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Abstract

ABSTRACT

The aim of this work was to develop a numerical program to decompose shallow water
waves in order to properly analyze the wave induced forces on ocean vessels. The program

was used in conjunction with waves generated in a model tank environment. The program

identified the known waves in the tank and removed unwanted wave elevations created by
imperfect model tank conditions. This will enable model testing and numerical modeling to

more accurately analyze wave-ship interaction, thus improving design and prediction for

s operating in shallow water regions.

A literature review discusses the theories required in order to create a wave splitting tool as
well as the theory used to simulate the theoretical set-down wave. The results were
validated in the time and frequency domain against a report from Maritime Rescarch
Institute Netherlands (MARIN) and the National Research Council (NRC) results,

respectively. Results were generally acceptable; test cases became less favorable as wave

frequency decreased. Potential future work on this topic includes using improved input

wave data to compute wave-induced forces on ve
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Statement of Problem

. INTRODUCTION

1.1 Statement of Problem

Having various means to predict the performance of a vessel’s interaction with the ocean

environment is important for ship structure design. Full scale trial testing is expensive and
time consuming but can be one of the most reliable forms of prediction. Model testing is
less expensive than full scale trial testing but is conducted in a man-made environment,
which can produce inaccuracies. Numerical simulation is typically the least expensive
alternative, which can predict vessel performance using empirical analysis or computational

method. However, numerical si also has ciated i ics in part due to the

difficulty of using analytical expressions to simulate the randomness of ocean conditions.

For most companies full scale testing is not a viable option due to financial constraints and
limited resources, therefore model testing and numerical simulations are favorable

However, in order to determine the performance of a vessel in a model tank environment, it

important to have a proper understanding of what types of waves are produced in the
tank. When waves are measured in a tank, the total wave clevation is measured by an
instrument such as a wave probe. The measured wave clevation is made up of several wave
components: incident, reflected, and bound waves. Incident waves are created by a
mechanical wave making device. Reflected waves are created due to the constraints of the
model environment in which the incident waves are reflected from the opposite end of the

tank in which they were created. The intensity of the reflected waves can be reduced if the
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tank is cquipped with man-made wave absorbers, which simulates a tapered beach
shorcline. Bound waves, also known as wave set-down and set-up, were a phenomenon first
reported by Longuet-Higgins and Steward (1964). They introduced a concept of radiation
stress which explained that an individual wave component from a wave group can exert an
internal compressive force in the direction of the propagated wave. The force is balanced by
the water level decreasing in regions of longer wavers, known as wave set-down, and the
water level increasing in shorter waves, known as wave set-up. This concept was proven

experimentally by Bowen ct. al. (1968).

The incident and reflected waves are comprised up from first order wave components
whereas the bound waves composed of second order wave components that are more
significant in shallow water depth. Van Dijk (2007) illustrates the increase in wave set-

down in shallow water regions, as shown by Figure 1-1, where WD is water depth.

Wave & set down for 15 m WD Wave & set down for 50 m WD
. . 3 " . . .
primary wave (Hs=3m, Tp=12s) primary wave (Hs=3m, Tp=12s)

2 —— setdown: Hs =037m I 2 set down. Hs = 0.04 m

0 200 400 600 800 ~o 200 400 600 800
time [s] time [s]

Figure 1-1 - Wave Set-down Comparison between Shallow and Deep Water (Van
Dijk 2007)



Statement of Problem

Incident, reflected, and bound waves are the waves known waves types that are produced in
a model tank environment. However, imperfect conditions within the tank create extra
unwanted waves and need to be distinguished and removed from the deliberately generated
wave types. If the unwanted waves are not removed from the known waves, large

discrepancies can occur from the model testing results and full scale trial data.

Once the measured waves are split into the different wave components in the tank, a more
accurate analysis can be completed for vessel design. Moored liquefied natural gas (LNG)
carriers, in particular, have a fundamentally weakly damped nature and when combined
with the second order waves can produce significant resonant motion and associated loads

(Naciri, 2004). Therefore modeling of mooring design and ship-wave interaction in shallow

water regions improves substantially by the usc of this wave splitting technology.



1.2, Thesis Structure

“This thesis describes the process of developing a numerical program that will identify and

split the various wave components within measured waves. The results of a literature and

theory review are also discussed.

Chapter 1 introduces the topic and presents a literature review. The problem and theories
developed by different authors and examines why wave decomposition is needed especially

when dealing with a model tank environment.

Chapter 2 presents the theories used to develop the equations that are used for the wave
splitting program. This includes details on digital methods, Fourier analysis, spectral

analysis, as well as the wave splitting theory.

Chapter 3 describes the environment in which the wave data was gencrated and used for the
wave splitting program. The type of wave tank and wave maker are described as well as

equations used to simulate the second order wave components.

Chapter 4 describes the computational methods that were incorporated into the wave
splitting program. The band-pass filter, fast fourier transform, newton raphson, and also

singular value decomposition were described.
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The results are displayed and discussed in Chapter 5. The results are validated against
published results from MARIN and NRC. The results are shown for the longest wave
period case of 2.145s for the Offshore Engincering Basin (OEB) wave gencration data,
since that case shows the larger peaks. A comparison between the first order and second
order wave generation is done to show the contribution of the second order wave
component. A discussion is done to compare the measured wave data to the low frequency

waves.

Chapter 6 consists of a summary of the results and findings from the rescarch and future
work is recommended. The rescarch can be continued in such a way as to find the wave
induced forces, from the properly split wave data, as well as the wave induced motion on a

ship.
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13 Review of Literature

The need for this rescarch has been well documented by various authors. Hansen ct. al

(1980) discuss how resonance can create y large of

moored vessels and can result in mooring failure in harbours and bays. This phenomenon
can result in difficulties for the operation of ship terminals. Harbour resonance can be
caused by a variety of occurrences but in particular long period waves from distant storms
or wave groups (Hansen ct. al., 1980). Hansen et. al. (1980) further state how generating the

n be difficult in physical model, which is reiterated by many authors,

long period waves

such as Sand (1982) who states the importance of long waves being correctly represented in

the physical model du to its influence on mooring forces and slow drift oscillations.

Recently, a higher demand for LNG carriers (Naciri, 2004) and in turn a higher

development of LNG terminals (Voogt, 2005) has been noted. Due to this increase, there is
a greater need for hydrodynamic modeling tools for floaters, particularly in shallow water,
as most of the terminals for the LNG carriers are located near shore or in relatively shallow
water. Low frequency excitation of the wave set-down increases in shallow water (Voogt,
2005). LNG carriers have inherent weakly damped nature (Naciri, 2004) and when

combined with the low frequency waves can cause significant resonant motions and related

mooring loads (Voogt, 2005).

Low frequency bound waves, also referred (o as set-down waves, found in shallow water

environment have been discussed in detail by Longuet-Higgins and Stewart (1964), Hansen
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et. al. (1980), and Sand (1982), among others. Longuct-Higgins and Stewart (1964) stated

that short period waves induce long period waves with periods equal to that of the wave

group. They describe a ‘wave group’ as *...wave trains of nearly th

me frequency and
wavelength propagated in the same direction, resulting in the formation of ‘group’ of

wave:

" These long period waves, which can also be termed low frequency waves, are
bound to the group of waves propagating with group-velocity ¢, (Sand, 1982). Hansen et.
al. (1980) describe the long waves as “wave set-down” as the troughs of the long waves are

found at the regions of the larger waves in the group, as shown in Figure 1-2.

Figure 1-2 - Wave group versus the wave set-down (Hansen et. al. 1980)

The sct-down long waves were discovered from radiation stress and the momentum
equation (Longuet-Higgins and Stewart, 1964) but were also obtained from perturbation
analysis of the Laplace cquation (Hansen ct. al., 1980). The latter will be explored in this

work.

Hansen ct. al. (1980) further describes the problems that can occur in the physical model
tank cnvironment. Although model testing has improved with the generation of natural,
irregular waves, a problem still occurs when the paddle gencrates waves using the typical

first order motion. Since the long waves are of second order approximation, the first order
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approximation does not reproducc the drift velocities (Hansen et. al., 1980). The paddle will

then produce natural drift velocities that will be of cqual magnitude and opposite sign,
which is a progressive long wave that is free and not bounded to the wave group in contrast

to the set-down wave that is bounded to the wave group. Hansen et. al. (1980) also terms

the free wave as a parasitic long wave, which causes the long wave effects o be
exaggerated in terms of harbor resonance and slow drift ship motions. Sand (1982) further
claborates that the free long waves do not follow the dispersion relation. This parasitic
wave must be identified and removed from the model testing environment in order to
produce accurate results. Hansen et. al. (1980) suggest that a second order long period
signal be imposed on the first order signal to produce the drift velocities required for the
set-down wave. Hansen ct. al. (1980) expand the boundary conditions to apply to the
second order approximation as well as applying the Laplace equation with the nonlincar
surface conditions (Sand 1982). Thus the position for the paddle can be corrected to apply

the second order approximations.

The long waves are found by a summation of differences between cach pair of frequencies
of the short, or first order, wave spectrum (Hansen et. al., 1980). Hansen et al. (1980)
describe the long period waves as the sum of subharmonics. They state that a regular wave

group with water surface clevation Ny and frequency Afyy that consist of two regular

waves with water surface elevations 1y, 0, and frequencies f,, fi,, where n and m are indices
for the number of waves being considered. The wave group clevation and frequency is
equal to:

Nam = Nn + Nm

8
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Afam = fn = fm
Since we know that the wave group generates wave set-down, wave group 1, will generate
wave set-down yn. Hanson et. al. (1980) state that each pair of n, m components of the
spectrum will contribute to the set-down. Thus by summing all the contributions of all the

pairs will give:

= Y om

nimetmame
where m*=f*/fy, P* is the lowest frequency of the regular wave spectrum and fy is the
interval of discretization of the regular wave spectrum. Further theory on the calculation is

discussed in the theory section in this Thesis.

Hansen ct al. (1980) and Mansard (1991) briefly discuss superharmonics corresponding to

the second order correction containing a number of terms that pertaining to the sum of the a

pair of frequencics in the short wave spectrum. Since this Thesis is concerned with

investigating low frequency waves, superharmonics are not considered.

Voogt (2005) describes a procedure for splitting the individual wave components in order
1o identify the low frequency bound wave and comparing the analytical wave set-down to
the separated wave set-down from the measured wave. The analytical wave set-down
model is described by Sharma and Dean (1981) and is frequently referred to when
calculating the theoretical wave set-down. The wave splitting program created for this
research used the methods described by both Voogt (2005) and Sherman and Dean (1981)

since their methods are well defined.
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Stransberg (2006) presents new results for identifying the low frequency waves from bi-
chromatic waves (waves having two frequencies) with and without a correction to the wave
maker to remove the free waves. He uses an iterative process to find the optimal correction
signal through repeated tests in a large wave basin. His findings show improvement in the
corrected results in which the free waves were reduced. In the present work an attempt is
made to compare a corrected second order wave generation but not in the iterative sense
that Stransberg, presents, but as proposed by Sand (1982) which is previously described. A
large wave basin was utilized, although the NRC basin is not as big as the MARINTEK

basin in which ducted his butitis a large basin.

Masard and Funke (1980) describe a method to identify the incident and reflected spectra
from the measured spectra from a wave tank using the least square method. It requires three
simultancous measurements within the tank that are in reasonable proximity to cach other
and are in parallel to cach other in a line from the direction of the wave propagation. It has
shown to give good agreement in comparison to incident spectra measured concurrently in
a side channel. Voogt (2005) states that the least square method will give best results for

three wave components: incident, reflected, and wave set-down. For this work only two

components are split from the measured wave and thus the singular value decomposition

formulation was used.

Mansard (1991) developed a numerical technique, based on the previously described
interactions between free and bound waves, that illustrates the position in the wave tank

10
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where waves of the same frequency would interact and cither cancel or reinforce each
other. The results of his research confirm the use of second order wave generation
techniques reduce the parasitic free wave which produces more realistic wave profiles. He
states that even when incorporating second order wave generation techniques for an
irregular spectrum, rather than using monochromatic or bichromatic waves, there can be
high oscillations at the tail end of the spectrum due to the interaction of free and bound

These i can cause diffc in wave such as

significant wave height and crest front steepness (Mansard, 1991).

The experiments carried out by Zaman ct. al. (2011) were done in order to identify the
spurious waves in shallow water using the OEB, NRC. They generated multi-chromatic
waves using first order and second order techniques. They show the differences between
the first order and second order wave generation. The results from this rescarch are

validated against their results.
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2. THEORIES

2.1, Digital Methods

A signal is any conversion of some property, such as temperature or pressure, from its
original physical form to a related electrical quantity. A signal can be classified into two
categories: deterministic and random. A deterministic signal can be predicted by
mathematical relations and a random signal is not predictable, however it can be

estimated through statistics and A method of between the two

categories is to compare several sets of data obtained under identical conditions over a

reasonable period of time. Sometimes a signal may appear to be random but is in fact

deterministic, and can be proved to be deterministi

using, for example, an auto-

correlation process (Beauchamp and Yen, 1973).

The following sections describe fundamental principles of digital signal a

reference to Digital Methods for Signal Analysis (Beauchamp and Yen, 1973)

Deterministic Signals
A deterministic signal can be determined from time-history and is generally reproducible

under identical i The form of a dq signal can be

described as periodic or transicnt signals. Periodic signals continuously repeat at regular
intervals whereas transient signals decay to a zero value after a finite length of time.

Periodic

ignals arc comprised of one or more sinusoidal signals having an integral
relationship with this period over time. The basic sinusoidal cquation is described in

12
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Equation [2.1], where A is the constant representing the peak amplitude of the wave form,
s the angular frequency and 0 is the initial phase angle with respect to the time origin.
Equation [2.2] describes the mathematical expression for the angular frequency wo, where
fy is the cyclical frequency in Hz. Equation [2.3] describes the period, T, of the wave

form. Figure 2-1 displays graphically the sinusoidal equation.

X(t) = Asin(wot + 6) 2.1]
wy = 2mfy 12.2]
T=1 23]

fo “

\

Period = 2n/wg

Figure 2-1- Sinusoidal Wave (Beauchamp and Yen, 1973)

The Fouricr serics is a means to express a general relationship for periodic signals, in

which harmonic components repeat exactly for all values of t, described in Equation [2.4].
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X(t) = Ag + Aysin(wot + 6,) + Agsin(2wot

+ 0,) +... Agsin(nwot + 6,) £al

where Ay : the mean level of the signal
A, : the peak amplitude of the n™ harmonic

" harmonic

: the phase of the n!

Deterministic signals can be a combination of several sinusoidal clements and may not be
harmonically related. The deterministic signal will have similar spectral characteristics as

aperiodic signal.

Random Signals

A random signal is uscful for obtaining new and unpredictable values that would not be
guessed or estimated from previous data, although this does not mean that the values are

and

unstructured. Since random signals cannot be determined explicitly, probabilities

statistics are the primary means of estimating a solution.

An ensemble is one random process which will produce a set of time-histories. An

example of an ensemble may be an experiment which produces random data and is

ical value for this ensemble is

repeated N times (Beauchamp and Yen, 1973). The stati:

obtained by considering records taken at specific instants in time. The average can be

calculated at a specific time t;, shown in Equation [2.5], as well as the average value of
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the products of two different samples at different times, say t; and t, known as the auto-

correlation function, described by Equation [2.6]. Note that © = -t

1
(x(e) = Jim )" i (6) 1251
&
o
R() = Jim =" xu(t) - x(e2) 1261
2

where N is the length of the record, and k is the index of summation for the ensemble.

The signal is stationary if <x(t,)> and R(x) are constant for all values of t; and also if R()
relics only on time displacement (v). A record can be partitioned into equal sections in

order to calculate the average value of any section, as shown in Equation [2.7]:
r
£ = lim = [ 2000 1271
T =T ) XM g
)

where M is a section of the record

Properties of the Signal

The properties of a signal can be defined in a probabilistic sensc in terms of amplitude,

time and frequency domain.

Amplitude Domain

o Root mean-squarc value: shows the amplitude’s effect of the signal but is

15



Digital Methods

insufficient in showing the variable nature of the process. Therefore the

probability of the amplitude excecding, or lying between specified levels, must be

determined. The calculation for the root mean square is given by Equation [2.8]

for continuous data and by Equation [2.9] for discrete data.

1
Xy = foz(t) -dt 2.8]

12.9]

e« Probability density function: determines the probability that the signal will be

s of

found within a given range. It is more suitable for smaller possible numbe
diserete values of x.

o Probability distribution function: describes the probability that the variable will

ume a value less than or greater than x. This case is more suitable for larger

domains such as when the possible number of discrete values of x is great.

Time Domain

e Auto-correlation function: used to statistically determine information about the

periodic behaviour by taking measurements of the amplitude of the signal at two
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instances, separated by , and finding their product and averaging over the time of
the record. The main value of auto-correlation is to expose any hidden periodicity
within the signal.

o Cross correlation function: calculates the relation between the two signals.

Frequency Domain

e Fourier Transform: Fourier series analysis can provide peak amplitudes and

related harmonics contained within a signal. But it cannot be applied to random

signals as the are not saril i related. Therefore a
Fouricr Transform is used to measure the relative amplitudes of the frequency
components.

e Power spectral density: calculated by finding the mean-square value of the
instantancous power at a given frequency over time T.

« Weiner-Khintchine Relationship: relates the power spectral density function and

the auto-correlation function and is important for practical measurement methods.

Required Length of Record

The length of record is important for accuracy of the statis

cal estimates ch method of

analysis defines its own minimum length. In gencral, the record length is inversely

to twice of the idth (B) i by an ion error (¢) as well as

being proportional to a proportional constant (K) which is dependent on the measured

timates, K is often assumed to

property. For a mean square and power spectral density

be equal to 2.
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Digitization of Continuous Information

In order to convert a continuous analog signal to a discrete form of values, sampling must

be completed in the time domain, quantization in the amplitude domain, and then coding
the final results into digital form. Errors can occur from the limitations of these

procedurcs

Sampling can be completed at a cyclic rate sampling which is a sinusoidal function that
samples in accordance with a lincar function of time. Another method of sampling can be
done at equally spaced time intervals, known as uniform sampling. Aperture is the length
of time over which data is averaged and should be small compared to the sampling period

in order to prevent error.

One of the most significant difficulties arises from aliasing cffects in which the measured
signal is indistinguishable from other signals. For example if a high frequency signal is
measured at too low a rate then the signal can be interpreted as a low frequency signal
Thus the high frequency signal looks like the low frequency signal and cannot be

identificd from one another, as shown by Figure 2-2.
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[\/U\NV\[\W/VWWWWW e
WWM%WWA[W e

I
|||||||||'II||II"||H' looks fike:

o lower frequeny signol

Figure 2-2 - Aliasing Effects from Signal Processing (OBORES Signal Processing

Another important parameter in signal processing is the Nyquist Frequency (fy). It is
defined as half the sampling frequency of a discrete signal. When a continuous signal is
sampled, all the aliasing effects occur above the Nyquist Frequency. Additionally, if f, is

the fundamental frequency of the true signal, aliasing will not occur when frequenci

range from zero to fy.

According to the Ralcigh Theorem, time T must be greater or equal to the reciprocal of

twice the bandwidth, B:

Signals must be subjected to band-pass filters prior to digitization. In summary, signals

have to be a finite bandwidth up to B Hz and are separated by 1/(2B) seconds.

19
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The sampling rate must be made large in order to have a practical filter in reality, and thus
may be higher than the sampling theorem suggests. Proper frequency reduction may not
be achieved until two octaves higher than the cut-off frequencies. Often, the sampling rate

is set to 1.25 times the filter cut off frequency.

As part of the ion process, allows a set of values to be
represented as a limited series of discrete numbers, This is only an approximation since
the original number, which has an infinite number of states, must be truncated in order to
be represented digitally with a limited number a bits. This process is non-lincar when
representing a physical quantity numerically. The result is expressed as an integer value

corresponding to the nearest whole number of units.
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22, Fourier Series

Fourier transform is the means to which data can be transformed into the frequency domain
from the time domain. Using the common trigonometric identity shown in Equation [2.10],
the Fourier’s theorem series shown in Equation [2.4] can be rewritten into an expanded

form shown in Equation [2.11].

sin(A + B) = sin A cos B + cos Asin B [2.10]

x(t) = Ay + A, sin 6, - cos wyt
+ A, cos B sinwgt + -+

2.11]
+ Ay sin6, - cos nwyt

We can simplify Equation [2.11] by letting the sine and cosine terms cqual to variables
which can be later derived theoretically using various integrals. The variables can be
written as:

ay = Ay sin6,

by = Ay cos6,

ay =24,

Note that the constant term ag is written as twice the original constant which is done for

simplicity later on in computation since the constant is arbitrary. Inputting the above terms
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into Equation [2.11] we obtain Equation [2.12] which can be simplifid into the Fouricr

series equation notation, as shown by Equation [2.13].

a
x(t) = 7“+ a; cos ot + by sinwyt + -

12.12]
+ a, cosnwyt + by, sin nwyt
. n
ag N
0= Zukcuskmut+z e Sin kot 12.13]
= =

Using the property of orthogonality for sinusoids, the only finite value that can be obtained

for the sinc and cosine functions is equal to 1/2. This is obtained by squaring the sine and

cosine respectively. In addition, frequencies and phase shifis must be equal, otherwise the
product will be zero (Beauchamp and Yuen, 1973). Orthogonality is an important principal
for the Fourier series as it will simplify the equation greatly. We can see that from Equation

[2.12] all the terms will thus reduce to zero except for the first term and therefore the

integral of x() over the period T will be:

1 .
jm)m:j%ae:
d

o

‘The constant term is thercfore cqual to!
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08
o

1
-—== t)dt .
>=7 J' x(t) [2.14]
o
We can solve for the variables a and by by multiplying the x(t) function by both sin koot
and cos kayt. The terms will all vanish except for the sin” kgt and cos® kot terms which
are equal to ¥ as previously stated. Therefore we have:
.

i

T
f x(t) sinka,t dt = f by sin? kwot dt = by 5
0 0

T T
T

fx(z) cos kot dt = f ay cos? kwot dt = g

0 0

Thercfore we now have equations for the variables which represent the amplitudes of the

harmonics found in the original function x(t) and are known as the Fourier cocfficients and

arc shown in Equations [2.15] and [2.16].

T
2
by =7fx(t) sin kwot dt [2.15]
o
o
ay =ij(t) cos kot dt [2.16]
0
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Complex representation of the Fourier series and integral allows for further development of

the Fourier transform. Using the following identities we can expand the notations in

Equation [2.13] where j=V-
1
coskwyt = 3 [exp(jkwot) + exp(—jkwot)] 2.17]
1
Jsinkao t = 5 [exp(kaot) ~ exp(~jkaot)] 12.18]

Incorporating Equations [2.17) and [2.18] into Equation [2.13] gives:
(ay cos kwgt + by sin kwyt)
ax . .
= lexp(kwot) + exp(=jkaot)]
by
+ 5 [exp(kaot) — exp(~jkwot)] 12.19]

= Ay exp(jkwot) + By exp(—jkwot)

where Ay and By, represent complex conjugate amplitude coefficients and are equal to

Ay = % 12.20]
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_ it jby

221
3 12:21]

By

Using Equations [2.15] and [2.16], as well as incorporating the identitics of Equation [2.17)
and [2.18], we can re-write Equations [2.20] and [2.21] into the expanded integral form,
which uses the original function x(t) as shown by Equations [2.22] and [2.23]. Note that ¢
has been changed to p for the integrations since ¢ needs to be maintained for the exponential

function.

T
|
A= ?f x(p)[cos kwop — jsin kwopldp
1

7 12.22)

1
=1 [ x@) expi=skanp) ap
:

-
1
By = ‘I_“J x(p)[cos kwop + jsin kwop]dp
0

. 12.23]
1
= 1 [ <o) exptanny ap
;

We can now expand the Fourier serics into complex notation by incorporating Equations

[2.14], [2.19], [2.22] and [2.23] into equation [2.13].
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x(t)
T

-1 [x®a

0

o
1
+;’; “f *(p) exp(—jkwap) dp| expkagt) -~

al, T
1

+kz TJ‘X(P)BXPU"WQP) dp| exp(—jkwot)
=i k4

Expression [2.24] can be simplified as there are a number of sequence of terms that are
summed from k=1 to k=n as well as k=-1 and k=-n for the third term (by incorporating the
negative in the exponential term) so that we can join the terms to be the summations from
k=-n to k=n which includes the first term at k=0. Therefore Equation [2.24] can be rewritten

as:

k=n T
1
x(t) = Z F[f x(p) exp(~jkwop) dp | exp(ikwot) 12.25)
=il

Fourier Integral Transform

Since Fourier series’ has limitations in that it assumes the time function is infinite and that

the data is periodic, which in practice is not reality, Fourier Integral transform is used for

most signal data. The data can no longer be assumed that it will repeat infinitely, therefore k
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and T are extended to infinity and the fundamental frequency will lead towards zero. The

separation between harmonics also tends to zero which will cause the Fourier coefficients

to become continuous functions of frequency. A couple of noteworthy relations are:

w =2nf

Thercfore we can restate Equation [2.25] in terms of frequency in the complex form of a

Fourier integral as shown by Equation [2.26]

0= [ [ [ x@yexnijon - dp] espGon) - df 1226
The contents within the brackets in Equation [2.26] represent the amplitude of the complex
Fourier coefficients for a continuous time series. Isolating the bracketed expression we have

a frequency function as shown in Equation [2.27].

X(f)= ] x(p) exp(—jwp) - dp 12.27]

or
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X(f) = J’ x(6) exp(—jwt) - dt 12.28]

to show in its original time form.

Equation [2.28] is the complex Fourier transform of the time series x(t). The absolute
values of X(f) gives the frequency amplitude and the argument gives the phase. Thus
Equation [2.26] becomes:

x(t) = f X(f)exp(jwt) - df 12.29]

which is known as the inverse complex Fourier transform. In discrete terms Equation [2.29]

becomes:

0=y

() exp(jwt) - df 12.30)

Ofien o is used in place of f, for example when a scaling factor of 1/2 is applicd to a
complex transform. Alternative forms of writing Fourier transform are used to quantify
them in terms of cosine and sine. If the x(t) function is even, ic. x(t) is symmetric about the
=0 axis, the Fourier transform becomes known as the Fourier cosine transform X(f) and if
the function is odd the Fourier transform becomes known as the Fourier sine transform

X(f), as shown by Equations [2.31] and [2.32].
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X(N= f x(t)cos wt - dt 2.31]
Xs(f) = f x(t)sinwt - dt 232

Discrete Fourier Series

For discrete digitized data, a finite form of Fourier series is needed to derive a discrete form
of the Fourier transform. Computationally the discrete Fourier transform is identical to the

tion but the

complex representation of Fourier series described in the previous
theoretical derivation is quite different. There are quite a few more limitations to

discontinuous discrete data in contrast to continuous, which occur from an attempt to

preserve infc ion when ing between conti and di: i data.

A number of conditions must be included in order to derive the Fourier transform. For a
sample record of length T seconds, it is divided into N equally spaced points by h length,
also known as the time step. The sampling rate, fs, of the record is 1/h. There are a limited
number of frequencies that can represent the time series and is established by the Nyquist
frequency, fiv. The Nyquist frequency is half the sampling frequency and is thus equal to:

1
=35
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Since the record length for the time series has N number of values to compute, but in the

frequency domain the Fourier coefficient contains a real and imaginary value, the frequency

components must be limited to N/2 discrete values.

Now to expand the Fourier series shown in Equation [2.13], we will use i to describe the

time scrics summation and n for frequency domain. Therefore:

t=ih (i=123..N)

_ _ N
f=f @=123..3)

Replacing wo by 2T and k by n, Equation [2.13] will become Equation [2.33].

N2

N2

n2mih  n2mih

T + Z by sin——
=1

n COS

T

Since T=h*N and to show the special case where the constant term in Equation [2.33] can
be removed, when considering the mean value case when n=0, we can rewrite Equation

[2.33] to

N2 oy M st
n2m _ n2mi
Zoa,. cusT Zﬂ by, sin—— 2.34]
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Equation [2.33] and [2.34] are the main expressions used to define discrete Fourier serics.

Similarly, the coefficients can be derived from Equations [2.14], [2.15] and [2.16] to be:

Discrete Fourier Transform

Since there are limitations implemented on discrete data, we know that integrals must be

s cannot be infinite. In order

replaced with summations and that the limits on the summatior
to use the discrete Fourier series derived in the previous section, the transform X(f) must be
complex so that it would contain both negative and positive frequencies such as:

X = ay + jby
where j signifies the complex component. Therefore we can rewrite Equation [2.34] as

2
M) (i=123,..,N) 12.35]
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Duc to the fact that two spectrum components are generated for cach real frequency, the

summation of the two components will cause a doubling of amplitude of the spectral s
produced. Therefore a scaling factor of 1I/N must be included to properly account for the

increase, which allows the transform to be written as:
N
1 z jn2mi
Xo== Z X exp( ’—N~) 12.36]

Equations [2.35] and [2.36] can be further simplified by noting that they are symmetrical

for the positive and negative values of N. Therefore x; and X, become:

o jn2mi
x= Z Xnexp (T) (i,n=0,12,..,(N—1)) 1237]
o
19 jn2mi
n
Xo = ﬁzox‘ exp( T) 1238]

Equation [2.37] and [2.38] arc the discrete Fourier transform and inverse discrete Fourier

transform, respectively.

Fast Fourier Transform

Due to the slow computational time of the Fourier transform, which is a 1:1 conversion of a
data sequence, a method called the fast Fourier transform (FFT) is often used instead. It was

described by Cooley and Turkey in 1965 (Beauchamp and Yuen, 1973) in a method to case
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machine and also by Danielson and Lanczos in 1942

(Press et. al., 1992) who were not able to see much use of it when the most advance

technology was a hand calculator.

The Cooley-Tukey method reduces a large process of matrix multiplication and addition to
a series of sparse matrices. This eliminates much of the redundancy that occurs using
discrete Fourier transforms (DFT), where many of the products are repeated. The matrix
multiplication requires N° complex multiplications for a DFT but a FFT can be done using,
Nlog:N which makes a large difference in terms of computation time. For example (Press
et al., 1992) N=10° will take roughly 30 seconds for Nlog:N and 2 wecks for N

computation time on a microsecond cycle time computer.

Daniclson and Lanczos (Press et. al., 1992) provide one of the clearest derivations of the
FFT algorithm. They describe the length T of a signal x; can be split into two discrete
Fourier Transforms of length T/2, one being an even-indexed (i=2m) points, Xam, and the
other being odd-indexed (i=2m+1), Xaui1. After the two DFTs are computed, they are
combined to produce the full sequence as shown in Equation [2.39], which is expanded

from Equation [2.38], noting that the scaling factor is not shown for simplicity.
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Xn
Nj2-1

= Z Xom exp(
m=0

jn2m(2m)
TN )

12.39]

Nj2-1

jn2m(2m + 1)
+ E X(zm+1) €XP (_—N )
m=0

2mjn
N

Taking out the common multplier exp (—*2%) of the odd-indexed summation, using the

¢*P=cc® identity, and simplifying we can clearly see the cven and odd indexed parts that

make up the x; function:

Xn
2mjnm
-5 s -2
e 2
31
mjn 2mjnm [2.40]
+9XP( T) X(2m+1) €XP TN
m=0 7
2mjny
= Foven + 39 (=) - Foaa

One of the casiest ways to compute the FFT is to use a radix of 2 for the number of inputs

N, ie. N=2" where P=123...c0. The advantage of the radix of 2, as described by
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Beauchamp and Yuen (1973), is due to some of the terms of the common multiplicr, shown
in Equation [2.40], reduce to either 1 or -1 which avoids even further complex arithmetic.

The structure of the computation of the FFT is described in section 4.2.
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23 Spectral Analysis
The previous section describes the value of working in the frequency domain using a serics
of valucs. This section develops the uscfulness of the frequency domain in terms of an

clectronic signal.

Amplitude and the power of the signal are the most frequently used and uscful
characteristics of a signal in the frequency domain and were defined in scction 2.1. Each

trum as

characteristic pertains to a certain frequency and when combined create a wave s

shown in Figure 2-3. The characteristics of a signal create what is known as a power

spectrum and is an average quantity which describes the energy that is allocated at assorted

frequencics.

g
Fonon

Figure 2-3 - Wave Spectrum (Voogt 2005)

Spectral Analysis allows certain characteristics of a signal to be calculated which would

otherwise be quite difficult. For example, as noted by Beauchamp and Yuen (1973), the
difficulty of calculating the total energy of signals can be reduced by integrating the power

spectral density since the power at individual frequencies can be casily found. Another
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useful application of spectral analysis is ining the between
and spectral density, in which one quantity can be found from one another, even if the
signal is immeasurable in the time domain. The link between the two quantities has been

useful for finding analogics of theorics in the subject of signal analysis. Beauchamp and

Yuen (1973) note that we cannot measure visible light as a time . but it is possible to

i
measure the spectrum of a light source. This trait becomes particularly useful when

incorporating fast Fourier transform algorithms.

Beauchamp and Yuen (1973) note several techniques used for determining the power

spectral density:

e« Direct Fourier transform: Computes Fourier transform of the time series and then
the mean-square value is calculated.

*  Indircct method: The Fourier transform of the auto-correlation function is calculated
and then the spectral density function is derived.

e Band-pass filtering: A method of filtering out unwanted data from a range of

frequenc

The direct method was used in this research as is more common after the development of

the FFT subrouting

ince this allowed for a much faster computational time. A band-pass

filter was used to smooth the spectral density curve to produce reliable estimates.
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Power Spectrum Estimation

The square of a random signal will calculate its energy content and the square of Fourier
transform at a frequency f will give the energy content at f. Since we are dealing with a
random process, the values at the Fourier transform will fluctuate at any frequency.
Therefore two picces of a random signal at different times would produce different Fourier
transforms, thus the square of a Fourier transform cannot describe its energy content in
general. But the use of an ensemble average, as described in section 2.1, of a Fourier
transform square can be used to describe the importance of the Fourier transform at any
frequency. Therefore we can describe the power spectrum, or auto-spectrum, as:
S =<1X(NI* >

where X(f) is the Fourier transform as derived in the previous section. In order to prove that
the total power contained in X(f) is equal to that of x(t), Parseval theorem is derived. Real
functions x(t) and y(t) are multiplied and are expressed in terms of Fourier transform using

Equation [2.30]
YO =x©) [ V() expGan)-df 2411
Taking the integral of Equation [2.41] we get:

fx(z)y(z)dz :“f x(t)Y(/)exp(/‘mt)df}dt [2.42]

And rearranging Equation [2.42] we get:
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f KOy dt = f v f *(@) exp(jan) e} df [2.43)

where the bracketed part in Equation [2.43] is the complex conjugate of X(f) and thus

Equation [2.43] can be rewritten as Equation [2.44].
f)t(t)y(t) dt = IX'(/)Y(/)df [2.44]
Letting x(t)=y(t) and X(H)=Y(f) then equation becomes:
[w©ac=[x@xpar = [xora [2.45)
When the ensemble averages are taken on both sides in Equation [2.45], we get:
j(xz(t)) dt = fs(f)df [2.46]

Equation [2.46] proves that the power spectral density added up for all frequencies equals

the average power of x added up over time.

Auto-Spectrum and Amplitude Spectrum

The auto-spectrum and the amplitude spectrum are important properties of signals that use

the DFT coefficients to calculate one of the other. The auto-spectrum was described carlier
as the power spectrum and the amplitude spectrum is the spectrum of modulus of the
coefficients obtained from the FFT. The FFT produces a two-sided spectrum in complex
form and must be converted to polar and scaled by the length of the record in order to

obtain the magnitude and phase (National Instrument, 2009). To illustrate this relationship
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the wave profile, &, observed at a wave probe is shown in Equation [2.47] (Mansard and

Funke, 1980).

S  r2mkt
6= Z A sm[ — a,,,k] 1247]
£

which looks similar to Equation [2.37], except it is denoted using the sine notation. A,y is
the Fourier coefficient for frequency, T is the length of the wave profile, oy is the phase
relative to the time origin, and N is the upper limit of the summation which is related to the

maximum significant frequency The Fourier ients and their phases

can

be expressed in polar or rectangular form as indicated in equations and are stated as in

Equation [2.48] and [2.49], respectively:

By = Apy e~k [2.48]

By = Ap COS @y + i Ay Sin @ [2.49]

where By is the Fourier Transform of Gy The FFT subroutine that is used for this research
uses the rectangular form, and thus using the property of cos’0+sin’0=1, scaling by T, and

renaming By to be the amplitude spectra As(k,f) we get:

As(k, f) =

The phase spectrum is calculated as:
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(40),

£ = tan™! |——L| (-m..7m) [2.50]

[CD

The magnitude and phase spectrum are in radians. The auto-spectra can now be used to

calculate the auto-spectra S,(k,f) using Equation [2.50]:

Ag(k, [)?
Salk,f) = # 1251]
or using angular frequency © we have
As(k, w)?
Salk,w) = SZ-T

When the auto-spectrum is calculated through alternative means, for example using the
indirect method, the magnitude spectrum can be calculated by the inverse of Equation

[2.51] or as shown by:

As(k, ) =2 Sa(k, w) - dw
Since the FFT is producing a two sided spectrum, the amplitude spectrum is only showing
the half peak of the cnergy spread out over the positive and negative frequencics to produce

amirror image, as shown in Figure 2-4.
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404
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Figure 2-4 — A two sided line spectrum (National Instrument, 2009)

To correct the mirroring cffect, the amplitude must be multiplied by 2 for half of the
frequencies, ie. frequency of i=1 to N/2-1, and amplitudes at i=0 and N/2 to their original
amplitudes and discard the rest of the amplitudes by letting them equal to 0 (National

Instrument, 2009).

The spectral characteristics can be related to the time series with the use of the previously
mentioned root mean square, shown by Equation [2.52], and the spectral moment, m". The
spectral moment to the n™ power has the following formulation (Wave Spectra,

FORMSYS):
m, j W0"S(w)dw (n=01.2,..) [2.52)
o

The zero" moment, mo, is the most important as it gives the equivalent to the area under the
wave spectrum curve and it is equal to the variance of the time series, or the root mean

square, as shown by Equation [2.54]. Equation [2.52] becomes Equation [2.53] for my
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e f WS (@)do =
5

S(w)dw (n=101.2,...) 12.53)
o

rmsy = \m, [2.54]
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24 Wave Splitting Theory

Introduction

Wave splitting is done by first measuring the waves at an assortment of locations in a
model basin and then using of a wave model with regression techniques to distinguish how
much cnergy is coming from the wave maker to the beach and vice versa. The low
frequency wave, associated with the second order wave, can be identified by the wave
model. The device used to record the wave is a wave probe in which there can be many

placed at various locations in the basin.

The following environmental basin effects cause low frequency waves (Voogt, 2005):
1) Generating waves using a Flat Wave Flap. This type of wave flap can cause
a mismatch between generated water velocities in a generated wave at the
wave flap. This error can be minimized by applying a sccond order

correction to the wave which is further discussed in Chapter 3.

5

Reflections of the waves due to the finite size of the basin. Minimized by
inputting a parabolic beach but docs not sufficiently dampen the long wave

components.

w

Shoaling cffects created by the bathymetry of the basin bottom. Significant

in modeling shallow water situations as wave set-down will refl free

waves from the parabolic beach.
The wave can be split into four different categorics: incident free, incident bound, reflected

fiee wave, and reflected bound wave, as shown by Equation [2.55]. The reflected bound
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wave is neglected duc to its insignificant size as compared with other wave categorics

(Voogt, 2005).

§ = Sincfree t Sincbound + Sref free + Srefbouna [2.55]

where:

¢: The total wave elevation.

Gine,free: Incident free waves, propagating from the wave flaps to the beach.

Gine bound: Wave found bound to the incident free waves, also known as wave set-down
Grerfree: Reflected free wave from the wave flap to the beach.

Gretbound: Wave bounded to the reflected wave. As previously mentioned this term is

neglected in the final wave elevation calculation.

The speed of the free waves differs from the bound waves and they have different
directions. This allows the wave components to be distinguished from one another.
Equations [2.56] and [2.57] describe the wave velocities for the free and bound waves,
respectively, in which the bound uses the difference of the frequency () and wave number

(k).

w
Gree =g 12.56]

Sw
Coound = 5p
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where

Cee: Speed of the free waves
Chound: Speed of the bound waves
: Wave frequency

k: Wave number

So: Partial wave frequency

Sk: Partial wave number

Splitting the waves must be done for each wave frequency and the wave elevation for at
least 3 spatial positions (Voogt, 2005). The incident and bound free waves at one specific

frequency are shown in Equations [2.58], [2.59], and [2.60].

Sinc,free = Sir €oS(Wt = kinex + i7) 1258
Sref free = Sry COS(WE + KyepX + £r7) 12.59]
Sincbouna = Sip COS(Awt — Dkx + &) [2.60]

where ¢ refers to a random phase angle between —m and 7 for cach wave type.

In order to find the frequency, , and wave number, k, the dispersion relationship can be

used as shown by Equation [2.61]. Note that the difference frequency, Aw, and difference
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wave number, Ak, do not satisfy the dispersion equation. The term g refers to gravity

(9.81m/s%).
w? = gktankh [2.61]

The Newton-Raphson method was the numerical method used to solve the wave number
from the dispersion equation, which is described in section 4.3. Since the information
pertaining to the wave components is limited, it is assumed that the bound wave propagates
with a group speed that corresponds to the peak period of the energy spectrum (ic. o= )
This is reasonable with the further assumption of a narrow banded spectrum (Voogt, 2005).
A Fourier transform will give the individual frequency components of the wave. Each
frequency component can be written as Equation [2.62] where A and B are known

coefficients.

§(x = xp, 0 = w;) = Acos(w;t) + B sin(w;t) 12.62]

Substituting Equations [2.62], [2.58], [2.59], and [2.60] into Equation [2.551, the total wave

clevation equation is found:
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Acos(w;t) + Bsin(w;t)
= iy cos(wjt — kjx, + &)
+ Gip cos(Awjt — Akjx, + &) 263]

+ Gy cos(ayt + Kjxy + &)

The terms in Equation [2.63] can be collected and the unknown terms can be isolated and
shown in Equation [2.64] as vector 3 :
Giy cos iy

Sip singip
" cos &
g=|Sreoser 12.64]
Gy siney
Sin COS iy
Sip Sin €ip
Collecting the cosine and sine terms, two cquations can be found for A and B as shown by

Equations [2.65] and [2.66] and is proved in Appendix A.

A= [cos(hyx,) sin(kx,) cos(Kx,) —sin(Kx,) cos(@kjx,) sin(@kjdx)] -5 [2.65]
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sin(kyx,) —cos(kx,) —sin(Kjx,) —cos(Kyx,) sin(dkjdx,) —cos(dk;dx,)]
[2.66]

Equations [2.65] and [2.66] are well conditioned then the solution can be found by matrix
inversion. Singular Value Decomposition was the computational method used for matrix
inversion and is described in section 4.4. The distance to which the wave probes are
separated relative to the wavelength has great influence on the condition number, the case
of digital computation. The conditioning worsens (ic. the condition number will increase)
when the distance between two probes are integer multiple of half the wavelength. Voogt
(2005) discuses that the optimum spacing of the wave probes is 0.25 times the wavelength.
‘When there are large distances between the probes, aliasing effects can occur where the
signal from the probes becomes indistinguishable. Therefore the distances between the
probes must be limited but must also be large enough to separate the free and bound waves

travelling in the same direction.
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Applying Wave Splitting Theory

‘When applying the wave splitting theory to a model test basin, there is a procedure that can

be followed as discussed below shown in Figure 2-5 (Dijk 2007).

Step 1: Install wave probes in optimum locations
Step 2: Commence measurement of wave data during calibration; including
start of wave marker to sometime after waver maker is shut down

Step 3: Prepare input for wave splitting tool

Step 4: Run wave splitting tool

Step 5: Check data from wave splitting results

Step 6: Attain wave forces of incident and reflected waves which are based on
reflected database

Step 7: Solve equations of motion in the time domain

Step 8: Do comparison between numerical and measured vessel response in the

basin
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Figure 2-5 - Flow Diagram of Steps for Use of Wave Splitting (Dijk 2007)

It should be noted that attention must be paid to the damping values of the floating vessel to

ensure that the numerical results match up with the measured results.
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25.  Analytical Model of Wave Set-down

An analytical model is used to calculate the theoretical set-down in the waves as an
alternate method of calculating set-down and can also be compared to the set-down that

was decomposed from the measured wave using the wave splitting tool

As previously stated, the second order component of the waves contains a low frequency
component known as wave set-down. It is a quadratic function of the wave amplitudes and
can be found using a quadratic transfer function which gives the wave amplitudes and
phases of the set-down in a travelling wave group (Huijsmans, 2002). In order to develop

the analytical equations, potential theory is assumed.

The velocity potentials of fluid flow in waves are a summation of the different

approximation orders that make up a wave and can be described as:

¢ =¢M 4@ 4
The first order approximation of the equation, ¢, is usually the most significant
component, especially in deep water situations. Huijsmans (2002) describes the boundary

ditions for the first order

The continuity equation states that the gradient of the first order approximation is
cqual to zero everywhere in the fluid domain.

¢ =

The free surface condition: the bottom potential added with the top potential must

be equal to zero at the free surface,

I
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049 =0
e The botton condition:
90" =0, atz=h
Using the previously stated boundary condition for a regular planc wave progression we
can get an expression for the first order wave potential (Huijsmans, 2002), shown by
Equation [2.67].

(Wi coshk(z + h)

= inp — i 2.67)
7 — exp(ikx cos u + iky sinpu — iwt) [2.67]

oM =

For the second order approximation, Huijsmans (2002) states the boundary conditions as:
o The continuity equation states that the gradient of the second order approximation is
equal to zero everywhere in the fluid domain.

2O =

The free surface condition, shown by Equation [2.68], shows that the sccond order

potential is dependent on the first order potential.

1
09 + 47 = <2940 - 940 + 9" (40 + 2012 2.68)

*  The bottom boundary condition:
¢ =0,atz=h
To use the boundary conditions to derive an expression for the second order potential, we

s of

can first derive the first order potential associated with a regular wave group that cons
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two regular waves coming from two different dircctions (Huijsmans, 2002) shown by

Equation (2.69].

2 2
, coshk(z+h)
W = ' Ly si - 2.69]
E E ohGe 8 T cos(icpx cos g + Ky sinp — wit)  [2.69]

1k=1

where i cannot equal k.
Huijsmans (2002) then describes the low frequency component of the second order
potential between the two regular waves from different directions as shown by Equation

[2.70]

¢ =

g

i
h(x; — d

Zzz 00 g5, M RNCED L cos

oy cosh(x; — x;)d

— Kj cos p)x + (kg sin e — K; sin )y — (w; — m,)t)

12.70]

The unknown Ajj,, term can be found by utilizing the free surface condition for the sccond

order potential, shown in Equation [2.68]. Thus for A7, we get:

Bijii + Cija

.
2( = o)~ (v~ g)g tanh(ox — )

2 2
Xi LJ]

B =——————————
UK i (coshkih)?  wj(cosh kjh)?
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2k (w; — w;)(cos(uy — wy) + tanh k;h tanh x;h)

Cin =
ikt
Wiw;

The wave set-down is the low frequency component of the second order wave height on the

firee surface, given by Equation [2.71].

1
(@ =@ _ |\7¢m| ('“)¢fz” 7

Therefore the wave sct-down is obtained as Equation [2.72].

2 2 2 2
1,0
@ = Z Z Z Z 24503075 cos ( (i cos e
=1 =11=1

— Kj COS 1 )x
+ (1 sin e = sin gy )y 12.72]

~(oi-))

where Djjyqis a transfer function that includes Ay, Bjjxq. and Cjcomponents. Djjyqis

expressed as:

A0 — w, K
_ A0~ @) s ,g(ws(”k 1) + tanh ;h tanh w;h)

Dija %

1
+ Z(K‘ tanh kih + i tanh k;h)
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2.6. Power Spectrum Estimation

A power spectrum estimation theory was used in order to produce smooth power spectra
since the wave splitting method produced noisy spectra graphs and made the real propertics
of the graphs difficult to distinguish. A method to reduce large variance from a [X(f)f* set of
data is to multiply it by a weighting function W(f) (Beauchamp and Yuen, 1973). The
process is typically called windowing and the weighting function is called the window,
which produces a smoothed version of a spectrum. The type of window is discussed later in

this section.

The method used to produce the spectra is based on the Welch method (Welch 17). The
length of the record was sectioned into overlapping segments and a modified periodogram
was found for cach scction by windowing the original record. Then the modificd
periodogram was then averaged. This method requires less iterations than other methods
(Welch 17), due to the shorter record segments for computations.

For this method, a record has a length of:

X(.j=0,

where N is the total number of record points. Overlapping segments, with a length of L, arc
separated by distance M. There are a total of K segments. The first few segments will have
the form:

X0) = X0)j =

X() =XG+M),j=

Xa()=XG+2+ M),j
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Therefore a general formula can be stated as

Xk () =XG + (K -1M),j=0,

Note that L+(K-1)M=N.

For cach of the segments, the modified periodogram, another term for estimating the
spectral density of a time series, can be found by multiplying it by a windowing function. A
hanning function, or window, was used which has a cosine shape and has the following
formulation:

o

w(f) =%+%COS(N)
where N is the total number of points (Beauchamp and Yuen, 1973).
In order to determine the total number of segments K, the length of M was first calculated,
which was based on the Nyquist frequency and the frequency resolution dw. The frequency
resolution was assumed in order for the resolution to be low enough to smooth the
fluctuations but high enough not to underestimate the properties of the spectra. The Nyquist
frequency, as previously mentioned, is based on the time step and . Thus M was calculated
to be the Nyquist frequency divided by the resolution (Dijk, 2007). K can then be found as

N/M-1. The overlapping length L is calculated as 2*M.

For each segment of length L the modified periodogram is calculated and then the finite

Fourier transforms are found as shown in Equation [2.73].
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1
Agn) =7 ) XD (e 12.73)

We can thus caleulate the modificd periodograms as:

1
= 2 g =
W) =15 A 1A%k =12,...K
which is a modified equation based on Welsh (1976) and Dijk (2007). The spectral estimate

is the average of the periodograms as shown in Equation [2.74].

«
P(f) = %Z Ie(fa) 12.74]
=

where 8/3 is an averaging function as recommended by Dijk (2007).



‘Wave Generation Introduction

3. WAVE GENERATION

3.1, ‘Wave Generation Introduction

Wave generation was done at the National Research Council (NRC) Offshore Engincering
Basin (OEB) in St. John’s, NL. 56 piston-type segmented wave makers were used to

gencrate the waves. The wave data in the OEB was measured using fourteen wave probes

The waves were generated by two methods: the first method generated waves containing
only first order waves and the second method contained both first order components as well
as second order components, as outlined in Section 1.3. Second order wave components are
naturally created in the shallow water environment and thus generating waves with second
order components should allow for better correlation with results from the wave splitting
program. The measured data should better align with the theoretical wave set-down that
was generated using the analytical model in the low frequency domain. The addition of the
second order wave generation should also correct the mismatch between the wave

velocities that the first order wave generation can cause.
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3. Piston Type Wave Maker

A piston type wave maker, as shown in Figure 3-1, has multiple pistons that displace the
water by repeatedly moving horizontally back and forth. Figure 3-1 shows that there can be

a large number of pistons moving the water forward to create the water waves.

Figure 3-1 - Piston type wave maker (Wavemaker)

The piston type wave maker is one of the morc simplified wave makers in terms of

boundary conditions as there is only translational motion, with no rotational motion

(Schiffer, 1994). The wave maker oscillates with varying velocities and stroke lengths. The

range of the fi of the ponds to the desired frequency

ange of

the generated irregular sea state. Software equipped into the wave maker take into account
the second order wave theory in shallow water. Therefore there is a second order correction
for the linear motion of the piston that differs slightly from the motions of the water

particles in shallow water. The linear motion of the piston causes the motion of the free

waves to be cireular in shape and is not representative of occan going waves

as they arc
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typically oval shaped particles of motion. Therefore an added signal is incorporated to the

unwanted free waves that is opposite in sign and will eliminate them.
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33, Basin Test Configuration

The shallow water model testing took place at NRC in the OEB. The basin is 75 meters

length and 32 meters in width (Zaman ct. al., 2011, as shown in Figure 3-2

Wave Makers

Wave Asorbera (Beach)

Figure 3-2 - NRC Ocean Engineering Basin (OEB)

The basin has wave makers in both longitudinal and transverse directions, but only
longitudinal waves were used. There are also wave absorbers, or beaches, opposite of the

to create such as

in also h:

wave maker. The bz

current and wind, but only wave gencration was used. In order to replicate shallow water
depths of 15m in the basin, a scale of 1:50 was used to result in a depth of 0.3m and 0.6m.
The piston wave maker oscillates with varying velocitics and strokes to generate the waves.
A different range of frequencies were used and input into the software cquipped to the wave
maker. Fourteen capacitance type wave probes were used to read the encounter frequency
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of the waves. As waves contact the wave probes, the changing internal resistance within
wave probes allows the frequency of the waves to be measured. Figure 3-3 shows the

positions of the wave probes within the OEB.

Figure 3-3 - Positions of the Fourteen Wave Probes Within the OEB.
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34.  Physical Modeling
Certain properties of the long waves are dominant at different frequency ranges which have
an cffect of the wave generators. For a piston type wave generator, a method to find the
accurate second order piston position, X*(t), is to extend the boundary conditions to second

order and apply the Laplace cquations with nonlincar surface conditions. Free waves arc

excluded from X*(t) equation. Sand (1982) discusses how if only first order wave
generation was utilized for the model tests of a moored bulk carricr, the mooring forces
would greatly differ from the prototype. It is important to know the amplitude of the second
order long waves, &, and the amplitude of the second order control signal, X,?, before
doing the model test. & and X,? can be estimated through the use of a transfer function, as
shown by Equations [3.1] and [3.2].

 GamhAnAn
- h

FyhA,A
¥ = e 1321

where:
Gum: a transfer function

a transfer function

h: water depth

AuwAn: the amplitudes of the terms in the respective transfer function



Band-pass Filter

4. COMPUTATIONAL METHOD

4.1, Band-pass Filter
A band-pass filter was used to reduce the noise of the data. Band-pass values were assumed
from typical values of typical spectral density plots, specifically the JONSWAP wave

spectral density plot as shown in Figure 4-1.

Specirbl density_(Vave(Wave freq)

i\
L
[\
|
|

5

Wave Spectral Densty m"2radis)

(N
J

03 06

°

09 2 15 18 21
Wave, Encounter Frequency radis

Figure 4-1 - JONSWAP Spectral Density Plot (Wave Spectra, FORMSYS)

The high pass frequency filter sets a lower limit for acceptable frequencics to be used
within the program so that frequencies higher than the limit can pass. The low pass
frequency filter sets an upper limit for acceptable frequencies to be used within the program

so that frequencics lower than the limit can pass. Values assumed for the high pass filter

were 0.2 radls. For the low pass filter the Nyquist frequency was used to avoid aliasing
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effects. An absolute maximum of 6 rad/s is also imposed in order to reduce noise if the

Nyquist frequency determined to be too large.
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4.2. Fast Fourier Transform

The FFT is a complex algorithm that few scientists and engineers could write themselves.
There are two main steps to an FFT computation: first the FFT breaks down an N point
time domain signal into N single transforms, to which it then calculates the N frequency
spectra.  Secondly it synthesizes the N spectra into single frequency spectrum. Using an

example illustrated by Smith (1997) it can be shown exactly how it is broken down.

single point,

A 16 point signal can be decomposed four times until cach signal is down to a

as shown in Figure 4-2.

};‘;’;‘:‘ [01 234567801011 12131415 |
/\
;;‘f";":l:“ [o246810n214|[1 35709 111315]
&
\ )
j;‘i"‘é”f [Pas )26 u][1sonB][37113]
I 7y IE 7\
8 signals of "
2 points

16 signals of
1 point

Figure 4-2 - Decomposition of a 16 Point Signal (Smith 1997)

The decomposition is done by converting cach decimal number into a binary number so
that the numbers are separated into even and odd categories or what is known as interlaced
decomposition. This process is often done using a bit reversing algorithm that rearranges

the points with the bits flipped left to right, shown in Figure 4-3.
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Sample numbers Sample numbers

1n normal order after bit reversal

Decimal  Binary Decimal  Binary
0 0000 0 0000
1 0001 8 1000
2 0010 4 0100
3 0011 12 1100
4 0100 2 0010
5 0101 10 1010
6 0110 —> 6 0100
7 o111 14 1110
H 1000 1 0001
9 1001 o 1001
10 1010 5 0101
11 1011 13 1101
12 1100 3 0011
13 1101 1 1011
14 1110 7 o111
15 1111 15 1mn

Figure 4-3 — Bit reversing algorithm (Smith 1997)

Afier the points have been rearranged, the next step is to find the frequency spectra of a one
point time domain signal, which is simply equal to itself. Therefore there is no work

required to do this step and all time domain points are now frequency domain points.

For the final step in the FFT procedure, the N frequency spectra must be recombined in the

exact opposite manner in which it was decomposed in step one. This is the most complex of

all the steps. Since bit reversal cannot be used for this stage, the proces reversed one
level at a time. A 16 frequency spectra (1 point cach) is divided into two 8 frequency
spectra (2 points cach) and then cach 8 point spectra are subdivided into 4 point spectra, cte,
until a 16 point frequency spectrum is created. Therefore in order to build the frequency

domain points back so that they correspond the time domain points, two signals must be
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interlaced to make one. For example, to obtain an 8 point signal from two 4 point signals,
cach 4 point signal must be diluted with zeros and added together to obtain the original

signal, as shown in Figure 4-4.

Time Domain Frequency Domain
(Te]eTd) - B)
[cTeTeTeTcToT4To] Lo [ABIcID]aTB[c D]

[eIfTela) EIFIGIH]

\KK BN e

(eleToTt o eloTn] -«

Figure 4-4 — Reconstructing signals in the time and frequency domain (Smith 1997)

It can also be noted from Figure 4-4 that in order to appropriately add the two 4 point
signals, one of the signals must be shifted. This will allow a0b0c0d0 and 0e0f0gOh to
become acbfegdh. In the frequency domain, the dilution from the time domain becomes

duplication in the frequency domain, as can be seen in Figure 4-4. The duplicated spectra
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are then added together in order to form the new spectra. The shift that is done in the time

domain corresponds to multiplying the spectrum by a sinusoid.

The most basic calculation within the FFT subroutine is called a butterfly, termed after its
appearance, where two complex points are converted to two other complex points and is

shown in Figure 4-5

‘ 2 point input

IS)

2 pomt output

Figure 4-5 — The Butterfly Calculation (Smith 1997)

This pattern is repeated for each step of the process of recreating the full frequency

spectrum,

s shown by Figure 4-6.



Fast Fourier Transform

Time Domain Data

Tune
Domain
Decomposition

Frequency

Synthesis

Bunterfly
Calculaton

Lo foe Log. N sapes.
Loop ko Leach subDFT

9

Frequency Domain Data

Figure 4-6 — Total FFT Procedure (Smith 1997)

Figure 4-6 illustrates the three loops that are needed in order to ¢

© the frequency
domain data. The outer loop repeats for Log;N stages, the middle loop repeats for cach of
the levels of frequency spectra that are being added, and the inner loop repeats the butterfly
for cach individual frequency spectra. The overhead boxes calculate the level of the

interlacing to determine what is left to be calculated.
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43. Newton-Raphson Method

The Newton-Raphson method is used for solving the dispersion cquation. It uses an
iitial guess for the value of k, described here as x;, in order to create a tangent line to the
function f{x), where the tangent line is the derivative of the function fix,), and is
extrapolated down to the x axis which provides an estimate of the root X, (Chapra 2006).
Thus the Newton-Raphson can be derived on the basis of geometrical analysis and can be
shown in the form of Equation [4.1].

i)
)

Xig1 =X

[4.1]
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44, Singular Value Decomposition
Singular value decomposition (SVD) is a method in linear algebra that factorizes a real or
complex matrix. The form that SVD takes in shown below:

My =

m SmnVoan

where: M is the initial rectangular matrix
U is an orthogonal matrix. The columns are orthonormal eigenvectors of AA".
S is a diagonal matrix that contains the singular values, or the square roots of
cigenvalucs, of U
V' is the transpose of the orthogonal matrix V. The columns of V are the
orthonormal cigenvectors of ATA
m is the number of rows in the matrix

n is the number of columns in the matrix

The orthogonal matrices multiplied by their transpose matrix must equal the identity matrix,

such that U'U = Tand V'V = 1.

SVD has many advantages

which include revealing many important propertics of the
matrix, such as the eigenvectors, and determining a form of matrix inversion. For this

research, SVD was used to solve the unknown matrix y stated in Scction 2.4. Finding the

inverse of a matrix can be casily completed for a square matrix. Since the matrices in this

rescarch are rectangular matri an alternative method is required. The SVD method

becomes useful as it can solve a pseudo-inverse matrix for a non-square matrix. The SVD
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method also provides a numerically stable method for solving lincar cquations which is
important for a highly numerical process. In order to complete the matrix inversion, the
three matrices that make up the original matrix M are used to find the inverse as shown in

Equation [4.2].

Mty = VanSmnUsim 14.2]
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45 Wave Splitting Program

The wave splitting program, created using FORTRAN 77 is described by the flow chart
shown in Figure 4-7. The program starts by having the user input slect variables which
includes:

*  Peak period of the wave data in seconds

e« Water depth in meters.

*  Desired number of wave components to be split.
This gives the option for the user to run a varicty of different wave data sets and casily

change the important input parameters

The program then reads in the files containing the time, wave amplitudes, and wave probe
positions. The user must verify the files are named in correspondence to what they are

named the program, which can be left to the discretion of the user.

The program then will set up all the variables in a relative manner, ie. setting everything in
relation to the first probe so that the first probe is at longitudinal position x=0. The

then calls the *

which will create smooth spectra for the

measured data from cach wave probe

The signal is then filtered using a band-| filter subroutine to climinate low and high

frequencies that is beyond the desired spectrum to eliminate aliasing cffects. The filtered
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signal is called into a subroutine that will calculate the theoretical wave set-down. The

theoretical wave set-down is removed from the original measured signal.

The signal is then converted from the time domain to the frequency domain in order to split
the wave into its individual components in the wave splitting subroutine. A Newton-
Raphson subroutine is used to solve the dispersion relation in order to solve the wave
numbers. The frequency domain information is read into the wave splitting subroutine
where the wave components are individualized as required by the user. The wave splitting

uses the ‘SVD* to do the matrix

The individual components are converted back to the time domain and the ‘Spectral
Smoothing” subroutine creates smooth spectra for each of the wave components data for
cach wave probe. The ‘output” subroutine creates cight data files for the cach individual

wave component in the time and frequency domain.



Wave Splitting Program

Ouput 3o hes

Figure 4-7— Wave Splitting Code Flow Chart
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5. RESULTS

5.0. Validation

Theoretical Set-down

The theoretical wave set-down was validated using published results reported by Huijmans
(2002). Huijmans (2002) reports the transfer function of the wave set-down for a water

depth at 19 m using frequencies from 0.5 rad/s to 0.8 rad/s.

Wave Splitting
The wave splitting code in FORTRAN was validated against the wave splitting program

reported by MARIN (Djik 2007) for the time domain results shown in Figure 5-1 to Figure
5-4, which show a full scale comparison using peak period 1.70Ss. The current results were
also validated against published experimental NRC data and numerical results (Zaman ct.
al., 2011) in the frequency domain shown in Figure 5-5 to Figure 5-10 for wave probes
12,9 for peak period 1.133s. The frequency domain plots illustrate the measured data from
the wave probes and results for both the first order (FO) and second order (SO) wave
generation are reported. The time domain results were shown to be quite similar to the
MARIN results. Due to the high degree of similarity between the plots of Figure 5-1 to

Figure 5-4, the results for this rescarch and MARIN, for the most part, overlay cach other.

The frequency domain results were only satisfactory but deemed passable as there are many
different methods for approximating the power spectrum and thereby makes it difficult to

conduct a meaningful comparison. For instance, the resolution chosen for the spectral
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approximation had a significant cffect on the spectral density function when computing the
results. Since the parameters for computing the spectra chosen by NRC are unknown,

including the resolution, it is difficult to speculate the reasons for differences.

Figure 5-5 to Figure 5-10 also show that there is some fluctuation at the higher frequencies.
This appears to reiterate the observation by Mansard (1991) who stated that even with the
use of a second order correction, which was applied to the irregular wave data from NRC,
oscillations can still occur in the high frequency tail end of the spectrum from free waves

and locked waves.
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Incident Waves at Probe 1: Time Series
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Figure 5-1 — Current Method versus MARIN: Incident Wave, Time Series, Probe 1
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Figure 5-2- Current Method versus MARIN: Incident Wave, Time Series, Probe 1
(300-500s)
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Reflected Waves at Probe 1: Time Series
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Figure 5-3 — Current Method versus MARIN: Reflected Wave, Time Series, Probe 1

Reflected Waves at Probe 1: Time Series
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Figure 5-4 — Current Method versus MARIN: Reflected Wave, Time Series, Probe 1

(300-500s)
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First Order Comparison for Probe 1 TP 1.133s
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Figure 5-5 — Current Method versus NRC: FO Measured Wave, Frequency Series,
Probe 1

Second Order Comparison for Probe 1 TP 1.133s
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Figure 5-6 — Current Method versus NRC: SO Measured Wave, Frequency Series,
Probe 1
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First Order Comparison for Probe 2 TP 1.133s
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Figure 5-7 — Current Method versus NRC: FO Measured Wave, Frequency Series,
Probe 2

Second Order Comparison for Probe 2 TP 1.133s
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Figure 5-8 — Current Method versus NRC: SO Measured Wave, Frequency Series,
Probe 2
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First Order Comparison for Probe 9 TP 1.133s
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Figure 5-9 — Current Method versus NRC: FO Measured Wave, Frequency Series,
Probe 9
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Figure 5-10 — Current Method versus NRC: SO Measured Wave, Frequency Series,
Probe 9
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52 OEB Results

Shallow water wave generation was completed at the NRC OEB for wave heights of 4 and
6 cm and for peak periods of 1.133, 1705, and 2.145s at model scale. A scale of 50 was
used to relate the data between model and full scale data. The results are shown for wave
probes 1,2,3,8,9 since they follow the trajectory down the middle of the tank, as shown by
Figure 3-3, so their wave heights should be proportionate to cach other and scparated by
different wave phases due to their distance apart. The program was used to run both model
scale and full scale cases to verify functionality in cither case. Table 5.1 shows the data
used to run both cases.

Table 5.1 —Parameters of Model Scale and Full Scale

Parameter Model Scale | Full Scale

Depth (m) 04 20
gnificant Height —H, (m) | 0.06 3

Peak Period — Ty: Case 1 (s) | 1.133 8012

Peak Period —T,:Case 2 () | 1.705 12.056

Peak Period — Ty: Case 3 (5) | 2.145 15.167

The wave splitting code was applied to the OEB wave elevations and the following results

were obtained. Figure 5-11 through Figure 5-20 show results for T,-Case 3 in the time

domain, for 0-1000s and 300-500s. Figure 5-21 through Figure 5-30 show results the
frequency domain, for 0-1.4rad/s and 0-0.3rad/s which is the low frequency component

frequency. Cases | and 2 are shown in Appendix B. The incident waves show good



OEB Results

agreement with the original measured waves in terms of amplitude and phase. The
following figures display the results of the model scale only and the full scale data is shown

in Appendix C.
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53 First Order Versus Second Order Wave Generation

The following results show a comparison between the first order generation and the second
order generation waves for the same peak period, displayed in Figure 5-31 through Figure
5-46. In general there is little difference between the first order and second order
components; Case | shows the least difference and Case 3 exhibits the most significant
difference.
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Figure 5-31 — FO versus SO: Time series, Incident Wave, Probe 1, Case 1
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Figure 5-33 - FO versus SO: Time series, Incident Wave, Probe 1, Case 3
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Figure 5-35 - FO versus SO: Time series, Reflected Wave, Probe 1, Case 2
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Figure 5-42 - FO versus SO: Frequency Domain, Incident Wave, Probe 1, Case 3

Reflected P1 TP 1.133
2.50E-06
e First Order —

225606
Second Order

2.00E-06

1.75€-06

1.50E-06

1.25€-06

1.00E-06

S(w) (mn2-s)

7.50€-07

5.00€-07

2.50€-07

0.00E400

10.0 120 14.0

6.0 8.0
Frequency (rad/s)
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54, Discussion

As expected, the spectrum for the set-down wave is the largest of the three cases as shown
in Figure 5-47. This verifies the theory of an increasing set-down component with longer
waves. Second order wave set-down is shown only since the difference between first and

second order results vary only slightly.
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Figure 547 - Second Order Theoretical Set-down Wave Peak Period Comparison

Figure 5-48 through Figure 5-53 show the comparison of the spectra of the measured wave

versus that of the theoretical set-down component for Probe | and 2. The measured wave

has a spike in energy at the lowest frequency which is assumed to be an environmental
factor of the model tank testing. For future work this should be reduced or removed in order

to display more accurate readings. The second order generation measured waves have
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more energy associated to it than the first order generation waves do as is expected to show
added low frequency components. By inspection of Figure 5-48 through Figure 5-53 it
appears as though the first case shows the best agreement with the measured data and the
third case is the least agrecable case. The zero™ spectral moment was calculated, as shown
by Equation [2.53], and the percent difference calculation results between probe 1 and 2 are

shown in Table 5.2. The equation for the percent difference is shown by Equation [5.1].

Percent Dif ference

o |Measured Value — Theoretical Value| X 100% 15.1]
N |Theoretical Value| °
Table 5.2 —Percent Di between and T ical Set-down Wave

Parameter Probe 1 | Probe 2

Case 1: First Order 53.39% | 39.65%

Case 1: Second Order | 52.46% | 41.76%

Case 2: First Order 67.59% | 62.86%

Case 2: Second Order | 68.24% | 63.42%

Case 3:First Order 58.91% | 54.49%

Case 3: Second Order | 64.22% | 60.97%

Table 5.2 illustrates that though the third case looks like the worst c: ase 2 actually has

the largest percent difference between the measured and the incident wave. This is due to

107



Discussion

the fluctuation of the spectra in Case 3, which although the measured data has some large

peaks it also oscillates around the spectra of the theoretical set-down more so than Case 2.

As stated in the previous section, the results show little variance from second order and first
order wave gencration. This could be caused by the estimating spectral density function
which may underestimate the spectral density energy. It might be improved upon by

changing the resolution of the results.
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Figure 5-50 — Measured versus Theoretical Set-down Wave: Case 2, Probe 1
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Conclusion and Recommendations

6. CONCLUSION AND RECOMMENDATIONS

A program was developed using FORTRAN language to identify the different components
that make up a measured wave in a model tank. Since unrealistic waves are created in a
model tank environment for first order wave generation, the process of identifying cach

wave in the tank allowed the unwanted waves to be removed from the anal ultimately

to reduce the error in ship-wave interaction analysis. A sct of wave generation data, which
varied in peak period, was analyzed to show the different waves that make up the measured
wave in a tank. The data consisted of both first order and second order wave generation.
The results were validated against reported MARIN and NRC results. The time series and
power spectral density plots were shown for both the first order and second order wave

generation data.

The first order and second order wave comparison showed little variance to one another
which may be attributed to an over-cstimation in the spectral density estimation function.
The theoretical set-down exhibited an increase with respect to the increase in wave period,
which was expected. The comparison between the theoretical set-down wave and the
measured wave gave varied results in terms of aligning in the low frequency region on the

spectral plots. The shortest wave case displayed the most agreeable results and the second

longest wave gave the least agrecable results as shown in Table 5.2. The comparison
between measured and theoretical set-down could be improved by increasing the resolution

of the spectral density function
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Future work recommendations include validating the model using the third and fourth wave
decomposition which is built into the program. Improvements are required to more
accurately create the theoretical set-down wave in the low frequency region so that it better
aligns with the measured wave. The results of the wave splitting data can be further
investigated with respect to ship-wave interaction to analyze the effects of removing
unwanted waves as well as identifying previously hidden waves on the vessel. In reference
to Figure 2-5, which shows the steps for using the wave splitting program, steps 1-5 have
been completed with this research. It is recommended that steps 6 and 7 be completed for
the next stage of this research. Step 6 and 7 can be done for example using commercial

software such as WAMIT, wave analysis software developed at  MIT.
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Appendix A — Cosine Decompositon

APPENDIX A — COSINE DECOMPOSITON

Cosine Decomposition

The total wave equation was proven to be:
Acos(wyt) + B sin(w;t)
= Gy cos(wjt — kixy + &) + oy cos(wjt + Kjxy + £)
+ Gip cos(wjt — Akjx, + £5)
The following trigonometry identities are used in order to decompose the cosine terms into
individual sine and cosine terms to simplify solving for the unknowns.
cosx +isinx = e

E!AEBE

C = (A+B+C)
cos(—B) = cos B
sin(—=B) = —sinB
In order to split up the three terms in the cosine expressions from the total clevation
cquation, we will simplify the cosine equation to:
cos(A+ B +C)
and
cos(A— B +C)
Starting with the first cosine expression, we substitute x=A+B+C into the trigonometric
identities which gives:

cos(A+ B +C) +isin(A + B + C) = el(A+8+0)
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Appendix A — Cosine Decompositon

Simplifying the right hand side of the equation and noting that i*=-1, we get the following
el(ATBHC) = iAgiBoIC = (cos A + i sin A)(cos B + i sinB)(cos C + i sin C)
= (cos Acos B + i cos Asin B + i sin A cos B — sin A sin B)(cos C
+isinC)
= cos A cos B cosC +icosAcosBsinC +icosAsinBcosC
—cosAsin BsinC + isin A cos B cos C —sinA cos B sin C
—sinAsinB cos C — isinAsin BsinC
The real and imaginary terms can be collected and can be matched up with the cosine and
sine terms on the left hand side of the above equation as all the real terms will equal the
cosine term and all the imaginary terms will equal the sine term. Therefore:
cos(A+B +C)
= cos A cos B cos C — cos Asin BsinC —sin A cos BsinC
—sinAsinBcosC
sin(A+ B +C)
= cos Acos BsinC + cos Asin B cos C + sin A cos B cos
—sinAsinBsin C
For the second expression of cosine, we substitute x=A-B+C into the trigonometric
identitics which gives:
c0S(A = B +C) +isin(A - B + C) = el(A=B+0)
Using the previously stated identitics, we can make the following simplification:

e!CB) = cos(—B) + isin(—B) = cos B — i sin B
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Incorporating the previous equation into the equation above and again simplifying the right
hand side of the equation gives:
el(A=B+0) = oiApl(=B)oiC = (cos A + i sin A)(cos B — i sinB)(cos € + i sin C)
= (cosAcos B —icos Asin B + isin A cos B + sin A sin B)(cos C
+isinC)
= cos A cos B cosC + i cos A cos BsinC — i cos Asin B cos C
+cosAsinBsinC +isinAcosBcosC —sinAcos BsinC
+sinAsinBcosC + isinAsin BsinC
Collecting the real terms to equate to the cosine term and the imaginary terms to get the
sine terms we get:
cos(A—B +C)
= cos A cos B cos C + cos Asin BsinC — sin A cos B sin C
+sinAsin B cos €
sin(A—B +C)
= cos A cos BsinC — cos Asin B cos C + sin A cos B cos C
+sinAsinBsin C
Using the found addition/subtraction cosine expression in the total wave elevation equation,

we get:
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Appendix A — Cosine Decompositon

Acos(w;t) + Bsin(w;t)
= Girlcos(w;t) cos( kjxy) cos(eir) + cos(wjt) sin(kjx,) sin(eif)
— sna) eos{iza) i) + syt sinigan)ens(e )
+ ylens{ayt)cosln) os(eg) — eyt sin(lza)sinGer)
= snyt) os (K e) () — sy i) os(es)]
+ Gip[cos(w;t) cos(Ak;xy, ) cos(ey) + cos(w;t) sin(Ak;x, ) sin(eg,)
— sin(w;t) cos(Ak;x,) sin(egp) + sin(w;t) sin(Ak;x,, ) cos(eg)]
We can collect the sine and cosine terms in order to make two equations:
Acos(w;t) = cos(w;t)[Gis [cos(kjxn) cos(eiy) + sin(kyx, ) sin(ei/)
+ Gpleos{ ) cos(e) — snlim) sinCe )]
+ iy [cos(Bk;x,) cos(egy) + sin(Ak;x,) sineg) ]
Bsin(w;t) = sin(w;t) [{iy |~ cos(k;x, ) sin(ei) + sin(k;x, ) cos(eif)|
+ G| = cos(Kjxy ) sin(e,) — sin(Kjx,) cos(e,) |
+ G| — cos(Bk;x,) sin(eg) + sin(Ak;x,) cos(ez) ]
The cos(w;t) and sin(w;t) terms can be cancelled out of their respective equations and the
equations are reduced to:
A = Gy cos(kixy) cos(ery) + Gy sin(kjxa) sin(egr) + Gy cos(Kxy,) cos(e,,)
s s o oot

+ iy sin(Ak;x, ) cos(eip)
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Appendix A — Cosine Decompositon

B = —{iy cos(kjx,) sine,) + Giy sin(kjxy ) cos(eiy) — oy cos(Kjxn) sin(er )
— Gy sin(Kjxn) cos(ery) + G cos(Ak;x, ) sin(eip)

— Gip sin(Bk;xy, ) cos(eg)

We can rewrite in matrix notation in include a known and unknown matrices, where y is
denoted as the unknown matrix.
Gy cos(e)
Gy sin(eir)
A=[costhyrn) sin(lx,) cos(Kx) —sin(Kx) cos(bkyx,) sin(akx,)] [ ““E"/;
sin(e,

(m cos(ew)
i cos(ein)

Gig cos(eyy)

Gip sin(ey)

= [sinkx) —cos(kyxa) —sin(Kjx,) —cos(Kjx,) sin(Akyx,) = cos(Bkyx,)] l'f“’“("’]
Gy sin(ery)

Gucosten)

Qi cos(Eip)

A= [cos(kjxy) sin(kpx,) cos(Kpxy) —sin(Kjx,) cos(Bkjx,) sin(Akjx,)|

Ly

= [sin(kjx,) —cos(kx,) —sin(Kpx,) —cos(Kjx,) sin(Akjx,) — cos(k;x,)|
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APPENDIX C - FULL SCALE RESULTS
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