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Abstract

The purpose of this thesis is to explore the spectra of discrete Schrédinger operators of
a special form. We consider the specific way to identify the Schrédinger operator H,,
in our model with an element in the crossed product C(X) %, Z, which is generated
by the commutative unital C*-algebra C(X) and countable discrete group Z via the
action o with respect to the universal norm. We show that the crossed product
C(Y)x,Z, where Y = Orb,(zy), is isomorphic to the concrete algebra o, (C(X)xaZ),
where 0, is an integrated representation of C(X) x, Z induced by point evaluation
izo- As a corollary, we conclude that the spectra of the Schrédinger operators Hy,
and H,, are the same when the closures of the orbits of the two points zo, z; € X are
the same, and apply this result to some special kinds of systems. After considering the

classification of the spectra of discrete Schrodinger operators, we give some examples

to show the calculation of the spectrum by using K-theory.
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Introduction

The Schrodinger cequation was proposed by physicist Erwin Schrodinger in 1926.
There are two types of Schrodinger equations, time-dependent and time-independent.
The time-independent Schrédinger equation is used when dealing with stationary
states. i.c.. the states that do not change over time, so the wavefunction is a func-
tion of position. In the time-dependent Schrodinger equation, the wavefunction is a
function of position and time.

We have that Kinetic Energy (T) + Potential Energy (V)=Total Energy (£) from
classical mechanics. The Schirédinger equation uses this fundamental principle in
terms of its wavefunction:

H?/)n = Enwna

where ¢, is the wavefunction, H is the Hamiltonian operator, and FE, is the nth energy
eigenvalue corresponding to ¢, (solutions exist for the time-independent Schrédinger
equation only for certain values of energy). In the time-independent Schrédinger
cquation, the Hamiltonian operator is equivalent to the total energy operator.

In this thesis, we cousider the one-dimensional discrete Schrodinger operator H = H,,
of the form

(Heyt)(n) = (n + 1) + 90 — 1) + V(n)g(n). (0.0.1)
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on (3(Z). where the potential V@ Z — R is given by

Vi(n) = f("(x0)),

with the point &y in a compact metric space X. ¢ a homeomorphism of X onto itself
and f a continuous hwction from X to R.

The operator H is a self-adjoint bounded operator on ¢2(Z), and hence its spectrum
is a non-empty compact set in the real line.

In the first chapter, the basic definitions of x-algebras, normed algebras, Banach
algebras and C*-algebras are reviewed: the equivalence of a topological system (X. )
and a dynamical system (C(X),a) is shown (see e.g. [29]). where C(X) is the C*-
algebra of all continuous complex-valued functions on X and a is an automorphisim
of C'(X) of the form (1.2.1). Morcover, given a single automorphism o in Aut(C'(X)),
we know it gives rise to an action of the group Z on C(X) (sce Definition 1.3.7) by
a, = a". In the following sections. we also denote by a this action of Z induced
bv a single automorphism a. In this way. hence. we form a C*-dynamical system
(C(XN).Z.q) (see Definition 1.3.10) aud then obtain the crossed product C(X) X, Z
(sec e.g. Theorem 1.4.1. [24]. [30]). Considering the map o,, = gy, ¥ A, which
is the representation (see Definition 1.3.13 and Equation (1.4.1)) of C(X) x, Z on
the Hilbert space (%(Z) corresponding to the covariant representation (f,,. A) (sec
Definition 1.3.16 and Equations (1.4.3)) induced by a representation ., of C(X) on
C. we will identify the Sehrodinger operator H,, of the form (0.0.1) with the image
of an clement in the crossed product C'(X') x,, Z under the representation oy,.

In the sccond chapter, the properties of short exact sequences of C*-algebras are pre-
(C(X) %, Z) is isomorplic

sented and then used to show (sce Theoremn 2.2.1) that o,

to C'(X) %, Z where Y = Orbg(ry), and Orb,(1y) is the orbit of the point xg in X
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under . As a consequence, the spectrum of the Schrédinger operator H,, of the
form (0.0.1) is determined by Y (see Corollary 2.2.6). Moreover, this result is applied
to three kinds of dynamical systems: minimal systems, almost minimal systems and
essentially minimal systems.

It is important to label gaps in the spectrum of the Schrédinger operator H,, of the
form (0.0.1), where a gap means a connected component in the set R\ sp(Hy,). In the
last chapter, we review Kjy-groups, K;-groups and the Pimsner-Voiculescu sequence
of a C*-algebra, which is the main tool to label gaps in the spectrum (see e.g. [3], [4],
[6],[9], [10], [11], [13], [17], [20], [21]). In the end, some special Schrodinger operators
whose spectra are Cantor sets will be given as examples for the calculation of the

spectrum (see e.g. [3], [6], [7], [25]).
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Chapter 1

Realization of the Schrodinger

operators in crossed products

1.1 Preliminaries to C*-algebras

In this part, we will review the definitions of different kinds of algebras and the

spectrum of an element in a C*-algebra.

Definition 1.1.1. An algebra (over C) is a vector space A endowed with a product

Ax A— A, (a,b) — ab such that
(i) a(bc) = (ab)c for all a,b,c € A (associativity),
(ii) a(b+ c) = ab+ ac and (b+ c)a = ba + ca for all a,b,c € A (distributivity),

(iii) (aa)(Bb) = (aB)(ab) for alla,B € C and a,b€ A

(compatibility with scalar multiplication).

Definition 1.1.2. (a) A x-algebra is an algebra A provided with a map x : A — A,

a+r a* such that, for alla,b € A and @ € C,



(i) (a+b) =a*+ b,

(ii) (aa)* = a@a*,

(iii) (ab)* = b*a*,

(iv) (a*)" = «a.

The mapping a — a* is called the involution.

(b) A normed algebra is an algebra A with a norm |||+ A — R (with the convention

that O belongs to RT ), a +— l|al| such that |Jab|| < ||al/||b|| for all a,b € A.
(c) A Banach algebra is a normed algebra which is complete in its norm.

(d) A Cr-algebra A is a Banach algebra which is at the same time a *-algebra such

that the norm satisfies

Ja%al] = [lof> (1LL1)
forallae A,

An algebra A is wndtal if it has a multiplicative identity, which will be denoted by
e or ey. It follows from the condition (1.1.1) that ||e]| = 1 for any nontrivial unital
C*-algebra. A C*-algebra is said to be separable if it contains a countable dense subset.
A sub-C*-algebra of a C*-algebra A is a non-empty closed subset of A which is a
x-algebra with respect to the operations given on A.

Let A be a C*-algebra. and let F' be a subset of A. The sub-C*-algebra of A generated
by F, denoted by C*(F'), is the intersection of all sub-C*-algebras of A that contain

F. We write C*(ay.as ..., a,) instead of C*({ay,as....a,}), when ay, aq....,a, € A.

Theorem 1.1.3. Let A be a C*-algebra. Then the involution is isometric, i.e., ||a|| =

[la”]].




Proof. By the second and third axioms for C*-algebra A. we know that [ja*a]| =
la)? < |la*||||la|l for any element a € A. If |la|| = 0, then @ = a* = 0, so |lal = ||a*||.

*

If ||a]] > 0. then we obtain |la]| < |ja*|. On the other hand, since (a*)* = a, in the

similar way, we obtain that |la*|| < [la]|. Thus, ||a]] = ||a*|| for all a € A. O
An clement a in a C*-algebra A is called

(i) self-adjoint if «* = q;

(ii) a projection if a = a* = a?;

(iii) normal if «*a = aa*;

(iv) (if A is unital) unitary if a*a = e4 = aa”,

(v) (if A is unital) ‘nvertible if there is an element b in A such that ab = ba = ea.

If Ais a C*-algebra, then the unitalization of A is the unique (up to canonical isometric
x-isomorphism) C*-algebra A with multiplicative unit which contains A as a closed,
two-sided ideal of linear codimension one. The algebra A can be constructed as follows
(sce e.g. [22, Page 5]): If A is contained in a unital C*-algebra B whosc unit eg does
not helong to A. then A is equal (or isomorphic) to the sub-C*-algebra A + C - ey of
B.If A has a unit e4, and if ey is the unit in A, then /= e; — eq s a projection in

A, and
A={a+af:a€ A acC}

Definition 1.1.4. If A is any unital C*-algebra. the spectruin of an element a € A
is the set

sp(a) := {A € C| Aeq — ais not invertible in A},

If A is not unital, then sp(a) is defined to be the spectrum of a in the unitalization A.

(1t follows that if A is non-unital, then 0 € sp(a) for every a € A).



The spectral vadius of a s

r(a) = sup{|A| : A € sp(a)}.

The spectrum sp(a) is a nonempty compact subset of C. and the spectral radius
satisfies r(a) < |la]| (sce e.g. [16. Lemma 1.2.4]).

The following theorem can be found in [23. Theorem 18.9].

Theorem 1.1.5 (Spectral Radius Formula). For every a2 € A,

nl/n __ .
i |l = r(x). (1.1.2)
For a normal element a € A, Equation (1.1.2) reduces to r(a) = |la||. By (1.1.1). we

have that ||| = \/Ha all = \/ r(a*a), or, equivalently,
2 . . . .
la]l” = sup{A € C | Ac.y — a”a is not invertible in A}.
This hmplies that the norm in a C*-algebra is uniquely determined by product and
involution.

Definition 1.1.6. An clement a in o C*-algebra A is positive if it is normal and

sp(a) € RY. We will write a > 0 to indicate that a is positive in this sense.

The set of positive elements in A is denoted by AT, An element a in A is positive if

and only if « = a*.r for some r € A (sce e.g. [22, page 6]).



1.2 The equivalence of a dynamical system and a

topological system

A classical dynamical system consists of a compact Hausdorff space X and a homeo-
morphism ¢ of X onto itself.

Note that the Schrodinger operator Hy, of the form (0.0.1) is a bounded self-adjoint
operator on ¢2(Z) and is determined by the topological system (X, ¢, 2¢).

Given a topological system (X, o), consider the C*-algebra C(X) of all the continuous

complex-valued functions on a compact Hausdorff space X. Define

a(f)=foy. (1.2.1)

Obviously, @« € Aut(C(X)). Let us show, conversely, that a dynamical system
(C(X),a), @ € Aut(C(X)), induces a corresponding topological system (X, ¢) such
that (1.2.1) holds.

Definition 1.2.1. Let A be an algebra over C. A multiplicative linear functional is

a nonzero linear functional ¢ : A = C such that

o(zy) = p(z)o(y), Vz,y € A

Multiplicative linear functionals are also called characters of A.

Definition 1.2.2. Let A be a Banach algebra. A left ideal (right ideal) of A s a
closed linear subalgebra I C A for which a € I implies that ba € I (ab € I) for all
be A

An ideal in A is a subspace that is both a left and a right ideal (i.e., a two-sided ideal).

IfI # A, I is a proper ideal. Maximal ideals are proper ideals which are not contained




in any larger proper ideals.

Definition 1.2.3. Let o : A — B be a map between C*-algebras A and 3. The map
v A= Bis called a x-homomorphism if it is a linear and multiplicative map which
satisfies p(a*) = pla)* for alla € A; the map o+ A — DB is called a *-isomorphism if
it is a x-homomorphism which is bijective; the map 1 A — B is called an isometric

s-isomorphism if it is a x-isomorphism which is isometric.

Theorem 1.2.4 ([15, Theorem 1.5.15]). Every x-homomorphism ¢ © A — B of
C*-algebras is norm-decreasing, and ¢(A) is always a sub-C*-algebra of B. If ¢ is

imjective. then it /s an isometry.

By Theorem 1.2.4. we know that the kernel of a «-homowmorphism o+ A4 — B of
C*-algebras is closed in 4 and the image is closed in B.

The kernel of a x-homomorphism of C*-algebras 7+ A — B is an ideal in A. Con-
versely, for any ideal 7 C A, A/I is a C*-algebra and [ is the kernel of the quotient
map from A to 4/7.

Let H be a Hilbert space. Denote by B(H) the C*-algebra of all bounded linear
operators on H and by UU(H) the group of all unitary operators on H.

The following theorenn is known as Gelfand-Naimark-Segal Theorem that can be found
in e.g. [22, Theorem 1.1.3], in which the GNS-construction is used to construct a
Hilbert space H for a given C*-algebra A such that A can be isometrically embedded

into B(H) as a sub-C*-algebra.

Theorem 1.2.5 (Gelfand-Naimark-Segal Theorem). For each C*-algebra A there ea-
ist o Hilbert space H oand an isometric x-homomorphism o from A into B(H). If A
is separable, then H o can be chosen to be a separable Hilbert space.

The following Gelfand-Naimark Theorem (see e.g. (22, Theorem 1.2.3]) gives a uni-

versal model for any commutative C*-algebra.
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Theorem 1.2.6 (Gelfand-Naimark Theorem). Fvery commutative C*-algebra is iso-
metrically x-isomorphic to the C*-algebra Co(X) for some locally compact Hausdorff

space X,

Recall that Cy(X) is the C*-algebra of all continuous functions f : X — C that vanish
at infinity: for each & > 0 there is a compact subset A of X such that |f(2)]| < e for
all v € X\ K. The normt on Cy(X) is the supremum norm. If X is compact, then
Co(X) = C(X).

In addition to Gelfand-Naimark Theorem, we have the following properties (see [22,

Page 7]):
(i) The Cr-algebra Cp(X) is unital if and only if X is compact.
(ii) X and Y arc homeomorphic if and ouly if Cy(X) and Cy(Y') are isomctrically

*-isomorphic.

(iii) There is a bijective correspondence between open sets of X and ideals in Cy(X),
which is set up as follows: the ideal corresponding to the open subset U of X is

the set {f € Co(X) | f vanishes on U} = Cy(U).

In the following, denote by A(A) the set of all nonzero characters of a comnutative
Banach algebra A. It is a compact Hausdorfl space with respect to the following

topology: A neighborhood basis at py € A(A) is given by the collection of sets

Ulpo,x1, -+ in.€) = {p € A(A) | |p(z:) — polzi)| <€, 1 <i<n},

where € > 0, n € N, and =z, -+, 1z, arc arbitrary clements of A. This topology on
A(A) is called the Gelfand topology.

If A has an identity, then A(A) is also called the mazimal ideal space of A.



Definition 1.2.7 (Gelfand transformi). Suppose that A is a commutative Banach

algebra with A(A) nonempty. Then the Gelfand transform of a € A is the function
a:A(A) - C

given by a(h) = h(a).

The space X corresponding to the commutative C*-algebra A in Gelfand-Naimark
Theorem can be chosen as the space A(A) with Gelfand topology, and then the
Gelfand transform provides an isometric *-isomorphism 4 — Cy(X).

Let X be a compact Hausdorft space. By Gelfand-Naimark Theorem, we have that
C'(X) is isomorphic to C(A(C(X))), hence X is homeomorphic to A(C(X)). Explic-
itly, for any v € X.

o C(X) = €, ) = ()
is a character of C'(X), and the mapping x — g, is a homeomorphism X — A(C(X)).
Definition 1.2.8. The function ., s called a point evaluation of v € X.

Any o € Aut(C(X)) defines a permutation @ @ A(C(X)) = A(C(X)) as follows:
£ KN Eoaforany £ € A(C(X)).

Since the set A(C(X)) coincides with the set of all point evaluations of C(X), i.e.,
A(C(X)) = {p, : ¥ € X}, the permutation @ induces a permutation ¢ of X by
[y AN Jtn © v = Jio-1(,y. Thus, we have that o(f) = foy™ forall f € C(X), and
tlien one can show that p is a homeomorphism and uniquely determined by o.

As discussed above, a topological system (X, ¢) corresponds to a dynamical system
(C'(X), a) uniquely, which implies that studying a topological system (X, ¢) is equiv-

alent to investigating the corresponding dynamical system (C(X), ).
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In the following scctions, we always denote by « the automorphism of C'(X) corre-

sponding to the homeomorphism ¢ : X — X.

1.3 C*-dynamical systems

Now we review somie basic definitions and properties related to the concept of a C*-

dynamical systemn.

Definition 1.3.1. A topological group is a group (G.-) together with a topology T

such that

(i) points are closed in (G, 1), and

1

(ii) the map G x G — G, (s,r) — sr™! 4s continuous.

Example 1.3.2. Any group G equipped with the discrete topology is a topological
group, for example, Z'. The groups R" and T" = {z = (21, ,2,) € C" | |z] =

1 for all i}. are topologicul groups in their usual topologies.

Definition 1.3.3. A (locally) compact group is a topological group for which the

underlying topology is (locally) compact.

Example 1.3.4. Any discrete group is locally compact; R" is locally compact;, T" is

compact.

Definition 1.3.5 (Group actions on sets). A group G acts on the left on a set X if
there is a map G x X — X

(s,2) > s (1.3.1)

such that

e-r=xz and s-(r-x)=sr-a

forall s.r € G and all x € X, where e is the identity element of G.



If G is a topological group and X is a topological space, then we say the action is

continuous if the mapping (1.3.1) is continuous. In this case, X is called a left G-space
and the pair (G, X} is called a transformation group. If both G and X are locally

compact, then (G. X) is called a locally compact transformation group.

Example 1.3.6. Let ¢ be a homeomorphism of a space X onto itself. Then Z acts

on X byn-x:=p"(x). and (Z, X) is a transformation group.

Definition 1.3.7 (Group actions on C*-algebras). Let G be a topological group and

let A be a C*-algebra. A map o : G — Aut(A), t — «; is called an action of G on A
if
(1) for anyt,s € G. we have a; o ag = g,

(2) for anya € A. the map G — A, t = o(a) is continuous.

Let (G, X) be a locally compact transformation group. Then for each s € G, the map

> s -2 1s a homeomorphism of X. Therefore we obtain a homomorphism

a: G — Aut(Cy(X)) (1.3.2)

defined by

Indeed,

(Vs = ¥y O Qg (1.3.3)

since

a(f)(@) = fls7TTa) = a ()t ) = aulas(f)) ().

The set Aut(A) of automorphisims of a C*-algebra A is a group under composition.
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Definition 1.3.8. The point-norm topology on Aut(A) is the topology of point-wise
convergence of functions on A: thus o; — « in the point-norm topology if and only if

llevi(a) — ala)|| = 0 for all a € A.

Lemma 1.3.9 ([30, Lemma 2.5]). Suppose that (G,X) is a locally compact trans-
formation group and that Aut(Cy(X)) is given the point-norm topology. Then the

associated homomorphism (1.3.2) of G into Aut{Cy(X)) is continuous.

Definition 1.3.10. A C*-dynamical system s a triple (A. G, «) consisting of a C”-

algebra A, a locally compact group G and an action o of G on A.

Example 1.3.11. For any o € Aut(A), we can define an action of Z on A by
n-a=a"(a). Such a dynamical system (A,7Z,«), with A = C(X), already appeared

in Section 1.2.

Equation (1.3.3) and Lenima 1.3.9 tell us that the homomorphism (1.3.2) is an action

of the topological group G on the C*-algebra Cy(X), which means that there is a
C*-dynamical system (Cy(X), G, «r) induced by a transformation group (G, X). The
following proposition tells us that, conversely, a transformation group (G, X) can be

induced by a C*-dynamical system (Co(X), G, a).

Proposition 1.3.12 ([30, Lemma 2.7)). Suppose that (Co(X), G, «v) is a C*-dynamical
system (with X locally compact). Then there is a transformation group (G, X) such

that

Definition 1.3.13 (A representation of a C*-algebra). A representation 7 of a C*-
algebra A on a Hilbert space H is a x-homomorphism of A into B(H). A representa-

tion 7 is nondegenerate if the set

{m(a)é|ae A €€ H}

11




is demse in H. We say that a representation 7 is faithful if it is an injective map.

Definition 1.3.14 (A unitary representation of a group). A unitary representation
of a group G on a Hilbert space H is o homomorphism U : G — U(H) such that the

map t — U (@) is continuous for cvery vector ¥ € H.

For a locally compact group G with a left Haar measure g (see [30. Section 1.3]), denote
by L*(G) the Hilbert space of equivalence classes of Borel measurable functions f on
G with complex values such that [, | f(s)[2dpu(s) < oo; denote by L>(G) the Banach
space of all essentially bounded functions ¢ — C with respect to the Haar measure.
More generallv. let H be a complex Hilbert space. We define L*(G.H) to be the space
of equivalence classes of Borel mmeasurable functions f on G with valuesin H. If Gis a
countable discrete group, then the Haar measure is just counting measure, so we can
think of clements of L2(G) and L*(G,H) as sequences indexed by G. The traditional

notation for L2(G) and L2(G.H) in this case is (2(G) and (*(G, H). respectively.

Example 1.3.15. Let G be a locally compact group and consider L*(G). Then. for

r e G. the translation Mr) is defined by

AP f(s) = f0's). f € LA(G).

Since translation Mr) s a unitary operator on L*(G). it follows that N © G —
U(L*(G)) is a representation of G. [t is called the left regular representation. More
generally. we can define a left reqular representation of G- on L*(G.H) for any Hilbert

space H.

Definition 1.3.16 (Covariant represcntation). Suppose that (A, G. «) is a C*-dynamical
system and that H is a Hilbert space. Then a covariant representation of (4. G. )

into B(H) is a pair (7. U) consisting of a representation m: A — B(H) and a unitary

12



representation U : G — U(H) on the same Hilbert space such that

Usr(a)U; = m(ay(a)) foralla € A, s € G.

Example 1.3.17. Covariant representations of a dynamical system (C, G, triv) cor-

respond to unitary representations of G.

1.4 Construction of crossed products

I the following, we will concentrate on a C*-dynamical system (A, G, ), where A is
a unital separable C*-algebra and G is a countable discrete group.
Consider the space C.(G. A) of continuous functions from G to A with compact sup-

port, i.e.,

C(G,A) ={f= Z apiy tag € Aforallt € G, and a; # 0 for only finitely manyt € G},
tec

where {u; : t € G} is the basis of the space C.(G. A) given by

€4, if t = S,
u(s) =

0, ift+#£s.

Instead of the usual point-wise multiplication, we define the multiplication of C.(G, A)

by the formal rules

Thus we obtaiu the twisted convolution product:

f9 =3 (3 aonlbry))u, € C(G. A).

seG  teld

|
|
|
|
|
wa = oy(a)u; and uy = Uy,
13



where f =3, coau and g =3 oo bsus € C(G, A).

The involution is determined by the rule u} = w;-1, s0

= (Zﬂtw)* =Y (el )u € C(GLA).

teGG e

One can check that the space C.(G, A) endowed with the multiplication and involution
as above is a x-algebra.
Note that a covariant representation (7,U) of the C*-dynamical system (A, G.«)

induces a *-representation of C.(G. A) by

= (f( > a,tut) =Y 7w(a)U,. (1.4.1)

teGG te@

Indeed,

=> Ulr(a)) = > Uin(a))UUir = > wlag(ala))Us = o f7),

te; teG s€GG

and

=33 wla)Um(b)Uy = 3 (3 mlasan(bi-1,)))Us = o(fg).

teGuels seG leG

This representation o is denoted by 7 x U and called the integrated representation
induced by (7, U).
Conversely, when A is unital, a s-representation o of C.(G, A) yiclds a covariant

representation (7. U) of (A, G, o) as follows:

m(a) = o(au,.) and Uy = o(uy).
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For indeed.

Ur(a)U> = o(s)alae)o(s™) = o(sas ) = a(ala)c) = 7(w(a)).

Theorem 1.4.1 ([30. Lemma 2.27]). Suppose that (A.G. ) is a C*-dynamical system.

For each f € C'.(G.A), define

WA= sup{{[(m x UY(f)]] | (7. U) is a covariant representation of (A, G.«a)}. (1.4.2)

Then || - || is a norm on C(G. A) called the universal norm. The universal norm is
dominated by the || - |y -norm.

The [} - [|;-nonu on C(G, A) is defined as || f|l1 = Siee lladla. forall f =3 cqau €
C(G. A).

Definition 1.4.2. The completion of C.(G.A) with respect to || - | is a C*-algebra

called the crossed product of 4 by G and denoted by A x, G.

In the following. denote by A == B the C*-algebra A generated by a x-algebra B with
respect to the nonn || - ||, We will denote by ||+ || the universal norm on the x-algebra

C(G.A) and by || - |I; the universal norin on the s-algebra C.(G,I), where I is an

c-invariant ideal in the C*-algebra A. Then, by the definition of crossed products, we

I =7 [ ==y

know that A x, G = C(G.A) and [ x, G CAG,I)

The integrated representation o = 7 x U of C.(G. A) extends uniquely to a represen-
tation of A x G, also denoted by 7 x U.

In general, it is not obvious that there are any covariant represcutations of a given
dynamical system. although Theorcin 1.4.1 implies, in particular, that they must
exist. On the other hand. the GNS theory (sce e.g. Theorem 1.2.5. [1, Section 1.6], [8.

Page 29]. [12. Page 357]). constructs lots of representations of a given C*-algebra. But
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it could be difficult to find the universal norm, so it will be useful to display a concrete
realization of the crossed product A %, G. This is done via regular representations
which give rise to the reduced norm on C.(G, A). At first, let us look at the way in
which the regular representations are obtained.

Let m be any *-representation of A on a Hilbert space H. We form the Hilbert space

2(G,H) = L3(G,H) of all square summable functions z from G into H with the norm

lzl3 = > ll=@)I*

teG

Define a covariant representation (7,A) of the C*-dynamical system (A4,G,a) on

(G, H) by

(Az)(s) = z(t7's) (1.4.3)

foralla € A, z € *(G,H) and s, t € G.
Indeed, 7 is a *-representation of A, A is a left regular representation of G, and the

covariance condition is also satisfied since we have that

(AT(A)A{z)(s) = (F(A)A2)(E's) = m(ey T, (A)) (A2 (7 s))

= m(a; an(A))(x(s)) = (F(cu(A))z)(s)

for all z € £2(G,H) and s, t € G.

By Equations (1.4.1) and (1.4.3), the integrated representation o of C.(G, A) induced
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by covariant representation (7, A) has the form:

(e(f)a)(s) = D_(Fla)ha)(s) = >_ mlag (a))(Aea(s))

te@ tel;
= wla, (a)z(t™"s) (1.4.4)
teG

for f € C(G,A) with the finite form f = S,cqamuy, v € (2(G,H) and s, t € G.

The kernel of the integrated representation o = 7 x A of 4 x, G induced by the
representation 7 of A is determined by the kernel of 7 (see [30, Chapter 5]). In
particular. if 7 and 7’ are both faithful representations of A, then the integrated

representations @ x A and 7 x A’ have the samce kernel, and

(7 e A) (NI = [1F o A ()] forall f € Ax, G.

This makes the following definition reasonable because it is independent of the choice

of a faithful representation 7.
Definition 1.4.3. If (A.G.a) is a C*-dynamical system, then the reduced norm on
CAG, A) is given by
A1l == T AYCOIS
where 7 x A is the representation of Co(G.A) on (?(G,H) induced by any faithful

representation © of A on the Hilbert space H. The completion A X, G of C.(G, A)

with respect to || - || is called the reduced crossed product.
Below we discuss an important case where A %, G coincides with A x,, G.

Lemma 1.4.4 ({30, Lemuma 7.8]). Suppose that (A, G, «) is a C*-dynamical system.
Then the reduced crossed product A x,, G is (isomorphic to) the quotient of A xo G

by the kernel of T x A for any faithful representation m of A.
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Definition 1.4.5. A positive lincar functional on a C*-algebra is a linear functional

such that f(a) > 0 whenever a > 0. A state is a positive linear functional of norm 1.

If G is a locally compact topological group. a mean on G is a state on the C*-algebra

L™(G).

Definition 1.4.6. A group G is called amenable is there is a left translation invariant
mean for G. Here! left invariance indicates that p(gs) = p(g) for all g € L>(G) and

s € G. where g, € L™(G) given by g.(t) = g(s~'t) for allt € G.
Example 1.4.7. All finite groups and all abelian groups are amenable.

Theorem 1.4.8 ([30. Theorem 7.13]). If G is amenable. then the reduced norm || - ||,
coincides with the universal norm on C.(G.A). and hence A x,, G = A x,G. In
particular, if m is a faithful representation of A, then ™ x A is a faithful representation

of Ax,G.

Remark 1.4.9. Let A be a C*-algebra. The group Z is an amenable group, so the

full crossed product A x, Z and the reduced crossed product A X, Z are identical.

A wndversal C*-algebra is a C*-algebra characterized by a universal property (see [31]).
4 A A
A universal C*-alpebra can be expressed as a presentation, in terins of generators and
g
relations. For example, the universal C*-algebra generated by a unitary element w
has presentation (u | u*u = vu* = 1).

By [26]. [27] and [28]. the crossed product A x, Z also has the following interpretation:

Remark 1.4.10. Let A be a unital C*-algebra. and let o € Aut(A). Then the crossed
product A X, Z is the universal C*-algebra generated by A and a unitary u subject to

the relations vau* = a(a) for all a € A.
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If A=C(X). where X is a compact Hausdortt space. oue has that

CX) 2 Z=(C(X)u|wu=uu" =1, ufu" =a(f)foral f € C(X))

_iE {Z fow | f,o € C(X) forall n € Z. and f, # 0 for ouly finitely many n € Z}.

nei

1.5 Identification of the Schrodinger operator in
C(X) x,Z

We will identify the Schrodinger operator of the form (0.0.1) for a given self-adjoint
clement f in C'(.Y). i.e.. a real-valued continuous function on X. The space (2(Z) has
the standard basis

{. . .(1*1.(’(),(’1.('?3,...}.

Then every clement H € B(£*(Z)) corresponds to a unique matrix Ay, Thus, H,, of
A 1 | 0

the form (0.0.1) corresponds to the matrix My,

fle g 1 0 0 0

Choosing the Hilbert space H = C., we have that B(H) = B(C) = C. For a represen-

tation 7 of C'(X) on C, by Formulas (1.4.3), we obtain a regular representation (7, A)
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By Gelfand-Naimark Theorem, we know that there is an element xy € X such that

T = gy, hence

m(oz ' () = sao0 (f)) = oz () (o) = f(#" (x0))-

Considering the integrated representation o,, = © X A of C.(Z,C(X)) on £*(Z), we
obtain from (1.4.4) that o,,(u) = A; and o, (u*) = A_;.
Therefore, we know that the element o,,(u) = A, € B(¢*(Z)) corresponds to the

matrix
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the element o,,(u*) = A_; € B(¢%(Z)) corresponds to the matrix

Mu*:A__IZ o Mo Vol B o ... ;

and the element o,,(f) = #(f) € B({*(Z)) corresponds to the matrix M; = 7(f):

fle™ H=a)) 0 0 0 0
0 fzo) 0 0 0
0 0 flelzo)) 0 0
0 0 0 Fle®(za)) 0
0 0 0 0 Fle*(20))

Hence, the operator o,,(u+ u* + f) € B(¢*(Z)) corresponds to the matrix My -4

fle™H(=0)) 1 0 0 0
1 fl=za) 1 0 0
o 1 Fle(=g)) 1 0
0 0 1 Fe?(zo)) 1
0 0 0 1 F(*(=a))

Thus, we obtain that the Schrédinger operator H, of the form (0.0.1) and the operator

0zo(u + u* + f) correspond to the same matrix with respect to the same canonical

2




basis {....e_1,¢eg,¢1,e0,...} of the space (2(Z), so H,, = o4, (u+u* + f).

Under some conditions (scc e.g. minimal systems or almost minimal systeis in Section
2.3), the integrated representation o,, = 7 % A is faithful. Then we can identify
w+u + f e C(X)x,Z and H,,. The relationship between the spectra of u+u* + f

and H

&Iy

will be discussed in the following sections even if the integrated representation

0, 1s not faithful.

Remark 1.5.1. If f € C(X) is self-adjoint, i.c., real-valued, then v + u* + f is

self-adjoint, and H,, = o, (1 +u* + f) is a self-adjoint operator in B((*(Z)).

¥g)




Chapter 2

Spectrum of discrete Schrodinger

operators

2.1 Short exact sequences for crossed products

In this scction, the basic concepts and results related to short exact sequences for

crossed products are shown.,

Definition 2.1.1. A sequence of C*-algebras and *-homomorphisms

¥Yn Prtl
An An,+1 A71+1 -

is said to be exact if Im(yp, ) = Ker(pni1) for all n. And exact sequence of the form

B 0 (2.1.1)

is celled short exact.
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Remark 2.1.2 ([22. Page -1]). If I is an idcal in A. then

is a short cxact sequence. where « is the inclusion mapping and g is the quotient map-
ping. Conversely, given (2.1.1). ¢(I) is an ideal in A, the C*-algebra B is isomorphic

to A1), and we have a commutative diagram

0 i LAy v B 0 (2.1.2)

() ——— A ——— A/p(I)

1R

) —m

<

Remark 2.1.3. Let (A .G.a) be a dynamical system. Let 1(A) denote the set of
a-invariant (closed two-sided) ideals in A.

If I € I(A). then cach oy restricts to an automorphism of I and we obtain a dynam-
ical system (1.G.a) as well as a quotient system (A/I.G.a) defined in the following
way:

al(a+1):=a,a) + I

Remark 2.1.4. Recall that an equivariant map s a function between two sets that
commutes with the action of a group. Specifically, let G be a group, and let X and Y

be two G-sets. A function f: X =Y is said to be equivariant if

flg-v)=yg- f(r)

forally € G and oll v € X.

Theorem 2.1.5 ([30. Corollary 2.48]). Suppose that (A.G.«) and (B. G, 3) are dy-

namical systems and that ¢ - A — B is an equivariant homomorphism. Then there is
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a homomorphism o xid : A x, G — B x; G mapping C.(G. A) into C.(G.B) such
that

(¢ @ id)(f)(s) = o(f(s)).

Since the inclusion map ¢ : I — A and the quotient map ¢ : A — A/ are equivariant

homomorphisms. by Theorem 2.1.5. we can define homonorphisins
txid I x, G —= Ax,G. (2.1.3)

andl

gxid: Ax,G— A/ x,G. (2.1.4)

Note that C.(G. 1) sits in Co(G. A) as a x-closed two-sides ideal. Therefore the closure
with respect to the same norm is an ideal of A %, G which is denoted by Ex/. The

next lemma will allow us to identify Ex/ and I %, G.

Lemma 2.1.6 ([30. Lemma 3.17)). If (A, G.«) is a dynamical system and if I is an

a-invariant ideal in. A, then « xid is an isometric x-isomorphism of I X, G onto ExI.

Proposition 2.1.7 ([30, Proposition 3.19]). Supposec that (A, G.«) is o dynamical
system and I is an o-invariant ideal in A, Then  xid is an isomorphism identifying

I %, G with ExI = Ker (¢ x id) and we have a short exact sequence

gxid

0—>1 x, G5 A%, G5 AJT %, G—0.

of C*-algebias.

According to [24, Page 240], we know that I x, G is the smallest ideal in A x, G

containing the a-invariant ideal in A.



Corollary 2.1.8 ([8, Proposition I11.3.3]). Suppose that X is a compact Hausdorff

space and Y is a nonempty closed invariant subset of topological system (X, ), then

the ideal Co(X\Y) ={f € C(X) | fly =0} generates a proper ideal of C(X) x4 Z.

Recall that there is a dynaniical system (C(X),a) corresponding to a topological

dynamical system (X, o).

Corollary 2.1.9. Suppose that X is a compact Hausdorff space and Y is a closed

invariant subset of topological system (X, @), then we have a short exact sequence

oid

00— Co(X\ V) %0 Z-2% O(X) %0 ZL55 C(Y) 510 Z—— 0, (2.1.5)

of C*-algebras.

By Lemma 2.1.6. we know that Co(X \Y) 3, Z and Ex Cy(X \ Y) are isometrically

x-isomorphic.

2.2 Spectrum of the Schrodinger operator

For a representation pi,,, of C(X) on the Hilbert space H = C, there is a regular
covariant representation (fi,,,A) on the Hilbert spacc ¢*(Z), and then there is an
integrated representation o, = fiz, X A of C(X) 3, Z on (*(Z). We will use these
notations in the following results.

A sub-C*-algebra of B(H), the algebra of all bounded operators on a Hilbert space

H. 1s called a concrete C*-algebra.
g

Theorem 2.2.1. For any point 2o € X, denote Y = Orb,(xg). Let m,, be the
representation of C(X) corresponding to the point xy. Then. the crossed product

C(Y') %o Z is isornorphic to the concrete algebra o,,(C(X) %, Z).
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Proof. Since there is a short exact sequence:
00— Ker(oy,) —= C(X) Xo Z——L 0, (C(X) ¥4 Z) — 0,

in order to show C'(Y) %, Z is isomorphic to the conerete algebra o, (C(X) x4 Z),

by the commutative diagram (2.1.2), we only need to show
Ker(o,,) = Co(X \Y) %, Z,

where we have identified Cy(X \Y) x4 Z with an ideal of C(X) x4 Z using ¢ xid as in

short exact sequence (2.1.5). Choosing H = £*(Z), we define amap = : C(Y') — B(H),

f=Mp=1| .. 0 0 Jlalea)) 0 0
0 0 0 Jieen)) 0
0 0 0 0 et o)

Obviously, the map 7= : C(Y) — B(#H) is a x-homomorphism. We claim that it
is faithful. Indeed, if M; = 0, then fIOrb,g(xo) = 0 and hence f = 0 since [ is
continuous on Y. The faithful representation 7 of C(Y) on H induces the integrated
representation # X A of Co(Z, C(Y)) on the Hilbert space ¢2(Z,H) and then 7 x A
extends to a representation also denoted by 7@ x A @ C(Y) x4 Z — B(F(Z,H)).
Since Z is amenable, 7 x A is faithful by Theorem 1.4.8. Let ¢ : C(X) — C(Y') be
the restriction f — fly as in (2.1.5). The composition map g : C(X) — B(H),

f = My, induces the integrated representation 7g X A = (7 x A)(g xid) on £*(Z, H).



Since 7 x A ig faithful, by (2.1.5), we have that

Ker(mg x A) = Ker(g xid) = Co(X \ V) X, Z (2.2.1)

Let f = S,cz fau™ € CAZ.C(X)). We identify (*(Z,H) with (3(Z?) by sctting
U(k,j)=T(k)(j). We compute:

(Fq(fa)T)(k) = (m) (g () U (K) = (mq)(fuie")) B (k).

We know that

o ky o L
(mrq)(fre") = A[f”p*‘ =1 0 0 Pl T () 0 0 .
0 0 0 Tn* 2 o)) 0
0 0 0 0 T (25 T3 20)) l
|
SO

|
|
frl(\Pk_l(l'())) (R, —1)
Tq(f) (W) (k) = My cW(k) = | f,("(20)) - (k. 0)
fal** (@o)) - W (K, 1) i
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Hence, we obtain

fale* N (@o)) - U(k —n,—1)
(((rq) x MHO)E) = 3 Fa(f)ADK) =3 | fuleH(20)) - Uk —n,0) |,
(@ (@0)) - Uk —n, 1)

(2.2.2)

that is, (((7g x A)f)P)(k)(J) = Tnez (" (20)) - ¥(k —n,7), for k, j € Z.
Writing ¥ € £2(Z2) as ¥ = (--- ,9%_,,%0, %1, - - ) where ¢; = ¥(-,7). The result can

be restated as

(((mg = A) f)¥ Z falp %( n)

nez

On the other hand, we have

((Uapj(zo)( ))@Dj Z;Z/icpﬂ(mo) fn‘P )( n"»/)J k) Z%fn kﬂ zO))"/’J( )
. " (2.2.3)

By Equations (2.2.2) and (2.2.3), we obtain that

(g x A)F)T)(k)(7) = (04 (o) (F)¥5) (E),

or, equivalently,

((ﬁ X A)f)\Il o ( T (atpj"l(xo)(f))¢j—13 (Utpj(zo)(f))wja (a¢j+1(mo) (f))wj-i-la 1 )
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In other words, and (g x A)(f) € B({*(Z,*(Z))) corresponds to the diagonal matrix

diag(' e *O-p“l(:ro)<f)‘ U:z'o(f)* Utp(ro)(f)v T )

for all f € C.(Z,C(X)). The integrated represcutation 7g x A is continuous on
C(X) %o Z and |[diag(-- -, Ay, Ag, A1, -+ )|| = sup,ez{||Aj]|} where Ay is a bounded
operator in B(¢<(Z)), k € Z.

The *-algebra C.(Z, C(X)) is dense in C(X) x, Z, therefore,

(7??1 X A)(f) - ( O Hag)s Tugs Oplag)s * 7 )(f)

for all f € C(X) %o Z. Because Ker(a,,) = Ker(oyi(q,). for any j € Z, we have

Ker(o,,) = Ker(mg x A) = Co(X \ Y) %, Z. O

Corollary 2.2.2. If two points, say xy and xy, have the same closure of orbits, then
the concrete algebras in the corresponding representations are isomorphic. Moreover,

there exists a x-isomorphism that maps H,, to H,, .

Proof. For any two points xy and a7 in X, if the closures of their orbits under ¢ are
the same, denote them by Y. By Theorem 2.2.1, we have that o,,(C(X) %, Z) =
CY) X Z = o, (C(X) XN Z).

For any & € X, o, is the integrated representation induced by the covariant representa-
tion (fi,. A), aud it is continuous. Define a bounded lincar map U : o, (C(X) x4 Z) —
0., (C{X) %, Z) such that V(o (u)) = o, (u), denote by Ay the elements o, (u)
and o, (u), where « is unitary and satisfies ufu* = «ff) for all f € C(X), and
for f = Sen fult® € ClZaC(X)), Ga(f) = Suez fia(fu) A, we have (o, (f)) —
Sonez fay (fu)Ay = o, (f). This implies that U : 0., (C(Z, C(X))) = 0, (C(Z,C(X)))
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is bijective. We know that fi,,(f) € B(¢*(Z)) corrcsponds to the matrix:

M, =

We claim that U : 0,,(C(X) X, Z) = 0,,(C(X) X4 Z) is a *-isomorphisi.

Writing another g = 3,,c7 gmu”™ € C(Z.C(X)), we have

fa=3"3" fuan(gm)u™™ € C(Z,C(X)),

nEZ med
and
V(o2 (f)oae(9) = $lowy(f9)) = 02, (f9) = 00, (f)ae(g) = Wlow,(f))¥(0w(9))-

(2.2.4)

Moverover, we have

U(a, (f)7) = WO AL (f)") = D2 AW (fiay ()" = Wl (/)" (2.2.5)

nez nez

Because of the continuity of and ¥ and o, for any x € X, the (2.2.4) and (2.2.5)
hold for all f € C(X) x4 Z. Hence, ¥ @ 0, (C(X) Mq Z) — 0, (C(X) Xa Z) is a
x-isomorphism and W(H,,) = H,,. O

The following theorem can be found in e.g. (2, page 31].

Theorem 2.2.3 (Spectral Permanence Theorem). Suppose A is a unital C*-algebra
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and B C A is a sub-C*-algebra containing the identity of A. Then for all x € B,

spg(x) = sp,(r).

Remark 2.2.4. The Spectrum Permanence Theorem 2.2.3 is equivalent to the state-

ment that, for any r € A, x is invertible in B if and only if it is invertible in A.

Proposition 2.2.5. Let A and B be unital C*-algebras, and let ¢ : A — B be a unital
x-homomorphism. Then sp(p(a)) C sp(a) for all a € A, and sp(p(a)) = sp(a) for all

a € A if ¢ is injective.

Proof. Since ¢ : A — B is a unital *-homomorphism, ¢(A) C B is a sub-C*-algebra
containing the identity element in 3. By Spectral Permanence Theorem 2.2.3, we
know that spy(x) = sp, () for all x € p(A).

Let « € A and let A € spy(w(a)), i.e., deg — p(a) is not invertible in B. We clain
that Aea — « is not invertible. Suppose Aey — a is invertible, i.e., there exists an
clement b € A such that (Aeq — a)b = b(hey — a) = ey, since pleq) = ep, we have
that (Aep — w(a))p(b) = (b)(Aey — w(a)) = ep, which implies that Aeg — @(a) is

invertible in 3, and we obtain a contradiction. Thus

spp(p(a)) S spala)

for all @ € A.

If ¢ is injective, there is a x-isomorphism v : p(A) — A satisfying ¢(p(a)) = a for
all a € A, according to the above result, we know that sp 4 (v¥(p(a))) C spa(w(a))
for any p(a) € ¢(A), which implies that sp(a) C spy(wla)), hence spy(p(a)) =
sp4la). d
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Corollary 2.2.6. If two points have the same closure of orbits, then the spectra of

the two Schédinger operators are the same tn the corresponding representations.

Proof. A Schrédinger operator H, can be identified with the element u + u* + f €
C(X) X4 Z via the representation o, corresponding to the point z € X. For any two

points zg and z; in X, we know that

ey =@+ + f) and H,, = &y (@ 4" + f):

By Corollary 2.2.2, there is an isomorphism

U : 0y, (C(X) %o Z) = 05, (C(X) X Z)

such that W(H,,) = H;,, by Proposition 2.2.5, we know that sp(H,,) = sp(H,). O

In Definition 2.2.7, Theorem 2.2.8 and Theorem 2.2.9, we denote the topological
system (X, ¢) by 2, where X is a compact Hausdorff space and ¢ is a homeomorphism
of X onto itself, and we denote the crossed product C(X) x, Z by A(X), where a is

the automorphism induced by ¢.

Definition 2.2.7. For ¥ = (X, ), a point x € X is called aperiodic if, for every
nonzero n € Z, we have ¢™(x) # x. The system ¥ is called topologically free if the

set of its aperiodic points is dense in X.

Theorem 2.2.8 ([29, Theorem 5.4]). For £ = (X, ) the following three properties

are equivalent:
(1) X is topologically free;

(2) For any ideal I of A(X), INC(X) # {0} if and only if I # {0};
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(3) C(X) is a mazimal abelian sub-C*-algebra of A(L).

For a C*-dynamical system (A, G, &) with G is discrete, we say A separates the ideals
in the reduced crossed product A X, G if the map I — I N A, from the ideals in
A X, G into the invariant ideals in A, is injective.

The condition (2) in Theorem 2.2.8 implies % is topologically free. However, topologi-

cal freeness is not sufficient to ensure the separation of ideals (see e.g. [24, Page 238]).

Theorem 2.2.9. For ¥ = (X, p), suppose that C(X) separates the ideals in C(X) Xq
Z. Then proper nonempty closed invariant subsets correspond to nonzero proper ideals

of C(X) X4 Z.

Proof. Let Y be a proper closed invariant subset of X. By Corollary 2.1.8, we know
that Co(X \ Y) generates a proper ideal Co(X \ V) x4 Z of C(X) x4 Z.

Let I be a proper closed ideal of C(X) X, Z. Since C(X) separates the ideals in
C(X) %q Z, it follows that I N C(X) # {0}. It is not difficult to see that I N C(X)
is a closed ideal of C(X) that is invariant under « and its inverse. It is proper
since I N C(X) = C(X) would imply that I = C(X) x, Z. By (iii) on page 4,
there exists some proper nonempty closed subset Y; of X such that I N C(X) =
{feCX)| fl) =0,Vz € Yi} = Co(X \ Y). It also follows that Y; is invariant
under ¢ and its inverse, since I N C(X) is invariant under a and its inverse. Since
(Co(X \ YD) X Z) N C(X) = Co(X \ Y1) and C(X) separates the ideas, we conclude
I =0Co(X \ V1) %o & O

2.3 Some special kinds of systems

In this section, the results above are applied to three kinds of topological systems:

minimal systems, almost minimal systems and essentially minimal systems.

34



2.3.1 Minimal system

Definition 2.3.1. A C*-algebra A is called simple if the only ideals in A are the two
trivial ideals O and A. A topological dynamical system (X, ) is called minimal if the

orbit of every point is dense in X,

The following result. sce [8. Theorcin VIIL3.9], shows the relationship between the
minimality of the topological svstem and the simplicity of the crossed product, which

is also proved in [29. Theorem 5.3].

Theorem 2.3.2. Let (X. @) be a dynamical system on an infinite compact Hausdorff

space X. Then. the crossed product C(X) Xq Z is simple if and only if ¢ is minimal.

If the topological svstem (X. ) is minimal. then the spectrum of Schrodinger operator
H, = o,(u+ u*+ f) is the same for all # € X by Corollary 2.2.6. For any v € X,
the closure of the orbit is thie whole X, so Theorem 2.2.1 implies that the integrated
representation o, of C'(X) x4 Z on the Hilbert space (3(Z) is faithful. According to

Proposition 2.2.5. we obtain that sp(H,)) = sp(u 4+ u* + f) for any r € X.

2.3.2 Almost minimal system

Definition 2.3.3. We say that (X, ) is alimost minimal if it satisfics the following

conditions:
(i) there is a fired point and
(ii) the orbit of any other point is dense.

For an almost minimal system (X, @), say 27 is the fixed poiut in X. There are only
two nonempty closed -invariant subsets, {14} and X. We know that o, (C(X) x,Z)

is isomorphic to C'({rg}) Xa Z. which is the group C*-algebra of Z. In this case. we




have

Oep(ut+ "+ f) =M + A+ flro) - idpeezy),

so the spectrum of H, is a shift of the spectrum of A; +A_;. Because the closures of

Ly
their orbits are the whole X, so the integrated representation o, for @ € X \ {20} is
faithful, by Proposition 2.2.5, the spectra of the Schrodinger operators H, = o,(u +

u* + f) for any point z € X \ {xy} are the same as the spectrum of (u+ u* + f).

2.3.3 Essentially minimal system

Definition 2.3.4. A set Z in X is minimal if it is minimal among closed, p-invariant,

nonempty sets.

Proposition 2.3.5. The closure of the orbit of a point v is a nonempty w-invariant

closed subset of X.

Proof. Consider

Clearly, Y is nonempty and closed. To show ¢(Y) =Y, we need to show p(Y) C Y
and Y C p(Y).

For any point y € ¥ = W there are two cases: if there is n € Z such that
y = "(x), then ¢(y) = " H(a) € Y if y # ¢"(x) for any n € Z, there is a sequence

{t.}n>1 € Z such that ¢'*(z) — y as n — oc. Since ¢ is a homeomorphism of X,

then "1 (a) — @(y). Since Y is closed, ¢(y) € Y. We have proved ¢(Y) C Y.
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Similarly, we obtain @ H(Y) C Y, cquivalently, Y C o(Y). Thus, ¢(Y) =Y. O

Denote W (x) and W™ (2) the sets of accumulation points of the sequences {¢" () |

n >0} and {p"(x) | n < 0}, respectively.

Theorem 2.3.6 ([13, Theorem 1.1]). Let (X, ) be a topological system and let y be

any point of X. Then the following are equivalent.
(i) For every point x in X, y is in W7 (x).
(ii) For every point w in X, y is in W~ (x).

(iii) For every neighborhood U of vy,

UHEZ @II(U) = X.

(iv) X contains a unique minimal set Y and y € Y.

Definition 2.3.7 ([13]). We say that (X, ¢, y) is essentially minimal #f it satisfies the
conditions above. We also say that (X, ) is essentially minimal if it has a unique

minimal sct.

Obviously, an almost minimal systemn is an essentially minimal system, with Y = {2g}.

Remark 2.3.8. By Proposition 2.3.5, we know that Orb,(y) is a closed. p-invariant
set. Since Orb,(y) C Y, we obtain, by the minimality of Y. that Y = Orb,(y).
By the equivalent conditions in Theorem 2.3.6, one has that

(a) For any point x inY . Orb,(x) =Y, since (iv);

(b) for a point xin X \Y.Y C Orb,(x). since (i).
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Suppose that Y is the unique minimal set in X. For any x € Y, we obtain that

sp(oz(u + u* + f)) = sp(u + v* + fly). There may be many different closures of
the orbits of points in X \ Y, so it is more complicated to classify the spectra of

Schrodinger operators on an essentially minimal system.
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Chapter 3

The method to label gaps in the

spectrum of Schrodinger operators

3.1 The Ky-group of a C*-algebra

First, we will review the basic definitions and properties of Ky-group of a C*-algebra.

Definition 3.1.1 (Homotopy). Let X be a topological space. Two points a,b in X

are homotopic in X, denoted by a ~, b in X, if there is a continuous function
001 - X

such that

v(0) =g and v(1) = b.
The relation ~y, is an equivalence relation on X. The continuous function v is called

a continuous path from a to b.

Denote by P(A) the set of all projections in a C*-algebra A and, if 4 is unital, denote

by U(A) the group of unitary clements in A. We have the homotopy equivalence
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relation ~;, on P(A) and U(A).

Consider the following equivalence relations on P(A) (see e.g. [22, Page 21]):

- p o~ ¢ is there exists v in A with p = v*v and ¢ = vv* (Murray-von Neumann

equivalence),

- p ~y ¢ if there exists a unitary element w in U(A) with ¢ = upu™* (unitary equiva-

lence)

The relationship between these equivalence relations are shown in the following Propo-

sitions.

Proposition 3.1.2 ([22, Proposition 2.2.2))). Let p,q be projections in a unital C*-

algebra A. Then following consitions are equivalent:
(i) p~u.q.

(ii) ¢ = upu* for some unitary u in A.

(iii) p~qandes—pr~es—q.

Proposition 3.1.3 (]22, Proposition 2.2.7})). Let p,q be projections in a C"-algebra
A.

(1) If p ~n q. then p ~, q.
(ii) Ifp ~. ¢, them p ~ q.

For the partial ordering of projections of a C*-algebra, recall that for projections P
and @ in an abstract algebra A, P < Q) if PQ = QP = P. If A is a sub-C*-algebra
of B(H) then P < ¢ if and only if P(H) C Q(H).
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3.1.1 DMatrix algebras

Denote by M,,»(A) the set of all rectangular m x n matrices:

with entries a;; € A, i = 1,2,.-.

by M,(A) the set M, ,(A). Equip M,(A) with the usual entry-wise vector space

Gm1

G2 a1n
Q22 Q2n
Am2 Amn
St @uigl g = 0,20 - @

operations and matrix multiplication. Also, set

a1

a21

anl

a12

22

Qm2

Q1n

a2n

amn

* * *
2 % 7 Y
* * *
9. % T D
* * *
a’ln a2n amn

In particular, denote

In order to define a C*-norm on M,(A), by Theorem 1.2.5, we can choose a Hilbert

space H and an isometric *-homomorphism ¢ ;: A — B(H). Let ¢, : M,(A) — B(H")

be given by
a1
an
©Pn
an1

Q12

22

Gn2

Q1n

Qon

an'n.

3]
€2

€n

p(a1)ér + -+ - + ¢(a1n)én
p(a21)é1 + -+ + @(azgn)én

\‘P(anl)él 66 8+l )6

7EJEH

Define a norm on M,(A) by |la]| = |l¢.(a)|| for a in M,(A). With these operations,

M,(A) becomes C*-algebra, the norm is independent of the choice of isometric
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*-homomorphism . We shall use the abbreviation

a 0 0
. 0 (15 0
dlag(al’ Az, »an) =
\0 0 -E. an)
for a diagonal matriz, where ay,as,--- ,a, are in A.

3.1.2 Semigroups of projections

Definition 3.1.4 (The semigroup Py(A)). Put

where A is a C*-algebra and n is a positive integer. We view the sets Pp(A) for all

n € Z as being pairwise disjoint.

Define the relation ~¢ on Po(A) as follows: suppose that p is a projection in P,(A)

and ¢ is a projection in P,,(A). Then p ~q q if there is an element v in M, ,(A) with

p="v andg = uo*.

Note that the equivalence relation is the Murray-von Neumann equivalence in Py (A).

Remark 3.1.5. Define a binary operation & on P (A) by

p®q=diag(p,q) =

so that p @ q belongs to Ppym(A) when p is in P,(A) and q is in P,(A).
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Proposition 3.1.6 ([22, Proposition 2.3.2]). Let p, q. v, p' ¢ be projections in

PolA) for some C*-algebra A.

(i) p ~o p &0, for every natural number n, where 0, is the zero element of M,(A),
(i) if p~op and g ~o ' then p® g~y p B,

(iii) pog@r=p&(qdr),

(iv) p®&q~oqDp.

Definition 3.1.7 (The semigroup D(A)). With (Po(A), ~¢, D) as in the definition
3.1.4, set
D(A) = Poo(A)/ ~0 -

For each p in Py (A). let [plp in A denote the equivalence class containing p. Define
addition on D(A) by

plo+ldp=®dp. p. g€ Px(A).

It follows from Proposition 3.1.6 that this operation is well-defined and the (D(A), +)

is an abelian semigroup.

3.1.3 The Grothendieck group of a commutative semigroup

Definition 3.1.8. Let (S, +) be an abelian semigroup. Define an equivalence relation

~on S xS by (ry.y) ~ (x9,y2) if there exists z in S such that

1+ Yo +2=ax0+ Y + 2.
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Denote G(S) the quotient S x S/ ~, and let (x,y) denote the equivalence class in

G(S) containing (v,y) in S x S. The operation

(o) + (@2, 42) = (01 + T2, 41 + Y2)

is well-defined and turns (G(S),+) into an abelian group. The group G(S) is called

the Grothendieck group of S.

Given y € S, define vs : S — G(S) by

vs(x) = (T +y.y).

This map does not depend ony and it is called the Grothendieck map from S to G(S).

Remark 3.1.9. Note that —(r.y) = (y,x) and that (z,2) =0 for all x, y in S.

3.1.4 The functor K, for unital C*-algebras

Definition 3.1.10 (The I{y-group for a unital C*-algebra). Let A be a unital C*-
algebra, and let (D(A).+) be the abelian semnigroup from Definition 3.1.7. Define

Ko(A) to be the Grothendieck group of D(A), i.e,

Define [+ : Poo(A) = Ko(A) by

plo = v([plp) € Ko(A), p € Pxo(A),

where v : D(A) — Ky(A) is the Grothendieck map.
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Proposition 3.1.11 ([22, Proposition 3.1.7]). Let A be a unital C*-algebra. Then

Ko(A) = A{lplo—Ido:p. q € Pxe(A)}

= {[plo —ldlo:p, g€ Pu(A), n € N}. (3.1.1)

Proposition 3.1.12 ([22, Proposition 3.1.8]). Let A be a unital C*-algebra, let G be

an abelian group, and suppose that v : Ps(A) = G is a map that satisfies

(i) v(p @ q) = v(p) + v(q)for all projections p. q € Ps(A),

(ii) v(04) =0,

(iii) if p. q belong to P, (A) for some n and p ~y q in P,(A), then v(p) = v(q).

Then there is a unique group homomorphism o Ko(A) — G which makes the diagram

Poo(A)
(o <
Kgl(/l) \ G.

commutative.

Let A and B be unital C*-algebras, and let ¢ : A — B be a s-homomorphisni.
Associate to ¢ a group homomorphism Ky(p) @ Ko(A) — Ky(B) as follows. The *-
homomorphism ¢ extends to a *-homomorphism o : M, (A) — AL, (B) for cach n. A
x-homomorphisim maps projections to projections, and so ¢ maps Py (4) to Py (B).
Define v : P (A) — Ko(B) by v(p) = [@(p)lo for p in Pyx(A). Then v satisfies
conditions (i), (ii), and (iii) in Proposition 3.1.12, and v therefore factors uniquely

through a group homomorphism ¢, : Ko(A) — Ko(3) given by

v« ([plo) = [p(D)]o, P € Px(A),
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and commonly denoted by Ky(p). In other words, we have a commutative diagram:

Poc(A) : Poo(B) -

[‘lol l[']o

Ny(A) Ko(B)

Kolg)

Definition 3.1.13 (Traces and K;). Let A be a C*-algebra. A bounded trace on A

is a bounded positive linear map 7 : A — C with the trace property:

7(ab) = 7(ba). a.be€ A. (3.1.2)

For every trace 7 on a C*-algebra A there is precisely one trace 7, on A, (A) that

satisfies 7, (diag(a,0.--+ ,0)) = 7(a) for all a in A. Explicitly, 7, is given by

apy Qo o Qup
Az Qa2 Aoy, n
Tn = T((l“)
i=1
Un1 Upo Unn

A trace 7 on a C*-algebra A induces a function 7 : P(A) — C, and this function
satisfles conditions (i), (ii), and (iii) in Proposition 3.1.12, and so there is a unique
group homomorphism

Ko(1) : Ko(A) —» C

satisfying

Ko(7)([plo) = 7(p). € PaclA). (3.1.3)
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3.1.5 The ordered abelian group Kj(A)

Definition 3.1.14. A pair (G,G7) is called an ordered abelian group if G is an

abelian group, G is a subset of G, and

i) Gt + G C G ) G n(=GT) ={0}, (i) GT -Gt =G, (3.1.4)

Define a relation < on G by x <y if y — x belongs to GT.

Conditions (i) and (ii) in (3.1.4) imply that (G, <) is a (partially) ordered set. The

set G is called the positive cone of G. The negative cone is G~ := —G™.

Definition 3.1.15. For a C*-algebra A, the positive cone of Ky(A) is

Ko(A)" ={[plo:p € P A)} C Ko(A).

Remark 3.1.16. For two projections P and Q) in C*-algebra A, if P < @, then
[Ply < [Qlo.

Definition 3.1.17. A projection p in a C*-algebra A is said to be infinite if it is
equivalent to a proper subprojection of itself, i.e.. if there is a projection q in A such
that p ~ q < p. If p is not infinite, then p is said to be finite.

A wunital C*-algebra is said to be finite if its unit e s is a finite projection. Otherwise
A s called infinite. If M, (A) is finite for all positive integers n, then A is stabely
finite.

If Ais a C*-algebra without a unit, then A is called finite/stably finite/infinite if its

unitization A is finite/stably finite/infinite.
Proposition 3.1.18 (][22, Propositiou 5.1.5]). Let A be a unital C*-algebra.
(l) ]\’()(A)+ + ]\’0(/‘1)-*_ g [(0<‘4)+.
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(ii) Ko(A)* — Ko(A)* = Ko(A).
(iii) if A is stably finite, then Ko(A)T N (—Ky(A)T) = {0}.

Thus,if A is unital and stably finite, then (Ko(A), Ko(A)1) is an ordered abelian group.

3.2 Continuous function calculus

The following fundamental results can be found in e.g. {23, Theorem 18.6].

Theorem 3.2.1. Let A be a unital compler Banach algebra. For every a € A, its

spectrum, sp(a), is compact and not empty.

Theorem 3.2.2 (Continuous Function Calculus). Let A be a unital C*-algebra. To

each normal element a € A, there is one and only one isometic *-isomorphism

C(sp(a)) — C*(a,1) C A,

f = fla), (3.2.1)

which maps ¢ to a, where ¢ in C(sp(a)) is given by 1(z) = z for all z € sp(a).

The unique *-isomorphism in Continuous Function Calculus Theorem 3.2.2 is called
Galfand-Naimark map.

It follows that the spectrum of a self-adjoint element (for example, the Schrédinger
operator) is contained in R.

A gap of the spectrum of a self-adjoint element H is a connected component of R\

sp(H). For any point £ € R\ sp(H), i.e, if F lies in a gap g of the spectrum, there
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is one corresponding projection x(_ac,5) € C(sp(H)) with the form

1, ifwe(—oo, E]Nsp(H); v
X(—oe,m) (L) = (3.2.2)
0, ifae (£, +o0)Nsp(H).

Obscerve that the projection x (-, g)(H) is independent of the value of E € g.

By Theorem 3.2.2, there is one and only one *-isomorphism :

C(sp(H)) — C*(H,1)C A,

foe ).
The *-isonmorphisin @ gives a bijection between the projections of these C*-algebras:
P(C(sp(H))) = P(C*(H,1)) C P(A).
Then, for any x(—s.g € P(C(sp(H))). we have that
N(onot] 7 X(ono ) (H) € P(A) C P (A) B Ky(A),

where [ ]y is the map as in Definition 3.1.10.
Therefore,

[X(—oo,)(H )]0 € Ko(A).

We say that [ € C(X) is positive, which is denoted by f > 0, if f(z) > 0 for all
re X,aud [ > gif f(x) > g(z) for all 2z € X (This agrees with the general definition
of positive elements in a C*-algebra — see Definition 1.1.6). For any two points in R,
say 7 and F5, suppose that E; > FE,, then there are two corresponding projections

X(=oc,721) AN X (wno 1) defined as (3.2.2) in P(C(sp(H))). Clearly. x(—x 2] 2 X(—sc,E]
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and X (oo — X(—oc,22) 15 also a projection, so the set {x(—w.p) | £ isina gap} is
totally ordered and then {x(_w g(H) | E isinagap} is totally ordered in P(A).

Hence, {[x(—oc,x)(H)]o | E isina gap} is a totally ordered set in the positive cone

Ko(A)*, which implics that every element in the totally ordered set {X[X(_va](n)]U I

E'isin a gap} corresponds to a gap in the spectruim of H, so we can use [X (-0, (H)]o

to label the gap containing E.

3.3 The trace induced by special kind of measures

Even though the set {x(y __ s | £isinagap} C Ko(A)T can be used to label the
gaps in the spectrum of A, in general, the group Ky(A) itself is not easy to calculate.
In the following, we will exhibit a concrete way to label gaps in the spectruni.

Recall that (X. @) determines a C*-dyuamical system (C(X), Z. o), where a,,(f) 1=
foe™. In the following, we consider the minimal system (X, ¢). Here we will exhibit
some properties of thie associated crossed product C(X) x, Z, which is stably finite.
A finite Borel measure p on X is translation invariant for ¢ if u(¢@='(E)) = u(E) for

cvery Borel subset of X.

Theorem 3.3.1 ([8, Proposition VIII.3.1]). Let (X, ) be a classical dynamical sys-

tem. Then there is a Borel probability measure on X which is translation invariant

Jor .

A translation invariant probability measure g is said to be ergodic it whenever E is a

translation invariant measurable set, then p(E) =0 or p(£) = 1.

Proposition 3.3.2 ([8, Proposition VII1.3.2]). Every dynamical system (X, ) has

an ergodic measure.

Frow [11, Page 321], we have that any ergodic probability measure ¢ on X induces a
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trace 7, on the algebra C.(Z, C(X)):

n(f) = [ du@)FO0)w), f € CZ.C(X)). (3.1

Then 7, extends as a trace on the crossed product C(X) x, Z, and then 7, induces

a homomorphism Ko(7,). by (3.1.3), from Ko(C(X) x4 Z) to the real line:
Ko(m)([Pilo = [Palo) = 7u(P1) = 7,(Pa).

where P and Py are projections in M, (C(X) x, Z). In other words, we have a
commutative diagram:

Poc(C(X) x4 Z)

[']ol G

RKo(C(X) %, Z) R.

1\"()(T}1)
Since 7, is bounded, positive and linear, if P € P (C(X) x4 Z) is positive, 7,(P) =

Ko(1,)([Ply) € [0.1]. Then the set

{[\yO(T/L)([X(*xJ‘J](H)}(J) = T;L(X(—OO,E]) € [O, 1] ’ Eisa gap},

which is totally ordered, can be used to label gaps in the spectrum of H.

3.4 The K;-group and calculation of the Gap-Labels

There is a usetul tool for computing the Ky-group of the crossed products. We will

need to define the Ky-group of a C*-algebra A.



Definition 3.4.1. Let A be a unital C*-algebra. Set

Define a binary operation & on U, (A) by

u 0
uPv= € Upim(A), u € Up(A), u € Uy,(A).

0 v

Define a relation ~1 on U (A) as follows: for u € U,(A), u € Un(A), write u ~q v

if there ezists a natural number k > max{m,n} such that

UD lpr ~p VD Ly

inu € U(A), where 1, is the unit in M,(A).

Lemma 3.4.2 ([22, Lemma 8.1.2]). Let A be a unital C*-algebra.

(i) ~1 is an equivalence relation on Us(A),

(i) u~ u® 1, for allu € Ux(A) and n € N,

(iil) uBv ~ v @B u for all u,v € Us(A),

(iv) if u,v, v,V € Un(A), u ~1 ¥/, and v ~ V', thenu Qv ~ U/ BV,
(V) if u,v € Ux(A) for some n, then uv ~ vu ~ u @ v,

(vi) (udv)dw=ud® (vPw) for all u,v,w € U(A).

Definition 3.4.3 (The Kj-group for a unital C*-algebra). For a unital C*-algebra A
define
K1(A) = Uo(A)) ~1.
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Let u]; in K|(A) denote the equivalence class containing u in U(A). Denote a

binary operation + on K (A) by
[uly + [vh = [u® ],

where w, v belong to Us(A). Lemma 3.4.2 shows that + is well-defined, commutative,

associative, has zero element [1],, and that
0=[1,] = [uu"]; = [u; + [«"],

for eachwinU,(A). This shows that (K1(A),+) is an abelian group, and —[u], = [u*],
for all u in U (A).

As in the case of Iy, a homomorphism ¢ from A to B induces a homomorphism
v. = Ni(p) of I1(A) into K1(B). This makes A, a covariant functor from the
category of C*-algebras into the category of abelian groups. We have the Pimsner-

Voiculescu sequence for a C*-algebra A and its crossed product with Z.

Theorem 3.4.4 ([8, Theoremy VIIL5.1]). Suppose that « is an automorphism of a

C*-algebra A. Then there is a cyclic six term exact sequence

Ky(A) = Ro(A x, Z) Ky (A)

id*(x,.T lid,a,

[\’()<A X Z) [\’1(14 X, Z) ]\’](A)

Lax

Lemma 3.4.5 ([11, Leruma 7]). Let X be a compact, metrizable, totally disconnected

topological space. Then

Ko(C(X)) 2 C(X.Z), K\(C(X))=0.
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Remark 3.4.6. The positive cone of abelian group Ko(C(X)) is C(X,Z)* = {f €
C(X,Z) | f = 0}.

Application of the Pimsner-Voiculescu sequence yields:

C(X,Z) P Ko(C(X) %q Z) 0
id_a-T
C(X,Z) K (C(X) xg Z) ~———0

ind

Proposition 3.4.7 ([11, Proposition 1|). Let X be as in Lemma 8.4.5 and a(f) =
fog™. Then,
Ko(C(X) %a Z) 2 C(X,Z){f ~ fop™'}, (3.4.1)

and

K\(C(X) %aZ) = {f €C(X,Z): f = foyp™'}. (3.4.2)

Therefore, the totally ordered set {[X(-c0,z)(H)]o | F isin a gap} is in the abelian
semigroup C(X,Z)*/{f— foy ™'} and can be applied to label the possible gaps in the
spectrum of the discrete Schrodinger operator with the form (0.0.1). Theoretically, by
the existence of ergodic measure u of a classical dynamical system, we can produce
the trace 7, on C(X) X, Z and the induced homomorphism Ky(7,) of the group
Ko(C(X) %o Z), then the totally ordered set Ko(7,)({[X(—co,z)(H)]o | E is in a gap})N
[0,1] in the set Ko(7,)(Ko(C(X) x4 Z)) gives a labeling of the spectrum of H.

3.5 Labeling on the gaps of a Cantor set

In general, the set { Ko(7,)([X(=o0,2)(H)]o) = Tu(X(~c0,5)) € [0,1] | E is a gap} we use
to label gaps in the spectrum of H is difficult to compute. In the following, let us

look at some examples of Schrédinger operators of the form (0.0.1) in one dimension
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that have been designed leading to a Cantor spectrum.
An example of a one-dimensional discrete Schrodinger operator is the Almost Mathieu

operator on #2(Z), in which the potential given by

V(n) = 2Acos(2m(an + w))y(n),

where a,w € T = R/(27Z), A > 0. By [19], for irrational ¢, it is known that the
spectrum of H,, » is a Cantor set of the real line.
It is shown in [7] that one dimensional Schédinger operator on ¢2(Z) with potential
given by

V(n) = Mgoan(@ +n0), o ¢Q

has a Cantor spectrum of zero Lebesgue measure for any irrational a and any A > 0.
Moreover, as shown in [25], the spectrum of the discrete Schédinger operator with the

potential given by

V(n) = #‘X[—w:’,wz[((n = l)w)1

where w = (v/5 — 1)/2 and x; is the characteristic function of the interval I, is also a

Cantor set for |u| > 4.
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