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Abstract

A BST RACT

The aim of this work was to develop a num erical program to decompose shallow water

waves in order to properly analyze the wave induced forces on ocea n vessels . The program

was used in conjunction with waves genera ted in a model tank enviro nment. The program

identified the known waves in the tank and remove d unw anted wave elevations crea ted by

impe rfect model tank conditions. This wi ll enable model testing and numerical modelin g to

more acc urately analyze wave-s hip interaetion , thus improv ing design and prediction for

vesse ls ope rating in sha llow water regions.

A literature revie w discusses the theories required in order to crea te a wave splitting tool as

well as the theory used to simulate the theoretical set-dow n wave. The results were

validated in the time and frequ ency domain agai nst a report from Maritim e Research

Inst itute Netherland s (MA RIN) and the National Research Co unci l (NRC) results,

respective ly. Result s were generally accep table; test cases became less favora ble as wave

freque ney decreased. Potential future work on this top ic includes using improved input

wave da ta to com pute wave-i nduced forces on vesse ls.
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Statement of Problem

I. INT RO DUCT ION

1.1. Statemen t of Probl em

Having vario us means to predict the perform ance of a vesse l's interaction with the ocean

environme nt is important for ship structure design . Full sca le trial testing is expensive and

time consuming but can be one of the most reliable form s of predi ction . Model test ing is

less expe nsive than full sca le trial testing but is conduetcd in a man-made environment,

which can produce inaccuracies. Num erical simulation is typically the least expensive

alternative, which can predi ct vesse l perform ance using empirica l analysis or computational

method . However, num erical simulation also has associ ated inacc urac ies in part due to the

difficulty of using analytical express ions to simulate the randomness of ocea n conditions.

For most com panies full scale test ing is not a viable option due to financial cons traints and

limited resources, there fore model testing and num erical simulations arc favora ble.

However, in order to determin e the perform ance of a vesse l in a model tank enviro nment, it

is important to have a proper und erstandin g of what types of waves arc produced in the

tan k. When waves arc measured in a tank, the total wave elevation is measured by an

instrume nt such as a wave probe. The measured wave eleva tion is made up of severa l wave

components: incident, reflected , and bound waves . Incident waves are crea ted by a

mechanical wave makin g device. Reflected waves arc created due to the constraints of the

model environment in which the incident waves arc reflected from the oppos ite end of the

lan k in which they were created. The intensity of the reflected wave s can be redu ced if the
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tank is equipped with man-m ade wave absorbers, which simulates a tapered beach

shoreline. Bound waves , also known as wave set-down and set-up, were a phenomen on first

reported by Longuet-Higgins and Steward ( 1964). They introdu ced a concept of radiation

stress which explained that an individual wave component from a wave group can exert an

internal compress ive force in the direction of the propagated wave . The force is balanced by

the water level decreasing in regions of longer wavers, known as wave set-down, and the

water level increasing in shorter waves, known as wave set-up. This concept was proven

experimentally by Bowen et. al. (1968).

The incident and reflected waves arc comprised up from first order wave components

whereas the bound waves composed of second order wave component s that arc more

significant in shallow water depth . Van Dijk (2007) illustrates the increase in wave set-

down in shallow water regions, as shown by Figure I-I , where WD is water depth .

Figure 1-1 - Wave Set-down Comparison between Shallow and Deep Water (Van
Dijk2007)
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Incident, reflected, and bound waves arc the waves known waves types that arc produced in

a model tank environment. However, imperfect conditions within the tank crea te extra

unwanted waves and need to be distinguished and removed from the deliberately generated

wave types. If the unwanted waves arc not removed from the known waves, large

discrepancies can occur from the model testing results and full scale tria l data.

Once the measured waves arc split into the different wave components in the tank, a more

accurate analysis can be completed for vesse l design. Moored liquefied natural gas (LNG)

caniers, in particular, have a fundamentall y weakly damped nature and when combined

with the second order waves can produce significant resonant motion and assoc iated loads

(Nacir i, 2004). Therefore modeling of mooring design and ship-wave interaction in shallow

water regions improves substantially by the use of this wave splitting technology.
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1.2. Thesis Structure

This thesis describes the process of develop ing a numerical program that wi ll identify and

split the various wave components within measured waves. The results of a literature and

theory rev iew arc also discussed .

Chapter I introduces the top ic and presents a literature review . The probl em and theories

developed by different authors and exa mines why wave decomp osition is needed espec ially

when deal ing with a model tank environm ent.

Chapter 2 presents the theories used to develop the equations that are used for the wave

splitting program. Th is includ es details on digital methods, Fourier ana lysis, spectra l

analysis, as we ll as the wave splitting theory.

Chapter 3 describes the environment in which the wave data was generated and used for the

wave splitting program . The type of wave tank and wave maker are describ ed as well as

equat ions used to simulate the second orde r wave components.

Chapter 4 describes the computational methods that were incorp orated into the wave

splitting program . The band-p ass filter, fast fourier transform, newton raph son, and also

singular value decomp osition were described .
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The results are displayed and discussed in Chapter 5. The results are validated aga inst

published results from MARIN and NRC. The results are shown for the longest wave

period case of 2.145s for the Offshore Engineering Basin (OEB) wave generation data,

since that case shows the larger peaks. A comparison between the fi rst order and second

order wave generation is done to show the contribution of the second order wave

component. A discussion is done to compare the measured wave data to the low frequency

Chapter 6 consists of a summary of the results and findings from the research and future

work is recommended. The research can be continued in such a way as to find the wave

induced forces, from the properly split wave data, as well as the wave induced motion on a

ship.
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1.3. Review of Literature

The need for this research has been well document ed by various authors . Hansen et. al.

(1980) discuss how resonance conditions can create unacceptably largc movements of

moored vessels and can result in mooring failure in harbours and bays. This phenomenon

can result in difficulties for the operation of ship tcnnin als. Harbour resonan ce can be

caused by a variety of occurrences but in particular long period waves from distant storms

or wave groups (Hansen et. aI., 1980). Hansen et. al. ( 1980) further state how generating the

long period waves can be difficult in physical model , which is reiterated by many authors,

such as Sand ( 1982) who states the importance of long waves being correctly represented in

the physical model due to its influence on mooring forces and slow drift oscillations.

Recently, a higher demand for LNG carriers (Nac iri, 2004) and in tum a higher

development of LNG terminals (Voogt, 2005) has been noted . Due to this increase, there is

a grea ter need for hydrodyn amic modeling tools for floaters, particularly in shallow water ,

as most of the terminals for the LNG carriers arc located ncar shore or in relatively shallow

water. Low frequency excitation of the wave set-down increases in shallow water (Voog t,

2005). LNG carriers have inherent weakly damp ed nature (Naciri , 2004) and when

combined with the low frequency waves can cause significa nt resonant motions and related

mooring loads (Voog t, 2005).

Low frequency bound waves, also referred to as set-down waves, found in shallow water

environ ment have been discussed in detail by Longuet-Higgins and Stewart ( 1964), Hansen
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et. al. (1980), and Sand ( 1982), among others. Longuet-Hi ggins and Stewart ( 1964) stated

that short period waves induce long period waves with periods equal to that of the wave

group. They describe a ' wave group' as " .. .wave trains of nearly the same frequency and

wavelength propa gated in the same direction , resultin g in the form ation of 'g roup' of

waves". These long period wave s, which can also be termed low frequency waves , arc

bound to the group of waves propagating with group-velocity cg (Sand, 1982). Hansen et.

al. ( 1980) describe the long waves as "wave set-down" as the troughs of the long waves arc

found at the regions of the larger waves in the group, as shown in Figure 1-2.

SET -DOWN

PR O PORTIONAL

TO H 2 _H2

Figure 1-2 - Wave group versus the wave set-down (Hansen et. at. 1980)

The set-down long waves were discovered from radiation stress and the momentum

equation (Longuet-Higgins and Stewart, 1964) but were also obtained from perturb ation

analysis of the Laplace equation (Hansen et. al., 1980). The latter will be explored in this

work.

Hansen et. al. (1980) further describes the problems that can occur in the physical model

tank environment. Although model testing has improved with the generation of natural ,

irregular waves , a problem still occurs when the paddle genera tes waves using the typical

first order motion. Since the long waves are of second order approx imation, the first order
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approxi mation does not reprodu ee the drift veloe ities (Hansen et. al., 1980). The paddl e will

then produee natural drift velocities that will be of equal magnitud e and oppos ite sign,

which is a progressive long wave that is free and not bound ed to the wave group in contrast

to the set-dow n wave that is bound ed to the wave group. Hansen et. al. ( 1980) also terms

the free wave as a parasitic long wave, which causes the long wave effec ts to be

exagge rated in term s of harbor resonance and slow drift ship motions. Sand ( 1982) furt her

elabora tes that the free long waves do not follow the dispersion relation . Th is parasitic

wave must be identified and remove d from the model testin g environment in order to

produce accura te results. Hansen et. al. ( 1980) sugges t that a seco nd order long period

signal be impose d on the first order signal to produ ce the drift velocities requi red for the

set-dow n wave. Hansen et. al, (1980) expand the bounda ry conditions to apply to the

seco nd orde r approx imation as well as applying the Laplace equation with the nonlin ear

sur face cond itions (Sand 1982). Thu s the posit ion for the paddl e can be correc ted to apply

the seco nd order approx imations.

The long waves are found by a summation of diff erences between eac h pair of frequ encies

of the short, or first orde r, wave spec trum (Hanse n et. al., 1980). Hansen et al. ( 1980)

describe the long period waves as the sum of subhanno nics. They state that a regular wave

group wit h wa ter surface eleva tion 11nm and frequency D.f,Ull that consis t of two regul ar

waves with wa ter surface eleva tions 1111, 11mand fr equ encies I'll, f"" where n and m are indices

for the numb er of waves being considered. The wave group eleva tion and frequ ency is

equal to :

1]nm < n: +1]m
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!J.inm= in- im

Since we know that the wave group generates wave set-dow n, wave group 'lnl11will genera te

wave set-down ~nl11 ' Hanson et. al. (1980) state that each pair of n, m components of the

spectrum will contribute to the set-down. Thus by summing all the contributions of all the

pairs will give:

where m*=f*/fo, f* is the lowest frequency of the regula r wave spectrum and 10 is the

interval of discretization of the regular wave spectrum. Further theory on the calculation is

discussed in the theory section in this Thesis.

Hansen et al. (1980) and Mansard ( \99 1) briefly discuss supcrharmonics corres ponding to

the second order correc tion containing a number of terms that pertaining to the sum of the a

pair of frequencies in the short wave spectrum. Since this Thesis is concerned with

inves tigating low frequency waves , superharmonics arc not considered.

Voogt (2005) describes a procedure for splitting the individual wave components in order

to identify the low frequency bound wave and comparing the analytical wave set-down to

the separated wave set-down from the measured wave. The analytical wave set-dow n

model is described by Sharma and Dean ( 198 \) and is frequently referred to when

calculating the theoretical wave set-down. The wave splitting program created for this

research used the methods described by both Voog t (2005) and Sherman and Dean ( 191\1)

since thcirm ethods arc well defined .
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Stransberg (2006) present s new result s for identifying the low frequency waves from bi

chroma tic waves (waves having two frequ encies) with and without a correc tion to the wave

maker to remove the free waves. He uses an itera tive process to find the optima l correc tion

signal through repeated tests in a large wave basin. His find ings show improve ment in the

correc ted result s in which the free waves were reduc ed . In the present work an attempt is

made to compare a correc ted seco nd orde r wave genera tion but not in the iterative sense

that Stransberg presents, but as prop osed by Sand ( 1982) which is prev iously describ ed . A

large wave basin was utili zed, although the NRC basin is not as big as the MARINT EK

basin in which Stransberg conducted his experiments, but it is considered a large basin.

Masard and Funke ( 1980) describ e a method to identi fy the incident and reflected spec tra

from the measured spec tra from a wave tank using the least square method. It requ ires three

simultaneo us measurement s with in the tank that arc in reasonable proximity to eac h other

and arc in parallel to each other in a line from the di rect ion of the wave propagation. It has

shown to give goo d agreement in comparison to incident spec tra measured concurre ntly in

a side channel. Voog t (2005) states that the least square method will give best results lor

three wave components: incident, reflected , and wave set-dow n. For this wor k only two

components arc split from the measured wave and thus the singular value decomp osition

formulation was used.

Mansard ( 199 1) developed a num erical techniq ue, base d on the previously descr ibed

interactions between free and bound waves, that illustrates the posit ion in the wave tank

10
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where waves of the same frequency would interac t and either eancel or reinforce eac h

other. The results of his research confirm the use of second order wave generation

techniques reduce the parasitic free wave which produces more realistic wave profiles. He

states that even when incorporating second order wave generation techn iques for an

irregular spectrum, rather than using monochromati c or bichromatic waves, there can be

high osci llations at the tail end of the spectrum due to the interactio n of free and bound

components. These osc illations can cause differences in wave parameters such as

significant wave height and crest front steepness (Mansard, 1991).

The experiments carried out by Zaman et. al. (20 II ) were done in orde r to identify the

spurious waves in shallow water using the OEB, NRC. They generated multi- chromati c

waves using first order and second order techniqu es. They show the differences between

the first order and second order wave generation. The results from this research are

validated against their results.

II
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2. T HEO RIES

2.1. Digital Methods

A signa l is any conversion of some prop erty, such as temp eratur e or pressure, from its

original physical form to a related elect rica l quantit y. A signal can be class ified into two

ca tegor ies : determini sti c and rand om. A determ inistic sig nal can be predi cted by

mathemat ical relations and a rand om signal is not predi ctabl e, however it can be

estima ted through statistics and prob abili ties. A method of distin gui shin g between the two

categories is to compare severa l se ts of data obtained und er identi cal condi tions ove r a

reasonable period of time. Some times a signa l may appea r to be rando m but is in fact

determin isti c, and can be proved to be determini stic usin g, for example , an auto-

corre lation process (Beauchamp and Yen, 1973).

The follow ing sections describ e fund amental principl es of digital signa l ana lysis with

refere nce to Digital Meth ods for Signal Analys is (Bea uchamp and Yen, 1973).

Determini stic Signal s

A determini stic signa l can be determ ined from time-hi story and is genera lly repr oducibl e

under iden tical conditions. The math emati cal form of a determ inist ic signa l can be

described as periodi c or transient signa ls. Period ic signa ls continuous ly repeat at regul ar

intervals whereas transient signa ls decay to a zero value after a finit e length of tim e.

Period ic signa ls arc compr ised of one or more sinuso ida l signa ls having an integral

relationsh ip with this period over time. T he basic sinuso ida l equation is describ ed in

12
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Equation [2.1], where A is the eonstant repr esentin g the peak amplitude o f the wave form ,

(1)0 is the angular frequ ency and 0 is the initi al phase ang le with respect to the time or igin.

Equation [2.2) describ es the mathematical exp ression for the angular frequ ency wo, where

1'0 is the cyclica l frequ ency in Hz. Equation [2.3) descr ibes the period , T, of the wave

form . Figure 2- 1 displa ys graphica lly the sinusoi da l equation.

x(t) = Asin(wo t + 8)

W o = 2nfo

1
T =

fo

Figure 2-1- Sinusoidal Wave (Beauchamp and Yen, 1973)

(2,11

12.31

The Fourier series is a mean s to express a genera l relationship for period ic sig nals, in

wh ich harm oni c components repeat exac tly for all values of t, describ ed in Equat ion [2.4).

13
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(2.4J

where Ao: the mean level of the sig na l

An: the peak am plitude of the n'h harm oni c

On: the phase of the n'h harmon ic

Determinist ic signa ls can be a com bination of severa l sinuso ida l cle ments and may not be

harmoni call y related. Th e determ inistic signa l will have simi lar spec tra l charac ter istics as

a periodi c sig na l.

Random Signals

A rand om signal is useful for obtaining new and unpr edi ctable va lues that wo uld not be

guessed or est ima ted from previous data, althoug h this does not mean tha t the va lues are

unstruc tured , Since random signa ls cannot be determin ed explicit ly, probabilities and

stat istics are the primary means of es timat ing a so lution.

An ensem ble is one rand om process which will produce a set of time-h istories . An

exa mple of an ensem ble may be an experiment which produ ces rando m data and is

repeated N times (Bea uchamp and Yen, 1973). The statis tica l value for this ense mble is

obta ined by consi de ring record s taken at specific instants in time . The ave rage can be

ca lculated at a spec ific time l j, shown in Equation [2.5], as we ll as the average va lue of

14
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the products of two different samples at d iffer ent times, say t) and t2, known as the auto-

corre lation function , described by Equation [2.6]. Note that T= trtl .

N

(X(t l )) = J~~LXk(tl)
k = l

(2.51

12.61

where N is the length of the reco rd, and k is the index of summation for the ense mble.

The sig nal is sta tionary if <xft j) and R(T) are constant for all values of t, and also if R(T)

relies only on time displ acement (T). A record can be partiti oned into equal sec tions in

order to calc ulate the average va lue of any sec tion, as shown in Equat ion [2.7]:

T

XM = lim ~f XM(t)· dt
T~ oo T

o

where Mis a section ofthe record .

(2.7)

Properties of the Signal

The properties of a signal can be defin ed in a probab ilist ic sense in term s of amplitude,

time and frequency do ma in.

Amplitude Doma in

• Root mean- squ are va lue : shows the amplitude 's e ffect of the signa l but is

15



Digital Method s

insufficient in showing the variable nature of the process . Therefore the

prob abilit y of the amplitude excee ding, or lying between spec ified levels, must be

determin ed. The ca lculation for the root mean square is given by Equation [2.8]

for continuous data and by Equation [2.9] for discrete data.

T

X M = ~ [ x 2 (t ) . dt (2.81

12.91

• Probab ility density function : determin es the probability that the signal will be

found within a give n range . It is more suitable for smaller possibl e numb ers of

discrete values ofx.

• Probabilit y distribution function: describ es the probab ility that the variable will

assume a value less than or greater than x. Thi s case is more suitable for larger

domains such as when the possible numb er of discrete values o f x is great.

• Auto-correlation function: used to statistica lly determin e information about the

periodic behaviour by takin g measurements o f the am plitude of the signal at two
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instances, separa ted by T, and findin g thei r produ ct and averag ing over the tim e of

the record. Th e main value of auto-corre lation is to expose any hidden peri odi city

within the signal.

• Cross correlation function : calculates the relation between the two signa ls.

Frequency Dom ain

• Fourie r Transform : Fourier series analys is can provid e peak amplitudes and

related harm onic s contained within a sig nal. But it cannot be appli ed to rand om

signals as the comp onent s arc not necessaril y hann oni eally relat ed. There fore a

Fourier Transform is used to measure the relative amplitudes of the frequ ency

components.

• Power spec tra l density: ca lculated by findin g the mean- squ are valu e of the

instantaneo us power at a given frequ ency ove r time T.

• Weiner-Kh intchin e Relationsh ip : relates the power spec tra l densi ty function and

the auto-correlation funct ion and is important for practical measur ement methods.

Required Length of Record

The length of reco rd is imp ortan t for acc uracy of the statis tica l es tima tes . Each method of

ana lysis defin es its own minimum length. In genera l, the reco rd length is inversely

propor tional to twice of the bandwi dth (B) multipli ed by an estima tion erro r (c) as we ll as

bein g proportional to a proport ional constant (K) which is depend ent on the measur ed

property. For a mean square and power spec tra l density es timates, K is often ass umed to

be equal to 2.
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Digitization of Continuous Information

Inorder to conve rt a continuous ana log signa l to a discrete form of values , samp ling must

be completed in the time dom ain, qu anti zat ion in the amplitude dom ain , and then coding

the final results into digital form . Errors can occ ur from the limit ations of these

procedur es.

Sam pling can be completed at a cycl ic rate sampling which is a sinuso ida l function that

samp les in accordan ce with a linear function of time. Another method of sampling can be

done at equa lly space d time intervals, known as unif orm sampling. Apert ure is the length

of time over which data is ave rage d and should be sma ll compared to the sampling period

in order to prevent erro r.

One of the most sig nifica nt difti culti es arises from alias ing effec ts in whi ch the measur ed

signal is indistinguishable from other signa ls. For example if a high frequ ency signal is

measur ed at too Iow a rate then the signal can be interpr eted as a low frequ ency sig nal.

Thus the high frequency signal looks like the low freq uency signa l and cannot be

identifie d from one another, as shown by Figure 2-2 .
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A high frequenqrsig na l

_ MNMNWMMm
111111111 .111111111 .11111

sc ropled ct too lov c rcta

c lov er Ireque n cy siqno l

Figur e 2-2 - Aliasing Effect s from Signal Processing (©BORES Signal Processing
2009)

Another importa nt par ameter in signa l processin g is the Nyqu ist Frequency (fN) . It is

defined as hal f the sampling frequency of a d iscrete signa l. Wh en a co ntinuous signal is

sampled, all the alias ing effects occ ur above the Nyqui st Frequency. Addi tiona lly, if 1:, is

the funda mental frequency of the true signa l, alias ing will not occ ur when frequ encies

range from zero to fN.

Accor d ing to the Raleigh Theore m, time T must be grea ter or equal to the recip rocal of

twice the band width, 8 :

1
T >

- 28

Signals must be subjec ted to band-p ass filters prior to d igitizat ion . In summary, signa ls

have to be a finit e band width up to 8 Hz and are separated by 1/(28 ) seco nds.

19



Digital Method s

The sampling rate must be made large in order to have a practical filter in realit y, and thu s

may be higher than the sampling theorem sugge sts. Prop er frequ ency redu ction may not

be ach ieved until two oc taves higher than the cut-off frequ encies. O ften, the sampling rate

is set to 1.25 times the filter cut off frequ ency.

As part o f the digiti za tion process, qu anti zation allows a se t of continuo us va lues to be

repr esented as a limit ed series of discrete numbers. Thi s is only an approxi mation since

the origi na l numb er, wh ich has an infin ite numb er of states, must be trun cated in orde r to

be rep resented digitall y with a limit ed numb er a bits. Th is process is non-line ar when

repr esentin g a physical quantity numeri cally. The result is expresse d as an integer va lue

corresponding to the nearest who le numb er of unit s.
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2.2. Fourier Ser ies

Fourier transform is the means to which dat a can be transform ed into the frequency dom ain

from the time domain. Using the common trigonom etric identity shown in Equation [2.10],

the Fourier 's theorem series shown in Equation [2.4] can be rewritten into an expanded

form shown in Equation [2.11].

s in(A + B) = sin A cos B + cos A s in B

xU) = Ao + Al sin el . cos wot

+ A l cos el ' sinwot +...

+ An s in en . cos nwot

12.10)

(2.111

We can simplify Equation [2.11] by lettin g the sine and cos ine term s equal to variables

which can be later der ived theoreti cally using various integrals. The variables can be

wri tten as:

Uk = An sinen

bk = An cos en

Note that the constant term ao is written as twice the original con stant whi ch is done for

simplicity later on in computation since the con stant is arbitrary. Inputtin g the above terms
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into Equation [2.11] we obtain Equation [2.12] which can be simplified into the Fouri er

series equation notation , as shown by Equation [2.13].

x (t ) =-T + a l cos wot + b, s in wot + ..
(2.12]

n n

x(t)=-T+ ~akcoskwot+~bk sinkwot (2.131

Using the prop erty of orthogonality for sinuso ids, the only finite value that can be obtained

for the sine and cos ine functions is equal to 1/2 . Thi s is obtained by squaring the sine and

cosine respectively. In addition, frequen cies and phase shifts must be equal, otherwise the

product will be zero (Beauchamp and Yucn, 1973). Orthogo nality is an important princip al

for the Fouri er series as it will simplify the equat ion greatly. We can sec that from Equation

[2.12] all the term s will thus redu ce to zero exce pt for the first term and therefor e the

integral ofx( t) ove r the period T will be:

J
T JT ao ao

o x( t) dt= 0 Z"dt =Z"T

The constant term is therefore equal to:
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ao 1f-=- x ( t ) d t
2 T

o

Fourier Series

(2.141

We can solve for the variables ak and b, by multipl ying the x(t) function by both sin kwot

and cos kwot. The terms will all vanish exee pt for the sin2 kwot and cos2 kwot terms which

are equal to '12 as previously stated. Therefore we have:

T T

[ x(t) s in k wot dt = [ bk s in 2 k wot dt = »,~

T T

[ x( t) cos k wot dt = [ a k cos ? k wot dt = a k ~

Therefore we now have equations for the variables which represent the amplitudes of the

harmonics found in the orig inal function x(t) and are known as the Fourier coe fficie nts and

are shown in Equations [2.15] and [2.16].

T

bk = ~ [ x( t) s in k wot dt

T

ak =~ [ x( t) cos k wot d t

23
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Complex representation of the Fourier series and integral allows lor further development of

the Fourier transform . Using the followin g identities we can expand the notation s in

Equation [2.13] whcrc j- v-I :

1
cos kwo t = 2" [exPCikwot) + exp( - j kw ot) ] 12.171

1
j s in k wo t = 2" [exPCikwot) - exp( -jkwot)] (2.181

Incorporat ing Equations [2.17] and [2.18] into Equation [2.13] gives:

= -T[eXpCik wot ) + exp(-jkwot) ]

+ f[ exPCikwot ) - exp(- j kwot) ] (2.19]

= Ak eXPCikwo t) + Bk exp( - jk wot )

where A, and Bk represent complex conjugate amplitude coe fficients and arc equal to:

12.201
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(2.211

Using Equations [2.15] and [2.16], as well as incorporating the identities of Equation [2.17]

and [2.18], we can re-write Equations [2.20] and [2.21] into the expanded integral form,

which uses the original function x(t) as shown by Equations [2.22] and [2.23]. Note that t

has been changed to p for the integrations since t needs to be maintained for the exponcntial

function.

T

Ak = ~ [ X(P)[COSk Wop-jSinkWoP]dP

T

= ~ [ X(P) exp(-jkwop) dp

T

e, = ~ [ x (p) [coskwo p + jsinkwop]dp

T

= ~ [ x (p ) exP(jk woP)dP

12.221

12.231

Wc can now expand the Fourier series into complex notation by incorporating Equations

[2.14], [2.19], [2.22] and [2.23] into equation [2.13].
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x( t)

12.241

Express ion [2.24] ca n be simplified as there arc a number o f sequence of terms that arc

summed from k= I to k=n as we ll as k=-I and k=-n for the third term (by incorpor atin g the

negative in the expo nential term ) so that we can jo in the terms to be the summa tions from

k=- n to k=n whi ch includ es the first term at k=O. Therefore Equation [2.24] can be rew ritten

Fourier Integral Transform

Since Fourier series ' has limitations in that it ass umes the tim e function is infi nite and that

the data is periodi c, which in practice is not reali ty, Four ier Integral transform is used for

most sig nal data. The data can no longer be ass umed that it will repeat in finitely, therefore k
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and T arc ex tended to infinit y and the fund amental frequency will lead toward s zero. Th e

separation between harmoni cs also tends to zero which will cause the Fourier eoelli cicnts

to become continuous functions of frequ ency. A couple of noteworth y relations arc:

k
y =f

w = 2rrf

Therefore we can restate Equation [2.25) in term s of frequency in the complex form of a

Fourier integral as shown by Equation [2.26).

x( t) = J[J x( p)exp(-jwp) "dP]ex P(jw t) <d] (2.26(

The contents within the bracket s in Equation [2.26) represent the amplitud e of the complex

Fourier coe llic ients for a continuous time series. Isolating the bracketed express ion we have

a frequency function as shown in Equation [2.27)"

X(f) = ! x (p ) exp(-jWP)" dP

27
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X(f) = Jx(t) ex p( - j wt )· dt

to show in its or igina l time form .

Fourier Series

12.281

Equation [2.28] is the complex Fourier transform of the time series x(t). The absolute

values of X(f) gives the frequency amplitude and the argument gives the phase. Thu s

Equation [2.26] becom es:

x( t) = JX(f) ex p(jwt) . df 12.291

which is know n as the inverse complex Fourier transform . In discrete term s Equation [2.29]

becom es:

x(t) =f Xk(f) ex p(jwt) . df 12.301

O ften (Jl is used in place of f, for example when a sca ling factor of 1/2rr is app lied to a

complex transform. Alternative forms of writing Fourier transform are used to quanti fy

them in terms of cos ine and sine. If the x(t) functio n is even , ie. x(t) is sym metric about the

t=O axis, the Fourier transform becom es known as the Fourie r cosine transform Xc(f) and if

the function is odd the Fourier transform beco mes known as the Fourier sine transform

XsCf), as shown by Equations [2.31] and [2.32].
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Xc(f) = Jx(t)cos wt - dt

Xs(f) = Jx(t)sinwt -d t

Fourie r Ser ies

(2.311

(2.32(

Discret e Fourier Series

For discrete digi tized data, a finite form of Fourier series is needed to derive a disc rete fonn

of the Fourier transform . Co mputat ionally the discrete Fourier transfo rm is identical to the

comp lex represe ntation of Four ier series described in the previous sec tion but the

theoretical derivation is quite different. There are quite a few more limitations to

discon tinuous discre te data in contras t to continuous, which occur from an attempt to

preserve informa tion when conve rting between continuous and discontinuous data.

A numbe r of con ditions must be included in orde r to derive the Fourier transfo rm, For a

samp le record of length T seco nds, it is div ided into N equally spaced points by h length,

also know n as the time step. The sampling rate , fs, of the record is 1/h . There are a limited

num ber of frequ encies that can represent the time series and is estab lished by the Nyquist

frequency, fN. The Nyq uist frequency is half the samp ling frequency and is thus equal to:
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Since the record length for the time series has N number of values to compute, but in the

frequency domain the Fourier coe fficient contains a rea l and imag inary value, the frequency

components must be limited to N/2 discrete values.

Now to expand the Fourier series shown in Equation [2.13], we will use i to describe the

time series summation and n for frequeney domain . Therefore:

t = i·h (i = 1,2,3 ...,N)

N
f = fn (n = 1,2,3 ··'2)

Replacing Wo by 21t!Tand k by n, Equation [2.13] will become Equation [2.33].

NI Z NIZ
ao "\' n 2rrih "\' . n2rrih

Xi =2+~ an cos-T-+~bnSm-T- 12.331

Since T=h*N and to show the spec ial case where the constant term in Equation [2.33] can

be removed, when considering the mean value case when n=O, we can rewrite Equation

[2.33] to:

NI Z NI Z
"\' n 2rr i "\' n2 rri

Xi =faan COS N +fabn sinN

30
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Equation [2.33] and [2.34] are the main express ions used to defin e discrete Fourier series.

Similarly, the coe fficients can be derived from Equations [2.14] , [2.15] and [2.16] to be:

N
2"\:' n2rri

an =N~Xi COSN

N
2"\:' n2rri

bn =N~ Xi SinN

Discrete Fourier Transform

Since there are limitation s implemented on discret e data, we know that integrals must be

replaced with summations and that the limits on the summations cannot be infin ite. In ord er

to use the discrete Fouri er series derived in the previous section, the transform X(!) must be

complex so that it would contain both negative and positive frequen cies such as:

wherej signifies the complex comp onent. Th erefore we can rewrit e Equation [2.34] as

N

xi = INx, ex p en~rri) (i = 1,2,3, ... , N) 12.35)

n=-2
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Due to the fact that two spectrum components arc generated for each real frequency, the

summation of the two components will cause a doubling of amplitude of the spectral series

produced. There fore a scaling factor of l iN must be included to properly account for the

increase, which allows the transform to be written as:

N
2

1 ~ ( jn2rri )
x; = N .~ xiexP ---;:;-

1=-2

12.361

Equations [2.35] and [2.36] can be further simplified by noting that they arc symmetrical

for the positive and negative values ofN . Therefore Xi and X, become:

Xi = %, Xn exp en~rri) 0,n= 0,1,2, ... , (N - 1)) 12.37]

N-l

1~ (jn 2rri)
x; =N~ Xi exp ---;:;- (2.381

Equation [2.37] and [2.38] arc the discre te Fourier transform and inverse discrete Fourier

transform, respectively.

Fast Fourier Transform

Due to the slow computational time of the Fourier transform , which is a I: I conversion of a

data sequence, a method called the fast Fourier transform (FFT) is often used instead. It was

described by Cooley and Turkey in 1965 (Beauchamp and Yuen, 1973) in a method to case
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machin e ca lculation and also independ entl y di scovered by Danielson and Lan ezos in 1942

(Press et. a l., 1992) wh o were not able to sec much usc o f it when the most adva nce

techn ology was a hand calculator.

The Coo ley -Tukey meth od redu ces a large process of matrix multipl icat ion and addition to

a ser ies of sparse matri ces. Thi s eliminates much of the redundancy that occ urs usin g

discrete Fourier transform s (OFT) , wh ere man y of the produ cts arc repea ted. The matri x

multipli cation requ ires N 2 complex mult iplications for a OFT but a FFT can be done usin g

Nlog-N which makes a large difference in term s of computation tim e. For exa mple (Pr ess

et. aI., 1992) N= 106 wi ll take roug hly 30 seco nds for Nlog-N and 2 wee ks for N2

computation tim e on a micro second cycle time computer.

Dan ielson and Lanezos (Press et. aI., 1992) provi de one of the clearest derivations of the

FFT algorithm . They describ e the length T of a signal Xi can be split into two discrete

Fourier Transfo rms of length T/2, one being an eve n- indexe d (i=2 m) point s, X2m, and the

other bein g odd-indexe d (i=2m+ I), X2m+l . After the two DFTs arc computed, they arc

comb ined to produ ce the full sequence as show n in Equation [2.39] , which is ex panded

from Equation [2.38] , noting that the sca ling factor is not shown for simplicity.
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N/Z-l
\""' ( j n2 rr(2 m) )

= ~o Xzm ex p - - -N-

12.39]
N/Z-l
\""' ( jn2 rr(2 m + l) )

+ ~o X(Zm+l)eXP ---N--

Taki ng out the eommo n multipl ier exp ( -~) of the odd-indexe d summation, using the

e(,,+b)=e"eb identi ty, and simplifyi ng we ean clearl y see the eve n and odd indexed parts that

makc up thc x.funct ion:

~-l ( )2rrjnm
= L xzm exp -~

m=O 2

~-l ( )2rrjn 2rrjnm
+exP (-~) LX(zm+1)exp ":»:

m=O 2

= Fev en + ex p ( - 2~n). Fodd

12.401

One of the easiest ways to eompute the FFT is to use a radix of 2 for the number of inputs

N, ie. N=2P where P= 1,2,3 . . .co, The advan tage of the radix of 2, as described by
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Beauchamp and Yuen ( 1973), is due to some of the term s of the commo n multipli er, shown

in Equation [2.40], reduce to either 1 or -I wh ich avo ids even further complex arithmetic.

The structure of the computation of the FFT is described in sec tion 4.2.
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2.3. Spectral Analysis

The previous sec tion describ es the value of working in the frequency domain using a series

of values . Th is sec tion develops the usefulness of the frequency dom ain in term s of an

electro nic signa l.

Amplitude and the power of the signal arc the most frequently used and useful

charac teristics of a signal in the frequency dom ain and were defined in sec tion 2. 1. Each

characteristic pertains to a certain frequency and when combined create a wave spec trum as

shown in Figure 2-3 . The charac teris tics of a signal create what is known as a power

spectrum and is an ave rage quantit y which describes the energy that is alloca ted at asso rted

frequencies .

Figure 2-3 - Wav e Spectr um (Voogt 2005)

Spectra l Analysis allows certai n charac ter istics of a signal to be calculated which wo uld

otherwise be quit e difficult . For exa mple, as noted by Beauchamp and Yuen ( 1973), the

difficult y of calc ulating the total energy of signals can be reduced by integrating the power

spect ral density since the power at individual frequencies can be eas ily found. Another
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useful application of spec tral analysis is determinin g the relationship between correlation

and spec tral density, in which one quantity can be found from one another, even if the

signal is immeasurable in the time domain. The link between the two quantiti es has been

useful for finding analogies of theorie s in the subjec t of signal analysis. Beauchamp and

Yuen (1973) note that we cannot measure visible light as a time series, but it is possible to

measure the spectrum of a light source. Thi s trait becomes particularly useful when

incorporating fast Fourier transform algorithms.

Beauchamp and Yucn (1973) note several techniqu es used for determinin g the power

spectral density:

• Dircet Fourier transform : Computes Fourier transform of the time series and then

themean-square valuei s ealculatcd.

• Indirect method : The Fourier transform of the auto-correlation function is calculated

and then the spectral density function is deriv ed.

• Band-p ass filtering: A method of filtering out unwanted data from a range o f

frequencies .

The direct method was used in this research as is more common after the development of

the FFT subroutines sinec this allowed for a much faster computational time. A band-pass

filter was used to smooth the spectral density curve to produec reliable estimates.
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Power Spectru m Estimation

The square of a random signal will calculate its energy content and the square of Fourier

transform at a frequency f will give the energy content at f. Since we are dealing with a

random process, the values at the Fourier transform will fluctuate at any frequency.

Therefore two pieces of a random signal at dif ferent times would produ ce difTerent Fourier

transforms, thus the square of a Fourier transform cannot deseribe its energy content in

general. But the use of an ensemble average, as describ ed in section 2. 1, of a Fourier

transform square ean be used to describe the importance of the Fourier transform at any

frequency. There fore we ean describe the power spectrum, or auto-spect rum, as:

S(f) =< IXCfW >

where X(I) is the Fourier transform as derived in the previous section. In orde r to prove that

the total power contained in X(I) is equal to that of x(t), Parseval theorem is derived. Real

functions x(t) and yet) are mult iplied and are expressed in terms of Fourier transform using

Equation [2.30]:

x ( t)y(t) = x( t) f Y(f) ex p(j wt) . d f

Taking the integra l of Equation [2.4 1] we get:

12.411

f x(t)y(t) d t = f{f x( t) Y( f) ex p(jwt) d f }d t 12.421

And rearranging Equation [2.42] we get:
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Jx( t )y(t) dt = JY (f) Ux( t) exp(jw t) dt} d f 12.43)

where the bracke ted part in Equation [2.43] is the co mplex co njuga te of X(I) and thus

Equat ion [2.43] can be rewr itten as Equat ion [2.44] .

Jx(t) y(t) dt = JX ' Cf)Y Cf )df

Letting x(t)=y( t) and X( I)=Y(f) then equation becom es:

12.441

Jx 2( t) d t =JX'Cf) XCf) d f =JIXCf)1 2 d f (2.45J

When the ense mble averages are taken on both sides in Equation [2.4 5], we get:

J(x 2 ( t )) dt =JS(f)df 12.461

Equation [2.46] proves that the power spec tra l de nsity addcd up for all frequencies equals

the average powe r of x added up over tim e.

Auto-Spectrum and Amplitude Spectrum

The auto-s pec trum and the amplitude spect rum are important propert ies of signa ls that use

thc DFT coefficients to calcu late one o f the other. The auto-spec trum was describ ed earlier

as the powcr spec trum and the amplitude spect rum is the spec trum of modulu s of the

coe fficie nts obta ined from the FFT. The FFT produ ces a two-s ided spec trum in complex

form and must be conve rted to po lar and sca led by the len gth o f the record in orde r to

ob tain the mag nitude and phase (Na tiona l Instrum ent , 2009) . To illustrate this relationship
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the wave profil e, ~p, observed at a wave probe is shown in Equation [2.47] (Mansa rd and

Funke , 1980).

f [2rrkt ]
C;p=~Ap,k' sin ----r-+ap,k (2.47)

which looks similar to Equation [2.37], exce pt it is denoted using the sine notat ion . ApJ is

the Fourier coe fficient for frequency, T is the length of the wave profile, Up.k is the phase

rela tive to the time origin, and N is the upper limit of the summation which is related to the

maximum significant frequen cy component. The Fourier coe fficients and their phases can

be expresse d in polar or rectangular form as indicated in equations and are stated as in

Equation [2.48] and [2.49], respectively:

B p,k = A p,k . cos a p,k + i A p,k ' s in a p,k

12.481

12.491

where B pJ is the Fourier Trans form of ~p.k . The FFT subroutine that is used for this resea rch

uses the rectangular form , and thus using the property ofcos20+si n20= I, sca ling by T, and

renam ing B p.k to be the ampl itude spec tra As(k,t) we get:

The phase spect rum is ca lculated as:
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(2.501

The magnitud e and phase spectrum arc in radians. The auto-spectra can now be used to

calculate the auto-spectra S.(k,f) using Equation [2.50] :

(2.51J

or using angular frequency cowe have

When the auto-spectrum is calculated through alternative means, for example using the

indirect method, the magnitude spectrum can be calculated by the inverse of Equation

[2.51] or as shown by:

AsCk,w) = ~2 . SaCk , w) . dw

Since the FFT is producing a two sided spectrum, the amplitud e spectrum is only showing

the half peak of the energy spread out over the positive and negative frequencies to produce

a mirror image, as shown in Figure 2-4.
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Figure 2-4 - A two sided line spectrum (National Instrument, 2009)

To correc t the mirr orin g effect, the amplitude must be multipli ed by 2 for half of the

frequencies , ie. frequency of i= I to N/2-1 , and amplitudes at i=O and N/2 to their original

amplitudes and discard the rest of the amplitud es by lett ing them equal to 0 (National

Instrum ent, 2009) .

The spectral characteristics can be related to the time series with the usc of the previously

mentioned root mean square, shown by Equation [2.52], and the spec tral moment , mil. The

spectral mom ent to the nth power has the followin g formulation (Wave Spectra ,

FORMSYS) :

12.521

The zerothmoment , mn, is the most important as it gives the equivalent to the area under the

wave spect rum curve and it is equal to the variance of the time series, or the root mean

square, as show n by Equation [2.54]. Equation [2.52] becom es Equation [2.53] for mo.
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rmso= ~ (2.541
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2.4 . Wave Splitting Th eory

Introduction

Wave splitting is done by first measurin g the waves at an asso rtment of locations in a

model basin and then using of a wave model wi th regress ion techn iques to distinguish how

much energy is coming from the wave maker to the beach and vice versa . The low

frequ ency wave, assoc iated with the seco nd order wave , can be identifi ed by the wave

model. The device used to record the wave is a wave prob e in which there can be many

placed at various locations in the basin .

The following environmental bas in effects cause low frequ ency waves (Voog t, 2005) :

I) Ge nerat ing waves using a Flat Wave Flap. This type of wave flap can cause

a mismatch between generated water velocities in a genera ted wave at the

wave flap. This error can be minim ized by applying a seco nd order

correc tion to the wave which is further discussed in Chapter 3.

2) Reflections of the waves due to the finite size of the basin . Minimized by

inputting a parabo lic beach but docs not suffic iently dampen the long wave

components.

3) Shoa ling effec ts crea ted by the bathymetry of the basin bottom. Significant

in modelin g shallow water situations as wave se t-dow n will reflect as free

waves from theparabolie beaeh .

The wave can be split into four different categories: incident free, incident bound, reflected

free wave , and reflected bound wave, as shown by Equation [2.55]. The reflected bound
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wave is neglected due to its insignificant size as compared with other wave categories

(Voog t,2 005).

C;= C;in cJ ree+ C;in c,bou nd+ C;ref J ree+ C;re f ,bou nct (2.551

where:

C;: The total wave elevation.

C;inc.frcc: Incident free waves, propagating from the wave flaps to the beach.

C;inc.bollnd: Wave found bound to the incident free waves , also known as wave set-down.

C;rcr.rrcc: Reflected free wave from the wave flap to the beach.

C;rc( bollnd: Wave bound ed to the reflected wave. As previou sly mentioned this term is

neglected in the final waveclevationcalculati on.

The speed of the free waves differs from the bound waves and they have differ ent

directions, This allows the wave component s to be distinguished from one another.

Equations [2.56] and [2.57] describe the wave velocities for the free and bound waves,

respectively, in which the bound uses the difference of the frequenc y (to) and wave number

(k).

w
<-r :
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where

erree: Speed of the free waves

Cbound : Speed of the bound wav es

w: Wave frequency

k:Wavenumber

bW: Partial wave frequ ency

Sk: Partial wave number

Splitting the waves must be done for eac h wave frequency and the wave elevation for at

least 3 spatial positions (Voogt, 2005). The incident and bound free waves at one speci fic

frequency are shown in Equations [2.58],[2.59] , and [2.60].

C;inc,free = C;ifcos(w t - k incx + Eif )

C;ref,free = C;rf cos ( wt + k ref x + Erf )

C;inc,bound = C;ib cos ( flw t - tsk x + Eib)

where L refe rs to a random phase angle between - J[ and J[ for eac h wave type.

(2.581

[2.591

(2.60)

In orde r to find the frequ ency, ui, and wave numb er, k, the dispersion relationship can be

used as show n by Equation [2.61] . Note that the difference frequency, flw, and di fference
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wave numb er, Ak, do not satisfy the dispersion equation. The term g refers to grav ity

w 2 = gk tan kh 12.611

The Newton-R aphson method was the num erical method used to so lve the wave numb er

fro m the dispersion equ ation , which is described in sec tion 4.3. Since the informati on

pertain ing to the wave components is limited , it is assumed that the bound wave propagates

with a group speed that corre spond s to the peak period of the ener gy spectrum (ie. (t)= (t)p) .

This is reasonable with the further assumption of a narrow band ed spec trum (Voogt, 200 5).

A Fourier trans form will give the individu al frequen cy components of the wave. Each

frequeney eomponent ean be writt en as Equation [2.62] where A and B are known

coefficie nts.

Substituting Equations [2.62], [2.58], [2.59] , and [2.60] into Equation [2.55] , the total wave

elevation equation is found :
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(2.631

The tenu s in Equation [2.63] can be collected and the unknown terms can be isolated and

shown in Equation [2.64] as vector y :

12.641

Collecting the cosine and sine tenu s, two equations can be found for A and B as shown by

Equations [2.65] and [2.66] and is prov ed in Appendix A.
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12.661
.y

Equations [2.65] and [2.66] arc well conditioned then the solution can be found by matrix

inversion. Singular Value Decomposition was the computational method used for matrix

inversion and is described in section 4.4. The distance to which the wave probes arc

separated relative to the wavelength has grea t influence on the condition numb er, the case

of digita l computation. The conditioning worsens (ie. the condition number will increase)

when the distance between two probes arc integer multiple of half the wave length. Voog t

(2005) discuses that the optimum spacing of the wave probes is 0.25 times the wave length.

When there arc large distances between the probes, aliasing effects can occur where the

signal from the probes becomes indistinguishable. Therefore the distances between the

probes must be limited but must also be large enough to separate the free and bound waves

travelling in the same direction.
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Appl ying Wave Splitting Theory

When applying the wave splitting theory to a model test basin, there is a procedure that can

be followed as discussed below shown in Figure 2-5 (Dijk 2007) .

Step I : Install wave probes in optimum locations

Step 2: Commence measurement o f wave data during calibration; including

start of wave marker to sometime after waver maker is shut down

Step 3: Prepare input for wave splitting tool

Step 4: Run wave splitting tool

Step 5: Check data from wave splitting results

Step 6: Attain wave forces of incident and reflected waves which arc based on

reflected database

Step 7: Solve equations of motion in the time domain

Step 8: Do comparison between numerical and measured vesse l response in the

basin
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Step 1·
S~"Cljon ci w""" prOOe

po.sifun5

Incident
Free

Reflected

Free

Figure 2-5 - Flow Diagram of Step s for Use of Wav e Splitting (Dijk 2007)

It should be noted that attention must be paid to the damp ing values of the float ing vesse l to

ensure that the num erical results match up with the measured results.
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2.5. Analytical Model of Wave Set-down

An analytical model is used to calculate the theoretical set-down in the waves as an

alternate method of calculating set-down and can also be compared to the set-down that

was decomposed from the measured wave using the wave splitting tool.

As previously stated, the second order component of the waves contains a low frequency

component known as wave set-down. It is a quadratic function of the wave amplitudes and

can be found using a quadratic transfer function which gives the wave amplitudes and

phases of the set-down in a travelling wave group (Huijs mans, 2002) . In order to develop

the analytical equations, potential theory is assumed.

The velocity potenti als of fluid flow in waves arc a summation of the di fferent

approximation orders that make up a wave and can be described as:

The first order approx imation of the equation, </>(1 ) , is usually the most significa nt

component, espec ially in deep water situations. Huijsmans (2002) describes the bound ary

conditions for the first order approximation:

• The continuity equation states that the gradient of the first order approx imation is

equal to zero everyw here in the fluid domain .

• The free surface condition: the bottom potent ial added with the top potential must

be equal to zero at the free surface .
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• The botton condition:

Using the prev iously stated bound ary condition for a regular plane wave progress ion we

can get an express ion for the first ord er wave potential (Huij smans, 2002) , show n by

Equatio n [2.67].

For the seco nd orde r approxi mation, Huijsmans (2002) states the bound ary conditions as :

• The continuity equation states that the gradient of the seco nd orde r approx imation is

equal to zero everyw here in the fluid dom ain .

/::" rfyCZl = 0

• The free surface condition, shown by Equation [2.68], shows that the seco nd order

potential is depend ent on the first order potent ial.

• The botto m boundary cond ition:

rfJYl = O, at z=-h

To use the boundary conditions to de rive an express ion for the seco nd order potential, we

can first derive the first order potent ial associa ted wi th a regular wave group that consists of
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two regular waves coming from two di fferent direct ions (Huijs mans, 2002) show n by

Equation [2.69].

where icannotequal k.

lIu ijsmans (2002) then describes the low frequency component of the seco nd order

potent ial between the two regular waves from different directions as show n by Equation

[2.70].

2 2 2 2 2 (I) ( I ) _ cos h (K; - Kj)(Z + d) .
cP() = IIII (;k (j l Aijk1 cos h (K' - K.)d ex p z ((K ; COS J.lk

;;lj;lk;ll;l I J

12.701

The unknown Aijkl term can be found by utilizing the free surface condition for the seco nd

order potential , show n in Equat ion [2.68] . Thus for Aijkl we get :

1 Bil k1+ Cil k1 2

2 (Wi - Wj) 2 - ( Ki - Kj)g ta nh(K; - Kj)h 9
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ZKiKj(Wi - Wj)( COS(Ilk - Ila + tanh Kih tan h Kjh)

WiWj

The wave set-down is the low frequency component of the seco nd order wave height on the

free surface , give n by Equat ion [2.71].

Therefo re the wave set-down is ob tained as Equation [2.72].

2222

((2) = LLLLZCJ(;/lJ Dil kl cos (( KiCOS Ilk
i=lj=lk =l l=l

- KjCOSlll )X

12.711

12.721

where Dilk/is a transfer functio n that includes Aijk l' Bijkl' and [ilk lcomponents. Dilklis

exp ressed as:
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2.6. Power Spec trum Estimation

A power spec trum estimation theory was used in order to produ ce smoo th power spectra

since the wave splitting method produ ced noisy spectra graphs and made the real prop erties

of the graphs diffi cult to distinguish. A method to reduce large var iance from a Ixol set of

data is to multiply it by a weighting function W(l) (Beauchamp and Yucn, 1973). The

process is typically ca lled windowing and the weighting function is called the wind ow,

which produces a smoo thed version of a spectrum , The type of window is discussed later in

this section.

The method used to produce the spec tra is based on the Welch method (We lch 17). The

length of the recor d was sec tioned into ove rlapping segments and a modified periodogram

was found for each sec tion by wind owin g the origina l record . Then the modified

perio dog ram was then average d. This method requir es Icss iterati ons than other methods

(We lch 17), due to the shorter record seg ments for computations.

For this method, a reco rd has a length of:

X(J),j =0• ...,N-1

where N is the total numb er of record point s. Ove rlapping segments, with a length of L, are

separate d by distance M. There are a total of K segments. The first few seg ments will have

the form:

Xl (J) = X(J),j = 0, ... •L-1

Xz(J) = X(J + M).j = 0, ... •L-1

X3(J) = X(J + 2 * M), j = 0, .. , L - 1
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Therefo re a genera l formula can be stated as

XK(j) = XU + (K - 1)M),j = 0, ..,L-1

Note that L+(K-I)M =N .

For eac h of the segments, the modified pcriodogram, another term for estimating the

spectra l density of a time series, can be found by multipl ying it by a windowing funct ion . A

harming functi on , or wind ow, was used which has a cosine shape and has the follow ing

formul at ion :

W(t) = ~+~ coset)

where N is the total numb er of points (Beauchamp and Yucn, 1973).

Inorder to determ ine the total numb er of seg ments K, the length of M was first calculated,

which was based on the Nyquist frequency and the frequency resoluti on dw. The frequency

reso lution was assumed in orde r for the reso lution to be low enough to smoo th the

fluctuations but high enough not to und erestim ate the prop erties of the spec tra. The Nyqui st

frequency , as previously mentioned, is based on the time step and 7[ . Thus M was calculated

to be the Nyquist frequency divided by the resoluti on (Dijk, 2007). K can then be found as

N/M- I . The ove rlapping length L is ca lculated as 2*M.

For each seg ment of length L the modifi ed periodogram is ca lculated and then the finite

Fourie r transforms are found as shown in Equation [2.73].
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L-l

AK(n) = ~I XKU)WU) e- 2kijn/L

j =O

We can thus calculate the modifi ed pcriodograms as:

12.731

which is a modified equation based on Welsh (J976) and Dijk (2007). The spectral estimate

is the average of the periodograms as shown in Equation [2.74].

where 8/3 is an averag ing function as recomm ended by Dijk (2007).
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Wave Generatio n Introduction

3. WAVE GENE RATION

3.1. Wave Generation Introduction

Wave generation was done at the National Researc h Council (N RC) Offshore Engineering

Basin (OEB) in St. John 's, NL. 56 piston-type segmented wave makers were used to

genera te the waves . The wave data in the OEB was measured using fourteen wave probes.

The waves were generated by two methods: the first method generated waves containing

only first order waves and the second method contained both first order components as well

as second order components, as outlined in Sec tion 1.3. Second order wave components are

naturally crea ted in the shallow water environment and thus generating waves with seco nd

order components should allow for better corre lation with results from the wave splitting

program . The measured data should better align with the theoretical wave set-down that

was genera ted using the analytical model in the low frequency domain. The addition of the

second order wave generatio n should also correc t the mismatch between the wave

velocities that the first order wave generation can cause.
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3.2. Piston Type Wave Maker

A piston type wave maker, as shown in Figure 3- 1, has multiple pistons that displace the

water by repeatedly moving horizont ally back and forth. Figure 3- 1 shows that there can be

a large number of pistons moving the water forw ard to create the wa ter waves.

Figure 3-1 - Piston type wave maker (Wave maker)

The piston type wave maker is one of the more simplified wave makers in term s of

bound ary eonditions as there is only translationa l motion , with no rotationa l motion

(Schaffer, (994). The wave maker osc illates with vary ing veloci ties and stroke lengths. The

range of the frequencies of the osc illations corres ponds to the desired frequency range of

the generated irregula r sea state. So ftware equipped into the wave maker take into acco unt

the second ord er wave theory in shallow water. Therefo re there is a seco nd order correc tion

for the linear motion of the piston that differs slightly from the motions of the wate r

particles in shallow water. The linear motion of the piston causes the motion of the free

waves to be circular in shape and is not represe ntative of ocea n going waves as they are
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typically ova l shaped particles of motion. Therefore an added signal is incorporated to the

unwanted free waves that is opposite in sign and will eliminate them.
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3.3. Basin Test Configuration

The shallow water model testing took place at NRC in the OE B. The basin is 75 meters

length and 32 meters in width (Zaman et. aI., 20 11), as shown in Figure 3-2.

Figure 3-2 - NRC Ocean Engineering Basin (DEB)

The basin has wave makers in both longitudin al and transverse directions, but only

longitudin al waves were used. There arc also wave absorbers, or beaches, opposite of the

wave maker. The basin also has capabilities to create environmental conditions such as

current and wind, but only wave generation was used. In order to replicate shallow water

depths of 15m in the basin, a sca le of I :50 was used to result in a depth of 0.3m and 0.6m.

The piston wave maker osci llates with varying veloc ities and strokes to generate the waves .

A differe nt range of frequencies were used and input into the softwa re equipped to the wave

maker. Fourteen capaci tance type wave probes were used to read the encounter frequency
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of the waves. As waves contact the wave probes, the changing internal resistance within

wave probes allows the frequency of the waves to be measured. Figure 3-3 shows the

positions of the wave probes within the OEB.
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Figure 3-3 - Positions of th e Fourt een Wave Pr obes Within th e DE B.
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3.4 . Physical Modeling

Certain properti es of the long waves arc dom inant at di fferent frequency ranges which have

an effec t of the wave generators . For a piston type wave generator, a method to find the

accurate seco nd order piston position , X2(t), is to ex tend the bound ary condi tions to seco nd

order and apply the Laplace equations with nonlin ear surface conditions. Free waves arc

excluded from X2(t) equation. Sand ( 1982) discusses how if only first order wave

genera tion was util ized for the model tests of a moored bulk carrier , the moorin g forces

would grea tly di ffer from the prototyp e. It is important to know the amplitude of the seco nd

orde r long waves , 1;., and the amplitude of the seco nd orde r contro l signal, X,,(2), before

doing the model test. 1;.. and Xa(2)can be estimated through the usc ofa transfer function, as

shown by Equations [3.1] and [3.2].

13.1]

13.21

where :

Gnm:a trans fer function

F1:a transfer function

h: water depth

An,Am: the amplitudes of the term s in the respective transfer function
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4. COM PUT ATIONAL M ETHOD

4.1 . Band-pa ss Filter

A band-p ass filter was used to reduce the noise of the data. Band-p ass values were ass umed

from typical values of typical spec tral density plots, spec ifica lly the JON SW AP wave

spectral density plot as shown in Figure 4-1.

:'\

I \
1 \

f \
{
{ \
I ~

) !"----------0.9 1.2 1.5
Wave,En cQunterFrequencyradls

Figure 4-1 - JONSWAP Spectral Density Plot (Wave Spectra, FORMSYS)

The high pass frequen cy filter sets a lower limit for acce ptable frequ encies to be used

with in the program so that frequeneie s higher than the limit can pass. The low pass

frequ ency filter sets an upper limit for acce ptable frequencies to be used within the program

so that frequ encies low er than the limit can pass . Values assumed for the high pass filter

were 0.2 rad/s . For the low pass filter the Nyqui st frequen cy was used to avoid aliasing
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efTeets. An abso lute maximum of 6 rad/s is also imposed in order to reduce noise if the

Nyquist frequency determined to be too large.
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4.2. Fast Fourier Trans form

The FFT is a eomplex algorithm that few seientists and enginee rs could write themselves.

There are two main steps to an FFT computation: first the FFT breaks dow n an N point

time domain signal into N single transforms, to whi ch it then calculates the N frequency

spectra. Secondly it synt hes izes the N spec tra into single frequency spec trum. Using an

exa mple illustrated by Smith ( 1997) it can be show n exac tly how it is broken down.

A 16 point signal can be deco mposed four times until each signal is down to a single point,

as shown in Figure 4-2.

1 signal of
16points

1 signals of
8po ims

-4signals of
-l points

8 >ignalso f
2 poilllS

16 siznals of
I point

1 0 I 1 3 -4 5 6 7 8 9 10 11 11 13 H 15
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1 0 2 -4 68 10 12 14 11 13 5791113 15 1
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~ 1 ~ 1

~~~~
1\ 1\ 1\ 1\

[QJJ8::ill~~~~[I:ill [I::ill

F'", l\ 1\ 1\ 1\ 1\ 1\ /\
~00§0~0~000~0~0~

Figure 4-2 - Decompo sition of a 16 Point Signal (Smith 1997)

The decomp osition is done by converting each decimal numb er into a binary numb er so

that the numbers are separa ted into eve n and odd catego ries or what is know n as interlaced

decomposition . This process is often done using a bit reversin g algor ithm that rearranges

the points with the bits flipped left to right, shown in Figure 4-3.
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Sample numb ers Sample num bers
in normal order aft er bit reversal

Decima! Bin ary Decima! Binary

0000 0 0000
0001 8 1000
0010 4 0100
001 1 12 1100
0100 00 10

5 0101 10 1010
6 0110 ~> 6 0100
7 0111 14 1110
8 1000 1 0001
9 1001 9 1001
10 1010 5 0101
11 1011 13 1101
12 1100 3 0011
13 1101 11 1011
14 1110 7 0111
15 1111 15 1111

Figure 4-3 - Bit reversing algorithm (Smith 1997)

Aller the points have been rearranged, the next step is to find the frequency spectra of a one

point time domain signal, which is simply equal to itself. Therefor e there is no work

required to do this step and all time domain points are now frequency domain points.

For the final step in the FIT procedure, the N frequency spectra must be recombined in the

exact opposi te manner in which it was decomposed in step one. This is the most complex of

all the steps. Since bit reversal cannot be used for this stage, the process is reversed one

level at a time. A 16 frequency spectra (1 point each) is divided into two 8 frequen cy

spectra (2 points each) and then each 8 point spectra arc subdivided into 4 point spectra, etc,

until a 16 point frequency spectrum is created. There fore in order to build the frequency

domain points back so that they correspond the time domain points, two signals must be

68



Fast Fou rier Transform

interlaced to make one. For exa mple, to obtain an 8 point signal from two 4 point signals,

eac h 4 point signal must be diluted with zeros and added together to obtain the original

signal, as show n in Figure 4-4 .

Time Domain

lalolblolcloldlol

Frequency Domain

1..1,. lsIeIDIAlsleID I

~

L
IEIFIGIHIE IFIGIHI

Figure 4-4 - Recon structing signals in the tim e and frequ ency domain (Smith 1997)

It can also be noted from Figure 4-4 that in order to appropriately add the two 4 poin t

signals, one of the signa ls must be shifted. This wi ll allow aObOcOdO and OeOtUgOh to

becom e aebfcgdh. In the frequency dom ain, the dilution from the time domain beco mes

dup lication in the frequency dom ain, as can be seen in Figur e 4-4. The duplicated spec tra
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arc then added together in order to form the new spectra. The shift that is done in the time

domain corresponds to multipl ying the spectrum by a sinuso id.

The most basic calc ulation within the FFT subroutine is ca lled a butterfly, termed after its

appeara nce, where two complex points arc converted to two other complex points and is

shown in Figure 4-5.

Figure 4-5 - The Butterfl y Calculation (Smith 1997)

This pattern is repeated for each step of the process of recrea ting the full frequency

spectrum, as shown by Figure 4-6 .
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Time Domain Data

I Time
~ D OIll .1 111I Decomposinon

Frequency Domain Data

Figure 4-6 - Total FIT Procedur e (Smith 1997)

Figure 4-6 illustrates the three loops that arc needed in ord er to recreate the frequency

domain data. The outer loop repeats for Log2N stages , the middle loop repea ts for each of

the levels of frequ ency spec tra that arc being added, and the inner loop repeats the butterfl y

for each individual frequency spec tra. The ove rhead boxes calc ulate the level of the

interlaci ng to determin e what is left to be ca lculated.
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4.3. Newton-Raphson Method

The Newton-Raph son method is used for solving the dispersion equation. It uses an

initial guess for the value of k, describ ed here as Xi, in order to create a tangent line to the

function f(xj), where the tangent line is the derivative of the function f(Xi), and is

extrapolated down to the x axis which prov ides an estima te of the root Xj+l (Chapr a 2006).

Thu s the Newton-Raph son can be deri ved on the basis of geometrical ana lysis and can be

shown in the form of Equation [4.1].

14.11
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4.4. Singular Value Decomp ositi on

Singular value decomp osition (SY D) is a method in linear algebra that factorizes a real or

complex matrix. The form that SY D takes in show n below:

where: M is the initial rectangular matri x

U is an orthogo nal matri x. The co lumns are orthonormal eigenvec tors of AAT.

S is a diagonal matrix that contains the singular values, or the square roots of

eigenvalues , o f U

v" is the transpose of the orthogon al matrix Y. The column s of Yare the

orthonorma l eigenvec tors of ATA

mi sthenumber of rowsinthematr ix

n is the numb er of co lumns in the matrix

The orthogo nal matrices mult iplied by their transpose matrix must equal the identity matri x,

such that UTU = I and y Ty = I.

SY D has many adva ntages , which includ e revealin g many important prop erties of the

matri x, such as the eige nvectors , and determinin g a form of matrix inversion . For this

research, SYD was used to so lve the unkn own matri x y stated in Section 2.4 . Find ing the

inverse of a matrix can be eas ily completed for a square matrix . Since the matrices in this

research are rectangul ar matri ces, an alternative method is requir ed. The SYD method

becom es useful as it can so lve a pseudo-in verse matrix for a non- squ are matrix . The SY D
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method also provides a num erically stable method for so lving linear equations which is

important for a highly numerical process. In order to complete the matrix inversion, the

three matrices that make up the original matrix M arc used to find the inverse as shown in

Equation [4.2].

(4.21
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4.5. Wave Splitting Program

The wave splitting program , created using FORTRAN 77 is described by the flow chart

shown in Figure 4-7. Th e program starts by having the user inpu t se lect varia bles which

incl udes :

• Peak period of the wave data in seconds

• Water depth in meters

• Desired numb er of wave components to be split.

Th is gives the option for the user to run a variety of di fferent wave data sets and eas ily

change the important input parameters.

The program then reads in the files containing the time, wave amplitudes , and wave probe

positions. The user must verify the files arc named in correspondence to what they arc

named the program , which can be le ft to the discre tion of the user.

The program then will set up all the var iab les in a relative mann er, ie. se tting every thing in

relation to the first probe so that the first probe is at longitudin al position x=O. The

subroutine then calls the 'S pccs moo th ' subro utine which will create smoo th spec tra for the

measured data from each wave probe.

The signal is then filtered using a band-p ass filter subroutine to eliminate low and high

frequencies that is beyond the desired spec trum to eliminate aliasing etTects. The filt ered
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signal is ca lled into a subro utine that will ca lculate the theoretical wave set-dow n. The

theo retica l wave set-dow n is removed from the orig inal meas ured signal.

The signal is then conve rted from the time dom ain to the frequency dom ain in order to split

the wave into its individual components in the wave splitting subroutine. A Newton

Raph son subro utine is used to so lve the dispersion relation in orde r to so lve the wave

numb ers. The frequency domain inform ation is read into the wave splitting subro utine

where the wave components are individualized as requi red by the user. The wave splitting

subro utine uses the 'SV D' subro utine to do the matr ix decomp osition.

The individual components are conve rted back to the time dom ain and the 'S pectral

Smoo thing ' subroutine creates smoo th spec tra for each of the wave components data for

each wave probe. The 'o utput' subroutine creates eig ht data files for the eac h individual

wave component in the time and frequency dom ain .
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Figure 4-7 - Wav e Splitting Code Flow Chart
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5. RESULT S

5.1. Validation

TheoreticalSet-down

The theoretical wave set-down was validated using publi shed results reported by Huijm ans

(2002). Huijm ans (200 2) reports the transfer function of the wave set-down for a water

depth at 19m using frequencies from 0.5 rad/sto O.S rad/s.

Wave Splitting

The wave splitting code in FORTRAN was valida ted aga inst the wave splitting program

reported by MARIN (Djik 2007) for the time domain results shown in Figure 5- 1 to Figure

5-4, which show a full sca le comparison using peak period 1.705s. The current results were

also validated against publi shed experimental NR C data and num erical results (Zam an et.

al., 20 II ) in the frequ ency dom ain shown in Figure 5-5 to Figure 5- 10 for wave probes

1,2,9 for peak period 1.133s. The frequency dom ain plots illustrate the measured data from

the wave prob es and result s for both the first order (FO ) and seco nd order (SO) wave

generation arc reported . The time dom ain results were shown to be quit e similar to the

MARIN results. Due to the high degree of similarity between the plots of Figur e 5- 1 to

Figure 5-4, the result s for this researc h and MARIN, for the most part, ove rlay each other.

The frequency dom ain results were only satisfactory but deemed passable as there arc many

di fferent methods for approx imating the power spec trum and thereby makes it diffi cult to

conduct a meanin gful comparison. For instance, the resolut ion chose n for the spectra l
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approx imation had a significant effect on the spectra l density function when computing the

results. Since the parameters for computing the spectra chose n by NRC are unkn own ,

including the reso lution, it is diffi cult to speculate the reasons for differences.

Figure 5-5 to Figure 5- 10 also show that there is some fluctuation at the higher frequencies .

This appears to reiterate the observa tion by Mansard (199 1) who stated that eve n with the

use of a seco nd orde r correc tion, which was appli ed to the irregular wave data from NRC,

osc illations can still occur in the high frequency tail end of the spec trum from free waves

and locked waves .
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Time (5)

Figure 5-1 -- Current Method versus MARIN: Incident Wave, Time Series, Probe 1

f 1 1---I1\'r-Ilit---7'r--1~--y,:-----7A'c---!l-:i\-+\'
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Time (5)

Figure 5-2- Current Method versus MARIN: Incident Wave, Time Series, Probe 1
(300-500s)
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Reflected Waves at Probe 1: Time Series
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Time Series (5)

Figure 5-3 - Cur rent Method vers us MA RIN: Reflected Wave, Time Series, Probe 1

Figure 5-4 - Current Met hod versus MA RIN: Reflected Wave, Tim e Ser ies, Prob e 1
(300-500s)
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First Order Comparison for Probe 1 TP 1.133s
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Figure 5-5 - Curre nt Met hod versus NRC: FO Meas ure d Wave, Freq uency Ser ies,
Pro be 1
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Figure 5-6 - C urrent Met hod vers us NRC: SO Meas ure d Wave , Freq uency Series,
Pro be 1
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First Order Comparison for Probe 2 TP 1.133s
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Figure 5-7 - Cur rent Met hod versus NRC: FO Meas ure d Wave, Frequency Series,
Pro be 2
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Figure 5-8 - Cur rent Met hod versus NRC: SO Meas ured Wave, Freq uency Series,
Pro be 2
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Figure 5-9 - Cur rent Method versus NRC : FO Measured Wave, Frequency Ser ies,
Prob e 9
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Figure 5-10 - Cur rent Method vers us NRC : SO Measured Wave, Fre quency Series ,
Probe 9
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5.2. OE B Results

Shallow water wave genera tion was eompleted at the NRC OEB for wave heights of 4 and

6 cm and for peak periods of 1.133, 1.705, and 2.145s at model sea le. A scale of 50 was

used to relate the data between model and full sca le data. The results are shown for wave

probes 1,2,3,8,9 since they follow the trajectory down the middle of the tank , as shown by

Figure 3-3, so their wave heights should be proportionate to each other and separated by

different wave phases due to their distance apart. The program was used to run both model

scale and full sca le cases to verify functionality in either case . Table 5.1 shows the data

used to run both cases .

Table 5.1 - Parameters of Model Scale and Full Scale

Parameter Model Scale Full Sca le

Depth (m) 0.4 20

Significant I-Ieight - I-Is (m) 0.06 3

Peak Period - Tp: Case I (s) 1.133 8.012

Peak Period - Tp:Case 2 (s) 1.705 12.056

Peak Period - Tp: Case 3 (s) 2.145 15.167

The wave splitting code was applied to the OE B wave elevations and the foll owing results

were obtained. Figure 5- 11 through Figure 5-20 show results for Tp-Case 3 in the time

domain, for O-IOOOs and 300-500s . Figure 5-2 1 through Figure 5-30 show results the

frequency domain, for 0- 1.4rad/s and 0-0 .3rad/s which is the low frequency component

frequency . Cases I and 2 are shown in Appendix B. The incident waves show good
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agreement with the original measured waves in terms of amplitude and phase. The

following figures display the results of the model seale only and the full sea le data is shown

in Appcndix C.
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Time (5)

Figur e 5-11 - Tim e Series Wave Splitt ing, Pr obe 1

Probe 1 Time Series Wave Splitting

Time (5)

Figure 5-12 - Tim e Series Wave Splitti ng, Pr obe 1 (100-150s)
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Probe 2 Time Series Wave Splitting

Time(s)

Figure 5-13 - Time Series Wave Splitting, Probe 2

OEBR csults

Time(s)

Figure 5-14 - Time Series Wave Splitting, Probe 2 (IOO-150s)
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Probe 3 Time Series Wave Splitting

Time (51

Figur e 5-15 - Tim e Ser ies Wav e Splitt ing, Prob e 3

OEB Results

Tim e (51

Figure 5-16 - T ime Series Wav e Splitt ing, Prob e 3 (100-1505)
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Probe 8 Time Series Wave Splitting

O EB Results

Time(s)

Figure 5-17 - Tim e Ser ies Wave Splitt ing, Prob e 8

Time(s)

Figure 5-18 - T ime Series Wave Splitt ing, Probe 8 (100-150s)
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Probe 9 Time Series Wave Splitting

Time (5)

Figure 5-19 - Tim e Ser ies Wave Splitti ng, Prob e 9

Probe 9 Time Series Wave Splitting

Time (5)

Figur e 5-20 - Time Series Wave Splitt ing, Prob e 9 (100-150s)
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Power Spectrum Probe 1

6 8
Frequen cy (rad/s)

Figur e 5-21 - Frequ ency Domain Wav e Splitti ng, Prob e 1

Scaled Power Spectrum Probe 1
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- Setdown
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Frequency (rad/s)

Figure 5-22 - Low Frequ ency Domain Wave Splitt ing, Prob e 1
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Scaled Power Spectrum Probe 2

6 8
Frequency (rad!s)

Figure 5-23 - Frequency Domain Wave Splitting, Probe 2
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Figure 5-24 - Low Frequency Domain Wave Splitt ing, Prob e 2
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Scaled Power Spectrum Probe 3

6 8
Frequency (rad/s)

Figure 5-25 - Frequency Domain Wave Splitting, Probe 3
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Figure 5-26 - Low Frequency Domain Wave Splitting, Probe 3
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Scaled Power Spectrum Probe 8
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Figure 5-27 - Fr equency Domain Wave Splitt ing, Prob e 8
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Figure 5-28 - Low Frequency Domain Wave Splitt ing, Prob e 8
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OEB Results
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Figure 5-29 - Frequency Domain W ave Splitt ing, Probe 9
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Figu re 5-30 - Low Fre q ue ncy Domain Wave Splitt ing, Probe 9

96



First Order Versus Second Order Wave Generation

5.3. First Order Versus Seco nd Order Wave Generation

The following results show a comparison between the first order generation and the second

order genera tion waves for the same peak period, displayed in Figure 5-3 1 through Figure

5-46. In genera l there is little di fference betwee n the first order and seco nd order

components; Case I shows the least difference and Case 3 exhibits the most significant

difference.

Incident TP 1.133 Probe 1

Figure 5-31 - FO versu s SO: Time ser ies, Incident Wave , Probe I, Case 1

97



First Order Versus Seco nd Order Wave Generation

Figure 5-32 - FO versus SO: Time series , Incident Wave, Probe 1, Case 2

Figure 5-33 - FO versus SO: Tim e series, Incident Wave, Probe 1, Case 3
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Reflected TP 1.133 Probe 1

Figure 5-34 - FO versus SO: Tim e series, Reflected Wa ve, Pr obe 1, Case 1

Figure 5-35 - FO versus SO: Time series, Reflected Wave, Pr obe 1, Case 2
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Refected TP 2.145 Probe 1

Figure 5-36 - FO versus SO: Time series, Reflected Wave, Probe I , Case 3

Theoretical Set-down TP 1.133 Probe 1
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Figure 5-37 --FO vers us SO: Time series, T heore tical Set-dow n, Probe I , Case 1
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Theoretical Set-down TP 1.705 Probe 1
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Figur e 5-38 - FO versus SO: Tim e seri es, Th eoret ical Set-down, Prob e I, Cas e 2

Figur e 5-39 - FO versus SO: Time series, Theoretical Set-down, Probe I, Case 3
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Incident PI TP1.133

o
0.0

Figure 5-40 - FO versus SO : Frequency Domain , Incident Wav e, Probe 1, Case 1

Incident PI TP1.705
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Figure 5-41- FO ver sus SO: Frequency Doma in, Incid ent Wave, Prob e 1, Cas e 2

102



6.0 8.0
Frequency (rad/s)

First O rder Versus Seco nd Ord er Wave Generation
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Figur e 5-42 - FO versus SO: Fr equ ency Domain , Incident Wa ve, Prob e I, Case 3
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Figu re 5-43 - FO versus SO: Fr equ ency Domain , Reflected Wave, Prob e I, Case 1
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Reflected PI TP 1.705

Figure 5-44 - FO versus SO: Frequency Domain, Reflected Wave, Prob e 1, Case 2

Reflected TP 2.145 s
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Figur e 5-45 - FO versus SO: Frequency Domain , Reflected Wave, Prob e 1, Case 3
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Theoretical Set-down Comparison TP 2.145

1.0

Frequency (rad/ s)

Figure 5-46 - FO versus SO: Freq uency Doma in, Set-dow n Wave, Pro be I, Case 3
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5.4. Discussion

As expected, the spectrum for the set-down wave is the largest of the three cases as shown

in Figure 5-47. This verifies the theory of an increasing set-down component with longer

waves. Second order wave set-down is shown only since the difference between first and

secon d order results vary only slightly.

Theoretical Set-down Second Order Comparison

Eillll./1
I TP 1.70 S

i
TP 2.14S

r---!-

f-

I \

~.~----:-

~ 6.0E-07

.§. S.OE-07

~ 4.0E-07

O.OE+OO

0.0

Frequency (rad/s)

Figure 5-47 - Seco nd Order Theoretical Set-down Wave Peak Period Com parison

Figure 5-48 through Figure 5-53 show the comparison o f the spectra of the measured wave

versus that of the theoretical set-down component for Probe I and 2. The measured wave

has a spike in energy at the lowest frequen cy which is assumed to be an environmental

factor of the model tank testing. For future work this should be reduced or removed in order

to display more accurate read ings. The second order generation measured waves have
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more energy assoc iated to it than the first order generation waves do as is expected to show

added low frequency components. By inspection of Figure 5-48 through Figure 5-53 it

appears as though the first case shows the best agreement with the measured data and the

third case is the least agreeable case . The zeroth spectral moment was calculated, as shown

by Equation [2.53], and the percent di fference calculation results between probe I and 2 are

shown in Table 5.2. The equation for the percent difference is shown by Equation [5.1].

Per cent Differ en ce

IMea sured Valu e - The ore t ica l Valu el (5.11
ITh eor et ical Valu el x 100 %

Tabl e 5.2 - Percent Difference between Mea sured and Theoretical Set-down Wave

Parameter Probe I Probe 2

Case I: First Order 53 .39% 39.65%

Case I: Second Ord er 52.46 % 41.76 %

Case 2: First Order 67.5 9% 62.86%

Case 2: Second Order 68.24% 63 .42%

Case3 :FirstO rder 58 .91% 54 .49%

Case 3: Seco nd Order 64 .22% 60 .97%

Table 5.2 illustrates that though the third case looks like the wors t case , Case 2 actually has

the largest percent difference between the measured and the incident wave . This is due to
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the fluctuation of the spec tra in Case 3, which although the measure d data has some large

peaks it also osci llates around the spectra of the theoretical set-dow n more so than Case 2.

As stated in the previous sectio n, the results show little variance from second order and first

order wave generatio n. This could be caused by the estimating spectral density function

which may underestimate the spectral density energy. It might be improved upon by

changing the resolution of the results.
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Comparison of Theoretical Set-down and

Measured Wave: TP 1.133, Probe 1
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Frequency (rad!s)
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I

Measured First Order

Measured Second Order
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Figure 5-48 - Meas ure d vers us Theoretical Set-down Wave : Case I, Prob e 1

Comparison of Theoretical Set-down and

Measured Wave: TP 1.133, Probe 2
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Figure 5-49- Meas ure d vers us T heore tica l Set-dow n Wave: Case I, Probe 2
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Comparison of Theoretical Set-down and

Measured Wave: TP 1.705, Probe 1
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I - Measured second Order
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Figure 5-50 - Meas ured vers us T heore tica l Set-dow n Wave: Case 2, Probe 1

Comparison of Theoretical Set-down and

Measured Wave: TP 1.705, Probe 2

1.0
Frequency (rad/ s)

Theoret ical Set -down ~

~ I - Measured First Order

1\ I - Measured second Order

.\
1\\
\\
'\
\

L-\r \..__~c

~ "'- ............
O.OE+OO

0.0

Figure 5-5 1- Measu red vers us Theoretical Set-down Wave: Case 2, Pro be 2
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Discussion

Comparison of Theoretical Set-down and

Measured Wave: TP 2.145, Probe 1

1.0
Frequency (rad/s)

Figure 5-52 - Meas ured versus T heore tical Set-dow n Wave: Case 3, Probe 1

Comparison of Set-down and Measured
Wave: TP 2.145, Probe 2

Figure 5-53 - Meas ure d vers us T heoret ical Set-dow n Wave: Ca se 3, Probe 2
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Conclusion and Recomm endations

6. CO NCLUS ION AND RECOMM END AT IONS

A program was developed using FORTR AN language to identify the different components

that make up a measured wave in a model tank . Since unrealistic waves arc created in a

model tank environment for first order wave generation, the process of identifying each

wave in the tank allowed the unwanted waves to be removed from the analysis, ultimately

to reduce the error in ship-wave interaction analysis. A set of wave generation data, which

varied in peak period, was analyzed to show the different waves that make up the measured

wave in a tank . The data consisted of both first order and second order wave generation.

The results were validated against reported MARI N and NRC results. The time series and

power spectra l density plots were shown for both the first order and second order wave

generation data.

The first order and second order wave comparison showed little variance to one another

which may be attributed to an over-estimation in the spectral density estimation function.

The theoretical set-down exhibited an increase with respec t to the increase in wave period,

which was expected. The comparison between the theoretical set-dow n wave and the

measure d wave gave varied results in terms of aligning in the low frequency region on the

spectral plots. The shortest wave case displayed the most agreea ble results and the second

longest wave gave the least agreea ble results as shown in Table 5.2. The comparison

betwee n measured and theoretical set-down could be improved by increasing the resolution

of the spectral density function.
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Future work recomm endations includ e validating the model using the third and fourth wave

deco mpos ition which is built into the program . Improvement s arc requ ired to more

accurately create the theoretical set-down wave in the low frequency region so that it better

aligns with the measur ed wave. The results of the wave splitting data can be further

investigated with respect to ship-wave interaction to ana lyze the ef fects of removing

unwanted waves as well as identifying previously hidden waves on the vesse l. In reference

to Figu re 2-5, whi ch shows the steps for using the wave splitting program, steps 1-5 have

been completed with this research. It is recomm end ed that steps 6 and 7 be compl eted lor

the next stage of this research. Step 6 and 7 can be done for exa mple using commercial

software such as WAMIT , wave ana lysis software developed at MIT.

113



References

REFER EN C ES

Beauchamp, K.G. & Yuen C.K. ( 1973). Digital Methods for Signal Analysis. London:

George Allen & Unwin.

©BORES Signal Processing (2009) . Introduction to DSP - basiscs - alisas ing. Retrieved

from http ://www.bores.com/courses/intro/basics/l al ias.htm.

Bowen, A. 1., D. L. Inman, and V. P. Simmons (1968), Wave 'Se t-Down' and Set-U p, 1.

Geophys. Res., 73(8), 2569-2577.

Chapira, S.c. (2008) . Applied Numerical Methods with MATLAS for Engineers and

Scientists (2nd cd.) McGraw-Hill.

Hansen, O.N.-E., Sand, S.E., Lundgren H., Sorensen, T. , & Graveso n, H. ( 1980). Correct

Reproduction of Group-Induced Long Waves. Proc. 0./11" Con! on Coastal Engr.

Sydney, Austra lia.

Huijsmans. R.I-I.M. (2002) . Second Order Wave Elevation in Irregular Short Crested Seas.

ARD Project 2002. Report No. 17712-I-RD. MARIN: The Netherlands.

114



References

Longuct-Higgins, M. S. and Stewart, R. W. (1964) Radi ation stress in water waves, a

physical discu ssion with applic ation , Deep-Sea Res. Vol II (pp 529-562 ).

Pergamon Press Ltd .: Great Britain .

Mansard , E.P.D & Funk e, E.R. (1980). The Measur ement of Incident and Reflected Spec tra

Using a Least Squr e Method . Proc. 17th Int. Con! Coastal Eng.. ASCE (pr . 154

172) New Yark ,

Mansard, E.P.D (1991) . On the Experimental Verifi cation of Non-L inear Waves. Proc. 0/

the 3,,1IntI. Conf. on Coastal and Port Engng. in Dev. Countries, Kenya.

Naciri, M. & Buchner, B. & Bunnik T. & Huijman s, R. & Andr ews, J. (2004 ). Low

Frequency Motion s of LNG Carriers Moored in Shallow Water. Proc. of OMA E

2004 Conf., Van couver, Canada.

National Instrum ents (200 9). The Fundam entals of FFT- Based Signal Analysis and

Measurement in LABV IEW and LABWINDOW/CVI.

Press, W.I1. & Teukol sky, S.A. & Vetterlin g, W.T. & Flannery , B.P. (1992). Numerical

Recipes in FORTRAN: The Art a/Scientific Computing. Cambridge : University of

Cambridge.

115



References

Sand, S.E. ( 1982). Long Wave Problems in Labora tory Models. Proc. a/ the ASCE, J. 0/

Waten vay, Port, coast. And Ocn. Div. 198 (WW4), 492-503.

Sand, S.E. & Mansard, E.P.D. ( 1986). Reproduction of Higher Harmonics in Iregular

Waves. Ocean Engng. Vol 13, No. I. (pp. 57-88). Grea t Britain : Elsevier Science

Ltd.

Schaffer, H.A. (1994). Second-Order Wavemaker Theory for Irregular Waves. Ocean

Engng. Vol. 23, No.1 . (pp. 47-88). Great Britain : Elsevier Science Ltd.

Sclavounos, P. D. Linearization ofFree-Surface Conditions. 2.24 Ocea n Wave Interaction

with Ships and Offshore Energy Systems (13.022), Spring 2002. (Massac husetts

Institute of Technology: MIT OpenCourse Ware), http ://ocw.mit.edu . License:

Creative Commons BY-NC-SA

Stransbcrg, C. T. (2006) . Laboratory Wave Modelling for Floating Structures in Shallow

Water. OMAE 2006. 25,h Int. Can! on OMAE. June 4-5, 2006. Hambur g,

Germa ny.

Van Dijk, R.R.T. (2007) . Hawai JIP , Description of Wave Sepcration Methodology:

Guideline for Wave Splitting Tool. Report 19436-2-PO. April 2007.

116



References

Voogt, A. & Bunnik, T. & Huijm ans, R. (2005) . Validation of an Analytical Method to

Calculate Wave Set-down on Current. Proc. OMAE 2005. 24,h 1111. C()}!{ on

OMAE. June 12-17, 2005. Halkidiki, Greece .

Wave Spectra. In FormSys Software Help Guide. Retrieved from

http ://www.formsys.com/extras/FD S/webhelp/seakeeper/wave spectra I.htm

Wavemaker. Description of Facilities for a Shallow Water Basin on lIydralab Research

Website. Retrieved from http ://www.hydralab.eu/facilities view.asp?id=7

Welsh, P.D. (1967). The Usc of Fast Fourier Transform for the Estimation o f Power

Spectra: A Method Based on Time Averagi ng Over Short, Modified Periodograms.

IEEE Transaction Audio and Electroacoustics. vol. AV- IS. pp. 70-73 .

Zaman, M.H. & Pengo H. & Baddour, E. & McKay, S. (20 11). Spurious Waves During

Generation of Multi-Chromatic Waves in The Wave Tank In Shallow Water.

Proceedings ofthe AS ME 2011 30th International Conf erence on Ocean. 0fli'/lOre

and Arctic Engineering. June 19 - June 24, 20 II. Rotterdam: The Netherlands.

117



App endi x A - Cos ine Decompositon

APPENDIX A - COS INE DECOMP OSIT ON

Cosine Decomposition

The total wave equation was proven to be:

The following trigon omet ry identiti es are used in orde r to decomp ose the cosine terms into

individual sine and cos ine terms to simplify solving for the unkn own s.

cosx +isin x = e ix

cos( - B) = cos B

sine- B) = - sin B

In order to split up the three term s in the cosine expressions from the total elevation

equation, we will simplify the cos ine equation to:

cos (A + B + C)

and

cos(A - B + C)

Starting with the first cosi ne expressio n, we substi tute x=A+B+C into the trigonom etric

identities whic h gives :

cos(A + B + C) + i sin(A + B + C) = ei(A+B+C)
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Appendix A - Cos ine Decomp ositon

Simplifying the right hand side of the equation and not ing that i2=_I, we get the following:

e i(A+B+C) = eiAeiBeiC = (cos A + i s in A) (cos B + i s inB)(cos C + i s in C)

= (cos A cos B + i cosA s in B + i sin A cosB - si n A s in B)(cosC

+ isinC)

= cos A cos B casC + i cos A cos B s in C + i cos A s in B cos C

- cos A s in B s in C + i s in A cos B cos C - s in A cos B s in C

- s in A s in B cos C - i si n A s in B s in C

The rea l and imag inary term s can be collected and can be match ed up with the cosi ne and

sine terms on the left hand side of the above equation as all the real term s will equal the

cosi ne term and all the imaginary term s will equal the sine term. Therefore:

cos(A + B + C)

= cos A cos B cos C - cos A si n B s in C - s in A cos B s in C

- s in A s in B cos C

s in(A + B + C)

= cos A cos B s in C + cos A s in B cos C + s in A cos B cos C

- s in A s in B s in C

For the seco nd express ion of cosi ne, we substitute x=A -B+C into the trigonometric

iden tities which gives :

cos (A - B + C) + i si n(A - B + C) = ei(A -B+C)

Using the previously stated identities, we can make the follow ing simplification:

ei(-B) = cos(- B) + i s ine-B) = cos B - i s in B

119



Appendi x A - Cosine Decomp ositon

Incorpor atin g the previous equation into the equati on above and aga in simplifying the right

hand side of the equation gives :

e i(A -B+C) = e iAei(-B )eiC = (cos A + i si n A) (cos B - i s in B)( cos C + i s in C)

= (cosA cosB - i cos A s in B + i sin A cosB + s in A s in B) (cos C

+ i sin C)

= cos A cos B casC + i cos A cos B s in C - i cos A s in B cos C

+ cosA sinB s inC + i s in A cos B cos C - s in A cosB s in C

+ s in A s in B cos C + i s in A s in B s in C

Co llecting the real term s to equate to the cos ine term and the imaginary terms to get the

sine term s we get:

cos(A - B + C)

= cos A cos B cos C + cos A s in B s in C - s in A cos B s in C

+ s inA sinB cosC

s in( A - B + C)

= cos A cos B s in C - cos A s in B cos C + s in A cos B cos C

+ s in A s in B s in C

Using the found addition/s ubtrac tion cosine expre ssion in the total wave elevation equation,

we get:
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Appendix A - Cosine Deeompositon

Acos (wj t ) + Bs in(w/)

= (if [cos(w/ ) cos( kjx n) COS(Eif) + cos(w/) sin(kjxn) sin( Eif )

- sin(wj t ) cos( kjx n) sin(Eif ) + s in(w/) s in(kjx n) cos(Eif) l

+ ( rf [cos(Wjt ) cos( Kjx n) COS ( Erf ) - cos(w/ ) sin( Kjx n) sin( Erf)

- sin(wj t ) cos (Kj xn) si n(Erf ) - si n(wj t ) si n( Kj xn) cos (Erf ) l

+ (ib [COS (Wjt ) cos(Llkjx n) COS(Eib) + cos(wj t ) si n(Llkjxn) s in( Eib)

- sin( Wjt ) cos(Llkjx n) si n( Eib) + si n(w/) sin(L'.kjxn ) cos( Eib)l

We can collect the sine and cosine terms in order to make two equations:

A cos(Wj t ) = COS(Wjt) [ ( if [cos(kjxn) COS(Eif) + sin(kjxn ) sin(Eif)

+ (rf [cos( Kjx n) cos(Erf ) - sin( Kjx n) sin(Erf ) ]

+ (i b[cos( Llkj xn) COS(Eib) + s in(L'. kjx n) sin( Eib)]l

B sin(wj t ) = s in(wj t ) [( if[ - cos(k j xn) sin(Eif) + sin(kjxn) COS(Eif) ]

+ (rf [- cos( Kjx n) sin( Erf ) - sin(Kjxn) cos( Erf) ]

+ (ib [- cos(L'.kjx n) s in(Eib) + sin(L'. kjx n) cos( Eib)]l

The cos(wjt ) and sin(w/) terms can be cancelled out of their respective equations and the

equations arc reduced to:

A = ( if COS( kj xn) COS(Eif) + (if s in(kjxn ) sin(Eif ) + (rf cos(Kjxn) COS( Erf)

- (rf s in(Kj xn) s in(Erf ) + (ib COS ( L'.kj xn) COS(Eib)

+ (ib sin(Llkjx n) COS(Eib)
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Appendix A - Cosine Dccompositon

We can rewrite in matrix notation in include a known and unknown matrices, where y is

denoted as the unknown matrix.

A = lcos(kjxn) sin(kjxn) cos(Kjxn) - sin(Kjxn) cos(6kjxn) S i n (6kj xn ) ' IJ:; :::(:~l]
(r rs in ( Err )

( ib COS(Eib)

(i bCOS(Eib)

[

(ir COS(Eir) ]
( ir s in( Eir )

B = [sin(kjxn) - cos(kjxn) - sin(Kjxn) - cos(Kjxn) sin(6kjxn) -cos(6kjxn)! (rrCOS(Err)
(rrSIll(Err )
(ibC OS(Eib)

(ibCOS(Eib)

*y

*y

122



Appendix B - Model Seale Results

APPENDIX B - MODEL SCALE RESULTS
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1.133 Model Scale

App endix B - Model Sca le Result s

Time (5)
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Appendix B - Model Sea le Results

Probe 2 Time Series Wave Splitting

Time (5)

Probe 2 Time Series Wave Slitting

Time (5)
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Appendix B - Model Sca le Result s
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Appendix B- Model Scale Results
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Appendix B - Model Sca le Resul ts
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App end ix B - Model Sca le Results
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Model Scale Power Spectrum Probe 2
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Appendix B - Model Scale Results
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Appendix B - Model Sca le Results
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Appendix B - Model Scale Results

Model Scale Power Spectrum Probe 9
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1.705 Model Scale

Appendi x B - Model Scale Results
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Appendi x B - Model Seale Results
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Appendix B- Model Scale Results

Scaled Power Spectrum Probe 2
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Appendix B - Model Sca le Resu lts

Scaled Power Spectrum Probe 3

~ 0.000025 f-----}-L-l-------------j

oS
"j" 0.0000 2 f----- J--f-H------------j
VI

6 8
Frequency (rad/s)

Scaled Power Spectrum Probe 3

~ _~~~;::d 'f-f-------- - - - --1
- Setdown

~.00002 5 1-----------------------1

oS
"j" 0.00002 f----- - - - - - - - - - - - - - - ---i
VI

1
Freque ncy (rad/s )

141



Appendix B - Model Sea le Results

Scaled Power Spectrum Probe 8
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Appendix B - Model Scale Result s

Scaled Power Spectrum Probe 9
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Appendix C - Full Scale Results

APPENDIX C - FULL SCALE RESULTS
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Appendix C - Full Seale Results
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Appendix C - Full Scale Results
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Appendix C - Full Seale Results

TP 1.705 Probe 1 Auto-Spectra
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Appendix C - Full Sca le Results
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