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Abstract 

Longitudinal data analysis is challenging because of the difficulties in modelling the 

correlations among the repeated responses, especially when the associated covariates 

are time dependent. Recent studies have examined correlations for both linear and 

discrete unbalanced longitudinal data, which are modelled following a Gaussian-type 

auto-regressive moving average (ARMA) class of auto-correlations. However, these 

studies were confined to a regression setup where the regression function is completely 

specified . In t his thesis, we consider a semi-parametric regression setup in which the 

regression function involves a specified as well as an unspecified funct ion over t ime. 

Under the ARMA type correlation structure, we provide a semi-parametric gener

alized quasi-likelihood (SGQL) approach for the estimation of the main regression 

parameters. The proposed inference approach is compared with some existing gener

alized estimating equation (GEE) approaches mainly through simulation studies. The 

linear longitudinal semi-parametric model, for its foundational nature, is discussed in 

detail. Theoretical details on semi-parametric estimation for longitudinal count and 

binary data are also provided. 
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Chapter 1 

Background of the Problem 

Longit udinal studies are common in many scientific research areas such as clinical tri

als, economics, public health , agriculture, and so on. In these studies, the responses 

along wit h the covariates are collected from individuals over a period of time. In 

many cases, the time points are equally spaced. For example, (1) the Ohio asthma 

data [Zeger , Liang and Albert (1988)] collect ed from 537 children every year over a 

period of four years; (2) the health care ut ilization data [Sut radhar (2003, page 391)] 

collected by the General Hospital of the city of St. J ohn 's , Newfoundland, Canada, 

which contains t he number of yearly visits to a physician by individuals over four 

consecutive years; and (3) the survey of labour and income dynamics (SLID) data on 

unemployment status among others collected by Stat istics Canada [Sutradhar (2011 )] 

every year over a period of six or more years. There are other situations where a re

spondent reports a response whenever an event occurs, where time points may not 

be equi-spaced. Because t he repeat ed data are likely to be correlated , it is impor

tant to t ake such correlations into account for efficient inferences of the regression 
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effects involved in the model. However, the modelling of the correlations especially 

when the responses are discrete is difficult even if the responses are collected over 

equi-spaced time points. In a fixed regression setup, Sut radhar (2010) suggested a 

Gaussian-type ARMA class of auto-correlation models appropriate for both linear 

and discrete longitudinal data . These regression models however , may be inadequate 

in situations where a specified (or fixed) regression function may not be sufficient 

to interpret the responses completely. In such cases, one may extend these models 

by adding an unspecified non-parametric function in t ime with the fixed regression 

function . This leads to a semi-parametric regression model setup where longitu

dinal responses st ill follow a suitable correlation structure. There exists generalized 

estimating equation (GEE) based approaches to deal with the inferences for the afore

mentioned semi-parametric models in the longitudinal setup, where the modelling of 

longitudinal correlations are not done. In this thesis, however, we concentrate on 

the semi-parametric inferences for repeated data which follow a ARMA-type class of 

auto-correlations. In order to give a background for this semi-parametric modelling 

and inference problem in the longitudinal setup , we first provide the notations and 

an overview for the semi-parametric problem in independence setup in Sections 1.1 

and 1.2. A brief overview of the same semi-parametric problem in longitudinal setup 

is provided in Sections 1.3 and 1.4. 

1.1 Generalized linear models ( G LMs) 

Consider a GLM regression set up [ Ielder and Wedderburn (1972)] in which an 

exponent ial family based independent responses { y-i} , i = 1, . . . , K are observed . 
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Let Xi = (xi1 , . . . , Xip) ' be a multidimensional covariate vector corresponding to Yi for 

the ith individual. Suppose t hat the mean response f.-Li(/3) = E(Y;) is infl uenced by a 

specified fixed regression function (linear predictor) x~/3 with (3 = (/31, . . . , /3p )'· The 

density of the exponential family based response Yi can be written as 

(1.1) 

where a(.) and b(.) are known functional forms such t hat b(.) depends only on Yi, and 

t he canonical parameter ei is defined with a suitable link function h(.) as 

(1.2) 

The parameter ei is related to t he mean response through 

(1.3) 

where a'(.) is the first derivative of a(. ) with respect to ei · Also, it follows that the 

variance of Yi is 

(1.4) 

where a" (.) is the second derivative of a(.) with respect to Bi · 

1.1.1 Quasi-likelihood estimation for {3 

In the above exponential setup, the regression parameter (3 is involved in f.-Li ((3 ) = a' ( Bi) 

as well as in aii ((3) = a" ( ei) . Since aii ((3) is a function of the mean response, it is 

sufficient to estimate (3 involved in f.-Li(/3) . When the density function is not known, and 

the mean and variance are given, Wedderburn (1974) proposed the quasi-likelihood 
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(QL) estimation approach to estimate the regression parameter. In this approach , 

one solves the QL estimating equation 

t aa~~i) [a"(Bi)r1(Yi- a'(Bi)) = t 81~~) [crii(,8)]-1(Yi - f-li(,8)) = 0 (1.5) 
i=l i=l 

[see also McCullagh (1983), McCullagh and Neider (1989)]. The estimate ~QL ob-

tained by solving (1.5) is consistent and highly efficient. This is because under the 

exponential family setup, the QL estimate turns out to be the likelihood estimate, 

which is known to be optimal (highly efficient) . [Sutradhar (2010a)]. 

1.2 Semi-parametric GLMs 

In semi-parametric models, the mean response f-Li(,8) depends not only on a fixed 

regression function , but also on an unspecified (non-paramet ric) smooth function , 

namely r(zi) , where Zi is an auxiliary covariate which influences the response Yi· 

T hen f-Li (,8) becomes a function of an unknown parameter vector ,8 and an unknown 

smooth function r(zi), which we abbreviate as 

(1.6) 

In this set up, t he canonical parameter ei defined in (1.2) has the form 

(1.7) 

It is clear that the main regression parameter ,8 can no longer be estimated unbiasedly 

by ignoring the estimation of r(zi )· The semi-parametric GLMs are more flexible than 

t he parametric GLMs especially when the regression function in fixed covariates is 

insufficient to understand the mean response. 
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Even though the estimation of both fixed regression parameter vector (3 and the 

non-parametric function 1(. ) are of interest, many early works [ Staniswalis (1989), 

and Muller (1988)] concentrated on the estimation of the non-parametric mean func-

tion, which is the same as substituting (3 = 0 in (1. 7). To deal with this type of non-

parametric regression estimation there exists many kernel methods and its variants, 

such as the N adaraya-Watson kernel regression estimation [N adaraya ( 1964), Wat-

son (1964), Bierens (1987) , Andrews (1995)], local linear and polynomial regression 

[Cleveland (1979) , Fan (1992, 1993) , Stone (1980, 1982)], recursive kernel estimation 

[see e.g., Ahmad and Lin (1976) , Greblicki and Krzyzak (1980)], spline smoothing 

[Whittaker (1923), Eubank (1988), Wahba (1990)], and nearest neighbour estimation 

[Royall (1966), Stone(1977)] . Among these techniques, the simpler Nadaraya-Watson 

kernel estimator or the local constant estimator for 1 ( z) at a given covariate level 

z = z0 involved in the linear model, 

has the form 

"\"'K , . K* (zo-z;) 
'(z ) = D i=lYt b 
I 0 "\"'K K*( zo- z;) 

D t= l b 

where K*(.) is a suitable kernel density function and b is known as the bandwidth. 

The selection of an appropriate bandwidth parameter b is always a problem in non-

parametric regression [ Silverman(1986)]. In practice, we try to use a possible value 

of b for which the bias and variance of the estimator will be minimum. Many data-

based methods such as cross validation [see Stone (1974), P icard and Cook (1984) , 

Ansley, Kohn , and Tharm (1991)], generalized cross validation [Craven and Wahba 
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(1979)] were discussed in t he lit erature for choosing an appropriate b. Altman (1990) 

suggested that t hese commonly used bandwidth selection techniques do not perform 

well when the errors are correlated. Hence we excluded these techniques and followed 

Pagan and Ullah (1999) who proposed an optimum value for bandwidth, which min

imizes the approximate mean integrated squared error. T he authors recommended 

b ex n - 115 , and suggested that this value of bandwidth is the only value of b for which 

the bias and variance are of the same order of magnitude. T hus, as a practical choice, 

we will consider b = K - 115 . 

In the independence set up, the estimation of both (3 and 1'(.) are also extensively 

studied in the literature [e.g., Severini and Staniswalis (1994), Carota and Parmigiani 

(2002)] . Under the exponent ial family, for example, Severini and Staniswalis (1994) 

suggested a semi-parametric QL (SQL) approach for the estimation of (3 and f'( .). 

T he authors illustrated t heir estimation methodology using examples with linear , 

gamma and binary dat a. Note that we do not deal with (continuous) gamma data 

in the thesis, instead, we concentrate on modelling and inferences for linear and 

discrete data such as count and binary data in semi-parametric set up for independent 

and longit udinal responses. For convenience, we now provide semi-parametric QL 

estimation in details for linear, count and binary data in t he independence set up. 

1.2.1 Linear model 

Consider the model 

(1.8) 
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where Ei's are independent and identically distributed with mean 0 and variance O"; . 

identity funct ion. Also, var(Yi ) = O"ii = O"; , i = 1, . . . , K. 

1.2.1.1 Estimation of non-parametric function 1(z0) 

For model (1.8) , the quasi-likelihood function Q(f..li, Yi ) can be written as 

Then, the semi-parametric QL estimating equation for 1(z0) is 

(1.9) 

( ) 
Pi(ZQ ~Zj ) 

where wi zo = 
L~1Pi(¥l ' 

Pi(.) being a kernel density function . For example, 

one may choose Pi( zo -;; z; ) = vkb exp( -;1 
( zo-;; z; ) 2 ) with a suitable bandwidth b. Note 

tha t when wi(z0 ) = 1, this SQL equation fur ther reduces to the well-known quasi-

likelihood estimating equation [Wedderburn (1974)]. 

Since 811; (/3,zo ) = 8[x;!3+-r(zo)] = 1 the SQL estimating equation (1.9) has the formula 
8 -y(zo ) 8-y(zo ) ' 

(1. 10) 

K K 

=} L wi(zo) (Yi - xJ3) - L wi(zo)r(zo) = 0 
i=l i =l 

yielding an estimate for the non-parametric function 1 ( z) evaluated at z = z0 as 

(1.11) 
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where L~1 wi(zo) = 1. Now replacing zo in (1.11) with Zi, we write 

where 

K 

i'(zi) = L 'Wj(zi)(yj- xj(J ) = Yi- x~(J 
j=l 

K K 

Yi = L wj(zi)Yj and xi = L wj (zi )xj 
j=l j = l 

(1. 12) 

(1.13) 

Note that the estimator i' ( zi) in ( 1.12) is constructed for a given value of t he regression 

parameter vector (3 . But , because in practice (3 is unknown and in fact it is the 

main parameter of interest, we provide the estimating equation for (J in the following 

section. However, these formulas for i' (zi ) and ~ are already discussed in literat ure 

and for example, we refer to Severini and Staniswalis (1994), Speckman (1988) and 

Hastie and Tibshirani (1990) . 

1.2.1.2 Estimation of regression effects (J 

For linear models the QL estimator of (3 has a closed form expression. To derive the 

estimator, we first write f-.li ((J,)' (zi )) = x~(J + i'(zi) and compute 

Of-.li ((3 , i'( zi )) 
8(3 

(x - x )' ' ' ) 

(1. 14) 

where xi is given in (1.13). Similar to (1.5) we now write the QL estimating equation 

for (3 as 
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and by substituting i(zi ) = Yi - xj3 we obtain 

K K 

L (Xi- Xi) ' [yi - x~f3- Yi + x~f3] = L (xi - Xi)' [(Yi- Yi)- (xi - xi)'f3] = 0, 
i=l i =l 

yielding 

K K 

L (xi- xi)' (yi - Yi ) = L (xi - xi)'(xi - xi)f3. 
i = l i= l 

It then follows that {3 has the closed form expression given by 

K K 

(3 = [L (xi - Xi)'(xi- Xi)t1 L (Xi - xi)'(yi- Yi ), ( 1. 15) 
i=l i=l 

where Yi and Xi are given in equation (1.13). The above equation (1.15) is the same 

as in Severini and Staniswalis (1994) [eqn.(10), page. 503] with D = I , the identity 

matrix. 

1.2.2 Count data model 

There are many situations in practice where one becomes interested in analyzing count 

and binary data to understand the effect of covariates on the responses. Similar t o 

normally distributed responses considered in the previous section , these responses also 

follow the exponential family. However , in t he present semi-parametric setup we are 

interested in examining the regression effect when the mean response is assumed to 

consist of the fixed regression function as well as a non-parametric smooth function. 

For count responses, the Poisson density function f (Yi) can be expressed as a special 

form of exponential family density (1. 1) given by 

(1.16) 

where ei = log 1-li and a(ei) = 1-li· 
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Thus we write t he Poisson mean and variance as 

where 

l-li ((3 , 'Y(zi) ) = exp(x~(3 + 'Y(zi)) 

which is different than (1.8) under the linear case. 

1.2.2.1 Estimation of non-parametric function 'Y(z0) 

The SQL estimating equation for 'Y (z0) in the count data has t he form 

K L Wi (zo) OJ-li ((3, 'Y( zo)) [Yi - 1-li ((3, 'Y( zo)) ] = 0 
i=l O"f(zo) P,i((3, 'Y(z0 ) ) 

(1.17) 

where IJ-i ((3, "f (z0)) = exp(x~(3 + l'(zo)) . 

Because BJ.L;({3,,(zo) ) = Bexp(X: fJ+r(zo)) = exp(x' (3 + "f(Z )) (1.17) reduces to 
Br (zo) Br(zo) t 0 ' 

K 

L wi(zo)[Yi- exp(x~(3 + 'Y(zo))] = 0 ( 1.18) 
i=l 

and hence 

The estimator for 'Y(z) computed at z = z0 under t he Poisson model is t hen given by 

A ( ) l ( 2::::1 wi(zo)Yi ) 'Y zo = og K . 
L i=l wi(z0 ) exp(x~(3 ) 

T hus for z = zi t he estimator of and 'Y(z) has the form 

( 
L K ( ) ) w · z · · 

A ( · ) - l j=l 1 ' YJ 'Y z, - og K . 
Lj=l wj (zi ) exp(xj f:l) 

(1.19) 
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1.2.2.2 Estimation of regression effects {3 

Unlike the linear models, the estimator of {3 has no explicit form under the Pois-

son count data model, and one has to estimate {3 by solving a non-linear equation 

iteratively. For this purpose, similar to (1.5), the QL estimating equation for {3 is 

where 

8f.Li ({3, i( zi) ) 
8{3 

with i (zi) as in (1.19). The derivative a~~i) is computed as 

(1.20) 

(1.21) 

2:~~1 wj(zi)Yj 2:f=1 wj(zi ) exp(xj{J)xj 

[2:~~1 wj(zi) exp(xj {J )F 

2:;:1 Wj(zi ) exp(xj{J)xj 

2:;:1 Wj(zi ) exp(xj f3 ) 

Now by using (1.22) in (1.21) we write 

8f.Li ({3, i(zi)) 
8{3 

"'K w ·(z·)exp(x' {J) x' 
·( (.{ ' ( ·)) [ J - 0 j=1 J t j jl f.Lt fJ ' ry z, x, K . 2:j=1 Wj ( zi ) exp( xj(J) 

Consequent ly, the estimat ing equation (1.20) leads to 

11 
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where P,i = exp(x~J) + i (zi)). Now by defining 

(1.23) 

we rewrite the estimating equation as 

J( 

L (xi - xi)' (Yi - p,i) = o. (1.24) 
i=l 

The estimating equation (1.24) can be solved iterat ively using the w 11-known Newton-

Raphson method. The iterative equation has the form 

J( J( 

~(r+l) = ~(r) - [8~' L (Xi- xi)' (Yi- P,i)t 1 [L (Xi- xi) (Yi - P,i)] 
i=l i=l 

J( J( 

~(r) + [L (Xi - xi)' p,i (xi- Xi )t 1 [L (Xi - Xi) (Yi - P,i)] (1.25) 
i=l i=l 

and is used to compute t he final estimate ,6 until convergence. 

Severini and Staniswalis (1994, Example 2, page. 503) provided an estimate for 

1 (zi) under gamma distribut ion, which is similar, but different than (1.19) . Hence 

for the estimation of ,6, we have provided the exact iterative equation in (1.25) under 

the Poisson case. 

1.2.3 Binary data model 

In the semi-parametric GLM set up for binary responses, the binary distribution is 

which is a special case of the exponential family density (1.1) with 

ei = log --( 
/Li ) 

1 - f.Li 
and a(ei) = - log(1 - f.Li)· 
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In the part ially specified regression case we consider ei = xJ3 + !'(zi) and it then 

follows that 

yielding 

and 

1.2.3.1 Estimation of non-parametric function l'(z0 ) 

In t he binary case, the SQL estimating equation for l'(z) at z = z0 is given by 

~ , ( )a!Li(/3 ,/'(zo)) [ Yi - Mi(/3,/'(zo)) J _ 0 (126) 
'8 Wi zo 8')'(zo) /Li(/3,')' (zo)) (1 - !Li(/3, ')'(zo)) ) - ' · 

h (/3 ( )) exp(x;/3+-y(zo)) B 
w ere 1-li , ')' zo = l+exp(x;l3+r(zo)) . ecause, 

8/Li(/3, !' (zo) ) 
8')'(zo) 

exp(x; f3 + !'(zo)) 1 

1 + exp(x;/3 + !'(z0 )) 1 + exp(x;/3 + f' (zo)) 

= !-li(/3 , l'(zo))(1 -Mi(/3, !'(zo) )), 

t he estimating equation (1.26) reduces to 

K 

L wi(zo) [Yi- !-li(/3, l'(zo))] = 0, 
i= l 

which is similar to (1.18). The difference lies in the formula for fLi(/3, l'(z0 )) . 

1.2.3.2 Estimation of regression effects f3 

For the estimation of /3, the QL estimat ing equation has the formula 
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where 

Of-li({J , 1(zi)) 
8{3 

a [ exp(x~{J + 1(zi)) ] 
8{3 1 + exp(x~{J + 1(zi)) 

[ 
exp (x~{J + 1(zi)) ] [x' + 81(zi)] 

[ 1 +exp(x~f3+1(zi))]2 t 8{3 

!-li(f3,1(zi)) (1- !-li(f3,1(zi) )) [x: + a~~i)l 

The estimating equation in ( 1. 28) then reduces to 

(1.29) 

Note that the estimating equation for ')' (.) in (1.27), and the estimating equation for 

{3 in (1.29) are the same as those in equations (6) and (8) respectively in Severini and 

Staniswalis (1994) , and that these equations must be solved iteratively. However , 

there is a closed form expression for ')'(.) (1.19) in t he Poisson case, whereas the 

estimating equation (1.27) for the binary case has to be solved iteratively. One needs 

to solve the estimating equation for {3 iteratively both in binary and in Poisson cases. 

1.3 Generalized linear longitudinal models ( G LLMs) 

We have discussed the GLMs in independent set up in section 1.1 and its generaliza-

t ion to the independent semi-parametric set up in details in section 1.2. The purpose 

of this research is to study the model and inferences in the semi-parametric longitu-

dinal data. For convenience, in this section , we now review the existing models and 

associated inferences in longitudinal set up. 

In notation, let Yi = (Yil, . . . , Yit, . .. , YiT )' represent the response vector, where 

Yit is the response recorded at time t for t he i th individual. Suppose that Xit = 
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(xitl, . .. , Xitv, . .. , Xitp)' be the p- dimensional covariate vector corresponding to the 

scalar Yit, and (3 be the p- dimensional regression effects of Xit on Yit for all i = 

1, .. . , K , and all t = 1, ... , T. Since the same outcome is measured consecutively 

over time for each individual, the repeated responses of an individual are likely to 

be correlated. In this set up we assume t hat the response Yi marginally follows ( 1.1) 

but their joint distribut ion is difficult to write, especially for discrete responses. The 

mean and variance of the response are denoted by /-lit (f3) = a'(Bit ) = E[Yit] and 

var- [Yit] = a"(Bit) = CJiu(f3) . Similar to (1.5), the QL estimating equation for the 

unknown regression parameter (3 can be written as 

f t fJa~~it ) [a"(eit)t1(Yit- a'(Bit)) 
i = l t= l 

K T 

= L L Of-l~tJf3) [C5itt(f3)t1 (Yit - flit(f3) ) = 0 
i= l t= l 

(1.30) 

The QL estimating equation (1.30) is the same as the independence assumption based 

QL estimating equation and the solution of this estimating equation provides a con-

sistent, but inefficient , estimate for {3 . This is because the observations from the same 

individual are correlated and (1.30) is written ignoring such correlations. As a rem-

edy, one must take the correlations of longitudinal responses into account to achieve 

the desired efficiency of the regression estimates. 

The relevant works in the field of longitudinal data analysis originat ed from Liang 

and Zeger (1986). The authors introduce an extension of GLM for independent data 

to the longitudinal setup and propose the generalized estimating equations (GEEs) 

to acquire consistent and efficient regression estimates involved in the GLLM model. 

The backbone of their methodology is based on a 'working' correlation matrix. Liang 
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and Zeger defined the GEE estimating equation as 

~ aM~([3)~( )- 1( ( !~) ) 0 6 B{3 i a Yi - J.Li tJ = , 
i=l 

(1.31) 

where Mi ([3) = (Mil ([3), .. . , Mit ([3), . . . , Mir(f3) )' is the mean vector of Yi and Vi (a) = 

A~12 ~(a)Ai12 is the covariance matrix with Ai = diag[o-in(f3 ), .. . . O"ijj ({3) , . . . o-irr(f3) ], 

Ri(a) is a 'working' correlation matrix, and a is the 'working' correlation parame-

ter. Subsequent research in the longitudinal data analysis literature shows that, in 

several situations, these 'working' correlation based regression parameter est imates 

are inconsistent [Crowder (1995)]. Crowder showed that this consistency breakdown 

occurs due to the problem in estimating t he so-called 'working' correlation parameter 

a. In cases where 'working' correlations are estimable, Sutradhar and Das (1999) 

showed t hat even if the estimator of a converges to a value, the GEE approach 

gives consistent estimators of the regression parameters, but these estimators may be 

less efficient than the regression estimators obtained based on the independence es-

t imating equations approach. Sutradhar (2003) proposed a generalization of t he QL 

estimation approach, where {3 is obtained by solving the generalized quasi-likelihood 

(GQL) estimating equation given by 

~ 8M~ ({3)L: - 1( )( ([3)) 0 6 8 fJ i P Yi - Mi = , 
i=l 

(1.32) 

where Mi ([3) = (Mil ([3), ... , Mit ([3) , . .. , MiT ([3) )' is the mean vector of Yi and L:i (p) = 

Ai12Ci(P )A~12 is the covariance matrix with Ai = diag[o-ill ([3) , . . . , O"ijj([3), . . . o-irr(f3 )], 

C; (p) is a general class of auto-correlations, and p is a correlation index parameter. 

The estimator /JcQL obtained by solving (1.32) is consistent and very efficient for {3 . 
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1.4 Semi-parametric GLLMs 

In the above mentioned longitudinal studies, regression functions involved in the lon

git udinal model are fully specified . For example, in linear longitudinal set up Jl·it (f3) 

is expressed as f..Lit ({3) = xit{J . This leads to parametric modelling of marginal lon

gitudinal models [ Gilmour, Anderson, and Rae (1985), Liang and Zegger (1986) , 

Zeger and Liang (1986), F itzmaurice, Laird and Rotnitzky (1993)] . However, there 

are situations where the regression functions involved in the model are part ially spec

ified , which leads to semi-parametric models in the longit udinal setup. In the linear 

longitudinal setup, the semi-parametric models have been studied by Severini and 

Wong (1992), Zeger and Diggle (1994), Moyeed and Diggle (1994), You and Chen 

(2007), Fan, Haung and Li (2007), Fan and Wu (2008), and Li (2011). Some of these 

studies used t he 'working' correlations based GEE approach for the estimation of 

regression parameters, and the non-parametric func tion was estimated separately by 

using independence assumption [see Zeger and Diggle (1994)] . Other works such as 

Fan, Haung and Li (2007) assumed normality for the responses and used likelihood 

approach for the estimation. But the covariance matrix for the multivariate distri

bution was constructed based on the 'working' correlation matrix. T here also exist 

some generalizations where heteroscedasticity is assumed among the responses at a 

given time. 

The semi-parametric analysis has also been studied for (marginal) exponential 

family data by using the 'working' correlations based GEE approach. To be specific, 

we refer to Severini and Staniswalis (1994) , Lin and Carroll (2001, 2001a) for this GEE 

based analysis. These studies estimate regression parameters and non-parametric 
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functions separately and GEE approaches has been used in both cases. 

1.5 Objective of the thesis 

The main objective of this thesis is to study the semi-parametric regression models 

when the repeated responses follow a non-stationary correlation model t hat belongs 

to a class of Gaussian-type ARMA correlation structures. T he plan of the thesis is 

as follows. 

In Chapter 2, we focus on the semi-parametric linear longitudinal model where 

a stationary correlation structure is used for inference. In the linear model setup, 

t his type of stationary correlation structure is quite appropriate because the corre

lations under linear models do not depend on any covariates irrespective of whether 

the covariates are t ime dependent. Even though the semi-parametric analysis in the 

linear model setup for longitudinal data is a direct extension of the independence 

based semi-parametric analysis discussed in Section 1.2, a close look at the estima

tion problem (to be discussed in Chapter 2) reveals that the existing studies in the 

semi-parametric longitudinal setup did not incorporate the estimation effects of non

parametric function 1{) while estimating the main regression parameter /3. Also, 

the existing studies have extended the 'working' correlations based GEE approach 

explained in (1.31) to t he semi-parametric setup, which may not provide efficient 

regression estimates. To overcome these two problems, we revisit the inferences for 

the semi-parametric linear longitudinal models and provide appropriate estimating 

equations for efficient inferences by using (1) ARMA type class of auto-correlation 

structures, and (2) taking t he the estimation effect of non-parametric function in 
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estimating /3. We carry out a simulation study to examine the fini te sample based 

efficiencies of the proposed semi-parametric GQL (SGQL) as well as various semi

parametric GEE (SGEE) approaches. The asymptotic distribution of the proposed 

estimator is also discussed. 

In Chapter 3 , we extend the semi-parametric linear longit udinal model discussed 

in chapter 2, to the discrete data setup. In particular, we consider semi-parametric 

models for longitudinal count and binary data. Note that some of the existing studies 

such as Lin and Carroll (2001) and Severini and Staniswalis (1994) deal with such 

models, but they mainly use the 'working' correlations based GEE approach . These 

studies do not appear to accommodate the estimation effect of the non-parametric 

function 1{) while estimating /3. As far as the correlation structure is concerned, in 

our approach, we use the non-stationary correlation structures suggested by Sutradhar 

(2010) for both count and binary data. However, we do not discuss any diagnost ic 

procedure for the identification of t he non-stationary correlation structure but this 

can be done following the technique given in Sutradhar (2010, Section 4). Rather , 

we assume that t he correlation structure involving the time dependent covariates are 

known and develop a semi-parametric GQL (SGQL) approach for the main regression 

parameters by taking the estimation effect of the non-parametric function as well as 

the longitudinal correlations into account . Analytical details for the SGQL approach 

for both count and binary data are also provided. For the comparison with the existing 

studies, the proposed SGQL estimating equation is written in two ways. First, a 

partially standardized SGQL (PSSGQL) approach is described where the covariance 

matrix involved in the estimating equation for /3 is free from the estimation effect of 

1{) . Second, a fully standardized SGQL (FSSGQL) approach is discussed in which 
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t he estimation effect of r(.) is accommodated in the covariance matrix. 

To examine the finite sample performance of the proposed SGQL approaches, we 

carry out several simulation studies in Chapter 4 for the longitudinal count data. 

First we study the effect of ignoring the non-parametric function in estimating /3 using 

a naive GQL (N GQL) approach. Because the performance of the leading GEE based 

approaches did not adequately study the count data in the semi-parametric setup , 

we have made a detailed comparison of the proposed PSSGQL approach with the 

existing partially standardized semi-parametric GEE (PSSGEE) approaches in order 

to achieve effiecient inference methods. We also provide the simulation results for the 

proposed FSSGQL approach. 

The thesis concludes in Chapter 5. 
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Chapter 2 

Semi-parametric Linear 

Longitudinal Models 

In t his chapter, we revisit the semi-parametric analysis for linear longit udinal data 

collected over equi-spaced and unbalanced time points. However, we use general 

notations such that t he regression function can be written for the responses collected 

over unequi-spaced time points, which accommodate the equi-spaced t irne data as an 

important special case. As far as t he correlation structure for the repeated responses 

is concerned, we concent rate on equi-spaced time data only. Thus, as opposed to the 

notation Yi t used in Section 1.3 t o represent t he response at timet (t = 1, . . . , T) from 

t he i 1h (i = 1, . .. , K ) individual, we now use a general notation, namely, Yij (tij ) to 

denote the lh (j = 1, . .. , ni) response of the ith individual at time t ij . Here n i denotes 

t he total number of responses for the ith individual collected over n i t ime points. 

Further, for equi-spaced t ime data, the time points would satisfy the relationship 

t ij - t i ,j - 1 = ti,J+l - ti,j, for example. 
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Suppose that Yi = (yil( t il) , . .. , Yii ( t ij), . .. , Yin; ( t inJ )' denotes t he ni x 1 vector 

of repeated responses for the ith (i = 1, . .. , K) individual. Also suppose that these 

repeated responses are influenced by a smooth non-parametric function 1 (tij ), and 

a fixed and known p x ni covariate matrix x; = ( Xil (til ), .. . , Xij ( tij) , . . . , X in; (tin;.)), 

Xij( tij ) being the p - dimensional covariate vector at time point t ij · This type of re

peated continuous data measured at time point t ij is usually modelled as 

or equivalently 

x:j(tij)f3 + 1(tij ) + Eij(tij ) 

JLij ( tij ) + Eij ( t ij ), (2.1) 

(2.2) 

where l (ti) =(!(til),·· · ,/(tinJ)' and Ei = (Eil (til) , · · · ,Eij(tij), ·· · ,Ein;(tinJ)' . We 

assume, E( c.i ) = 0 and var( c.i ) = var(Y. ) = L:i. 

Note that in (2.2) , 1(ti) is not a subject specific non-parametric function as its con

struction requires only knowing 1(t ) at any t imet [Zeger and Diggle (1994); Sneddon 

and Sutradhar (2004)] . To be specific, 1(ti) is used here to represent ni components, 

each with the same non-parametric function but evaluated at ni different time points 

for the ith individual. 

To develop an efficient estimation procedure it is important to consider the correla

tion structure of the repeated responses. Let P it;i - tik l denote the pairwise correlations 

between the two responses Yij(tij, t ik) for all j of= k ;j,k = 1, . .. ,ni· The ni x n i 

correlation matrix for Yi = (Yil (til) , . . . , Yij ( t ij), . . . , Yin; (tin;))' is denoted by 
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For the purpose of constructing a suitable estimating equation for /3, it is necessary to 

• • l. • l. 
obtain an estimate Ci(P) to compute l:i(P) = AlCi(p)Al . However, in an experiment 

where an individual can report a response at any time that is, when t i j -::1 thj, i -::1 

h , i , h = 1, . . . , K , it is possible that in some situations the Ci(P) matrices may have 

unbalanced dimensions. In other situations, it may happen that any two matrix 

Ci(P) and Ch(P) with ni = nh may not be the same. In such cases, it is impossible 

to estimate Ci(P) for ith individual borrowing information from other (remaining) 

individuals . For this reason, many authors have writt en the estimating equations for 

f3 and 1{) for general case, that is, for unequi-spaced and unequal t ime for individuals, 

but the estimation for the correlation matrices was given for (1) ni = n for i = 

1, ... , K , and (2) under the assumption that Ci(P) = C(p), a constant and common 

matrix. For example, we refer to Lin and Carroll (2001 , p. 1048) where Ci(P) was 

estimated by 

(2.3) 

Note that there are few difficult ies wit h this correlation matrix (2.3) construction . 

This is because: (1) as the unbalanced ni x ni matrices (r i'<) cannot be added from 

all individuals, C(p) computation is meaningful only when ni = n, say. However , 

it is not understood how one may compute Ci(P) needed for the construction of ti, 

when dimensions are not same (2) when a situation is considered where ti/s may be 

unequi-spaced , there is no reason to justify the use of ni = n for all i. 
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In the thesis, we concentrate on equi-spaced dat a and study the inferences for 

the regression effects in the semi-parametric setup by properly accommodating the 

longitudinal correlations for both continuous and discrete data. This type of data 

were used in Sutradhar (2010), but the author dealt only with a fixed (specified) 

regression function as opposed to a semi-parametric rergession funct ion. As far as 

the correlation structure is concerned, following Sutradhar (2011), we assume that 

the repeat ed data follow a class of auto-correlation structures that accommodates 

Gaussian type all possible auto-regressive moving average of order r, s (ARMA(r, s)) 

correlation models with AR(1), MA(1), AR(2), MA(2), EQC (equi-correlations), as 

some special cases. Note that the AR(1), MA(1), and EQC structures for repeated 

data were also discussed in Liang and Zeger (1986), and subsequently these structures 

were used by Severini and Staniswallis (1994) in the semi-parametric longit udinal 

setup. Further note that in this approach it is not necessary t hat n i = n (balanced 

data) for all i = 1, ... K. 

Specifically, we consider the correlation matrix C(p) for the error vector Ei in (2.2) 

as 

1 P 1 P2 Pni - 1 

P1 1 P1 Pni - 2 
Ci(P) for all i = 1, 2, . .. , K ; 

Pn; - l Pni - 2 1 
1 1 

L:i (p) var(Yi) = A{Ci(p)AJ, (2.4) 

where for R = 1, ... , n i - 1, Pc denotes the lag R correlation between Eij ( t i j) and 

Ei,j+C (ti,j+C) - We assume, however , that the variances are stationary and hence write 
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Ai = CJ
2 In; where CJ

2 is an unknown scalar constant, and In; is the ni x ni identity 

matrix . The following examples demonst rate the correlation models that produce 

Ci(P) in (2.4) in the linear model setup: 

(i) AR(l) model: 

(2.5) 

(ii) MA(l ) model: 

(2.6) 

aiJ(tiJ) i!::f N(O, CJ~) \I i = 1, 2, ... , K ; j = 1, . . . , ni , 

and 

(iii) EQC model : 

(2.7) 

The lag f correlations (pe) between Eij(tij ) and Ei,j+e(ti,j+e) for (2.4) , (2.5) and (2.6) 

are 

Pe = ql, f = 1, . .. , ni- 1; 

{ 

e 
I+e2

' 

Pe = O, 

for f = 1 
and 

for f = 2, 3, . .. , ni - 1, 

Pe = ( = -/'+2 

2 , f = 1, ... , ni - 1 respectively, and they satisfy the auto-correlation 
a aa 

structure ci (p) in (2.4). 

Note that even though the Ci(P) matrix in (2.4) is writ t en corresponding t o ni 

t ime points of the 'ith individual, the exact structures for two individuals i and k, 
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with ni = nk = n* , can be different when ni time points do not overlap with nk time 

points. In such a case, for n = maxi n i , i = 1, . .. , K , a n x n correlation matrix is 

firs t computed and then Ci (p) for the ith individual is computed by deleting all rows 

and columns of the n x n matrix except those rows and columns corresponding to n i 

time points. Similarly, Ck(P) is constructed . 

As far as the estimation of the regression effects is concerned, a 'working' corre

lations approach has been widely used both in fully specified and semi-parametric 

longitudinal setups, where one does not care about modelling the true correlation 

structure of t he repeated responses. This approach is completely different than our 

parametric modelling of the t rue correlations, as it uses the general auto-correlation 

structure Ci(p). Thus, Ci(P) is not a working correlation matrix. Now, if C (p) is 

treated as a working correlation matrix, and if the t rue structure belongs to the 

ARMA(p,q) class of auto-correlations , then logically such a 'working' selection would 

be efficient as it becomes a parametric model. The 'working' correlations approach , 

however , is used for any unknown true correlation structures with the hope that it 

does not loose much efficiency even if the 'working' structure is misspecified . But, it 

has been demonstrated by Sutradhar and Das (1999) [see also Sut radhar (2011)] in 

the complete longitudinal setup, for example, that even if the true correlations be

long to an auto-correlations class, the use of a 'working' correlation structure such as 

the equi-correlations structure may produce inefficient regression estimates compared 

to the simpler 'independence' assumption based estimates. Moreover, in the 'work

ing' correlation approach there is no guidance of preferring one correlation structure 

over the other, which frequently leads one to use either 'working' equi correlations 

or independence or unstructured correlations [Lin and Carroll ( 2001), Severini and 
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Staniswallis (1994)]. T his type of individual specified 'working' correlation structures, 

however, may lead to inefficient regression estimates as com pared to the Ci (p) based 

parametric modelling when the true correlations belong to the aforementioned general 

auto-correlations class. For this reason, as opposed t o the 'working' correlations based 

approaches, we use an auto-correlation structure (2.4) based semi-parametric gener-

alized quasi-likelihood (SGQL) approach t hat always produces the same, or more 

efficient , regression estimates than the 'working' correlations based semi-parametric 

approaches. 

We first review semi-parametric GEE (SGEE) approaches. It is well known that 

when Yi is influenced by fixed covariates Xi only, the generalized least square (GLS) 

estimator given by 

K K 

~cLs = [L x;f:; 1(p)Xit1 L x;f:; 1(P)Yi (2.8) 
i=l i=l 

is the best linear unbiased estimate (BLUE) [ Rao (1973, Section 4a.2) , Amemiya 

(1985, Section 6.1.3)] for the regression parameter vector (J within a class of lin-

ear unbiased estimators. However, when the response vector Yi is influenced by 

both fixed covariates X i and an unspecified non-parametric vector function 1(ti) = 

('y(til), · · · . "f (tinJ)' as in (2.2) , this GLS estimator (2.8) is biased and hence inconsis-

tent for the true regression parameter (3. Existing studies [see Severini and Staniswalis 

(1994) , Lin and Carroll (2001)] estimate the non-parametric function consistently by 

using the kernel-based approaches, but the specified regression function is estimated 

by solving a working' correlations based SGEE approach. A close look at the deriva-

tion of the SGEE reveals that the gradient funct ion used in constructing the esti-

mating equation is correctly computed by taking the estimation effect of 1(t) into 
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account, but the covariance matrix used in the estimating equation is constructed by 

ignoring the estimation effect of l'(t) and this makes the SGEE partially st andardized . 

As opposed to this part ially standardized SGEE (P SSGEE) approach, we propose a 

fully standardized semi-parametric generalized quasi-likelihood (FSSGQL) approach 

where both t he gradient function and the covariance matrix are constructed by tak

ing the estimation effect for !'(t ) into account. Thus, FSSGQL approach provides 

more efficient regression estimates. The efficiency gain by the FSSGQL approach 

compared to t he P SSGEE approaches is further demonstrated in Section 2.3 through 

an empirical study. 

2.1 Existing semi-parametric estimation methods 

2.1.1 PSSGEE approach 

It follows from t he model (2.1)-(2.2) that the mean response is given by 

E [Yij(tij) ] = /.Lij (tij) = x~j(tij )f3 + !' (tij), (2.9) 

where {3 is t he fixed regression effects, and l'(t ij ) is a non-parametric smooth function 

of t ime. Authors such as Zeger and Diggle (1994) consider 

cov(Yi) = IJ
2 Ri(a), 

where ~(a) is a 'working' correlation matrix used for the unknown true correlation 

matrix and a is the 'working' correlation parameter. The commonly used ~(a) are: 

(a) t he unstructured form Ri(a) = (Ti,jk(a)) with Ti,jk (a) = aft;1- t;kf [Zeger and Diggle 

(1994) , Lin and Carroll (2001)]; (b) equi correlat ions form ~(a) = a ln;, and (c) inde

pendence form Ri (a) = In; [Lin and Carroll (2001) , Severini and Staniswalis (1994)]. 
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Thus, for the semi-parametric linear longitudinal model, one needs to estimate the 

fixed regression effects (3, the non-parametric smooth function l'(tij), the variance 

parameter CT2 , and the 'working' correlation matrix ~(a) . All the e parameters and 

function have to be solved iteratively until convergence. 

Even though {3 and l'(t) together constitute the regression function , their joint 

estimation may be difficult . T hus, in the existing literature they are est imated 

marginally by using separate estimating equations [Zeger and Diggle (1994) , Sev-

erini and Staniswallis (1994), and Lin and Carroll (2001)]. This makes it simpler, 

for example, to use the'working' independence approach for consistent estimation of 

-y (t) [Zeger and Diggle (1994, Section 3.1)], and a suitable correlation tructure based 

approach for efficient est imation of the main regression parameter (3 . Following this 

strategy, in the next sect ion, we briefly explain how one can construct the 'working' 

independence assumption based estimating equation for l' (t). 

2 .1.1.1 Estimation of non-param etric function 

QL approach 

on-parametric kernel regression is widely used for the estimation of !'(t) . A 

'working' independence assumption based unbiased estimating funct ion is weighted by 

using suitable kernel weights, and th resulting semi-parametric estimating equation 

is then solved for l'(t) . The SQL estimating equation for !'(to) is 

(2.10) 

Pij( 'o~'i1 ) 
where 'Wij(to) = , , Pij() is a suitable kernel function and b is the 

L2~ 1 L27! t Pi j( o ~ ii)' . 

bandwidth parameter. When 'Wij(t0 ) = 1 the SQL equation (2.10) reduces to the 
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standard QL estimating equation [Wedderburn (1974), McCullagh (1983)] . Aut hors 

such as Sneddon and Sutradhar(2004), Zeger and Diggle (1994) and You and Chen 

(2007) have used such an estimat ing equation in the linear semi-parametric model 

setup. Because /-Lij(tij) = x~j(tij)f3+ "t (tij) by (2.9), the solution of the SQL estimating 

equation (2.10), in terms of known (3, is 

where 
K % K % 

Yij = L L Whu(tij)Yhu and x~j(tij) = L L Whu(tij)x;lU(thu) 
h= 1 u = 1 h= 1 u= 1 

with "L;~~1 "L;:::,1 whu(tij ) = 1. This formula will be exploited in the next sect ion for 

the estimation of (3 . 

A GEE approach 

Severini and Staniswalis (1994) [ see also Wang, Carroll and Lin (2005) ] solved 

certain 'working' correlations based semi-parametric GEE for the estimation of "t(t) . 

Lin and Carroll (2001) considered a 'working' correlation based GEE estimating 

equation to estimate "!( t) . They considered an arbitrary linear function in t ime, that 

is, "f(tij) = ao + a 1 (t ,
1b-t), where & = (ao, ai)' is a 2 x 1 vector of unknown param-

eters and b denotes the bandwidth parameter. T he regression function, f..Li(X i, t) = 

ing two kernel estimation equat ions (symmetric and asymmetric) for the estimation 

of "t(t) 

~ af..L~ (xi,t) [ ( )] _1 () ( ( ) L..t a a VaT }j Wib t }i - fLi X i, t ) = 0 
t = 1 

K 

L Tl(t) ~i (Xi, t) [vaT(Y;)] - 1 Wib(t) (Y; - f..Li(Xi, t)) = 0, 
i = 1 
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where ~(t) is the nix 2 design matrix with lh row {1, (T;rt) } , 6.i = In;, and Wib(t ) is 

the kernel weight matrix. For simplicity we write Wi(t ) for Wib(t ). The kernel weight 

matrix wi ( t) is t hen defined as 

(2. 12) 

in (2.10) . Furthermore, using a ' working' correlation Ri(a) the authors considered 
1 1 

var(J:'i) =A{ Ri(a)A{ with Ai = diag[CTill(til), ... , O"in;n;(tinJ] . 

2 .1.1.2 Estimation of regression effects 

x~j(tij)/3 + i(t ij ) + t;j(tij) 

x~j ( tij) f3 + Yij ( tij) - x' ij ( tij) f3 + E:j ( tij) (2.13) 

where fij (tij) is a new error component. This Ei)tij) is different from tij(tij ) because 

some errors are induced by replacing 1 (tij ) with its estimate i(tij ) in the model (2.2). 

The marginal properties of the new error component are discussed in Section 2.2. 

Now for all elements of the ith individual we use (2.13) and following t he notation 

in (2.2) , we write 

(2.14) 

31 



where 
K K 

Yi = L Wh(til, . . . ) tinJYh , and x i = L Wh(ti1, . . . ) tinJX h (2.15) 
h=1 h=1 

with Wh(ti1, .. . , tinJ, a ni x nh kernel weights mRtrix defined in a similRr way as 

(2.12). 

Severini and Staniswalis( (1994), eqns. (17) and (18)) and You and Chen (2007, 

Section 4.1) [see also Lin and Carroll (2001)], use the PSSGEE estimation approach , 

where the estimating equation has the form 

K !:J I 

"" UfLi [ l-1 L.__; B/3 var(Yi) (Yi - Mi) = 0, 
·i=1 

which for the linear model (2.14) leads to 

K 

SPsscLs = [L (Xi - Xi)' [var(Yi)] - 1 (Xi - Xi)r1 

i=1 
K 

x L (X i - Xi)' [var(Yi)r1 (Yi- Yi), (2.16) 
i=1 

1 1 

with var(Yi) = L:i = A{ ~(a)AJ , ~(a) being a 'working' correlation matrix. When 

(2. 16) is examined in light of (2 .14), PSSGEE estimator in (2 .16) is constructed using 

an incorrect weight matrix var(Y;) , whereas the correct covariance matrix should have 

been vaT(Yi - "fi). 

2.1.1.3 Estimation of the 'working' correlation parameter a 

The 'working' correlation parameter a has a definition problem [Crowder (1995)]. 

Suppose that a 'working' correlation estimate & under an assumed 'working' corre-

lation model is computed. This estimate usually does not converge to a as the data 

used for its computation may follow a different model. Thus, & converges to a 0 , 
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say, which is different than a [Sut radhar and Das (1999)] . As far as the formula 

for a is concerned, it is developed based on the method of moments following the 

assumed 'working' correlation structure. For example, if a user decides to use an 

equi-correlation matrix as the 'working' correlation structure for all K individuals, 

t hen the estimate would satisfy the estimating equation 

K n; 

L L (ijijYiu - a) = 0, (2.17) 
i=l jf-u 

[Liang and Zeger (1986), Sutradhar (2011, Section 6.4.3)] where 

with 
K ~ K 

; 2 = 2: I: (Yii- x~j~ - i' (tij))
2 /2: n i . 

i=l j=l i=l 

Similarly, for the estimation of a 'working' unstructured correlation matrix, one 

uses the moment estimating formula 

(2.18) 

[Lin and Carroll (2001)] where Ti = ( Ti 1 , T"i2 , ... , TinJ' is the vector of residuals with 

Tij = Yi j - x~j~ - i' ( t ij). 

2 .1. 2 Partially standardized semi-parametric heteroscedastic 

GEE (PSSHGEE) approach 

Fan and Wu (2008) [see also Fan , Huang and Li (2007)] examined the semi-parametric 

varying-coefficient partially linear regression models and proposed a difference-based 

method to estimate the mean function. The authors computed the covariance function 
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of the longit udinal model using a quasi-maximum likelihood approach for the purpose 

of prediction and found that prediction is not sensitive to the correlation struct ure. 

However , these covariance estimates were not used for the estimation of the main 

parameters {3 and 'Y(t). Fan et al (2007, Section 2. 1) , and Fan and Wu (2008, eqn . 

(1)) estimated the non-parametric function by using a similar SQL estimate for 'Y(t ) 

and by using time dependent variances denoted by CJ
2 (t ) at a given t ime t . For the 

estimation of the regression effects {3, they have used different 'working' correlation 

structures in the PSSGEE based estimate given by (2.16). Fan and Wu (2008, eqn . 

(6)) used the ordinary least squares (OLS) technique which is the same as using 

(2.16) with correlation matrix Ri(o) = In;, ignoring correlations. For a given t, the 

het eroscedasticity, i.e., t he time dependent variances were computed by 

2 2:~1 2:j~ 1 TTJ(t )wiJ(t ) 
CJ (t ) = K n ' 

L i = l "2:1~ 1 wij(t ) 
(2.19) 

where Ti1(t ) = Yi1(t) -x~1 (t )~ - i(t), and wi1(t ) are defined as in (2. 10). Thus, for the 

estimation of {3 by (2.16), Fan and Wu (2008) use L:i(o) = A= diag[CJ2 (ti1) , . . . , CJ2 (tinJ] . 

We refer this independence assumption-based PSSHGEE approach as PSSHGEE(I) 

and the corresponding estimator is denoted by f3PSSHGEE(J ) · 

The estimation of 1'( t ) and CJ
2 ( t) is similar in both Fan et al (2007) and Fan and 

Wu (2008). However , for (3 estimation by (2 .16), Fan et al (2007) assumed that the 

error vector ci in (2 .2) follow a multivariate normal distribution with a 'working' 

correlation matrix ~(o), and estimated the 'working' correlation parameter CY. by 

maximizing the normal likelihood [Fan et al (2007, eqns. (2)-(3))]. This estimator 

may be referred to as the PSSHGEE est imator. We include this approach in our 

empirical efficiency comparison in Section 2.3, but compute the lag correlations by 
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the moment approach, which does not require any normality assumption. 

2.2 Proposed FSSGQL approach 

2.2.1 E stimation of non-parametric function 

We consider t he independence assumpt ion based QL estimating equation to estimate 

the non-parametric function ry( .) . The SQL estimating equation for ry(t0) is 

K n ; 

"""' """' , .. (t ) a /-Lij (Yij - /-Lij) = 0 8_ f;;{ wtJ o 8ry (to) CJ2 
(2.20) 

Using the Nadaraya-Watson kernel regression met hod [ adaraya (1964) and Wat-

. ( to-'i i) 
son (1964)], the weight s are calculated as 'Wij (t0) = K p ,

1
n; b ~ such that 

2::i=l 2::j=l p,J ( b ) 

L::.l L7!ol 'Wij(to) = 1. The kernel function is chosen to be Pi co~tij ) = vkb exp( 21 co~tij )2
) 

and b is t he bandwidth parameter. Since 8~~;~ ) = 1, (2.20) reduces to 

K n; 

L L 'Wij (to) (Yi1 - /-Lij ) = 0 
i=l j=l 

yielding i(t0 ) = YiJ- x~/3, provided f3 is known or estimated . 

Thus, i(to) at to = t ij is 

(2.21) 

where 
K % K % 

Yij = L L 'Whu(tij)Yhu and x~j(tij) = L L 'Whu (tij)x~u(thu ) 
h = l u=l h=l u=l 
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2.2.2 Estimation of (3 

Recall from (2.14) that (3 has to be estimated from the model 

Let E ( E*) = {Li, and vaT ( E*) = vaT (Y; - }i) = L;i . One may then estimate (3 using 

the GLS approach by minimizing the generalized squared distance function 

K 

2) E: - IL: )' L;: ( < - IL: ) 
i =l 

K 

= L)Yi - fli - (X i - iC)/3- {L: )' L;: (Yi - Yi - (Xi - Xi)/3- {L:), (2.22) 
i=l 

with respect to (3 . 

In the existing PSSGEE approach, the estimating equation for (3 was constructed 

by using vaT(Y; ) or its working estimate Vi( a) instead of vaT(Y; - }i). 

Computation of Mi 

To compute Mi = E (E*) = E(Y; - "fi - (Xi- Xi)/3), we first calculate 

Hence 

K 

E [}i] = L Wh(til , . . . ,tinJE[Yh] 
h=l 
K 

L Wh(til , · · · , tinJ[X h/3 + l' (th)] 
h=l 

K 

X i/3 + L Wh(til , · · ·, tin;)!'(th) · 
h=l 

E[C:] E(Y; - Yi ) - (Xi - Xi)(J 
}( 

l' (ti) - L Wh(ti!, · · · , tin;)/'(th) = fL: 
h=l 
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T he kernel weights involved in (2.24) are chosen such that for fixed tij, 

(2.25) 

satisfying ~~<= I ~~I 'Whl ( tij) = 1. Thus, for such select ion of kernel weights p,: -----> 0 

and bias will be negligible. 

Computation of 2:: 
We compute the var(Y; - "fi) as follows 

var(Yi) + var("fi) - 2 cov(Y;, "fi) 
K K 

l:i(P) + var{2= Wh (til, ... , tinJYh}- 2 cov{Y; , L Wh (tii, ... , tinJYh} 
h=I h=I 

K K 

l:i(P) + L L Wh(tii , .. . , tinJcov(Yh, Yh')Wh'(tii , .. . , tinJ 
h= I h '=I 

K 

- 2{Wi(tii, . .. , tinJvar(Y;) + L Wh(til , . .. , tinJcov(Y; , Yh)} 
hf-i 

l 1 

(2.26) 

where l:i (P) = Af Ci(p)A f with Ci(P) as given m (2 .4) . Note that p in Ci(P) is 

expressed as p = (PI: .. . , PnJ · Because y/ s are independent for i = 1, . . . K , the 

formula in (2.26) for 2:: reduces to 

K 

2:: = l:i(P) + L Wh(tii 1 • • • 1 tinJl:h(p)W~(tii 1 • • • 1 tinJ - 2Wi(tii , · · · 1 tinJ l:.i(P) 
h = I 

(2. 27) 

Under the limiting conditions in (2.25) , 2:: reduces to l:i(p). Nevertheless, in practice 

using the correct covariance 2:: in place of l:i (p) is bound to provide more efficient 

estimate for {3 . 
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Minimization of the distance function in (2.22) is equivalent to solve t he GLS esti-

mating equation 

~ a[(Xi- Xi)(J + Mil' [L:: *]- 1 {( . - ·' ·)-(X - x) r-< - *} = 0 L 
0 

(3 , y, y, , , }J JL, , 
i=1 

(2.28) 

for (3 . In the linear model, the GLS estimating equation is same as the GQL estimat-

ing equation and for this reason, and to be uniform with the notations in the next 

chapters, we refer to the estimating equation obt ained from (2.28) as the fully stan-

dardized semi-parametric GQL (FSSGQL) estimating equation for (3 . The solution 

of (2 .28) is given by 

K 

fJFSSGQL {L(x i - x i)' (L::i)-1 (Xi- x i)} - 1 

i=1 
K 

X L (X i - Xi)' (L::i t 1 (Yi- Yi- JLi) . (2.29) 
i=1 

Note t hat the difference between L::i in (2 .16) and L::i in (2.29) may not be negligible 

in practice. It depends on the choice of the kernel weights. 

2 .2 .2.1 Basic properties of fJFSSGQL 

Unbiasedness of /JFsSGQL : 

In the case where JLi is known, it can be shown as follows t hat the FSSGQL 
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estimator 0FSSGQL is unbiased for (3 . 

K 

E(OFSSGQL ) = {I)xi- Xi)' o::;)-1 (Xi- Xi)} - 1 

i=1 

xE [t,(X; ~ X,y (L:ir' (y; ~ y, - pi): 
K 

(l_)xi- X i)' (L:;)- 1 (Xi- x i)} - l 

i=1 

K 

x :L)xi - x i)' (L:;)-1 {E(yi - Yi -p,;)} 
i=1 

K 

{L)xi- x i)' (L:;)- 1 (xi- x i) } - 1 

i=1 

K 

X L (Xi - Xi)' (L:; )- 1 {(Xi- Xi)f3 + f.L: - p,:} 
i = 1 

(3, (2.30) 

because E(~ - }i) = (Xi - X i)f3 + f.Li · 

If the kernel weights are chosen satisfying the limit ing conditions (2.25), p,i, in 

(2.24) tends to zero. Nevertheless, one may still like to estimate p,i, for the computa

tion of 0FSSGQL by (2.29). This may be done by using the SQL estimate of r{) in 

(2.24). Hence, one obtains 

J( 

P,: = ,:Y(ti) - L Wh(ti1, · · · , tinJ :Y(th) 
h = 1 

where ,:Y( .), the SQL estimator of 1{) computed by (2.20) is consistent for f'( .) . 

We now compute the bias in estimating (3 by (2.29) when p,i, is replaced by fli-
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For the purpose, we calculate E(~FsscQL) as follows. 

K 

E(~FSSGQL) = {L(Xi - Xi)' (2::7)-1 (Xi - X i)} - 1 

i=1 

K 

X L (Xi- Xi)' (I::)-1 {E(yi- Yi- il7)} 
i=1 

K 

{L (xi - Xi)' (I::) - 1 (Xi- x i)} - 1 

i=1 

K 

X L (Xi- Xi)' (I:7 t 1 {(Xi- Xi)(J + f-l7- E (P-7)} 
i=1 

K 

!3 + (L)xi - x i)' (I::) - 1 (xi- xi)} -1 

i=1 

[t,(x,-X,)' (E;t 1 {I'; - E (i';)) l 
K 

= {3 + D - 1 L Mi{f.l7 - E (P-7)} (2.31) 
i=1 

(2.21) and (2.24) , 

K 

E(P,7) = E [')-(ti ) - L Wh (ti1, · · · , tinJ -)- (th)] 
h= 1 

K 

E [f;i - Xi(J] - L Wh (ti1, . . . , tinJE[f;h- Xh(J] 
h= 1 

K 

L Wh (ti1, · · · , tinJE [yh] - Xi{3 
h= 1 

K K 

- L Wh (ti1, . ·. , tinJE[fJh] + L Wh (ti1, · · · , tinJ Xh{3 
h= 1 h= 1 

K 

= L Wh (til, · · · , tinJ [X h{3 + "f (th) ]- X i{3 
h= 1 

K K K 

- L Wh(ti1, · · · , tin,){L Wj(th1, · · · , thnh)E(yj) } + L Wh(ti1, · · ·, tinJ Xh{3 
h= 1 j = 1 h=1 
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K K 

L Wh (ti1, . .. , tin,h(th)- L Wh(tn, ... , tinJ 
h = 1 h= l 

K K 

{L Wj(th1, ... ' thnh)[X j,B + r(tj)]} + L Wh(ti1, ... 'tinJ X h,B 
j = 1 h=1 

K K K 

L Wh (ti1, . . . , tinJr(th)- L Wh(ti1, ... , tin, ){L Wj(th1, ... , thnJr (t j)} 
h=1 h=1 j=1 

Hence by using (2.24) we obt ain 

K 

EU<) = r(ti) - Jl.:- L Wh(til, . . . 'tini){,(th) - JL~ } 
h= l 

K 

r(ti) - JL7 - [l(ti) - JL7] + L Wh(til , ... , tinJJL~ 
h=l 

K 

L Wh (ti1, · · ·, tinJ JL~ = 91 (JL~, · · · , JL'K ). 
h= l 

Substituting in (2.31), t he bias in est imat ing ,6 amounts to 

K K 

n-1 L Mi{JL7 - L Wh (ti1, ... 'tinJJL~ } 
i=1 h=1 

where D and Mi are defined in (2 .31). Note that the bias quantity in (2.32) may be 

negligible, provided the kernel weights are chosen satisfying (2.25) . T his is because 

under the limiting condition (2.25), 1L'i _, 0, yields bias -> 0. 

Variance of /JFsSGQL : 

We now compute the variance of fJFSSGQL as 

K 

var (/JFsSGQL ) = {L(Xi- Xi)' (l:7t1 
( X i- X i )} -

1 

i=1 

K 

x L ( X i - X i )' (l:7) - 1 
{ var (yi - fli - /t7)} (l:;) - 1 (Xi - X i) 

i = l 

K 

{L(x i- Xi)' (l:; )-1 
( X i - x i )} - l (2.33) 

i=1 
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where 

Now, 

vaT({<) = E(fL:- E(fL: )) (fL:- E(fL:))' 

and 

where mi1(.) is a funct ion of y and mi2(.) is a function of (y, x, /3 ). This gives 

(2.34) 

Substituting (2.34) in (2.33) we obtain 

K 

vaT(~FSSGQL) = ri )xi- Xi)' (E:} - 1 (Xi - Xi)t 1 + 
i = l 

o-1 
[ t,(x, - X,)' (E;) - I { q,(E, , fl) - 2q,(E,, f))} (E:J - ' (X, - X,)] D - 1 

D - 1 + L(E1 , . . . , EK, X 1 , . . . , XK) , say. (2.35) 
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Asymptotic distribution of f3FSSGQL : 

Using (2.31) and (2.35) , and applying Lindeberg-Feller central limit theorem 

[Amemiya (1985) , Theorem 3.3.6, p.92] it then follows that 

(2.36) 

For convenience in our notation, the Lindeberg-Feller central limit t heorem is stated 

as follows. 

Let Yi = n-1 (Xi - Xi)' (L:i) - 1 (yi - ffi - fti ) so that y~, ... Yx are independent . 

Also let y-* = .l "'K y* with 
' K L...-~=1 ~ 

E(Y*) 

var(Y*) 

Then using the Lindeberg-Feller central limit theorem, 

This shows t hat f3FSSGQL has the p-dimensional normal distribut ion as stated m 

(2.36). 

2.2.3 Estimation of p and CJ2 

the auto-correlat ion matrix Ci(P) (see also (2.4)) is estimated by using the estimates 

of lag correlation Pe given by 

<:::'K <:::'n -e 8 8 - - I <:::'K <:::'n-e 
8 

-
, = L...i = 1 L...u= 1 iu i,u+lYiuYi,u+l L...i=1 L...u=1 iuOi,u+l £ = 1 2 _ 1 (2 .37) 

Pe "'K <;;:'ni -2 I "'K <;;:'ni ) ' ' . . . ' n 
L...i= 1 L...u= 1 8iuYiu L...i= 1 L...u= 1 8iu 
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[Sutradhar (2011 , Section 2.2.2)] with Yiu = Yiu - x;,:- i(ti,), where ~ and ')-(t) are the 

FSSGQL estimates of (3 and --y(t) , respectively. 

The variance parameter CJ
2 for the Ai matrix is estimated as 

'\"' K '\"'ni ( .1 (3, ' (t ) )2 
,2 L..,i= l L.., j = l Yij - xij - 1 i j 

CJ = ------='------'\"'----,K,-----_:_ ___ _ 

L..,i=l n i 
(2.38) 

The moment estimators for lag correlations (2.37) and variance component (2.38) 

are primarily developed by assuming that /3 and --y( ·) are known, but the estimates 

are obtained by using the consistent estimates ~FSSGQL for (3 from (2.29), and ')-(-) 

for --y (.) from (2.21). This leads to the consistent estimat ion of Pe and CJ
2 under some 

mild regularity conditions [Casella and Berger (1990)]. 

For convenience of application of the proposed FSSGQL approach, we now sum-

marize this approach in the following four steps. 

Step Fl. For an initial value of (3 , we solve the 'working' independence assumption 

based semi-parametric equation (2.20) to estimate the non-parametric function --y(-) . 

Step F2. The estimate of --y(· ) from Step Fl and the initial (3 are used in (2.38) to 

obtain first an initial estimate of the variance component CJ
2

, and then initial estimates 

of lag correlations by (2.37). 

Step F3. In this step, the estimates of auto-correlations from Step F2 are used to 

compute first the kernel weights based covariance matrix L:i = cov[Yi - }i], which is 

then used in (2.29) along with the estimate of f-li to obtain the FSSGQL estimate of 

(3 . 

Step F4. Next, the first step estimate of (3 from Step F3 is applied to Step Fl to 

obtain an improved estimate for the non-parametric function --y(-) . 

This constitute a cycle and the iteration cycles continue until convergence. 
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2.3 A Simulation study 

The purpose of this section is to conduct a simulation study to examine the finite 

sample performance of the FSSGQL and various versions of the existing PSSGEE 

approaches in estimating the main regression parameters as well as the nuisance non

parametric function. 

2.3.1 Simulation design 

Sample Size: 

Some of the larger data set in the longitudinal studies, such as the asthma study 

which contains information from K = 537 children, was considered to be large. Thus 

in this finite sample study, we choose K = 100 as a small sample size. Note that the 

asymptotic propert ies of the regression estimator discussed in Section 2.2.2 depends 

on the size of independent individuals (K) , rather than on 2..:: 1 ni as ni responses 

are correlat ed. In longitudinal studies it is expensive and not practical to consider n i 

large. We could choose variable n i , but for simplicity we use ni = 4 for i = 1, . .. , K . 

The time points are chosen as tij = j for all i = 1, .. . , K , and j = 1, . . . , n i · 

Covariate Selection: 

We consider p = 2 t ime dependent covariates with their values as 

j = 1, 2 

j = 3, 4 

i = 1, 2, . .. ) 50, 
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1 J. = 1 - 2 

0 j = 2, 3 i = 51 , 52, ... ) 100. 

1 J. = 4 
2 

Xij2(tij) = { j - 2.5 
2) J. = 1 2 3 4 ; i = 1, 2, . . . ) 50, 

) ) ) 

{ 

0 j = 1, 2 
Xij2(tij) = 

~ j = 3, 4 

i = 51 , 52, . . . , 100. 

For the effects of these covariatcs we consider ((31 , (32 ) ' = (1.0, 0.5)'. By choosing t hese 

covariates, we have attempted to accommodate covariates with different natures such 

as categorical covariates (xij!) and mixed (i.e., categorical and continuous) covari-

ates (xij2) in the study. We also partitioned K into two groups to include some 

of the practical longit udinal studies where we have two groups such as placebo and 

treatment. 

N onparam etric function: 

We consider a quadratic as well as a harmonic function for 'Y(tiJ) given by 

In some healt h care related studies it may not be possible to include all possible 

covariates to examine their effects on the responses. However , t hese variables may 

not be ignored in some studies. We may use an unspecified function to represent such 

covariates if they are time dependent . Moreover, t his type of function may increase as 

time increases. To reflect this situation we have chosen a quadratic function. We also 
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consider a sine function to represent other sit uations in practice where this unspecified 

t ime dependent function has a periodic pattern. 

True Correlation structure: 

We consider t hree correlation structures from (2.4), (2.5) and (2.6), with selected 

values of parameters as indicat ed below. 

(i) AR(l) model: ¢ = 0. 5, 0.8; CT~ = 1.0 

(ii) MA(l) model: e = 0.1, 0.4; CT~ = 1.0 

(iii) EQC model : ( = -/+2 

2 = 0.5 , 0.8; CT~ = 1.0 
a "a 

2.3.2 Data generation and simulation results 

We use various combinations of the selected design parameters to generate Yij from 

(2.2) , for i = 1, 2, .. . , 100 and j = 1, 2, 3, 4. The simulation was repeated 1000 times. 

Under each simulation we apply the four step procedure from Section 2.2 to obtain 

the FSSGQL estimates of (3, 'Y (t), CT2 , and p(£). ote that in this approach, irrespec-

tive of the true correlation models, AR(1) , MA(1), or EQC, the correlation matrix 

is estimated by using the estimate of the general correlat ion matrix Ci(p) . Moreover, 

t his approach uses corrected weight matrix in the estimating formula (2 .29) for (3 . 

Since t he 'working' correlations approach does not have any guidance for the 

selection of correlation model, one may choose any of the low order commonly used 

structure such as AR(1) , MA(1), EQC, or 'working' independence models [Liang 

and Zeger (1986)]. Thus, if data are generated from t he true AR(1) model, we 

examine through efficiency comparison whether one can use any of the conventional 

low order correlation models or use the Ci (p), which contains all these low order 

47 



correla tions and provides more efficient estimates. When data are generated using, 

for example, a true AR(1) correlation model with high correlation such as ¢ = 0.8, 

there may not exist any corresponding correlation parameter under MA(1) 'working' 

correlation structure [Crowder (1995)]. For this case, the moment estimates for the 

MA(1) correlation parameter were always more than 0.5, the boundary value. Thus, 

we have used & = 0.48 to avoid such difficulties. In Tables 2.1, 2.3 , 2.4 and 2.6 this 

is indicated with a question mark (?). We also use the unstructured (UNS) [see Lin 

and Carroll (2001), for example] correlat ion model as a 'working' correlation model. 

Further , the PSSHGEE(I) and PSSHGEE based estimates discussed in Section 2.1.2 

are also computed. 

To simplify tables and figures, we rename the FSSGQL estimates as semi-parametric 

GQL (SGQL) estimates, and similarly all PSSGEE and PSSHGEE estimates as SGEE 

and SHGEE estimates, respectively. The efficiency of these estimates are computed 

by comparing their simulation-based variance wit h the variance of the known correla

tion structure based estimates, where the known correlation structure based estimates 

were computed by replacing t he C(p) matrix in t he FSSGQL approach with the t rue 

correlation such as AR( 1) correlation matrix. 

Because t he regression parameters /31 and /32 are of main interest, we concent rate 

on the efficiency performance for these two parameters. More specifically, we display 

the efficiencies for their estimators under various methods for a selected correlation 

parameter value, in Figures 2.1 and 2.2, when r(t) is chosen as 3 + 2(t- 4
;

1
) + (t-

4
;

1
)

2
, and in Figures 2.3 and 2.4 when r (t) = sin (2t). Note t hat the efficiencies of 

a selected method is computed by comparing the variance of the estimator with the 

corresponding variance when the estimation is based on the true correlation struct ure. 
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For example, when the data are generated using EQC structure, the efficiency of 

SGEE(I) for {31 estimation, for example, is computed by V:T (~~-EQC(true;) , which was 
ar l.SGEE (I ) 

found to be 93.68% as reported in Figure 2.1. When various methods of estimation for 

{31 and {32 are compared, all methods appear to produce unbiased and hence consistent 

estimates for both of the regression parameters. 

It is clear from F igures 2.1 and 2.2 that the proposed SGQL approach always 

yields the same or more efficient estimates t han the other SGEE approaches includ-

ing the unstructured correlations based SGEE(UNS) approach. For example, for 

the estimation of {31 (Figure 2.1), under the true AR( 1) correlation structure wit h 

¢ = 0.8 (p = 0.8) the SGQL and SGEE(EQC) provide almost equally efficient esti-

mate whereas the other SGEE approaches including SGEE(UNS) provide less efficient 

estimate. Under the true MA(1) correlation model with e = 0.4 (p = 0.35), all ap-

proaches appear to produce almost equally efficient estimate for {31 , the SGEE(UNS) 

being slight ly inferior. Similarly under the EQC process with ( = 0.8 (p = 0.8) 

all SGEE approaches are less efficient than the SGQL approach. Note that SGEE(I) 

performs the worst among all 'working' correlat ion approaches. Figure 2.2 shows that 

for the estimation of {32, all SGEE approaches are in general inferior to the SGQL 

approach , t he SGEE(I) being the worst followed by SGEE(MA(1) ). The efficiency 

performances of Figures 2.3 and 2.4 are similar to Figures 2.1 and 2.2. Thus, the 

SGQL approach uniformly produce the same or higher efficient estimates for bot h 

{31 and {32 irrespective of the true correlation structures as well as non-parametric 

functional forms. 

The efficiency of SHGEE(I) and SHGEE approaches [Fan ct al (2007), Fan and 

Wu (2008)] discussed in Section 2.1.2 are displayed in Tables 2.1 , 2.2, and 2.3, along 
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with oth r SGEE estimates for the case when "!(t ) = 3 + 2(t - 4! 1
) + (t- 4! 1 

)
2

. It is 

clear that similar to other SGEE approaches they also produce regression estimates 

with larger variances as compared to the SGQL estimates. Similarly, the regression 

estimates with "! (t) = sin(2t) are given in Tables 2.4, 2.5, and 2.6 for true correlation 

models AR(l ), MA(l) and EQC respectively. The results in these tables show the 

same pattern as those of Tables 2.1 , 2.2, and 2.3. 

Further, the estimation of f3 = (/31 , (32 ) ' requires "! (t) which is estimated using 

the semi-parametric QL (SQL) estimating equation (2.9) under all SGQL and SGEE 

approaches. For the bandwidth b involved in the Gaussian kernel in (2.9), we have 

chosen b = ~ [Pagan and llah (1999), p.25] . For selected valu s of the correlation 
(4K)u 

parameter, the estimates of "! (t ) = 3 + 2(t - 4!1
) + (t- 4!1 

)
2 for all selected values of 

t are shown in Figures 2.5 , 2.6 and 2.7 under true AR(l), MA(l ) and EQC models, 

respectively. We have also computed the estimates for "!(t) = sin(2t) under all t hese 

three true correlation models, but di played the EQC case only in Figure 2.8 as an 

example. The results are similar for other cases also. It is clear from these four figures 

that this non-parametric function is estimated very well by the semi-parametric QL 

approach. 
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Figure 2.1: Efficiency comparisons of various semi paramet ric methods for the esti-

mates of jJ1 with 1'( t) = 3 + 2( t - n~ 1 ) + ( t - n~ 1 ) 
2

, under selected correlation processes: 

AR(l) with ¢ = 0.8, MA(l) withe = 0.4 and EQC with ( = 0.8. 
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Figure 2.2: Efficiency comparisons of various semi parametric methods for the est i-

mates of (32 with 'Y(t) = 3+2(t - ntl) + (t - ntl )2, under selected correlation processes: 

AR(l) with ¢= 0.8, MA(l) withe = 0.4 and EQC with ( = 0.8. 
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Figure 2.3: Effici ncy comparisons of various semi parametric methods for the es-

timates of {31 with 1'(t ) = sin2t, under ·elected correla tion processes: AR(l) with 

¢ = 0. , MA(l ) withe = 0.4 and EQC with ( = 0.8. 
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Figure 2.4: Efficiency comparisons of various semi parametric methods for the es-

t imates of (32 with -y(t) = sin2t , under selected correlation processes: AR(l) with 

¢ = 0.8, MA(l) withe = 0.4 and EQC with ( = 0.8. 
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Table 2.1: Simulated means (SMs) and simulated standard errors (SSEs) of the 

estimates of regression parameters (31 = 1 and (32 = 0.5, under AR(1) correla-

tion model for selected values of t he model parameters ¢ and CJ
2 ; with 1(t) = 

3 + 2(t - ntl) + (t- ntl )2 ; K=100; n=4; and 1000 simulations. 

Estimates under the true AR(l) model 

¢( (}2) Method Quantity ~1 ~2 a P1 P 2 P3 

0.5 (1.33) SGEE(AR(1) ) SM 0.9997 0.5082 0.4974 

SSE 0.2339 0.3073 0.0580 

SGQL SM 0.9993 0.5072 0.4987 0.2489 0.1277 

SSE 0.2340 0.3073 0.0504 0.0728 0.0973 

SGEE(UNS) SM 0.9999 0.5077 

SSE 0.2365 0.3105 

SGEE(I) SM 0.9999 0.5094 

SSE 0.2343 0.3715 

SGEE(MA(1)) SM 0.9996 0.5086 0.4692 

SSE 0.2349 0.3099 0.0251 

SGEE(EQC) SM 0.9998 0.5087 0.3529 

SSE 0.2339 0.3112 0.0549 

SHGEE(I) SM 0.9999 0.5093 

SSE 0.2343 0. 3722 

SHGEE SM 0.9991 0.5074 0.4983 0.2500 0.1292 

SSE 0.2337 0.3077 0.0477 0.0732 0.0981 
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Table 2. 1 Continued 

Estimates under the true AR(l) model 

¢(a2) Method Quantity {31 {32 & ih P2 fJ3 

0.8 (2.78) SGEE(AR(1) ) SM 1.0005 0.5066 0.7998 

SSE 0.2425 0.3149 0.0298 

SGQL SM 1.0003 0.5057 0.8001 0.6400 0.5140 

SSE 0.2425 0.3155 0.0316 0.0504 0.0730 

SGEE(UNS) SM 1.0013 0.5047 

SSE 0.2491 0.3253 

SGEE(I) SM 1.0022 0.5181 

SSE 0.2513 0.6259 

SGEE(MA(1)) SM 1.0018 0.5111 0.4800(?) 

SSE 0.2490 0.3911 

SGEE(EQC) SM 1.0011 0.5083 0.6987 

SSE 0.2425 0.3250 0.0400 

SHGEE(I) SM 1.0023 0.5181 

SSE 0.2524 0. 6275 

SHGEE SM 1.001 0.5062 0.8001 0.6418 0. 5180 

SSE 0.2450 0.3178 0.0263 0.0503 0.0735 
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Table 2.2: Simulated means (SMs) and simulated standard errors (SSEs) of the 

estimates of regression parameters {31 = 1 and {32 = 0.5, under MA(1) correla-

tion model for selected values of the model parameters () and (J2 . 
' 

with 'Y(t) = 

3 + 2(t - nil )+ (t- nil )2 ; K= 100; n= 4; and 1000 simulat ions. 

Estimates under the true MA(l) model 

(}( (J2) Met hod Quant ity j]l 0 2 & P 1 P2 P3 

0.1(1.01) SGEE(MA(1)) SM 1.0014 0.4982 0.0971 

SSE 0.2005 0.2641 0.0586 

SGQL SM 1.0011 0.4986 0.0971 0.0000 -0.0018 

SSE 0.2009 0.2643 0.0586 0.0684 0.0982 

SGEE(UNS) SM 1.0001 0.4976 

SSE 0.2026 0.2654 

SGEE(I) SM 1.0013 0.4992 

SSE 0.2005 0.2650 

SGEE(AR(1)) SM 1.0013 0.4983 0.0865 

SSE 0.2006 0.2651 0.0810 

SGEE(EQC) SM 1.0012 0.4985 0.0481 

SSE 0.2005 0.2642 0.0449 

SHGEE(I) SM 1.0118 0.4996 

SSE 0.2007 0. 2656 

SHGEE SM 1.0015 0.4992 0.0972 -0.0000 -0.0017 

SSE 0.2014 0.2658 0.0583 0.0685 0.0990 
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Table 2.2 Continued 

Estimates under the true MA(l ) model 

()( (/2) Method Quantity {Jl {32 a P1 P2 P3 

0.4(1.16) SGEE(MA(1)) SM 1.0008 0.4948 0.3435 

SSE 0.2275 0.2781 0.0528 

SGQL SM 1.0004 0.4954 0.3435 -0.0007 -0.0033 

SSE 0.2280 0.2784 0.0528 0.0726 0.0973 

SGEE(UNS) SM 0.9991 0.4949 

SSE 0.2298 0.2802 

SGEE(I) SM 1.0003 0.4970 

SSE 0.2284 0.3010 

SGEE(AR(1)) SM 1.0004 0.4959 0.2778 

SSE 0.2278 0.2803 0.0731 

SGEE(EQC) SM 1.0002 0.4962 0.1702 

SSE 0.2281 0.2825 0.0523 

SHGEE(I) SM 1.0011 0.4975 

SSE 0.2281 0. 3009 

SHGEE SM 1.0008 0.4969 0.3430 -0.0002 -0.0033 

SSE 0.2283 0.2784 0.0511 0.0728 0.0983 
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Table 2.3: Simulated means (SMs) and simulated standard errors (SSEs) of the esti-

mates of regression parameters {31 = 1 and {32 = 0.5 , under equi correlation model for 

selected values of the model parameters (and a 2; with 1'(t) = 3+2(t- n~l )+ (t- n~l ) 2; 

K=100; n=4; and 1000 simulations. 

Estimates under the true EQC model 

((a2) Method Quantity f]l {32 a P1 P2 P3 

0.5(2.0) SGEE(EQC) SM 0.9967 0.5211 0.4994 

SSE 0.2111 0.4088 0.0504 

SGQL SM 0.9968 0.5194 0.5003 0.4986 0.4985 

SSE 0.2115 0.4088 0.0564 0.0577 0.0870 

SGEE(UNS) SM 0.9979 0.5205 

SSE 0.2125 0.4118 

SGEE(I) SM 0.9968 0.5215 

SSE 0.2124 0.5019 

SGEE(AR(1)) SM 0.9967 0.5204 0.6388 

SSE 0.2131 0.4180 0.0450 

SGEE(MA(1)) SM 0.9969 0.5201 0.4668 

SSE 0.2140 0.4165 0.0282 

SHGEE(I) SM 0.9967 0.5214 

SSE 0.2131 0.5036 

SHGEE SM 0.9971 0.5195 0.5011 0.4999 0.5011 

SSE 0.2121 0.4107 0.0551 0.0579 0.0768 
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Table 2.3 Continued 

Est imates under the true EQC model 

( ( (/2) Method Quantity f]l {32 a P1 P2 P3 

0.8(5.0) SGEE(EQC) SM 0.9968 0.5216 0.7992 

SSE 0.2135 0.4725 0.0274 

SGQL SM 0.9968 0.5192 0.7998 0.7989 0.7986 

SSE 0.2138 0.4725 0.0317 0.0296 0.0532 

SGEE(UNS) SM 0.9983 0.5212 

SSE 0.2170 0.4777 

SGEE(I) SM 0.9981 0.5325 

SSE 0.2279 0.8811 

SGEE(AR(l )) SM 0.9964 0.5198 0.8715 

SSE 0.2154 0.4860 0.0188 

SGEE(MA(1)) SM 0.9980 0.5252 0.4800(?) 

SSE 0.2255 0.5723 

SHGEE(I) SM 0.9981 0.5325 

SSE 0.2297 0.8828 

SHGEE SM 0.9975 0.5201 0.8007 0.8002 0.8010 

SSE 0.2167 0.4783 0.0288 0.0296 0.0364 
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Table 2.4: Simulated means (SMs) and simulated standard errors (SSEs) of t he est i-

mates of regression parameters (31 = 1 and (32 = 0.5, under AR(1) correlation model 

for selected values of the model parameters ¢ and a 2; with ry (t ) = sin2t; K=100; n=4; 

and 1000 simulations. 

Estimates under the true AR( 1) mode l 

¢ ( a2) Method Quant ity !31 /32 a P1 P2 P3 

0.5(1.33) SGEE(AR(1)) SM 0.9995 0.5080 0.4974 

SSE 0.2339 0.3073 0.0580 

SGQL SM 0.9991 0.5070 0.4987 0.2490 0.1278 

SSE 0.2340 0.3071 0.0504 0.0728 0.0973 

SGEE(UNS) SM 0.9997 0.5074 

SSE 0.2365 0.3105 

SGEE(I) SM 0.9998 0.5093 

SSE 0.2343 0.3714 

SGEE(MA(1)) SM 0.9993 0.5083 0.4692 

SSE 0.2348 0.3099 0.0251 

SGEE(EQC) SM 0.9997 0.5085 0.3530 

SSE 0.2333 0.3112 0.0549 
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Table 2.4 Continued 

Estimates under the true AR(l) model 

¢( (J2) Method Quantity j l j2 0: P1 P2 P3 

0.8(2.78) SGEE(AR(1)) SM 1.0005 0.5066 0.7998 

SSE 0.2425 0.3149 0.0298 

SGQL SM 1.0003 0.5057 0.8001 0.6400 0.5140 

SSE 0.2425 0.3155 0.0316 0.0504 0.0730 

SGEE(UNS) SM 1.0013 0.5047 

SSE 0.2491 0.3253 

SGEE(I) SM 1.0022 0.5181 

SSE 0.2513 0.6259 

SGEE(EQC) SM 1.0011 0.5083 0.6987 

SSE 0.2424 0.3250 0.0400 

SGEE(MA(1)) SM 1.0018 0.5111 0.4800(?) 

SSE 0.2490 0.3911 
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Table 2.5: Simulated means (SMs) and simulated standard errors (SSEs) of the esti-

mates of regression parameters {31 = 1 and {32 = 0.5 , under MA(1) correlation model 

for selected values of t he model parameters e and a 2; with r (t) = sin2t; K= 100; n=4; 

and 1000 simulations. 

Estimates under the true MA(l) model 

fJ(a2) Method Quant ity /31 !32 Cl' P1 P2 P3 

0.1(1.01) SGEE(MA(1)) SM 1.0014 0.4982 0.0971 

SSE 0.2005 0.2641 0.0586 

SGQL SM 1.0011 0.4986 0.0971 0.0001 -0.0018 

SSE 0.2009 0.2643 0.0586 0.0684 0.0983 

SGEE(UNS) SM 1.0001 0.4976 

SSE 0.2026 0.2654 

SGEE(I) SM 1.0013 0.4992 

SSE 0. 2003 0.2650 

SGEE(AR(1)) SM 1.0013 0.4983 0.0865 

SSE 0.2006 0.2651 0.0810 

SGEE(EQC) SM 1.0012 0.4985 0.0481 

SSE 0.2006 0.2642 0.0449 
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Table 2.5 Continued 

Estimates under the true MA(l) model 

B(a2) Method Quant ity (31 /32 a P1 P2 P3 

0.4(1.16) SGEE(MA(1)) SM 1.0008 0.4948 0.3435 

SSE 0.2275 0.2781 0.0528 

SGQL SM 1.0004 0.4954 0.3435 -0.0006 -0.0033 

SSE 0.2280 0.2784 0.0528 0.0727 0.0973 

SGEE(UNS) SM 0.9991 0.4949 

SSE 0.2298 0.2802 

SGEE(I) SM 1.0003 0.4970 

SSE 0.2284 0.3010 

SGEE(AR(1)) SM 1.0004 0.49598 0.2778 

SSE 0. 2278 0.2803 0.0731 

SGEE(EQC) SM 1.0002 0.4962 0.1703 

SSE 0.2281 0.2825 0.0523 
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Table 2.6: Simulated means (SMs) and simulated standard errors (SSEs) of the esti-

mates of regression parameters {31 = 1 and {32 = 0.5 , under equi correlation model for 

selected values of t he model parameters ( and 0"
2 ; with 1(t) = sin2t; K= 100; n= 4; 

and 1000 simulat ions. 

Estimates under the true EQC model 

( ( (/2) Method Quantity (31 (32 0' P 1 P2 P3 

0.5(2.0) SGEE(EQC) SM 0.9966 0.52087 0.4995 

SSE 0.2111 0.4095 0.0504 

SGQL SM 0.9967 0.5192 0.5003 0.4987 0.4985 

SSE 0.2115 0.4088 0.0564 0.0577 0.0871 

SGEE(UNS) SM 0.9978 0.5203 

SSE 0.2125 0.4118 

SGEE(I) SM 0.9967 0.5214 

SSE 0.2124 0.5019 

SGEE(AR(1)) SM 0.9965 0.5202 0.6388 

SSE 0.2131 0.4180 0.0450 

SGEE(MA(1)) SM 0.9966 0.5198 0.4668 

SSE 0.2139 0.4165 0.0282 
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Table 2.6 Continued 

Estimates under the true EQC model 

( ( (J2) Method Quantity j]l (32 a P1 P2 P3 

0.8(5.0) SGEE(EQC) SM 0.9968 0.5216 0.7993 

SSE 0.2135 0.4725 0.0274 

SGQL SM 0.9968 0.5192 0.7997 0.7989 0.7986 

SSE 0.2138 0.4719 0.0316 0.0297 0.0532 

SGEE(UNS) SM 0.9983 0.5212 

SSE 0.2170 0.4777 

SGEE(I) SM 0.9981 0.5325 

SSE 0.2279 0.8811 

SGEE(AR(1)) SM 0.9964 0.5198 0.8715 

SSE 0.2154 0.4860 0.0189 

SGEE(MA(1)) SM 0.9980 0.5252 0.4800(?) 

SSE 0.2255 0.5723 
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Figure 2.5: Simulated means of estimates of the non-parametric funct ion ('y(t) = 

3 + 2(t - 4~ 1 ) + (t - 4~ 1 
)

2
) under the true correlation matrix (TCM) and other 

selected correlation based FSSGQL method with AR(l) correlated errors. 
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MA(1) Error w ith theta=0.4 

~ ~ ~ 
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Figure 2.6: Simulated means of estimates of the non-parametric function ('"y (t) = 

3 + 2(t - 4
;

1
) + (t - 4

;
1 

) 2 ) under the true correlation matrix (TCM) and ot her 

selected correlation based FSSGQL method with MA(l ) correlated errors. 
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EQC Error with zeta=O.S 

~ ~ ~ 
- TCM -+- SGQL -+- SGEE(UNS) 
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Figure 2.7: Simulated means of estimates of the non-parametric function ("y(t) = 

3 + 2(t - 4! 1
) + (t - 4! 1 

)
2

) under the true correlation matrix (TCM) and other 

selected correlation based FSSGQL method with Equi correlated errors. 
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EQC Error with zeta=0.8 

.... SGEE(EOC) .... SGOL .... SGEE(UNS) 

-- TRUE - TRUE -- TRUE 
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Figure 2.8: Simulated means of estimates of t he non-parametric function (r(t ) = 

sin2t) under selected correlation based FSSGQL method with Equi correlated errors. 
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Chapter 3 

Semi-parametric Longitudinal 

Models for Discrete Data with 

Non-stationary Correlation 

Structures 

In Chapter 2, we discussed in detail the inferences for the regression effects involved 

in the semi-parametric linear longit udinal model. However , there are many sit ua

tions where one is interested in analyzing longit udinal discrete data such as count 

and binary data in the semi-parametric setup. For example, we refer to the longitu

dinal models for the health care ut ilization data and Ohio asthma data mentioned in 

Chapter 1. But, these models do not incorporate any non-parametric functions in the 

regression relationship. Also, t he semi-parametric inferences for linear longitudinal 

data discussed in Chapter 2 can not be directly generalized to the semi-parametric 
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longitudinal discrete data. In this chapter , we deal with such semi-parametric in

ferences under the assumption that the equip-spaced time based repeated responses 

follow a Gaussian-type ARMA class of auto-correlations. To be specific, we describe 

the semi-parametric longitudinal models for count data in Section 3.1 and develop 

the inference techniques for these models in Section 3.2. Similarly, in Sections 3.3 and 

3.4, we provide t he semi-parametric longit udinal models and inferences, respectively 

for longitudinal binary data. 

3.1 Semi-parametric longitudinal mode ls for count 

data with non-stationary correlation struct ures 

Unlike t he linear longitudinal models that we discussed in Chapter 2, it is traditional 

to consider that the count response Yij(t i j) marginally follows a Poisson distribution 

[Neider and Wedderburn (1972)] . As Poisson distribution belongs to an exponential 

family, using the log-link function, we write the mean and variance 

where Xij( t i j) is the p - dimensional covariate vector at time point t ij and 1(t i j ) is the 

unspecified smooth function. Thus, both Xij ( tij ) and 1 ( t i j ) would affect the mean 

response and we denote the Poisson mean and variance by 

(3.1) 

T his mean function (3.1) is exactly the same as for the independent count data dis

cussed in Section 1.2.2. However, the independence case is a special case of the 
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present longitudinal setup with ni = 1 for all individuals i = 1, .. . , K. T hus, unlike 

the independence setup, one has to consider the correlations of the repeated count 

responses Yi1 , . . . , Yij, . . . , Yin;. When covariates are t ime dependent, the correlations 

in such a setup depend on these t ime dependent covariates which make the correla

tions non-stationary. We discuss this type of non-stationary correlation structures for 

repeated count data in the next sections. 

3.1.1 Stationary correlation models for count data in semi

parametric setup 

Sutradhar (2003) proposed a class of Gaussian type auto-correlation structures for 

stationary (time independent covariates) repeated count data which accommodates 

AR(l ), AR(2), MA(l) , ARMA(l ,l) , etc. and EQC correlation structures. T he auto

correlation structures have the same form as Ci(P) in (2.4). Even though the station

ary correlation structures appear to be the same for linear and count data models, 

the dynamic relationships among t he repeated responses under these models are quite 

different . Unlike the dynamic relationships (2.5)-(2.7) in Chapter 2, the stationary 

AR(1) dynamic model, for example, for count data [ Sutradhar (2003)] has the form 

Yij = p * Yi ,j - 1 + dij , for j = 2, .. . , ni , (3.2) 

where Yi1 rv Poi(JLi.) , Jl•i. = exp(x~_ (k)f:l+r(td ) , xi(td = Xij( tij ) and r (td = r (tij) 

for all j = 1, . .. ' ni· Also assume that Yi,j - 1 rv Poi(Jtd and dij rv Poi (JLi. - PILi.), dij 

and Yi,j - 1 are independent with p * Yi,j - 1 = L::;:;,\- 1 b8 (p ) with Pr[bs(P) = 1] = p and 

Pr[bs(P) = 0] = 1 - p, p being the correlation parameter. This model (3.2) has the 
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following marginal propert ies: 

E (Y: lx ) t ] t . 

V(Y: ·Ix ·) t ) t. 

Ci(P) = plv- ul , for all u =/= v , IPI :S 1, 

and the correlations can be represented by Ci (p) as in (2.4) , t hat is, 

1 P1 P2 Pn; - l 

for all i = 1, 2, . .. , K, (3.3) 
P1 1 P1 Pn;-2 

Pn;- l Pn; - 2 1 

with Pe = l for .e = 1, ... , ni - 1. T his Ci(P) is also valid for st at ionary MA(1) and 

EQC correlat ion structures, among others. T his is evident from the special cases of 

the non-stat ionary models we discussed below. These non-stationary models under 

t he longitudinal setup for fully specified (fixed ) regression functions are d iscussed in 

det ails in Sut radhar (2010) and (2011). 

3.1.2 Non-stationary correlation models for count data 

3.1.2.1 Non-stationary AR(l) models in semi-param etric setup 

In t he non-st at ionary case, the covariates are t ime dependent . For such cases, when 

the responses follow AR (1) correlation models , for example, they satisfy the dynamic 

relationship (3.2), t hat is, 

YiJ = p * Yi,j - l + dij ' for j = 2, . . . , ni · (3.4) 
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However , unlike the st ationary case, the marginal distributions of Yij for all j are 

not ident ical. To be specific , it is now assumed that Yi1 "' P oi (f..Li1 ), with f..Li1 = 

Yi,j- 1 are independent . Similar to the stationary case, p * Yi,j-1 indicates t he binomial 

thinning operation given by p * Yi,j- 1 = :2:::;!;;1- 1 bs(P) with PT [bs (P) = 1] = p and 

PT [bs(P) = 0] = 1 - p, where p denotes the correlation index parameter. The mean 

and variance of this model are given by, 

O"ijj = JLi j, j = 1, . . . , n i · 

For j < k, the covariance between Yi j and Yi k can be writ ten as 

- J..Lij f..Li k 

yielding 

(ns) ( . . ) 
Ci J. k X ij' Xik' p 
'' 

{ 

pk-j~. j < k 

pJ- k (!!;;. j > k v i-'ij 
wit h p satisfying the range restriction 

0 . [1 f..Lik l < p<m~n ,-- . 
f..Li,k - 1 
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3.1.2.2 Non-stationary MA (l) models in semi-parametric setup 

Suppose that Yil = di l '""Poi(f-li l) , i = 1, .. . , K , where f-lil = exp(x~1 ( ti1 ) (3 + I'( til ) ) . 

For the non-stationary MA(1) model, t he dynamic relationship is 

YiJ = p * di,J - 1 + diJ, j = 2, . .. , n i (3.7) 

T he marginal properties of the model (3 .7) are given by 

f-l iJ , j = 2, . . . , ni . (3.8) 

f-liJJ = exp(x~J(tiJ )f3 + J' (tiJ) ) (3.9) 

{ 

p[I:;;'"~~(J,k)- l ( - p)J J.L,,mm(J.k) - J] 

,jJ.L, J,J.L, k 

0 Otherwise 

for IJ- kl = 1 
(3.10) 

c;}~~ ( Xij , Xik, p) 

with p sat isfying t he range restriction 

0 < p < min[1, P·i20 , ... , PijO , . . · , Pinio], 

where PiJO is the solut ion of I::~~~ ( - p)uf-li, j - u = 0. 
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But in the stationary correlation case the correlation in (3.10) reduces to 

. . _ { P{L:;:o( -p)J = l~p} for IJ - kl = 1 
cor r (yij ,Yik)-

0 Otherwise, 

which satisfies the correlation structure ci (p) in (3.3). 

3.1.2.3 Non-stationary EQC models in semi-parametric setup 

Assume t hat Yil ,..__, P oi(f..li1), i = 1, . . . , K and consider the dynamic relation 

Yij = P * Yil + dij , j = 2, . . . , n i, 

where dij '"" Poi(f..li j- Pf..lil) and dij for j = 2, 3, ... , n i are independent to Yil · 

The mean and variance of the model (3.11) are 

For j < k, 

yielding 

PJLil 

J J.li j /-l ik 

C~~~l ( Xij, Xik , P) 

with p satisfying the range restriction 

0 . [1 f..likl < p < m~n , - . 
f..lil 
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Note t hat for the stationary case, the above correlation becomes 

and this satisfies the correlation structure Ci(P) in (3.3). 

3.2 Estimation in semi-parametric models for Ion-

gitudinal count data 

The main interest of this section is to find the effect of the covariates Xij ( tij ) on the 

response Yij where E(~j) is given in (3.1) . We assume that this marginal property 

holds for any of the non-stationary auto-correlation models such as AR(1) (3.4), 

MA(1) (3 .7) and EQC (3.11) models for repeated responses Yil, . . . , Yij , . .. , Yin; · As 

far as 1( tij) is concerned, one may treat t his as a nuisance function , which is of 

secondary interest. Thus, while we will exploit the correlations of the repeated data 

in estimating the regression parameter {3, we will however estimate the nuisance 

function by pretending that the repeated responses are independent. 

3.2.1 Estimation of non-parametric function r{) 

When correlations are ignored, we may follow the estimating equation (1.17) devel-

oped for independent count data from Chapter 1 to estimate the non-parametric 

function. T hus at a given time point tij = t 0 , we now use the semi-paramet ric QL 

estimating equation for estimating ')' (tij )k1=to given by 

(3.14) 
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where /li j is exp(x~1 (ti1 )(3 + 'Y(t i1) ). For convenience following the formula in (1.19) 

for ..Y( .), we now write 

(3.15) 

here 'W (t ) Pij(~) p· ·(to-t;j ) = - 1- exp( -I ( to-t;1 ) 2 ) b is the band-w i j 0 = K n ; . . ~ > "!J b .j'i;b 2 b ' 
L:i= lz=j= LP•J( b ) 

width and t ij is the t ime measure for the ith individual at time point j. When (3 is 

known or estimated, one can estimate 'Y(t0) by (3.15). 

3.2.2 Estimation of {3 

For thee timation of (3, we first express the mean response as a function of ..Y( .) from 

(3.15) as 

(3.16) 

It is clear that the consistent and efficient estimation of (3 requires the consistent 

estimation of "f(.) uch as by (3.15) as well as the use of proper correlation structure 

of the repeated responses. 

3 .2.2 .1 Naive GQL estimation approach 

When the non-parametric function affects the mean response as in (3.16), it is un-

derstandable that ignoring (.) in the mean while estimating (3 would cause a biased 

and inconsistent estimate. T his can be examined by checking the p rformance of the 

estimate of (3 obtained from a naive GQL estimating equation given by 

t 8(~~* )' [I:;ns)(p)t l (Yi - p,;*)= 0 
i=l 

(3.17) 
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h **- [ ** ** ** ]' "t" **- . [ .I (t ) f~] o(f.Li* )' -X' d ~(ns) ( ) -w ere p.,i - p.,i1 , ... , f..Lij , .. . f..Lin; w1 rl f..Lij - exp xij i j f../ , ~ - i an u i p -

A 112 C (ns) ( ' ) A1/2 "th A d. [ ** ** ** ] It . . t t t . i i p i w1 i = mg f..Li i , .. . , f..Lij , . . . f..Lin; . IS tmpro an o recogmze 

that the responses Yi = (yi1, ... , Yij, . .. , Y.inJ are generated with E(~j ) = f..Lij = 

exp [x~j(tij)P + r (t ij )] for all i = 1, . .. , n i and this leads to [E (~j) - f..Lij ] f. 0. To 

compute ~NGQL , we solve (3.17) by using the Newton-Raphson method. 

Next, to obtain a consistent and efficient estimate for ,6 involved in (3.16), we ac-

commodate the estimation effect of 1 (.) and the correlation structure of the responses 

to develop t he appropriate estimating equations. We do this estimation in two ways. 

(1) To develop the semi-parametric GQL (SGQL) estimat ion similar to the ex

isting semi-parametric GEE (SGEE) approaches, we use vaT(~ ) = L:~ns)(p) as the 

longitudinal weight matrix in t he estimating equation. Note that L:~ns) (p) is a cor-

rect covariance matrix under t he auto-correlation class but it is different than the 

'working' covariance matrix 1/i(a) used in SGEE. We will refer to this as t he partially 

standardized SGQL (PSSGQL) approach and will discuss this in Section 3.2.2.2. 

(2) We use vaT(~ - fii ) = 2::;(ns) (p ) to construct the SGQL estimating equation 

because of the fact that /ti contains i'( .) which is a function of y's . We refer to this 

as the fully standardized SGQL (FSSGQL) approach. This is discussed in Section 

3.2.2.4. 

3.2.2.2 PSSGQL estimation under non-stationary (ns) correlation struc-

ture 

As it is significant t o consider the estimation effect of i'(.) for the efficient estima-

tion of (3, we propose t he non-stat ionary correlation structures based PSSGQL(ns) 
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estimating equation for (3 as 

0, (3.18) 

where 

" (ns) ( A) - A (Y:) - Al /2 c (ns) (A) A 1/ 2 
LJi p - var t - i i p i ' (3.19) 

with Ai = diag[P,il) . . . ) fLij ) . . . ) fLinJ and c i(ns) (p) is the estimate of the n i X n i non

stationary correlation matrix C i(ns) (p) defined as 

C (ns)( ) _ ( (ns)( . )) 
i p - Ci,j,k Xij > Xik> P · (3.20) 

The formulas for t he elements c~~~k (.) depends on the correlation structures discussed 

in Section 3.1.2. 

By using (3.16) the elements in the gradient functions are calculated as 

Clearly, the estimating equation in (3.18) incorporates the non-stationary correla-

tions among the repeated count responses, which will enhance the efficiency of the 

regression parameter estimate. Since there does not exist any closed-form expression 

for /3, we use Newton-Raphson method to solve (3.18). 

Let 

f( /3) = t ~ [L:~ns) (p)r 1 (Yi- fLi)-
i=l 
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Starting with an initial value for (3, each step of the following iterative equation 

(3.21 ) 

updates the value of (3 until convergence. The derivat ive function, J' ((J) at (3 = f3(r ) 

in (3.21) is calculated as 

J( a-' a-
! '(!3) = _ "'\:"' __.!!j_ [L:: (ns)J-1 ____!!!:_ 

L..t 8(3 t 8(3' . 
t=l 

The estimation of non-stationary correlations are slightly different t han the station-

ary case as it subsumes the t ime dependent covariates in their estimation. As it 

is necessary to incorporate t his difference, the correlation matrix Ci(ns) (p) in (3.19) 

has the form (3.6), (3.10) and (3.13) under the non-stationary AR(1), MA(1) and 

EQC correlation structures, respectively, for the estimation of (3 using PSSGQL(ns) 

approach. 

Note that solving the estimating equation (3.18) requires the estimation of p 

parameter involved in the Ci(ns) (p) matrix. T his correlation index parameter can 

be estimated consistent ly by using the well-known method of moments. However, 

the formula for p estimate will be different under various non-stationary correlation 

structures. For example, in the next section we provide the estimate of p under 

non-stationary AR(1) correlation structure Ci(ns)(p). The estimate of p under other 

non-stationary correlation structures may be obtained similarly. 

3 .2 .2 .3 Estimation of correlation index parameter p 

In order to use the method of moment technique to estimate the correlation index 

parameter p, one can equate the sample covariance with its population counterpart 
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as 

E [L~1 f7~2 YijYi,j-1 ] ' h * - YtJ - f-.lt] w ere YtJ-
L i=1 ( ni - 1) ...jJiij 

K l _ E [t t (YiJ -L~ij ) (Yi,j -1 : f-.li,j-1)] 

L i=1 (n, 1) i=1 J=2 ...jJiij ~ 

K 1 t t COT"r(YiJ , Yi.1-1 ) VJiij~ 
L i=1 (ni - 1) i=1 J=2 ..jliijJf-.l•,J-1 

f( n i 

K 
1 LLP ~' from (3.6) 

L i=1 ( ni - 1) i= 1 j = 2 ...jJiij 

However, for the estimation of p , following Sutradhar (2010) we use sample auto-

correlations and equate that to its population counterpart. That is, 

yielding 
'\' I< '\'n i * * 

' D i= 1 D j = 2 YijYi,j - 1 
p = '\'!( '\'ni *2 

D i= 1 D j=1 Yij 
'\'!( '\'ni ['}i:J-1] ~' 
D t=1 L._.. J=2 l~iJ 

(3.22) 

under the non-stationary AR(1) correlation model, where Yij = y;:j!;/ with MiJ = 

exp(x~J (tiJ)/3 + i (tiJ)). 

PSSGQL estimation under stationary (s) corre lation structure 

For convenience, we refer to the PSSGQL estimation approach to PSSGQL(s) 

under the stationary(s) correlation structure. In this approach , we estimate the re-

gression parameter {3 using a similar estimating equation as that of the non-stationary 
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case (3 .18). The difference between the two cases lies in the fact that we now use 

A (' -':) _ " (s) ( A) _ Al/2 C·( A) Al/2 var 1 i - L<i p - i 1 P i , (3.23) 

with Ci(P) as in (3.3) , whereas in (3.18), the variance est imate is var (Yi) = l:~ns)(p). 

Thus, in t he present stationary case, t he est imating equation has the form 

K a-' 
"" I-ii [" (s)( )J-1 (' -) _ O L a /3 L<i P Yi - l''i - · 
i= l 

Because the computation of the L:~s) (p) requires t he calculation of auto-correlation 

matrix Ci (p), we estimate the lag correlations Pe ( € = 1, . . . , ni - 1) as 

'>:"'K '>:"'n-e - 0 * * I '>:' I< '>:"'n-e 0 0 
A = L.,i=l L.,u=l Oiu i,u+eY iuY i,u+l 6 i=l 6 u=l iu i ,u+e e = 1 2 n- 1 (3 .24) 

Pe '\:' I< '\:"'ni 0. *2 I '\:' I< '\:"'ni 0. ' ' ' ... ' 
L.,~1L.,~1 ruY~ L.,~1 L.,~1 ru 

{ 

1, 
Oiu = 

0, if ni < u :S: n , 

with Yiu = y;,. -exp(~i,:O~i'(ti,.)) . This formula for fie is the same as (2.37) in Chapter 2 
v exp(x;,..6+y(t;,.)) 

for linear correlated models except that an appropriate mean and variance for count 

data is used in the present formula. Note that the Ci(P) matrix in (3.23) (see also 

(3.3)) holds for a general class of auto-correlation structures, whereas dns) (p) matrix 

under the non-stationary correlation models are estimated for specified correla t ion 

structures. 

3 .2.2.4 FSSGQL estimation under non-stationary correlation structure 

The proposed PSSGQL(ns) estimating equation is constructed by using the t rue non-

stationary covariance matrix var(Yi) as the longitudinal weights . However , as argued 
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in Chapter 2 under semi-parametric linear models, it is appropriat e to use the weight 

matrix var(Yi - fli) to construct the estimating equation for {3. This adjustment 

arises mainly because the non-parametric function (when estimated) involved in the 

semi-parametric model depends on {3 . Also, when {3 is unknown , i(t0 ) by (3.15) still 

contains {Yij}· Because of this reason, one should consider 8~~:) as the correct gra

dient function while constructing t he estimating equation for {3 . Hence, similar to the 

FSSGQL estimation method discussed in Chapter 2 (Section 2.2 ) for linear models, 

for /li = [ilil , . . . , /li j, .. . ilinJ', one may use the FSSGQL( ns) estimating equation 

~ aE(itD [ ("'. _ )] _1 ( _ ) 0 L......t a{J var I i - f-Li Yi - f-Li = 
i=l 

(3.25) 

where /li j is given by (3.16) and var(Yi- /li) = ~;(ns)(p) , for estimating {3 . We use 

the formula for i(t0) from (3.15) and write 

(3.26) 

In order to construct the FSSGQL(ns) estimating equation (3 .25) , we now provide 

the formula to compute ~;(ns) (p) = var(Yi - fli) under the present semi-parametric 

model for count data . However , to obtain solutions for such FSSGQL(ns) estimating 

equation will naturally be complicated numerically. 
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Computation of 2:;(ns) (p) = var(Y; - jji) 

Cov(Y; ) + Cov(jji) - 2 Cov(Y; , jj~) 

(3.27) 

where L:~ns) = var(Y; ) has the form given in (3.19). The formulas for the calculation 

of the elements in t~ns) and f~ns) are as follows. 

Computation of t~ns) : 

Because jji = [jji1 , . . . , jjij, .. . , f1inJ', we need to compute the the elements var (jjij ) 

and cov(jjij, jjik ) to construct t~ns) matrix. The derivat ion for these components are 

given below. 

First , 
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Next, 

Cov (exp(x~1 (tiJ)(3 + i(tiJ)), exp(x~k(tik)(3 + i (tik ))) 

exp[(xiJ(tiJ) + Xik(tik))'(3] 

C ( L i:l L:~l Wtu (tij )Ylu L~=l "L::\ Wmv(tik)Ymv ) 
ov "L{:1 "L:~ 1 Wtu(tij)exp(x;uf3 ) ' L~=1 "L:;1 Wmv(tik )exp(x'mvf3) 

exp[(xiJ + xik )'(3] 

['L~1 "L:~1 Wtu(tij )exp(x;u f3 )] [L~=1 "L:;1 Wmv(tik)exp(x'mv f3 ) 

CifU (t; w,,(t;; )Ylu, t, ~ Wmu(t,,)Ymu ) 

Since Ytu's are independent, Cov(Ytu , Ymv) = 0 for all l f- m and 'U f- v. Hence 

CovC .. -. ) _ exp[(xiJ(tiJ) + xik(tik))'(3] "L{:1 "L:~1 "L:~1 Wtu(ti1) Wtv(tik )CTlt:) 
f.LtJ' f.Ltk - [ 2:::~1 2::::~1 Wtu (ti1)exp(x;J 3)] [2:::{:1 "L:~1 Wtu(tik)exp(x;J :J )] 

Note t hat when t he correlations are stationary, CTl~~) is replaced by CT~~~ = f.Llu and 

(ns) . l d b (s) _ v- u f . CTluv lS rep ace y CTluv - p CTiuu OI U < V. 

Computation of f1ns) : 

The calculations of f 1ns) matrix involves the calculation of Cov(YiJ, i1ik), for j, k = 

1, ... , n i and this quantity is calculated as follows. 

Under the assumption that Yi/s are independent, Cov(yij, "L{: 1 "L:~ 1 Wtu (tik)Ytu) = 
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Note that by using the formula for E;(ns\p) from (3 .27) and the derivative formula 

from (3.26), we solve the FSSGQL(ns) estimating equation (3.25) using the Newton-

Raphson method. Letting 

f ({J) = t a~;D [E;(ns)]-1 (Yi- /1i), 
i=l 

and starting with an initial value of {3, the iterative equation 

~(r+ l ) = ~(r) - [(J' (fJ)t 1 J ({J) ]f3=f3(r) (3.28) 

updates the value of {3 in each step unt il convergence. 

3 .2 .2.5 Existing PSSGEE approach 

Instead of using the estimating equation given in (3.18), authors, such as Severini 

and Staniswalis ( 1994) and Lin and Carroll ( 2001) use different est imating equation 

to estimate {3, which has the form 

0, (3.29) 

where Vi(a) is computed as 

Vi(&) = va:r(Yi) Ai/2 ~(&) Ai /2 (3.30) 

Ai12 R( & ) Ai12 for t he case ni = n 

with R( & ) as the constant stationary 'working' correlation matrix. T he estimat ing 

equation in (3.29) is referred to as the GEE, but because it uses vaT(Yi) instead 

of vaT(Yi - Jti ), for clarity we refer to this equat ion as the part ially standardized 

semi-parametric GEE (PSSGEE). 
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There are two problems when using ~(a) in estimating vaT(Yi ). First, in the 

non-stationary case, t he correlations should be dependent on the time dependent co

variates. Thus, using a stationary version, say Ci(P) (3.3) , for the true non-st ationary 

correlation matrix Ci(ns)(p) is an approximation. Secondly, ~(a) is not only station

ary but its form also may differ from Ci(P) as Ri(a) is a user 's choice matrix. In 

addition, there is no guidance for choosing Ri(a) and in the longitudinal setup with 

fully specified regression function, it was shown by Sutradhar and Das (1999) [see also 

Sutradhar (2010, 2011)] that use of Ri(a) may produce inconsistent [Crowder (1995)] 

or consistent but inefficient estimates for f3 as compared to t he simpler moment or QL 

approaches. As a remedy to this problem, Sutradhar (2003) proposed a GQL approach 

which always produces efficient estimates compared to the independence correlation 

based GEE approach. Thus, it seems appropriate to examine the effects of GEE 

estimates for f3 obtained from (3.29) by comparing with the PSSGQL(ns) approach 

under the present semi-parametric setup. These comparison studies are performed 

through various simulations and the results are provided in the next Chapter. 

3.2.2 .6 Estimation of 'working' correlation parameter a 

Following the existing GEE methods, we use the estimating equat ion in (3.29) with 

vaT(Yi) = Ai 12 R(&) Ai 12 , for t he estimation of the regression parameter {3 . Similar 

to t he linear model case, the 'working' correlation matrix R(a) is estimated under 

various correlation structures, namely, AR(1) , MA(1), EQC, independence (I) and 

unstructured (UNS) assumpt ions. The 'working' correlation parameter a, for t hese 

correlation structures is estimated by solving the respective moment equations. For 
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example, for EQC correlations structure, 

""K ""n; * * 
, L...-i=l L...-jf-u Y ij Y iu 

C\' = -""----;K,.,------""----'n'-'--; - (----=' '---. )-2 
L...-i=l L...-j =l Yij 

(3.31) 

h * Yij-exp(x;j(t ;j)b+'Y(t;j)) d f AR(1) d MA(1) l · ' w ere y . . = --'-;=~~~=~ an or an corre at10n st ructures, a 
t) J exp(X:j(t;j)b+')-(t;j)) 

is computed by using 
""K ""n ; - 1 * * 

, L...- i= l L...-j = l YijYi,J+l 
C\' = -""--;:K;---"-""-n-, .-::.( ' - • ..:.:..) 2-

L...-i= l L...-j =l Yij 

(3.32) 

Under the unstructured correla tion structure [Lin and Carroll (2001)], ~(a) is esti-

mated as 

3.3 Semi-parametric longitudinal models for binary 

data with non-stationary correlation struct ures 

Let Yij (tij ) be t he l h binary response for ith individual at time point t ij · In the 

binary case, t he marginal propert ies of the model are different than that for count 

data model. A typical choice for t he marginal mean would be a logit function. Thus, 

we write the mean and variance of the binary model as 

(3.33) 

(}i jj = (1 [ I ( )(3 ( )])2 + exp xij tij + 1 tij 
(3.34) 

for i = 1, ... , K; j = 1, . . . , ni, where K is the number of individuals, and ni is the 

number of responses for individual i . 
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3.3.1 Non-stationary correlation models for binary data 

The construction of the non-stationary correlation matrix C i(ns) (p) for the semi-

parametric longitudinal count data was given in Section 3.1.2 under three different 

such as AR(l), MA(l) and EQC structures. Note that t he formulas for the lag cor-

relations under the binary models would be different than the count data models. 

Following Sutradhar (2010) , the next three subsections provide the non-stationary 

correlation structures under the binary AR(l) , MA(l) and EQC models. 

3 .3.1.1 Non-stationary AR(l) models in semi-param etric setup 

The non-stationary AR(l ) type model for the binary responses Y ij under the semi-

parametric setup has the probability relationship 

/-Lil 

fl·ij + P(Yi,j - l - ILi ,j- l) for j = 2, . .. , n i, 

where the mean /-Lij in terms of the non-parametric function is given by 

It then follows that 

The covariance between the responses Yi j and Y i k can be derived in a similar way using 

the conditioning and unconditioning principle that we have used under the count data 

model. To be specific, 
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Hence for j < k, 

and it then follows that correlat ion between the responses Y ij and Y ik has the formula 

with the range restriction 

(ns) ( . ) 
Ci J. k Xij' X ik, p 
'' 

{Lij(1- I.Lij) 

11;k{1- l'ik) 

/-L; k(1-l-!;k) 
I-Lij(1-l-!ij) 

j <k 

j > k 

rnax [ - f..Li j -
1 

- f..Lij ] :::; p :::; min [ 
1 

- f..Lij , ___!!}:j_ ,] . 
1 - f..Li,j- 1 ' f..Li ,j- 1 ' 1 - f..Li ,j- 1 f..Li,j-1 

(3.35) 

But , when the model follows a st ationary correlation st ructure, t he correlations in 

(3.35) reduce to plk-1 1. 

3.3.2 Non-stationary MA(l) models in semi-parametric setup 

Under the non-stationary MA(1) correlation structure, the binary responses follow a 

probability relationship 

f..Li1 

dij + pdi,j - 1 for j = 2, ... , ni, 

where di/s are independently distributed with the following mean and variance [Su-

t radhar (2010)] 
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where 

Next, for j < k, the correlation between the responses Yi j and Yik is given by 

(ns) ( . ) ciJ.k Xij,X ik, p , , (3.36) 

( 

"'j - 1 u ) ( "'j - I u ) ~u~o (-p) J.Li , j - u l- L....lL- 0 (-p ) IJ.i ,j- u 

p "'J 1 ( )" "'J 1 ( )" L....u=O - p L....u=O -p fork- j = 1 

0 for k - j > 1 

However , under the stationary model, the correlations have the simple formula given 

by 

{ 

p for I k - j I = 1 

COT'r(}ij, Yik) = 

0 otherwise 

3.3.3 Non-stationary EQC models in semi-parametric setup 

Under the non-stationary EQC model, the probability relationship for the responses 

may be written as 

P [Yij = 1lyi0, Xij ] = /1ij + P(Yio- f.1i l ) , i = 1, .. . , K; j = 1, . . . , ni 

with 

exp[x~j(tij ) ,6 + 'Y(tij)] 
fl·ij = 1 + exp[x~j(tij ) ,6 + 'Y(tij)] 

(3.37) 

Also, in (3.37) it is assumed t hat YiD is an unobservable initial binary response, which 

has the same mean as Yil · Thus, we can write the mean and variance of this model 
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as 

V ar(Jij /xij) 

Next, the covariance and correlations are derived for j =I k as follows. 

(3.38) 

(3 .39) 

Note that if the binary data follow a stationary correlation structure, the non-

stationary correlations in (3.39) reduce to 

3.4 Estimation in semi-parametric models in Ion-

gitudinal binary data 

3.4.1 Estimation of non-parametric function "!(.) 

To estimate the non-parametric function, we use the SQL approach discussed in 

Section 1.2.3 for the binary data in the independence setup. For a given value of 
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{3, say, ~ the SQL estimating equation for 1(t0 ) at a par_ticular time point t0 can be 

writ ten as 

( t ) a f..lij Yij - f..l i j _ 0 K ~ [ ] 
~ ~ 'Wij 

0 a, ( to) J..lij(l- f..li j ) -

where 

Because 

the above estimating equation reduces to 

K n; 

L L 'Wij(to) (Yij - J..lij) = 0 (3.40) 
i = l j = l 

where Wij(t 0 ) = /{ Pi~~~~, PijCo ~tij ) = ;kbexpC~/ (to~tij) 2 ) , b is the band-
I:i=l I:j =l p,J ( b l 

widt h parameter and t ij is the time measure for the ith individual at t ime point j . 

Unlike the count or linear model cases, the estimating equation (3.40) does not 

provide a closed form formula for 1(t0 ). Thus, we use t he Newton-Raphson method 

to solve (3.40) . For a known value of {3, say ~, we denote the estimating function in 

the left-hand side of (3.40) as 

K n; 

f(t( to), ~) = L L 'Wij( to) (Yij - f..lij ) , (3.41) 
i= l j = l 

and write the Newton-Raphson iterative equation as 

(3.42) 

to obtain, for example, the improved value at (k + l )th iteration using t he value from 

the kth iteration. The iteration then cont inues until convergence. T he derivative 
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function f~(r(t0 ) ,/3) in (3.42) has the formula 

K ni 

f~(r (to), /3) = - L L Wij (to)f.li j(1- f.lij) · (3.43) 
i= l j=l 

3.4.1.1 PSSGQL(ns) estimation of (3 

For the estimation of regression parameter (3, by considering 

_ exp(xij(tij)(J + i (ti j, (3 )) 
f.lij = [1 + exp(xij (t i j )(3 + i(t ij, (3 ) )] ' 

(3.44) 

similar to that of (3.18) for count data, we can write the partially standardized 

semi-parametric GQL(ns) (PSSGQL(ns)) estimating equation under the longitudinal 

binary model setup as 

(3.45) 

where iii = [iii l , ... , iiij , . .. iiinJ' with P,ij defined as in (3.44) and the variance function 

has the form 

', ·(Y.) _ L:(ns) ( ' ) _ A112 C(ns)(') A112 var t - i P - i i P i ' (3.46) 

where Ci(ns) (p) can be computed for a known correlation model discussed in Section 

3.3.1. The elements in the gradient functions are calculated as follows. 

(3.47) 
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The quantity a.y~tf3) in (3.47) can be calculated by using the concept of Taylor 's 

series expansion and it then follows from (3.42) that 

- :!3 ( [J~(,(tij ) , f3)r 1 J CY(tij ), !3)) 

- ( u~CY(tij ),f3)r 1 : (J J CY(tij),/3) + : (3 [J~CY(tij ),f3)r 1 [JCY(tij),(J)J) 

- [J~CY(tij)· !3)r1 
( :(JJCY(tij) , (3) ) 

+ u~CY(tij) , fJ )J - l ( :(3 u~CY(tij) , !3)J) u~CY(tij), f3 )r 1 [JCY(tij), !3)J. 

where by (3.41), 

and by (3.43), 

:(J J~('y(tij ), (3 ) 

Analogous to the estimation procedure explained in the longitudinal count data 

model, there is no closed-form expression for (3 in the current binary setup as well. In 

fact , in the present binary case it is more complicated to obtain a form for a.y~~ ,f3 ) 

Nevertheless, one can use Newton-Raphson met hod to solve the estimating equation 

(3.45). The iterative equation for the this method is given by 

~(k+l) = ~(k) - ([Jb(i(t,(3), (3 )r 1J(i (t, (3 ),(3)){3=/3(k) (3.48) 

where 

J(i (t ,(3),(3) = £= ~~ [L:~nsl(t3)r 1 (Yi- Iii) 
i=l 
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and 

f '( ' (t (~) (~ ) = - ~ 8[1~ [I:(ns)(')]-1 8 fli 
P"~ ,f-l,f-1 L 8f3 t P 8!3'. 

t=1 

3.4.1.2 Estimation of correlation index parameter p 

Similar to t he calculations under t he count data model, we equate the sample covari-

ance with its population counterpar t as 

1 K n ; ~ 
"'"'"'"' v ai,j-1 --K=------- LL P · 

L i= 1 (ni - 1) i=1 j =2 yiCiij 

This yields the moment estimating equation for p under the non-stationary AR(1) 

correlation model as 

"'K "'n ; * * 
, L...ti=1 L...tj=2 Yi]Yi,j-1 
P = "'K "'n ; •2 

L...ti= 1 L...tj= 1 Yij "'K "'n; [a':j 1] ~' 
L...t t=1 L_...J = 2 !Yij 

(3.49) 

h y - [1. } , exp(x;j( t;j),6H(t;j) ) d , _ , ( , ) A d h 
w ere y71· = '1c 1 wit1 JLij = [ (, ( )!3 .( ))) an aij - JLij 1 -JLij. n , t e y rYij 1+exp xij t ,1 + y t,1 

estimates /J and ,:Y(tij) are computed by using the PSSGQL(ns) and SQL approaches 

for (3 and 'Y(tij), respectively. 

3.4.1.3 FSSGQL(ns) estimation of (3 

Similar to t he FSSGQL(ns) estimating equat ion (3.25) for (3 in the count dat a case, 

t he estimating equation for the binary case is given by 

~ 8E(j1~) [I:*(ns)]-1 ( . _ - ·) = O L 8(3 t Yt f-tt , 
i = 1 

(3.50) 

where the elements flij in fli has the form given in (3.44) whereas in the count data 

case flij = exp(xij(tij)(J + ,:Y (tij,{3) ). Note that because of the difference in formulas 

for fli, 1(.) in flij can not be obtained explicitly for the binary data. This makes the 
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computa tion for a~;; ) as well as L:;(ns) extremely complicated. However, the empirical 

st udy to be discussed in Chapter 4 demonstrated that for t he count data case, the 

FSSGQL(ns) offers a slight improvement only over t he estimation by the PSSGQL(ns) 

approach. It is expected t hat this pattern might be t rue for the binary case as well. 

For this reason, we have not pursued t he exact computations for the components of 

the est imating equat ion (3.50) . Furt her investigations for any approximat ion may be 

useful but is not attempted at this stage. 
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Chapter 4 

Empirical Study for 

Semi-parametric Longitudinal 

Count Data Models 

We have provided a detailed finite sample based numerical study in Chapter 2 un

der the Gaussian-type ARMA auto-correlation models involving a semi-parametric 

regression function. It was found that the proposed FSSGQL approach produces 

uniformly more efficient regression estimates than the existing PSSGEE approaches. 

In this chapter we examine the fini te sample performan ces of the aforementioned 

approaches for t he discrete data case. More specifically, we choose the count data 

models for the empirical study because of the fact that the semi-parametric numerical 

analysis for such longitudinal count data is not adequately discussed in the literature. 

The organization of the empirical study in this chapter is as follows. In Sections 

4. 1 and 4.2, we provide the simulation design and data generation. Section 4.3 ex-
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amines the performance of the naive GQL (NGQL) approach which shows the extent 

of bias in the estimation of (3 when the non-parametric function is ignored in the 

estimation. In Section 4.4, we compare the relative efficiency performance of the pro-

posed PSSGQL(ns) approach with the existing PSSGEE approaches. We also study 

the performance of the FSSGQL(ns) approach in Section 4.5. 

4.1 Simulation design 

(a) Sample Size: K = 100; n; 4 for i 1, ... , K ; and t ;j j for all i 

1, ... , K , and j = 1, ... , n;. 

(b) Covariate Selection: Similar to the fully specified longitudinal model studied 

in Sut radhar (2010), we consider p = 2 t ime dependent covariates with their values 

as 

~ for i = 1, .. . , 25 and j = 1, 2 

1 for i = 1, .. . , 25 and j = 3, 4 

-;
1 for i = 26, . .. , 75 and j = 1 

0 for i = 26 , . . . , 75 and j = 2, 3 

~ fori = 26 , . . . , 75 and j = 4 

2~; for i = 76, . . . , 100 and j = 1, 2, 3, 4 

for i = 1, .. . , 50 and j = 1, 2, 3, 4 

0 for i = 51, . . . , 100 and j = 1, 2 

~ for i = 51, . . . , 100 and j = 3, 4 

Note that the covariate values are chosen to reflect the variable time dependence 
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for the different groups of individuals. Thus, the choice is quite general. One may 

choose other specific covariates depending on the situations. 

(c) Covariate Effects: We choose three different sets of covariate effec ts. 

(1) ((31, (32)1 = (0, 0)' 

(2) ((31, !32)1 = (0.5, 0.5)' 

(3) ({31, !32)1 = (1.0, 1.0)' 

(d) Non parametric function: We consider a quadratic function for 1 ( t ij) as 

which is similar as that of the linear model case considered in t he simulation study in 

Section 2.3. Note t hat t his function is unknown in practice. Hence for t he inferences 

this is treated as a non-parametric function. 

4.2 Data generation 

We choose the semi-parametric AR(1) non-stationary correlation model to generate 

the data. To be specific, for all i = 1, ... , 100 and j = 1, . . . 4, Yi/s are generated as 

follows. 

and 1(.) are given under the simulation design. 

(b) For tij = j = 2, .. . , 4, Yij 's are generated following the binomial thinning 

operation p * Yi ,j-1 = :z::::::;;;;1 
1 

bs(P) with dij ,....., Poi(tJij - P/Ji,j - 1) -
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4.3 NGQL estimat ion: A biased approach 

To obtain NGQL estimate of {3 , we solve the NGQL estimating equation (3. 17) which 

was constructed by ignoring 1'(.) in the mean response function. The data are gen

erated following Section 4.2 and the simulations are repeated for 1000 times. The 

computational steps for NSGQL estimation is as follows. 

Step 1. Starting with an initial value of {3 and an initial value of correlat ion index 

parameter p, we solve (3.17) to obtain the NGQL estimate of {3 . 

Step 2. We estimate p from (3.22) using t he estimate of {3 from Step 1. 

Step 3 . Repeat Steps 1 and 2 in order to obtain improved estimates for {3 and p. 

The simulation results are provided in the Table 4.1. As expected, the est imates of 

{3 are biased for various choice of the regression parameter {3 and p. For example, for 

t he true regression parameter {3 = (0.5, 0.5)', the estimated value of {3 when p = 0.8 

is (1.0318, 1.2595)' , which shows very large bias in estimating {3 by using ~NGQL · 
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Table 4. 1: Simulated means (SMs), simulated standard errors (SSEs) and mean 

squared error (MSEs) of the naive estimates of regression parameters (3 under non-

stationary AR(1) correlation model for selected values of correlation index parameter 

p with K=100; n=4; and 1000 simulations. 

True {3 = ((31, (32)' p Qunantity ~1 (32 p 

(3 = (0, 0)' 0.2 SM 0.4595 0.8190 0.2011 

SSE 0.1063 0.1820 0.0624 

MSE 0.2224 0.7039 

0.5 SM 0.4747 0.7620 0.4532 

SSE 0.1158 0.1796 0.0620 

MSE 0.2387 0.6129 

0.8 SM 0.4894 0.6903 0.7014 

SSE 0.1018 0.1684 0.0448 

MSE 0.2499 0.5086 

(3 = (0.5 , 0.5)' 0.2 SM 1.0000 1.3233 0.1793 

SSE 0.0826 0.1442 0.0622 

MSE 0.2568 0.6986 

0.5 SM 1.0072 1.2979 0.4090 

SSE 0.0875 0.1486 0.0595 

MSE 0.2649 0.6587 

0.8 SM 1.0318 1.2595 0.6378 

SSE 0.0884 0.1432 0.0482 

MSE 0.2906 0.5973 
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Table 4.1 Continued 

True (3 p Qunantity ~1 (32 p 

(3 = (1, 1)' 0.2 SM 1.5076 1.8333 0.1667 

SSE 0.0634 0.1188 0.0609 

MSE 0.2617 0.7083 

0.5 SM 1.5199 1.8217 0.3712 

SSE 0.0685 0.1181 0.0597 

MSE 0.2750 0.6891 

0.8 SM 1.5312 1.8150 0.5795 

SSE 0.0708 0.1221 0.0534 

MSE 0.2872 0.6791 
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4.4 A finite sample efficiency comparison between 

PSSGQL(ns) and PSSGEE estimations 

Because the NGQL estimates were found to be highly biased , we now proceed to 

examine the performance of the proposed PSSGQL(ns) and other existing PSSGEE 

approaches, which are developed by considering that the regression function contains 

a non-parametric function as well. For the simulation studies, we generate correlated 

count data as described in Section 4.2 along with three different values of correlation 

index parameter. To consider both low and high correlations, we have chosen p = 

0.2, 0.5 and 0.8. The simulations are repeated for 1000 times. For the estimation of 

f3 including p and the non-parametric function 1{), we follow the following steps. 

Step 1. For an initial value of {3, we solve the 'working' independence assumption 

based SQL estimating equation (3.15) to estimate the non-parametric function ry (-). 

Step 2. Starting with an initial value of {3, i (-) from Step 1, and an initial value 

of correlation index parameter p, we use (3.21) to obtain the proposed PSSGQL(ns) 

estimate of f3 . 

Step 3 . Next, we estimate p from (3.22) using the estimates of ry (-) and f3 from 

Steps 1 and 2 , respectively. 

Step 4 . We repeat Steps 1 , 2 and 3 in order to obtain improved estimates for the 

non-parametric function ry(-), f3 and p. 

The computational steps for PSSGEE approaches are the same as above, ex

cept that in these approaches, the 'working' correlation parameter a is computed 

depending on the chosen correlation structure. For convenience, we denote PSS

GEE(AR(1)) , PSSGEE(MA(1)) , PSSGEE(EQC) , PSSGEE(I) , PSSGEE(UNS) to 
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represent the PSSGEE approaches under 'working' correlation structures AR(1), 

MA(1), EQC, independence and unstructured respectively. We consider the mean 

squared error (MSE) for this comparison study. T he simulation results for three dif

ferent sets of regression parameters namely, ({31 , {32 )' = [(0, 0)', (1, 1)', (0.5, 0.5)'] are 

provided in the Tables 4.2, 4.3 and 4.4 respectively, for the proposed PSSGQL(ns) 

and PSSGQL(s), as well as for the existing PSGEE approaches. 

The results from Table 4.2 show that for a selected set of true values of {3 

({31 , {32 ) ' = (0, 0)', the MSE under the proposed PSSGQL(ns) are uniformly smaller 

t han the PSSGEE approaches for p = 0.2, 0.5 or 0.8. This pattern also holds when 

({31 , {32 ) ' = (1, 1)' as displayed in Table 4.3. However, when {3 = ({31 . {32)' = (0.5, 0.5)' , 

some of the PSSGEE methods appear to work as good as PSSGQL(ns) for low cor

relation case. Turning back to Table 4.2 , when PSSGQL(ns) regression estimates 

are compared to that of PSSGQL(s) , the MSEs under PSSGQL(ns) are uniformly 

smaller t han those under PSSGQL(s), as expected. The difference between t he MSEs 

is significant when correlations are large. However , when PSSGQL(s) and PSSGEE 

approaches are compared , PSSGQL(s) appear to perform almost the same as the 

PSSGEE(AR(1)) , PSSGEE(MA(1)) and PSSGEE(UNS), but PSSGEE(EQC) and 

PSSGEE(I) perform the worst. To illustrate these relative performances, we point 

out , for example, t he MSEs of all approaches when correlation is large. More specifi

cally it follows from Table 4.2 with {3 = (0, 0)' and p = 0.8, the MSE for {32 estimate 

under PSSGQL(ns) is 0.0891 followed by 0. 1620 for PSSGEE(UNS), and the MSE for 

the worse case PSSGEE(I) being 0.2029. It appears from these results that there can 

be a huge efficiency loss in t he main regression parameter estimation when PSSGEE(I) 

or other PSSGEE methods are used, especially when data are highly correlated. 
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When estimating (3, we have to estimate t he non-parametric function l'( -) involved 

in the semi-parametric regression function (3. 1). As discussed in Section 3.2.1 , l'( -) 

is estimated by using the SQL approach for known (3 . Since (3 is estimated by using 

various PSSGQL and PSSGEE met hods, l'( -) is also estimated under each of these 

methods. The resulting estimates of i'(.) under these different methods along with 

the true l'(-) function are displayed in Figures 4.1 , 4.2 and 4.3 for large correlation 

cases. In the estimation procedure for estimating non-parametric function, we have 

used t he bandwidth b = (
41

}p;s [Pagan and Ullah (1999)], for example. It can be 

seen from t he figures that the non-parametric function is estimated well for different 

regression parameter values. T his is because all the estimated functions appear to 

be close to the true curve for the selected non-paramet ric function. The results are 

similar for the other cases . 
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Figure 4. 1: Simulat ed means of estimates of 'Y (t) for PSSGQL and PSSGEE methods, 

and true values of 'Y( t) under non-stationary AR( 1) correlation models for count data 

with a correlation index parameter p = 0.8 and regression parameters (/31 , (32 ) ' = 

(0, 0)'. 
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Figure 4. 2: Simulated means of est imates of 'Y(t) for PSSGQL and PSSGEE methods, 

and true values of 'Y(t) under non-st ationary AR(1) correlation models for count data 

with a correlation index parameter p = 0.8 and regression parameters ({31 , {32)' = 

(1, 1 )' . 
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Figure 4.3: Simulated means of estimates of 1 (t) for PSSGQL and PSSGEE methods, 

and true values of 1 (t) under non-stationary AR(l) correlation models for count data 

with a correlation index parameter p = 0.8 and regression parameters (fh, {32)' = 

(0.5, 0.5)'. 
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Table 4.2: Simulated means (SMs), simulated st andard errors (SSEs) and mean 

squared error (MSEs) of the PSSGQL and PSSGEE estimat es of regression parame-

ters /31 = 0.0 and /32 = 0.0, under non-st ationary AR(1) correlation model for select ed 

values of correlation index parameter p with K= 100; n=4; and 1000 simulations. 

p Method Quantity /31 !32 & p fh P2 P3 

0.2 PSSGQL(ns) SM -0 .0158 -0.0102 0.1776 

SSE 0.1533 0.3221 0.0597 

MSE 0.0238 0.1039 

PSSGQL(s) SM -0.0162 -0.0108 0.1769 0.0256 -0.0014 

SSE 0.1537 0.3264 0.0594 0.0756 0.1023 

MSE 0.0239 0.1067 

PSSGEE (AR(1)) SM -0 .0161 -0.0105 0.1769 

SSE 0.1534 0.3262 0.0594 

MSE 0.0238 0.1065 

PSSGEE (MA(1)) SM -0.0163 -0 .0106 0.1769 

SSE 0.1533 0.3262 0.0594 

MSE 0.0238 0.1065 

PSSGEE (EQC) SM -0.0163 -0.0109 

SSE 0.1546 0.3269 

MSE 0.0242 0.1070 

PSSGEE (I) SM -0.0187 -0.0148 

SSE 0.1576 0.3285 

MSE 0.0252 0.1081 

PSSGEE (UNS) SM -0 .0170 -0 .0108 

SSE 0.1536 0.3265 

MSE 0.0239 0.1067 
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Table 4.2 Continued 

p Method Quant ity fJ I (32 0: p PI P2 P3 
0.5 PSSGQL(ns) SM 0.0062 0.0234 0.4494 

SSE 0.1671 0.3228 0.0582 
MSE 0.0280 0.1047 

PSSGQL(s) SM 0.0060 0.0215 0.4473 0.1970 0.0837 
SSE 0.1753 0.3488 0.0580 0.0781 0.0989 
MSE 0.0308 0.1221 

PSSGEE (AR(1) ) SM 0.0059 0.0215 0.4473 
SSE 0.1751 0.3491 0.0580 
MSE 0.0307 0.1223 

PSSGEE (MA(1)) SM 0.0058 0.0213 0.4472 
SSE 0.1740 0.3497 0.0579 

MSE 0.0303 0.1223 
PSSGEE (EQC) SM 0.0065 0.0218 0.3033 

SSE 0.1823 0.3543 0.0604 

MSE 0.0333 0.1260 

PSSGEE (I) SM 0.0018 0.0158 
SSE 0.1919 0.3622 

MSE 0.0368 0.1314 
PSSGEE (UNS) SM 0.0057 0.0214 

SSE 0.1754 0.3478 
MSE 0.0308 0.1214 

0.8 PSSGQL(ns) SM 0.0071 0.0125 0.7177 

SSE 0.1549 0.2982 0.0431 
MSE 0.0240 0.0891 

PSSGQL(s) SM 0.0106 0.0157 0.7139 0.5076 0.3617 
SSE 0.1858 0.4079 0.0430 0.0687 0.0940 
MSE 0.0346 0.1666 

PSSGEE (AR(1)) SM 0.0107 0.0155 0.7140 
SSE 0.1852 0.4076 0.0430 
MSE 0.0344 0.1664 

PSSGEE (MA(1)) SM 0.0109 0.0153 0.7137 
SSE 0.1820 0.4095 0.0430 
MSE 0.0332 0.1679 

PSSGEE (EQC) SM 0.0107 0.0159 0.5864 
SSE 0 1982 0.4181 0.0543 
MSE 0.0394 0.1751 

PSSGEE (I) SM 0.0164 0.0167 

SSE 0.2261 0.4501 
MSE 0.0512 0.2029 

PSSGEE (U S) SM 0.0103 0.0158 
SSE 0.1859 0.4022 
MSE 0.0347 0.1620 
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Table 4.3: Simulated means (SMs), simulated st andard errors (SSEs) and mean 

squared error (MSEs) of the PSSGQL and PSSGEE estimates of regression parame-

ters {31 = 1.0 and {32 = 1.0, under non-stationary AR(1) correlation model for selected 

values of correlation index parameter p with K=100; n=4; and 1000 simulations. 

p Method Quantity {31 {32 a p ih P2 P3 

0.2 PSSGQL (ns) SM 1.0033 1.0048 0.1470 

SSE 0.1300 0.2409 0.0598 

MSE 0.0169 0.0581 

PSSGQL(s) SM 1.0033 1.0052 0.1465 0.0152 -0.0015 

SSE 0.1307 0.2424 0.0596 0.0730 0.1020 

MSE 0.0171 0.0588 

PSSGEE (AR(1)) SM 1.0032 1.0049 0. 1465 

SSE 0.1306 0.2427 0.0596 

MSE 0.0171 0.0589 

PSSGEE (MA(1)) SM 1.0032 1.0050 0.1465 

SSE 0. 1305 0.2427 0.0596 

MSE 0.0170 0.0589 

PSSGEE (EQC) SM 1.0031 1.0051 0.0780 

SSE 0.1314 0.2431 0.0474 

MSE 0.0173 0.0591 

PSSGEE (I) SM 0.9982 0.9978 

SSE 0.1507 0.2643 

MSE 0.0227 0.0699 

PSSGEE (UNS) SM 0.9726 0.9839 

SSE 0.3571 0.5081 

MSE 0.1283 0.2584 
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Table 4.3 Continued 

p Method Quantity fh fh a p P1 P2 P3 
0.5 PSSGQL (ns) SM 1.0020 1.0032 0.3690 

SSE 0.1400 0.2541 0.0576 

MSE 0.0196 0.0646 
PSSGQL(s) SM 1.0013 1.0004 0.3679 0. 1277 0.0422 

SSE 0.1447 0.2708 0.0573 0.0747 0.1020 
MSE 0.0209 0.0733 

PSSGEE (AR(1)) SM 1.0009 1.0000 0.3679 
SSE 0.1450 0.2711 0.0573 
MSE 0.0210 0.0735 

PSSGEE (MA(1)) SM 1.0010 1.0001 0.3679 
SSE 0.1445 0.2717 0.0573 
MSE 0.0209 0.0738 

PSSGEE (EQC) SM 1.0012 1.0007 0.2334 
SSE 0.1475 0.2715 0.0558 
MSE 0.0218 0.0737 

PSSGEE (I) SM 1.0064 1.0010 
SSE 0.1658 0.2861 
MSE 0.0275 0.0819 

PSSGEE (UNS) SM 0.9837 0.9820 
SSE 0.4717 0.6122 
MSE 0.2228 0.3751 

0.8 PSSGQL(ns) SM 0.9997 1.0160 0.5966 
SSE 0.1479 0.2658 0.0501 
MSE 0.0219 0.0709 

PSSGQL(s) SM 1.0022 1.0188 0.5945 0.3409 0.2115 
SSE 0.1668 0.3083 0.0499 0.0766 0.0996 
MSE 0.0278 0.0954 

PSSGEE (AR(1)) SM 1.0024 1.0192 0.5945 
SSE 0.1672 0.3084 0.0499 
MSE 0.0280 0.0955 

PSSGEE (MA(1)) SM 1.0023 1.0189 0.5944 
SSE 0.1640 0.3091 0.0499 
MSE 0.0269 0.0959 

PSSGEE (EQC) SM 1.0023 1.0192 0.4460 

SSE 0.1746 0.3124 0.0590 
MSE 0.0305 0.0980 

PSSGEE (I) SM 0.9874 0.9982 
SSE 0.1852 0.3127 
MSE 0.0345 0.0978 

PSSGEE (UNS) SM 0.9742 1.0179 

SSE 0.5872 0.5472 

MSE 0.3455 0.2997 
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Table 4.4: Simulated means (SMs), simulated standard errors (SSEs) and mean 

squared error (MSEs) of the PSSGQL and PSSGEE estimates of regression parame-

ters {31 = 0.5 and {32 = 0.5, under non-st ationary AR(1) correlation model for selected 

values of correlation index parameter p with K=100; n=4; and 1000 simulations. 

p Method Quantity {Jl 42 Q p P 1 P2 P3 

0.2 PSSGQL(ns) SM 0.5110 0.5109 0.1586 

SSE 0.1381 0.2755 0.0601 

MSE 0.0192 0.0760 

PSSGQL(s) SM 0.5106 0.5120 0.1581 0.0234 0.0024 

SSE 0.1381 0.2756 0.0599 0.0743 0.1013 

MSE 0.0192 0.0761 

PSSGEE (AR(1)) SM 0.5106 0.5120 0.1581 

SSE 0.1380 0.2757 0.0599 

MSE 0.0192 0.0762 

PSSGEE (MA(1)) SM 0.5108 0.5121 0.1581 

SSE 0.1380 0.2757 0.0599 

MSE 0.0192 0.0762 

PSSGEE (EQC) SM 0.5105 0.5119 0.0872 

SSE 0.1385 0.2755 0.0494 

MSE 0.0193 0.0760 

PSSGEE (I) SM 0.5153 0.5119 

SSE 0.1511 0.2859 

MSE 0.0231 0.0819 

PSSGEE (UNS) SM 0.5109 0.5115 

SSE 0.1386 0.2764 

MSE 0.0193 0.0765 
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Table 4.4 Continued 

p Method Quantity !31 !32 & p P1 P2 P3 
0.5 PSSGQL(ns) SM 0.4950 0.5028 0.40588 

SSE 0.1551 0.2969 0.0565 
MSE 0.0241 0.0882 

PSSGQL(s) SM 0.4963 0.5056 0.4042 0.1566 0.0628 

SSE 0.1607 0.3208 0.0561 0.0774 0.1006 

MSE 0.0258 0.1029 
PSSGEE (AR(1)) SM 0.4958 0.5051 0.4042 

SSE 0.1607 0.3207 0.0561 

MSE 0.0258 0.1029 
PSSGEE (MA(1)) SM 0.4960 0.5053 0.4041 

SSE 0.1593 0.3211 0.0561 

MSE 0.0254 0.1031 
PSSGEE (EQC) SM 0.4958 0.5056 0.2647 

SSE 0.1654 0.3228 0.0568 

MSE 0.0274 0.1042 
PSSGEE (I) SM 0.4959 0.5048 

SSE 0.1748 0.3218 
MSE 0.0306 0.1036 

PSSGEE (UNS) SM 0.4961 0.5055 
SSE 0.1611 0.3194 

MSE 0.0260 0. 1020 

0.8 PSSGQL(ns) SM 0.5076 0.5079 0.6529 

SSE 0.1485 0.2753 0.0462 
MSE 0.0221 0.0759 

PSSGQL(s) SM 0.5098 0.5085 0.6503 0.4182 0.2776 

SSE 0.1717 0.3456 0.0461 0.0714 0.0947 

MSE 0.0296 0.1195 
PSSGEE (AR(1)) SM 0.5095 0.5083 0.6503 

SSE 0. 1715 0.3456 0.0461 

MSE 0.0295 0.1195 
PSSGEE (MA (1)) SM 0.5103 0.5084 0.6502 

SSE 0.1671 0.3464 0.0460 
MSE 0.0280 0.1201 

PSSGEE (EQC) SM 0.5093 0.5092 0.5108 

SSE 0.1827 0.3523 0.0555 
MSE 0.0335 0.1242 

PSSGEE (I) SM 0.5109 0.5156 
SSE 0.1904 0.3602 

MSE 0.0364 0.1300 
PSSGEE (UNS) SM 0.5117 0.5119 

SSE 0.1792 0.3538 
MSE 0.0322 0.1253 
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4.5 Performance of the FSSGQL(ns) estimation 

Recall from Chapter 3 that in addition to the PSSGQL estimation , we also proposed 

the FSSGQL approach (Section 3.2.2.4) when estimation effect of 1{) is accommo

dated in the longit udinal weight matrix to construct the estimating equation. In this 

section, we examine whether the FSSGQL(ns) approach offers any improvement over 

the PSSGQL approach for longitudinal count data. The data generation and estima

tion steps are similar to that in Section 4.4. More specifically, t he est imation steps 

are: 

Step 1. For an initial value of (3 , we solve the 'working' independence assumption 

based SQL estimating equation (3.15) to estimate the non-parametric function 1U. 

Step 2. Starting with an initial value of (3 , i{) from Step 1, and an initial value 

of correlation index parameter p, we use (3.28) to obtain the proposed FSSGQL(ns) 

estimate of f3 . 

Step 3. Next, we estimate p from (3.22) using the estimates of 1U and (3 from 

Steps 1 and 2 , respectively. 

Step 4. We repeat Steps 1 , 2 and 3 in order to obtain improved estimates for the 

non-parametric function 1(-), (3 and p. 

The simulation results for the FSSGQL(ns) approach are given in Table 4.5. We 

have also displayed the non-parametric function estimates (i (. )) using P FsSGQL(ns ) 

in Figures 4.4 and 4.5 for (3 = (0, 0)' and (3 = (0. 5, 0.5)' respectively. The figures 

show that t he non-parametric function is estimated well. As far as the estimation 

of t he main regression parameter (3 is concerned, FSSGQL(ns) appears to perform 

almost the same, offering in general slight reduction in the MSEs as compared to 
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the PSSGQL(ns) approach. For example, when {3 = (0, 0)' and p = 0.5, t he MSEs 

for ;31 and ;32 under the FSSGQL approach are 0.0222 and 0.0783 whereas under the 

PSSGQL(ns) approach t hey are 0.0280 and 0.1047 respectively. 

Table 4.5: Simulated means (SMs), simulated standard errors (SSEs) and mean 

squared error (MSEs) of t he FSSGQL(ns) estimates of regression parameter {3 un

der non-stationary AR(1) correlation model for selected values of correlat ion index 

parameter p with K= 100; n= 4; and 1000 simulations. 

True {3 = ({31 , fJ2)' p Quantity {Jl {32 p 

{3 = (0, 0)' 0.5 SM 0.0049 0.0178 0.4477 

SSE 0.1489 0.2792 0.0579 

MSE 0.0222 0.0783 

0.8 SM 0.0102 0.0107 0.7145 

SSE 0.1572 0.3258 0.0430 

MSE 0.0248 0.1063 

{3 = (0.5, 0.5)' 0.5 SM 0.4457 0.3986 0.4049 

SSE 0.1399 0.2739 0.0560 

MSE 0.0225 0.0853 

0.8 SM 0.4534 0.3899 0.6510 

SSE 0.1484 0.2939 0.0460 

MSE 0.0242 0.0985 
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F igure 4.4: Simulated means of estimates of 1 (t ) for FSSGQL(ns) met hod and true 

values of 'Y(t) under non-stationary AR(l) correlation models for count data with 

regression parameters ({31 , {32 ) ' = (0, 0)' . 
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Figure 4.5: Simulated means of estimates of ry(t) for FSSGQL(ns) method and true 

values of ry (t ) under non-stationary AR(1) correlation models for count data with 

regression parameters ({31 , {32 ) ' = (0.5, 0.5)'. 
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Chapter 5 

Concluding Remarks 

When the regression function is fully specified, there exists GEE and GQL approaches 

in t he longitudinal setup for efficient estimation of the regression parameters. As op

posed to the GEE approach, the GQL approach is developed for a class of Gaussian

type auto-correlation models. It is known that the GEE approach may produce less 

efficient regression estimates as compared to the independence assumption based QL 

or MM approaches, whereas t he GQL approach produces more efficient estimates. In 

this thesis, we have studied the semi-parametric regression models where the regres

sion function also contains a non-parametric function in the longitudinal setup for 

both continuous and discrete data . It is found that similar to the completely longi

tudinal setup, the SGQL (semi-parametric GQL) approach produces uniformly more 

efficient regression estimates than the SGEE (semi-parametric GEE) approaches, in

cluding the independence assumption based SGEE(I) approach. This is demonstrated 

in the linear model setup in Chapter 2, and for longitudinal count data in Chapter 4. 

Unlike some of the existing SGEE approaches, in this thesis we have estimated 
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the non-parametric function based on the independence assumption, whereas there

gression effects are estimated by exploiting the non-stationary correlation structure 

of the repeated discrete responses. Furthermore, as opposed to the existing SGEE 

approaches, we have accommodated the estimation effect of the non-parametric func

tion while estimating the regression parameters. This resulted in the FSSGQL (fully 

standardized SGQL) and PSSGQL (partially standardized SGQL) approaches. The 

performances of all these approaches are discussed in details in Chapter 2 for contin

uous correlated data, and in Chapters 3 and 4 for discrete correlated data. We found 

that in the linear model setup , the FSSGQL approach yielded uniformly more efficient 

regression estimates than the PSSGEE approaches. In the discrete data setup, the 

PSSGQL approach produced more efficient estimates than the PSSGEE approaches. 

Also, the FSSGQL approach provided slightly more efficient regression estimates t han 

the PSSGQL approach. 

While this thesis has provided useful inferences for generalized linear longitudi

nal semi-parametric models, future research should investigate an approximation to 

ease the computation aspects in the semi-parametric longitudinal binary data setup. 

Further research should investigate the modelling of correlations when responses are 

collected based on unequi-spaced t ime points. Also, in the longitudinal setup , it may 

happen that a portion of the data is missing at random. The semi-parametric in

ference for such missing data would be of interest to researchers, presenting more 

complicated inferences. 
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