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Abstract

Longitudinal data analysis is challenging because of the difficulties in modelling the
correlations among the repeated responses, especially when the associated covariates
are time dependent. Recent studies have examined correlations for both linear and
discrete unbalanced longitudinal data, which are modelled following a Gaussian-type
auto-regressive moving average (ARMA) class of auto-correlations. However, these
studies were confined to a regression setup where the regression function is completely
specified. In this thesis, we consider a semi-parametric regression setup in which the
regression function involves a specified as well as an unspecified function over time.
Under the ARMA type correlation structure, we provide a semi-parametric gener-
alized quasi-likelihood (SGQL) approach for the estimation of the main regression
parameters. The proposed inference approach is compared with some existing gener-
alized estiniating equation (GEE) approaches mainly through simulation studies. The
linear longitudinal semi-parametric model, for its foundational nature, is discuss  in
detail. Theoretical details on semi-parametric estimation for longitudinal count and

binary data are also provided.
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effects involved in the model. However, the modelling of the correlations especially

when the responses are discrete is difficult even if the responses are collected over
equi-spaced time points. In a fixed regression setup, Sutradhar (2010) suggested a
Gaussian-type ARMA class of auto-correlation models appropriate for both linear
and discrete longitudinal data. These regression models however, may be inadequate
in situations where a specified (or fixed) regression function may not be sufficient
to interpret the responses completely. In such cases, one may extend these models
by adding an unspecified non-parametric function in time with the fixed regression
function. This leads to a semi-parametric regression model setup where longitu-
dinal responses still follow a suitable correlation structure. There exists generalized
estimating equation (GEE) based approaches to deal with the inferences for the afore-
mentioned semi-parametric models in the longitudinal setup, where the modelling of
longitudinal correlations are not done. In this thesis, however, we concentrate on
the semi-parametric inferences for repeated data which follow a ARMA-type class of
auto-correlations. In order to give a background for this semi-parametric modelling
and inference problem in the longitudinal setup, we first provide the notations and
an overview for the semi-parametric problem in independence setup in Sections 1.1
and 1.2. A brief overview of the same semi-parametric problem in longitudinal setup

is provided in Sections 1.3 and 1.4.

1.1 Generalized linear models (GLMs)

Consider a GLM regression set up [Nelder and Wedderburn (1972)] in which an

exponential family based independent responses {y;}, ¢ = 1,..., K are observed.



Let x; = (zq1, ..., Zip) be a multidimensional covariate vector corresponding to y; for
the i** individual. Suppose that the mean respouse p;(3) = E(Y;) is influenced by a
specified fixed regression function (linear predictor) x}3 with 3 = (3y,..../5,)". The

density of the exponential family based response y; can be written as

flyil6:) = explyibi — a(6;) + b(y:)] (1.1)

where a(.) and b(.} are known functional forms such that b(.) depends only on y;, and

the canonical parameter 6; is defined with a suitable link function h(.) as

0, = h{z'3). (1.2)

The parameter 6; is related to the mean response through

wi(B) = E(Yilx;) = a’(6:) (1.3)

where d/(.) is the first derivative of a(.) with respect to 6;. Also, it follows that the
variance of y; is

oi(B) = var(Y;|z;) = a"(6;) (1.4)

where a”(.) is the second derivative of a(.) with respect to 0;.

1.1.1 Quasi-likelihood estimation for

In the above exponential setup, the regression parameter 3 is involved in 14;(3) = a’(6;)
as well as in 0;;(3) = a”(6;). Since 0;(/3) is a function of the mean response, it is
sufficient to estimate / involved in y; (). When the density function is not known, and

the mean and variance are given, Wedderburn (1974) proposed the quasi-likelihood






Even though the estimation of both fixed regression parameter vector g and the
non-parametric function v(.) are of interest, many early works [ Staniswalis (1989),
and Muller (1988)] concentrated on the estimation of the non-parametric mean func-
tion, which is the same as substituting 4 = 0 in (1.7). To deal with this type of non-
parametric regression estimation there exists many kernel methods and its variants,
such as the Nadaraya-Watson kernel regression estimation [Nadaraya (1964), Wat-
son (1964), Bierens (1987), Andrews (1995)], local linear and polynomial regression
[Cleveland (1979), Fan (1992, 1993), Stone (1980, 1982)], recursive kernel estimation
[see e.g., Ahinad and Lin (1976), Greblicki and Krzyzak (1980)], spline smoothing
[Whittaker(1923), Eubank (1988), Wahba (1990)], and nearest neighbour estimnation
[Royall (1966), Stone(1977)]. Among these techniques, the simpler Nadaraya-Watson
kernel estimator or the local constant estimator for v(z) at a given covariate level

z = zp involved in the linear model,
yi=v(z) te,i=1,...,K, and ¢; ~ (0, 07)

has the form

SRy Kr(2pE)
K *{ 20— Z;
Zi:lK (OT)

where K*(.) is a suitable kernel density function and b is known as the bandwidth.

Y(z0) =

The selection of an appropriate bandwidth parameter b is always a problem in non-
parametric regression [ Silverman(1986)]. In practice, we try to use a possible value
of b for which the bias and variance of the estimator will be minimum. Many data-
based methods such as cross validation [see Stone (1974), Picard and Cook (1984),

Ansley, Kohn, and Tharm (1991)], generalized cross validation [Craven and Wahba



(1979)] were discussed in the literature for choosing an appropriate b. Altman (1990)
suggested that these commonly used bandwidth selection techniques do not perform
well when the errors are correlated. Hence we excluded these techniques and followed
Pagan and Ullah (1999) who proposed an optimum value for bandwidth, which min-
imizes the approximate mean integrated squared error. The authors recommended
b oc n~Y/5, and suggested that this value of bandwidth is the only value of b for which
the bias and variance are of the same order of magnitude. Thus, as a practical choice,
we will consider b = K~1/5.

In the independence set up, the estimation of both f and v(.) are also extensively
studied in the literature [e.g., Severini and Staniswalis (1994), Carota and Parmigiani
(2002)]. Under the exponential family, for example, Severini and Staniswalis (1994)
suggested a semi-parametric QL (SQL) approach for the estimation of 4 and ~(.).
The authors illustrated their estimation methodology using examples with linear,
gamma and binary data. Note that we do not deal with (continuous) gamma data
in the thesis, instead, we concentrate on modelling and inferences for linear and
discrete data such as count and binary data in semi-parametric set up for independent
and longitudinal responses. For convenience, we now provide semi-parametric QL

estimation in details for linear, count and binary data in the independence set up.

1.2.1 Linear model

Consider the model

yi = il B.v(z) + & = mif 4+ v(z) + € (1.8)



where ¢;'s are independent and identically distributed with mean 0 and variance o2.

Here, E(Y;) = i + v(z) with 6, = h(z,0 + v(2)) = z,8 + v(2), h(.) being the

identity function. Also, var(Y;) =0, =02 i=1,..., K.

1.2.1.1 Estimation of non-parametric function ~(z)

For model (1.8), the quasi-likelihood function Q(u;,y;) can be written as

yi — (0, 7(z1))

2
g

Q(Mh yz) =

Then, the semi-parametric QL estimating equation for vy(z) is

Zwl 3#1 B,7(20)) [yi - m(ﬂﬁ(zo))] -0 (1.9)
¥(20) o?
where w;(zg) = 1)(4_0;_1,), pi(.) being a kernel density function. For example,

ZKfl Pl(u)

ZO 25

one may choose p;( ) = \/ﬁb exp(5(%25%)?) with a suitable bandwidth b. Note
that when w;(zg) = 1, this SQL equation further reduces to the well-known quasi-

likelihood estimating equation [Wedderburn (1974)].

Ous(B,20) _ Ozl B+v(z0)]

Since =pt25e = =5 —== = 1, the SQL estimating equation (1.9) has the formula
K /
yi — o8 — v(z0)

> wilz) [ =0 (1.10)
i=1 €

K K

=Y wi(z0)(y — i3) — Y _ wi(z0)7(z0) = 0
i=1 i=1

yielding an estimate for the non-parametric function v(z) evaluated at z = z; as

~ Klul ~0 z_Id &
F(z0) = 2 Zf\(}ll)uizo) ;M 20)(yi — i3) (1.11)



where Zf‘;l wi(z9) = 1. Now replacing zy in (1.11) with z;, we write

K
Y(z) = ij(zi)(yj —xifl) =9 — 8 (1.12)
j=1

where

K K
Ui = Z’wj(zi)yj and &; = ij(zi)xj (1.13)

Note that the estimator ﬁ(z{) in (1.12) is constructed for a given value of the regression
parameter vector 3. But, because in practice (3 is unknown and in fact it is the
main parameter of interest, we provide the estimating equation for 3 in the following
section. However, these formulas for 4(z;) and [} are already discussed in literature
and for example, we refer to Severini and Staniswalis (1994), Speckman (1988) and

Hastie and Tibshirani (1990).

1.2.1.2 Estimation of regression effects

For linear models the QL estimator of § has a closed form expression. To derive the

estimator, we first write p,(3, (%)) = 2,8 4+ ¥(2;) and compute

auL(ﬁvﬂAY(Zl)) _ i J A .
T = 53 [liﬁJf /(ZL)}
. (1.14)

where Z; is given in (1.13). Similar to (1.5) we now write the QL estimating equation

for 7 as




and by substituting ¥(z;) = ¢; — 23 we obtain

K

K
Z(Ii — &)y — 2 — g+ 338 = Z(% = 2)[(ys = 9s) — (@ — 2)'B] = 0,
i=1 i

yielding

It then follows that ;3 has the closed form expression given by

K K

B=1> (2= &) (zi— &))" Y (2= 2) (i — 90, (1.15)

=1 i=1

where ¢; and ; are given in equation (1.13). The above equation (1.15) is the same
as in Severini and Staniswalis (1994) eqn.(10), page. 503] with D = I, the identity

matrix.

1.2.2 Count data model

There are many situations in practice where one becomes interested in analyzing count
and binary data to understand the effect of covariates on the responses. Similar to
normally distributed responses considered in the previous section, these responses also
follow the exponential family. However, in the present semi-parametric setup we are
interested in examining the regression effect when the mean respounse is assumed to
consist of the fixed regression function as well as a non-parametric smooth function.
For count responses, the Poisson density function f(y;) can be expressed as a special

form of exponential family density (1.1) given by

exp(—p)pf" 1 ‘
f(yi) = (y—') = ; exply; logu; — #i]- (1'16)

where 0; = log p1; and a(6;) = p;.



Thus we write the Poisson mean and variance as
E(Yi|zi, z:) = V(Yilz, 2:) = w8, 7(24))-
where
wi(0,v(z)) = exp(iF + ¥(z))

which is different than (1.8) under the linear case.

1.2.2.1 Estimation of non-parametric function ~(z)

The SQL estimating equation for v(zy) in the count data has the form

K

(o PHi B v (20)) s — (5,7 (z0)) _
Z i(20) 0v(zp) [ i3, v(20)) I=0

i=1

where y15(3,(20)) = exp(x,8 + (z0)).

Opi(B,7v(20)) _ Oexp(z}3+v(z0))

Because == pen) = exp(x;0 + v(z0)), (1.17) reduces to
K
> " wilz0)[y: — exp(ziB + ¥(20))] = 0
i=1
and hence
K
N i—1 Wil 20 )Y
exp(3(z0)) = gl

S wilz0) exp(alf3)

(1.17)

(1.18)

The estimator for v(z) computed at z = z; under the Poisson model is then given by

) Z}il wi(2)y;:
20) = lo L .
7(z0) = log (zfil wi(zo)exp(l'éﬁ))

Thus for z = z; the estimator of and ~(z) has the form

Y(2:) = log ( Zjil G )
‘ S wylz) exp(8) )

10

(1.19)



1.2.2.2 Estimation of regression effects 3

Unlike the linear models, the estimator of 3 has no explicit form under the Pois-
son count data model, and one has to estimate [ by solving a non-linear equation

iteratively. For this purpose, similar to (1.5), the QL estimating equation for 3 is

8 o8, 4(2)) s — (8. Az
ZOM(%’}( )y ‘{}w( /())))]:0 (1.20)

i=1

where

W aaj [exp(x 8+ ’Y(Zz))]

’ ~ / a’AY i
= (el + 3] e+ (121)
with 4(z;) as in (1.19). The derivative Q%%—i) is computed as
71 ,
i) _ | XliwiEy Doy wiz)yy D0 wi(z) exp(afd)a)
& 3 wizi) expla ) (Eimyw() exp(a) )2
K 3 oy
_ Zj:l w;(2) eXP(iL;ﬂ)Llj (1.22)

S wy(z) exp(aif)
Now by using (1.22) in (1.21) we write

Z]K L wj{z) exp(a)B)x]
ZJ L wi(z z)eXP(mg‘/j)

%ﬁv(z)) = Jexp(e!B + 4(z:))] [ —
Z]f\'l w;(z) exp(x3)a)
Z —y wy(z )e)‘p(xjd)

= ,ui(ﬁ, ’AV(Zz))[I/L -

Consequently, the estimating equation (1.20) leads to

- 1 Z]K y wj(zi) exp(i 3)

;[wi B Zszl w;(z;) exp(z Jﬁ)

Ny — i) =0

11



where [i; = exp(2} + 9(2)). Now by defining

Sk 1 wy(2) exp(af ),

Z] lu_l( )exp( /3)
we rewrite the estimnating equation as
K
Z(Ii — &) (yi — ) = 0. (1.24)
=1

The estimating equation (1.24) can be solved iteratively using the well-known Newton-

Raphson method. The iterative equation has the form

i ﬁz‘)]

HM>

. . 5, .
Jerny = “’)'[372(‘””*“) yi — fii)

K K
= fo+ [Z(Ii — &) i (x Z — )] (1.25)
i=1 i=1
and is used to compute the final estiinate 3 until convergernce.
Severini and Staniswalis (1994, Example 2. page. 503) provided an estimate for
v(z;) under gamma distribution, which is similar, but different than (1.19). Hence

for the estimation of 3, we have provided the exact iterative equation in (1.25) under

the Poisson case.

1.2.3 Binary data model

In the semi-parametric GLM set up for binary responses, the binary distribution is
fly) =g (1= )™

which is a special case of the exponential family density (1.1) with

8, = log < i > and a(f;) = —log(1 — ;).

1—/11'

12



In the partially specified regression case we consider #; = z}3 + v(z;) and it then

follows that

exp(0;)
, = ———— and a(6;) = log(1 8,
T exp(8] ™ a(8;) = log(1 + exp(0;))
yielding
E(Y|2;, 2) = “l(ei) = p;(53,7(2))
and

V(Yili, ) = a"(6:) = (B, v(z0) (1 — 08, 7(20)))-

1.2.3.1 Estimation of non-parametric function ~(z)

In the binary case, the SQL estimating equation for v(z) at z = zy is given by

0/% 3,7(z0)) v — i B, v(20)) B
Z Fv(z0) (3, v(20) ) (1 — (3, v(20))) | 0, (1.26)

where 11;(3, v(z0)) = % Because,

Oa(B,v(20)) exp(xiff 4+ v(20)) 1

(o) 1+ exp(z;8 + v(20)) 1+ exp(zid +v(z20))
= (B v(20))(1 = (B, 7(20))),

the estimating equation (1.26) reduces to

K

wi(z0) [yi — (B, 7(20))] = 0, (1.27)

=1

v b s similar to (1.18). The difference lies in the formula for 1;(3, v(20)).

1.2.3.2 Estimation of regression effects 3

For the estimation of 3, the QL estimating equation has the formula

i O (3, %(2:)) [ vi — (3, ¥(2:))
g a6 (8, (2 (1 = (8, 4(2:)))

-0 (1.28)

13



where

OO 0 [ eneld i) |
o8 33 (1 + exp(z}f + #(z:))
_ [ exp(zi8 + 4(z:)) }[,L_,_jL@ﬁ(zi)]
[1+exp(z8+5())?] ~° 98

s 0%(=)
= w0, 3(2) (1= pal(B,5(z))) [ + 53 — ]

The estimating equation in (1.28) then reduces to

K

> i+ az(;i)][yi — pi(B.4(z))] = 0 (1.29)

i=1
Note that the estimating equation for v(.) in (1.27), and the estimating equation for
3 in (1.29) are the same as those in equations (6) and (8) respectively in Severini and
Staniswalis (1994), and that these equations must be solved iteratively. However,
there is a closed form expression for v(.) (1.19) in the Poisson case, whereas the
estimating equation (1.27) for the binary case has to be solved iteratively. One needs

to solve the estimating equation for /7 iteratively both in binary and in Poisson cases.

1.3 Generalized linear longitudinal models (GLLMs)

We have discussed the GLMs in independent set up in section 1.1 and its generaliza-
tion to the independent semi-parametric set up in details in section 1.2. The purpose
of this research is to study the model and inferences in the semi-parametric longitu-
dinal data. For convenience, in this section, we now review the existing models and
associated inferences in longitudinal set up.

In notation, let v; = {(vi1,. .-, Y, .., ¥ir) represent the response vector, where

¥t is the response recorded at time t for the i th individual. Suppose that xz; =
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(Zit1, -« Titys - - - Titp) be the p— dimensional covariate vector corresponding to the

scalar y;;, and 4 be the p— dimensional regression effects of x;; on y; for all + =
1,...,K,and all £ = 1,....,T. Since the same outcome is measured consecutively
over time for each individual, the repeated responses of an individual are likely to
be correlated. In this set up we assume that the response y; marginally follows (1.1)
but their joint distribution is difficult to write, especially for discrete responses. The
mean and variance of the response are denoted by pi(3) = o'(6y) = E[Y:] and
var|Yy] = d"(04) = ou(B). Similar to (1.5), the QL estimating equation for the

unknown regression parameter 3 can be written as
K

T oy
Z Z &la(glt) (" (0:)] (yie — 0 (8:2))

i=1

- . Z 3#{;{55) [0i2e()] " (yar — pae(8)) = 0

(1.30)
The QL estimating equation (1.30) is the same as the independence assumption based
QL estimating equation and the solution of this estimmating equation provides a con-
sistent, but incfficient, estimate for 5. This is because the observations from the same
individual are correlated and (1.30) is written ignoring such correlations. As a rem-
edy, one must take the correlations of longitudinal responses into account to achieve
the desired efficiency of the regression estimates.

The relevant works in the field of longitudinal data analvsis originated fromn Liang
and Zeger (1986). The authors introduce an extension of GLM for independent data
to the longitudinal setup and propose the generalized estimating equations (GEEs)
to acquire consistent and efficient regression estimates involved in the GLLM model.

The backbone of their methodology is based on a 'working’ correlation matrix. Liang
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and Zeger defined the GEFE estimating equation as

> 24y o)y - ) =0, (1.31)

where 1;(8) = (i (B). ..., pat(B), . ... pur(3)) is the mean vector of y; and Vi(a) =
A;/‘{ZRi(a)Ag/z is the covariance matrix with 4; = diag[ei1(5),. ... 045;(8). ... cirr(8)],
Ri(«) is a 'working’ correlation matrix, and « is the 'working’ correlation parame-
ter. Subsequent research in the longitudinal data analysis literature shows that, in
several situations, these 'working’ correlation based regression parameter estimates
are inconsistent [Crowder (1995)]. Crowder showed that this consistency breakdown
occurs due to the problem in estimating the so-called 'working’ correlation parameter
a. In cases where 'working’ correlations are estimable, Sutradhar and Das (1999)
showed that even if the estimator of o converges to a value, the GEE approach
gives consistent estimators of the regression parameters, but these estimators may be
less cfficient than the regression estimators obtained based on the independence es-
timating equations approach. Sutradhar (2003) proposed a generalization of the QL

estimation approach, where ( is obtained by solving the generalized quasi-likelihood

(GQL) estimating equation given by

> s o) - () =, (1.32)

where 1;(8) = (i (8), -« pie(5), - .., pir(F))" is the mean vector of y, and E;(p) =
A,§/2Ci(p)A,}/2 is the covariance matrix with A; = diag[e11(8), ..., 04;(8), - .. oirr(B)],

Ci(p) is a general class of auto-correlations, and p is a correlation index parameter.

The estimator ﬁGQL obtained by solving (1.32) is consistent and very efficient for £.

16



1.4 Semi-parametric GLLMs

Iu the above mentioned longitudinal studies, regression functions involved in the lon-
gitudinal model are fully specified. For example, in lincar longitudinal set up e, (/3)
is expressed as pi(0) = x;: 3. This leads to parametric modelling of marginal lon-
gitudinal models | Gilmour, Anderson, and Rae (1985), Liang and Zegger (1986),
Zeger and Liang (1986), Fitzmaurice, Laird and Rotnitzky (1993)]. However, there
are situations where the regression functions involved in the model are partially spec-
ified, which leads to semi-parametric models in the longitudinal setup. In the linear
longitudinal setup, the semi-parametric models have been studied by Severini and
Wong (1992), Zeger and Diggle (1994), Moyeed and Diggle (1994), You and Chen
(2007), Fan, Haung and Li (2007), Fan and Wu (2008), and Li (2011). Some of these
studies used the 'working’ correlations based GEE approach for the estimation of
regression parameters, and the non-parametric function was estimated separately by
using independence assumption [see Zeger and Diggle (1994)]. Other works such as
Fan, Haung and 1i (2007) assumed normality for the responses and used likelihood
approach for the estimation. But the covariance matrix for the multivariate distri-
bution was constructed based on the 'working’ correlation matrix. There also exist
some generalizations where heteroscedasticity is assumed among the responses at a
given time.

The semi-parametric analysis has also been studied for (marginal) exponential
family data by using the 'working’ correlations based GEE approach. To be specific,
we refer to Severini and Staniswalis (1994), Lin and Carroll (2001, 2001a) for this GEE

based analysis. These studies estimate regression parameters and non-parametric
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functions separately and GEE approaches has been used in both cases.

1.5 Objective of the thesis

The main objective of this thesis is to study the semi-parametric regression models
when the repeated responses follow a non-stationary correlation model that belongs
to a class of Gaussian-type ARMA correlation structures. The plan of the thesis is
as follows.

In Chapter 2, we focus on the semni-parametric linear longitudinal model where
a stationary correlation structure is used for inference. In the linear model setup,
this type of stationary correlation structure is quite appropriate because the corre-
lations under linear models do not depend on any covariates irrespective of whether
the covariates are time dependent. Even though the semi-parametric analysis in the
linear model setup for longitudinal data is a direct extension of the independence
based semi-parametric analysis discussed in Section 1.2, a close look at the estima-
tion problem (to be discussed in Chapter 2) reveals that the existing studies in the
semi-parametric longitudinal setup did not incorporate the estimation effects of non-
parametric function (.) while estimating the main regression parameter /. Also,
the existing studies have extended the 'working’ correlations based GEE approach
explained in (1.31) to the semi-parametric setup, which may not provide efficient
regression estimates. To overcome these two problems, we revisit the inferences for
the semi-parametric linear longitudinal models and provide appropriate estimating
equations for efficient inferences by using (1) ARMA type class of auto-correlation

structures, and (2) taking the the estimation effect of non-parametric function in
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estimating 3. We carry out a simulation study to examine the finite sample based
efficiencies of the proposed semi-parametric GQL (SGQL) as well as various semi-
parametric GEE (SGEE) approaches. The asymptotic distribution of the proposed
estimator is also discussed.

In Chapter 3, we extend the semi-parametric linear longitudinal model discussed
in chapter 2, to the discrete data setup. In particular, we consider semi-parametric
models for longitudinal count and binary data. Note that some of the existing studies
such as Lin and Carroll (2001) and Severini and Staniswalis (1994) deal with such
models, but they mainly use the 'working’ correlations based GEE approach. These
studies do not appear to accommodate the estimation effect of the non-parametric
function v(.) while estimating 4. As far as the correlation structure is concerned, in
our approach, we use the non-stationary correlation structures suggested by Sutradhar
(2010) for both count and binary data. However, we do not discuss any diagnostic
procedure for the identification of the non-stationary correlation structure but this
can be done following the technique given in Sutradhar (2010, Section 4). Rather,
we assumme that the correlation structure involving the time dependent covariates are
known and develop a semi-parametric GQL (SGQL) approach for the main regression
parameters by taking the estimation effect of the non-parametric function as well as
the longitudinal correlations into account. Analytical details for the SGQL approach
for both count and binary data are also provided. For the comparison with the existing
studies, the proposed SGQL estimating equation is written in two ways. First, a
partially standardized SGQL (PSSGQL) approach is described where the covariance
matrix involved in the estimating equation for 3 is free from the estimation effeet of

v(.). Second, a fully standardized SGQL (FSSGQL) approach is discussed in which
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the estimation effect of v(.) is accommodated in the covariance matrix.

To examine the finite sample performance of the proposed SGQL approaches, we
carry out several simulation studies in Chapter 4 for the longitudinal count data.
First we study the effect of ignoring the non-parametric function in estimating 3 using
anaive GQL (NGQL) approach. Because the performance of the leading GEE based
approaches did not adequately study the count data in the semi-parametric setup,
we have made a detailed comparison of the proposed PSSGQL approach with the
existing partially standardized semi-parametric GEE (PSSGEE) approaches in order
to achieve effiecient inference methods. We also provide the simulation results for the
proposed FSSGQL approach.

The thesis concludes in Chapter 5.

|
|
i
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Chapter 2

Semi-parametric Linear

Longitudinal Models

In this chapter, we revisit the semi-parametric analysis for linear longitudinal data
collected over equi-spaced and unbalanced time points. However, we use general
notations such that the regression function can be written for the responses collected
over unequi-spaced time points, which accommodate the equi-spaced time data as an
important special case. As far as the correlation structure for the repeated responses

is concerned, we concentrate on equi-spaced time data only. Thus, as opposed to the

notation y;; used in Section 1.3 to represent the response at time ¢ (¢t =1,...,7) from
the i (i = 1,..., K) individual, we now use a general notation, namely, y;;(t;;) to
denote the j™ (j = 1,...,n;) response of the i*" individual at time ¢;;. Here n,; denotes

the total number of responses for the i* individual collected over n; time points.
Further, for equi-spaced time data, the time points would satisfy the relationship

tij - tm‘,l = ti.j—H - t,‘,j, for example.
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Suppose that y; = (yir(tia),- -, ¥i;(tij), - - - Yina (tin,))’ denotes the n; x 1 vector

of repeated responses for the i* (i = 1,..., K) individual. Also suppose that these

repeated responses are influenced by a smooth non-parametric function ~(t;;), and

a fixed and known p x n; covariate matrix X| = (zi1(ta), ..., 2ij(tij), - > Tin, (tiny))

x;(t;;) being the p—dimensional covariate vector at time point ¢;;. This type of re-

peated continuous data measured at time point t;; is usually modelled as

yij(tiy) = xi;(ti) B+ y(ty) + e(tiy)

frii (tiz) + €5 (t), (2.1)

or equivalently

yi = Xi0 + () + &, (2.2)

where v(t;) = (y(ta), - ,v(tim,)) and € = (ea(ta), -, €;(tiz), - €in (tin,)). We
assume, E(e;) = 0 and var(e;) = var(Y;) = ;.

Note that in (2.2), v(¢;) is not a subject specific non-parametric function as its con-
struction requires only knowing ~(t) at any time ¢ [Zeger and Diggle (1994); Sneddon
and Sutradhar (2004)]. To be specific, v(¢;) is used here to represent n; components,
each with the same non-parametric function but evaluated at n; different time points

for the ith

individual.
To develop an efficient estimation procedure it is important to consider the correla-
tion structure of the repeated responses. Let py, ¢, | denote the pairwise correlations

between the two responses y;;(ti;, ti) for all j # k;j,k = 1,...,n;. The n; x n;

correlation matrix for y; = (v (ti1), .-, ¥i;(tij)s - - - Yin, (tin, )" is denoted by

Ci(p) = (pltu-tlﬂ) C Ny XNy,
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For the purpose of constructing a suitable estimating equation for 5, it is necessary to
obtain an estimate C’i(p) to compute Zz(p) = Ai% Ci (p)A?. However, in an experiment
where an individual can report a response at any time that is, when t;; # tp;, @ #
hyi,h =1,..., K, it is possible that in some situations the C;(p) matrices may have
unbalanced dimensions. In other situations, it may happen that any two matrix
Ci(p) and Cp(p) with n; = n, may not be the same. In such cases, it is impossible
to estimate Ci(p) for i"* individual borrowing information from other (remaining)
individuals. For this reason, many authors have written the estimating equations for
3 and ~(.) for general case, that is, for unequi-spaced and unequal time for individuals,
but the estimation for the correlation matrices was given for (1) n, = n for i =
L,..., K, and (2) under the assumption that Ci(p) = C(p), a constant and common
matrix. For example, we refer to Lin and Carroll (2001, p. 1048) where C;(p) was

estimated by

. 1 K
Clp) = i Z’f“i’r;a (2.3)

A, = diagleai(tin), -, 05 (ti;), - - Tingn, (iny )]

and o,;;(t;;) is the variance of ¢;;(t;;).

Note that there are few difficulties with this correlation matrix (2.3) construction.
This is because: (1) as the unbalanced n; x n; matrices (r;r!) cannot be added from
all individuals, C(p) computation is meaningful only when n; = n, say. However,
it is not understood how one may compute C;(p) needed for the construction of ¥,

when dimensions are not same (2) when a situation is considered where ¢;;’s may be

unequi-spaced, there is no reason to justify the use of n; = n for all 1.
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In the thesis, we concentrate on equi-spaced data and study the inferences for
the regression effects in the semi-parametric setup by properly accommodating the
longitudinal correlations for both continuous and discrete data. This type of data
were used in Sutradhar (2010), but the author dealt only with a fixed (specificd)
regression function as opposed to a semi-parametric rergession function. As far as
the correlation structure is concerned, following Sutradhar (2011), we assume that
the repeated data follow a class of auto-correlation structures that accommodates
Gaussian type all possible auto-regressive moving average of order r, s (ARMA(r, s))
correlation models with AR(1), MA(1), AR(2), MA(2), EQC (equi-correlations), as
some special cases. Note that the AR(1), MA(1), and EQC structures for repeated
data were also discussed in Liang and Zeger (1986), and subsequently these structures
were used by Severini and Staniswallis (1994) in the semi-parametric longitudinal
setup. Further note that in this approach it is not necessary that n; = n (balanced
data) foralli=1,... K.

Specifically, we consider the correlation matrix C;(p) for the error vector ¢; in (2.2)

as
1 P P2 - Pri-1
£1 1 pro Pn; -2 .
Ci(p) = foralli=1,2,... K;
f)ni~1 pni~2 et 1
1 1
Zi(p) = var(Y) = AFCi(p)Af, (2.4)
where for £ = 1,...,n; — 1, p; denotes the lag £ correlation between ¢;(;;) and

€ij+e(tijre). We assume, however, that the variances are stationary and hence write
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% is an unknown scalar constant, and I,, is the n; x n; identity

A = 02[,11, where o
matrix. The following examples demonstrate the correlation models that produce

Ci(p) in (2.4) in the linear model setup:

(i) AR(1) model:

€j(tiy) = o eijaltiy) +ayty), lof <1, (2.5)
(Lij(tij) %N(Odg) Vi= 1,2,...,K;j = 1,...,’17,L',

(i) MA(1) model:

e(ty) = 0 aja(tij-1) +ay(ty), 0] <1, (2.6)
au(tu) ii(Jij\/v<0,0'2) Vi= 1/2,,K]= ].,...,TLL'7

and

(iii) EQC model :

€ij(ty;) = ewltio) +ai;(ti;), (2.7)

iid )
aij(ti;) ~ (0, 02), gin(tio) ~ N(O, 02)

The lag ¢ correlations (p,) between ¢;;(t;;) and ¢; j44(t; j1¢) for (2.4), (2.5) and (2.6)

are
, 1—4(_’—0,2—, forf =1
pe=¢"0=1....ni—1; p;= and
0, for# =2,3,....n;, — 1,
pr=¢C = = 1,...,n; — 1 respectively, and they satisfy the auto-correlation

G2402?
structure Cy(p) in (2.4).

Note that even though the C;(p) matrix in (2.4) is written corresponding to n;

timne points of the " individual, the exact structures for two individuals 7 and k,
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with n; = ng = n*, can be different when n; time points do not overlap with ny time
points. In such a case, for n = max; n;, ¢ = 1,..., K, a n X n correlation matrix is

first computed and then C;(p) for the it

individual is computed by deleting all rows
and columns of the n x n matrix except those rows and columns corresponding to n;
time points. Similarly, Ci(p) is constructed.

As far as the estimation of the regression cffects is concerned, a ‘working’ corre-
lations approach has heen widely used both in fully specified and semi-parametric
longitudinal setups, where one does not care about modelling the true correlation
structure of the repeated responses. This approach is completely different than our
parametric modelling of the true correlations, as it uses the general auto-correlation
structure Cy(p). Thus, Ci(p) is not a working correlation matrix. Now, if Ci(p) is
treated as a working correlation matrix, and if the true structure belongs to the
ARMA(p,q) class of auto-correlations, then logically such a ‘working’ selection would
be efficient as it becomes a parametric model. The *working’ correlations approach,
however, is used for any unknown true correlation structures with the hope that it
does not loose much efficiency even if the ‘working” structure is misspecified. But, it
has been demonstrated by Sutradhar and Das (1999) [see also Sutradhar (2011)] in
the complete longitudinal setup, for example, that even if the true correlations be-
long to an auto-correlations class, the use of a ‘working’ correlation structure such as
the equi-correlations structure may produce inefficient regression estimmates compared
to the simpler ‘independence’ assumption based estimates. Moreover, in the ‘work-
g’ correlation approach there is no guidance of preferring one correlation structure
over the other, which frequently leads one to use either ‘working’ equi correlations

or independence or unstructured correlations [Lin and Carroll (2001), Severini and
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Staniswallis (1994)]. This type of individual specified ‘working’ correlation structures,
however, may lead to inefficient regression estimates as compared to the C;(p) based
parametric modelling when the true correlations belong to the aforementioned general
auto-correlations class. For this reason, as opposed to the ‘working’ correlations based
approaches, we use an auto-correlation structure (2.4) based semi-parametric gener-
alized quasi-likelihood (SGQL) approach that always produces the same, or more
efficient, regression estimates than the ‘working™ correlations based semi-parametric
approaches.

We first review semi-parametric GEE (SGEE) approaches. It is well known that
when y; is influenced by fixed covariates X; only, the generalized least square (GLS)

estimator given by
K K
Bos = [ XIS p) XY XIS e (2.8)
i=1 =1
is the best linear unbiased estimate (BLUE) [ Rao (1973, Section 4a.2), Amemiya
(1985, Section 6.1.3)] for the regression parameter vector /7 within a class of lin-
ear unbiased estimators. However, when the response vector y; is influenced by
both fixed covariates X; and an unspecified non-parametric vector function y(¢;) =
(v(ti1), -+ -v(tin,)) asin (2.2), this GLS estimator (2.8) is biased and hence inconsis-
tent for the true regression parameter 3. Existing studies [see Severini and Staniswalis
(1994), Lin and Carroll (2001)] estimate the non-parametric function consistently by
using the kernel-based approaches, but the specified regression function is estimated
by solving a working’ correlations based SGEE approach. A close look at the deriva-

tion of the SGEE reveals that the gradient function used in constructing the esti-

mating equation is correctly computed by taking the estimation effect of ~(¢) into
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account, but the covariance matrix used in the estimating equation is constructed by
ignoring the estimation effect of v(t) and this makes the SGEE partially standardized.
As opposed to this partially standardized SGEE (PSSGEE) approach, we propose a
fully standardized semi-parametric generalized quasi-likelihood (FSSGQL) approach
where both the gradient function and the covariance matrix are constructed by tak-
ing the estimation effect for (¢) into account. Thus, FSSGQL approach provides
more efficient regression estimates. The efficiency gain by the FSSGQL approach
compared to the PSSGEE approaches is further demonstrated in Section 2.3 through

an empirical study.

2.1 Existing semi-parametric estimation methods

2.1.1 PSSGEE approach
It follows from the model (2.1)-(2.2) that the mean response is given by
EIY ()] = pi(tsy) = (43 + v (ty), (2.9)

where (3 is the fixed regression effects, and ~(¢;;) is a non-parametric smooth function

of time. Authors such as Zeger and Diggle (1994) consider
cov(Y;) = o’ Ri(a),

where R;(a) is a ‘working’ correlation matrix used for the unknown true correlation
matrix and « is the ‘working’ correlation parameter. The commonly used R;(«) are:
(a) the unstructured form R; (o) = (ry5(a)) with 7 jx(a) = oy, -4, [Zeger and Diggle
(1994), Lin and Carroll (2001)]; (b) equi correlations form R;(a) = al,,, and (c) inde-

pendence form R;(«) = I,,. [Lin and Carroll (2001), Severini and Staniswalis (1994)].
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Thus, for the semi-parametric linear longitudinal model, one needs to estimate the
fixed regression effects J, the non-parametric smooth function ~(¢;;). the variance
parameter o2, and the ‘working correlation matrix R;(a). All these parameters and
function have to be solved iteratively until convergence.

Even though /7 and ~(¢) together constitute the regression function, their joint
estimation may be difficult.  Thus, in the existing literature they are estimated
marginally by using separate estimating equations [Zeger and Diggle (1994), Sev-
erini and Staniswallis (1994), and Lin and Carroll (2001)]. This makes it simpler,
for example, to use the*working™ independence approach for consistent estimation of
~(t) [Zeger and Diggle (1994, Section 3.1)], and a suitable correlation structure based
approach for efficient estimation of the main regression parameter /3. Following this
strategv, in the next section, we briefly explain how one can construct the ‘working’

independence assumption based estimating equation for v(¢).

2.1.1.1 Estimation of non-parametric function

QL approach

Non-parametric kernel regression is widely used for the estimation of ~(¢). A
‘working’ independence assumption based unbiased estimnating function is weighted by
using suitable kernel weights, and the resulting semi-parainetric estimating equation
is then solved for ~(¢). The SQL estimating equation for ~(ty) is

d/’ (yij - ,“ij)
ZZ“’U Wy g =0 (2.10)

i=1 j=1

toft
sz(—bli)

K n l
P 12171p71 b )

bandwidth parameter. When w;;(ty) = 1. the SQL equation (2.10) reduces to the

where w;;(ty) =

. pij(.) is a suitable kernel function and b is the
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standard QL estimating equation [Wedderburn (1974), McCullagh (1983)]. Authors
such as Sneddon and Sutradhar(2004), Zeger and Diggle (1994) and You and Chen
(2007) have used such an estimating equation in the linear semi-parametric model
setup. Because p;;(ti5) = x;(ti;)3+7(ti;) by (2.9), the solution of the SQL estimating

equation (2.10), in terms of known /3, is

AA/(t ) = yz] Alzg(tij)ﬁ*

where
K K ny
@1] Z whu ij yhu and & I Z Z whu ij -Lhu Zfhu)
h=1 u=1 h=1 u=1
with Zh LDk Why(ti;) = 1. This formula will be exploited in the next section for

the estimation of 3.

A GEE approach

Severini and Staniswalis (1994) [ see also Wang, Carroll and Lin (2005) | solved
certain ‘working’ correlations based semi-parametric GEE for the estimation of v(¢).

Lin and Carroll (2001) considered a ‘working’ correlation based GEE estimating
equation to estimate v(t). They considered an arbitrary linear function in time, that
is, y(ti;) = o + m@, where & = (ag, a;) is a 2 x 1 vector of unknown param-
eters and b denotes the bandwidth parameter. The regression function, u;(X;,t) =

(pir (tin), - oy fhing (tin, )] where p;(t5) = 2,3+ v(t;). Lin and Carroll used the follow-

ing two kernel estimation equations (symmetric and asymmetric) for the estimation

of y(t)
K "y
> D) ()t Wale) (% — X 1) = 0
D OTI() AfX 1) ar(Y)] T Wilt) (Vi — (X, t)) =0, (2.11)
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where

K K
’Qi = Z LV}-L@H, ce . ,tml)yh, and XL' = Z LVh<ti1, N -tm,;)Xh (215)

h=1 h=1
with Wr(ta, ..., tim,), @ n; x ny kernel weights matrix defined in a similar way as

(2.12).
Severini and Staniswalis((1994), equs. (17) and (18)) and You and Chen (2007,
Section 4.1) [see also Lin and Carroll (2001)], use the PSSGEE estimation approach,

where the estimating equation has the form

Ko
> 55 ar()l” (- m) =0,
i=1

which for the linear model (2.14) leads to

K
Prssers = [ _(Xi= X)) [var(Y)] " (X; = X))
X, — X))

—_

<

K

XZ(

i=1

) fwar (Y™ (v — 9), (2.16)

1 1
with var(Y;) = £, = A? Ri(a)A?, Ri/(a) being a ‘working’ correlation matrix. When
(2.16) is examined in light of (2.14), PSSGEE estimator in (2.16) is constructed using

an incorrect weight matrix var(Y;), whereas the correct covariance matrix should have

~

been var(Y; — Y;).

2.1.1.3 Estimation of the ‘working’ correlation parameter «

The ‘working’ correlation parameter « has a definition problem [Crowder (1995)].
Suppose that a ‘working” correlation estimate & under an assumed ‘working’ corre-
lation model is computed. This estimate usually does not converge to « as the data

used for its computation may follow a different model. Thus, & converges to ag,

32



say. which is different than « [Sutradhar and Das (1999)]. As far as the formula
for & is concerned, it is developed based on the method of moments following the
assumed ‘working’ correlation structure. For example, if a user decides to use an
equi-correlation matrix as the ‘working’ correlation structure for all K individuals,
then the estimate would satisfy the estimating equation

K n;
Z Z(.ﬁi;‘ﬂm —a) =0, (2.17)

i=1 jsu

[Liang and Zeger (1986), Sutradhar (2011, Section 6.4.3)] where

Yyij — 28 = A(tij)

ol

Uij =

N

with
K n;

' K
o2 = Z (yi; — 121%3 —A(t))?/ Z n;.
i—1

i=1 j=1

Similarly, for the estimation of a ‘working’ unstructured correlation matrix, one

uses the moment estimating formula

K
N 1 '
R(a) = o Z’riri (2.18)
i=1
[Lin and Carroll (2001)] where r; = (ri, riz, - .., in,)’ 18 the vector of residuals with

T = Yij — l';-j/j — A(ts5)-

2.1.2 Partially standardized semi-parametric heteroscedastic

GEE (PSSHGEE) approach

Fan and Wu (2008) [see also Fan, Huang and Li (2007)] examined the semi-parametric
varying-coefficient partially linear regression models and proposed a difference-based

method to estimate the mean function. The authors computed the covariance function
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of the longitudinal model using a quasi-maximum likelihood approach for the purpose

of prediction and found that prediction is not sensitive to the correlation structure.
However, these covariance estimates were not used for the estimation of the nain
parameters 3 and ~(t). Fan et al (2007, Section 2.1}, and Fan and Wu (2008, equ.
(1)) estimated the non-parametric function by using a similar SQL estimate for ()
and by using time dependent variances denoted by o?(t) at a given time ¢. For the
estimation of the regression effects 3, they have used different ‘working’ correlation
structures in the PSSGEE based estimate given by (2.16). Fan and Wu (2008, eqn.
(6)) used the ordinary least squares (OLS) technique which is the same as using
(2.16) with correlation atrix R;(«) = I,,,, ignoring correlations. For a given ¢, the
heteroscedasticity, i.e., the time dependent variances were computed by
_ Zz]il 221:1 "'?j(t)wij(t)

SR Y wy(t)

where 1;(t) = yi;(t) — 'J:gj(t)/} —4(t), and w;;(t) are defined as in (2.10). Thus, for the

a*(t)

(2.19)

estimation of 4 by (2.16), Fan and Wu (2008) use X;(a) = A; = diag[o?(t;1), ..., c*(tin,)]-
We refer this independence assumption-based PSSHGEE approach as PSSHGEE(I)
and the corresponding estimator is denoted by BPSSHGEE( I

The estimation of v(t) and ¢(t) is similar in both Fan et al (2007} and Fan and
Wu (2008). However, for /3 estimation by (2.16), Fan et al (2007) assumed that the
error vector ¢; in (2.2) follow a multivariate normal distribution with a ‘working’
correlation matrix R;(«), and estimated the ‘working’ correlation parameter o by
maximizing the normal likelihood [Fan et al (2007, eqns. (2)-(3))]. This estimator
may be referred to as the PSSHGEE estimator. We include this approach in our

empirical efficiency comparison in Section 2.3, but compute the lag correlations by
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the moment approach, which does not require any normality assumption.

2.2 Proposed FSSGQL approach

2.2.1 Estimation of non-parametric function

We consider the independence assumption based QL estimating equation to estimate

the non-parametric function 4(.). The SQL estimating equation for ~(y) is

' Opj (yiy — pij)
wy;(t =0 2.20
ZZ%( 0)37@0) 2 ( )
Using the Nadaraya-Watson kernel regression method [Nadaraya (1964) and Wat-

loty
= p”n( b 20 — such that
i=1 Zji1 pi(—51)

SE S wi;(to) = 1. The kernel function is chosen to be p;(“5%) = - exp( 5 (1514)?)

son (1964)], the weights are calculated as w;;(to) =

b b

and b is the bandwidth parameter. Since d{i’(';f) 7 = 1, (2.20) reduces to

K n;
Z Z wij(tO)(yij - /lij) =0
i=1 j=1

yvielding %(to) = §i; — 27,3, provided g is known or estimated.

ThUS, ’?(to) at t[) = tij 18

Ytig) = Gy — 24;(ti5) 8, (2.21)
where
K ny K np
Gij = Z Z Wha (i) Yne and T35 (1) = Z Z Wha (L) Ty (P )
h=1 u=1 h=1 u=1

with Z}{le Zzhzl 'whu(t'ij) =1
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2.2.2 Estimation of 3

Recall from (2.14) that § has to be estimated from the model

i — i = (X, = X)B+ ¢,

Let E(¢") =y, and var(e*) = var(Y; — ¥;) = 7. One may then estimate 3 using

the GLS approach by minimizing the generalized squared distance function

*

f—uz ;(ef — i)

||Mx

K
Z = Ui — Xi - Xi)ﬁ - Hf)l Ef (yi — Ui — (Xz' - X‘i)ﬁ - N’;), (2-22)

with respect to f.
In the existing PSSGEE approach, the estimating equation for /J was constructed
by using var(Y;) or its working estimate V;(a) instead of var(Y; — YL)

Computation of

To compute uf = E(e*) = E(Y; — Y, — (X; — )A(i),x3)7 we first calculate

EDA/Z] = Z Wh(tﬂ, e m, [Yh]

h=1
K
= Z Wh(ti, ... tin,) [(XnB + v(ts)]
h—1
K
= X0+ Z Whta, ... tin,)Y(th). (2.23)

h=1

Herice

E[Z] = EY;-Y)—(X; - X,)8
K
- Z o tin, )Y (h) = 1] (2.24)
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The kernel weights involved in (2.24) are chosen such that for fixed t,;,

whl(ti]-) — 1 as ‘thl — t'ij‘ — O

wri(tij) — 0 as |ty — t;;| goes away from 0, (2.25)

satisfying Zthl St w(ti;) = 1. Thus, for such selection of kernel weights uf — 0
and bias will be negligible.
Computation of ¥}

We compute the var(Y; — }Afl) as follows

o= war(Y; - Y)

= war(Y;) + var(¥;) — 2 cov(¥;, ;)

K K
= Ei(p) + UCLT'{Z Wh(til, P atini)Yh} -2 COU{Y:L-, Z LVh(til, Ca ,tmi)yh}

h=1 h=1
K K
= El(p) + Z IVh(tﬂ, ... ,tini)COU(Yh, Yh’)‘Vh’(til7 R ,tmi)
h=1 h'=1
K
—2{Wiltia, -t Jvar(Yi) + > Walta, ., tin,)eov(V, Ya)} (2.26)
hti

L 1
where E;(p) = A?Ci(p)A} with Ci(p) as given in (2.4). Note that p in Ci(p) is
expressed as p = (py....,pn,). Because y;'s are independent for ¢ = 1,... K, the

formula in (2.26) for 7 reduces to

K
ET — 21(10) +ZWh(tila"'atini)zh(p)ufl:,(tih"' 7tin1‘) —QWi(tilv"'ﬁtirh)Ei(p)
h=1

(2.27)

Under the limiting conditions in (2.25), £ reduces to ;(p). Nevertheless, in practice
using the correct covariance £f in place of £;(p) is bound to provide more efficient

estimate for 3.

37



Minimization of the distance function in (2.22) is equivalent to solve the GLS esti-

mating equation

i A(X, — X)B + )
op

=7 {0 — (X - X)3 - ui} =0, (2.28)

i=1
for 3. In the linear model, the GLS estimating equation is same as the GQL estimat-
ing equation and for this reason, and to be uniform with the notations in the next
chapters, we refer to the estimating equation obtained from (2.28) as the fully stan-
dardized semi-parametric GQL (FSSGQL) estimating equation for 4. The solution

of (2.28) is given by

Brsscor = {Z(Xi - X)) (@G- Xt
XY (X=X (507 (i - - ) (2.29)

i=1

Note that the difference between %; in (2.16) and £} in (2.29) may not be negligible

1

in practice. It depends on the choice of the kernel weights.

2.2.2.1 Basic properties of Bpggqu

Unbiasedness of ﬁAFSSGQL :

In the case where u is known, it can be shown as follows that the FSSGQL
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For the purpose, we calculate £ (BFSSGQ L) as follows.

E(frsscor) = {ZE: (X = X)) (Z)7 (X - X))

=

(Xi = X) (S {E(y — 4 — 1)

1

(X=X (E0)7 (X - X))

MM'

= {

(X — X)) (S (X = X8+ — E(0)}

,Mx £

=1

= B+ {Z(Xi — X)) (Z5) 7 (X = X))
i=1

K

DX =X (S) 7w - B}

i=1

il

K
= B+ DY M{u; — E(i)} (2.31)

=1

where D = S°F (X, — X)) ()7 (Xi — X;) and M; = (X; — X;)' (£7)~". Using

(2.21) and (2.24),

K
E(q7) E[5(t:) -ZWh(ti1,--.,tmiﬁ(th)]
h=1
= i 1/6 Z I’{/h ilye - 7.71 )E[gh - Xhﬁ]

K
= Z Wh(tia, ... tin,)E[yn] — Xzﬂ
h—1

K K
- Z Wiltis -« tin, ) ElGn] + Z Wi(tit, - - tin,) Xnf3
h=1 h=1
K’ -~
= ) Whlta. ... tm) [XaB + v(t)] — X3
h=1
K K K )
- Z Wi (ti, - .- -,fz'm){z Wit -t ) E(y;) } + ZWh(tih ooy ting) XnO
h=1 =1 h=1
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K K
= Z Whitia, ... tin)¥(th) — Z Wh(tia. ... tin,)
h=1 h=1
K K A
D Wiltnr, - trn)XG8 + 7D+ D Waltan, - i) XnB3
j=1 h=1
K K K
= Z Whiltin, .- tin )¥(th) — Z Wh(ti,. .., tmq){z Wi(tht, - s thny )7 (85)
h=1 h=1 j=1

Hence by using (2.24) we obtain

K
E(i7) = y(t) — i Y Whlta, - tin ) {7 () — pii}
h=1
= () — = () — )+ D Walta. . tin ),

K
= Y Waltu.. b = 9115, 1)
h=1
Substituting in (2.31), the bias in estimating § amounts to
K K
|E(/§FSSGQL) ~p = D! Z Mi{p — Z Wit tin,) g }
i=1 h=1
= gpl, - H) (2.32)

where D and M, are defined in (2.31). Note that the bias quantity in (2.32) may be
negligible, provided the kernel weights are chosen satisfying (2.25). This is because
under the limiting condition (2.25), uf — 0, yields bias — 0.

Variance of ﬁFSSGQL :

We now compute the variance of /;’Fs sGQL as
A~ h’ ~ A
var(Brsscar) = {)_(Xi = X)) (Z)7F (X = X))}
i=1
K ~ A
xS (X— XY (507 fvar(ys — g — i)} ()X - X)
i=1
K A~ ~
D X=Xy (=) (X - Xy (2.33)
i=1
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where
var(y; — §i — i) = var(yi — §i) + var(47) = 2cov(y; — i, 7).
Now
var(i;) = E(i; — E(@)) (i — E(i7))

= B — g0,k ) — (i k)

= E{(maly,©,8) = 104, - 5)) maa(y, @, B) — g1(uf, -+ k)’

= E(ma(y. z, ﬁ)m/&(yv x,0)) = Elma(y, z, 13)9’101? N)

= q(EB) = qils o mk)g (k)

= q(%;.3), say

and

cov(yi - Ui, /A"?) = CO'U[yi - TrLil(Z/)a "Li2<'.‘/7 T, /3)]
= (13(21'7,3) - Q4(Ei7,3)

= ¢5(%;. 5), say
where m;1(.) is a function of y and my(.) is a function of (y, x, 7). This gives
var(y; — g — ;) = 87 + q2(Zi, 0) — 205(%. 5) (2.39)

Substituting (2.34) in (2.33) we obtain

K
var(Brssaqr) = [D_(Xi—X) ()7 (X - X))+
=1
K A ~
D™D (X - X) (57 {ga(S03) - 205(8 8)} (57) (X — X)) | DT
=1
= DYy L(E,. .. Sk, X1, ..., Xk), say. (2.35)
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Asymptotic distribution of BFSSGQL :
Using (2.31) and (2.35), and applying Lindeberg-Feller central limit theorem

Amerniya (1985), Theorem 3.3.6, p.92] it then follows that

BrsscorL ~ Np(B + g2(.), D' + L(.)) (2.36)
For convenience in our notation, the Lindeberg-Feller central limit theorem is stated
as follows.

Let yf = D7 (X, — )A(l-)’(Ef)_l (y; — §; — 7)) so that ¥, ...yj are independent.
Also let, 7 = + ZLA:1 y; with

_ 1
E(Y") = g[ﬂ + go(pls - )]

_ 1
var(Y?) = =[D7 4 L%y B Xo L, Xe)).

Then using the Lindeberg-Feller central limit theorem,
7 = (var(Y")"VAHY" — E(Y")) ~ N,(0,1).

This shows that BFSSGQL has the p-dimensional normal distribution as stated in

(2.36).

2.2.3 Estimation of p and ¢?

For n = maxj<i<xn;, and

1, ifu<n,
6iu =

0, ifn, <u<n,
the auto-corr " "I matrix C;(p) (see also (2.4)) is estimated by using the estimates

of lag correlation p, given by

/56 _ Zfil Zz;f 5iu5i,u+€giugi,u+1/ Zfil ZZ;? 6iudi‘u+€
- K i o5 o~ K PN
21:1 ZZ:I ()iuyrizu/ Zi:l ZZ:I Oins
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[Sutradhar (2011, Section 2.2.2)] with g, = EMJ where 3 and ~(t) are the

FSSGQL estimates of 3 and ~(t), respectively.

The variance parameter o2 for the A; matrix is estimated as

K g ‘A ~
52 = Dimr 2 (Wis — T8 — ()
Zfil T4 .

The moment estimators for lag correlations (2.37) and variance component (2.38)

(2.38)

are primarily developed by assuming that /4 and ~(-) are known, but the estimates

are obtained by using the consistent estimates JGAFSSGQL for 4 from (2.29), and 4(-)

for 4(.) from (2.21). This leads to the consistent estimation of p, and o? under some
mild regularity conditions [Casella and Berger (1990)].

For convenience of application of the proposed FSSGQL approach, we now sum-
marize this approach in the following four steps.
Step F1. For an initial value of 3, we solve the ‘working’” independence assumption
based semi-parametric equation (2.20) to estimate the non-parametric function ~(-).
Step F2. The estimate of vy(-) from Step F1 and the initial J are used in (2.38) to
obtain first an initial estimate of the variance component o2, and then initial estimates
of lag correlations by (2.37).
Step F3. In this step, the estimates of auto-correlations from Step F2 are used to
compute first the kernel weights based covariance matrix £¥ = cov[Y; — )A/L], which is
then used in (2.29) along with the estimate of u} to obtain the FSSGQL estimate of
3.
Step F4. Next. the first step estiimate of 3 from Step F3 is applied to Step F1 to
obtain an improved estimate for the non-parametric function ~(-).

This constitute a cycle and the iteration cycles continue until convergence.
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2.3 A Simulation study

The purpose of this section is to conduct a simulation study to examine the finite
sample performance of the FSSGQL and various versions of the existing PSSGEE
approaches in estimating the main regression parameters as well as the nuisance non-

parametric function.

2.3.1 Simulation design

Sample Size:

Some of the larger data set in the longitudinal studies, such as the asthma study
which contains information from K = 537 children, was considered to be large. Thus
in this finite sample studyv, we choose K = 100 as a small sample size. Note that the
asymptotic properties of the regression estimator discussed in Section 2.2.2 depends
on the size of independent individuals (K), rather than on Zf‘zl n; as n; responses
are correlated. In longitudinal studies it is expensive and not practical to consider n;
large. We could choose variable n;, but for simplicity we use n; =4 fori=1,..., K.
The time points are chosen as ¢;; = jforalli=1,... K, andy =1,...,n;.
Covariate Selection:

We consider p = 2 time dependent covariates with their values as

B2 —

T (ti;) = pi=1,2,...,50,
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counsider a sine function to represent other situations in practice where this unspecified
time dependent function has a periodic pattern.

True Correlation structure:

We consider three correlation structures from (2.4), (2.5) and (2.6), with selected
values of parameters as indicated below.

(i) AR(1) model: ¢ =0.5,0.8; 02 =1.0

(i) MA(1) model: § =0.1,0.4; 02 =1.0

(iii) EQC model : { = 52— = 0.5,0.8; 02 = 1.0

2.3.2 Data generation and simulation results

We use various combinations of the selected design parameters to generate y;; from
(2.2), fort=1,2,...,100 and j = 1,2, 3,4. The simulation was repeated 1000 times.
Under each simulation we apply the four step procedure from Section 2.2 to obtain
the FSSGQL estimates of 3, v(t), 02, and p(¢). Note that in this approach, irrespec-
tive of the true correlation models, AR(1), MA(1), or EQC, the correlation matrix
is estimated by using the estimate of the general correlation matrix C;(p). Moreover,
this approach uses corrected weight matrix in the estimating formula (2.29) for 5.
Since the ‘working’ correlations approach does not have any guidance for the
selection of correlation model, one may choose any of the low order commonly used
structure such as AR(1), MA(1), EQC, or ‘working’ independence models [Liang
and Zeger (1986)]. Thus, if data are generated from the true AR(1) model, we
exawine through cfficiency comparison whetlier one can use any of the conventional

low order correlation models or use the Cj(p), which contains all these low order

47



correlations and provides more efficient estimates. When data are generated using,
for example, a true AR(1) correlation model with high correlation such as ¢ = 0.8,
there may not exist any corresponding correlation paraineter under MA(1) 'working’
correlation structure [Crowder (1995)]. For this case, the moment estimates for the
MA(1) correlation parameter were always more than 0.5, the boundary value. Thus,
we have used & = 0.48 to avoid such difficultics. In Tables 2.1, 2.3, 2.4 and 2.6 this
is indicated with a question mark (7). We also use the unstructured (UNS) [see Lin
and Carroll (2001), for example] correlation model as a ‘working’ correlation model.
Further, the PSSHGEE(I) and PSSHGEE based estimates discussed in Section 2.1.2
are also computed.

To simplify tables and figures, we rename the FSSGQL estimates as semi-parametric
GQL (SGQL) estimates, and similarly all PSSGEE and PSSHGEE estimates as SGEE
and SHGEE estimates, respectively. The efficiency of these estimates are computed
by comparing their simulation-based variance with the variance of the known correla-
tion structure based estimates, where the known correlation structure based estimates
were computed by replacing the C;(p) matrix in the FSSGQL approach with the true
correlation such as AR(1) correlation matrix.

Because the regression parameters (3; and G are of main interest, we concentrate
on the efficiency performance for these two parameters. More specifically, we display
the efficiencies for their estimators under various methods for a selected correlation
parameter value, in Figures 2.1 and 2.2, when ~(t) is chosen as 3 + 2(¢t — 224) + (t —

2, and in Figures 2.3 and 2.4 when ~(¢) = sin(2t). Notc that the cfficiencies of
a selected method is computed by comparing the variance of the estimator with the

corresponding variance when the estimation is based on the true correlation structure.
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For example, when the data are generated using EQC structure, the efficiency of

SGEE(I) for (3, estimation, for example, is computed by %’ which was
found to be 93.68% as reported in Figure 2.1. When various methods of estimation for
31 and f35 are compared, all methods appear to produce unbiased and hence consistent
estimates for both of the regression parameters.

It is clear from Figures 2.1 and 2.2 that the proposed SGQL approach always
yields the same or more efficient estimates than the other SGEE approaches includ-
ing the unstructured correlations based SGEE(UNS) approach. For example, for
the estimation of ; (Figure 2.1), under the true AR(1) correlation structure with
® = 0.8 (p = 0.8) the SGQL and SGEE(EQC) provide almost equally efficient esti-
mate whereas the other SGEE approaches including SGEE(UNS) provide less efficient
estimate. Under the true MA(1) correlation model with § = 0.4 (p = 0.35), all ap-
proaches appear to produce alinost equally efficient estimate for 3y, the SGEE(UNS)
being slightly inferior. Similarly under the EQC process with ¢ = 0.8 (p = 0.8)
all SGEE approaches are less efficient than the SGQL approach. Note that SGEE(I)
performs the worst among all ‘working’ correlation approaches. Figure 2.2 shows that
for the estimation of f,, all SGEL approaches are in general inferior to the SGQL
approach, the SGEE(I) being the worst followed by SGEE(MA(1)). The efficiency
performances of Figures 2.3 and 2.4 are similar to Figures 2.1 and 2.2. Thus, the
SGQL approach uniformly produce the same or higher efficient estimates for both
31 and s irrespective of the true correlation structures as well as non-parametric
functional forms.

The cfficiency of SHGEE(I) and SHGEE approaches [Fan et al (2007), Fan and

Wu (2008)] discussed in Section 2.1.2 are displayed in Tables 2.1, 2.2, and 2.3, along

49



with other SGEE estimates for the casc when v(t) = 3+2(t — 32) + (t — 1% Tt is
clear that sinilar to other SGEE approaches they also produce regression estimates
with larger variances as compared to the SGQL estimates. Sinilarly. the regression
estimates with 7(t) = sin(2¢) are given in Tables 2.4, 2.5. and 2.6 for true correlation
models AR(1), MA(1) and EQC respectively. The results in these tables show the
same pattern as those of Tables 2.1, 2.2, and 2.3.

Further, the estimation of 3 = (/. 3,)" requires ~(t) which is estimated using
the semi-parainetric QL (SQL) estimating equation (2.9) under all SGQL and SGEE
approaches. For the bandwidth b involved in the Gaussian kernel in (2.9). we have
chosen b = ﬁ [Pagan and Ullah (1999). p.25]. For selected values of the correlation
parameter, the estimates of v(¢) = 3+ 2(t — 324) + (£ — %52)? for all selected values of
t are shown in Figures 2.5, 2.6 and 2.7 under true AR(1). MA(1) and EQC models,
respectively. We have also computed the estimates for v(¢) = sin(2¢) under all these
three true correlation models, but displayed the EQC case only in Figure 2.8 as an
example. The results are similar for other cases also. It is clear from these four figures
that this nou-paramnetric function is estimated very well by the semi-parametric QL

approach.
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Figure 2.1: Efficiency comparisons of various semi parametric methods for the esti-
mates of ) with v(t) = 3+2(t —2+)+(t — %), under selected correlation processes:

AR(1) with ¢ = 0.8, MA(1) with § = 0.4 and EQC with { = 0.8.
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Figure 2.2: Efficiency comparisons of various scmi paramctric methods for the esti-
mates of [ with y(t) = 342(t—25)+ (¢t —21)?, under selected correlation processes:

AR(1) with ¢ = 0.8, MA(1) with § = 0.4 and EQC with ¢ = 0.8.
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Figure 2.4: Efficiency comparisons of various semi parametric methods for the es-
timates of B with v(f) = sin2t, under selected correlation processes: AR(1) with

o= 0.8, MA(1) with § = 0.4 and EQC with ¢ = 0.8.
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Table 2.1: Simulated means (SMs) and simulated standard errors (SSEs) of the

estimates of regression parameters

= 1 and f = 0.5, under AR(1) correla-

tion model for selected values of the model parameters ¢ and o?; with ~(t) =

3+2(t - 2) + (¢ — 2?2 K=100; n=4; and 1000 simulations.

2

Estimates under the true AR(1) model

o(o?) Method Quantity 5 5y & 01 02 03
0.5 (1.33) SGEE(AR(1)) SM  0.9997 0.5082 0.4974
SSE 0.2339 0.3073 0.0580
SGQL SM 0.9993 0.5072 0.4987 0.2489 0.1277
SSE 0.2340 0.3073 0.0504 0.0728 0.0973
SGEE(UNS)  SM  0.9999 0.5077
SSE 0.2365 0.3105
SGEE(I) SM  0.9999 0.5004
SSE 0.2343 0.3715
SGEE(MA(1))  SM  0.9996 0.5086 0.4692
SSE 0.2349 0.3099 0.0251
SGEE(EQC) SM 0.9998 0.5087 0.3529
SSE 0.2339 0.3112 0.0549
SHGEE(]) SM 0.9999  0.5003
SSE 0.2343 0. 3722
SHGEE SM 0.9991 0.5074 0.4983 0.2500 0.1292
SSE 0.2337 0.3077 0.0477 0.0732 0.0981
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Table 2.1 Continued

Estimates under the true AR(1) model

N

/'332

o(a?) Method Quantity & 01 P 03
0.8 (2.78) SGEE(AR(1)) SM 1.0005 0.5066 0.7998
SSE 0.2425 0.3149 0.0298
SGQL SM 1.0003 0.5057 0.8001 0.6400 0.5140
SSE 0.2425 0.3155 0.0316 0.0504 0.0730
SGEE(UNS) SM 1.0013 0.5047
SSE  0.2491 0.3253
SGEE(T) SM 1.0022 0.5181
SSE 0.2513 0.6259
SGEE(MA(1)) SM  1.0018 0.5111 0.4800(?)
SSE 0.2490 0.3911 -
SGEE(EQC) SM 1.0011 0.5083  0.6987
SSE 0.2425 0.3250 0.0400
SHGEE(I) SM 1.0023 0.5181
SSE 0.2524 0.6275
SHGEE SM 1.001 0.5062 0.8001 0.6418 0.5180
SSE 0.2450 0.3178 0.0263 0.0503 0.0735
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Table 2.2: Simulated means (SMs) and simulated standard errors (SSEs) of the

estimates of regression parameters /J; = 1 and fJ; = 0.5, under MA(1) correla-

tion model for selected values of the model parameters ¢ and o?%; with ~(t) =

3+2(t— )+ (t— )% K=100; n=4; and 1000 simulations.

Estimates under the true MA(1) model

B

~ ~ A

0(c?) Method Quantity o)) & 0 o 3
0.1(1.01) SGEE(MA(1)) SM  1.0014 0.4982 0.0971
SSE  0.2005 0.2641 0.0586
SGQL SM 10011 0.4986 0.0971 0.0000 -0.0018
SSE  0.2009 0.2643 0.0586 0.0684 0.0982
SGEE(UNS) SM  1.0001 0.4976
SSE  0.2026 0.2654
SGEE(I) SM  1.0013 0.4992
SSE  0.2005 0.2650
SGEE(AR(1)) SM  1.0013 0.4983 0.0865
SSE 0.2006 0.2651 0.0810
SGEE(EQC) SM  1.0012 0.4985 0.0481
SSE  0.2005 0.2642 0.0449
SHGEE(I) SM  1.0118 0.4996
SSE  0.2007 0. 2656
SHGEE SM  1.0015 0.4992 0.0972 -0.0000 -0.0017
SSE  0.2014 0.2658 0.0583 0.0685 0.0990
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Table 2.2 Continued

Estimates under the true MA(1) model

0(c?) Method Quantity Bl ,3A2 O 1 P2 03 i
0.4(1.16) SGEE(MA(1)) SM  1.0008 0.4948 0.3435 !
SSE 0.2275 0.2781 0.0528
SGQL SM 1.0004 0.4954 0.3435 -0.0007 -0.0033
SSE 0.2280 0.2784 0.0528 0.0726 0.0973
SGEE(UNS) SM 0.9991 0.4949
SSE (0.2298 0.2802
SGEE() SM 1.0003 0.4970
SSE 0.2284 0.3010
SGEE(AR(1)) SM  1.0004 0.4959 0.2778
SSE 0.2278 0.2803 0.0731
SGEE(EQC) SM 1.0002 0.4962 0.1702
SSE 0.2281 0.2825 0.0523
SHGEE(T) SM 1.0011 0.4975
SSE 0.2281 0. 3009
SHGEE SM 1.0008 0.4969 0.3430 -0.0002 -0.0033
SSE 0.2283 0.2784 0.0511 0.0728 0.0983
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Table 2.3: Simulated means (SMs) and simulated standard errors (SSEs) of the esti-

mates of regression parameters ; = 1 and 4, = 0.5, under equi correlation model for

selected values of the model parameters ¢ and o%; with v(t) = 3+2(t—254) + (t—251)%;

K=100; n=4; and 1000 simulations.

2

Estimates under the true EQC model

eA

5y

¢(o?) Method Quantity G 01 02 03
0.5(2.0) SGEE(EQC)  SM  0.9967 0.5211 0.4994
SSE 0.2111 0.4088 0.0504
SGQL SM 0.9968 0.5194 0.5003 0.4986 0.4985
SSE 0.2115 0.4088 0.0564 0.0577 0.0870
SGEE(UNS) SM 0.9979 0.5205
SSE 0.2125 0.4118
SGEE(T) SM  0.9968 0.5215
SSE 0.2124 0.5019
SGEE(AR(1)) SM 0.9967 0.5204 0.6388
SSE 0.2131 0.4180 0.0450
SGEE(MA(1)) SM 0.9969 0.5201 0.4668
SSE 0.2140 0.4165 0.0282
SHGEE(I) SM 09967 0.5214
SSE 0.2131 0.5036
SHGEE SM 0.9971 0.5195 0.5011 0.4999 0.5011
SSE 0.2121 0.4107 0.05651 0.0579 0.0768
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Table 2.3 Continued

Estimates under the true EQC model

6

~

((c?) Method Quantity 2 & 01 Do 03
0.8(5.0) SGEE(EQC) SM 0.9968 0.5216 0.7992
SSE 0.2135 0.4725 0.0274
SGQL SM 0.9968 0.5192 - 0.7998 0.7989 0.7986
SSE 0.2138 0.4725 0.0317 0.0296 0.0532
SGEE(UNS)  SM  0.9983 0.5212
SSE 0.2170 04777
SGEE(I) SM 09981 0.5325
SSE 0.2279 0.8811
SGEE(AR(1)) SM 09964 05198 0.8715
SSE 0.2154 0.4860 0.0188
SGEE(MA(1))  SM  0.9980 0.5252 0.4800(?)
SSE 0.2255 0.5723 -
SHGEE(I) SM  0.9981 0.5325
SSE 0.2297 0.8828
SHGEE SM 0.9975 0.5201 0.8007 0.8002 0.8010
SSE 0.2167 0.4783 0.0288 0.0296 0.0364
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Table 2.4: Simulated means (SMs) and simulated standard errors (SSEs) of the esti-
mates of regression parameters J; = 1 and g = 0.5, under AR(1) correlation model
for selected values of the model parameters ¢ and o?; with v(¢) = sin2t; K=100; n=4;
and 1000 simulations.

Estimates under the true AR(1) model

#(0?) Method  Quantity Ba G 1 p2 fs
0.5(1.33) SGEE(AR(1)) SM  0.9995 0.5080 04974
SSE  0.2339 0.3073 0.0580
SGQL SM  0.9991 0.5070 0.4987 0.2490 0.1278
SSE  0.2340 0.3071 0.0504 0.0728 0.0973

SGEE(UNS)  SM  0.9997 0.5074
SSE  0.2365 0.3105
SGEE(I) SM  0.9998 0.5093
SSE  0.2343 0.3714
SGEE(MA(1))  SM  0.9993 0.5083 0.4692
SSE  0.2348 0.3099 0.0251
SGEE(EQC)  SM  0.9997 0.5085 0.3530

SSE  0.2333 0.3112 0.0549
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Table 2.4 Continued

Estimates under the true AR(1) model

$(0?) Method Quantity s G p1 fo p3
0.8(2.78) SGEE(AR(1))  SM  1.0005 0.5066 0.7998
SSE  0.2425 0.3149 0.0298
SGQL SM  1.0003 0.5057 0.8001 0.6400 0.5140
SSE  0.2425 0.3155 0.0316 0.0504 0.0730
SGEE(UNS) SM  1.0013 0.5047
SSE  0.2491 0.3253
SGEE(I) SM  1.0022 0.5181
SSE  0.2513 0.6259
SGEE(EQC) SM  1.0011 0.5083  0.6987
SSE  0.2424 0.3250  0.0400
SGEE(MA(1)) SM  1.0018 0.5111 0.4800(?)
SSE  0.2490 0.3911 .
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Table 2.5: Simulated means (SMs) and simulated standard errors (SSEs) of the esti-

mates of regression parameters (3

1 and 8, = 0.5, under MA(1) correlation model

for selected values of the model parameters § and o?; with v(¢) = sin2t; K=100; n=4;

and 1000 simulations.

Estimates under the true MA(1) model

H(?) Method Quantity
0.1(1.01) SGEE(MA(1))  SM
SSE
SGQL SM
SSE
SGEE(UNS)  SM
SSE
SGEE(I) SM
SSE
SGEE(AR(1))  SM
SSE
SGEE(EQC) SM
SSE

/91 o

&

f1 P2 J

1.0-014 0.4982
0.2005 0.2641
1.0011 0.4986
0.2009 0.2643
1.0001 0.4976
0.2026 0.2654
1.0013 0.4992
0.2003 0.2650
1.0013 0.4983
0.2006 0.2651
1.0012 0.4985
0.2006 0.2642

0.0865
0.0810
0.0481
0.0449

0.0971
0.0586
0.0971 0.0001 -0.0018
0.0586 0.0684 0.0983
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Table 2.5 Continued

Estimates under the true MA(1) model

0(c?) Method  Quantity G, o G o1 fo b3
34(1.16) SGEE(MA(1)) SM  1.0008 0.4948 0.3435
SSE  0.2275 0.2781 0.0528
SGQL SM  1.0004 0.4954 0.3435 -0.0006 -0.0033
SSE  0.2280 0.2784 0.0528 0.0727 0.0973
SGEE(UNS) SM  0.9991 0.4949
SSE  0.2298 0.2802
SGEE(I) SM  1.0003 0.4970
SSE 0.2284 0.3010
SGEE(AR(1)) SM  1.0004 0.49598 0.2778
SSE  0.2278 0.2803 0.0731
SGEE(EQC) SM  1.0002 0.4962 0.1703
SSE  0.2281 0.2825 0.0523
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Table 2.6: Simulated means (SMs) and simulated standard errors (SSEs) of the esti-

mates of regression parameters /3; = 1 and 5 = 0.5, under equi correlation model for

selected values of the model parameters ¢ and o?; with () = sin2t; K=100; n=4;

and 1000 simulations.

Estimates under the true EQC model

I

I

((?) Method Quantity v i Do D3
0.5(2.0) SGEE(EQC) SM 0.9966 0.52087 0.4995
SSE 0.2111 0.4095 0.0504
SGQL SM 0.9967 0.5192 0.5003 0.4987 0.4985
SSE 0.2115 0.4088 0.0564 0.0577 0.0871
SGEE(UNS) SM 0.9978 0.5203
SSE 0.2125 0.4118
SGEE(I) SM 09967 0.5214
SSE 0.2124 0.5019
SGEE(AR(1)) SM  0.9965 0.5202 0.6388
SSE 0.2131 0.4180 0.0450
SGEE(MA(1)) SM 0.9966 0.5198 0.4668
SSE 0.2139 0.4165 0.0282
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Table 2.6 Continued

Estimates under the true EQC model

B

B

¢(0?) Method Quantity & 01 02 P3
0.8(5.0) SGEE(EQC)  SM  0.9968 0.5216 0.7993
SSE 0.2135 0.4725 0.0274
SGQL SM 0.9968 0.5192 0.7997 0.7989 0.7986
SSE 0.2138 0.4719 0.0316 0.0297 0.0532
SGEE(UNS) SM 0.9983 0.5212
SSE 0.2170 04777
SGEE(I) SM  0.9981 0.5325
SSE 0.2279 0.8811
SGEE(AR(1)) SM  0.9964 05198 0.8715
SSE 0.2154 0.4860 0.0189
SGEE(MA(1))  SM 09980 0.5252 0.4800(?)
SSE 0.2255 0.5723 -
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Figure 2.5: Simulated means of estimates of the non-parametric function (~y(t)
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MA(1) Error with theta=0.4
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Figure 2.6: Simulated means of estimates of the non-parametric function (v(t) =
34+ 2(t — 42) + (t — *F)?) under the true correlation matrix (TCM) and other

selected correlation based FSSGQL method with MA(1) correlated errors.
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Figure 2.7: Simulated means of estimates of the non-parametric function (v(t)
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selected correlation based FSSGQL method with Equi correlated errors.
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EQC Error with zeta=0.8
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Figure 2.8: Simulated means of estimates of the non-parametric function (y(t) =

sin2t) under selected correlation based FSSGQL method with Equi correlated errors.

70




Chapter 3

Semi-parametric Longitudinal
Models for Discrete Data with
Non-stationary Correlation

Structures

In Chapter 2, we discussed in detail the inferences for the regression effects involved
in the semi-parametric linear longitudinal model. However, there are many situa-
tions where one is interested in analyzing longitudinal discrete data such as count
and binary data in the semi-parametric setup. For example, we refer to the longitu-
dinal models for the health care utilization data and Ohio asthma data mentioned in
Chapter 1. But, these models do not incorporate any non-parametric functions in the
regression relationship. Also, the semi-parametric inferences for linear longitudinal

data discussed in Chapter 2 can not be directly generalized to the semi-parametric
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longitudinal discrete data. In this chapter, we deal with such semi-parametric in-
ferences under the assumption that the equip-spaced time based repeated responses
follow a Gaussian-type ARMA class of auto-correlations. To be specific, we describe
the semi-parametric longitudinal models for count data in Section 3.1 and develop
the inference techiniques for these models in Section 3.2. Similarly, in Sections 3.3 and
3.4, we provide the semi-parametric longitudinal models and inferences, respectively

for longitudinal binary data.

3.1 Semi-parametric longitudinal models for count

data with non-stationary correlation structures

Unlike the linear longitudinal models that we discussed in Chapter 2, it is traditional
to consider that the count response y;;(t;;) marginally follows a Poisson distribution
[Nelder and Wedderburn (1972)]. As Poisson distribution belongs to an exponential

family, using the log-link function, we write the mean and variance
E(Yj;) = V{(Yy;) = exp(xi;(t;)8 + (k)

where ;;(t;;) is the p—dimensional covariate vector at time point ¢;; and ~(¢;;} is the
unspecified smooth function. Thus, both z;;(t;;) and ~v(¢;;) would affect the mean

response and we denote the Poisson mean and variance by
Nij(ﬁj ewp(wij(tij)ﬁ + ’Y(tzj))- (3.1)

This mean function (3.1) is exactly the same as for the independent count data dis-

cussed in Section 1.2.2. However, the independence case is a special case of the
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present longitudinal setup with n; = 1 for all individuals 7 = 1, ..., K. Thus, unlike

the independence setup, one has to consider the correlations of the repeated count
responses Y1, - - ., Yij» - - - » Yin,- When covariates are time dependent, the correlations
in such a setup depend on these time dependent covariates which make the correla-
tions non-stationary. We discuss this type of non-stationary correlation structures for

repeated count data in the next sections.

3.1.1 Stationary correlation models for count data in semi-
parametric setup

Sutradhar (2003) proposed a class of Gaussian type auto-correlation structures for
stationary (time independent covariates) repeated count data which accommodates
AR(1), AR(2), MA(1), ARMA(L,1), etc. and EQC correlation structures. The auto-
correlation structures have the same form as C;(p) in (2.4). Even though the station-
ary correlation structures appear to be the same for linear and count data mmodels,
the dynamic relationships among the repeated responses under these models are quite
different. Unlike the dynamic relationships (2.5)-(2.7) in Chapter 2, the stationary

AR(1) dynamic model, for examnple, for count data [ Sutradhar (2003)] has the form
Yij = p*Yi 1 +diy, for j=2,... n,, (3.2)

where y;) ~ Poi(p ), p1, = exp(z; ()0 +v(ti)), zi(ti) = x;(ts;) and () = v(ty;)
for all j = 1,...,n,;. Also assume that y; ;-1 ~ Poi(p; ) and d;; ~ Poi(p; — ppa.), dy;
and y; ;) are independent with pxy,; 1 = > 24" by(p) with Prbs(p) = 1] = p and

Prlbs(p) = 0] = 1 — p, p being the correlation parameter. This model (3.2) has the
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following marginal properties:

E(Yjlz:) = . =exp(z,p+ v(t.))
V(Yyla) = ou = exp(z] B+ +(t.))

corr(Yi, Yile,,x;) = Cilp) = pl=ul for all u # v, |p| <1,

and the correlations can be represented by C;(p) as in (2.4), that is,

1 P P2 Pl
P1 L N , i
Ci(p) = foralli=1,2,..., K, (3.3)
Prni—1 Pn;-2 1

with p = pf for £ = 1,...,n; — 1. This Cy(p) is also valid for stationary MA(1) and
EQC correlation structures, among others. This is evident from the special cases of
the non-stationary models we discussed below. These non-stationary models under
the longitudinal sctup for fully specified (fixed) regression tunctions are discussed in

details in Sutradhar (2010) and (2011).

3.1.2 Non-stationary correlation models for count data
3.1.2.1 Non-stationary AR(1) models in semi-parametric setup

In the non-stationary case, the covariates are time dependent. For such cases, when
the responses follow AR(1) correlation models, for example, they satisfy the dynamic

relationship (3.2), that is,

UU :/)*yﬁj' 1+dij~, f01'j:2,...,'n,2-. (34)
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However, unlike the stationary case, the marginal distributions of y;; for all j are
not identical. To be specific, it is now assumed that y;; ~ Poi(u;1), with p,y =
exp(e) (ta)0 +v(ta)), and for j = 2,...,n;, di ~ Poi(uy; — ppsj-1) where d;; and
Yij—1 are independent. Similar to the stationary case, p*y; ;1 indicates the binomial
thinning operation given by p* y; ;.1 = Y oy bs(p) with Pribs(p) = 1] = p and
Pribs(p) = 0] =1 — p, where p denotes the correlation index parameter. The mean

and variance of this model are given by,

E(Vijlzy) = iy = exp(ai;(tiy) 8+ ()

V(Vijley) = ogy=p, j=1...,n (3-5)
For j < k, the covariance between y;; and y;, can be written as

cov(Yyj, Yielrij, xie) = E(YiYlwij, vie) — E(Yijlay) E(Yiklzi)

- Eylj}/ijEyi.k—(k—j—l) s Eyi.k~2ED/ik|yi,k*1’ Yik—25--- 7yi‘k*(k*j*1)]
—Hij Hik
yielding
) (ns)/,
COTT(YL'J', Yik|’£z‘j, I'ik:) = Ci,j,k(fip Lik, P)

k—j [Hi .
AR
=k e g .
Jod \/ e j>k

with p satisfying the range restriction

Hik J

0 < p<min[l, .
k-1

75



3.1.2.2 Non-stationary MA(1) models in semi-parametric setup

Suppose that y;; = d;1 ~ Poi(pi1), i =1,..., K, where p;1 = exp(a,(t:1)0 +~y(ta)).

For the non-stationary MA(1) model, the dynamic relationship is
Yij =pxdija+diy, j=2,....n (3.7)

where d,; ~ Pot j;l —pY i sy forall j=2,....n
2 u=0 Y U=J

The marginal properties of the model (3.7) are given by

E(Yialza) = pa = exp(zy(t1)0 + y(tu))
E(Yyleiy) = Euja . ElYild;, dij]

= FEy. 4 dij + pd; ;- 1]

i 1] 1[

= Hijgs _] = 2, cey Ty (38)

V(Yilza) = pa

V(Yijlzis) = iy = exp(a;(ti;)8 + (L)) (3.9)
[me A 1( -p) l»li,min(j.k)—j] - A
Wi for |j — k| =1
corr(Yiy, Yielzij, vy = (3.10)
0 Otherwise

C,(T;Z(IU» Tik, P)

with p satisfying the range restriction

0 < p<min[l,pigs -1 Pijor - - -+ Pins0)s

where p;j is the solution of f;g(— P) i = 0.
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But in the stationary correlation case the correlation in (3.10) reduces to

P2, (—pY = g} forj— k[ =1
CO"“”“(yUayik) =

0 Otherwise,

which satisfies the correlation structure C;(p) in (3.3).

3.1.2.3 Non-stationary EQC models in semi-parametric setup

Assume that yy ~ Poi{u;), 1 = 1,..., K and consider the dynamic relation
yij:p*yil_l_dijv j:27"'7‘ni~, (311)

where d;; ~ Pot(p;; — ppa) and d;; for j = 2.3,...,n,; are independent to yi;.

The mean and variance of the model (3.11) are

E(Yijlzsy) = iy = explai;(tiy)d 4 y(ti;))

V(Vijlzg) = oy = €ZL'P(5U§j(tij)/3 +(ts;)) (3.12)
For j < k,
CO'U[(Y;Ljy)/ik)‘fI:il] = PHa
yielding
Pl
corr(Yiy, Yie|tij, k) = —(——= 3.13
( 7 k| J k) \/m ( )
(ns)

= Ci,j,k(l'z‘j: Tik. P)
with p satisfying the range restriction

1, Bk

0<p<min|
Hi1
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Note that for the stationary case, the above correlation becomes
corr(Yy;, Yilzij, xix) = p, forall j,k=1,...,n,,

and this satisfies the correlation structure C;(p) in (3.3).

3.2 Estimation in semi-parametric models for lon-

gitudinal count data

The main interest of this section is to find the effect of the covariates z;;(¢;;) on the
response y;; where E(Y;;) is given in (3.1). We assume that this marginal property
holds for any of the non-stationary auto-correlation models such as AR(1) (3.4).
MA(1) (3.7) and EQC (3.11) models for repeated responses y;1,..., %, - - Yin,- AS
far as «(t;;) is concerned, one may treat this as a nuisance function, which is of
secondary interest. Thus, while we will exploit the correlations of the repeated data
in estimating the regression parameter , we will however estimate the nuisance

function by pretending that the repeated responses are independent.

3.2.1 Estimation of non-parametric function (.)

When correlations are ignored, we may follow the estimating equation (1.17) devel-
oped for independent count data from Chapter 1 to estimate the non-parametric

function. Thus at a given time point t;; = ty3, we now use the semi-parametric QL

estimating equation for estimating y(t;;)|s,;=r, given by

4

S i) it Yty g (3.11)

ov(to) ™ 1y

i=1 j=1
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>k »ox *ok ok : *k 0 :./ — _
where p7* = [y, .. i gy ) with gt = expla; () 0, %ﬁ—) = X/ and EEM)(/)) =

A;/Q Ci(”s)(ﬁ) A}/Q with A; = diaglp, ..., 17, .. ). It is improtant to recognize
that the responses y; = (Yi....,¥ij,---,Yin;) are generated with E(Y};) = py; =
explal;(ti;)8 + ~(ty)] for all i = 1,...,n; and this leads to [E(Y};) — pi7] # 0. To
compute /}NGQIH we solve (3.17) by using the Newton-Raphson method.

Next, to obtain a consistent and efficient estimate for J involved in (3.16), we ac-
commodate the estimation effect of v(.) and the correlation structure of the responses
to develop the appropriate estimating equations. We do this estimation in two ways.

(1) To develop the semi-parametric GQL (SGQL) estimation similar to the ex-
isting semi-parametric GEE (SGEE) approaches, we use var(Y;) = EE"‘Q)(p) as the
longitudinal weight matrix in the estimating equation. Note that EE"S)(/)) is a cor-
rect covariance matrix under the auto-correlation class but it is different than the
'working’ covariance matrix V;(«) used in SGEE. We will refer to this as the partially
standardized SGQL (PSSGQL) approach and will discuss this in Section 3.2.2.2.

(2) We use var(Y; — i) = 7" (p) to construct the SGQL estimating equation
because of the fact that fi; contains %{.) which is a function of y’s. We refer to this

as the fully standardized SGQL (FSSGQL) approach. This is discussed in Section

3.2.24.

3.2.2.2 PSSGQL estimation under non-stationary (ns) correlation struc-

ture

As it is significant to consider the estimation effect of 4(.) for the efficient estima-

tion of 3, we propose the non-stationary correlation structures based PSSGQL(ns)
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estimating equation for /3 as

K o
1 ns\ —_ ~
Z () (i — ) = 0,

209 (5) — var(y;) = AY2 ¢ (5) AV, (3.19)

with A; = diag[is1, ..., flij, - - - , flin,) and Ci(ns)(f)) is the estimate of the n; x n; non-

stationary correlation matrix C"*(p) defined as

O (p) = (W@, wane ). (3.20)

The formulas for the elements c(

( ) depends on the correlation structures discussed
in Section 3.1.2.

By using (3.16) the elements in the gradient functions are calculated as

O 0
TBJ — 8/3 (lep[ L]( 2])5+’7( 1]7/3)])

0
= explay;(ti;)B + 3(ty, B)] <$ij (ti;) + a—ﬁ‘/(fz‘jo

S Sy vty (e (t >,6>wm<tm>} |
Zl 12w Wi (tig)ezp(y, (t) )

Clearly, the estimating equation in (3.18) incorporates the non-stationary correla-

= [ lwij(ti ) -

tious among the repeated count responses, which will enhance the efficiency of the
regression parameter estimate. Since there does not exist any closed-form expression
for 3, we use Newton-Raphson method to solve (3.18).

Let

Sy '
@)= 55 007 -

81



Starting with an initial value for 3, each step of the following iterative equation

Birary = By = [(F(B) 7 F(B)]i=s, (3.21)

updates the value of 4 until convergence. The derivative function, f'(3) at 5 = 3y

in (3.21) is calculated as

a~,‘ ne§)y— a~1’

The estimation of non-stationary correlations are slightly different than the station-
ary case as it subsumes the time dependent covariates in their estimation. As it
is necessary to incorporate this difference, the correlation matrix Cfns)(p) in (3.19)
has the form (3.6), (3.10) and (3.13) under the non-stationary AR(1), MA(1) and
EQC correlation structures, respectively, for the estimation of g using PSSGQL(ns)
approacl.

Note that solving the estiimating equation (3.18) requires the estimation of p
parameter involved in the C,L»(”S) (p) matrix. This correlation index parameter can
be estimated consistently by using the well-known method of morments. However,
the formula for p estimate will be different under various non-stationary correlation
structures. For example, in the next section we provide the estimate of p under
non-stationary AR(1) correlation structure Ci("s)(p). The estimate of p under other

non-stationary correlation structures may be obtained similarly.

3.2.2.3 Estimation of correlation index parameter p

In order to use the method of moment technique to estimate the correlation index

parameter p, one can equate the sample covariance witli its population counterpart
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as

S (i — 1) S — 1) VHij

Z y’L] /ul_] yL,j—I - iui,j—l)
Zfil(nz o = Vi Vi -1

- ii corr }/UaY] 1)\//% \/,uz] 1
Zz 1 TLI—l =2 VHijy/ Hij—1

= Z ZZ N;[J L, from (3.6)
i= 1 i=1 j=2 LJ

However, for the estimation of p, following Sutradhar (2010) we use sample auto-

K N4 * % n;
>ie1 Z]‘:z Yij¥Ui -1 E {Zl 12 T 1} where yU _ YT

correlations and equate that to its population counterpart. That is,

E’ 121 2Yi¥ -1 E Zil%;’;y:jy%ﬂ
YL (i) TE (ni-1)
w E El IEJ 1 yr]

g ZZ T

i=1 j=2
yielding
K T
die 12? 2 Yislij—1 ZzKlni
7 i
21 12] 1le Ez 1 Z [M.uj’] 1]2

under the non-stationary AR(1) correlation model, where y;; = Vit with [ ;=

V .D’lj

p= (3.22)

e:r;p(z.’i]-(?fij)ﬁ + 4(t5))-

PSSGQL estimation under stationary (s) correlation structure
For convenience, we refer to the PSSGQL estimation approach to PSSGQL(s)
under the stationary(s) correlation structure. In this approach, we estimate the re-

gression parameter J using a similar estimating equation as that of the non-stationary
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case (3.18). The difference between the two cases lies in the fact that we now use

var(Y;) = S (p) = A? Cip) A2, (3.23)

3

with Ci(p) as in (3.3), whereas in (3.18), the variance estimate is var(Y;) = Z("S (p).

Thus, in the present stationary case, the estimating equation has the form

Z dﬁ { Eg ]_1 (yi — f1;) = 0.

Because the computation of the ng)(p) requires the calculation of auto-correlation

matrix Ci(p), we estimate the lag correlations p, (£ =1,...,n; — 1) as

n—f n—¢
O 61u wY iu O 6lu
fr = Zl 12z YLy +I/Zz 12 M,E:l,Q,...,n—l (3.24)

Zz’:l Zu: Wl )/ Zz 12

where n = max;<;<gn;, and

1, ifu<n,;

0, ifn; <u<n,

v e el :,( )

with ¢, =
v V ETP\T;, B+ Tin))

. This formula for g, is the same as (2.37) in Chapter 2

for linear correlated models except that an appropriate mean and variance for count
data is used in the present formula. Note that the C;(p) matrix in (3.23) (see also
(3.3)) holds for a general class of auto-correlation structures, whereas Ci("s)(p) matrix
under the non-stationary correlation models are estimated for specified corrclation

structures.

3.2.2.4 FSSGQL estimation under non-stationary correlation structure

The proposed PSSGQL(ns) estimating equation is constructed by using the true non-

stationary covariance matrix var(Y;) as the longitudinal weights. However, as argued
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in Chapter 2 under semi-parametric linear models, it is appropriate to use the weight
matrix var(Y; — ;) to construct the estimating equation for J. This adjustment
arises mainly because the non-parametric function (when estimated) involved in the

semi-parametric model depends on 3. Also, when /3 is unknown, 4(fy) by (3.15) still

OE()
93

contains {y;;}. Because of this reason, one should consider as the correct gra-
dient function while constructing the estimating equation for 3. Hence, similar to the
FSSGQL estimation method discussed in Chapter 2 (Section 2.2 ) for linear models,
for fi; = ({1, ..+ fijs - - - flin,}’, one may use the FSSGQL(ns) estimating equation

~1

> ag(ﬂui) war(Y: — )] ™" {ys — fui) = 0 (3.25)
i=1

where fi;; is given by (3.16) aud var(Y; — fi;) = 5;"(p), for estimating 3. We use

the formula for 4(tp) from (3.15) and write

aE(ﬁU) a i Zl 1 Zu, 1U/lu(tij)ylu
Q. aa |[eTP T Ly 3 .
o8 o8 [ Pt & <Zz 1 2umy Weulti) eIP@m(”u)@)}
_ 0 . ST wilt)explal, ()8 + 7 (t)
o { A ) o S vt eap(at )8) }

P ) = (t”)erp(zlu(t“),@
Let wi, (i) z{ilzi”lwh (6 yecntal (op)” ED

OE(iy;) 0 =
# = % le.Ep ;Zwlu i €Lp (tlu))]

u=1

= lzzwlu ij)exp( f(tzu))} exp(x;(t;)3) wii(ty).  (3.26)

In order to construct the FSSGQL(ns) estimating equation (3.25), we now provide

the formula to compute Zf("s)(p) = var(Y; — [i;) under the present semi-parametric

k3

model for count data. However, to obtain solutions for such FSSGQL(ns) estimating

equation will naturally be complicated numerically.
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Computation of £/ (p) = var(y; — i)

i) = var(Y; — fi;)
= Cov(Y;)+ Cov(ji;) — 2 Cov(Y;. 1)

_ oy 5 g 50) (3.27)

where EE"S) = var(Y;) has the form given in (3.19). The formulas for the calculation
of the elements in ") and ig"s) are as follows.

Computation of igns) :

Because ft; = [fi1, - - -+ flijs - - -, fling)'» Wwe need to compute the the elements var(f;;)
and cov(f;;, flix) to construct flg”‘g) matrix. The derivation for these components are
given below.

First,

Vi) = V(exp(a);(t;)0 + 4(t:;)))
-V (el‘p(l'/ij(t S IZZLlleU(tij)ylu, - )
Zz 1 2 1wlu(tij)€$l)($1ud)

wp(22) (t K
- ) 35St e

u 1”1”(%)6"510 y,0) =1 u=1 v=1
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Next,

Cov(jliy, k) = Couv (exp(xi;(t;)3 + 4(ti;)). exp(zi(tin) 8 +A(tu)))

= e;L‘p[(.’Eij(t,'j) + wik(tik)),ﬂ]

Cou ( ZlKl Zm lwlu(tij)ylu Zm 123?1 wmu ik ymu

SRS w(t)eap(ah, ) SR ST w (i )exp(al,,8)

exp[(xi; + z)' ]

o Yuly wi(ty)exp(x), 5 )] Y mms ouly wonn(tix)exp(,, 3)
v (Z Z Wiu(tis ) Yiu, Z Z’wmu(tik)ynw>

=1 u=1 m=1 v=1

Since y,,’s are independent, Cov(yp,, Ymy) = 0 for all [ # m and u # v. Hence

eapl(w:(tiy) + wae(ta))0) T S0 S wiltyy) wi(ti) oy

Cov(fiij, fur) = .

(22121 2oety wiultiy)exp(a, )] [Zz L oty wi(tiewp(x, 8)]
Note that when the correlations are stationary, U[(;w) is replaced by ‘71(;); =y, and
‘71(3;) is replaced by ”[(;), = p" O for u < v,

Computation of £™”
The calculations of Z ) matrix involves the caleulation of Cov(ysy, flir), for 4,k =

1,...,n; and this quantity is calculated as follows.

Cov(yijv /l'ik) = COU(!JU,%P( zk( lk)/j + A/( zk))

' Dotz Dy Wialtin)Yiu
= Couv | yij, exp(z,(tix
<y Pledtn)) ZI 1Eu—1wlu(tik)exp($;uﬂ))

exp(xy (tix) 0
= ( k( ) ) COU yl]’zz wlu ik ylu

Yoo Lty wialtaJewp(ai, ) =1 u=1
Under the assumption that y;;’s are independent, Cov(y;;, llil o W (k) Yie) =

Cov(y;;, wi;(tix)yi;) and this implies

_ exp(zhy (ti S (n9)
Cov Yigs Hik - wLu i .
i) = Z =7
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Note that by using the formula for E;(m) (p) from (3.27) and the derivative formula
from (3.26), we solve the FSSGQL(ns) estimating equation (3.25) using the Newton-

Raphson method. Letting

f(B) = Z aEa(él:) 5 ns)]—l (yi — i),

and starting with an initial value of 3. the iterative equation

Basy = By = [(F(8) 7" F(B)]s=s,, (3.28)

updates the value of ;3 in each step until convergence.

3.2.2.5 Existing PSSGEE approach

Instead of using the estimating equation given in (3.18), authors, such as Severini
and Staniswalis (1994) and Lin and Carroll (2001) use different estimating equation

to estimate /3, which has the form

X Ofi
> 2 Vi)l (g — ) = 0, (3.29)
where V;(«) is computed as
Via) = var(v;) = A’? Ri(a) A2 (3.30)
= Ag/Q R(&) A;/Q for the case n; =n

with R(&) as the constant stationary 'working’ correlation matrix. The estimating
equation in (3.29} is referred to as the GEE, but because it uses var(Y;) instead
of var(Y; — f1;), for clarity we refer to this equation as the partially standardized

semi-parametric GEE (PSSGEE).
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There are two problems when using R;(e) in estimating var(Y;). First, in the

non-stationary case, the correlations should be dependent on the time dependent co-
variates. Thus, using a stationary version, say C;(p) (3.3), for the true non-stationary
correlation matrix Ci("s)(p) is an approximation. Secondly, R;(«) is not only station-
ary but its form also may differ from Cy(p) as R;(«r) is a user’s choice matrix. In
addition, there is no guidance for choosing R;(«) and in the longitudinal setup with
fully specified regression function. it was shown by Sutradhar and Das (1999} [see also
Sutradhar (2010, 2011)] that use of R;(«) may produce inconsistent [Crowder (1995)]
or consistent but inefficient estimates for J as compared to the simpler moment or QL
approaches. As aremedy to this problem, Sutradhar (2003) proposed a GQL approach
which always produces efficient estimates compared to the independence correlation
based GEE approach. Thus, it seems appropriate to examine the effects of GEE
estimates for 0 obtained from (3.29) by comparing with the PSSGQL(ns) approach
under the present semi-parametric setup. These comparison studies are performed

through various simulations and the results are provided in the next Chapter.

3.2.2.6 Estimation of ‘working’ correlation parameter a

Following the existing GEE methods, we use the estimating equation in (3.29) with
var(Y;) = A* R(a) A%, for the estimation of the regression parameter /3. Similar
to the linear model case, the ‘working’ correlation matrix R(«) is estimated under
various correlation structures, namely, AR(1), MA(1), EQC, independence (1) and
unstructured (UNS) assumptions. The ‘working’ correlation parameter «. for these

correlation structures is estimated by solving the respective moment equations. For
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example, for EQC correlations structure,

& = Zz 1Zj#u Z]ylu (331>

ZI 12:] 1('!/1]

Yij— ezp( (tz])g+7(t1])
\/C.Tp(I” ( i )B+'7(tu ))

is computed by using

where y7; = and for AR(1) and MA(1) correlation structures, &

K ni—1 _ % %
Zz 12; 1 yuyzﬁ-l
Zv, 1 Z] 1<yL]

Under the unstructured correlation structure [Lin and Carroll (2001)], R;(«) is esti-

(3.32)

o =

mated as
K
DL
- 7 ’r’i/ri',
K
. . . yij—eap(a) (ti;) B+t ))
wherer; = (ra, ..., 74, ..., Tin, ) 18 the vector of residuals with r;; = =2 2 2

Veap(al, (ti)B+4(t:)))

3.3 Semi-parametric longitudinal models for binary

data with non-stationary correlation structures

Let y;;(t;;} be the j™ binary response for :*# individual at time point ¢;;. In the
binary case, the marginal properties of the model are different than that for count
data model. A typical choice for the marginal mean would be a logit function. Thus,

we write the mean and variance of the binary model as

_ _explay ()8 + ()]
E(Yijlxy) = py = T el‘p[;éj(tij)ﬁ+ ()] (3.33)
exp[x,’ij(t,-;)/} +(t5)]

(1+ expla;; (1) + v(t:;)])?

(3.34)

V(Yjlzy) = oy =

fori=1,...,K;5=1,...,n;, where K is the nummber of individuals, and n; is the

number of respouses for individual z.
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Hence for j < k,

cou(Yij, Yirlwij, zi) = 0" i (1 = pp),

and it then follows that correlation between the responses y;; and y;, has the formula

CO’f’f(}/ija}ﬁk]l'zj,iﬂik) = Cl(-z,s;z(mij,xik-m

k- i (d—pg) .
— P ’ /"ii(l_l"i.ljc) J < k (3 35)

i—k /J‘lk(lﬁﬂwk) : -
P’ pij(1—piz) J > k
with the range restriction
pij 1=y
1— i1 pigor

maxr | —

1— ij
— Hij-1 Hij-1

But, when the model follows a stationary correlation structure, the correlations in

(3.35) reduce to pl*=7.

3.3.2 Non-stationary MA(1) models in semi-parametric setup

Under the non-stationary MA(1) correlation structure, the binary responses follow a

probability relationship

P[}/il = 1’%‘1] = Hi

PD/zl = 1'dij;di.j71] = dZJ + pdi,j—l for J = 2, e, Ty,

where d;;’s are independently distributed with the following mean and variance [Su-

tradhar (2010)]

7-1

E(dy) = D> _(=p)"miju

u=0

Vidy) = ( i;;(_—lp)“m,jfu> (I_Ziié‘(_—lp)“ui,j_u)
2 umo(=p) ST (—p)
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where

o explzj;(ti;)B + v(ti;)]
T T eaplel ()8 + ()

and V(Yjlai;) = pi(1 — ).

Next, for j < k, the correlation between the responses y;; and vy, is given by

- U _ s ,
Corr(YrijaYik‘lijy-Lilc) = C‘i,j,k(ﬂfij,fikvﬂ) (3.36)
p(zi;l()(fl))llui‘_]f'lL) (1_ Z{;;é(70)7L}Ai,j77L
I Lo iz .
=0~ - fork—j7=1
— Vs (=) v/ pae (1=
0 fork—j7>1

However, under the stationary model, the correlations have the simple formula given

by

p for |k —jl=1
corr(Yig, Yae) =

0 otherwise

3.3.3 Non-stationary EQC models in semi-parametric setup

Under the non-stationary EQC model, the probability relationship for the responses

may be written as
P = o, xiy) = paj + p(yio —par) ,i=1,... K, j=1,...,n (3.37)
with

explr;(ti)B + v(tiy)]
14 explai; (tiy) 8 +v(tiy)]

Hij =

Also, in (3.37) it is assumed that y;o is an unobservable initial binary response, which

has the same mean as y;;. Thus, we can write the mean and variance of this model

93






3, say, 3 the SQL estimating equation for (to) at a particular time point ¢, can be

written as

XK:Z‘U Opuij [ Yig — Hij }:O
=1 ] 69’7 t()) )

— ,Uij(l — Hij
where
o e:z:p[x;j(tij)é + 7y(to)]
Yy eiEp{.’E;j(tij)B +(to)]
Because

i)/lij
= Mg 1- ij )y
0(to) = )

the above estimating equation reduces to

ny

Zzwu to) (yiy — msj) =0 (3.40)

=1 j=1
piy (251 to—t to—t
2 b 1 —17to—tij\2 .
Whel‘e '(U’L](to) = % pl( 0 J) = e_'L‘I)(_(—J) ) b is the band_
Dty X pi ()T T b V2mb 2\ b ,

width parameter and t;; is the time measure for the i** individual at time point j.
Unlike the count or linear model cases, the estimating equation (3.40) does not

provide a closed form formula for 7(ty). Thus, we use the Newton-Raphson method

to solve (3.40). For a known value of 3, say 3, we denote the estimating function in

the left-hand side of (3.40) as

K
Y(to), 3) = ZZ wij(to) (yis — tig): (3.41)

=1 j=1

and write the Newton-Raphson iterative equation as

Seen =3 = (1500 DI £ 8)) (3.42)

Y= (k)
to obtain, for example, the improved value at (k + 1) iteration using the value from

the k'" iteration. The iteration then continues until convergence. The derivative
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function f;(v(to),ﬁ) in (3.42) has the formula

K n;
fi(r(to). B) = —ZZ’wij(to>Hij(1—/lij>- (3.43)

i=1 j=1

3.4.1.1 PSSGQL(ns) estimation of 3

For the estimation of regression parameter 3, by considering

o eap(zi(t)B + (L, )

Hig = 1+ exp(ai;(ti)8 + (b, )] (3.44)

similar to that of (3.18) for count data, we can write the partially standardized
semi-parametric GQL(ns) (PSSGQL(ns)) estimating equation under the longitudinal

binary model setup as

K o
> 5e er” ) = 0 (3.45)
i=1
where fi; = [fti1, . .. flij, - - - flin,]' With [i;; defined as in (3.44) and the variance function
has the form
var(Y;) = £ (p) = AY? CI"(p) A%, (3.46)

where Ci("s)(f)) can be computed for a known correlation model discussed in Section

3.3.1. The elements in the gradient functions are calculated as follows.

Opy  explay(ty)B+4(ty.8) .y 9%ty B)
55~ Tt eap(r(t)B 1 Aty AP 00T o)
09 ijaf
= ﬁij(l—ﬂ'ij)[ilfij(tu’)Jr—V(t d)]- (3.47)

187¢]
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The quantity ?i(g[-;’i) in (3.47) can be calculated by using the concept of Taylor’s

series expansion and it then follows from (3.42) that

TOD o (0. 87 Ft).9)
= - ( [fé(“/(tij)vﬁ’)]‘l% (v(ty), 8) + % (), )7 [ (i), )] )

= POt B (%m(uj),@))

# U0 A (5 U000 ) Ustad A rte).)
where by (3.41),
Qf(“f(tzj)-, g) = 9 i iwlu(tu) (Y — fitn)
818 8ﬁ =1 u=1
T Z Z wlu(tij)ﬂlu(l - ﬂlu){l‘lu(tlu) + a:y((?(gu)J

=1 u=1

and by (3.43),
K

% ;(V(tij)vd) = % (_Zzwlu(tij)ﬂlu(l_ﬂM)>

=1 u=1
K n R
y ¥ a’)’ tlu) ~
= - Z Z wl‘u(tij)/l‘lu(l - /l'lu)[xlu(tlu) + 6(—3}(1 — 2/"lu)-
=1 u=1 ;
Analogous to the estimation procedure explained in the longitudinal count data

model, there is no closed-form expression for 4 in the current binary setup as well. In

fact, in the present binary case it is more complicated to obtain a form for %}jm
Nevertheless, one can use Newton-Raphson method to solve the estimating equation

(3.45). The iterative equation for the this method is given by

Bes) = By — ([F5((E, B), B)] 7 F (3t 8)7ﬂ))5;é(k> (3.48)
where
16019 = 3 L PO (- )



TS . i ns) y ay1— Bﬂz
fU('Y(th) :ﬁ - . - i )(p)} ! 06'

3.4.1.2 Estimation of correlation index parameter p

Similar to the calculations under the count data model, we equate the sample covari-

ance with its population counterpart as

T

K
Zz 1Z] Zycjyz,j 1 1 ZZ ) Vi1
) i=1 / v g .

Zf;(”i -1) Zfil(’ni -1

This yields the moment estimating equation for p under the non-stationary AR(1)

=1 j=2 i

correlation model as

Zz IZ] 2yl]yl_] 1 Zf(lnz
1
ZL IZ] 1 :]2 Zz IZ [JUJUI}Z

p= (3.49)

Where y:] e M Wlt}l ,l,\l,” — PIP( ’J( zJ)ﬁ+7( 1])) a;Ild &LJ — IIA/ZJ(]. _ ’l/)l]) Arld, the

Vi [T+eap(e]; (i) 34+3(ti))]

estimates [} and #(t;;) are computed by using the PSSGQL(ns) and SQL approaches
for g and v(t;;), respectively.
3.4.1.3 FSSGQL(ns) estimation of g

Similar to the FSSGQL(ns) estimating equation (3.25) for 5 in the count data case,

the estimating equation for the binary case is given by

where the elements f;; in fz; has the form given in (3.44) whereas in the count data

"'/

ST (g — 1) = 0, (3.50)

case fi;; = exp(x;;(ti;)F + Y(ti;. B)). Note that because of the difference in formulas

for ;, 4(.) in f;; can not be obtained explicitly for the binary data. This makes the
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e
computation for %5’)

as well as EZ("S) extremely complicated. However, the empirical
study to be discussed in Chapter 4 demonstrated that for the count data case, the
FSSGQL(ns) offers a slight improvement only over the estimation by the PSSGQL(ns)
approach. It is expected that this pattern might be true for the binary case as well.
For this reason, we have not pursued the exact computations for the components of

the estimating equation (3.50). Further investigations for any approximation may be

useful but is not attempted at this stage.
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Chapter 4

Empirical Study for
Semi-parametric Longitudinal

Count Data Models

We have provided a detailed finite sample based numerical study in Chapter 2 un-
der the Gaussian-type ARMA auto-correlation models involving a semi-parametric
regression function. It was found that the proposed FSSGQL approach produces |
uniformly more efficient regression estimates than the existing PSSGEE approaches.
In this chapter we examine the finite sample performances of the aforementioned
approaches for the discrete data case. More specifically, we choose the count data
models for the empirical study because of the fact that the semi-parametric numerical
analysis for such longitudinal count data is not adequately discussed in the literatufe.
The organization of the empirical study in this chapter is as follows. In Sections

4.1 and 4.2, we provide the simulation design and data generation. Section 4.3 ex-
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amines the performance of the naive GQL (NGQL) approach which shows the extent
of bias in the estimation of # when the non-parametric function is ignored in the
estimation. In Section 4.4, we compare the relative eficiency performance of the pro-
posed PSSGQL(ns) approach with the existing PSSGEE approaches. We also study

the performance of the FSSGQL(ns) approach in Section 4.5.

4.1 Simulation design

(a) Sample Size: K = 100; n; = 4 for i = 1,...,K; and ¢t;; = j forall ¢ =
1,....K,andj=1,...,n.
(b) Covariate Selection: Similar to the fully specified longitudinal model studied

in Sutradhar (2010), we consider p = 2 time dependent covariates with their values

as
5 fori=1,...,25and j=1,2
1 fori=1,...,25and j=3.,4
2 fori=26,...,75and j=1
zij (tiy) = <
0 fori=26,...,75 and j = 2,3
: fori =26,...,75 and 7 =4
;- fori=76,...,100 and j = 1,2,3,4
522 fori=1,...,50 and j = 1,2,3.4
ija(tis) = 0 for 7 = 51,...,100 and j = 1,2

=

fori=>51,...,100 and j = 3,4

Note that the covariate valucs are chosen to reflect the variable time dependence
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for the different groups of individuals. Thus, the choice is quite general. One may
choose other specific covariates depending on the situations.
(c) Covariate Effects: We choose three different sets of covariate effects.
(1) (B1,82)" = (0,0)
(2) (41, 52) =(0.5,0.5)
(3) (B, B2)" = (1.0,1.0)

(d) Nonparametric function: We consider a quadratic function for v(t;;) as

n; 1 n; 1
”y(tij) = 03 +02 (tij - ni + )+005 (tij - n ;_ )2; n;, = 4

which is similar as that of the linear model case considered in the simulation study in
Section 2.3. Note that this function is unknown in practice. Hence for the inferences

this is treated as a non-parametric function.

4.2 Data generation

We choose the semi-parametric AR(1) non-stationary correlation model to generate
the data. To be specific, for all © = 1,...,100 and j = 1,...4, y;;’s are generated as
follows.

(a) y;1 is generated using y;1 ~ Poi(p;; = exp(zl, (ta)F + v(t))) where x’(t;1)
and «(.) are given under the simulation design.

(b) For t;; = j = 2,...,4, y;’s are generated following the binomial thinning

operation pxy; ;1 Y o Phy(p) with di; ~ Poi(pi; — piij_1)-
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4.3 NGQL estimation: A biased approach

To obtain NGQL estimate of 3, we solve the NGQL estimating equation (3.17) which

was constructed by ignoring «(.) in the mean response function. The data are gen-

erated following Section 4.2 and the simulations are repeated for 1000 times. The

computational steps for NSGQL estimation is as follows.

Step 1. Starting with an initial value of 3 and an initial value of correlation index

parameter p, we solve (3.17) to obtain the NGQL estimate of 3.

Step 2. We estimate p from (3.22) using the estimate of /3 from Step 1.

Step 3. Repeat Steps 1 and 2 in order to obtain improved estimates for 4 and p.
The simulation results are provided in the Table 4.1. As expected, the estimates of

(3 are biased for various choice of the regression parameter J and p. For example, for

the true regression parameter 4 = (0.5,0.5), the estimated value of § when p = 0.8

is (1.0318, 1.2595)', which shows very large bias in estimating ;3 by using BNGQL.
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Table 4.1: Simulated means (SMs), simulated standard errors (SSEs) and mean

squared error (MSEs) of the naive estimates of regression parameters / under non-

stationary AR(1) correlation model for selected values of correlation index parameter

p with K=100; n=4; and 1000 sirmulations.

5

G

True 3 = (31,32)" p Qunantity 0
S =(0,0) 0.2 SM 0.4595 0.8190 0.2011
SSE 0.1063 0.1820 0.0624
MSE 0.2224 0.7039
0.5 SM 0.4747 0.7620 0.4532
SSE 0.1158 0.1796 0.0620
MSE  0.2387 0.6129
0.8 SM 0.4894 0.6903 0.7014
SSE 0.1018 0.1684 0.0448
MSE 0.2499 0.5086
8=1(0.5,0.5) 02 SM 1.0000 1.3233 0.1793
SSE 0.0826 0.1442 0.0622
MSE 0.2568 0.6986
0.5 SM 1.0072 1.2979 0.4090
SSE 0.0875 0.1486 0.0595
MSE 0.2649 0.6587
0.8 SM 1.0318 1.2595 0.6378
SSE 0.0884 0.1432 0.0482
MSE 0.2906 0.5973
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Table 4.1 Continued

True G o Qunantity ﬁl ﬁg 0
g=(1,1Y 02 SM 1.5076 1.8333 0.1667
SSE 0.0634 0.1188 0.0609
MSE 0.2617 0.7083
0.5 SM 1.5199 1.8217 0.3712
SSE 0.0685 0.1181 0.0597
MSE 0.2750 0.6891
0.8 SM 1.5312 1.8150 0.5795
SSE 0.0708 0.1221 0.0534
MSE 0.2872 0.6791
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4.4 A finite sample efficiency comparison between

PSSGQL(ns) and PSSGEE estimations

Because the NGQL estimates were found to be highly biased, we now proceed to
examine the performance of the proposed PSSGQL(ns) and other existing PSSGEE
approaches, which are developed by considering that the regression function contains
a non-parametric function as well. For the simulation studies, we generate correlated
count data as described in Section 4.2 along with three different values of correlation
index parameter. To consider both low and high correlations, we have chosen p =
0.2,0.5 and 0.8. The simulations are repeated for 1000 times. For the estimation of
# including p and the non-parametric function (.), we follow the following steps.
Step 1. For an initial value of 3, we solve the ‘working’ independence assumption
based SQL estimating equation (3.15) to estimate the non-parametric function ~(-).
Step 2. Starting with an initial value of #, 4(-) from Step 1, and an initial value
of correlation index parameter p, we use (3.21) to obtain the proposed PSSGQL(ns)
estimate of g.
Step 3. Next, we estimate p from (3.22) using the estimates of ~v(-) and § from
Steps 1 and 2, respectively.
Step 4. We repeat Steps 1, 2 and 3 in order to obtain improved estimates for the
non-parametric function (-}, 4 and p.

The computational steps for PSSGEE approaches are the same as above, ex-
cept that in these approaches, the 'working’ correlation parameter o is computed

depending on the chosen correlation structure. For convenience, we denote PSS-

GEE(AR(1)), PSSGEE(MA(1)), PSSGEE(EQC), PSSGEE(I), PSSGEE(UNS) to
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represent the PSSGEE approaches under ‘working’ correlation structures AR(1),

MA(1), EQC, independence and unstructured respectively. We consider the mean

squared error (MSE) for this comparison study. The simulation results for three dif-

ferent sets of regression parameters namely, (4, 72) = [(0,0).(1,1),(0.5,0.5)"] are

provided in the Tables 4.2, 4.3 and 4.4 respectively, for the proposed PSSGQL(ns)

and PSSGQL(s), as well as for the existing PSGEE approaches.

The results fromm Table 4.2 show that for a selected set of true values of 8 =
(61,52)" = (0,0), the MSE under the proposed PSSGQL(us) are uniformly smaller
than the PSSGEE approaches for p = 0.2,0.5 or 0.8. This pattern also holds when
(B1,42)" = (1,1) as displayed in Table 4.3. However. when g = (8;. 02) = (0.5,0.5)',
some of the PSSGEE methods appear to work as good as PSSGQL(ns) for low cor-
relation case. Turning back to Table 4.2, when PSSGQL(ns) regression estimates
are compared to that of PSSGQL(s), the MSEs under PSSGQL(ns) are uniformly
smaller than those under PSSGQL(s), as expected. The difference between the MSEs
is significant when correlations are large. However, when PSSGQL(s) and PSSGEE
approaches are compared, PSSGQL(s) appear to perform almost the same as the
PSSGEE(AR(1)), PSSGEE(MA(1)) and PSSGEE(UNS), but PSSGEE(EQC) and
PSSGEE(T) perform the worst. To illustrate these relative performances, we point
out, for example, the MSEs of all approaches when correlation is large. More specifi-
cally it follows from Table 4.2 with 4 = (0,0) and p = 0.8, the MSE for 3, estimate
under PSSGQL(ns) is 0.0891 followed by 0.1620 for PSSGEE(UNS), and the MSE for
the worse case PSSGEE(I) being 0.2029. It appears from these results that there can
be a huge efficiencey loss in the main regression parameter estimation when PSSGEE(T)

or other PSSGEE methods are used, especially when data are highly correlated.
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When estimating 3, we have to estimate the non-parametric function v(.) involved
in the semi-parametric regression function (3.1). As discussed in Section 3.2.1, ~(.)
is estimated by using the SQL approach for known &. Since J is estimated by using
various PSSGQL and PSSGEE methods, v(.) is also estimated under each of these
methods. The resulting estimates of §(.) under these different methods along with
the true +(.) function are displayed in Figures 4.1, 4.2 and 4.3 for large correlation
cases. In the estimation procedure for estimating non-parametric function, we have
used the bandwidth b = W [Pagan and Ullah (1999)], for example. It can be
seen from the figures that the non-parametric function is estimated well for different
regression parameter values. This is because all the estimated functions appear to
be close to the true curve for the selected non-parametric function. The results are

similar for the other cases.
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Figure 4.1: Simulated means of estimates of () for PSSGQL and PSSGEE methods,
and true values of v(¢) under non-stationary AR(1) correlation models for count data

with a correlation index parameter p = 0.8 and regression parameters (3, 2) =

(0,0)".
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Figure 4.2: Simulated means of estimates of v(¢) for PSSGQL and PSSGEE methods,
and true values of v(¢) under non-stationary AR(1) correlation models for count data
with a correlation index parameter p = 0.8 and regression parameters (51, %) =

(1,1Y.
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Figure 4.3: Simulated means of estimates of v(¢) for PSSGQL and PSSGEE methods,

and true values of (¢) under non-stationary AR(1) correlation models for count data
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with a correlation index parameter p = 0.8 and regression parameters (3, 52) =

(0.5,0.5)".
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Table 4.2: Simulated means (SMs), simulated standard errors (SSEs) and mean
squared error (MSEs) of the PSSGQL and PSSGEE estimates of regression parame-

ters 81 = 0.0 and 3, = 0.0, under non-stationary AR(1) correlation model for selected

values of correlation index parameter p with K=100; n=4; and 1000 simulations.

P Method Quantity & 3y & P /M po P3
02  PSSGQL(ns) SM  -0.0158 -0.0102 0.1776
SSE 0.1533 0.3221 0.0597
MSE 0.0238 0.1039
PSSGQL(s) SM -0.0162 -0.0108 0.1769 0.0256 -0.0014
SSE 0.1537 0.3264 0.0594 0.0756 0.1023

MSE  0.0239 0.1067
PSSGEE (AR(1)) SM  -0.0161 -0.0105 0.1769
SSE  0.1534 0.3262 0.0594
MSE  0.0238 0.1065
PSSGEE (MA(1))  SM  -0.0163 -0.0106 0.1769
SSE  0.1533 0.3262 0.0594
MSE  0.0238 0.1065
PSSGEE (EQC)  SM  -0.0163 -0.0109
SSE  0.1546 0.3269
MSE  0.0242 0.1070
PSSGEE (1) SM  -0.0187 -0.0148
SSE  0.1576 0.3285
MSE  0.0252 0.1081
PSSGEE (UNS)  SM  -0.0170 -0.0108
SSE  0.1536 0.3265
MSE  0.0239 0.1067
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Table 4.2 Continued

p Method Quantity 51 B & p p1 P2 ps
0.5 PSSGQL(ns) SM 0.0062 0.0234 0.4494
SSE 0.1671 0.3228 0.0582
MSE 0.0280 0.1047
PSSGQL(s) SM 0.0060 0.0215 0.4473 0.1970 0.0837
SSE 0.1753 0.3488 0.0580 0.0781 0.0989
MSE 0.0308 0.1221
PSSGEE (AR(1)) SM 0.0059 0.0215 0.4473
SSE 0.1751 0.3491 0.0580
MSE 0.0307 0.1223
PSSGEE (MA(1)) SM 0.0058 0.0213 0.4472
SSE 0.1740 0.3497 0.0579
MSE 0.0303 0.1223
PSSGEE (EQC) SM 0.0065 0.0218 0.3033
SSE 0.1823 0.3543 0.0604
MSE 0.0333 0.1260
PSSGEE (1) SM 0.0018 0.0158
SSE 0.1919 0.3622
MSE 0.0368 0.1314
PSSGEE (UNS) SM 0.0057 0.0214
SSE 0.1754  0.3478
MSE 0.0308 0.1214
0.8 PSSGQL(ns) SM 0.0071 0.0125 0.7177
SSE 0.1549 0.2982 0.0431
MSE 0.0240 0.0891
PSSGQL(s) SM 0.0106 0.0157 0.7139 0.5076 0.3617
SSE 0.1858 0.4079 0.0430 0.0687 0.0940
MSE 0.0346 0.1666
PSSGEE (AR(1)) SM 0.0107 0.0155 0.7140
SSE 0.1852 0.4076 0.0430
MSE 0.0344 0.1664
PSSGEE (MA(1)) SM 0.0109 0.0153 0.7137
SSE 0.1820 0.4095 0.0430
MSE 0.0332 0.1679
PSSGEE (EQC) SM 0.0107 0.0159 0.5864
SSE 0.1982 0.4181 0.0543
MSE 0.0394 0.1751
PSSGEE (I) SM 0.0164 0.0167
SSE 0.2261 0.4501
MSE 0.0512 0.2029
PSSGEE (UNS) SM 0.0103 0.0158
SSE 0.1859 0.4022
MSE 0.0347 0.1620
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Table 4.3: Simulated means (SMs), simulated standard errors (SSEs) and mean

squared error (MSEs) of the PSSGQL and PSSGEE estimates of regression parame-

ters 1 = 1.0 and g, = 1.0, under non-stationary AR(1) correlation model for selected

values of correlation index parameter p with K=100; n=4; and 1000 simulations.

//;1

O

P Method Quantity & P / P2 D3
0.2  PSSGQL (us) SM 1.0033 1.0048 0.1470
SSE  0.1300 0.2409 0.0598
MSE  0.0169 0.0581
PSSGQL(s) SM 1.0033 1.0052 0.1465 0.0152 -0.0015

SSE  0.1307 0.2424 0.0596 0.0730 0.1020
MSE  0.0171 0.0588

PSSGEE (AR(1)) SM  1.0032 1.0049 0.1465
SSE  0.1306 0.2427 0.0596
MSE  0.0171 0.0589

PSSGEE (MA(1))  SM  1.0032 1.0050 0.1465
SSE  0.1305 0.2427 0.0596
MSE  0.0170 0.0589

PSSGEE (EQC) SM 1.0031 1.0051 0.0780
SSE 0.1314 0.2431 0.0474
MSE  0.0173 0.0591

PSSGEE (I) SM 0.9982 0.9978

SSE  0.1507 0.2643
MSE  0.0227 0.0699

PSSGEE (UNS) SM 0.9726 0.9839
SSE 0.3571 0.5081
MSE  0.1283 0.2584
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Table 4.3 Continued

P Method Quantity 31 o)) & p 1 po p3
0.5 PSSGQL (ns) SM 1.0020 1.0032 0.3690
SSE 0.1400 0.2541 0.0576
MSE 0.0196 0.0646
PSSGQL(s) SM 1.0013 1.0004 0.3679 0.1277 0.0422
SSE 0.1447 0.2708 0.0573 0.0747 0.1020
MSE 0.0209 0.0733
PSSGEE (AR(1)) SM 1.0009 1.0000 0.3679
SSE 0.1450 0.2711 0.0573
MSE 0.0210 0.0735
PSSGEE (MA(1)) SM 1.0010 1.0001 0.3679
SSE 0.1445 0.2717 0.0573
MSE 0.0209 0.0738
PSSGEE (EQC) SM 1.0012 1.0007 0.2334
SSE 0.1475 0.2715 0.0558
MSE 0.0218 0.0737
PSSGEE (I) SM 1.0064 1.0010
SSE 0.1658 0.2861
MSE 0.0275 0.0819
PSSGEE (UNS) SM 0.9837 0.9820
SSE 0.4717 0.6122
MSE 0.2228 0.3751
0.8 PSSGQLns) SM 0.9997 1.0160 0.5966
SSE 0.1479 0.2658 0.0501
MSE 0.0219 0.0709
PSSGQL(s) SM 1.0022 1.0188 0.5945 0.3409 0.2115
SSE 0.1668 0.3083 0.0499 0.0766 0.0996
MSE 0.0278 0.0954
PSSGEE (AR(1)) SM 1.0024 1.0192 0.5945
SSE 0.1672 0.3084 0.0499
MSE 0.0280 0.0955
PSSGEE (MA(1)) SM 1.0023 1.0189 0.5944
SSE 0.1640 0.3091 0.0499
MSE 0.0269 0.0959
PSSGEE (EQC) SM 1.0023 1.0192 0.4460
SSE 0.1746 0.3124 0.0590
MSE 0.0305 0.0980
PSSGEE (I) SM 0.9874 0.9982
SSE 0.1852 0.3127
MSE 0.0345 0.0978
PSSGEE (UNS) SM 0.9742 1.0179
SSE 0.5872  0.5472
MSE 0.3455 0.2997
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Table 4.4: Simulated means (SMs), simulated standard errors (SSEs) and mean

squared error (MSEs) of the PSSGQL and PSSGEE estimates of regression parame-

ters 81 = 0.5 and 3, = 0.5, under non-stationary AR(1) correlation model for selected

values of correlation index parameter p with K=100; n=4; and 1000 simulations.

/91

3y

2 Method Quantity & Vi / o D3
0.2 PSSGQL(ns) SM 0.5110 0.5109 0.1586
SSE  0.1381 0.2755 0.0601
MSE  0.0192 0.0760
PSSGQL(s) SM 0.5106 0.5120 0.1581 0.0234 0.0024

SSE 0.1381 0.2756 0.0599 0.0743 0.1013
MSE  0.0192 0.0761

PSSGEE (AR(1)) SM 0.5106 0.5120 0.1581
SSE 0.1380 0.2757 0.0599
MSE  0.0192 0.0762

PSSGEE (MA(1)) SM 0.5108 0.5121 0.1581
SSE  0.1380 0.2757 0.0599
MSE  0.0192 0.0762

PSSGEE (EQC) SM 0.5105 0.5119 0.0872
SSE  0.1385 0.2755 0.0494
MSE  0.0193 0.0760

PSSGEE (1) SM 0.5153 0.5119

SSE 0.1511 0.2859
MSE  0.0231 0.0819

PSSGEE (UNS) SM 0.5109 0.5115
SSE 0.1386 0.2764
MSE  0.0193 0.0765
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Table 4.4 Continued

n Method Quantity il o) a p /1 D2 P3
0.5 PSSGQL(ns) SM 0.4950 0.5028 0.40588
SSE 0.1551 0.2969 0.0565
MSE 0.0241 0.0882
PSSGQL(s) SM 0.4963 0.5056 0.4042 0.1366 0.0628
SSE 0.1607  0.3208 0.0561 0.0774 0.1006
MSE 0.0258 0.1029
PSSGEE (AR(1))} SM 0.4958 0.5051 0.4042
SSE 0.1607 0.3207 0.0561
MSE 0.0258 0.1029
PSSGEE (MA(1)) SM 0.4960 0.5053 0.4041
SSE 0.1593 0.3211 0.0561
MSE 0.0254 0.1031
PSSGEE (EQC) SM 0.4958 0.5056 0.2647
SSE 0.1654 0.3228 0.0568
MSE 0.0274 0.1042
PSSGEE (1) SM 0.4959  0.5048
SSE 0.1748 0.3218
MSE 0.0306 0.1036
PSSGEE (UNS) SM 0.4961 0.5055
SSE 0.1611  0.3194
MSE 0.0260 0.1020
0.8 PSSGQL(ns) SM 0.5076  0.5079 0.6529
SSE 0.1485 0.2753 0.0462
MSE 0.0221 0.0759
PSSGQL(s) SM 0.5098 0.5085 0.6503 0.4182 0.2776
SSE 0.1717 0.3456 0.0461 0.0714 0.0947
MSE 0.0296 0.1195
PSSGEE (AR(1)) SM 0.5095 0.5083 0.6503
SSE 0.1715 0.3456 0.0461
MSE 0.0295 0.1195
PSSGEE (MA(1)) SM 0.5103 0.5084 0.6502
SSE 0.1671 0.3464 0.0460
MSE 0.0280 0.1201
PSSGEE (EQC) SM 0.5093 0.5092 0.5108
SSE 0.1827 0.3523 0.0555
MSE 0.0335 0.1242
PSSGEE (1) SM 0.5109 0.5156
SSE 0.1904 0.3602
MSE 0.0364 0.1300
PSSGEE (UNS) SM 0.5117 0.5119
SSE 0.1792  0.3538
MSE 0.0322  0.1253
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4.5 Performance of the FSSGQL(ns) estimation

Recall from Chapter 3 that in addition to the PSSGQL estimation, we also proposed
the FSSGQL approach (Section 3.2.2.4) when estimation effect of v(.) is accommo-
dated in the longitudinal weight matrix to construct the estimating equation. In this
section, we examine whether the FSSGQL(ns) approach offers any improverment over
the PSSGQL approach for longitudinal count data. The data generation and estima-
tion steps are similar to that in Section 4.4. More specifically, the estimation steps
are:

Step 1. For an initial value of 3, we solve the ‘working’ independence assumption
based SQL estimating equation (3.15) to estimate the non-parametric function v(-).
Step 2. Starting with an initial value of /3, ¥(-) from Step 1, and an initial value
of correlation index parameter p, we use (3.28) to obtain the proposed FSSGQL(ns)
estimate of J.

Step 3. Next, we estimate p from (3.22) using the estimates of v(-) and G from
Steps 1 and 2, respectively.

Step 4. We repeat Steps 1, 2 and 3 in order to obtain improved estimates for the
non-parametric function y(-), 4 and p.

The simulation results for the FSSGQL(ns) approach are given in Table 4.5. We
have also displayed the non-parametric function estimates (4(.)) using BFSSGQL(HS)
in Figures 4.4 and 4.5 for 3 = (0,0)" and § = (0.5,0.5)" respectively. The figures
show that the non-parametric function is estimated well. As far as the estimation
of the main regression parameter § is concerned, FSSGQL(ns) appears to perform

almost the same, offering in general slight reduction in the MSEs as compared to
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the PSSGQL(ns) approach. For example, when g = (0,0)" and p = 0.5, the MSEs
for ﬁl and f, under the FSSGQL approach are 0.0222 and 0.0783 whereas under the

PSSGQL(ns) approach they are 0.0280 and 0.1047 respectively.

Table 4.5: Simulated means (SMs), simulated standard errors (SSEs) and mean
squared error (MSEs) of the FSSGQL(ns) estimates of regression parameter 3 un-
der non-stationary AR(1) correlation model for selected values of correlation index

parameter p with K=100; n=4; and 1000 simulations.

True 3 = (B1,4) p Quantity  fi s p
3 = (0,0) 05 SM  0.0049 0.0178 0.4477
SSE 0.1489 0.2792 0.0579
MSE  0.0222 0.0783
0.8 SM 0.0102 0.0107 0.7145
SSE 0.1572 0.3258 0.0430
MSE 0.0248 0.1063

4 =1(0.5,0.5) 0.5 oM 0.4457 0.3986 0.4049
SSE 0.1399 0.2739 0.0560
MSE  0.0225 0.0853
0.8 SM 0.4534 0.3899 0.6510
SSE 0.1484 0.2939 0.0460
MSE  0.0242 0.0985
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Figure 4.4: Simulated means of estimates of v(¢) for FSSGQL(ns) method and true
values of ~(t) under non-stationary AR(1) correlation models for count data with

regression parameters (J;, 52)" = (0, 0)".
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Figure 4.5: Simulated means of estimates of v(t) for FSSGQL(ns) method and true
values of ¥(t) under non-stationary AR(1) correlation models for count data with

regression parameters (41, 32) = (0.5,0.5)".
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Chapter 5

Concluding Remarks

When the regression function is fully specified, there exists GEE and GQL approaches
in the longitudinal setup for efficient estimation of the regression parameters. As op-
posed to the GEE approach, the GQL approach is developed for a class of Gaussian-
type auto-correlation models. It is known that the GEE approach may produce less
efficient regression estimates as compared to the independence assumption based QL
or MM approaches, whereas the GQL approach produces more efficient estimates. In
this thesis, we have studied the semi-parametric regression models where the regres-
sion function also contains a non-parametric function in the longitudinal setup for
both continuous and discrete data. It is found that similar to the completely longi-
tudinal setup, the SGQL (semi-parametric GQL) approach produces uniformly more
cfficient regression estimates than the SGEE (semi-paramctric GEE) approaches, in-
cluding the independence assumption based SGEE(I) approach. This is demonstrated
in the linear model setup in Chapter 2, and for longitudinal count data in Chapter 4.

Unlike some of the existing SGEE approaches, in this thesis we have estimated
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the non-parametric function based on the independence assuinption, whereas the re-
gression effects are estimated by exploiting the non-stationary correlation structure
of the repeated discrete responses. Furthermore, as opposed to the existing SGEE
approaches, we have accommodated the estimation ceffect of the non-parametric func-
tion while estimating the regression parameters. This resulted in the FSSGQL (fully
standardized SGQL) and PSSGQL (partially standardized SGQL) approaches. The
performances of all these approaches are discussed in details in Chapter 2 for contin-
uous correlated data, and in Chapters 3 and 4 for discrete correlated data. We found
that in the linear model setup, the FSSGQL approach yielded uniformly more efficient
regression estimates than the PSSGEE approaches. In the discrete data setup, the
PSSGQL approach produced more efficient estimates than the PSSGEE approaches.
Also. the FSSGQL approach provided slightly more efficient regression estimates than
the PSSGQL approach.

While this thesis has provided useful inferences for generalized linear longitudi-
nal semi-parametric models, future research should investigate an approximation to
ease the computation aspects in the semi-parametric longitudinal binary data setup.
Further research should investigate the modelling of correlations when responses are
collected based on unequi-spaced time points. Also, in the longitudinal setup, it may
happen that a portion of the data is missing at random. The semi-parametric in-
ference for such missing data would be of interest to researchers, presenting more

complicated inferences.
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