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Abstract

The current, generation of smartphone devices equipped with embedded sensors
like gyroscope, accelerometer and electronic compass, provide new opportunities for
user positioning and tracking. In addition, the rapid growth of location based appli-
cations has spurred extensive research on localization. However localization in indoor
cnvironments still remains an clusive and challeuging problem as GPS (Global Posi-
tioning System) does not work inside buildings and the accuracy of other localization
techniques typically comnes at the expense of additional infrastructure or cuinbersome
war-driving. Specifically, in places where Wi-Fi access points are sparsely deployed,
localization hecomes more challenging when relying only on Wi-Fi based technolo-
gies. For such environments, we propose a localization scheme which uses motion
information from the smartphone’s accelerometer, magnetometer, and gyroscope sen-
sors to detect steps and estimate direction changes. At the same time, we use a Wi-Fi
based fingerprinting technique for independent position estimation. These measure-
nients along with an internal representation of the environment are combined using a
Bayesian filter. This system will allow us to reduce the amount of training required

and work in sparse Wi-Fi cnvironments.
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Chapter 1

Introduction

1.1 Smartphones for Sensor-Driven Computing

Recent advances in mobile devices, embedded sensors and hardware make it possible
to envision a large scale wireless network of smart devices. Today’s smartphones
are programmable and come with a set of cheap yet powerful embedded sensors,
such as a GPS reciever, accelerometer, gyroscope, digital compass, microphone, and
camera, which arc enabling a new generation of personal and participatory sensing
applications. Each device can be viewed as a “virtual lens” acting as eyes and ears
for the surrounding physical space [20].

The smartphone is emerging as the main technologv platform in the mobile mar-
ketplace with the number of users expected to exceed oue billion by 2014 [33]. The
so-called third screen is increasinglv finding itself at hoine alongside the TV and com-
puter screens. Research has found that 60% of mobile web usage is now taking place

indoors, bringing smartphones closer to the promise of being “always on” devices [18].




So we see Mark Weiser’s vision becoming a reality [58].

Along with mobile devices, we also saw rapid advances in network technologies
while network infrastructure became more extensive and more reliable. This new level
of ubiquitous network connectivity and pervasive devices has ebabled a new category
of context-aware applications. Context is any information which can be used to
characterize the situation of an entity. An entity can be a person, place or object
that is counsidered relevant to the interaction between a user and an application,
including the application and users themselves. Hence, smartphones bring us new

opportunities to exploit nser context, and make innovative mobile applications.

1.2 Mobile Phone Location Based Services

There are varions aspects of context that can be useful to personalize the service to the
user. User identity, orientation, history, time, purpose of use, physical surroundings,
systemn propertics, social and cultural situation arc different arcas of context in which
research is being done [39]. One of the most important dimensions of context is
location. A user’s location can be pliysical, logical or both. Physical or absolute
location can be described by geo-referenced coordinates whereas logical location is
relative, for example, inside a room or near some building. This information can be
exploited in a variety of applications for instance, targeted advertisement, geo-social
networking, gaming etc. We are already seeing its impact on different industries like
tourism, marketing, information and cmergency services. In recent years we have
witnessed tlie explosion of Location Based Applications (LBAs) with the Apple iOS

App Store alone having over 6400 LBAs [50]. The Android Market also has around




1000 LBAs with many applications being added on a daily basis [50]. Loopt [3],

GeoLife [4], Foursquare [3], Dodgeball [1] and more recently Facebook Places [2] are
a few examples which exploit location information of the user in their applications.
With advances in mobile commerce and the further development of software related
to mobile location, the LBAs market is forecast to reach $21 billion by 2015 with
over 1.2 billion subscribers [13]. Rescarchers have been working on Location Based
Services (LBS) for the past few decades and we see their applications in the form of
vehicular tracking and other navigation based services. However, due to the growth of
mobile devices, new opportunities and challenges have conie to surface for e.g indoor

mobile targeted advertisement and indoor position tracking.

1.3 Indoor Positioning and Tracking

In the past most of the attention was given to LBS in outdoor environments as GPS
played the dominant role in localization. Recently, we are sceing a paradigim shift
in the mobile applications market, where indoor LBS is being considered the new
fronticr. Due to the increasing number of mega size multi-level coustructions like
airports, shopping malls, universities and other facilities, people tend to spend more
time indoors. People only spend 10-20% of their time outdoors [6]. Same research
also indicates that more than 70% calls originate from indoors which indicates great
potential fot indoor LBS.

In order to provide quality LBS, it is neccessary to have a reliable, accurate,
and real-time location estimation of the user/device. Localization tecliniques can

be broadly classified into two categories, i.c infrastructure-based and infrastructure-



less. They can be further categorized by core technologies used: cellular, Wi-Fi, GPS,
Bluctooth, ultrasound, infrared, RFID (radio frequency identification), UWD (ultra
wide bandwidth), or sensor-based.

Mobile devices, such as smartphones and music players, have recently begun to
incorporate a powerful yet diverse set of sensors. These sensors include GPS reciever,
microphones, cameras, proximity scusors, magncetometers, temperature sensors, ac-
celorometers and gyroscopes. In the future, other sensors like altimeters, harometers,
etc may be incorporated in these devices. Today, GPS provides localization outdoors,
but precise indoor tracking of people remains an open research problem. Due to the
small size of these smart devices, their ability to communicate with other devices,
their considerable computing power and their nearly ubiquitous use in our socicty,
these devices open up exciting new areas for localization and indoor positioning.
Some of the systems which use these sensors for mobile positioning are mentioned in

115)[16][34][59].

1.4 Research Questions

According to our literature survey, there has been a lot of progress in indoor local-
ization technologies. Active RF techniques [22][41][54] (installing special hardware
in the enviromment) can achieve an accuracy of around a few centimetres whereas
Passive RF [8][23][29][30][33][36] (using existing infrastructure) can give a decent ac-
curacy of few metres. Using active RE technicues is not scalable because every indoor
environinent is unique and to setup such infrastructure requires study of environment

paramcters which also adds to its cost. Passive RF techniques are getting more popu-



lar because of their scalability, but extensive calibration is required for such systems.
Wi-Fi, GSM, Bluctooth and other RF technologies are used for such systems. Sky-
hook [50] uses a hybrid combination of GSM and Wi-Fi signals. First, it is assumed
that the wireless radio map is long lived which is not the case as the topology of a
network keeps changing over time. To cope with this problem, frequent war-driving
may be required. War-driving is the process in which radio data and information is
collected by going to the tagged locations in a vehicle and storing the information.
Second, the coverage of such systems is also a limitation as there may be areas where
such a radio map can not be obtained. Examples include footpaths between buildings,
inside buildings or rooftops because it is difficult for vehicles to access these locations.

An IMU (Inertial Measurement Unit), is an clectronic device that measures and
returns an object’s acceleration, orientation, and gravitational forces, using a com-
bination of accelerometers and gyroscopes and sometimes also magnetometers. An
Inertial Navigation System (INS) is a navigation aid that uses an IMU to continu-
ously track the position, orientation, and velocity of an object without the need for
external references. An INS can detect a change in its geographic position (longi-
tude and lattitude), a change in its velocity (linear and angular), and a change in
its orientation (rotation about an axis). It does this by measuring the linear and
angular accelerations applied to the system. Since it requires no external reference
(after initialization), it is not only scalable but also cost-cffective. This concept is
not new as aircrafts, ships, rockets, robots, and space vehicles make use of inertial
guidance systeins.

Smartphone accelerometers have been used in some mobile localization schemes

in an assistive or collaborative manuer. In Surroundsense [34], they arc used as oune



of the parameters for creating a unique multidensional vector to distinguish between-

different locations, whercas CompAce [15] uses it to count the number of steps taken
to estimate the distance travelled by a pedestrian. In other work [40][24][44][27],
rescarchers have used accelerometer data to detect human activity such as walking,
standing, climbing stairs, jogging, etc.

Another aspect not cousidered in most localization technologics is the time re-
quired to acquire position estimates. Most active radio frequency and passive radio
frequency positioning schemes use complex algorithms to calculate the user’s position.
The response time of such systems depend on multiple factors including the technol-
ogy used, number of radio scans required, size of tlie training data, processing power
cte. This is why most indoor localization technologics fail to provide good real-time
indoor mobile positioning and tracking. Another problem arises when RF signals are
sporadic in a particular environment. Due to the placement of access points (ADP)
and cell towers, there might be areas where Radio Frequency (RF) signals are not
available. Similarly there may be disruptions, in the RF signals due to sparsity of
APs, limits on radio range, energy resources, and noise which may prevent RF based
positioning from being precise. In these kinds of environment it is better to rely on
IMUs for localization with opportunistic RF based position correction. This leads to

owr fundamental research question:

Can we use embedded inertial measurement Unit Sensors in mo-
bile phones assisted by sporadic Wi-Fi signals to provide near

real-time indoor positioning and tracking?

Mobile phone accelerometers are noisy and in the presence of a gravitational gra-







introduce the concept of mobile indoor pedestrian tracking and localization and how

cembedded sensors in the latest smartphones can provide an opportunity for mobile

user tracking. This includes sections describing our step counter algorithm using

the accelerometer and gyroscope.  Chapter 4 focuses on Wi-Fi based positioning
schemes and their reliance on existing Wi-Fi infrastructure. Chapter 5 discusses our
systein architecture of using a motion module in collaboration with Wi-Fi focusing on
sporadic RF environments. Evaluation and performance of the system is described
in Chapter 6. Chapter 7 reflects back on our system. Perspectives, conclusion and

possible future work are discussed in this chapter.




Chapter 2

Related Work

This chapter discusses some of the related worlk alrcady done in the arca of localization

for mobile devices.

2.1 Overview of Current Localization Technologies

GPS [19] based localization systems are widely successful in outdoor apptications but
tliey are not applicable for indoor euvirontnents since the radio transimissions froin
GPS satelites waves will be attenuated aud scattered by roofs, walls and other objects.

There are several range-based techniques such as Time-Of-Arrival (TOA), Time
Difference Of Arrival (TDOA), Angle-Of-Arrival, and Received Signal Strength In-
dication (RSSI) to estimate the distance from a particular device. Absolute location
then can be computed using triangulation, trilateration, fingerprint matching or other
probabilistic methods.

Using the techniques mentioned above, some cellular [53] and Wi-Fi [42] based

solutions are proposed which are less accurate than the GPS but give better per-



formance in indoor environments. Place Lab [14] creates a wireless map of a region
by war-driving in the arca. The wircless radio map is composed of sampled GPS
locations, Wi-Fi Access Point (AP) MAC addresses with RSSI, and cellular towers
cell-ids at these locations. When a user travels through the mapped area, it scaus for
beacons from such AP’s and cellular towers. The list of collected information is then
compared to the wircless radio map available to estimate its location.

Active Badge [54] is one of the early centralized indoor personal positioning sys-
tem making use of infrared technology. Badges worn by personnel transmit a unique
infrared signal every 10 seconds. Each office within a building is equipped with one
or more networked sensors which detect these transmissions. The location of the
badge can thus be determined on the basis of information provided by these sensors.
However, to cope with its limited range and propagation problems caused by obsta-
cles, Active Bat [22] was developed which used ultrasound pulses. The Cricket [41]
location system uses a proximity-based lateration technique to calculate the absolute
location by computing the difference between the arrival time of radio frequency sig-
nals and that of ultrasound. There are also systems available which use RFID and
Ultrawideband technologies for locating objects inside the building.

Computer vision has also been used in localization. Microsoft's Easy Living [25]
uses real-time 3D cameras to provide stereovision-positioning capabilities in a homne
environment. Design based on phone cameras [13] is also attempted yielding encour-
aging results at the room level but the performance deteriorates in areas like corridor
COrnCrs.

Amongst all the localization technologies mentioned in this section, Wi-Fi/cellular

based solutions are the most popular [31]. Skyhook [50] collects raw data from Wi-Fi

10



access points, GPS satellites and cell towers. [t then uses advanced hybrid positioning

algorithms to determine device position with 10 to 20 meter accuracy. These types
of solutions are feasible for indoor environments and a valuable enhancement to GPS
based localization as they reduce location acquisition time significantly. However,
there is still room for considerable improvement.

Skyhook currently employs hundreds of drivers who continuously war-drive to
create GSM/Wi-Fi maps of new regions and update the existing ones. Still, there
are large areas which remains uncovered, including walking paths, shopping plazas,
apartment buildings, parks and other indoor enviromeuts.

Relving on Skyhook like solutions lias another problem. As they are dependent
on GSM/Wi-Fi infrastructure, large portions of the world does not have such radio
coverage. Hence, these solutions are not scalable. Furthermore, there is a trade-oft
between localization energy aund accuracy [17]. GPS is more aceurate but consumes
more energy than both Wi-Fi and GSM based localization [12]. Figure 2.1 shows the
power consumption comparison between GSM, Wi-Fi and GPS.

A lot of research is being done in activity recognition and wearable computing.
The research in that area is now directly relevant to positioning and indoor local-
ization due to the fact that similar sensors are being used [61]. Several papers have
studied activity recognition using accelerometers [27][24][44]. Although most of the
rescarch assumes that sensors are fixed to human bodies, for example, hip, foot or

elbow, their results are still motivating for smartphone devices.

11






e Responsiveness: Responsiveness is defined as how quickly the location system

outputs the location information. A long positioning delay will degrade the
user experience and the perceived service quality. It is an important parameter,
especially when dealing with mobility. Our system does not focus ou this metric

when evaluating the system.

Scalability: Scalability is a very significant aspect of the svstem. It is the
ease of deploying the systenl to new environments with random conditions.
The positioning system should be robust with respect to large and complex

environments.

Calibration: Device Calibration is the process of forcing a device to conform to
a given input/output mapping. In terms of Wi-Fi-based positioning it can mean
the measurements taken as training data. Calibration plays a very important

role as uncalibrated systems always have a lower accuracy.

Cost: The cost of an indoor positioning includes the cost of the infrastructure
installation, deployment, training and future maintenance. In fact, high indoor
positioning accuracy can always be obtained if a massive number of sensors or
anchor points arc deployed, but often we cannot afford such a high deployment
and maintenance cost. Another important cost factor when running the system
in a real euvironment is power consumption. When scaling to thousands or
millions of autonomous small devices, it is clearly not feasible to change or
recharge batteries very often. Thus cnergy cfficiency should be a goal of any

localization mechanism meant for a large-scale system.

13



2.2 Sensor Driven Indoor Positioning

The proliferation of mobile phones is motivating researchers to look at other ways
for more rcliable and cnergy cfficient indoor positioning of uscrs which satisty the
criteria mentioned above. To minimize deployment and infrastructure costs, different
techniques and technologies are being explored. In robotics, inertial scusors, lascr
range-finders and computer vision are used to provide accurate localization without
the requirement of fixed infrastructure. One type of sensor which seems applicable
to people tracking is inertial measurement units. Accelerometers and gyroscopes are
being embedded in most of the latest smartphones. Accelerometers measure the 3D
lincar accelerations of the device whereas gyroscopes give the rotational speed. Most
of these modern devices also include a magnetometer which can give raw magnetic

readings and heading information.

2.2.1 Estimating Location

Most of the localization sclicmies arce based on estimating thie physical location of
the entity. This can be absolute position analogous to GPS coordinate on a map
or it can be a particular grid or anchor defined by a coordinate systent in thie cn-
viroument. Some researchers have investigated pedometer based Pedestrian Dead
Reckoning (PDR) techniques [15][48][60]. Woodman and Harle [60] showed that a
foot. mounted IMU can be used to track a user in a multi-floor building with a 0.5m
accuracy for 75% of the time. They assume that the user does not know his or her
starting positioning.

They evaluate their system compared to BAT [22] which is accurate up to 3cm

14







time a smartphone with both compass and accelerometer was not available to the

authors. It was cvaluated as a comparison to Skyhook. CompAcc’s performance
is much better than Skyhook which is biased towards roads and streets. Energy
consumption of CompAce is also much better than Skyhook and GPS according to
their investigation. Although their system is not ready for deployment their results
arc very encouraging for similar indoor systeis.

Escort [16] is a war-driving-free navigation system for social environments to route
mobile users to other mobile users in an indoor setting. The system uses a beacon
which transmits an audio tone. Any mobile phone, when passing near this, can
register itself. This beacon then becomes the origin of a virtual coordinate system,
where user path signatures and spatial intersections represent an edge and a vertex of
a graph, respectively. This graph keeps track of user location and their trails. Using
this graph, a general map of the location can be huilt to locate humans and route

them to their destinations. An overview of the Escort system is shown in figure 2.3.

2.2.2 Classifying Logical Location

Some researchers argue, that physical location alone, unless remarkabaly precise, may
not be sufficient to express the context of the user. For example (Figure 2.4), in a
scenario to identify two logical locations separated by a dividing wall, Martin et al.
134] argue that even an idealized high accuracy localization scheme can place the user
on the wrong side of the wall. AAMPL [40] uses GPS and Google Maps to shortlist
possible logical locations and then uses accelerometer data to classify different logical

locations for example the system positions the user to a cafe instead to a bookstore

16







create a fingerprint. This fingerprint can be matched from the fingerprint database

to identify the logical location. Such a solution is feasible but the database would
require frequent war-sensing as the ambience of locations might change over time.
War-sensing is similar to war-driving, where the scused information from the cu-
vironment, for example light intensity, noise, temperature, ete is collected from all
logical locations. In SurroundSense, authors compare the results of Wi-Fi based local-
ization and variants of their system. One which uses sound, accelerometer, light and
color, a second which uses sound, accelerometer and Wi-Fi and the third which uses
all the sensors combined to create an ambience fingerprint. SurroundSence achieves
an accuracy of 87% in identifying the correct logical location amongst the possible

locations in their tests.

2.3 Localization in Robotics

Another related arca of rescarch which is close to indoor smart phone positioning
is indoor robot localization. For an autonomous robot to navigate through indoor
cuvironments, it must have the ability to detect the current environment (using allo-
centric sensors, e.g., ultrasonic, camera, or laser) and calculate its trajectory (using
egocentric sensors, e.g., wheel encoders). One of the methods is to use probabilistic
technique to generate a belief distribution based on its motion model using wheel
encoders. These estimates are then improved (Measurement Model) by observing the
cuvironment and finding landmarks and matching them with pre-built maps. Based
on the movement trajectory calculated by internal sensors, the robot can eliminate

locations with low belictf. As more and more low belief locations are filtered out,

18




the robot can be localized at locations with high belief. The robot localization is a
core part of autonomous robotics in which it is required to achicve centimetre-level
accuracy and high precision level. However, this technology is complex and expensive
botlh in computation and the implementation of positioning module [52].

Existing robot localization algorithms extract features from the robot’s sensor
measurcments. Techniques used for measurement models, such as most model match-
ing approaches, extract geometric features such as walls or obstacles from the sensor
data, which are then matched to models of the robot’s environment. Landmark-based
approaches scan sensor readings for the presence of landmarks to infer a robot’s po-
sition. This method has become very popular in recent years. The range of features
used by different approaches to mobile robot localization vary and depend on what
kinds of sensors are used. They range from artificial markers such as barcodes and
RF transmitters to more natural objeets such as ambience and doors to geometric
features such as corners and straight wall segments.

Following is a simple example of mobile robot localization. Bel(€ } expresses the
robot’s belief (uncertainty) that its current position is €, where € denotes the arbitrary
position of the robot within a global reference frame. The term location is used to
refer to the variable: the robot’s x-coordinate. Internally a robot has a belief which is
a probability distribution function of the robot’s possible position, although physically
a robot always has a unique location at any point in tine.

Figure 2.5 provides a graphical example that illustrates the localization algorithm.
Initially, the location of the robot is not known except for its direction. Thus, Bel(§)
is uniformly distributed over all possible locations shown in Figure 2.5(a). From the

scnsors, the robot determines that it is next to a door. This information alone is
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Figure 2.5: A Mobile Robot during Global Localization [51].

not, enough to specify its position uniquely because of the presence of multiple doors
in the environment and partially because the feature extractor might have an error.
As a result, Bel(¢) is higher for door locations and lower everywhere else, as shown
in Figure 2.5(b). Next as the robot moves forward, the density Bel(€) is shifted in
responise to tlie robot motion as in Figure 2.5(¢). Probability density is also slightly
flattened out, reflecting the uncertainty introduced by movement. The robot now
queries its sensors once more and finds out that again it is next to a door. The
resulting belief, in Figure 2.5(d), now has a fairly accurate single peak which shows
that the robot estimates with a high accuracy at where it is.

The central idea in any map-based robhot positioning is to provide to the robot,



directly or indirectly, a description of the landmarks expected to be found during
navigation. Due to advancement in the field of computer vision, cameras are exten-
sively used in mobile robot localization [63][49][46]. The vision system searches and
identifies the landmarks obscerved in an image it acquires and digitizes. It detects
landmarks, usually this means extracting edges, smoothing, filtering, and segmenting
regions on the basis of differcuces in gray levels, color, depthy, ete. Once they are iden-
tified, the robot can use the provided map to estimate its position (self-localization)
by matching the observation (image) against the expectation (landmark description
in the database). Landmark detection can be done in various ways. Some methods
might require object recognition to detect landmarks and other simpler ones might
just comparce current images taken from camera to those stored in the database to

estimate the position and orientation of the robot in the environment.

2.4 RF Based Positioning

There are several ways in which RF signals can be used for positioning. It is not easy
to model the radio propagation in indoor cuvironnient because of diffraction, scatter-
ing, shading, severe multipath, low probability for availability of line-of-sight (LOS)
paths, and specific site parameters such as floor layout, moving objects, and numerous
reflecting surfaces. Different techniques have different advantages and disadvantages.
Hence, using more than one type of positioning algorithms at the same time could
yield better performance. Triangulation, scene analysis algorithmms or proximity based

algorithm are developed to minimize positioning errors.




2.4.1 Proximation

The 1nost naive and simple way of localization would be to use proximity algorithms,
as they provide symbolic relative location information. When there is a dense grid of
base stations or antennas, each having a known location, it is easier to implement this
method because of its simplicity. When a target device detects a single base station, it
is considered that the device is collocated with that station/antenna. When more than
one antenna detects the mohile target, then the one with the strongest signal is chiosen
to be the candidate where the target device is located. It can be implemented over
various different types of physical medium. Infrared radiation (IR) based systems and
radio frequency identification (RFID) systeins are frequently based on this method.

The most prominent advantage of using infrared based solutions is its wide avail-
ability and the simplicity of the infrastructure. It does not need costly installation and
maintenance as IR sensors are usually very cheap. However, due to the requirement
of line-of-sight (LOS), it cannot be applied in complex indoor environment.

Another example is the ccll of origin (COO) method or cell identification (Cell-
ID). This method relies on the fact that mobile cellular networks can identify the
approxiate location of a wobile device by knowing which cell site the device is using
at a given time. Cell-ID is already in use today anud can be supported by every mobile
device. The only problem with proximity based solutions is that it is assumed that
the target is collocated with the access point (AP) in this case the Cell-ID. This can

have hundreds of metres of error, which is not suitable for our applications.



2.4.2 Triangulation

Triangulation uses the geometric properties of triangles to estimate the target loca-
tion. It has two derivations: lateration and angulation. The fundamental idea of
triangulation is depicted in Figure 2.6. Suppose the physical coordinates of three
anchor points are known. The distance between an anchor point and the tracking
target can be calculated via the methods described in following subsections. Once
the relative distances d;, dy, and ds are calculated, the position of the target can
be estimated using cither the directions of the formed triangle or the intersection
points of the circles. Most of the cellular based localization solutions adopt these
techniques. The following subscetion explaius how we can get these distances from

the transmitters.

2.4.2.1 Lateration

Lateration estimates the position of an object by measuring its distances from multiple
reference points. Thus, it is also considered a range measurement technique. Figure
2.7 shows the distance d between mobile device and one such base station. There are
several ways of calculating the distance d.

Received Signal Strength (RSS): In free space, the signal strength is inversely
proportional to the square of the distance between transmitter and receiver. Such a
relationship can be captured by thicoretic or empirical signal propagation niodels. In
RSS based techniques, the distance is measured based on the attenuation introduced
by the propagation of the signal from the trausmitting node to the receiving node. A

model used in [43][47] indicates that the mean path loss increases exponentially with




distance when ot in free space and that the mean path loss is a function of distance

to the n power.
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Figure 2.6: The distance between transmitter and receiver.

(t), :

Access Point

Mobile Device

Figure 2.7: The distance between transmitter and receiver.
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Here PL(d) means the path loss, n is the mean path loss exponent which indicates
how fast path loss increases with distance, dy is the reference distance, and d is the
transmitter-receiver separation distance. The absolute mean path loss, in decibels,
is defined as the path loss from the transmitter to the reference distance d, plus the

additional path loss described by Eq. 2.1,

0

The above equation estimates absolute path loss where X, is a zero mean log-
normally distributed random variable. The n and ¢ parameters that are to be es-
timated empirically or theoretically. These are functions of the building types and
would be unique for cvery building. Factors like floor/wall types, number of obstacles
between the transmitter and receiver and floor level would affect these parameters.
Using the above Eq. 2.2 and 2.3 d can be calculated as 12L(d) is calculated from Eq.

2.3 and put in Eq. 2.2, where d is the only unknown wvariable.

PL(d) =P, ~ P, (2.3)

where P, is the trasmission power and P, is the receiving power.

Time-Based Methods: Instead of measuring the distance directly using received
signal strengths (RSS), time of arrival (TOA) or time difference of arrival (TDOA) is
usually measured, and the distance is derived by multiplying the radio signal velocity

and the travel time. The distance from the transmitter to the receiving unit is directly
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proportional to the propagation time. TOA measurements must be made with respect

to signals from at lcast three reference points in order to determine the position.

d=1xs (2.4)

Here s denotes the travelling speed of the signal, £ the amount of time spent by

the signal travelling from the transmitting to the receiving node, and d the distance

between the receiving node and transmitting node. Since speed is a knowil constait,
d can be computed by observing time.

The idea of TDOA is to determine the relative position of the mobile transmitter
by examining the difference in time at which the signal arrives to multiple receivers,
rather than the absolute arrival time of TOA. With two receivers at known locations,
an cmitter cau be located onto a hyperboloid. A third recciver at a third location
would provide a second TDOA measurement and hence locate the emitter on a second
hyperboloid. The intersection of these two hyperboloids describes a curve on which
the emitter lies. Now a fourth receiver will provide a third TDOA measurement.
The intersection of the resulting third hyperboloid with tlie curve alrcady found with
the other three receivers defines a unique point in space. The emitter’s location is
therefore fully determined in 3-D.

In general using TOA has two problems. First, all transmitters and receivers in
the system have to be precisely synchronized. Second, a tiniestamp must be labelled
in the transmitting signal in order for the measuring unit to discern the distance the
signal has traveled. TDOA does not have this problem as only time difference is

required between the receivers.



Similarly the Return Turnover Time (RTT) method emerges with the goal of

solving the problem of synchronization incurred by TOA. With RTT, the distance is

calculated as follows:

(/RT”A/) XS

d=
2

(2.5)

t1zr denotes the amount of time needed for a signal to travel from one device to the
other and back again, At the predetermined time delay required by the hardware
device to operate at the receiving device, and s the speed of the transmitting signal.
Time-based measurement methods are now in widespread use. However TOA based
methods are limited by strict requirements of synchronization [64]. Received signal
phase method and roundtrip time of flight are also used for range estimation in some

systemns.

2.4.2.2 Angulation

The main advantage of Angle Of Arrival (AOA) is that a 3-D position can be cs-
timated with as few as three transmitters/receivers. For 2-D positioning only two
measuring devices are required, and no time synchronization between measuring de-
vices is required. The system employs either an array of antenunas or directional
antennas. Angulation basically estimates an object by computing angles relative to
multiple reference points. The location of the mobile device can be found by the

intersection of several pairs of angle direction lines from a base station [64].




Figure 2.8: Using directional antennae to localize.

2.4.3 Fingerprinting

As an alternate to the propagation-model based localization solutions, there is Wi-
Fi RSS fingerprinting technique. This technique can be generally divided into two
phases: 1) an offline phase and 2) an ounline phase. The offfine phase is called the
training phase and the online phase is called the positioning phase. In the offline
phase, a radio map is created by storing information about all the visible AP and
their RSSI values for all locations of interest, which can be called reference points or
anchor points. After collecting this raw data, for cach location a fingerprint has to
be created. The idea is that each location in the area of interest will have a unique
vector of AP and RSSI values. It is very important that the anchor points are also

chosen in such a way that they increase the accuracy and reliability of the system.



After the training phase each anchor point was associated with a Wi-Fi fingerprint,

these fingerprints are then used by the positioning phase by comparing it to the
current Wi-Fi measurements. The best match will yield the highest likelihood for
correct location. Chapter 4 will explain in detail our process for collecting Wi-Fi
data, creation of fingerprints and Wi-Fi positioning.

Algorithius used for comparison between Wi-Fi data collected in the positioning
phase and the fingerprints in the database can be classified into two main categories
- deterministic and probabilistic. In probabilistic techniques the device’s position is
modeled as a random vector. The candidate anchor « is chosen if it has the highest
probability. Usually the decision rule uses Bayes’ theorem to calculate the likelihoods
for all candidates.

On the other hand the deterministic framework is based on optimizing the simi-
larity hetween observed online RSS measurement and the fingerprint such as using a
scoring method. Various techniques are used to optinize the similarity. In the sim-
plest case usually the Euclidian distance is calculated but other distance metrics are
also possible. The case in which the closest fingerprint match is considered, is called
nearest neighbour. If K" anchors are considered then it is called K-Nearest Neighbour
(KNN) and sometimes non-negative weights are used to compute the estimate which
vields Weighted K-Nearest Neighbour (WKXNN).

Although the basic idea of Wi-Fi fingerprinting is straight forward, there arc
still many challenges and areas where researchers are working to improve the finger-
printing techniques. Kushki et al. [26] discuss five main such challenges for Wi-Fi

fingerprinting-based techniques:



e Selection of APs in the positioning phase.

e Pre-processing fingerprints to increase accuracy is difficult as it is difficult to

predetermine which AP’s are important for positioning,.

e Quantization of distance between thie Wi-Fi RSS vectors in the signal space.

Building analytical models to evaluate system performance.

e Collecting data from a large number of positions is difficult.
To increase the accuracy of the positioning system, it is really important that the

training is done in a proper way. Training process can be very laborious, especially

for future updates and maintenance. In [32] the researchers have come up with a

user feedback miodel for increasing the accuracy of the systenm. The user can give

positive and negative feedback. Apart from the system anchor points, the user can

also create new anchor points if the user is standing at a non surveyed positiou.

Positive and negative feedback will increase the weight of the anchor points hence

increasing the accuracy. A lot of work is being done in using Wi-Fi fingerprinting

with focus being on maximizing accuracy and minimizing the calibration nceded to

achieve it. [23][26][29][30][36] all try to improve Wi-Fi fingerprinting approach for |

localization.
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with sensors such as proximity sensors, GPS receiver, Wi-Fi, magnetometers, light

sensors, accelerometers and gyroscopes. The coming generation of mobile devices are
set to have many new types of sensors like altimeter sensors that would be able to de-
tect your clevation. Additionally, phones will include more microphoues, temperature
and humidity sensors to better determine their location and surroundings.

For our rescarch purposes we needed those seusors to help us determine human
motion and also estimate the position of the user in an environment. Apple currently
is a market leader in smartphone technology with the iPhone capturing a major
market share in the smartphone users. We chose iPhone 4 as our platform of choice
to develop and test our system. The iPhone 4 comes with a bundle of sensors including
magnctometer, Wi-Fi, accelerometer and gyroscope. The iPhone is programmed
in Objective-C, which is quite a simple language to learn and use. Objective-C
is a supersct of the C language, with some object oriented-programming features.
The 10S APIs and emulator (which runs on desktop/laptop MAC computers) make
progrannuability, Ul design, and code debugging an efficient process for developers.
All frameworks are well designed and documented, abstracting the developer fromn
low level components. In addition, the motion sensor APIs are cleanly designed and
make accessing these devices simple and strightforward. In [37] the authors have done
a performance evaluation of iPhone compared to another leading smartphone from
Nokia. According to them the iPhoue offers a rich UT architecture, high computational
capability, and an efficient application distribution systemn through Apple’s App Store

compared to Nokia N95.
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3.1.3 Magnetometer

The compass in the iPhone 4 is the AKM AK8975. The magnetometer is based on the
Hall Effect, which is one of a number of methods for detecting magnetic fields. The
[0S framework provides us with the raw z,y,z components of the sensed magnetic field
vector in addition to the magnetic heading. Magnetic heading is a heading relative
to the magnetic poles of the Earth which is different from true geodetic heading. The
true heading is relative to the actual North and South Poles of the Earth. Calculating
truc heading requires the knowledge of the present position, hence satellite-based
positioning is used to estimate the true heading. The magnetic heading also contains
a two-part compass ciror: (1) magnetic variation due to the Earth’s magnetic ficld
and (2) magnetic deviation, which is the local magnetic fluctuations. This can be due

to of metallic structures inside buildings or other electronic equipment.

3.2 Understanding Human Gait using Accelerom-
eters

Gait is the pattern of movement of the limbs and human gait is a popular topic
in Medicine and Kinesiology. A particular way or manuer of moving on foot is the
definition for gait. Everyv person has his or her own style of walking and factors like
injuries, aging and operations on the feet niight chiange a person’s style of walk. The
galt pattern is very important for medical diagnosis of anibulation and estimation
of energy consumption. In [28] they use a 3-axis acceleronieter on the waist belt to

deteet the acecleration of the body. They then process this information to cstimate
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information about the subject as gait pattern, speed of the subject and total walking

distance.

Gait recognition is a vast topic on its own. Biometric gait recognition has been
studied for identity verification as surveillance and forensic systems are becoming
important. There are three different approaches in gait recognition; Alachine Vision
(MV) Bascd, Floor Sensor (FS) based and Wearable Sensor (WS) Lased. In the
MYV technique, several cameras are used to capture gait images and then different
algorithms can be used to determine the gait cycle. In the floor sensor approach
the sensors are placed along the floor where gait data is measured when people walk
across. The WS based gait approach is based on wearing niotion sensors on the
body of a person in different places like waist, pockets, foot or arms. The topic of
accelerometer-based activity recognition is also not new. Bao and Intille [9] developed
an activity recognition systemn to identify twenty activities using bi-axial accelerome-
ters placed in five locations on the user’s body. [21][27][24][44] are studies in the sanme
domain where they try to classify human activity like standing, walking, jogging, run-
ning, climbing up stairs and climbing down stairs using various artificial intelligence
and data mining techniques.

We assume that the user walks while holding the smartphone in hand and with
the +y-axes pointing in the direction of walking and the -z-axes pointing downwards.
Figure 3.3 shows a typical pattern of x-,y- and z- measurcments corresponding to
vertical, forward, and side acceleration of a walking person. This data represent 40
steps taken in a straight line at a constant pace. The raw data obtained is very similar
to the data presented in [28][38][61], where the accelerometer was attached to the hip.

The only difference is that when the accelerometer was fixed to the hip, the z-axces
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and how a reliable motion model can be used.

3.3 Pedometer Based Dead Reckoning

An inertial navigation system (INS) is a navigation aid that uses a computer, ac-
celerometers and gyroscopes to continuously caleulate via dead reckoning the position,
orientation and heading of a moving object without any need for external references.
Prior to satcllite positioning systems, such as the United State’s GPS or the EU’s
Galileo systemn, inertial navigation was relied upon to provide accurate position data
for a number of vehicles, including guided missiles, aircraft, submarines, and space-
craft. The classical strapdown INS systems have lightweight computers along with
inertial sensors simply attached to the body of the vehicle or object which calculate
the attitude. Attitude is the orientation in space of the INS axes (body frame x,y,z)
with respect to the reference frame. Figure 3.5 shows inertial reference frame which is
not rotating with respect to the fixed global positions. Acceleronicters and gyroscope
are measuring acceleration and physical rotation in its own coordinate frame hence it
is difficult to transforin them to the global reference frame for localization. Tlie axes
of the Earth framme are fixed with respect to earth and usually parameterized with
geographical coordinates: latitude, longitude and altitude. GPS uses the Earth frame
of localization and navigation. We can define our own coordinate system too, for ex-
ample by choosing a point as origin and then aligning the three axes ortliogonally to
cach other. This can be called the local navigation frame.

The accuracy of such inertial navigation scheme is a function of the accuracy

of scnsor inputs and the frequency of data capture. To calculate the position, the
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Figure 3.5: Body frame(x,y,z) and local navigation frame(E,N,U)

acceleration samples must be integrated twice to obtain position. These integrations
can introduce crrors in the data, known as intcgration drift. The problem stemns
from the fact that small errors in the acceleration measurements are integrated into
larger crvors as time progresses. Figure 3.6 shows an example of an INS. The crror
increases as time and travelled distance increases. Aircrafts use strap-down INS for
positioning but they involve very high quality inertial sensors and also need high
computation power because of the complex equations involved. This may not be
possible in smartphones because of limited computing power and noisy IMU sensors.

The other method which scems to be more reliable is inspired by pedometers.

Early designs of pedometers used a weighted mechanical switch to detect steps, plus
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Figure 3.6: Integration Drift

a simple counter. When these devices were shaken, one could hear a metal ball sliding
back and forth. The latest pedometers use accelerometers to detect steps. They then
employ various methods of step length estimation. Almost all of them use height and
weight of the user to state the length of the stride [11].

Step detection is the automatic determination of the moments at which footsteps
oceur. If acceleromneter data is used to detect instant motion of the device, sudden
changes in the movement have to be isolated from the constant effect of gravity.
Figure 3.7 shows the magnitude of the accelerometer readings after passing through
a high-pass filter. The user took forty steps in a straight line, this can be observed in

the graph as forty peaks.

3.3.1 Distance Estimation Using a Step Counter

There are several algorithms available for step counters but most of them are primarily
for accelerometers attached to the foot, hip or other body part. As we assume that
the user will be holding the device in the hand, different algorithms were investigated.

Pan-Tompkins method is a rcal-tiine algorithm for detection of R pceaks in

electrocardiogram (ECG) signal. R peaks are usually the central and most visually
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stage a peak-searching algorithm is applied to count the number of steps taken. Peak
detection is a method which calculates the steps from the 3-axes accelerometer read-
ings. A threshold value can be used to detect a peak. If the changes in acceleration
arc too sinall, the step counter will discard them. The step counter can work well by
using this algorithin, but sometimes it seems too sensitive. When the device shakes
or vibrates randomly fromn a causce other than walking, the step counter will also take
it as a step. However, in [61] the authors used a different approach to finding the
maximum. They called the points where step is detected as fiducial marks. From
the pre-processed signal the negative slopes are transformed to -1 and positive slopes
are transformed to +1. This way the step cycle is converted into pairs of [-1, 1]. This
pair is referred to as the peak-scarching interval. The local maximum is marked as
fiducial mark and hence detected as step.

We implemented the same algorithm on a smartphone to sece if we can get the
same result. We made a small modification to the peak-searching phase as we used
static threshold instead of the fidicial mark method described above. Figure 3.9 shows
the graphs at different stages of the algorithm. The performance of this algorithm
is not reliable for a stepcounter, as the error was always more than 60%. One of
the reasons is that continuous motion is observed in the accelerometer readings when
the device is held in the hands. In [61] the results are better as the accelerometer
was attached to one of the feet. When the step is taken by the foot on which the
acceleromneter is not attached, lower magnitude accelerometer readings are observed
which are smoothed out by the lower pass filter. Hence when the acceleromcter
attached foot’s heal touches the ground, there is a spike in the accelerometer signal.

From Figure 3.9 we can obscrve that after the filtering stage, derivative, squaring
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and moving-window integration does not help in detecting correct step count. In
our experiment the sampling frequency was 60Hz. The data was passed through a
Butterworth low-pass filter with cut-off frequency of 10Hz, The following equations
were used for derivative operator and integration. Only the last four teris were used

for integration because we want to capture the spike.

y(n) = é[ln(n) 2ln—1) = o(n — 3) — 22(n — 4)] (3.1)

z(n) = %[T(n —(N=1)4+xr(n—(N—=-2)+ ... + z(n)] (3.2)

where N is chosen empirically as 10.

In [38], the magnitude of the 3D accelerometer readings is taken. In the second
step the signal is passed through the Butterworth low-pass filter with order 20 with
cut-off frequency of 5Hz. In the final stage a hill detection and threshold calculation
is done. Hill detection is similar to peak-searching in the previous step. In this
casc the threshold is chosen adaptively. Tn the implenientation, the butfer length of
accelerometer readings is chosen to be 100 samples. The threshold is selected after
iterating over all the readings and then the number of hills are detected which count as
number of steps in that block of accelerometer readings. After detecting the number
of steps, the mean of peaks is calculated. The threshold is then selected as a factor of
this peak mean. The result of this algorithm was pretty accurate and also dependent
on the buffer size. With 30Hz of sampling frequency if the buffer length was more
then G0 samples it would give an accuracy of more then 80%. The Table 3.1 shows the

comparison of accuracy between the three implementations. However, there is one
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disadvantage of this algorithm. As we are implementing it over a block of readings,

the step connting is not real time. For example if the sampling rate is 30Hz and we

keep the buffer as 60 samples. The number of steps will be updated after 2s. Here is

the Hill detection and threshold selection algorithn.

// Pseudocode for Hill Detection
//input:aln] is the buffer which contains past n accelerometer readings.

//output:stepCount

numberOfpeaksCount = 0O
peakAccumulate = 0
for all al[k] in the buffer do
forwardSlope = al[k+1] - a[k]
backwardSlope = alfk] - al[k-1]
if forwardSlope < 0 AND backwardSlope > O then
numberOfpeaksCount = peakCount + 1
peakAccumulate = peakAccumulate + alk]
end if
end for

peakMean = peakAccumulate/numberOfpeaksCount

stepCount = 0

for all alk] in the buffer do
forwardSlope = alk+1] - alk]
backwardSlope = alk] - al[k-1]

if forwardSlope < 0 AND backwardSlope > O
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AND a[k] > C * peakMean

stepCount = numberOfpeaksCount + 1
end if

end for

The algorithm that we chose for our stepcounter is inspired by an analog pedome-
ter [65]. We used the Butterworth low-pass filter to remove the high frequency noise
similar to the first step of the hill deteetion algorithm. The peak detection algorithin
is used to detect the steps in the accelerometer readings. The threshold is empirically
chosen as 0.14g, but using a static threshold may detect false steps as sudden move-
ment of the hand held device may produce such measurements. Invalid peaks in the
peak detection method must he discarded in order to find the true rhythmic steps. In
our experiments we have assumed that people walk with speed between three steps
per second to one step every two seconds [65]. Therefore the interval between two
valid steps is defined as beiug in the time window [0.33,2.0]. This tiime window is
used to discard invalid vibrations. For example when a step is detected, no other step
can be detected for another 0.33 seconds. When a new step is detected between 0.33
and 2 second the interval window moves and resets.

To make sure that steps are rhythmic in nature, the algorithm searches for 3
consecutive step detections in successive time windows. If this happens then the
algorithm recognizes that the user is walking. The algorithm goes into a walk mode
when this rliythmic pattern is recognized. Once in the walk mode, if the count
manager realizes that the maximum window time has passed without step detection,

it will go back to the stand mode until it detects 3 consecutive steps again.  This
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algorithm was implemented on our iPhone and the result is shown is Table 3.1. In

the experiments 500 steps were taken and the iPhone was held in the hand. The
experiment was repeated three times by two different users. This algorithm exhibited
similar accuracy to the hill detection algorithm but with the added benefit that it
would update the step in real time whereas the hill detection outputs the total number
of steps taken in a time window cvery fixed time interval. The accuracy of the
stepcounter varies a little especially as when the mobile device is held in the hand,
the sway of arms play an important factor in detecting steps. Different users may have
different accuracies, but this can be fixed by increasing or decreasing the sensitivity
threshold. We chose this algorithm for our stepcounter to be used in our localization
scheme.

The template matching method [61] is also one of the ideas explored in the litera-
turc. The main concept of the template-matching method is to generate a template,
which represents a typical step cycle. In the unknown signal, an event is declared to
be detected when there is a match between the signal and the template to a certain
degree. This method was not implemented as template matching is more computa-
tionally expensive.

After detecting the number of steps, the distance walked can be calculated by
multiplying stepcount by step length. Step length is the distance from the heel print
of one foot to the heel print of the other foot. This is the distance traveled forward

in one stride. This can be approximated by the height of the user [11].

D, = S. x| (3.3)

47




where D, is the total distance walked, S, is the step count and { being step legth.

Table 3.1: Results on different implementation of step counters

Algorithm Measured Step Count { Mean Error in Steps (percent)
Pan-Towmpkins 810 —62%
Hill Detection 455 9%
Our algorithm 442 11.6%

3.3.2 Heading Estimation

Once the step is detected, it is important to know which direction the step was taken
in. Smartphone magnetometers are very noisy, especially in indoor environments.
Figure 3.12 shows a map of our department where we tested by walking in three
corridors, changing dircctions two times. First the user is walking in a straight line
and then turns right and walks straight till next corner of the corridor. The user
turns right again and continue walking straight. The iPhone has a 3-axes gyroscope
which can measure angular velocities about the axes. The motion framework of the
[0S SDK also provide us access to built in functions which manage and keep track
of the device attitude after the application starts. Rotation around z-axes is called
yvaw and at the start of the application it is calibrated with the initial stable magnetic
Liecading. The result of magnetic heading is compared to yaw in Figure 3.10. It clearly
shows that the gyroscope is more stable in an indoor environment. The only problem
is that a gyroscope only maintains tlic local orientation of the device and lheunce it

needs some kind of transformation to the global reference frame. A magnetometer on
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map, this information can be calculated for the possible orientations during the war

sensing phase. There certainly will be arcas where the local magnetic disturbances is

larger than the error tolerance for that particular orientation. Hence in this situation,

wrong oricntation will be detected.

When the application is started, the first phase would be the initialization phase
in which we calibrate the gyroscope to the map coordinate system using the magne-
tometer. During this phase the user can be asked to walk a few steps. If the user
cheats by walking in a direction which is not paralled to the corridor, for example
hetween the walls of a corridor or in a circle the calibration would be faulty and affect
the motion model. This is a reasonable calibration process as it would allow to check
for stable magncetic heading readings. During the calibration magnctic rcadings arc
recorded and voting is done to choose the initial user orientation in the map envi-
ronment from the orientation selection table mentioned above. The voting process is
employed instead of averaging because when the magnetometer is initialized the user
might be standing in a high magnetic anomaly point and hence the wrong orientation
can be selected. This orientation is then used for step direction. Chapter 6 will show

the results of our calibration process.

3.4 Motion Model

In probabilistic robotics there is another key concept that of a belief. A belief is the
internal knowledge of the robot or a systein about the state of the world. In our
case the state means the location of the subject in our environment. State cannot be

mecasurcd directly but can be inferred from its iuternal belief. In probabilistic robotics

20






at time £ = 0. If we are ignorant about the initial condition we can initialize using

the uniform distribution.

aingorithm 1: The general algorithm for Bayes filbering

Input: 1w, z, bel{xs_y)
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compute the posterior belief recursively, the algorithm requires an initial belief bel(xy)

1: for all z; do
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3 bel(ry) = nplzde)bel (x;)

1 end for

Outout: bel(z,)

EN-2C62 ey
3
|
ns P “
- Lo L2 ] B L) L) 37 i
pume h
w0 o i
e l .. . . . . ENIG02 . . . . .
—
DI P v 3
EN-2002
e L2
onmt s | HIRY
[0
EN-2E38
EN-2822
] g =]
prerey A [ 2 N
~ 7z 1
EN-2C02
8 -
L
e fevons b ooty fearw)
] feannt s
HEDA
4

Figure 3.12: Map of the Engincering Building

To study our motion model we divided owr map into grid spaces. The center of



these grid space has the anchor points which have known physical coordinates (x,y).
The grid space between two anchor positions determines the resolution or granularity
of the positioning system (Figure 3.11). A number of issues arise when implementing
grid localization. For a coarse grid, additional information is lost in the discretization
process which affects the filter negatively whereas with a fine grid, the computation
cost inercases.

The z, describes a list of anchor points and is the hypothesis that the subject
is in one of those positions. Figure 3.12 shows the map of the second floor of SJ
Carew (Engineering building) and the positions of all the anchor points. These anchor
points are 6m apart. Algorithm 2 shows our motion model which uses relative motion
information as mcasured by the stepcounter and gyroscope.

In the time interval [t — 1,¢] the user advances from position x,_; to position ;.
The step counter and gyroscope report back the relative change in position (e, Yrer)-
As we know the initial heading and current heading of the user, we can determine
the user’s direction of travel. So from the last position and the new position we
can determine ., and y,¢ which are distances travelled in the z-direction and the

y—dlirection with respect to our map.

Trel = acos(f + 3) (3.4)
Yres = cesin(f + 3) (3.3)

where 6 is the initial orientation of the device during initialization, 3 is the yaw of
the deviee and v is the step length.

The corresponding relative motion parameters (z*, y*) for the given poses x, ; and




Algorithm 2: Motion model for computing p(z¢|us,z,_1) based on motion

captured from step counter. Here the control w, is given by (T e, Yre), With
= (r,y) and x,—y = (2, y"). T,e1 and yre are the relative distance travelled in
x-direction and y-direction in map coordinates. They are calculated using steps

taken and step direction.

Input: u;, r, r_1:

I xx =1 — 1!

1

yx =y =y
3 0y = Xpep — I
4: 6y = Yrel — YK

vl =norm(d,,o);

w

6: p2 = norm(dy,0);
7. result = pl x p2

QOutput: result




xy are calculated in Lines 1 and 2. These basically come from the known positions in

the map. The function norm(a,b) implements an error distribution over a with zero
mean and standard deviation of b which was empirically chosen as 4m. The motion

model is used as step 2 in our Bayes filter implementation.




Chapter 4

Wi-Fi Positioning

We start by introducing our bascline Wi-Fi fingerprint-based approach. The general
idea of the baseline approach is similar in many respects to the systems reviewed in
Cliapter 2. However, we also refine existing fingerprinting basced approachics to make

them more robust and suitable for integrating aud processing user feedback.

4.1 The Concept

Indoor positioning is challenging because of the non-line-of-sight transmission between
receivers and transmitters. Walls, ceiling, equipment and humans obstruct the prop-
agating electromagnetic waves. As discussed in Chapter 2, there are various Wi-Fi
based schemes used for indoor localization. Among them the location fingerprinting
techniques use existing in-building communication infrastructure to provide low-cost
and accurate localization. The fingerprinting technique is relatively simple to deploy
compared to other techniques like triangulation. In Wi-Fi triangulation, the goal is to

map the RSSI (Received Signal Strength Indication) as a function of distance and use

56



live RSSI readings to generate a (r,y) location using a model. It is very difficult to

make a model which satisfies every indoor environment, hence making it less reliable
and robust.

The basic idea of fingerprint based positioning system is as follows. Suppose there
is survey position P, where a mobile device cau receive beacon frames from the i-
th AP, i € {1,2,3,.... N}. These beacon frames arc a type of management frame
defined in IEEE 802.11 standard. These beacon frames are transmitted periodically
and they announce all the information related to the network. The information in
these frames are also used for managing and controlling the wireless link. The NAC
address M;, RSSI p; and tiinestamp f; can be extracted from each heacon frame. The
characteristics of RSSI can be observed in Figure 4.1 as it shows the RSSI from an
AP collected at different locations (anchor points) during a survey. As stated before,
the signal attenuation is different and unique for every indoor environment and hence
it is difficult to model.

If at each anchor point located by position {(x.y), multiple APs are visible, the
combinations of such RSSI values can be used to create a fingerprint for this location.
To achieve this, we use a two-stage approach. In the first stage, which we call the
training phase, a radio map is created for the Location of Interest (LOI). Figure 4.2
shows the RSSI vectors which can be extracted from all the access points. After
collecting and storing these raw data of every location, fingerprints can be generated.
Each Wi-F1 fingerprint is the pattern of signal strengths of a collection of Wi-Fi access
pointts visible in a particular arca and incorporates e.g., the sct of receivable APs, the
average RSSI or the number of times an AP is visible. During the second stage

(positioning phasc), the mobile device scans for visible APs aud creates a fingerprint
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Figure 4.2: RSS Vector.

4.2.1 Wi-Fi Warwalking

In the first stage of the trainiug, all the reference points on the map with known
physical coordinates (r.y) are tagged with location IDs. All the anchor points in
Figure 6.1 and 6.2 arc chosen as the survey points for our experiments.  Smaller
distance hetween these anchor points might increase the accuracy of the system, but
it does not necessarily mean that the precision will also hmprove as different anchor
points might have similar Wi-Fi fingerprints. Also, when we choose the anchor points
closer to each other, it makes the training phase more laborious. There is no standard
guideline for what the size of the grid should be. In our implementation we kept
the grid size to be 3m for the Engineering Building and 5.5m for the university

tunnel environinent, considering our integration with motion model and the size of



















of the positioning system. On the other hand, rank based localization [33] uses only
ranks of the RSSI values bhecause the rank information is less sensitive to small signal
variation. Therefore, the performance should be unaffected by the calibration of the
imobile device.

Figure 1.6 shows the block diagramn of the rank based fingerprinting algorithm.
In this algorithm first the RSSI values measured in the querying phasce from different
APs are first sorted from strongest to weakest. Ranks (1.2,3,...) are assigned to APs
based on the position in the sorted vector. Rank 1 is given to the strongest AP,
meaning with the strongest RSSI value. Similarly, rank vectors are created from the
fingerprints stored in the database. Ranks are assigned based on the MAC address
and rank of AP in the querying phase. Then this vector is also sorted strongest to
weakest keeping the rank assigned to them. In ideal cases the sorted ranked vector
from querying phase and sorted ranked vector fron training phase will be identical
hence showing perfect similarity.

In case an AP which was in the querying phase was not found in the database,
the rank vector created from the database is padded with 0, to achieve the same
length as the rank vector from the query. Other techniques including the application
of a Gaussian kernel [26], which calculates the likelihood of an anchor point using
the RSSI value similarity between two vectors, also face the dimension mismatch
probleul. In real indoor environments the dinension of the fingerprints of different
anchor points vary considerably. If simple likelihood calculation mechanism (e.g.,
Euclidean distance or cosine sinilarity) are used, mismatching could lead to large

positioning errors.



4.3.1.1 Calculating Similarity

Spearman’s footrule distance measures the total elementwise displacement between
two vectors. It is similar to the Manhattan distance for quantitative variables. Ac-
cording to [32] Spearman’s footrule performs the best amongst other similarity mea-
sures. Assuming uy is the rank of the k-th element in vector U, vy is the rank of the
k-th clement in vector Voand n is the number of clements in vectors U and V' then

spearman’s footrule distance can be computed as follows:

n
D, = Z [r — vk
k=1

4.3.1.2 Assigning Weight to Best Matches

The similarity measure mentioned above return scores for every anchor point. The
anchor point with the lowest score is considered the best matel.  Ideally using &
smallest reference points to calculate the estimated position yields a better result. In
[32] the authors use the p-center algorithm to estimate the final position estimate. In
the rank based technique the distribution of scores will differ for several reasons. The
nuniber of APs visible in the querying scan and position where the scan was done
affects the distribution of the scores. For instance if the scan is done at a corner where
20 APs are visible compared to another location where only 5 APs are visible, the
distribution of scores will differ a lot. A randow test in the engineering building was
done by selecting 13 anchor points. It was noted that the accuracy of the position
estintate appears to be independent of the score distribution. For cach anchor poiuts

we have a list of scores after comparing with all the fingerprints. Figure 4.7 shows
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the maximum and minimum score distribution.

Another important aspect to study is evaluating the certainity in our belief about
the user position. As the user initiates the application, the belief is uniformaly dis-
tributed. Entropy is a mecasure of the uncertainty associated with a random variable
and is also referred to as the expected value of the information contained in a message,
which in our case is the belief. Entropy is decribed by the following equation.

n

H(X)=- Z(P(Ii)logbp(?fi)) (4.1)

=1

where p(z;), is the probability mass function of z,. Entropy is maximized if the

distibution is uniform. It means that the uncertainity is maximum about the possible
position of the user. We need to know how certain we should be in order to inform
the user of the possible user location.

Figure 4.8 shows the normalized entropy of the score distribution at each anchor
point. At positions 5 to 9 the accuracy was under 8m where as 1-4 and 10-13 the crror
was greater than 8m. The best match at positions 6 and 8 were estimated the correct
position but both the entropy and min-max distribution does not infer a trend. From
calculating entropy we wanted to find out if we can extract any information about the
certainty of the correct position estimate, so that we can assign a weight accordingly.
But as seen from the trends, this is not the case hence we used a different approach
to use Wi-Fi for position correction. We assign weight wl, w2, and w3 to the best
3 matched anchor points only if they are all within 2 hop neighbours to cach other.
Otherwise we ignore the Wi-Fi scan. It means that each anchor point in the top 3

matches should be in the same neighbourhiood aud have not more than one anchor
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points between them which are not in the top 3 rank. Here we used weights of 0.4,

0.3 and 0.2 respectively for w1, w2, and «w3. We use these weights because we want
to give more weightage to the anchor points which more closer similarity with the
live Wi-Fi reading, but we only consider the top 3 matches as the top 3 matches are
more likely to be the real position of the user.
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Figurc 4.7: The minimum and maximum scores at different anchor points.
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Chapter 5

Hybrid Motion and Wi-Fi

Integrated Localization Scheme

This chapter explains the integration of motion based stepcounter described in Chap-
ter 3 and a Wi-Fi based positioning scheme as landimarks described in Chapter 4 in

collaboration to estimate positions of the users in an indoor environment.

5.1 Motivation

Different indoor localization schemes have different positioning accuracies, however
there is no standard specifications availble yet requiring localization technologies to
meet certain reequirements. The localization schemes which require extra equipment
in the environment like [22][41] are accurate up to a few centimetres. Whereas Wi-Fi
based positioning like [32] claim an accuracy of around 2-4m in arcas where sufficient

training data is available. Overall the main challenges in indoor environments are
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e GPS delivers poor performance when there is no line of sight between the GPS

receiver and the sky, so practically they do not work indoors.
e GPS and Wi-Fi exhibit high-power consumption [7][34].

e In places where Wi-Fi is available in limited arcas and access points are deployed
sparsely, localization becomes more challenging when relving only on Wi-Fi

based technologies.

Some researchers may argue that Wi-Fi based localization techniques are suffi-
cient for indoor environment and the power consumption of Wi-Fi may not be a big
concern because we might not need localization service all the time. It might be
true for a category of location-based application such as [20] in which the user just
wants to geo-tag a location. Nevertheless, the majority of location-based applications
require continuous localization like location-based social networks, user tracking and
navigation otc.

The bigger motivation for us are locations where Wi-Fi infrastructure is not that
dense for example tunuels, skywalks and other arcas in buildings where Wi-Fi is not
available everywhere. For example in tunnels and parking lots, Wi-Fi might not be
reaclily available but there might be points where certain AP signals are detected.
We can treat these points as landmarks and they can be used as position correction

if use motion-assisted localization scheme.
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5.2 Mobile Application

5.2.1 Platform

There are several smartphones available in the market from handset manufacturers
like Apple, Samsung, Nokia, Blackberry, Sony Ericsson, HTC. For mobile OS the most
popular ones are iOS(Apple), Android, Blackberry, (Google), S60(Nokia). According
to our literature survey most of the research groups work on Nokia S60 or Android
platforms although some did usc iPhone in their research [37]. The reason for this is
that they are open source and many third party API's are available from the developer
conununity. In S60, different developer plugins are available, for example pyS60 for
quick development using python. For our purpose we would be using the iPhone
4 as it has all the IMU sensors required for our research. Furthermore iOS SDK
combined with Xcode developer tools make it very convenient to debug the code,
design the Ul, manage the data, and analyze the application’s run-time performance.
Unfortunately. the Wi-Fi API is not publicly available cven for the latest 10S SDK.
Instead, we indirectly use iOS system calls via a private Wi-Fi framework called
WiFiManager to scan ncarby ADPs.

Apart from the hidden private Wi-Fi framework, we use the i0S Core Motion
Framework and Core Location Framework. The Core Motion Framework gives us
access to the raw accelerometer readings. T also provides us with the device attitude
which uses imternal calculation from the accelerometer and gyroscope. We use this
to calculate the yaw of the device. Location framework is used to get the device

magnetic heading, which we use for our heading estimation.
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5.2.2 Interface

The goal of our touch-based Ul design is to study and implement our proposed scheme
and to test in the field. We used a simple map based interface showing anchor points
and also displaying the relative probability distribution by overlaying circles on the
anchor points. We display relative probability with a the anchor point with highest
probability showing the largest cirele. The map can be zoomed in and zoomed out.

Figure 5.1 shows the user interface.

Figure 5.1: Map interface of mobile app. Orange circles showing the relative proba-

bility distribution.
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5.3 System Architecture

5.3.1 Design Overview

Figure 5.2 shows the block diagram of our proposed system. In our localization scheine
we divided our map into grid spaces. The center of these grid spaces are the anchor
points with known physical coordinates (x,y). The grid space between two anchor
positions determines the resolution or granularity of the positioning system. The
bel (i) is the belief representation of our environment where bel(ir;) is the probability
that the user being at ¢-th anchor point. The initial belief of the systemn is assumed
to be uniform as the system does not know where the user is positioned.  As the
Inagnetometer is noisier compared to the gyroscope when giving heading estimation
[56], we use the magnetometer only for estimating the initial orientation of the user
with respect to the environinent so that we can detect which direction the user is
facing. This is one of the assumptions of our system that we ask the user to face
parallel to any corridor during the initialization so that the system detects the initial
orientation. After this initialization/calibration process we keep track of the heading
using the gyroscope. Periodic re-initialization from the magnetometer may be usctul,
but it was not tested in our experiments. We use the stepcounter mentioned in
Chapter 3 to estimate the distance travelled and gyroscope to estimate the direction
in which this distance is travelled. As shown in the Figure 5.2, accelerometers are
used to detect the steps taken. The stepcounter and the gyro-assisted heading form
part of the motion model described in Chapter 3. The motion model is used to
update the belief where the user is in our system after every fixed amount of steps.

The measurement, update uses our Wi-Fi localization method described in Chapter

74










belief is uniformly distributed and in this situation it is unwise to output a position
estimate to the user. The position has to be outputted to the user after knowing
some kind of certainty that the belief has converged to some probable positions. In
Chapter 6 we show that we can calculate the entropy frown the belief distribution to

see the uncertainties.
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Chapter 6

Evaluation

We will explain our experimental methodology, scttings, scenarios, and results in
this chapter. Our main experimental goal is to measure the benefit of using motion

information to track and position the user in an indoor cuvironnient.

6.1 Methodology

The system evaluation contains multiple phases. The first phase is to test the perfor-
mance of our step counter which is a major part of our motion model. After checking
the accuracy we can determine if it is good enough to be used in our motion model.
The accuracy and precision of our motion model is then tested in two different indoor
environments.

The sccond phase is the evaluation of our measurement model. By analyzing the
performance metrics, we can determine if it can be used for opportunistic measure-
ment update. Furthermore, it is hmportant to test our system in an cnvironmeut

which has sparse Wi-Fi coverage. Next, we explore the benefit of using motion for
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6.2 Experimental settings

Experiments and evaluations of our motion model, measurement model and hybrid
localization scheme were carried out in two contrasting cnvironments at Mcemorial
University. The first was part of the 2nd floor of the Engineering Building. The
space was divided into a grid using a 3 x 3w cell size. 42 positions were selected
within the hallways for the anchor points. 33 of these anchor points were surveyed
for Wi-Fi data and a fingerprint was created for each anchor points. The survey
points are those anchor points where Wi-Fi training was done and we have a Wi-Fi
fingerprint available. The anchor points are possible locations the user can be in the
cuvironment. The distance between two anchor points is nearly 6 steps (3.5m), so
belief is chosen to be updated after every 6 steps in this environment. Figure 6.1
shows the map of the Engincering Building field test environnent.

The second environment is the Tunnel system which connects different buildings
of the university. There is no Wi-Fi coverage provided for the tunnels. Figure 6.2
shows the map of the tunnel system. The only Wi-Fi signals available are at entrance
positions. Hence the areas of Wi-Fi AP visibility is very limited and also sporadic
in nature. The Engincering Building has more sharp turns, wherecas the tunnel has
smaller turns. The distance between two anchor points here is 5.5m. Therefore the
helief update happens after every 9 steps. Most of the commercial pedometers choose
step length as 0.413 x A, where A is the height of the user. In our experiments step
length is kept at 0.69m.

The major assumptions for our experiments are as follows

e The uscr is always located in the arcas for which the anchor poiuts are defined
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Figure 6.1: Map of the Engineering Building. Green triangles are the anchor points

where data has been collected and the system has fingerprints for those locations.

Red circles are untrained areas.

in the system.

e The device is always pointing in the direction of the user’s motion.

e The user walks close to the corridor’s center.

6.3 Motion Model Evaluation

6.3.1 Performance of Step Counter

The step counter was evaluated by two different users by walking 500 steps holding

the device in the hand. The experiment was repeated 3 times by walking the same
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Figure 6.2: Map of part of the university tunnel. Green triangles are the points where
Wi-F1i is sporadically available and red discs are positions where no Wi-Fi is available.

Fingerprints for locations with green triangles are available.

path. Figure 6.3 shows the accuracy of the step counter. Intuitively it can be seen
that the step detection depends a lot on hunan gait. Apart from this it also depends
on how a user is holding the device. Some users tend to hold the device in a more
stable manner while others sway their hands while walking. But this problemn can be
solved by multiplying a user specific scaling factor to the threshold of step detection.
The accuracy of the step counter was comparable to other commercial step counters
available on Apple’s app store. Therefore it was considered reliable enough to use in

our motion model.

6.3.2 Initial gyroscope calibration using magnetometer

Figure 6.5 shows the magnetic map of the environment to show more deviations near
the corners compared to the middle of the corridors. When the application starts,
the gyroscope has to be initialized to the orientation of the user in the environment

using magnetomceter. The magnetometer is noisy, a small experiment was done to
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of the system. The anchor point with the highest probability will show the biggest

circle and all the remaining anchor points will have circle sizes relative to it as the
probabilities are normalized before belief distribution is shown to the screen. This
way it is casicr to visualize how the belief distribution is shifting aud converging. It
can be ohserved from Figure 6.6a that all circles are of equal size as in the beginning
the belief is uniformly distributed. From Figure 6.6b it can be obscrved that during
the application start-up the initial orientation has been detected as towards the right
(East) with respect to the map, hence the probability distribution shifts towards
those corridors which have a pathway towards East. Figure 6.6(c-f) shows how the
probability distribution shifts along the direction where the user is walking. Although
at this point the algorithm is uncertain where the user is positioned. However, it can
keep track if the user turns back and starts moving in the opposite direction.

The user keeps walking towards the end of the corridor and turns right. Figure
6.7a shows that the probability suddenly converges to one of the anchor points near
the coruer. This happeus because the algorithin detects tliat the user has taken a right
turn. So that anchor point will have a higher probability to be the true position which
will have the same relative motion from a neighbouring anchor point. Figure 6.7b
shows that user is tracked as the probability shifts in the same way as the movement
of the user. In Figure 6.7¢ two corner anchor points have almost equal probability as
the belief was updated during the turn. The belief is updated every 6 steps taken by
the user. This update frequency was chosen to correspond with the distance between
two anchor points. The user then turns back start walking the saine path the user
came from. Figure 6.7(d-f) shows that the belief of the system shifts correctly with

the motion of the uscr.
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In a similar experiment, we also considered other anchor points in the area which
were depicted as red circles in Figure 6.1. These anchor points do not have fingerprints
as no Wi-Fi data was collected at these points. Other Wi-Fi only based solutions
would not work very well in these conditions. Luo et al [32] did experiments under
same conditions. Their error increased from 2m to 9m when they moved from trained
arca to untrained arca. Figure 6.8(a-f) and Figure 6.9(a-f) depicts the screenshots of

the positioning application when it walks in the untrained area.
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Figurc 6.7: Screenshots of Motion Model in Engineering Building Continued from

Figure 6.6
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6.3.4 Entropy of belief

In another experiment the user was asked to walk in the corridor with our localization
app in the trained areas of Engineering Building. Figure 6.10a shows the heat map of
the probability distribution over time. The z-axis describe the ith update of belief.
The position IDs are listed on y-axis where the color intensity shows the probability
of being at cach location. The belief at x36, x64 and x88 are cxamples where the
position correction happens due to turning. Overall it can be seen that the position
is tracked pretty well along the path of the user. From belief update x112 to x128
the user changed his direction of walking after a few steps a couple of times creating
a to-and-fro user trail. It can be observed in the licat map that the uncertainty starts
to increase as the probability distribution spreads out. Thus, a malicious behaviour
by the user in terms of walking iu circles and moving to-and-fro in the corridor over
short distances might confuse the belief system.

Figure 6.10b shows the entropy of the same heat map. At x5 the entropy falls
greatly duc to a turn. Initially the probability was uniform so the entropy was max-
imum but as soon as the user turned the belief became more certain due to the
recoguition of a corner. Every tine the user turns a corner, the uncertainty decrcases
and we can see a drop in entropy. After x112 the entropy increases, showing the

confusion caused by uscr motion.

6.4 Rank Based Wi-Fi Measurement Model

Our Wi-Fi localization scheme returns similarity scores between the current measure-

meut and every anchor point which has been surveyed for stored Wi-Fi data. The
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lowest score is considered the best match. To test the rank based fingerprinting tech-
nique we assumed that the best mateh anchor point is the estimated position. We
tested this in our Engineering Building at each anchor point. The error was recorded
by logging the distance between the ground truth and the estimmated output posi-
tion. Figure 6.11 shows the cumulative error distribution. The mean error was about
4.1m. We compared our systemn with the Wi-Fi based localization scheme by Luo ct
al [32] which uses a different fingerprinting approach for localization. They employ
the Gaussian kernel, which is commonly used to calculate the likelihood between an
RSSI fingerprint in system anchors and the live RSST measurement to generate like-
lihood candidates. The top-k candidates are then used to determine a final position
using the vertex p-centres problem.

Figure 6.12 describes a situation in which the Wi-Fi measurement was updated to
a wrong location. This test was done in the Engincering Building, where the Wi-Fi
APs are denser and the Wi-Fi environment is not sparse, meaning that at most of
the locations, similar APs are visible. Asg in our Wi-Fi positioning module we create
a rank of the APs visible to compare it with a fingerprint, due to fluctuations of the
radio signals it is possible that it updates and positions the user at a wrong location.
Similarly, there can be a scenario in which the error accumulates over time due to
the motion of the user. In Figure 6.12a, it can be seen that, the user is present near
the middle of the North corridor but the position estimate is in the corner. However,
over time the probability distribution starts growing more uncertain, as can be seen
in Figure 6.12h and Figure 6.12¢. But after the turn, it again converges. Figure 6.12d
shows that the motion model would be able to recover in this situation. Although

in a sparsec Wi-Fi enviromment, where the APs at one arca arce distinct compared to
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other areas, the error due to Wi-Fi will be smaller.
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6.5 Performance in a Sporadic Wi-Fi Environment

To test our system in an environment which has sparse Wi-Fi coverage, we chose
the university tunnel system which has no Wi-Fi available but sporadic signals arce
available at the different entrances of the tunnels from different buildings. Figure 6.2
shows the map of oue such section of the tunnel. This figure shows 16 anchor points
from one entrance to another. All neighbouring anchor points are equally distant
from each other. It is assumed that initially the system does not know the user’s true
position. Initializing with a Wi-Fi scan can initialize user position if the user is in
one of the entrance areas.

Figure 6.13 shows the heat map of the user’s walk in the tunnel. On horizontal-
axis we have the belief updates and on vertical-axis we have the 16 anchor points.
We annotated thie map with approximate actual position of the user to compare the
belief distribution with the movement of the user. At x0 the belief is uniformaly
distributed but from x0 to x12 we can see that the belief slowly converges. From x12
to x45 the probability distribution is not that scattered and position estimates are
more confident. From x45 to x60 the probability distribution becomes less reliable as
the user changes his direction more frequently similar to the test done in Enginecring
Building. At x60 the Wi-Fi measurement update is triggered. At this point it detects
’001 as the most likely position. The probability distribution shifts heavily towards
that position as we give higher weight to the anchor points with higher Wi-Fi simi-
larity. Tn the tunncls the Wi-Fi is sporadically available in only P001-PP004 and then
PO15-P016 as described before. No Wi-Fi is detected in any anchor points between

themn. Hence when the Wi-Fi update step is triggered, due to the diversity of visible
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Hypothesis 2: The system training and maintenance cost can be reduced. We
tested our system in two different environments. One had dense Wi-Fi coverage
and had training data available for all the anchor points. On the other hand in
the tunnel environment, the Wi-Fi was sporadically available at only 6 locations.
No survey was done for those anchor points which had no Wi-Fi coverage so they
were treated as untrained anchor points. As different arcas in such environiments
have distinet Wi-Fi visibility, this can be exploited to our advantage to correct
the position only and rely more on human motion for positioning. In our motion
model evaluation, we observed that in the envirommnent where there are more
turns, the position estimate is better than the environment with less turns.
Turns help the motion model to detect change in orientation and inherent map
matching in the motion model help to converge the belief. Due to less reliance
on Wi-Fi, minor changes in Wi-Fi infrastructure will have less impact on the

system perfprmance.

Scalability

Hypothesis 3: The systern can work in different indoor environments. We
tested our system in two completely contrasting environments. One had sharper
turns with denser Wi-Fi coverage and the other had less turns but sparse Wi-Fi
environment. The grid size in both the environment was also different as it
was 3nm in the Engineering Building and 5.5m in tunnels. This system is more
scalable than other indoor positioning systems as it would require less training
and would even work in sporadic Wi-Fi environments where Wi-Fi only systems

would fail.
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e Robustness

Hypothesis 4: The system can recover from false position estimates. In both
the environments during our field test we confused the system by walking in
to-and-from (Figure 6.10b and Figure 6.13) fashion to create more uncertainty
in the belief. When triggered Wi-Fi updates remove this ambiguity. If Wi-Fi is
updated in the wrong location, it can be recovered in two different ways. The
first one is due to the motion model the belief starts to become more uncertain.
It starts to converge again if there is a turn which can uniquely position it.
The sccond way it can be recovered is when another Wi-Fi update is triggered.
Although Wi-Fi update can be erroneous too, but there is a chance that the

crror is reduced.
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Chapter 7

Conclusion and Future Work

7.1 Primary Contributions

Wi-Fi based localization technologies are relatively robust and accurate compared to
other indoor localization technologies. One of the main factors for these technologies
to be popular is that the infrastructure often already exist. The RSSI fingerprinting
based schemes perform better than triangulation based schemes because they do not
depend on specifie signal propagation models. However, the system performance
greatly depends upon the rigorous training process and regular system maintenance
in the form of regular fingerprint updates. These regular fingerprint updates arc
required if there has been any changes in the environment in terins of replacing a
access points or moving furniture ete. I addition to that, these systeins do not work
in areas where Wi-Fi coverage is sparsely distributed.

These shortcomings can disable above mentioned localization systems. Moreover,

hecause of high system overhead in terms of training data and cost of war-driving,
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we believe there is a need for more efficient and cost effective techniques. We believe

that reducing training and maintainence cost and increasing the system robustness
are very promising research directions.

In addition, we sce that the cwrrent generation of smartphones have various cin-
bedded sensors including motion sensors like accelerometers and gyroscope. Although
GPS reccivers are present in most smartphoues, they are of no help indoors. But
magnetometers can be used to detect direction and heading. We recognize the op-
portunities presented by these sensors to detect human motion and the possibility to
incorporate this knowledge to help position nsers in an indoor environment. Hence,
we would also not rely on any external infrastructure except Wi-Fi coverage which is
likely to cxist in many cnvironments.

In this thesis work, the primary contributions are evaluation of a motion assisted
indoor positioning system for an indoor environment especially focused on sparse Wi-
Fi coverage. We can use ideas from robotics in which a belief is maintained about
the possible position estimate rather than relying on dead reckoning to output one
final pose estimate. The distance moved by the user is calculated by the number of
steps taken and then estimating the user trail by calculating the direction of each
step. The user trail is matched with possible path signatures from the environment
map using the motion model. The best match yields a higher likelihood for position
estimate. Ilenece more distinet features in terms of turns and direction of corridors
will give us higher accuracy. But in environments with similar corridors in terms of
length and orientation, we will get multiple hypothieses for the user’s position. In
this situation we use Wi-Fi based position correction. Our Wi-Fi position estimation

techuniques uses rank on the visible APs based on their strengths rather than the actual
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RSSI values. This technique has an additional benefit of being device independent
as different manufacturers of networks cards have different standards for RSSI values

but rank information is invariant to any monotonic increasing transformation (bias

and scale) [33]. Wi-Fi AP’s is used as landinavks to update the position beliet when

it is required by the system to update its position. This can happen after a fixed
nuniber of steps to avoid crror accumulation due to the motion model.
One of the major benefits of this system is cost effectiveness. The initial train-

ing required by doing war-driving and collecting Wi-Fi data decreases significantly.

Although the tradeoffs between accuracy and cost of training will depend on the
environment, we can see the real benefit in such a system in sparse Wi-Fi coverage
area.

Based on these principles we built a prototype mobile application for the iPhone
and conducted experiments to evaluate it. Our experiments showed encouraging
results and indicate notion assisted positioning as a viable option for indoor envi-
ronments. The system is scalable and more cost effective than Wi-Fi only schemes
because it requires less training.

During the course of this research, a number of publications have been made.
An overview of related indoor localization technologies which are using smartphone
sensors are summarized in [55]. The research work in developing a stepcounter using
smartphone accelerometer which is mentioned in Chapter 3 is presented in [56]. Fi-

nally, a short overview of our research with some results in Chapter 4, Clhiapter 5 and

Chapter 6 arc published in [57].



7.2 Discussion and Future Work

We believe that this system can be further improved in a few interesting ways. For
both motion model and Wi-Fi position cstimation, we did not use the best strategy
available because our goal was not to improve either separately. For example in the
step counter we are detecting the number of steps taken but using the height of the
user as a parameter to determine the stride length. A more adaptive approach could
be taken here which uses information from accelerometer to also calculate the stride
length. Artificial intelligence techniques can be employed in the initialization phase
for the system to learn the human walking pattern and determine the style of the
user to more accurately determine the nunmber of steps.

Similarly for Wi-Fi based localization, more accurate schemes could be employed.
Pre-processing the APs after observing the cuvironment for fuctuations could improve
the localization error.

Another interesting aspect in which the system can be improved is to iutegrate
human-centric collaborative feedback. Positioning accuracy and precision can be
improved by collecting both positive and negative feedback from users in terms of
oricntation. Luo et al [32] user collaboration to improve system performance. If the
system gives a position estimate to the user which the user feels is true, the user
can leave a positive feedback which will result in putting higher weight to current
system parameters. When the user is not happy with the position estimation by the
positioning system. the user can leave a negative feedback similarly. Tu arcas where
there are no survey points, the user can help in creating one. This will also be helpful

for decreasing system matntenance costs and improving accuracy of the systew over
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time.

Developing a magnetic map is also one idea which can be explored. In their case
we have to observe how stable is the magnetic environment over time. In indoor
cnvironments there may be arcas due to electronic equipment or wiring, where the
magnetic ficld perturbations are distinctive. They can be used as landmarks similar
to how we use Wi-Fi.

Camera based localization is also feasible, and it would be an interesting approach
to use it in collaboration with our system. In [34] they use vision as one of the
fingerprint parameters for logical localization to differentiate between two locations.
Normally when the user is holding the phone as in our assumption, the plone's
forward camera is always pointing down at the floor. Most of the indoor cnvironment
have tiles as floors or carpets. Tile counting or some kind of floor recognition during
walking would be beneficial in improving the accuracy of the localization systemni.

We bhelieve that some organizations or companies will devise specifications for
indoor positioning system in the near future. With the potential rapid growth of
location-aware services for public indoor environments such as airports, subway sys-
tems, museums, university campuses, shopping centers, etc there will always be areas
where Wi-F1 infrastructure will not be available and hence some reliable and scalable
alternative technology would be needed. At this time we believe human motion based
localization schemes have great potential and look to be very promising in reducing
the cost both in the seuse of maintenance and energy consumption. We also believe
that morc and nore rescarchers will be attracted to exploit the various sensors now

available in smartphones for indoor localization.
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