$V_{dev} = \sum_{l=1}^{N_L} (V_l - V_l^*)^2$$

(3.50)

Where

Vi is the actual voltage magnitude at the ith bus.

Vi is the desired voltage magnitude at the (th bus.

Nz is the number of load buses contained in the system.

3.3.3 Control Variables

Control variables are usually independent variables in the OPP problems, which have an impact on the system performance and objective functions, such as active and reactive power outputs of generation units and generator. Dependent variables known as state variables include load voltage marginicedes and phase anders.

3.3.4 Operational Constraints

Constraints contained within the OPF are pat in place to ensure that the solutions obtained by solving the OPF are feasible for practical power system operations. This section discusses typical operational constraints used in the OPF. System operating constraints include equality and inexuality constraints.

3.3.4.1 Equality Constraints

The equality constraints are represented by power flow equations seen in Equation (3.51) and (3.52). These equations define the physical link between scheduled generation and load demand and cannot be violated as they define the conditions of state variables for a given system overation role.

$$P_{Gl} - P_{Ll} - \sum_{j=1}^{Nbus} |\vec{V}_l| |\vec{V}_j| |Y_{ij}| cos(\theta_{ij} - \delta_i + \delta_j) = 0 \quad i = 1, \dots, N$$
 (3.51)

$$Q_{Gl} - Q_{Ll} + Q_{cl} + \sum_{j=1}^{N0us} |P_i| |Y_{ij}| sin(\theta_{lj} - \delta_l + \delta_j) = 0 \quad i = 1, \dots, N_L$$
 (3.52)

Where

PGI and QGI are the active and reactive power produced by the generator power at the ith bus.

 P_{II} and Q_{II} are the active and reactive power demand at the *i*th bus.

N is the number of buses except the slack bus.

NG is the number of the generator buses.

N_L is the number of the load buses.

Y_{ij} is the admittance of the ijth transmission line.

 $|\overline{V}_i|$ is the voltage magnitudes of the generator.

 $|\overline{V}_j|$ is the voltage magnitudes of the load.

The equality constraints are included using power flow equations. The output power of generators and generator terminal bus voltages are the control variables and are self-restricted by the non-linear optimization algorithm.

3.3.4.2 Inequality Constraints

Inequality constraints define the tolerable limit on both state variables and equipment usage. Load has voltages, reactive power generation of generator and line flow limit are state variables, whose limits are satisfied by adding penalty terms in the objective function. These constraints are stated as:

- Generator limits

$$P_{ci}^{min} \le P_{ci} \le P_{ci}^{max}$$
(3.53)

$$Q_{GI}^{min} \le Q_{GI} \le Q_{GI}^{max}$$
 (3.54)

Voltage limits

$$|V_{ci}| = Constant$$
 (3.55)

$$|V_{Li}^{min}| \le |V_{Li}| \le |V_{Li}^{max}|$$
 (3.56)

Transmission line limits

$$S_{ii} \leq S_{Tmax} \forall ij; i \neq j$$
 (3.57)

Where

 P_{kl}^{abb} and P_{kl}^{abb} are the minimum and maximum active power output of the th generation unit. Q_{kl}^{abb} and Q_{kl}^{abb} are the minimum and maximum reactive power output of the th generation unit. V_{kl}^{abb} and V_{ll}^{abb} and

Bus voltage magnitudes must be held between certain ranges to ensure that equipment is operating under design specifications. Allowable bus voltage levels depend on the normal voltages that are applied to the bus. As an example, a typical tolerable voltage range for a 1384V is within ±5% of this value, while busewith 354 V and over should be within ±1% (14). Equation (3.56) clarifies the upper and lower bounds on the voltage magnitude within the acceptable range. Equation (5.32) and (5.53) define the upper and lower limits of active and reactive power outputs, which are design characteristics of thermal generators, and directly taken from their capability curves to ensure that the system is operated safely. Equation (3.57) defines power transmission capability of the lines.

3.3.5 The Solution of Optimal Power Flow

Optimal power flow algorithms are designed to find an AC power flow volution which optimizes a performance function, such as feel cost or network loss, while at the same time offeringe the lossing limits inpresed by the system exignment, and a voltage and transmission loading limits. For example, when system loss are minimized, an optimal schedule of generator active power outputs, transformer the parting and controllable voltage settings are determined which rescates the minimum coretaring costs while at the anne voltage and transformed [56].

OPF problems can be mathematically formed as nonlinear constrained optimization problems. System size and the number of unknown variables significantly affect the difficulty of solving OPF. As the size of the system increasing, solving OPF problem is more difficult.

Matab Optimization Toolbox [43] is used to implement OPF minimizing loss algorithm. The command 'finiteco' is used to call and solve constrained mollnear functions in the main program. Objective functions and constraints equations are written in different 'm' files to be the function flue. PowerWedS immuter 151 is used for stability occur minimization.

3.3.6 Optimal Power Flow: Cost Minimization

Minimizing generation cost is to reduce the total fuel cost, which is primarily an operational planning problem. The objective is to minimize the fuel cost. Based on previous research of OPF problems, the minimizing generation cost problem can be mathematically formed as:

Find the vectors
$$P_{\tilde{G}} = \begin{bmatrix} P_{G1} \\ P_{G2} \\ \vdots \\ P_{Gn} \end{bmatrix}, V = \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_m \end{bmatrix}, \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_m \end{bmatrix}$$
 (3.58)

Which minimizing:

$$f(P_G, V, \theta) = \sum_{i=1}^{N_G} a_i + b_i P_{Gi} + c_i P_{Gi}^2$$

(3.59)

Where

 $f(P_{\alpha}, V, \theta)$ is the total fuel cost in dollar per hour (\$/hr).

n is the number of generator buses.

m is the number of buses.

Equation (3.5f) establishes the objective function. Equation (3.5f) and (3.5g) defines the equality constraints (power flow equations). Equations (3.53 - (3.57) are inequality constraints, which clarify the upper and lower bounds on generating units, voltage magnitudes and transmission lines. Active power outputs of dispatchable generation units are control variables need to be solved to achieve the openal operation of the minimum foct out.

The case study is discussed to illustrate the constrained optimization method for OPF. The study uses the Optimization Toolbox, available in Matlab. For some aspects of the studies, PowerWorld Simulator is also used. The fuel costs of all the generating units are represented using cubic cost models.

3.3.6.1 Case Study of Cost Minimization

The goal of OPF for the 7-bus system is to minimize the total face cost while adhering to power flow equations, specified branch. flow through transmission lines, bus voltage magnitudes, that descorretar active power limits. It contains Sperreitors, 7-bus, 7-bus and 11 transmission lines, and bus 7 is the slack bus. The limits, facel cost coefficients and the system parameters are found in Appendix A, Figure 3.2 abovs the one line diagram of the 7-bus power system. The total loads are 7594 XWI and 130 MVAr. For the base case, the total facel cost is \$16,379/hr and the transmission base 16 AW.

Figure 3.2 One Line Diagram of the 7-Bus Power System

PowerWeek Simulater is applied to achieve the main goal of minimizing the generation cost. Table 3.1 summarizes the results of OPF. Power and loss are in MW, voltage is in per unit (pas) and cost is in Shr. The total houry cost is \$18.52.71hr and the loss in 10.8 MW. The economic dispatch results are also obtained. Table 3.1 illustrates that the coronnic dispatch has the lowest cost and the base case has the highest cost. With the dispatch pattern defaulted by economic dispatch inters. The second respectively. The cost of OPF is less than that of the base case, but it is more respensive than that of cosmonic dispatch. With the operation pattern obtained from OPF, none of transmission lines is overloaded. The over theor on Line 2-3 and line 4-5 results the maximum limits. The bas voltage magnitudes maintain a reliable level at approximate 1 p.a.. The total field cost in economic dispatch is lower than that in OPF, because OPF considers the impact of the transmission stores.

Generation (MW)	Number	Name	Base case	Economic Dispatch	OPF
	1	Bus 1	102	196	126
	2	Bus 2	170	288	230
	3	Bus 4	95	128	71
	4	Bus 6	200	164	291
	5	Bus 7	201	0	52
Total Generation (MW)			760	776	770
Total Loa	759.4	759.4	759.4		
Total Los	8.6	16.6	10.6		
Total Hourly	16,939	16,226	16,371		

Table 3.1 OPF Cost Minimization of the 7-Bus Power System

3.3.7 Optimal Power Flow: Loss Minimization

Minimizing the power loss is to minimize the transmission loss, which is another primary application of OPF. The expression for the overall transmission loss accumulated in a power system is defined in Equation (3.48). The transmission loss minimization problem can be mathematically benutimed as:

Find the vectors
$$P_{\phi} = \begin{bmatrix} P_{\phi 1} \\ P_{\phi 2} \\ \vdots \\ P_{\phi m} \end{bmatrix}$$
, $V = \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_m \end{bmatrix}$, $\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_m \end{bmatrix}$ (3.60)

Which minimizing:

$$f(P_G, V, \theta) = \sum_{l=1}^{N_G} P_{Gl}(\mathbf{x}, \mathbf{u}) - \sum_{l=1}^{N_L} P_{Ll}$$
 (3.61)

The equality constraints and inequality constraints are as same as those used in the total fuel cost minimization problem.

3.3.7.1 Case Study of Loss Minimization

Case study 3.5.71 repeats the same power system examined in case study 3.5.61, except that the objective is to minimize the transmission loss. The base case of the 7-base power system is displayed in Figure 3.2. The goal is to minimizing generator for down while adhering to power flow equations, specified branch flow through transmission lines, bus voltage magnitudes, generator power limits. The limits, fuel cost coefficients and the system parameters are found in Appendix A. The total loads are 760 MW and 120 MVAc. For the base case, the transmission loss is 7.9 When all beam for levols to 15 (99)th.

The formulation OPF regarding minimizing loss for the 7-lbus system is established using Equations ($\Delta 60 - (\Delta 61)$). The formulation of OPF is constrained by Equations ($\Delta 51 - (\Delta 57)$, Mathab Optimization Toolbox is applied to provide the scheme of the generating units. PowerWorld Simulator is further used to achieve the main goal (minimizing the transmission loss).

Table 3.2 summarizes the results of OPP with considering the transmission line limits. The total transmission loss is reduced to 3.25 MW with heavy cost \$17,150hr. Table 3.2 illustrates that the operation pattern obtained from OPP with minimum loss has the lowest loss, but it is the most expensive cost. The bus voltage magnituder maintain a reliable level (approximate 1.00 p.u.) and vice versa. OPW this minimum cost has the lowest cost, but rades of the biblest

transmission loss.

	Number	Name	Base case	OPF (Minimizing Loss)	OPF (Minimizing Cost)	
Generation (MW)	1	Bus 1	102	100	126	
	2	Bus 2	170	150	230	
	3	Bus 4	95	109	71	
	4	Bus 6	200	150	291	
	5	Bus 7	201	254	52	
Total Loss (MW)			8.6	3.25	10.6	
Total Hourly Cost (\$/hr)			16,939	17,150	16,371	

Table 3.2 OPF	Loss A	linimization of	f the 7-1	Sus I	ower.	System
---------------	--------	-----------------	-----------	-------	-------	--------

The goal of OFF is to provide the electric utility with suggestions to optimize the current power system state online with respect to various objectives under various constraints. Most general formation of OFF is a single objective, large state, non-cover oscilization problem. It can be achieved by minimizing or maximizing the general objective functions while satisfying the constraints. The specified variables are real and reactive power at load bases, power outputs of generating units and voltage magnitudes at generation bases, and voltages and markets at lask. Typical goals of OFF problems under normal power system operations are illustrated in the previous two case studies of the total field cost minimization and the transmission loss minimization. Minimization of the voltage deviation as another OFF optimization goal especially is discussed in the stress dystemes.

3.4 Conclusion

This chapter provides an overview of key economic dispatch coveryes along with the benefits of using it for solving optimal dispatch problems. The transmission loss, the operating efficiency of generators and lact outs are major factors influencing optimal dispatch of power generation. By using the economic dispatch, the generators' power output can be varied within errain limits to support a particular load demand at the lowest possible fuel cost. Economic dispatch has one significant solvectomic, its fuprores the limits inspeed by the devices in the transmission system. With the worldwide trend toward deregulation of the electric utility industry, the transmission system is becoming interaingly constrained. OPF provides the solution for the concerns of economic dispatch. OPF is a functionally combined power flow with comonic dispatch to reflopatch generating units while enforcing the transmission lines. A seen from the case studies, the fuel cost of a power system at OPF setting is higher than that of a power system at economic dispatch, setting. This is because that the transmission line. In this and etter limits may be validad in economic dispatch.

The study presented in this chapter above that the nonlinear programming based optimization techniques can handle OPF efficiently. For heavily loaded power systems, the additional reactive power supply will be considered to deal with the system violation due to increased load demand. The study concentrates benefits obtained from the additional reactive power supply rather than the cost of additional reactive power supply to the system.

Chapter 4

Reactive Power Compensation and Voltage Profile

4.0 Introduction

Chapter 2 has illustrated that local reactive power compensation is an efficient approach to maintain a proper voltage profile with no need to change the power system's infrastructure. A poper voltage profile help never system to avoid many failness the voltage institutibility [33-37]. Providing reactive power assures at all the load centers can be expensive. This chapter shows that by providing reactive power at selected locations, the ovenall voltage profile can be maintained at an accentable level.

Optimal Power Plow (OPF) is a well stabilised technique implemented by utilitist. The common objectives of minimization of the total fuel cast, minimization of the transmission brus and minimization of also voltage deviation have been formulated in Charler 3. The inequality constraints ensure that the limits (like generating units' capability, transmission line ratings, bus voltage) are not violated. The equality constraints are the basis power flow equations that are meanly expressed in terms of the voltage magnitude and analyees as well as system bus power flow equations and the state of the state of the state power flow equations that are systems. admittunce matrix. The equality constraints ensure that the net complex power is zero at all bases. The use of reactive power compensation devices has become a practical solution in controlling the flow of reactive power and to increase the reactive power reserves of the system. In most managering the devices are looked as a solution to increase system voltage and decrease active power loss over a stressed system. The stressed system is caused by a prediction of load growth that is known to potentially violate voltage constraints. Although OPF can achieve the objectives of loss or cost minimization, the stressed load leads to an unexpected low voltage profile. The additional reactive power supply is able to bring the low voltage profile back to an acceptable voltage level.

The optimal placement of reactive sources throughout a power system is not a simple task. As these are no widely accepted tools to plan for reactive power installation, many planning procedures resort to a trial and error approach in order to determine the best site locations and lacation of reactive power devices to meat a variety of objectives and constraintis [3]. In this thesis, the locations and prove devices to meat a variety of objectives and constraintis [3]. In this thesis, the locations for placing new reactive power sources are based on voltage observation; critical load buses (load voltage less than 0.95 p.u.) are evenly considered the candidates for the placement of reactive power supply. The additional reactive power supply is employed in each of selected load buses separately and independenty under traveaulty suprems.

Section 4. Ipresents an overview of two sample power systems and the tools used for the different studies. In section 4.2 by applying the additional reactive power supply in each streased storem, a voltage profile comparison will be performed between the OPF solution and the solution of the additional reactive power supply; the numerical comparison is used to explore the effectiveness of reactive power supply; on maintaining an acceptable voltage profile. The conclusion is given usedion 4.3.

51

4.1 Test Power Systems and Tools for Studies

Two sample power systems are used for different case studies presented in this chapter. The 6-Bus power system is the example in [23]. The 26-Bus power system is the example from [20]. The single line diagrams of the 6-Bus power systemard the 26-Bus power system are shown in Figure 4.1 and Figure 4.2 respectively. As an alternative to real file voltage collapse istantation, a low voltage profile is required to perform case studies in insufficient reactive power systems. In order to stress the normal operation systems, the loads and generations (except the slack hou) are scaled up by 1.5 uniformly, turning the system network, as an adequate andidate for reactive power compensation. The distinctive load demand and generator schedule of two stressed systems used for ease used is have been listed in Table 4.1 and Table 4.2.

Figure 4.1 One Line Diagram of the 6- Bus Power System "taken from [23]"

Genera	tor Reactive	Power Limits (MVAr)	
Bus	1	2	3	
Qanax	150	150	150	
Q _g min.	0	0	-15	
Gene	rator Active	Power Limits (MW)	
Bus	1	2	3	
Pomax	300	225	270	
Panin	75	56.25	67.5	
L	oad Bus Vo	Itage Limits (p.u	.)	
Vinis	ur .	Van	tn .	
1.00		0.95		
	Total L	oad Demand		
Active Power	Load (MW)	Reactive Power Load (MVAr)		
315		315		

Table 4.1 Operational Constraints for the Stressed 6-Bus System

53

G	enerate	or Reac	tive Po	wer Limi	its (MVA	.r)	
Bus	1	2	3	4	5	26	
Q_a^{max}	390	375	225	120	240	75	
Qamin	375	60	60	37.5	60	22.5	
	Genera	itor Ac	tive Po	wer Limi	its (MW)		
Bus	1	2	3	4	5	26	
Pmax	750	300	450	225	300	180	
Poten	150	75	120	75	75	75	
	Lo	ad Bus	Voltag	e Limits ((p.u.)		
	Vaus				Vinia		
1.00				0.95			
		Tota	Load	Demand			
Active P	ower La	ad (M)	N) R	active Por	wer Load	(MVAr)	
1894.5				955.5			

Table 4.2 Operational Constraints for the Stressed 26-Bus System

Mathal and PowerWorld Simulator are the main tools used for the different care studies. These tools are fully easy to use and PowerWorld Simulator provides very useful features for power system studies. Cost minimization can be directly implemented via PowerWorld Simulator. The ediffaction of loss minimization studies have hower world Mathab Optimization Tool Box available [15]. The command 'Imingon' is used to call and solve constrained point functions in the main program. Objective function and coestraint equations are written in different 'the' files for the function files. PowerWorld Simulator is again used for verification of optimal readus obtained from Matha. In the following sections, details about the case studies and readus are given. Along with this a discussion on the obtained readils about rovided.

4.2 Case Studies

The following important assumptions are made, with respect to performing the each objective in OPF and supplying the additional reactive power source:

- OPF solution is the present position with the stressed load, without the additional reactive power supply.
- Additional reactive power supply is the new position, with respect to OPF solution and the stressed load situation can be released by this additional reactive power supply.
- For brevity of presentation, only 50% overloading scenario is considered in different power operation systems to demonstrate the effectiveness of reactive power compensation on voltage profile enhancement. However, in practice, multiple unstressed and stressed conditions should be studied.
- A predefined power generation schedule will be accordingly scaled up by 50% to meet the 50% increased load demand. The only variability to the total generator active power output is from the system's slack bus.
- The insufficient reactive power support in stressed systems leads to the low voltage profiles which attempts to cause voltage collapse and system instability.
- Load buses with low voltages will be considered as candidate buses (critical buses) for installation of reactive power compensation devices.
- The generators associated power operation systems in this thesis are all thermal plants, thus the operation cost is considered only the fuel cost.
- The study concentrates benefits obtained from the additional reactive power supply rather than the cost of additional reactive power supply to the system.
4.2.1 Case Study 1: the Stressed 6-Bus Power System

In this section, the case study is performed where the goal of optimization is to minimize the total active power loss, total fuel cost, and hoad hos voltage deviation for a scheduled load demand. These objectives were discussed in detail in Chapter 3. The objective functions will be truted independently instand of augmenting the objective scheduler.

The stressed 6-Bus power system (shown in Figure 4.1) consists of 3 generators, 3 loads, and 11 transmission lines. Note that bus 1 is the slack bus. All system parameters along with the initial load demand and generation schedule are available in Appendix B using an apparent power base of 100 MVA. Before beginning with the planning of a reactive power supply scheme. it is important to first verify that the system cannot be operated with the increased load demand. A base case power flow is performed to get an idea of the severity of the constraint violations. For the base case power flow, Table 4.3 lists the important system response of this stressed 6-Bus system. Power and transmission loss are in mega watt (MW), Voltage is in per unit (p.u.), and Cost is in dollars per hour (\$/hr). The total hourly cost is \$4,669/hr and the loss is 21.46 MW. It should be noted that even after increasing the generator scheme by 1.5 to meet the increased load demand, the voltage violations of load buses are still apparent; all load bus voltage magnitudes are below the normal operation voltage (0.95 p.u.). In order to enhance the voltage profile and remove the voltage violation, all three load buses are considered as possible locations for the additional reactive power supply. The stressed system is reconstructed by applying additional reactive power supplyat the load centers. The system responses of each objective in this stressed 6-Bus systemare discussed sequentially in subsection as follows.

Stressed 6-Bus system	Base Case	Values
Generation (MW)	P1	176.98
	P2	75
	P3	90
Voltage (p.u.)	V4	0.93313
	V5	0.91112
	V6	0.93969
Transmission loss (MW)	Ploss	26.98
Operation cost (\$/hr)	F	4,744

Table 4.3 Base Case Summary for the Stressed 6-Bus System

4.2.1.1 Minimum Loss

This section performs the objective of minimizing transmission power low, while adhering to power flow equations and ether system and equipment constraint defined in section 4.1.3. The OPF solution minimizing to total loss is obtained 1P browerWorld Simulator. Multila optimization tool box is used to implement the scheme to minimize the total transmission loss. The return from Multila are used in PowerWorld Simulator. For further power system studies. The optimization results for the transmission loss are presented in Table 4.4. OPF nor only helps to system to relate the total power transmission loss, that are to lower the optimization bowever the voltage violation still exists. These results show the need to add local reactive power support to the overloaded system, allowing the atreased system to operate within desired voltage specifications.

Minimum Loss		Base case	OPF solution	Additional VAR supply
	P1	176.98	70.37	104.83
Generation (MW)	P2	75	88.72	116.84
	P3	90	173.41	105.32
	V4	0.93313	0.9391	1.00
Voltage (p.u.)	V5	0.91112	0.9178	1.00
	V6	0.93969	0.9485	1.00
Transmission loss (MW)	Ploss	26.98	17.45	11.84
Operation cost(\$/hr)	F	4,744	4,589	4,485

Table 4.4 Summary of Minimum Loss for the Stressed 6-Bus System

Figure 4.3 Voltage Profiles of the 6-Bus Power System (Minimum Loss)

The reactive power supply is allocated on the basis that each of the system' load significant amount of reactive power that can be met with local reactive power support. The system response after the additional reactive power supply is also listed. In Table 4.4 and the allocated reactive power supply obtained is more than sufficient to meet load reactive power supply obtained is more than sufficient to meet load reactive power demand as each load demand, meanwhile, the load voltage profile can be admined. Figure 4.3 provides an overview the voltage profile support (administer) and the additional reactive were supply. The additional reactive power support in the stressed system perfectly brings the voltage magnitudes back to the nominal level, which releases the load's stress and reduces the risk of power system instability occurring in the stressed system. Meanwhile, the transmission loss can be further minimized, and operation cost can be further reduced as well.

Table 4.5 VAR Allocation of Minimum Loss for the Stressed 6-Bus System

Bus number	Reactive power (MVAr)
Bus 4	76.23
Bus 5	91.12
Bus 6	65.83

4.2.1.2 Minimum Cost

The same equality and inequality constraints of loss minimization are used to minimize the total fiel cost for the same specified loading conditionin the stressed 6-Bus power system. All the generating units are assumed to be thermal with the fiel cost expressed as a cubic function of the output of the generating units. Each thermal generator features its own the generation counciev with respect to be cost coefficient shown in Table 4.6.

Generators	From (MW)	To (MW)	Co	ents	
			8	B	c
1	50	200	213.1	11.669	0.00533
2	37.5	150	200.0	10.333	0.00889
3	45	185	240.0	10.833	0.00741

Table 4.6 Cost Coefficients of the 6-Bus Thermal Plants

The scheme to minimize the total transmission cost can be directly determined by OPF function of PowerVord Simulator. Table 4.7 summarizes the OPF results of minimizing cost and the results with the additional reactive power supply at load bases. With the additional reactive power supply, the system operation cost can be optimized to St414/brt, more importantly, the undesirable low voltage magnitudes at load buses are enhanced to 1.00 p.u.. The significant enhancement of the load voltages can be clearly illustrated in Figure 4.4.

Minimum Cost		Base case	OPF solution	Additional VAR supply
	P1	176.98	79.46	84.5
Generation (MW)	P2	75	150	124.37
	P3	90	115.99	114.82
	V4	0.93313	0.93995	1.00
Voltage (p.u.)	V5	0.91112	0.91643	1.00
	V6	0.93969	0.94567	1.00
Transmission loss (MW)	Ploss	26.98	18.47	8.82
Operation cost(\$/hr)	F	4,744	4,564	4,441

Table 4.7 Summary of Minimum Cost for the Stressed 6-Bus System

Figure 4.4 Voltage Profiles of the 6-Bus Power System (Minimum Cost)

Compared to the OPF results, the additional reactive power supply can achieve more additional reduction in total active power loss, providing upto 52% more reduction. Although additional reactive power supply has offered only 2.7% additional reduction in cost, this little improvement would be significant in terms of MW loss reduction and the revenue saving per annum. The allocation of reastwork rower commensation has been secreticed in Table 4.3 allow: with the minimization of thermal fuel cost during OPF. The optimal reactive power support is sufficient to enhance the unacceptable load voltage profile.

Bus number	Reactive power (MVAr)
Bus 4	71.84
Bus 5	89.66
Bus 6	62.75

Table 4.8 VAR Allocation of Minimum Cost for the Stressed 6-Bus System

The previous two sections show that by providing reactive power at selected locations, the overall load voltage profile can be improved, which ensures the stressed system to operate without any violation; meanwhile, the transmission loss can be minimized. Reduction in transmission loss trans into detece economic benefit, which partially compensates the cost of reactive power supply.

4.2.1.3 Minimum Voltage Deviation

Voltage deviation minimization is coded in Mattab Optimization Tool box according to optimization objective function in Equation (3.50). The optimization results shown in Tables 4.9 indicate that the voltage deviation minimization is able to keep the load voltage magnitudes closer to their nominal values. The overall voltage profile enhancement is illustrated in Figure 4.5.

Minimum Voltage Devi	iation	Base case	OPF solution
	P1	176.98	79.46
Generation (MW)	P2	75	150
	P3	90	115.99
	V4	0.93313	0.9773
Voltage (p.u.)	V5	0.91112	0,9617
	V6	0.93969	0.9787
Transmission loss (MW)	Ploss	26.98	19.02
Operation cost (S/hr)	F	4,744	4,634

Table 4.9 Base Case Summary for the Stressed 6-Bus System

Similarly to the effect of supplying additional reactive power support at stressed load, minimizing voltage violation can also enhance the load voltage profile without injecting ractive power in the load. In addition to relieving the voltage violation, voltage deviation minimization also reduces the transmission loss and lowers the operation cost. Technically, it is an efficient method to maintain the desired load voltage without compensating extra reactive power to the increased load domand; newthelest, the practical application may be infeasible due to the difficult inderemention.

4.2.2 Case Study 2: the Stressed 26-Bus Power System

In this section, the case study is performed where the goal of optimization is to minimize the real power transmission loss, total fuel cost and load bus voltage deviation. These three objectives are identical to the objectives used in the streaged 6-Bas case study. The 26-Bas power system in Figure 4.2 consists of 26 buses, 46 transmission lines, 6 generators, 9 shunt capacitors of 22 loads. The system generators are bused at bus 12, 34, 45 and 26. Bus 1 is the stack bus. All system parameters along with the initial load demand and generation schedule are statehed in Appendix C using an appearent power base of 100 MVA. Table 4.10 gives reseludied parameter values used as the base case for this case study. The base case power flow presented here is appendix C and the study of the operational voltage violation. Table 4.10 summarizes the system response for this base case power flow. Due to the stressed load demand a significant portion of the system's constraints are being violated. Many of the load bus voltages are well below the specified voltage level 0.05 p.u. In the following subsections, the detailed discussion of each OPF objective will be given. A discussion on the results obtained by OPF and the additional respired rower will be provided.

Stressed 26-Bus system	Base Case	Values
Generation (MW)	P1	1092.46
	P2	118.50
	P3	30
	P4	150
	P5	450
	P26	90
Transmission loss (MW)	Ploss	36.46
Operation cost (\$/hr)	Cop	28,191

Table 4.10 Base Case Summary for the Stressed 26-Bus System

4.2.2.1 Minimum Loss

For the purpose of this test case, Maliho Optimization Tool box is used to determine the optimal scheme of generator units to minimize the total transmission loss. The results from Maliha are used in PowerWorld Simulator for future power powers nutsiles. From the OPF solution for the strenged 26-Box power system, it is noticed that the voltages at some load boxes are externely low, expectially from bax 20 to bus 25. By providing additional reactive power source) at the scrittering the strength of the provide the strength of the provide the strength of the scrittering the scritte summary of different power responses with respect to the base case, OPF loss minimization and the additional reactive power. Figure 4.6 illustrates that the voltage profile has been enhanced once the additional reactive power support is provided at the selected load buses.

Minimum Loss		Dana	OPF	solution	Additional VAR supply (PowerWorld)	
		case	(MATLB)	(PowerWorld)		
Generation (MW)	P1	1092.46	716.9499	718.48	713.99	
F		118.50	252.4517	252.4517	74.9711	
	P3	30	326.2747	326.2747	119.9711	
	P4	150	225.000	225.000	104.3585	
	P5	450	273.5672	273.5672	74.9711	
	P26	90	128.5505	128.5505	180.0289	
Transmission loss (MW)	Ploss	36.46	28.30	29.82	25.33	
Operation cost (S/hr)	F	28,191	25,817	25,762	25,698	

Table 4.11 Summary of Minimum Loss for the Stressed 26-Bus System

Table 4.12 VAR Allocation of Minimum Loss for the Stressed 26-Bus System

Bus number	Reactive power (MVAr)
Bus 21	44.92
Bus 22	81.17
Bus 23	14.72
Bus 24	52.72
Bus 25	26.88

Figure 4.6 Voltage Profiles of the 26-Bus Power System (Minimum Loss)

4.2.2.2 Minimum Cost

Similarly to minimizing the total field cost for the stressel 6-like system, all the generating units are assumed to be thermal plants with field cost expressed as a cohic function of the output of the generating units. The generation of 23-bits systems are futured in Table 4.13. For the stressed 26-bits power system, the OPF solution of minimizing the total field cost is directly obtained by ProverWorld Simulator. The total field cost is decreased by \$2,52bHr with OPF simulation. It is noticed that the voltage violations at certain load boxes (from bus 20 to bus 25 still cisit. By providing additional reactive power at those bases, the voltage rollelle on be improved. Table 4.14 summarizes the system response with respect to the base case, OPF and the additional local reactive power apply. The voltage enhancement due to the utilicient ractive power support at the strengt bases the decreed document control demonstration Bitzper 4.7.

Generators	From (MW)	To (MW)	Cost coefficients		
			а	ь	c
1	100	500	240	7	0.007
2	50	200	200	10	0.0095
3	80	300	220	8.5	0.009
4	50	150	200	11	0.009
5	50	200	220	10.5	0.008
26	50	120	190	12.0	0.0075

Table 4.13 Cost Coefficients of the 26-Bus Thermal Plants

Minimum Cost		Base case	Case 1 (PowerWorld)	Case 2 (PowerWorld)
Generation (MW)	P1	1092.46	749.99	749.27
	P2	118.50	168.55	167.84
	P3	30	170.37	169.65
	P4	150	200.05	199.34
	P5	450	500.05	499.34
	P26	90	140.05	139.34
Transmission loss (MW)	Ploss	36,46	34.58	30.29
Operation cost (\$/hr)	F	28,191	24,843	24,766

Table 4.14 Summary of Minimum Cost for the Stressed 26-Bus System

T-11- 115	VAD Allowedin	a of Minimum	- Cost from they	Stancord 7	16 Burr S	

Bus number	Reactive power (MVAr)
Bus 20	102.37
Bus 21	44.96
Bus 22	48.64
Bus 23	18.25
Bus 24	54.6
Bus 25	31.3

It is apparent that OPF simulation can help the system reduce the transmission loss and the total fuel cost, but it cannot prevent the voltage profile to avoid the unexpected low level. By injecting the additional reactive power into the bases with low voltage magnitudes, the transmission loss and fuel cost can be further minimized. This test case again confirms that the local reactive power supply can optimize the performance of stressed systems, in both technical and economic aspects.

By placing the reactive power supply at predefined load bases, OPP has been run to determine the optimal setting of control variables for both cost minimization and loss minimization dispetivies under the same heavily loading system. With the help of reactive power supply, the voltage profile can be dramatically enhanced; meanwhile, the system can be operated in the normal operation mode. The voltages are no longer violated, and the load is no longer suffreing from the vocabulage areas.

4.2.2.3 Minimum Voltage Deviation

Instead of feeding additional reactive power anyphy to critical load bases, Mathb Optimization Toolbox handles the voltage improvement problem with objective function of optimizing voltage deviation. The simulation results are available in Table 4.16. The optimization algorithm for voltage deviation minimization can keep load bus voltages close to their nominal values, and at the same time meeting all the constraints. During the minimization of voltage deviation, the simulation results are equal bus voltages may also be 4.8; however, the transmission loss becomes more severe and hoarly operation cost is higher exclusion provers is invested in the power system; nevertheless, the practical application may be infeasible with the consideration of the extremely high annual operational cost and increased transmissible nois. Figure 4.8 illustrates the voltage difference before and after voltage deviation minimization.

Table 4.16 Summary of Minimum Voltage Deviation for the Stressed 26-Bus System

Voltage deviation minimization		Base case	Voltage deviation (Matlab)
Generation (MW)	Pl	1092.46	1520
	P2	118.50	75
	P3	30	120
	P4	150	75
	P5	450	75
	P26	90	75
Transmission loss (MW)	Ploss	37.54	40.95
Operation cost (\$/hr)	F	28,215	32,600

Figure 4.8 Voltage Profiles of the 26-Bus Power System (Minimum Voltage Deviation)

4.3 Conclusion

Reactive power compensation is introduced to overhaded power systems for take of maintaining the desired voltage profile along with different optimization objectives. The ida bildin reactive power compensation in its post optimizma bia location for reactive power sources and improve the voltage profile due to the increase in the load. To simplify the optimization algorithm, all load barse with how voltage magnitudes (less than 0.95 p.a.) are assumed as possible endudiese for reactive power installion. Conventional OPF i domonstrated on the months candidates. stressed 6-Bus and 26-Bus power systems with promising results. The results confirm the capability of reactive power compensation to enhance the overall load voltage profile and show its effectiveness and superiority.

The essential advantages of reactive power compensation have been illustrated during case studies on the stressed 6-Bus and the stressed 26-Bus systems. It is shown that the objective of voltage deviation minimization can improve the voltage profile, reduce the power transmission loss, and decresse the total fail cost by estimating the profile. The profile of the

- In this work, load buses having top priority ranked according to their voltage magnitudes corresponding to the load suffering from the stress, which can be selected for optimal placement of reactive power sources.
- 2) Conventional OPF under the stressed power systems can reduce the total power loss and the total fuel cost in stressed systems, but it cannot improve the voltage profile. It may improve the voltage in some cases if it is included in the inequality constraints.
- With the additional reactive power supply, additional reduction in both the total active power loss and the fuel cost can be effectively achieved; the voltage profile is also improved.
- The little improvement of hourly cost would be significant in terms of MW loss reduction and the revenue saving per annum.
- 5) Without the method of additional reactive power supply at certain load buses, a flatter voltage profile can also be achieved by minimizing voltage deviation of the critical load buses.

The feasible operation of reactive power compensation has been emphasized as observing the voltage profile to ensure that the stressed system is acceptable for the normal and post-

overlaided conditions. Although reactive power compensation generally provides plenty of benefits to system operation; the heavy use of reactive power compensation sources may lead to economic infeasibility. Cost considerations generally limit the extent to which these benefits can be applied. The segment of reactive power studied over the capital investments, in the form of installing capacitors at load buses, and marginal cost of reactive power generation. The reactive power price, nearive power supply size and its placement problems need be further researched to ensure that both investment and operating costs are recovered in a manner equitable to utility and to the customers.

The additional reactive power supply requires the planner to perform many power flow studies while varying reactive power compensation settings and other perform system controls in order to ensure that the plannel imatiliations meet desired operation requirements. The trial and error method is cumbersome and does not guarantee that the proposed solution is optimal. A further research of the optimal allocation of reactive power compensation (for example, an investigation of multi-objective optimization problems for the reactive power planning and system stability reorders) is a challengein tack.

Chapter 5

Voltage Stability Margin and Reactive Power Compensation

5.0 Introduction

With the increased loading of transmission lines, voltage stability has become a very oritical issue for most power system planners and operators. Voltage stability refers to the ability of a prover system to maintain steady voltage at all bases in the system after being subjected to a disturbance from a given initial operating condition [44]. Case statles in Chapter 4 have illustrated that inadequate local reactive power supply is characterized by continuous and alow reduction of the voltage magnitude at onco rome load, which occurs when the system is heavily loaded. A possible result of voltage instability is the loss of load in an area, or tripping of transmission lines and dover element by their protective systems leading to cascading outages. Local reactive power compensation is a solution to the system instability problem and it is able to maintain a desired load voltage profile under the averdoading system betweeneon. However, voltage profile is a poor indicator of proximity to the limits of stability under mernal or poor indicators. We have the voltage stability is the loss of load and merneral or policy and the stability problem and it is able to maintain a desired load voltage profile under the averdoading system phenomenon. However, voltage profile is a poor indicator of proximity to the limits of stability under mernal or policy and the stability and the stability is the loss of load and the system stability and the stability and the merneral or policy and the stability and the merneral or policy and the stability and the stability and the stability and the merneral or policy and the stability and the stabilit determines how close the system is away from instability limits. Thus, the additional reactive power supply has become essential.

In general, the analysis of voltage stability of a given power system should cover the examination of following aspects:

- To show the voltage collapse point of buses in the system
- To study the maximum transfer of power between buses before voltage collapse point
- To size the reactive power compensation devices required at relevant buses to improve voltage stability margin and prevent voltage collapse
- To study the influence of reactive power compensation devices on the maximum transfer power to meet increased load demand

The voltage subhility analysis can be achieved using several different techniques. Basically they can be divided into methods that give an indicaton (index [45] or margin [46]) of the proximity of voltage insubhility and methods that analyze with more detail the mechanism of voltage insubhility [44]. For this study, voltage stability margin is analyzed by means of PV curve analysis [20]. PV curves provide an graphic kint of how close the system is away to the voltage stability (init und regrefic operation conclusion).

The chapter is organized as follows: section 5.1 presents the basic concept of voltage stability margin. The introduction of PV curve analysis is illustrated using a 2-bus power system. Section 5.2 presents two sample power systems and the iood applied for care studies. Section 5.4 proposes two different reactive power compensation devices to illustrate the effectiveness of VAR sources in improving the voltage studies threads the provider concluding remarks.

5.1 Voltage Stability Margin

Voltage stability margin in this thesis is defined as the amount of additional load in a specific pattern of load increase that would cause voltage instability [53]. Contingencies such as unexpected component todages in an electric power system of the reduce the voltage stability margin. Computation of voltage stability margin is an option to keep adequate voltage stability on system operation and planning, which is defined as the distance between the nextual operation to mat add the prior of collapse, measured in engeastor of presented of the base case basing.

In this atudy, voltage stability margin is obtained by implementing Powe Work addaeo mVcurve function [15]. PV curves are constructed by considering load increase for all the system hoad bases in a proportional way to the base case loading. System generation level is also increased (in proportion to the base case in balancy States) in order to match the increased load. The set of equilibrium points obtained by solving the power flow problem at each load affents he PV errors. An example of PV curve construction is demonstrated using 2-Das system in section 3.2

5.2 PV Curves

The PV curve is illustrated for a 2-Dus power system shown in Figure 5.1. This may be considered as a model of a generating station connected to a load center through the partille transmission lines. The generating station voltage is keep (at 10 p a., For different loadings the voltage at 2-Dus is calculated (note that there are two solutions for the voltage). In an setual power system, the load voltage will be equal to the higher voltage. The two solutions for the voltage come together at the nose of the V curve.

Figure 5.1 One Line Diagram of the 2-Bus Power System

Figure 5.2 PV Curves for Three Different Cases

Figure 5.2 shows PV curves for the 2-Bus power system. Three different operating conditions are considered: had power factor unity; load power factor lagging; load power factor unity, but lise implements high simulating the effect of a line outage. In all three cases, the voltage stability margins are different. The convergence points of the graph are referred as the voltage stability immiand indicate the points where voltage estimates. The upper part of the curve corresponds to the morning operational state of the system. The lower part part of the curve corresponds to the system. represents the state that required high current and low voltage and are not operationally acceptable. Voltage instability margin is mainly associated with reactive power inbalance. Unity acceptable, Voltage instability margin is mainly associated with reactive power factor his equivalent to some reactive power load demark. The operating system with legging load power factor has the anallest voltage stability margin (3.8 MW); when the load power factor is denormality margin in acceptable to be 156 MW; the unexpected high transmission line impedance deteriorates the voltage stability margin dramatically; the voltage stability margin more is reduced to be 68 MW. Thus, the voltage stability margin dramatically the voltage stability margin more is reduced to be 68 MW. Thus, the voltage stability margin dramatically the voltage stability margin more is reduced to be 68 MW. Thus, the voltage stability margin heat of the data of the expressed in terms of the stability margin is increased in terms of load power factor. Hence, the way to improve the voltage stability margin collegation. Sumerous reactive power devices have been considered to supply reactive power. Static VAR capacitors (SVC) and capacitors are used in the present work.

5.3 Test Power Systems and Tools for Studies

Two sample power systems are used for the different case studies presented in this dapter. The single line dargment of the 5-bas power system [11] is shown in Figure 5.3. The initial parameter is available in Appendix D. The goal of the base case study for 5-bas power system is to indicate the effectiveness of reactive power supply on the voltage studility margin under the normal power operation system. The load and generation schemes remain the same. The single line diagram of the 39-bas power system [43] is shown in Figure 5.4. The initial parameter is valuable in Appendix E. The goal of this sources under the single remain the same. The single supply improves the voltage stability margin when the system is overloaded. For the study presented in the stressed 39-Bus system, the load and generation (except in slack bus) are scaled by 1.4 uniformly. The main features of both power systems are summarized in Table 5.1. PowerWorld add-on function, PV curve is the main tool used for determining the voltage stability margin.

Figure 5.3 One Line Diagram of the 5-Bus Power System

Figure 5.4 One Line Diagram for the 39-Bus Power System

Power Systems	Load	Demand	Generation Schedule		
	Active power (MW)	Reactive power (MVAr)	Active power (MW)	Reactive power (MVAr)	
5 Bus	145.0	30.0	148.9	11.5	
39 Bus	8,608.74	1,972.46	8,706.1	3,047.5	

Table 5.1 Summary of the 5-Bus and Stressed 39-Bus Power System

5.4 Case Studies

Usually, placing adaquate reactive power support at the appropriate boration improves voltage instability margin. There are many reactive power compensation devices adapted by the ultilist for this propress, each of which his in own characteristics and limitations. Contant reactive power supply devices (SVC, STATCOM etc.) and conventional capacitors are the most commonly reactive power compensation devices. Dapatolers and constant reactive power supply devices are considered one at a time in two supply power yateput of capacitors is propertiented to voltage stability margin improvement. Reactive power empts of capacitors is propertiented to square of the voltage magnitude, which makes the provided reactive power devices are reality when voltage decreases, thus reducing its stability. To investigate their effects on voltage stability margin in detail, the 3-lbus and metal 9-Jbus power yatems are causined along with the discussion and comparison. SVC represents the constant reactive power device in the following case studies. The selected bus locations for considering additional VAR sources are territical to abla buse coltage magnitude is sub no 6.9 km in 100° with core minimization).

5.4.1 Case Study 1: the 5-Bus Power System

In order to illustrate the effectiveness of local reactive power supply on the voltage stability margin, the case study starts with applying an additional 35 MVAr reactive power supply at bus 5 with a normal 5-Bus power system. Since the voltage profile is not violated under the system normal condition, bus 5 is intrinsity selected for observing the reflexiveness of the additional reactive power supply on the power system. Figure 5.5 provides the results of this study. The margin is lower (\$47,7 MW) when capacitors are used to supply reactive power. This is due to the fact that the reactive power supplied by capacitors is reduced as the voltage drops due to increase in the load. The margin is higher (57.8,7 MW) when constant reach power (\$VC) is supplied at the boat 5.

Figure 5.5 Comparison of Voltage Stability Margins for the 5-Bus System

The study shows that the local reactive power supply improves voltage stability margin; switching in more reactive power helps the system to deliver more active power under the normal operation system. SVC is modeled by using a generator with constant reactive power output,

5.4.2 Case Study 2: the Stressed 39-Bus Power System

In this section, the effectiveness of reactive power supply on the voltage stability margin is studied on 40% overloaded 39-Bus power system. Table 5.2 lists the has violations during OPF of the feet cert minimization. These lists to able uses are the power supply) are examined at these selected bases on the stressed 39-Bus system one at a time. PowerWeld Simulated determines the allocation of reactive power supply among these load bases. It is noted that not all allo bases are involved in reactive power supply. A many bate (2) the stress that instead determines the allocation of reactive power supply. A many bate of the maximum power transfer in Figure 5.6 indicates that reactive power supply. A many bate of the maximum power strender stability margin: repecially contant reactive power supply dramatically improves the voltage stability margin: repecially contant reactive power supply dramatically margores the transferred when constant reactive power sources are cannected to selected load bases or if the 39-Bus power system. The scheme of the load reactive power compersation shown in Table 32.1 is obtained by important the contrast reactive power composer comparison in the market set allocation of the scheme of the load reactive power composer worked Similary system. The scheme of the load reactive power composer (set) sources (set) scheme of the load reactive power composer (set) sources (set) scheme of the load reactive power composer (set) sources (set) scheme of the load reactive power composer (set) sources (set) sou

Bus No.	4	5	6	7	8	12	13	14	15
Before VAR	0.9296	0.94062	0.94595	0.93035	0.92956	0.92729	0.94987	0.93821	0.93571
VAR (MVAr)	235.75			84.77	174.42	68.15			247.38

Table 5.2 Summary of VAR Allocation at Selected Buses

Figure 5.6 Comparison of Voltage Stability Margins for the Stressed 39-Bus System

Table 5.3 provides a summary of this study. The margin is lower when capacitors are used to supply reactive power. This is due to the fact that the reactive power supplied by capacitors is reduced as the voltage drops due to increase in the load. The margin is improved when SVC (constant reactive power supply) is supplied at the load brases. An additional 4.784 MW power and be transferred when constant reactive power supply is connected to the selected load brases.

Three different cases	Maximum allowable power (MW)	Minimum VAR compensation (MVAR)	Voltage Stability margin (MW)
Base case	12,669.9		4,470
Cap	12,758.0	225	4,571
SVC	12,963.4	845	4,784

Table 5.3 Summary of Voltage Stability Margin Analysis

In addition to the voltage stability margin, PV curves also provide extra information of the reactive power effect on the power system performance, such as voltage profile. Consider the example of PV curve analysis at bus 8 shows in Figure 5.7. At the beginning that system experiences light load, the voltage profile of this bus with SVC and capacitors are almost the same. When the load of the system is increased, the effect of SVC in improving the voltage is more adequate than capacitors. Both SVC and capacitors significantly affect the shape of the PV curve, which improves the critical point without making the nose point by only shifting of the PV curve works? We row roke as here troubser mitting at the value collame point.

5.5 Conclusion

Voltage instability is mainly annoxidited with reactive power inhalance. The loadability of a bas in the power system depends on the reactive power support that the bus can receive from the system. At the system approaches the maximum loading point or voltage collages point, both real and reactive power loss increase rapidly. Therefore, reactive power supports have to be local and adequate. The power flow transfer slowly occurs in the power system that eventually leads to a shortage of reactive power and idealining voltage. This phenomenon can be graphically establishing pools. The power and set widely used in the industry for investigating voltage stability problems. As the power transfer increases, the voltage at the load end decreases. Eventually, the critical (nose) point, the power at which the system reactive power is short in supply, is reached where any further increase in active power transfer will lead to very rapid cheerase in voltage magnitudes. Before reaching the critical point, the large voltage drop due to heavy reactive power loss can be observed. The only way to save the system from voltage collapse is to reduce the reactive power loss or add additional reactive power power to routhing the point of voltage enlapse.

The study presented in this study has not considered the cost of reactive power at the hest location to install these devices considering voltage stability margin. Model analysis [45] and voltage stability margin index [46] are two of the methods to identify weak location in power systems and implement suitable devices (SVC, STATCOM et.) to improve voltage stability margin.

Chapter 6

Conclusion and Future Work

6.0 Recap of the Thesis

As a result of the capatidel tetericity demand, power systems are operated close their limits. Power systems should be operated in such a way that voltage limits and thermal limits of equipments are not being violated. Building new generation and transmission facilities are not easy due to economic and environmental constraints. Reactive power compensation can enable power systems to be operated closer to their limits and thus make it possible to maximize the use of the existing resources. A differman with reactive power is that a sufficient quantity of it is needed to provide the load and loss in the power system, but having to much reactive power obvious growth in the power system causes excessive basting and underlatable voltage drop. A solution to this problem is to provide reactive power sources exactly at the location where it is consumed. This thesis shows the effectiveness of reactive power compensation on the system performance, especially on maintaining acceptable voltage profile and adequate voltage stability margin. The solution of the economic dispatch by the equal incremental cost method was a presureor of Optimal Power Flow (OPT). Economic dispatch, however, enally considers real power generations, and represents the electrical networks by a single equality constraint (the power balance equation). The OPF method functionally combines the economic dispatch with power flow studies, which features prescical applications in power systems.

The conventional OPP method is used to achieve the economic system operation. However, reliable and secure aspects of power operation systems face challenging when the system is overdoaded. The results of the work presented in the thesis show that the additional reactive power can be effectively applied in power transmission systems to solve the problems of load growth, voltage regulation and voltage stability. Many case studies are presented throughout the thesis using sample power systems to show the effectiveness of reactive power sources for power system performance mancement.

6.1 Summary of the Research and Contribution of the Thesis

The main contribution of this thesis can be summarized as follows:

- A complete analysis on the negative effects of reactive power transmission and the use of reactive power compensation devices to mitigate these effects.
- Conventional optimization methods including their application to power system is investigated.
- A detailed study on OPF problems, including economic dispatch, OPF objectives and required operational constraints are studied for different objectives. Matlab Optimization Toolbox and PowerWorld Simulator are used to handle the case studies of OPF problems.

- An investigation into the effect of reactive power compensation on the voltage profile in stressed power systems.
- An overview of the voltage stability analysis based on the PV-curve method, exploring the effect of reactive power compensation devices on voltage stability margin.
- 6. Publication of a technical paper [54] related to this thesis.

6.2 Recommendations for Future Work

This thesis has considered three key problems for power systems: economy, transmission loss and security. Following three areas are proposed for future research in regard to the reactive power compensation problem.

- An investigation of multi-objective optimization problems for the reactive power planning and system stability problem.
- A further research for the cost of the reactive power sources, feasibility of their location as well as the effect of contingencies must be considered.

This thesis has presented the effectiveness of reactive power supply on power system performance. Case studies are presented to show the performance improvement in terms of voltage porfie and voltage stability margin. However, thuse two problems are focused individually. An integrated approach to deciding VAR sources based on optimization methods will be useful. The final selection of specific reactive power supply devices should hased on a complete technical and economic analysis [49, 59]. Deciding the optimal beaching and control of reactive power sources to provide maximum benefits to the power as a whole during normal operation and under potential contingencies in a calibration are of research[51, 52].

Reactive power planning is shown to be an exceedingly, difficult optimization problem as its formutation is multi-objective, partially discrete, non-linear, highly constrained and of large seale. As power systems rejor nearbies compensations as a means to access one operational constraint violations due to increased load demand, tools that rise above the limitations of classical optimization techniques must be developed in order to allocate compensation in an optimal way. In further research, a multi-objective reactive power planning problem is addressed along with meet objective functions together. A single objective optimization algorithm only provides a unique optimal solution; there is no guarantee that the solution obtained from one objective is the one for another objective. Additionally, multi-objective optimization techniques need be researched to reveal the culturohyba amount there objective.

Although multi-objective optimization algorithms are proposed to optimize reactive power planning problems, there remains a major challenge to determine the best locations and controls for reactive power devices to provide maximum benefit to the power system as a whole during normal opteration and contingent circumstance [28, 53]. Besides, the cost of the reactive power sources, feasibility of their locations and wall the offect of contingencies must also be considered.

References

- US-Canada Power System Outage Task Force, Final Report on August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations, Issued April 2004.
- [2] P. Kundur, Power System Stability and Control, New York, NY: McGraw Hill, 1994.
- [3] W. Zhang and L.M. Tolbert, "Survey of Reactive Power Planning Methods," *IEEE Power Engineering Society General Meeting*, Vol. 2, pp. 1430-1440, June 12-16, 2005.
- [4] B. Baran, J. Vallejo, R. Ramos and U. Fernandex, "Multi-Objective Reactive Power Compensation," *IEEE/PES Transmission and Distribution Conference and Exposition*, Vol. 1, pp. 97-101, November 2001.
- [5] K. Iba and H. Zuzuki, "Practical Reactive Power Allocation/Operation Planning Using Successive Linear Programming," *IEEE Trans. Power Syst.*, Vol. 3, No. 2, pp. 558-566, 1988.
- [6] J.A. Jatau, J.A. Momoh and A.U. Chuku, "Evaluation of Methodologies for Shunt Var Planning," Proceedings on the Twenty-Second Annual North American Power Symposium, pp. 381-389, 15-16 Oct. 1990.
- [7] W.M. Lebow, R. Rouhani, R. Nadira, P.B. Uscoro, R.K. Mehra, D.W. Sobieski, M.K. Pal and M.P. Bhavaraju, "A Hierarchical Approach to Reactive Volt Ampere (Var) Optimization in System Planning," *IEEE Trans. on PAS*, Vol. 104, No. 8, pp. 2051–2057, 1985.
- [8] M.M. Begovic, B. Radibratovic and F.C. Lambert, "On Multiobjective Volt-VAR Optimization in Power Systems," in proceedings of the 37th Annual Hawaii International Conference on System Sciences, pp. 1-6, January 2004.
- [9] K. Iba, "Reactive Power Optimization by Genetic Algorithms," IEEE Trans. on Power Systems, Vol. 9, No. 2, pp. 685-692, May 1994.
- [10] D. Bhagwan and C. Patvardhan, "A New Hybrid Evolutionary Strategy for Reactive Power Dispatch," Electric Power Research, Vol. 65, pp. 83-90, January 2000.
- [11] B.Gao, G.K. Morrison and P. Kundur, "Voltage stability evaluation using modal analysis," *IEEE Trans. on Power System*, Vol. 7; pp. 1529-1542, 1992.
- [12] B. Venkatesh, H.B. Gooi and Rakesh Ranjan, "Effect of Minimizing VAr Losses on Voltage Stability Margin in a Unified OPF Framework", *IEEE Power Engineering Review Letters*, pp. 45-47, 2002.
- [13] J. Dixon, L. Moran, J. Rodriguez and R. Domke, "Reactive Power Compensation Technologies, State-of-the-Art Review," General Introduction, retrieved on Oct, 2010, from website

http://dspace.unimap.edu.my/dspace/bitstream/123456789/4262/5/Literature%20review.pdf.

- [14] C. W. Taylor, Power System Voltage Stability, New York, NY: McGraw Hill, 1994.
- [15] PowerWorld Simulator, Version 11, PowerWorld Corporation, Champaign, IL, USA, July 2006.
- [17] B. Zhao, C.X. Guo and Y.J. Cao, "A multiagent-based particle swarm optimization approach for optimal reactive power dispatch," *IEEE Trans. Power Syst.*, Vol. 20, No. 2, pp. 1076-1078, May 2005.
- [18] K. Bhattacharya, M. H. J. Bollen and J. E. Daalder, Operation of Restructured Power Systems, Klineer Academic Publishers, Kluwer Academic Publishers Group, Norvell, Boston, US, 2001.
- [19] D. P. Kothari and J. S. Dhillon, Power System Optimization, Prentice-Hall of India Private Limited, New Delhi, 2004.

[20] H. Saadat, Power System Analysis, McGraw-Hill Companies, Inc., 2002.

- [21] J. D. Glover and M. S. Sarma, Power System Analysis and Design, Brooks/Colle, Pacific Grove, CA, 2002.
- [22] S. Panta, S. Premrudeepreechacharn, S. Nuchpraynoon, C. Dechthummarong, S. Janjormnanit and S. Yachiangkam, "Optimal Economic Dispatch for Power Generation Using Artificial Neural Network", *IEEE Power Engineering Conference*, pp. 1343-1348, 2007.
- [23] A. J. Wood and B. F. Wollenberg, Power Generation Operation and Control, John Wiley & Sons, Toronto, ON, 1984.
- [24] A. R. Bergen and V. Vittal, Power System Analysis, Prentice-hall, Upper Saddle River, New Jersey, 2000.
- [25] C. L. Chen and N. M. Chen, "Direct Search Method for Solving Economic Dispatch Problem Considering Transmission Capacity Constraints", *IEEE Transactions on Power Systems*, Vol.16, No.4, pp. 764-769, November 2001.
- [26] Y. Wallach, Calculations and Porgrams for Power System Networks, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1986.
- [27] S. S. Rao, Engineering Optimization Theory and Practice, John Wiley & Sons, Toronto, ON, 1996.
- [28] R. Baldick, Applied Optimization Formulation and Algorithms for Engineering Systems, Cambridge University Press, Cambridge, UK, 2006.
- [29] A. D. Belegundu and T. R. Chandrupatla, Optimization Concepts and Applications in Engineering, Prentice-Hall, Upper Saddle River, New Jersey, 1999.

- [30] Y. J. Zhang and Z. Ren, "Optimal Reactive Power Dispatch Considering Costs of Adjusting the Control Devices," *IEEE Trans. Power Syst.*, Vol. 20, No. 3, pp. 1349-1356, August 2005.
- [31] R. Staniulis, Reactive Power Valuation, retrieved on June 13, 2010, and from http://www.iea.lth.se/publications/MS-Theses/Full%20document/5150_full_document.pdf.
- [32] A. Ravindran, K.M. Ragsdell and G.V. Reklaitis, Engineering Optimization Methods and Applications, John Wiley & Sons, 2006.
- [33] H. Ng, M. Salama and A. Chikhani, "Classification of Capacitor AllocationTechniques," IEEE Trans.on Power Delivery, Vol. 15, no. 1, pp. 387-392, January 2000.
- [34] M. Delfanti, G. Granelli, P. Marannino and M. Montagna, "Optimal Capacitor Placement Using Deterministic and Genetic Algorithms," *IEEE Trans. on Power Systems*, Vol. 15, No.3, pp. 1041-1046, August 2000.
- [35] G. Levitin, A. Kalyuzhny, A. Shenkman and M. Chertkov, "Optimal Capacitor Allocation in Distribution Systems using a Genetic Algorithm and a Fast Energy Loss Computation Technique," *IEEE Trans. on Power Systems*, Vol. 15, No. 2, pp. 623-628, April 2000.
- [36] J. Carlisle and A. El-Keib, "A graph Search Algorithm for Optimal Placement of Fixed and Switched Capacitors on Radial Distribution Systems," *IEEE Trans. on Power Systems*, Vol. 15, No. 1, pp. 423–428, January 2000.
- [37] B. Venkatesh, G. Sadasivaan and M. Abdullah Khan, "A New Optimal Power Scheduling Method forLoss Minimization and Voltage Stability Margin Maximization Using Successive Multiobjective Fuzzy LP Technique," *IEEE Trans. on Power Systems*, Vol. 15, No. 2, pp. 844-851, May 2000.
- [38] S. Small, Multiple Objective Reactive Power Planning Using Genetic Algorithms, M. Eng., Memorial University of Newfoundland, St. John's Newfoundland, 2007.
- [39] L. L. Lai, Intelligent System Applications in Power Engineering, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY.
- [40] F. Li, J.D. Pilgrim, C. Dabeedin, A. Chebbo and R.K. Aggarwal, "Genetic Algorithms for Optimal Reactive Power Compensation on the National Grid System," *IEEE Trans. Power* Systems, No. 20, Vol. 1, pp. 493-500, February 2005.
- [41] B.D. Thukaram and K. Parthasarathy, "Optimal reactive power dispatch algorithm for voltage stability improvement," *Electrical Power & Energy Systems*, Vol. 18, No. 7, pp. 461–468, 1996.
- [42] R.D. Dunlop, R. Gutman, and P.P. Marchenko, "Analytical Development of Loadability Characteristics for EHV and UHV Transmission Lines," *IEEE Trans. on Power Syst.*, Vol. 98, No. 2, pp. 606-617, March-April 1979.

[43] MATLAB, version 7.4, Mathworks, Inc., USA, 2007.

- [44] W. Zhang and Y. Liu, "Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm," *Int. J. Electr. Power Energy Syst.* Vol. 9, No. 30, pp. 525-532, 2008.
- [45] T. He, S. Kolluri, S. Mandal, F. Galvan and P. Rastgoufarad, "Identification of Weak Locations in Bulk Transmission Systems Using Voltage Stability margin Index", in Probabilistic Methods Applied to Power Systems, 2004 International Conference on September 2004.
- [46] A. Sode-Yome, N. Mithulanathan and K. Y. Lee, "Static Voltage Stability Margin Enhancement Using STATCOM, TCSC and SSSC", in Proc. IEEE/PES Transmission and Distribution Conference & Exposition: Asia and pacific, Dalian, China, 2005.
- [47] H. Liu, "Planning reactive power control for transmission enhancement", Ph.D. dissertation, Dept. of Electrical Engineering, Iowa State University, Ames, Iowa, 2007.
- [48] M.A. Pai, Energy Function Analysis for Power System Stability, Kluwer Academic Publishers, 1989.
- [49] B. Ray, "Recent Experience at PG&E with FACTS Technology Application", in Proc. IEEE Power Engineering Society Transmission and Distribution Conference and Echibition, pp. 1412-1419, May 2006.
- [50] P. Pourbeik, R.J. Koessler, W. Quaintance and W. Wong, "Performing Comprehensive Voltage Stability Studies for the Determination of Optimal Location, Size and Type of Reactive Compensation," in Proc. IEEE Power Engineering Society General Meeting, June 2006.
- [51] A. Tiwari and V. Ajjarapu, "Optimal Allocation of Dynamic VAR Support Using Mixed Integer Dynamic Optimization", IEEE Trans. Power Systems, Vol. 26, No.1, pp. 305-314, February 2011.
- [52] A.P. SakisMeliopoulos, V. Vittal, J. McCalley, V. Ajjarapu and I. Hiskens, Optimal Allocation of Static and Dynamic VAR Resources, Power Systems Engineering Research Center, PSERC Publication 08-06, ArXizona State University, March 2008.
- [53]R. C. Bansal, "Optimization Methods for Electric Power System: An Overview", International Journal of Energing Electric Power Systems, Vol. 2, Issue 1, 2005.
- [54] L. Weng and B. Jeyasurya, "Effectiveness of VAR sources for Power System Performance Enhancement", submitted to Electrical Power and Energy Conference on Advanced Technologies for Emergine Power Systems, Winnipee, October 2011.

Appendix A: 7-Bus Power System Data

Appendix A contains the information about the 7-Bus Power system [15] discussed in the thesis. The one line diagram is shown in FigureA.1. The generations, loads and generation fuel cost coefficients are presented in TableA.1, A.2, and A.3 respectively.

FigureA.1 One Line Diagram of the 7-Bus Power System

Table A. J Generation Schedule and Generator Limits for the 7-Bus Power System

Bus	Real Power Generation (MW)	Maximum Real Power Generation (MW)	Minimum Real Power Generator (MW)
1	102	400	100
2	. 170	500	150
- 4	95	200	50
6	200	500	150
7	201	600	0
Bus	Real Power Load (MW)	Reactive Power Load (MVAR)	
-----	----------------------	-------------------------------	
2	40	20	
3	110	40	
4	80	30	
5	130	40	
6	200	0	
7	200	0	

Table A. 2 Load Demand for the 7-Bus Power System

Table A.3 Generator Fuel Cost Coefficients for the 7-Bus Power System

Bus	8	b	c
1	373.5	7.62	0.002
2	403.61	7.52	0.0014
4	253.24	7.84	0.0013
6	388.93	7.57	0.0013
7	194.28	7.77	0.0019

The total fuel cost: $C_{GI} = a_i + b_i P_i + c_i P_i^2$, i represents the *i*th generator.

Appendix B: 6-Bus Power System Data

Appendix B contains the information about the 6-Bus Power system [23] discussed in the thesis. The one line diagram is shown in Figure B.1. The generations, loads and generation fuel cost coefficients are presented in Table B.1, B.2 and B.3 respectively.

Figure B.1 One Line Diagram of the 5-Bus Power System

Table B.1: Initial Generation Schedule and Generator Limits for the 6-Bus System

Bus	Voltage magnitude (p.u)	Output Active Power (MW)	Maximum Active Power Generation (MW)	Minimum Active Power Generation (MW)	Maximum Reactive Power Generation (MVAr)	Minimum Reactive Power Generation (MVAr)
Ĺ	1.05		200	50	100	0
2	1.05	50	150	37.5	100	0
3	1.07	60	180	45	100	-10

Bus	Active Power Load (MW)	Reactive Power Load (MVAr)
4	70	70
5	70	70
6	70	70

Table B.2: Initial Active and Reactive Load Demand for the 6-Bus System

Table B.3 Generator Fuel Cost Coefficients for the 6-Bus Power System

Bus	a	b	c
1	213.1	11.67	0.0053
2	200	10.33	0.0089
3	240	10.83	0.0074

The total fuel cost: $C_{Gi} = a_i + b_i P_i + c_i P_i^2$, i represents the *i*th generator.

Appendix C: 26-Bus Power System Data

Appendix C gives the pertinent information about the 26-Bus Power system [20] discussed in the thesis. The one line diagram is shown in Figure C.1.Thegenerations, loads and generation fuel cost coefficients are presented in Table C.1, C.2, and C.3 respectively.

Figure C.1 One Line Diagram of the 26-Bus Power System

Bus	Real Power Generation (MW)	Maximum Real Power Generation (MW)	Minimum Real Power Generator (MW)
1	472.44	500	100
2	50	200	50
3	15	300	80
4	75	150	50
5	225	200	50
26	119.23	120	50

Table C. 1 Generation Schedule and Generator Limits for the 26-Bus Power System

Table C. 2 Load Demand for the 26-Bus Power System

Bus	Real Power Load (MW)	Reactive Power Load (MVAR)
1	38.25	30.75
2	16.5	11.25
3	48	37.5
4	18.75	14.25
5	37.5	22.5
6	57	21.75
7	0	0
8	0	0
9	66.75	37.5
10	0	0
11	18,75	11.25
12	66.75	36
13	23.25	11.25
14	18	9
15	52.5	23.25
16	41.25	20.25
17	58.5	28.5
18	114.75	50.25
19	56.25	11.25
20	36	20.25
21	34.5	17.25
22	33.75	16.5
23	18,75	9
24	40.5	20.25
25	21	9.75
26	30	15

Bus	a	b	с
1	240	7	0.007
2	200	10	0.0095
3	220	8.5	0.009
4	200	11	0.009
5	220	10.5	0.008
26	190	12	0.0075

Table C.3 Generator Fuel Cost Coefficients for the 26-Bus Power System

The total fuel cost: $C_{6l} = a_l + b_l P_l + c_l P_l^2$, *i* represents the *i*th generator.

Appendix D:5-Bus Power System Data

Appendix D contains the information about the 5-Bus Power system [39] discussed in the thesis. The one line diagram is shown in Fig. D.1. Thegenerations, loads and generation fuel cost coefficients are presented in Table D.1, D.2and D.3 respectively.

Figure D.1 One Line Diagram of the 5-Bus Power System

Bus	Real Power Generation (MW)	Maximum Real Power Generation (MW)	Minimum Real Power Generator (MW)
1	58.79	400	-9900
2	120	500	-9900
3	60	1000	-9900

Table D. 1 Generation Schedule and Generator Limits for the 5-Bus Power System

Bus	Real Power Load (MW)	Reactive Power Load (MVAR)
2	19.6	9.8
3	19.6	4.7
4	49	29.4
5	58.8	39.2

Table D.2 Load Demand for the 5-Bus Power System

Table D.3 Generator Fuel Cost Coefficients for the 5-Bus Power System

Bus	а	b	c
1	373.5	10	0.016
2	403.6	8	0.018
3	253.2	12	0.018

The total fuel cost: $C_{Gl} = a_i + b_l P_l + c_l P_l^2$, i represents the *i*th generator.

Appendix E: IEEE 39-Bus Power System Data

Appendix E gives the pertinent information about the IEEE 39-Bus Power system [59] discussed in the thesis. The one line diagram is shown in Figure E.1. The generations, loads and generation fuel cost coefficients are presented in Tables E.1, E.2and E.3 respectively.

Figure E.1 One Line Diagram of the IEEE 39-Bus Power System

100

Table E.1 Generation Schedule and Generator Limits for the IEEE 39-bits Fo
--

Bus	Real Power	Maximum	Minimum
	Generation	Real Power	Real Power
	(MW)	Generation	Generator
		(MW)	(MW)
30	340	350	50
31	658.8	650	50
32	735.4	800	50
33	540	750	50
34	600	650	50
35	670	750	50
36	550	750	50
37	600	750	50
38	890.3	900	50
39	1052.2	1200	50

Table E.2 Load Demand for the IEEE 39-Bus Power System

Bus	Real Power Load (MW)	Reactive Power Load (MVAR)
3	322	2.4
4	500	184
7	233.8	84
8	522	176
12	8.5	88
15	320	153
16	329	32.3
18	158	30
20	680	103
21	274	115
23	247.5	84.6
24	308.6	-92.2
25	224	47.2
26	139	17
27	281	75.5
28	206	27.6
29	283.5	26.9
31	9.2	4.6
39	1104	250

Bus	a	b	c
30	0	6.9	0.0193
31	0	3.7	0.0111
32	0	2.8	0.0104
33	0	4.7	0.0088
34	0	2.8	0.0128
35	0	3.7	0.0094
36	0	4.8	0.0099
37	0	3.6	0.0113
38	0	3.7	0.0071
39	0	3.9	0.0064

Table E.3 Generator Fuel Cost Coefficients for the IEEE 39-Bus Power System

The total fuel cost: $C_{Gl} = a_l + b_l P_l + c_l P_l^2$, i represents the *i*th generator.

