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Abstract 

The purpose of this thesis is to explore the spect ra of discrete Schroclinger operators of 

a special form. \Ne consider the specifi way to ident ify the Schrod inger operator Hx0 

in our model wi th an element in the crossed product C(X ) ><l 0 Z which is generated 

by t he commutative unital C* -algebra C(X ) and countable discrete group Z via the 

action a with respect to the universal norm. We show t hat t he crossed product 

C(Y) ><l 0 Z, where Y = Orbr.p (x0 ), is i omorphic to the concrete algebra O"x0 (C(X ) ><l 0 Z) , 

where O"x
0 

is an integra ted representa t ion of C(X ) ><l 0 Z induced by point evaluation 

fLx0 . As a orollary, we conclude that the pectra of the Schrodinger operators Hx0 

and Hx, are t he ·a me 'vvhen the closures of the orbits of t he two points x0 , x1 E X are 

the same, and apply this resul t to ome special kinds of systems. Aft r considering the 

classification of the ·pectra of eli crete chrodinger operators , we give some examples 

to show the calctdation of t he spectrum by using K- theory. 
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Introduction 

The Schrodinger equation was proposed by physicist Erwin Schrodinger in 1926. 

T here are two types of Schrodinger equations, t ime-dependent and time-independent. 

T he t ime-independent Schrodinger equation is used when dealing with stationary 

states, i.e., the states that do not change over t ime, so the wavefunction is a func­

tion of position. In t he t ime-dependent Schrodinger equation , the wavefunction is a 

function of posit ion and t ime. 

\!Ve have that Kinetic Energy (T) + Potent ial Energy (V)=Total Energy (E) from 

classical mechanics. T he Schrodinger equation uses this fundamental principle in 

terms of its wavefunction: 

where 1/Jn is the wavefunction, fi is the Hamiltonian operator , and En is the nth energy 

eigenvalue corresponding to 1/Jn (solut ions exist for t he t ime-independent Schrodinger 

equation only for certain values of energy) . In the t ime-independent Schrodinger 

equation , the Hamiltonian operator is equivalent to the total energy operator. 

In t his thesis , we consider the one-dimensional discrete Schrodinger operator H = Hxo 

of the form 

( H xo 1/J ) ( n) = 1/J ( n + 1) + 1/J ( n - 1 ) + V ( n ) 1/J ( n) , (0.0.1 ) 
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on €2 (/£), where the potential v : 1£ -1 JR. is given by 

with the point .1::0 in a compact metric space X , <p a homeomorphism of X onto itself 

and f a continuous function from X to JR.. 

The operator Hi. a self-adjoint bounded operator on €2 (/£), and hence its spectrum 

is a non-empty compact set in the real line. 

In t he first chapter , t he basic definitions of *-algebras, normcd algebras, Banach 

algebras and C* -a lgebras are reviewed ; the equivalence of a topological system (X, <p) 

and a dynamical system (C( X ), a) is shown (see e.g. [29]), where C(X) is the C*­

algebra of all cont inuous complex-valued functions on X and a i an automorphism 

of C(X) of the form (1.2.1). Moreover, given a single automorphi m a in Aut (C(X )), 

we know it gives rise to an action of the group 1£ on C( X ) (sec Definition 1.3.7) by 

an := a 11
. In the fo llowing sections, we also denote by a this action of 1£ induced 

by a single a utomorphism a . In thi way, hence, we form a C*-dynamical system 

(C( X ), 1£, a) (see Definition 1.3.10) and then obtain t he crossed product C(X) ><Ia 1£ 

(see e.g. Theorem 1.4.1 , [24], [30]) . Considering the map ax0 = 11-xo ><1 A, which 

is the representation (see Definit ion 1.3.13 and Equation (1.4.1)) of C( X ) ><~rp 1£ on 

the Hilbert ·pace €2 (/£) corresponding to the covariant repre entation (ilxo , A) (see 

Defini t ion 1.3.16 and Equations (1.4.3)) induced by a representation 11-xo of C(X ) on 

C, we will ident ify the Schrodinger operator Hxo of t he form (0.0.1 ) with the image 

of an element in the crossed product C(X) ><Ia 1£ under the representation axo· 

In t he second chapter , the properties of short xact sequences of C* -algebras are pre­

sented and then used to show (see Theorem 2.2.1 ) that ax0 (C( X) ><laZ) is isomorphic 

to C(X) ><1 0 1£ where Y = Orb'P (x0 ), and 0Tbrp (x0 ) is the orbit of the point x0 in X 
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under rp . As a consequence, the spectrum of the Schrodinger operator Hxo of the 

form (0.0.1) is determined by Y (see Corollary 2.2 .6). Moreover , this result is applied 

to three kinds of dynamical systems: minimal systems, almost minimal systems and 

essent ially minimal systems. 

It is important to label gaps in the spectrum of the Schrodinger operator Hx0 of the 

form (0.0.1 ), where a gap means a connected component in the s t lR \ sp(Hx0 ) . In the 

last chapter , we review K 0-groups, K 1-groups and the Pimsner-Voiculescu sequence 

of a C*-algebra , which is the main tool to label gaps in the spectrum (see e.g. [3], [4], 

[6],[9], [10], [11], [13]. [17], [20], [21]) . In the end , some special Schrodinger operators 

whose spectra are Cantor sets will be given as examples for the calculation of the 

spectrum (sec e.g. [5], [6], [7], [25]) . 
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Chapter 1 

Realization of the Schrodinger 

operators in crossed products 

1.1 Prelim inaries to C*-algebras 

In t his part, we will review the definition of different kinds of a lgebras and the 

spectrum of a n clement in a C* -a lgebra . 

D efinition 1.1.1. An algebra (over C) is a vector space A endowed with a pmduct 

A x A ~ A, (a , b) Nab such that 

(i) a(bc) = (ab)c for all a, b, c E A (associativity), 

(ii) a(b +c) = ob ac and (b + c)a = ba + ca for all a. b, c E A (distributivity), 

(iii) (oa)( j3b) = (o j3 )(ab) for all a, (3 E C and a, bE A 

(compatibility with scalar multiplication) . 

D efinition 1.1.2. (a) A *-algebra is an algebra A provided with a map* : A~ A , 

aN a* such that, for all a . b E A and a E C, 
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(i) (a+b)*=a*+b* , 

(ii) (cw)* = aa*, 

(iii) (ab)* = b*a*, 

(iv) (a*)* =a. 

The mapping a t--t a* is called the involut ion. 

(b) A normed a lgebra is an algebra A with a norm 11 · 11 : A--+ ~+ (with the convention 

that 0 belongs to ~+ ), a t--t lla ll such that llabll ::; llallll bll for all a, bE A . 

(c ) A Banach a lgebra is a normed algebr-a which is complete in its norm. 

(d) A C*-algebra A is a Banach algebr-a which is at the same time a *-algebra such 

that the norm satisfies 

(1.1.1) 

for all a EA. 

An algebra A is unital if it has a multiplicative ident ity, which will be denoted by 

e or eA . It follows from the condi t ion (1. 1.1 ) tha t lle ll = 1 for any nontrivial unital 

C* -algebra. A C* -algebra is said to be separ-able if it contains a countable dense subset. 

A sub-C* -algebr-a of a C* -algebra A is a non-empty closed subset of A which is a 

*-algebra vvith respect to the operat ions given on A. 

Let A be a C* -algebra, and let F be a subset of A. The sub-C* -algebra of A gener-ated 

by F , denoted by C*(F), is the intersection of a ll sub-C*-algebras of A that contain 

F. We write C*(a1 , a 2 . . . , an) instead of C*( {a1 , a 2 . . . , a".}), when a 1 , a 2 , . . . , an EA. 

T heorem 1.1.3 . Let A be a C*-algebra. Then the involution is isometric, i.e. , lla ll = 

II a* II· 
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Proof. By the second and third axioms for C*-algebra A , we know t hat lla*a ll = 

llall 2 
::::; II a* IIIIa II for any element a E A. If II al l = 0, then a = a* = 0, so II a ll = II a* 11. 

If II all > 0, then we obtain II all ::::; II a* II· On the other hand , since (a* )* = a , in the 

similar way, we obtain that II a* II ::::; II all · Thus, II all = II a* II for all a E A. D 

An element a in a C* -algebra A is called 

(i) selj~adjoint if a* = a ; 

(ii) a projection if a = a* = a2
; 

(iii) normal if a*a = aa*; 

(iv) (if A is unital) unitary if a*a = eA = aa* , 

( v) (if A is unital) inver tible if t here is an element b in A such t hat ab = ba = eA . 

If A is a C* -algebra, t hen the unitalization of A is the unique (up to canonical isometric 

*-isomorphism) C* -algebra A with mult iplicative unit which contains A as a closed , 

two-sided ideal of linear codimension one. The algebra A can be constructed as follows 

(see e.g. [22, Page 5]): If A is contained in a uni tal C* -algebra B whose unit e8 does 

not belong to A, t hen A is equal (or isomorphic) to the sub-C*-algebra A + C · ea of 

B . If A has a uni t eA, and if ex is the unit in A, then f =ex - e A is a project ion in 

A, and 

A= {a+ af: a E A, a E C}. 

Definition 1.1.4. If A is any unital C* -algebra, the spectrum of an elem en t a E A 

is the set 

sp (a ) := {A E C I AeA- a is not invertible in A}. 

If A is not unital, then sp( a) is defined to be the spectrum of a in the unitalization A. 

(It follows that if A is non-unital, then 0 E sp(a) f or every a E A ). 
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The spectral radius of a is 

r (a) = sup{ [A[: A E sp (a )}. 

The spectrum sp(a) is a nonempty compact subset of C , and the spectral radius 

satisfies r(a) ~ [[a[[ (see e.g. [16, Lemma 1.2.4]) . 

The following t heorem can be found in [23 , Theorem 18.9]. 

Theorem 1.1.5 (Spectral Radius Formula) . For- ever-y x E A, 

(1.1.2) 

For a norma l element a E A, Equation (1. 1.2) reduces to T(a) = [[ a[[. By (1. 1.1 ), we 

have t hat [[a[[ = ~ = Jr-(a*a), or, equiva lently, 

[[a[[2 = sup{ A E C [ A A- a*a is not invertible in A}. 

This implies that the norm in a C* -a lgebra is uniquely determined by product and 

involution. 

D efinition 1.1.6. An element a in a C* -algebm A is positive if it is n or-mal and 

sp(a) <;;:; JR+ . We wW write a 2:: 0 to indicate that a is positive in this sense. 

The set of posit ive elements in A is denoted by A+. An element a in A is positive if 

a nd only if a = x*x for some x E A (see e.g . [22 , page 6]). 
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1.2 The equivalence of a dynamical system and a 

topological system 

A classical dynamical system consists of a compact Hausdorff space X and a homeo­

morphism cp of X onto itself. 

Note that the Schrodinger operator Hxo of the form (0 .0.1 ) is a bounded self-adjoint 

operator on £2 (/Z) and is determined by the topological system (X , cp, x0 ) . 

Given a topological system (X , cp), consider the C* -algebra C(X ) of all the cont inuous 

complex-valued functions on a compact Hausdorff space X. Define 

(1.2.1) 

Obviously, a E Aut(C(X)) . Let us show, conversely, that a dynamical system 

(C(X ), a), a E Aut(C(X)) , induces a correspond ing topological system (X, cp) such 

that ( 1. 2. 1) holds. 

D efinition 1.2.1. Let A be an algebra over C. A multiplicative linear functional is 

a nonzero linear- functional cp : A ---+ C such that 

cp(xy) = cp(x)cp(y) , 't!x, yEA. 

Multiplicative linear- functionals ar-e also called characters of A. 

D efinition 1.2.2. Let A be a Banach algebra. A left ideal (right ideal) of A is a 

closed linear- subalgebra I s;;; A for which a E I implies that ba E I (ab E I ) fo r all 

b E A. 

An ideal in A is a subspace that is both a left and a right ideal (i.e., a two-sided ideal) . 

If I =1- A , I is a proper- ideal. Maximal ideals ar-e proper ideals which are not contained 
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in any larger proper ideals. 

D efinit ion 1.2 .3. Let <p : A ---+ B be a map between C* -algebras A and B. The map 

<p : A ---+ B is called a *-homomorphism if it is a linear and multiplicative map which 

satisfies <p(a*) = <p(a)* for all a E A; the map <p : A---+ B is called a *-isomorphism if 

it is a *-homomorphism which is bijective; the map <p : A ---+ B is called an isometric 

*-isomorphism if it is a *-isomoTphism which is isometric. 

T heorem 1.2 .4 ([15, Theorem 1.5.15]) . EveTy *-homomorphism <p : A ---+ B of 

C* -algebras is noTm-decreasing, and cp( A ) is always a sub-C* -algebra of B. If <p is 

injective. then it is an isometry. 

By Theorem 1.2.4. we know that the kernel of a *-homomorphi m <p A ---+ B of 

C* -algebras is closed in A and the image i · closed in B . 

The kernel of a *-homomorphism of C* -algebras 1r : A ---+ B is an ideal in A. Con­

versely, for any ideal I ~ A , A / I i a C* -algebra and I i the kernel of the quotient 

map from A to A / I. 

Let H be a Hilber t space. Denote by B (H ) the C* -algebra of all bounded linear 

operators on H and by U(H ) the group of all unitary operators on H . 

The following theorem is known as Gelfand-Naimark-Segal Th orem that can be found 

in e.g. [22, Theorem 1.1.3], in which the GNS-const ruction is u ·ed to construct a 

Hilbert space H for a given C* -a lgebra A such that A can be i ometrically embedded 

into B (H ) as a sub-C*-algebra . 

Theorem 1.2.5 (Gelfand-Naimark-Segal Theorem). For each C*-algebra A there ex­

ist a HilbeTt space H and an isometric *-homomorphism <p from A into B (H ). If A 

is separable, then H can be chosen to be a separable Hilbert space. 

T he following Gelfand-Naimark Theorem (see e.g. [22, Theorem 1.2.3]) gives a uni­

versal model for any commutative C* -algebra. 
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Theorem 1.2.6 (Gelfand-Naimark Theorem) . Every commutative C*-algebra is iso­

metr-ically *-isomor-phic to the C*-algebra C0 (X) fo r- some locally compact Hausdorff 

space X. 

Recall that C0 (X) is the C* -algebra of all continuous functions f : X --t CC that vanish 

at infini ty: for each E > 0 there is a compact subset ]( of X such that IJ(x)l :::; E for 

all x E X \ K. The norm on C0 (X) is the supremum norm. If X is compact, then 

Co(X) = C(X). 

In addition to Gelfand-Naimark Theorem, we have the following properties (see [22, 

Page 7] ): 

(i) The C* -a lgebra C0 (X) is unital if and only if X is compact . 

(ii) X and Y are homeomorphic if and only if C0 (X) and C0 (Y) are isometrically 

*-isomorphic. 

(iii) There is a bijective correspondence between open sets of X and ideals in C0 (X ) , 

which is set up as follows: the ideal corresponding to t he open subset U of X is 

the set {f E C0 (X) I f vanishes on uc} ~ C0 (U) . 

In the fo llowing, denote by 6 (A) the set of all nonzero characters of a commutative 

Banach algebra A. It is a compact Hausdorff space with respect to the following 

topology: A neighborhood basis at rp0 E 6 (A) is given by the collection of sets 

where E > 0, n E .N, and x 1 , · · · , Xn are arbitrary elements of A. This topology on 

6(A) is called the Gelfand topology. 

If A has an identity, then 6 (A) is also called the maximal ideal space of A. 
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D efinition 1.2.7 (Gelfand transform) . Suppose that A is a commutative Banach 

algebra with 6. (A) nonempty. Then the Gelfand transform of a E A is the function 

a : 6.(A) -t cc 

given by a (h ) = h (a) . 

The space X corresponding to the commutative C* -algebra A in Gelfand- aimark 

Theorem can be chosen as the space 6. (A) with Gelfand topology, and then the 

Gelfand t ransform provides an isometric *-isomorphism A-t C0(X) . 

Let X be a compact Hausdorff space. By Gelfand-Naimark Theorem , we have that 

C(X) is isomorphic to C(6. (C(X) )), hence X is homeomorphic t o 6. (C(X )). Explic­

it ly, for any x E X, 

fJx : C(X) -t CC, !Jx(f) = f(x) 

is a character of C(X), and the mapping x f-t fJx is a homeomorphism X -t 6. (C(X )) . 

D efinition 1.2.8. The fun ction fJ1: is called a point evaluat ion of x E X. 

Any a E Aut(C(X )) defines a permutation a: 6. (C(X) ) -t 6. (C(X)) as follows: 

~ ~ ~ o a for any~ E 6. (C(X )). 

Since the set 6. (C(X)) coincides with the set of all point evaluations of C(X), i.e., 

6.(C(X)) = {fJx : X E X}, the permutation a induces a permutat ion <p of X by 

~Lx ~ fJx o a=: fJ'P- l(x) · Thus, we have that a(!) = f o <p- 1 for all f E C(X ), and 

then one can show t hat <p is a homeomorphism and uniquely determined by a. 

As discussed above, a topological system (X , <p) corresponds to a dynamical system 

(C(X), a) uniquely, which implies that studying a topological system (X , cp) is equiv­

alent to investigating the corresponding dynamical system ( C (X) , a ). 
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In the fo llowing sections, we always denote by a the automorphism of C(X) corre­

sponding to t he homeomorphism <p : X ~ X . 

1.3 C *-dynamical systems 

Now we review some basic definitions and properties related to the concept of a C*­

dynamical system. 

D efinition 1.3.1. A topological group is a group ( G, ·) together with a topology T 

such that 

(i) points are closed in (G, T) , and 

(ii) the map G x G ~ G , (s, r) ~----+ sr- 1 is continuous. 

Example 1.3.2. Any group G equipped with the discrete topology is a topological 

group, joT example, zn. The groups ]Rn and ']fn = {z = (zl, . . . , Zn ) E e n I lzil = 

1 for all i}, are topological groups in their usual topologies. 

D efinition 1.3.3. A (locally) compact group is a topological group fo r which the 

under-lying topology is (locally) compact. 

Example 1.3.4. Any discrete group is locally compact; JR.n is locally compact; 'Ifn is 

compact. 

D efinition 1.3.5 (Group actions on sets). A group G acts on the left on a set X if 

there is a map G x X ~ X , 

(s, x ) ~----+ s · x (1.3.1) 

such that 

e · X = X and S · ( T · X) = ST · X 

for all s , T E G and all x E X , where e is the identity element of G . 
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If G is a topological group and X is a topological space, t hen we say the act ion is 

cont inuous if the ma pping (1. 3.1 ) is cont inuous. In this case, X is called a left G-space 

and the pair ( G , X ) is called a transfo rmation group. If both G and X are locally 

compact , then (G , X) is called a locally compact transformation group. 

Example 1.3.6. Let <p be a hom eomorphism of a space X onto itself. Then Z acts 

on X by n · x := <pn(x), and (Z, X ) is a transf ormation group. 

D efinition 1.3.7 (Group actions on C*-algebras) . Let G be a topological group and 

let A be a C* -algebra. A m ap a : G -+ Aut( A ), t 1---7 a t is called an action of G on A 

if 

(1) f or any t , s E G, we have at o a 5 = at5 , 

(2) f or any a E A , the map G-+ A , t 1---7 at(a) is continuous. 

Let ( G , X ) be a locally compact transformation group. T hen for each s E G, the map 

x 1---7 s · x is a homeomorphism of X. Therefore we obtain a homomorphism 

a : G --t Aut (C0 (X )) (1.3.2) 

defined by 

as(J)(x) := f(s - 1 
· x ). 

Indeed , 

(1.3.3) 

since 

T he set Aut(A) of automorphisms of a C*-algebra A is a group under composition . 

10 



D efinition 1.3.8. The point-norm topology on Aut ( A ) is the topology of point-wise 

convergence of functions on A ; thus ai -t a in the point-norm topology if and only if 

llai(a)- a(a)ll -t 0 for all a EA. 

Lemma 1.3.9 ([30, Lemma 2.5]) . Suppose that (G, X ) is a locally compact trans­

formation group and that Aut(C0 (X)) is given the point-norm topology. T hen the 

associated homomorphism (1. 3.2) of G into Aut(C0 (X )) is continuous. 

D efinition 1.3.10. A C*-dynamical system is a triple (A , G, a) consisting of a C*­

algebra A, a locally compact gr·oup G and an action a of G on A. 

Example 1.3.11. For any a E Aut(A), we can define an action of Z on A by 

n · a = an (a). Such a dynamical system (A, Z , a), with A = C (X), already appeared 

in S ection 1. 2. 

Equation (1.3.3) and Lemma 1.3.9 tell us that the homomorphism (1.3.2) is an action 

of the topological group G on the C*-algebra C0 (X), which means that there is a 

C*-dynamical system (C0 (X) , G, a) induced by a transformation group (G, X). The 

following proposition tells us t hat, conversely, a transformation group ( G, X) can be 

induced by a C*-dynamical system (C0 (X), G, a) . 

Proposition 1.3.12 ([30, Lemma 2.7]) . Suppose that (C0 (X) , G, a) is a C* -dynamical 

system (with X locally compact) . Then there is a transformation group (G, X) such 

that 

as(f)(x) = f(s - 1 
· x ). 

D efinition 1.3 .13 (A representation of a C* -algebra) . A representation 1r of a C*­

algebra A on a Hilbert space 7-i. is a *-homomorphism of A into B (H ). A representa­

tion 1r is nondegenerate if the set 

{ 1r (a)~ I a E A , ~ E H} 
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is dense in H. We say that a r-epr-esentation 1r is faithful if it is an injective map. 

D efinition 1.3.14 (A unitary representation of a group). A uni tary representat ion 

of a gr-oup G on a Hilber-t space H is a homomor-phism U : G -+ U( H ) such that the 

map t f--7 Ut ( x) is continuous fo r- ev r-y vector- x E H. 

For a locally compact group G with a left Haar measure p, (see [30, S ction 1.3]), denot 

by L2 (G) the Hill cr t space of equivalence classes of Borel measurable functions f on 

G with complex values such that fc lf (s)l 2dp,(s) < oo; denote by L (G) the Banach 

space of all ssent ially bounded functions G -+ C with re pect to the Haar measure. 

Iore generally. let H be a complex Hilbert space. We define L 2 (G, H ) to be the space 

of equival ucc classes of Borel measurable functions f on G with values in H . If G is a 

counta ble cliscr tc group , then the Haar measure is just count ing measure, so we can 

think of elements of L2 (G) and L2 (G, H) as sequences indexed by G. The t raditional 

nota tion for L2 (G) and L2(G, H ) in this case is e2 (G) and €2 (G, H ), respectively. 

Example 1.3.15 . Let G be a locally compact gr-oup and consider- L2 (G) . Then, for­

T E G, the translation >. (r) is defined by 

>.(r-).f(s) := .f(r- - 1 s), f E L2 (G) . 

Since translation >. (T) is a unitar-y operator- on L2 (G), it f ollow that >. : G -+ 

U( L2 (G)) is a Tepr-esentation of G. It is called t he left regular representation . MoTe 

generally. we can define a left Tegular- r-epr-esentation ofG on L 2 (G, H ) for- any Hilber-t 

space H . 

D efinition 1.3.16 (Covaria nt repre ·entation). Suppose that (A , G, a:) is a C* -dynamical 

system and that H is a HilbeTt space. Then a covariant representation of (A, G, a:) 

into B (H ) is a paiT (1r, U) consisting of a r-epr-esentation 1r: A -+ B(H) and a unitar-y 
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representation U : G----+ U(H ) on the same Hilbert space such that 

U5 1r(a)U; = 1r(a5 (a) ) for all a E A , s E G. 

Example 1.3.17. Covariant representations of a dynamical system (C, G, t riv) coT-

respond to unitaTy TepTesentations of G. 

1.4 Construction of crossed products 

In t he following, we will concentrate on a C*-dynamical system (A , G, a), where A is 

a uni tal separable C* -algebra and G is a countabl discrete group. 

Consider the space Cc( G, A) of continuous functions from G to A with compact sup-

port , i.e., 

Cc(G, A)= { f = L atV,t I atE A for all t E G, and at -!- 0 for only finitely many t E G} , 
LEG 

where {ut: t E G} is the basis of the space Cc(G, A) given by 

{

eA, if t = s, 
Ut(s) = 

0, ift-f-s . 

Instead of t he usual point-wise mul tiplication , we define the multiplication of Cc( G, A) 

by the formal rules 

Thu we obtain the twisted convolution product: 

fg = L (Latat(bt- ls))us E Cc(G ,A ). 
sEC LEG 
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The involut ion is determined by the rule u~ = 'Lit - I , so 

j* = (Lat'Lit)* = L at(a;- t)'Lit E Cc(G ,A ). 
LEG tEG 

One can check that the space Cc(G, A) endowed with the multiplication and involution 

as above is a *-algebra. 

Note that a covariant representation (1r, U) of the C*-dynamical system (A , G, a) 

induces a *-representation of Cc(G , A) by 

CJ(f ) = CJ ( L at 'Lit) = L 1r( at) Ut . 
tEC t EC 

(1.4.1) 

Indeed , 

t EC t EG sEC 

and 

CJ(f)CJ(g) = L L 1f(at)Ut1f(bu)Uu = L ( L 1f(atat(bt- ts))) Us= CJ(fg) . 
tEC uEG sEC tEC 

This representation CJ is denoted by 7f Xl U and called the integrated representation 

induced by (1r,U). 

Conversely, when A is unital , a *-representation CJ of Cc(G , A) yields a covariant 

representation ( 7f , U) of (A , G, a) as follows: 
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For indeed , 

Usn(a)U; = CJ(s )o-(ae)CJ(s*) = CJ (sas- 1
) = CJ(a(a)e) = n(a(a)). 

Theorem 1.4 .1 ( [30, Lemma 2.27]) . Suppose that (A, G , a) is a C*-dynamical system. 

For each f E Cc(G , A) , define 

ll f ll := sup{ [l(n ><l U)(.f)ll l (n , U) i a covariant representation of (A, G, a)} . (1.4 .2) 

Then II · [[ is a noTm on Cc(G A) call d the universal norm. The univeTsal noTm is 

dominated by the II · ll1 -noTm. 

Cc(G, A). 

D efinition 1.4.2 . The completion of Cc(G, A) with Tespect to II · II is a C*-algebra 

called the cro sed product of A by G and denoted by A ><l a G . 

In the following, denote by A ll ·ll B the C* -algebra A generated by a *-algebra B with 

respect to t he norm II · 11. vVe will denot by II · II the universal norm on the *-algebra 

Cc(G, A) and by II · 11 1 the universal norm on the *-algebra Cc(G, I) , where I is an 

a -invariant ideal in t he C* -algebra A. T hen, by t he definition of crossed products, we 

know that A ><l a G 11 11 Cc(G , A) and I ><l a G ll ·ll , Cc(G, I ) 

The integrated r presentation CJ = 1r ><l U of Cc(G, A) extends uniquely to a represen­

tation of A ><l G , a lso denoted by 1r ><l U . 

In general, it is not obvious t ha t th re a re any covariant representations of a given 

dynamical system , alt hough Theorem 1.4. 1 implies, in particular , that they must 

exist. On the other hand theGNS theory (s .g. Theorem 1.2.5, [1, Section 1.6], [8, 

P age 29] [12, Page 357]) , constructs lots of representations of a given C*-algebra. But 
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it could be difficult to find t he universal norm, so it will be useful to display a concrete 

realization of the crossed product A ><l 0 G. This is done via regular representat ions 

which give rise to the reduced norm on Cc(C, A). At first, let us look at the way in 

which the regular representations are obtained. 

Let 1r be any *-representation of A on a Hilbert space H. We form the Hilbert space 

£2 ( G, H ) = £ 2
( G, H ) of all square summable functions x from G into H with the norm 

II .TII~ = L II.T(t)ll2 · 

tEG 

Define a covariant representation (7T , A) of the C*-dynamical system (A , G, ex) on 

(7T(a).T)(s) = 1r (cx,;- 1 (a))(x(s)), 

(Atx)(s) = x(C 1 s) 

for a ll a E A , x E £2 (C , H ) and s, t E G. 

(1.4.3) 

Indeed , 7T is a *-representation of A, A is a left regular representation of G, and the 

covariance condition is also satisfied since we have that 

(At1r(A) A;x)(s) = ( 7T (A)A~x)(C 1 s) = 7r(cx;_\
8
(A) )(A;x(C1s)) 

= 7r(cx,;- 1cxt(A))(x(s)) = (7T(cxt(A))x)(s) 

for a ll .T E £2 ( G, H ) and s, t E C. 

By Equations (1.4.1) and (1.4.3), t he integrated representation a of Cc(G, A) induced 
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by covariant representa tion (7r, A) has the form: 

iEG i EG 

= I>r(a;1(at))x(C1s) (1.4.4) 
i EG 

for f E Cc( G, A) with the finite form f = L tE G a t U t, X E e2
( G, H ) and s, t E G. 

T he kernel of the integrated representation !7 = 1f ><J A of A ><la G induced by the 

representation 1r of A is determined by the kernel of 1r (see [30, Chapter 5]) . In 

particular, if 1r and 1r
1 are both faithful representations of A , then the integrated 

representations 1f ><J A and 7f' ><J A' have the same kernel , and 

11(7f ><J A) (J) II = ll(7r' ><I A')(f)ll for all f E A ><l a G. 

This makes the following definition reasonable because it is independent of the choice 

of a faithful representation 1r. 

D efinition 1.4 .3. If (A , G , a) is a C*- dynamical system, then the reduced norm on 

Cc(G , A) is given by 

ll f llr := 11(7f )<] A)(f) ll, 

where 1f ><1 A is the representation of Cc(G, A ) on £2 (G, H ) induced by any faithful 

repTesentation 1r of A on the HilbeTt space H. The completion A ><l a,r G of Cc(G , A) 

with respect to II · 117· is called the reduced crossed product . 

Below we discuss an important case where A ><la,r- G coincides with A ><Ia G. 

Lemma 1.4.4 ([30 , Lemma 7.8]) . Suppose that (A , G, a) is a C* -dynamical system. 

Then the reduced crossed product A ><1 a,r- G is {isomorphic to) the quotient of A ><1 a G 

by the kernel of 1f ><1 A for any faithful representation 1r of A. 
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Definition 1.4.5. A positive linear functional on a C* -algebra is a linear functional 

such that f (a) ~ 0 whenever a~ 0. A state is a positive linear functional of norm 1. 

If G is a locally compact topological group, a mean on G is a state on the C* -algebra 

L= (c ). 

D efinition 1.4.6 . A gTOup G is called amenable is there is a left translation invariant 

mean for G. Here, left invariance indicates that f.-L(gs ) = f.-L (g) for all g E £= (C) and 

sEC, where [)8 E £= (C) given by g5 (t ) = g(s-1t ) for all t E C. 

Example 1.4. 7. All finite groups and all abelian groups are amenable. 

Theorem 1.4.8 ([30, Theorem 7.13]) . If G is amenable, then the reduced norm ll ·llr 

coincides with the universal norm on Cc(G, A ), and hence A ~ o,r G = A ~ o G. In 

particular·, if 1r is a faithful representation of A, then if~ i\ is a fa ithful representation 

of A ~o G. 

R emark 1.4 .9. Let A be a C* -algebra. The group Z is an amenable group, so the 

full crossed product A ~o Z and the reduced crossed product A ~ 0,,. Z aTe identical. 

A universal C*-algebra is a C*-algebra characterized by a universal property (see [31]) . 

A universal C* -algebra can be expressed as a presentation, in terms of generators and 

relations. For example, the universal C* -algebra generated by a unitary element u 

has presentation (u I 'u*u = u'u* = 1). 

By [26], [27] and [28], the crossed product A ~oz also has the following interpretation: 

R em ark 1.4 .10. Let A be a unital C* -algebra, and let ex E Aut( A ). Then the crossed 

product A ~ 0 Z is the univeTsal C* -algebra generated by A and a 1mitary u subject to 

the relations uau* = cx(a) for all a E A. 
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If A= C(X) , where X is a compact Hausdorff pace, one has that 

C(X ) ><1 0 IZ = ( C(X ), ?.L I u*u = uu* = 1, u f ?.t* = a(f) for all f E C(X )) 

ll·ll { L j~1un I f n E C(X ) for a ll n E Z, and fn -=/= 0 for only fi nitely many n E Z}. 
nEZ 

1.5 Identification of the Schrodinger operator in 

C(X) ~ a !Z 

We will identify the Schrodinger operator of the form (0.0. 1) for a given self-adjoint 

element f in C(X), i.e., a real-valued continuous function on X. T he pace e2 (Z) has 

t he standard basis 

Then every element H E B ( e2 (Z)) corresponds to a unique matrix M11 . T hus, Hx0 of 

t he form (0.0.1) corresponds to the matrix !vfrrxo : 

f(.p - 1 (J:o)) 0 0 0 

/ (3'0) 0 0 

0 /(<P(.co )) 0 

0 () /(<P2 (xo)) 

0 0 0 /(<P3 (xo)) 

Choosing t he Hilbert space H = <C, we have that B(H ) = B (<C) = <C. For a represen­

tation 1r of C(X) on <C, by Formulas (1.4.3), we obtain a regular representation (7r, A) 
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of (C(X ), Z, a) on £'2 (2): 

(if(f )'ijJ )(n) = 7r (a;, 1(f))('l/J (n) ), 

(Am 1/J) ( n) = 1/J ( n - m) . 

By Gelfand-Naimark Theorem, we know that there is an element x0 E X such that 

1r = f-Lxo, hence 

Considering the integra ted representation CTxo = if ><l A of Cc(Z, C(X) ) on £'2 (2), we 

obtain from (1.4.4) t ha t CJx 0 (u) = A1 and CJx 0 (u*) = A- 1· 

Therefore, we know that the element CJx 0 (u) = A1 E B(£'2 (2)) corresponds to the 

matrix 

0 0 0 0 0 

I 0 0 0 0 

0 I 0 0 0 

0 0 I 0 0 

0 0 0 I 0 
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the element J x 0 (u*) = i\_1 E B (£2 (Z)) corresponds to the matr ix 

0 I 0 0 0 

0 0 I 0 0 

0 0 0 I 0 

0 0 0 0 l 

0 0 0 0 0 

and the element J x 0 (f) = if(f ) E B(£2 (Z) ) corresponds to the matrix M J = if(f) : 

f( 'P- 1 (xo)) 0 0 0 0 

0 f( x o) 0 0 0 

0 0 f(<p(xo)) 0 0 

0 0 0 f('P2 (xo)) 0 

0 0 0 0 f( 'P3 (xo)) 

Hence, the operator Jx0 ('u + u* + f) E B(£2 (Z) ) corresponds to the matrix Nfu+u*+r 

f( 'P - 1 (xo)) 0 0 0 

f (xo) 0 0 

0 f(<p (xo)) 0 

0 0 f('P2 (xo)) 

0 () 0 f (<p 3 ( xo)) 

T hus, we obtain that the Schrocl inger opera tor Hx0 of the form (0.0.1) and the operator 

J xo ( u + u * + f) correspond to the same matrix with resp ect to the same canonical 

21 



basis { . .. , e_ l , eo, e1, e2, . . . } of the space t'2(Z), so H x 0 = CJx0 (u + u* + f). 

Under some conditions (see e.g. minimal systems or almost minimal systems in Sect ion 

2.3), t he integrat ed representation CJx0 = 7r ><1 i\ is fait hful. T hen we can ident ify 

u + u* + f E C( X ) ><1 0 Z and H xa · The relationship between the spectra of u + u* + f 

and H xo will be discussed in the following sections even if the integrated representation 

CJ xo is not faithfu l. 

R em ark 1.5 .1. If f E C(X ) is self- adjoint, i. e., real-valued, then u + u* + f zs 

self-adjoint, and H x0 = CJx0 (u + u* +f) is a self-adjoint operator in B (t'2 (Z)) . 
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Chapter 2 

Spectrum of discrete Schrodinger 

operators 

2.1 Short exact sequences for crossed products 

In this section, the basic concepts and results related to short exact sequences for 

crossed products arc shown. 

D efinit ion 2 .1. 1. A sequence of C*- algebras and *-homomorphisms 

A 'Pn A 'Pn.+ J A 
···~ n~ n+l~ n+l~ · · · 

is said to be exact if Im( 4?n) = Ker( 4?n+l) fo r all n . And exact sequence of the form 

'P 1/J 0 ----7- I ----7- A ----7- B ----7- 0 (2. 1.1) 

is called short exact. 
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Remark 2.1.2 ([22, Page 4]) . If I is an ideal in A , then 

is a short exact seq'uence, wher·e 1- is the inclusion mapping and q is the quotient map-

ping. Conversely, given (2.1.1), <p( I ) is an ideal in A , the C* -algebra B is isomorphic 

to A j<p(I) , and we have a commutative diagram 

·<J; 
0 ------T I ------+-A-----B-----O 

~ 1 ~ II 1 ~ 
0--~ <p(I) A q A j <p(I ) --~ 0 

(2 . 1.2) 

R emark 2.1.3 . Let (A, G , a) be a dynamical system. Let Ic (A ) denote the set of 

a-invariant (closed two-sided) ideals in A. 

If I E Ic(A) , then each a 5 restricts to an automorphism of I and we obtain a dynam-

ical system (I , G , a) as well as a quotient system (A / I , G , a) defined in the following 

way: 

a~(a + I) := a 5 (a) + I . 

R emark 2.1.4. Recall that an equivariant map is a function between two sets that 

commutes with the action of a group. Specifically, let G be a gmup, and let X andY 

be two G -sets. A function f : X ---+ Y is said to be equivariant if 

f(g · x) = g · f(x) 

for all g E G and all x E X. 

Theorem 2.1.5 ([30, Corollary 2.48]) . Suppose that (A, G , a) and (B , G , (3 ) are dy-

namical systems and that <p : A ---+ B is an equivariant homomorphism. Then there is 
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a homomorphism cp ><l id: A ><l 0 G ----t B ><lf3 G mapping Cc(G,A) into Cc(G, B ) such 

that 

(cp ><l id)(f)( ) = cp(f(s)) . 

Since the inclusion map & : I ----t A and the quotient map q : A ----t A/ I are equivariant 

homomorphisms, by Theorem 2.1.5, we can define homomorphi ms 

t- )<] id : I ><l 0 G ----t A ><l 0 G , (2. 1.3) 

and 

q ><l id: A ><laG ----t A/ I ><l 0 G. (2. 1.4) 

Note t hat Cc(G, I ) sits in Cc(G, A) as a *-clo eel two-sides ideal. Therefore the closure 

with respect to the same norm is an ideal of A ><l 0 G which is denot d by Ex!. The 

next lemma will allow us to identify Ex! and I ><laG. 

Lemma 2.1.6 ([30 . Lemma 3.17]) . If (A, G, a) is a dynamical system and if I is an 

a-invariant ideal in A. then & ><l id is ani ometric *-isomorphism of I ><la G onto Ex! . 

Proposition 2 .1. 7 ([30, Proposition 3.19]) . Suppose that (A , G, a) is a dynamical 

system and I is an a-invariant ideal in A . Then & ><l id 1:s an isomorphism identifying 

I ><l 0 G with Ex! = Ker (q ><l id) and we have a short exact sequence 

L><lici q><~ici 
0 --. I ><l 0 G--. A ><l 0 G--. A/ I ><laG--. 0. 

of C* -algebras. 

According to [24, Page 240], we know that I ><l 0 G is the smallest ideal in A ><la G 

containing the a-invariant ideal in A. 
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Corollary 2.1.8 ([8 , Proposition III. 3.3]) . Suppose that X is a compact Hausdorff 

space and Y is a nonempty closed invariant subset of topological system (X , <p), then 

the ideal C0 (X \ Y) = {f E C(X) I f ly = 0} generates a proper ideal of C(X) ><la Z. 

Recall that there is a dynamical system (C(X) , a) corresponding to a topological 

dynamical system (X , <p). 

Corollary 2.1.9. Suppose that X is a compact Hausdorff space and Y is a closed 

invariant subset of topological system (X , <p), then we have a short e.1:act sequence 

(2.1.5) 

of C* -algebras. 

By Lemma 2.1.6, we know that C0 (X \ Y) ><la Z and Ex C0 (X \ Y) are isometrically 

*-isomorphic. 

2.2 Spectrum of the Schrodinger operator 

For a representation Pxo of C(X ) on the Hilbert space 1-{ = C , there is a regular 

covariant representation Cilxo , A) on the Hilbert space £2 (Z) , and then there is an 

integrated representation CJx 0 = M xo ><l A of C(X ) ><la Z on £2 (Z) . We will use these 

notations in the following results. 

A sub-C* -algebra of B (H) , the algebra of all bounded operators on a Hilbert space 

1-{ , is called a concr·ete C* -algebra. 

Theorem 2.2.1. For any point x0 E X , denote Y = Orbc.p (x0 ). Let 1rx0 be the 

Tepresentation of C(X) corresponding to the point x0 . Then, the crossed product 

C(Y) ><la Z is isomorphic to the concrete algebra CJx0 ( C(X ) ><l a Z) . 
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Proof. Since t here is a shor t exact sequence: 

in order to show C(Y) Xla Z is isomorphic to the concrete algebra ax0 (C(X ) Xl a Z) , 

by t he commuta tive diagram (2. 1.2) , we only need to show 

where we have identified C0(X \ Y ) XI a Z with an ideal of C(X) XI a Z using LXI id as in 

short exact sequence (2. 1.5). Choosing H = £2 (Z), we define a map 1r: C(Y) -+ B (H ), 

f ('P- 1 (x o)) () 0 0 0 

0 f (xo) 0 0 0 

j H ]VJJ = 0 0 f(<p(xo)) 0 0 

0 0 0 f(<p2 (xo)) 0 

0 0 0 0 f (<p 3 (xo )) 

Obviously, the map 1r : C(Y) -+ B(H) is a *-homomorphism. We claim that it 

is fa ithful. Indeed , if NJJ = 0, t hen f lorb,., (xo) = 0 and hence f = 0 since f is 

continuous on Y . The faithful representation 1r of C(Y) on H induces t he integrated 

representation if XI A of Cc(Z, C(Y)) on t he Hilbert space £2 (Z, H ) and t hen if XI A 

extends to a representation also denoted by if XI A : C(Y) Xla Z -+ B(£2 (Z, H)). 

Since Z is am enable, if XI A is faithful by Theorem 1.4.8. Let q : C(X) -+ C(Y) be 

the restriction f t--t f ly as in (2.1.5). The composition map 1rq : C(X) -+ B (H ), 

f e--+ NJ! Iv induces t he integrated representation 1rq XI A = (if XI A)(q XI icl ) on £2(Z, H). 
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Since if ><J A is faithfu l, by (2 .1.5), we have that 

Ker(1rq ><l A) = Ker(q ><l id) = Co(X \ Y) ><l a !Z (2.2.1) 

Let f = L na fnun E Cc(Z, C(X) ). We identify £2 (/Z, H ) with C2 (Z2
) by setting 

iJ! (k,j) = iJ!(k)(j) . We compute: 

Vve know that 

fn('Pk - l (J:o )) 0 0 0 0 

0 fn ('P k (>:o) ) 0 0 0 

(7rq)(fn(/) = Jv11 k ,,,,<.p = 0 0 fn('Pk+l (xo)) 0 0 

0 0 0 f,..( cp"+2 (xo )) 0 

0 0 0 0 f n( 'P k + 3 (x o)) 

so 

j~1 ( <pk- l (xo ) ) · iJ! (k, -1) 

7rq(fn)(iJ! )(k) = Nffn'Pk iJ!(k) = f n(<f!k(xo)) · iJ! (k, O) 

f~(<pk+ 1 (x0 ) ) · iJ!( k, 1) 
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Hence, we obtain 

f n(cpk-l(xo)) . w(k- n , -1) 

((((nq) ~ A)f)w)(k) = L nq(fn)(Anw)(k) = L j~(cpk(xo)) . w(k- n, O) 
nEZ nEZ 

(2.2.2) 

that is, (((nq ~ A)f) w)(k)(j) = 'Zma fn(cpk+j(xo)) · w(k- n,j), for k, j E Z. 

\Nriting w E €2 (Z2
) as w = (- · · ,'l/J_1 , 'l/J0 ,'1/h, ··· ) where 'tPj = w(-, j ). The result can 

be restated as 

(((nq ~ A)f)w) (k)(j) = L f~~(cpk+j (x0 )) · '1/Jj( k - n) 
nEZ 

On the other hand , we have 

((O"<pJ (xo)(f))'l/Jj )(k) = L P'PJ(xo) Un cpk )(An'l/Jj )(k) = L fn( cpk+j(xo ))'l/Jj(k- n). 
nEZ nEZ 

(2.2.3) 

By Equations (2.2.2) and (2.2.3), we obtain that 

(((nq ~ A)f) w)(k)(j) = ((O"'PJ (xo)(f))'l/JJ)(k), 

or, equivalent ly, 
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In other words, and ('rrq ><1 i\ )(J) E B(£2 (Z, £2 (Z))) corresponds to the diagonal matrix 

diag(- · · , CJcp- '(xo)(f), C!x0 (J), CJcp(xo) (J), · · · ), 

for all f E Cc(Z, C(X) ) . The integra ted representa tion 1rq ><1 i\ is continuous on 

C(X) ><1 0 Z and lldiag(- · · , A - 1,Ao, A1 , · · · )II = supjE&d iiAj ll} where Ak is a bounded 

operator in B (£E(Z)), k E Z . 

The *-algebra Cc(Z, C(X)) is dense in C(X) ><1 0 Z, therefore, 

for all f E C(X) ><1 0 Z. Because Ker(crx0 ) = Ker(crcpi(xo)), for any j E Z, we have 

Ker (crx0 ) = Ker (1rq ><I A) = Co (X \ Y ) ><Ia Z. D 

Corollary 2 .2 .2 . If two points, say x0 and x 1 , have the same closure of orbits, then 

the concrete algebras in the corresponding representations are isomorphic. Moreover, 

there e.'Eists a *-isomorphism that maps Hxo to Hx, . 

Pmof. For any two points .'Eo and x 1 in X , if the closures of their orbits under rp are 

the same, denote them by Y. By Theorem 2.2.1, we have tha t CJx0 ( C(X) ><1 0 Z) ~ 

C(Y) ><~o Z ~ crx, (C(X) ><~a Z). 

For any .'E E X, cr x is the integrated representation induced by the covariant representa­

tion (Jix, i\ ), and it is cont inuous. Define a bounded linear map 1Jl: CJx0 (C(X ) ><1 0 Z) --t 

crx1 (C(X) ><1 0 Z ) such that 1Ji (crx0 ('u)) = crx, (u), denote by i\.1 the elements crx0 (u) 

and crx, (u), where u is unitary and satisfies ufu* = a(J) for all f E C(X), and 

for f = LnEZ ! nun E Cc(Z, C(X)), CJxoU) = L nEZ ilxaUn) An, we have w(crxaU)) = 

LnE&:: Mx 1 (i~) i\n = CJx,(J). T his implies that W : CJx0 (Cc(Z,C(X ))) --1 CJx1 (Cc(Z, C(X) )) 

30 



is bijective. We know tha t ilxoU ) E B(£2 ('£)) corresponds to the matrix: 

f(<P- 1 (xo)) 0 0 0 

0 f(xo) 0 0 

Mxo = 
0 0 f(<P(xo)) 0 

0 0 0 f(<p2 (xo)) 

We claim that IJ!: O"x0 (C(X ) >1 0 '£) --+ O"x1 (C(X ) >1 0 '£) is a *-isomorphism. 

·writing another g = Lma 9rnUm E Cc(Z, C(X )), we have 

fg = L L fnan(9m)um+n E Cc(Z, C(X )) , 
nEZmEZ 

and 

IJ!(O"xo (f )O"xo (g)) = IJ! (O"xo(fg)) = O"xt(fg) = O"xt(f)O"xl (g) = IJ! (O"xo (f)) IJ! (O"xo (g)). 

(2.2.4) 

Moverover , we have 

(2.2.5) 
nEZ n EZ 

Because of the cont inuity of and IJ! and O"x for any x E X , the (2.2.4) and (2 .2.5) 

hold for all f E C(X ) >1 0 '£. Hence, IJ! : O"x0 ( C(X) >1 0 '£) --7 O"x 1 ( C(X) >1 0 Z) is a 

*-isomorphism and IJ! (Hx0 ) = Hx1 · D 

The following t heorem can be found in e.g. [2, page 31]. 

Theorem 2 .2.3 (Spectral Permanence T heorem). Suppose A is a unital C* -algebra 
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and B ~ A is a sub-C* -algebm containing the identity of A . Then for all x E B , 

R em ark 2.2.4 . The Spectrum Permanence Theor·em 2.2.3 is equivalent to the state­

ment that, for any x E A , x is invertible in B if and only if it is invertible in A. 

Proposition 2.2. 5. Let A and B be unital C* -algebms, and let rp : A-t B be a unital 

*-homomorphism. Then sp (rp(a)) ~ sp(a) for all a E A , and sp (rp(a )) = sp (a ) fo r all 

a E A if rp is injective. 

Proof. Since rp : A ---7 B is a uni ta l *-homomorphism , rp( A) ~ B is a sub-C*-algebra 

containing the identity element in B . By Spectral Permanence Theorem 2.2.3 , we 

know tha t sp8 (x) = spcp( A)(x) for all x E rp(A). 

Let a E A and let A E sp8 (rp(a)), i.e., >-e8 - rp (a) is not invertible in B. We claim 

that >-eA - a is not invertible. Suppose >-eA - a is invertible, i.e. , there exists an 

element bE A such that (>-eA - a)b = b( >-eA - a) = eA, since rp(eA ) = e8 , we have 

that (>-e8 - rp(a)) rp(b) = rp(b)(>-e8 - rp(a)) = e8 , which implies t hat >-e8 - rp(a) is 

invertible in B , and we obtain a cont radiction . Thus 

for a ll a E A. 

If rp is injective, t here is a *-isomorphism 'ljJ : rp( A ) -t A satisfying 1/J(rp(a)) =a for 

all a E A, according to t he above result, we know that spA('IjJ (rp(a))) ~ spcp( A)(rp(a)) 

for any rp(a) E rp(A), which implies that spA(a) ~ sp 13 (rp(a)), hence sp8 (rp(a) ) 

spA (a) . 0 
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Corollary 2 .2 .6 . If two points have the same closure of orbits, then the spectra of 

the two Schodinger operators are the same in the corresponding r·epresentations. 

Proof. A Schrodinger operator Hx can be identified with the element u + u* + f E 

C(X) ><l 0 Z via the representation O'x corresponding to the point x EX. For any two 

points x 0 and x 1 in X , we know that 

By Corollary 2.2.2 , t here is an isomorphism 

such that iJJ (Hx0 ) = Hx1 , by Proposit ion 2.2.5, we know t hat sp(Hx0 ) = sp(Hx1 ) . D 

In Definition 2.2 . 7, Theorem 2.2 .8 and T heorem 2.2.9, we denote the topological 

system (X , 4?) by L: , where X is a compact Hausdorff space and 4? is a homeomorphism 

of X onto itself, and we denote the crossed product C(X) ><l 0 Z by A(L: ), where a is 

the automorphism induced by 4?· 

D efinition 2.2. 7. For L: = (X, 4?), a point x E X is called aperiodic if, for every 

nonzero n E Z, we have 4?n ( x) -=/= x . The system 2: is called topologically free if the 

set of its aperiodic points is dense in X . 

Theorem 2 .2.8 ([29 , Theorem 5.4]) . For L: = (X, 4?) the following three properties 

are equivalent: 

( 1) L: is topologically free; 

(2) For any ideal I of A(L:) , I n C(X)-=/= {0} if and only if I -=/= {0}; 
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(3) C(X) is a maximal abelian sub-C* -algebra of A(L:). 

For a C*-dynamical system (A , G, ex) wi th G is discrete , w say A separates the ideals 

in the reduced crossed product A ><la,r- G if the map I 1----1 I n A , from the ideals in 

A ><la,1· G into the invariant ideals in A, is inject ive. 

The condi tion (2) in Theorem 2.2.8 implies I: is topologically fre . However , topologi­

cal freeness is not sufficient to ensure the separation of ideals (see e.g. [24, P age 238]) . 

Theorem 2.2.9. For I:= (X , ~.p), suppose that C (X) separates the ideals in C (X) ><la 

Z. Then proper nonempty closed invariant subsets correspond to nonzero proper ideals 

of C(X) ><l a Z . 

Pmof. Let Y be a proper closed invariant subset of X. By Corollary 2.1.8 , we know 

that C0 (X \ Y) generates a proper ideal C0 (X \ Y ) ><la Z of C(X ) ><la Z. 

Let I be a proper closed ideal of C(X) ><l a Z . Since C( X ) separates t he ideals in 

C(X) ><la Z, it follows tha t I n C(X) -1- {0}. It is not d ifficult to see that I n C(X ) 

is a closed ideal of C (X) that is invariant under a and its inverse. It is proper 

since I n C(X) = C(X ) would imply that I = C(X ) ><la Z . By (iii) on page 4, 

there exists some proper nonempty closed subset Yj of X such that I n C (X) = 

{f E C(X) I f (x) = 0, Vx E YI} = C0 (X \ Y1 ). It also follows that Y1 is invariant 

under 'P and it s inverse, since I n C (X) is invariant under a and its inverse. Since 

( C0 (X \ Yr) ><la Z) n C(X) = C0 (X \ Yr) and C(X ) separates the ideas, we conclude 

I = Co(X \ Y, ) ><l 0 Z . D 

2.3 Some special kinds of systems 

In this section , the results above are applied to three kinds of topological systems: 

minimal systems, almost minimal systems and essentially minimal systems. 
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2.3.1 Minimal system 

D efinition 2.3.1. A C* -algebra A is called simple if the only 'ideals in A are the two 

trivial ideals 0 and A. A topological dynamical system (X , <p) is called minimal if the 

or-bit of every point is dense in X. 

The following result ee [ , Theor m VIII.3.9], shows the relation hip between the 

minimali ty of the topological system and the simplicity of th crossed product, which 

is also proved in [29, T heorem 5.3]. 

Theorem 2.3.2. Let (X , rp) be a dynamical system on an infinite compact Hausdor-ff 

space X . Then, the crossed product C(X) ~a Z is simple if and only if <p is minimal. 

If the topological y tem (X , rp) is minimal, then the spectrum of Schrodinger operator 

Hx = a-x(u + u* + f) is the same for all x E X by Corollary 2.2.6. For any x E X , 

t he closure of t he orbit is the whole X , so Theorem 2.2 .1 implies t hat t he integrated 

representation a-.c of C(X ) ~a Z on the Hilber t space R2 (Z) is faithfu l. According to 

Proposit ion 2.2.5, we obtain that sp(Hx)) = sp(u + u* + f ) fo r any x E X . 

2. 3. 2 Almost minimal system 

D efinition 2.3.3. We say that (X , rp) is almost minimal if it satisfies the following 

conditions: 

( i) ther-e is a fixed point and 

(ii) the oTbit of any otheT point is dense. 

For an a lmost minima l system (X, rp), ay x0 is the fixed point in X. T here are only 

two nonempty clo ed <p- invariant sub et , {x0 } and X. We know that O'x 0 (C( X) ~aZ) 

is isomorphi to C( {x0 } ) ~a Z, which is the group C*-algebra of Z. In this cas , we 
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have 

so the spectrum of Hxo is a shift of the spectrum of A1 + A_1 . Because the closures of 

their orbits are the whole X , so the integrated representation ax for x E X \ {xo} is 

faithful, by Proposition 2.2.5, the spectra of the Schrodinger operators Hx = ax(u + 

u* +f) for any point x EX\ {x0} are the same as the spectrum of (u + u* +f) . 

2 .3 .3 Essentially m inimal system 

Definition 2 .3.4. A set Z in X is minimal if it is minimal among closed, rp -invariant, 

nonempty sets. 

Proposition 2.3.5. The closure of the orbit of a point x is a nonempty rp -invariant 

closed subset of X. 

Proof. Consider 

Y Orb'P (x ) 

{- · · , rp-2 (x ), rp-1 (x ), x, rp( x ), rp2 (x ), · · ·} 

{- · · , rp2 (x ), rp(x), x,rp-1(x ),rp-2 (x), · · ·} 

Or-b'P- J (x ) 

Clearly, Y is nonempty and closed . To show rp(Y) = Y, we need to show rp(Y) ~ Y 

and Y ~ rp(Y). 

For any point y E Y = Orb'P (.T ), there are two cases: if there is n E 7L such that 

y = rpn (x ), then rp(y) = rpn+1 (x) E Y ; if y -=/= rpn (x ) for any n E Z, there is a sequence 

{tn}n>l ~ 7L such that rpLn (x ) ---+ y as n ---+ oo. Since rp is a homeomorphism of X , 

then 'PLn+l (x) ---+ rp(y). Sine Y is closed , rp(y) E Y. We have proved rp(Y ) ~ Y. 
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Similarly, we obtain 'P- 1(Y ) ~ Y , equivalent ly, Y ~ 'P(Y) . T hus, 'P(Y ) = Y. 0 

Denote w +(x) and vv - (x) the sets of accumulation points of the sequences {'Pn(x) I 

n 2:: 0} and { 'P11 
( x) I n ::; 0} , respectively. 

Theorem 2. 3. 6 ( [ 13, Theorem 1.1]) . Let (X , 'P) be a topological system and let y be 

any point of X . Then the fo llowing are eq'Uivalent. 

(i) For every point X in X , y is in w +(x) . 

(ii) For eveTy point X in X' y is in w - (x) . 

(iii) For every neighbor-hood U of y, 

(iv) X contains a 'Uniq'Ue minimal set Y andy E Y . 

D efinition 2.3.7 ([13]) . We say that (X, 'P, Y) is essentially minimal if it satisfies the 

conditions above. We also say that (X , 'P) is essentially minimal if it has a 'Uniq'Ue 

minimal set. 

Obviously, an almost minimal system is an essentially minimal system, withY = {x0 } . 

R emark 2.3.8. By PToposition 2.3.5, we know that Orb'P(y) is a closed, 'P-invariant 

set. Since Orb'P (y) ~ Y, we obtain, by the minimality ofY, that Y = Orb'P( y ). 

By the equivalent conditions in Theorem 2. 3. 6, one has that 

(a) Fo·r any point :r in Y, Orb'P(x) = Y , since (iv); 

(b) for· a point x in X \ Y , Y £;: 0Tb'P(.r;), since (i) . 
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Suppose that Y is the unique minimal set in X. For any x E Y , we obtain t hat 

sp(ax(u + u* +f)) = sp(u + u* + f[ y) . There may be many different closures of 

the orbits of points in X \ Y, so it is more complicated to classify the spectra of 

Schrodinger operators on an essentially minimal system. 
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Chapter 3 

The method to label gaps in the 

spectrum of Schrodinger operators 

3.1 The K0-group of a C*-algebra 

First, we will review the basic definit ions and properties of K 0-group of a C* -algebra . 

D efinit ion 3 .1. 1 (Homotopy) . Let X be a topological space. Two points a , b in X 

ar·e homotopic in X , denoted by a "'h b in X , if there is a continuous function 

v : [0, 1] -t X 

such that 

v(O) =a and v( l ) = b. 

The relation "'h is an equivalence relation on X. The continuous function v is called 

a continuous path from a to b. 

Denote by P(A) the set of all projections in a C*-algebra A and , if A is uni tal, denote 

by U(A) the group of unitary elements in A. We have the homotopy equivalence 
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relation "'h on P (A) and U(A). 

Consider the following equivalence relations on P (A) (see e.g. [22 , Page 21]) : 

p rv q is there exists v in A with p = v*v and q = vv* (MuTray-von Neumann 

equivalence), 

p "'u q if there exists a unitary element 7.L in U(A) wit h q = upu* (unitary equiva­

lence) 

The relationship between these equivalence relations are shown in the following Propo­

sit ions. 

Proposition 3.1.2 ([22, Proposition 2.2.2])) . Let p, q be projections in a unital C*­

algebra A . Then following consitions aTe equivalent: 

(i) P "'u q, 

(ii) q = ·upu* for· some unitaTy 1L in A, 

(iii) p "-' q and eA - p rv eA - q. 

Proposition 3.1.3 ([22, Proposition 2.2.7])) . Let p, q be pTojections in a C* -algebra 

A. 

(i) If p "'h q, then p "'u q. 

(ii) If p "'u q, them p "-' q. 

For the partial ordering of projections of a C* -algebra, recall that for projections P 

and Q in an abstract a lgebra A , P :=:; Q if PQ = QP = P . If A is a sub-C*-algebra 

of B(H ) then P ::; q if and only if P(H ) C Q(H ). 
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3.1.1 Matrix algebras 

Denote by Mm,n (A) t he set of a ll rectangular m x n matrices: 

au a12 a1n 

a21 a22 a2n 

with entries aij E A, i = 1, 2, · · · , m and j = 1, 2. · · · , n . In par ticular , denote 

by Mn(A) the set Mn,n(A ). Equip Mn(A) with the usual ent ry-wise vector space 

operations and matrix multiplication. Also, set 

* 
ai t a;l 

ai2 a22 

In order to define a C*-norm on Mn( A), by Theorem 1.2.5, we can choose a Hilbert 

space H and a n isometric *-homomorphism <p : A --t B (H ). Let i.(!n : i\1n(A) --t B (Hn) 

be given by 

<p(an)6 + · · · + <p (aln)~n 

<p(a21)6 + · · · + <p (a2n )~n 
, ~j E H. 

Define a norm on i\1n(A) by llal l = II'Pn(a)ll for a in Mn(A) . \1\lit h these operations, 

Nin(A) becomes a C*-algebra, the norm is independent of the choice of isometric 
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*-homomorphism cp. 'vVe shall u e the abbreviation 

a, 0 

0 a2 
diag(a1 , a2 , ··· , an)= 

0 0 

for a diagonal matrix, where a 1 , a2, · · · , an arc in A. 

3 .1.2 Semigroups of projections 

D efinition 3.1.4 (The semigroup P (A)) . Put 

00 

0 

0 

Pn(A) = P (!Vfn(A)) , Poo( A) = U Pn(A), 
n= l 

where A is a C* -algebr-a and n is a po itive integer. We view the sets Pn (A) for all 

n E 7l as being pair-wise disjoint. 

Define the relation "'o on P00 (A) as follows: suppose that p is a projection in Pn(A) 

and q is a projection in Pm(A). Then p "'o q if there is an element v in JVfm,n(A) wi th 

p = v*v and q = vv* . 

1 ote that t he equivalence relation is the Murray-von eumann equivalence in P (A). 

Remark 3.1.5. Defin e a binary operation EEl on P 00 (A ) by 

p Ell q ~ diag(p, q) ~ ( ~ : ) 

so that p EEl q belongs to Pn+m(A) when p i in Pn(A) and q is in Pm(A). 
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Proposition 3.1.6 ([22 , Proposition 2.3.2]) . Let p, q, r, p' q' be pr-ojections in 

Poo(A) for some C*-algebm A. 

(i) p "'o p E9 On for every natur-al number n, where On is the zero element of Nfn (A), 

(ii) if p "'o p' and q "'o q' , then p E9 q ""'o p' E9 q' , 

(iii) (p E9 q) E9 r = p E9 (q E9 r ), 

(iv) p ffi qrvoq EB p. 

D efinition 3.1.7 (The semigroup D (A)) . With (Poo( A), "'o, EB) as in the definition 

3.1 .4, set 

D(A) = Poo(A)/ "'o . 

For each pin P=(A), let [p]v in A denote the equivalence class containing p. Define 

addition on D(A) by 

[p]v + [q]v = [p E9 q]v , p , q E Poo (A) . 

It follows from Proposition 3.1. 6 that this oper-ation is well-defined and the (D(A), + ) 

is an abelian semigroup. 

3.1.3 The Grothendieck group of a commutative semigroup 

D efinition 3.1.8 . Let (S, + ) be an abelian semigmup. Define an equivalence relation 

rv on s X s by (xl , Yl) rv (x2, Y2) if there exists z ins such that 
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Denote G(S) the quotient s X S f rv, and let (x, y) denote the equivalence class in 

G(S) containing (.T , y) inS x S. The operation 

is well-defined and turns (G(S) , +) into an abelian group. The group G (S ) is called 

the Grot hendieck group of S. 

Given y E S, defin e I s : S -t G (S ) by 

ls (x ) = (x + y, y) . 

This map does not depend on y and it is cal led the G rothendieck map from S to G ( S) . 

R em ark 3.1.9. Note that -(x, y) = (y, x) and that (x, x) = 0 for all x, y inS. 

3.1.4 The functor K 0 for unital C*-algebras 

D efinit ion 3.1.10 (The K 0-group for a uni tal C* -algebra). Let A be a unital C* ­

algebra, and let (D ( A ),+) be the abelian semigroup from Defin'ition 3.1.1. Define 

K 0 (A) to be the Grothendieck group ofD (A ), i.e, 

K 0 (A) = G (D (A)) . 

Defin e [ · ]o : P oo (A) -t K o(A) by 

[P]o = l ([p]v) E K o(A) , p E Poo (A) , 

where 1 : D(A) -t K 0 (A ) is the Grothendieck map. 
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Proposition 3.1.11 ([22 , Proposition 3.1.7]) . Let A be a unital C*-algebra. Then 

Ko (A) {[P]o- [q]o : p, q E P oo(A)} 

{[p]o- [q]o : p, q E Pn(A), n EN}. (3.1.1) 

Proposition 3.1.12 ( [22, Proposition 3.1.8]) . Let A be a unital C* -algebra, let G be 

an abelian group, and suppose that v : Poo( A) -7 G is a map that satisfies 

(i) v(p EB q) = v(p) + v(q)for all projections p, q E P00 (A ), 

(ii) v(OA) = 0, 

(iii) if p, q belong to Pn( A) for some n and p "'h q in Pn(A), then v(p) = v(q). 

Then there is a unique gmup homomorphism a : K 0 (A ) -7 G which makes the diagram 

Poo(A) 

[ ]ol ~ 
Ko(A ) a G. 

commutative. 

Let A and B be unital C* -algebras , and let 'P : A -7 B be a *-homomorphism. 

Associate to 'P a group homomorphism K0 (c.p ) : K0 (A) -7 K 0(B ) as follows. The*­

homomorphism 'P extends to a *-homomorphism 'P : i\1"n( A) -7 i\1"n(B) for each n . A 

*-homomorphism maps projections to projections, and so 'P maps Poo( A ) to P00 (B). 

Define v : Poo (A ) -7 K0 (B ) by v(p) = [c.p(p)]o for p in Poo (A). Then v satisfies 

conditions (i) , (ii ), and (iii) in Proposit ion 3.1.12, and v therefore factors uniquely 

through a group homomorphism 'P* : K 0 (A) -7 K 0 (B ) given by 
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and commonly denoted by K 0 (rp) . In other words , we have a commutative diagram: 

Poo(A) __ 'P __ Poo( B) . 

I ]o 1 l I ]o 

Ko(A) f(o(cp) Ko(B) 

Definition 3.1.13 ('Iraces and K 0 ) . Let A be a C*-algebra. A bounded trace on A 

is a bounded positive linear map T : A --+ C with the trace property: 

T(ab) = T( ba) , a, bE A . (3.1.2) 

For every t race T on a C*-algebra A there is precisely one trace Tn on Mn(A) t hat 

satisfies Tn(diag(a, 0, · · · , 0)) = T(a) for all a in A. Explicit ly, Tn is given by 

an a12 aln 

a21 a22 a2n n 

Tn = L T(aii)· 
i= l 

a,.ll an2 ann 

A trace T on a C*-algebra A induces a function T : P00 (A) --+ C , and this function 

satisfies conditions (i) , (ii) , and (iii) in P roposit ion 3.1. 12, and so there is a unique 

group homomorphism 

satisfying 

Ko(T)([P]o) = T(p), p E Poo (A). (3.1.3) 
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3.1.5 The ordered abelian group K 0 (A) 

D efinition 3.1.14. A pair (G, G+) is called an ordered abelian group if G is an 

abelian group, G+ is a subset of G, and 

(i) G+ + G+ ~ G+, (ii ) G+ n (-G+) = {o} , (iii) G+ - G+ =G. (3.1.4) 

Define a r-elation :::; on G by X :::; y if y - X belongs to c+. 

Condit ions (i) and (ii) in (3 .1.4) imply that (G, :S:) is a (partia lly) ordered set . T he 

set G+ is called the positive cone of G. The negative cone is c- := - G+. 

D efinition 3.1.15. For- a C* -algebm A, the posit ive cone of K 0 (A) is 

K o(A)+ = { [p ]o: p E Poo(A)} ~ Ko (A ). 

Remark 3.1.16. For· two projections P and Q in C* -algebm A, if P < Q, then 

[P]o :S: [Q]o . 

D efinition 3 .1.17. A projection p in a C*- algebm A is said to be infinite if it is 

equivalent to a proper· subprojection of itself, i. e., if there is a projection q in A such 

that p rv q < p. rt p is not infinite, then p is said to be fini te. 

A unital C* -algebm is said to be fini te if its unit eA is a finite projection. Other-wise 

A is called infini te. If Nin(A) is fim:te for- all positive integer-s n, then A is st abely 

fin ite. 

If A is a C* -algebm without a unit, then A is called fini te/ stably finite/infinite if its 

unitization A is fini te/stably finite/infinite . 

Proposition 3.1.18 ([22, Proposition 5.1.5]) . Let A be a unital C*-algebm. 

(i) K 0 (A) + + K 0 (A )+ ~ K 0 (A) +. 
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(ii) K 0(A)+- K 0 (A)+ = K 0 (A) . 

(iii) if A is stably finit e, then K 0 (A )+ n ( - K 0 (A) + ) = {0}. 

Thus, if A is unital and stably finite, then (K 0 (A), K 0 (A)+ ) is an ordered abelian group. 

3.2 Continuous function calculus 

The following fundamental results can be found in e.g. [23, Theorem 18.6]. 

Theorem 3.2.1. Let A be a unital complex Banach algebra. FaT every a E A, its 

spectr·um, p(a), is compact and not empty. 

T heorem 3.2.2 (Cont inuous Function Calculus) . Let A be a unital C* -algebra. To 

each normal elerr~;ent a E A , theTe is one and only one isometic *-isomorphism 

C(sp(a)) --+ C*(a, 1) ~ A , 

f H f (a), 

which maps & to a, where & in C(sp(a)) is given by &(z) = z for all z E sp(a) . 

(3.2.1) 

The unique *-isomorphism in Continuous Function Calculus Theorem 3.2.2 is called 

Galfand-Naimark map. 

It follows t hat the pectrum of a elf-adjoint element (for example, the Schrodinger 

operator) is conta ined in R 

A gap of t he spectrum of a self-adjoint clement H is a connected component of IR \ 

sp (H) . For any point E E IR \ sp(H), i.e., if E lies in a gap g of the spectrum, there 
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is one corresponding projection X(-ao,E) E C (sp(H )) with the form 

{

1, if xE( - oo, E ]n sp(H ); 
X(-ao,Ej(X) = 

0, if x E (E, +oo) n sp (H ). 

Observe that the projection X(-oo,Ej (H ) is independent of the value of E E g. 

By Theorem 3.2.2 , there is one and only one *-isomorphism <I> : 

C(sp (H )) ---+ C*( H , 1) <:;;;A, 

f H f (H ). 

(3.2.2) 

The *-isomorphism <I> gives a bijection between the projections of these C* -algebras: 

P (C(sp(H )))---+ P (C*( H , 1)) <:;;; P (A) . 

Then , for any X( - ao ,E) E P(C(sp(H ))), we have that 

[ )o 
X(- ao,E) H X( - ao,Ej( H ) E P (A ) <:;;; Pao( A ) '-7 Ko(A). 

where [ · ]o is the map as in Definition 3.1. 10. 

T herefore, 

[X(- oo,q (H )]o E Ko(A). 

V/e say tha t f E C(X) is positive, which is denoted by f 2: 0, if f (x) 2: 0 for all 

x E X , and f 2: g if J(x) 2: g(x) for all x E X (This agrees with t he general definition 

of positive elements in a C*-algebra - see Defini t ion 1.1.6). For any two points in JR, 

say E 1 and E 2 , suppose tha t E 1 > E 2 , then there are two corresponding projections 

X(- ao,El) and X( - oo,£2 ] defined as (3.2.2) in P (C(sp(H ))) . Clearly, X(- oo,EJ) 2: X(-oo,£2 ] 
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and X(-oo, £1] - X( -oo,E2 J is also a projection , so the set {X( -oo,EJ I E is in a gap} is 

totally ordered and then {X(-oo,Ej(H) I E is in a gap} is totally ordered in P (A). 

Hence, {[X( -oo,EJ (H ) ]0 I E is in a gap} is a totally ordered set in the positive cone 

K 0 (A )+, which implies that every element in the totally ordered set { X [x(-oo,EJ( H)]o I 

E is in a gap} corresponds to a gap in the spectrum of H , so we can use [X(-oo,Ej(H )]o 

to label the gap containing E . 

3.3 The trace induced by special kind of measures 

Even though the set {X [x(-oo,EJ( H)]o I E is in a gap} C K o(A)+ can be used to label the 

gaps in the spectrum of H , in general, the group K 0 (A) itself is not easy to calculate . 

In the following, we will exhibit a concret e way to label gaps in the spectrum. 

Recall that (X , 'P) determines a C*-dynamical system (C(X ), Z, a) , where an(! ) := 

f o 'Pn . In t he following, we consider the minimal system (X, 'P ). Here we will exhibit 

some properties of the associated crossed product C(X ) :><1 0 Z, which is stably finite. 

A fini te Borel measure 1-L on X is translation invariant for 'P if t-L('P- 1(£)) = t-L (E) for 

every Borel subset of X. 

The orem 3.3.1 ([8, Proposit ion VIII. 3. 1]) . Let (X , 'P ) be a classical dynamical sys­

tem. Then there is a Borel probability measure on X which is translation invar-iant 

for 'P · 

A translation invariant probability measure {i is said to be er-godic if whenever E is a 

translation invariant measurable set , then t-L (E) = 0 or t-L(E) = 1. 

Proposition 3 .3 .2 ([8, Proposition VIII .3.2]) . Every dynamical system (X , 'P) has 

an er-godic measure. 

From [11 , Page 321], we have that any ergodic probabili ty measure 1-L on X induces a 
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trace r,_i on the algebra Cc(Z, C(X )): 

T,_t(f) := fx df-L(w)f (O)(w), f E Cc(Z, C(X )). (3.3.1 ) 

Then Tf-i extends as a trace on the crossed product C(X) ><l ex Z , and then Tf-i induces 

a homomorphism K 0 (rf-i) , by (3.1.3), from K 0 (C(X ) ><l ex Z) to the real line: 

where P1 and P2 are projections in Mn(C(X) ><l ex Z ). In other words , we have a 

commutative diagram: 

Since Tf-i is bounded , positive and linear , if P E Poo( C (X ) ><l ex Z) is positive , r1~ (P) = 

Ko(r,J ([P] 0 ) E [0, 1]. T hen the set 

which is totally ordered, can be used to label gaps in the spectrum of H . 

3.4 The K 1-group and calculation of the Gap-Labels 

There is a useful tool for computing the K0-group of the crossed products. We will 

need to define the K 1-grou p of a C* -algebra A. 
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Definition 3.4.1. Let A be a unital C* -algebra. Set 

00 

Un( A) = U(l'vin(A )), Uoo(A ) = U Un(A). 
n= l 

Define a binar-y operation EB on U00 (A) by 

(

'U 0) 
'Li EB v = O v E Un+m(A), u E Un(A), u E Um(A) . 

Define a relation ""I on U00 (A) as follows: for- u E Un(A) , u E Um(A ), write u ""1 v 

if ther-e exists a nat·ural number k 2: max{ m , n} such that 

in u E Uk(A), wher·e l r is the unit in A1r(A). 

Lemma 3.4.2 ([22, Lemma 8.1.2]) . Let A be a unital C*- algebra. 

(i) "" ! is an equivalence r-elation on U00 (A) , 

(ii) u ""1 u EB l n for all u E Uoo (A) and n E N, 

(iii) 'Li EB v ""1 v EB u for all u , v E Uoo (A) , 

(iv) if u., v, u', v' E U00 (A), u ""l u', and v "" l v' , then ·u EB v ""! u' EB v', 

(v) if u , v E Uoo (A) for some n, then uv ""1 vu ""! u EB v, 

(vi) ('Li EB v) EB w = u EB (v EB w) fo r all u , v, wE U00 (A) . 

Definition 3.4.3 (The K 1-group for a unital C* -algebra) . For a unital C* -algebra A 

define 
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Let [uh in K 1(A ) denote the equivalence class containing u in Uoo (A ). Denote a 

binary operation + on K 1 (A ) by 

[uh + [v]J = [u EB vh , 

where u , v belong to Uoo (A). Lemma 3.4.2 shows that + is well-defined, commutative, 

associative, has zer-o elem ent [1]l, and that 

0 = [1n] = [uu*h = [u]1 + [·u*h 

for each v, in Un( A ). Thisshowsthat (K 1 (A ), + ) is anabeliangmup, an d -[uh = [u*h 

for all u in Uoo (A ). 

As in the case of K 0 , a homomorphism 'P from A to B induces a homomorphism 

'P* = K1 ( ~.p) of K 1(A ) into K 1(B) . T his makes K 1 a covariant functor from the 

category of C* -algebras into the category of abelian groups. We have the Pim sner-

Voiculescu sequence fo r a C* -algebra A and its crossed product wit h 7l . 

The orem 3 .4 .4 ([8, T heorem VIII.5.1]) . Suppose that Q is an automorphism of a 

C* -algebra A . Then ther-e is a cyclic six term exact sequen ce 

K 0 (A) ---"·_...,..K0 (A ><l 0 7l) ----+ K 1(A ) 

id. - n. I lid. - n. 

K 0 (A ><l 0 7l ) --- --K1 (A ><l 0 7l) ---,.-- K1 (A ) 

Lem ma 3 .4 .5 ([11, Lemma 7]) . Let X be a compact, m etrizable, totally disconnected 

topological space. Then 

K 0 (C (X) ) ~ C (X, 7l ) , K 1 (C (X) ) = 0. 
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R emark 3.4.6. The positive cone of abelian gmup K 0 (C(X)) is C(X, tz)+ = {f E 

C(X , Z) I f 2:: 0}. 

Application of t he P imsner-Voiculescu sequence yields: 

C(X ,Z) ___ i·~ Ko(C(X) ><la Z) ---~0 

id-a·l l 
C(X , Z) ~--inc-1 - K1 (C(X ) ><l 0 Z ) ~--- 0 

Proposition 3.4 .7 ([11, Proposit ion 1]) . Let X be as in Lemma 3.4 .5 and a.(!) = 

f o <p- 1 . Then, 

K o(C(X ) ><la Z) ~ C(X, Z) / {f- J o <p- 1 
} , (3 .4.1) 

and 

K1 (C( X ) ><la Z) ~ {f E C(X, Z) : f = f o <p- 1 
} . (3.4.2) 

Therefore, the totally ordered set {[X(- oo,EJ (H )]o I E is in a gap} is in the abelian 

semigroup C(X, tz)+ / {! - f o<p- 1
} and can be applied to label the possible gaps in the 

spectrum of t he d iscrete Schrodinger operator with t he form (0.0. 1). T heoretically, by 

t he existence of ergodic measure J-l of a classical dynamical system, we can produce 

t he trace TJ.L on C(X) ><l 0 Z and the induced homomorphism K 0 ( T1J of the group 

K o(C(X ) ><l 0 Z), t hen t he totally ordered set K 0 (T1J( {[X(- oo,Ej(H)]o I E is in a gap} )n 

[0 , 1] in t he et K0 (TJ.L)( K0 (C(X) ><J 0 Z)) gives a labeling of the spectrum of H. 

3.5 Labe ling on the gaps of a Cantor set 

In genera l, t he set {Ko(TJ.J([X(- oo,Ej (H)]o) = T1~(X(-oo,EJ) E [0, 1] 1 E isa gap} we use 

to label gaps in the spectrum of H is difficult to compute. In the following, let us 

look at some examples of Schrodinger operators of t he form (0.0.1) in one dimension 
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that have been designed leading to a Cantor spectrum. 

An example of a one-dimensional discrete Schrodinger opera tor is the Almost Mathieu 

operator on e2 (Z) , in which the potential given by 

V(n) = 2A cos(21r(an + w))'l/; (n) , 

where a ,w E 1I' = lR/(27r.!Z), A > 0. By [19], for irrational a, it is known that the 

spectrum of H a: ,w,>. is a Cantor set of t he real line. 

It is shown in [7] that one dimensional Schodinger operator on e2 (Z) with potential 

given by 

V (n) = AX[l-a:,l[(x + na), a tf. Q 

has a Cantor spectrum of zero Lebesgue measure for any irrational a a nd any A > 0. 

Moreover , as shown in [25], the spectrum of t he discrete Schodinger op erator with the 

potential g iven by 

where w = ( J5 - 1) / 2 and XI is the characteristic function of the interval I , is also a 

Cantor set for l~t l ~ 4. 
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