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Abstract 

The current generation of smmt phone devices equipped with embedded sensors 

like gyroscope, accelerometer and electronic compass, provide new opportunit ies for 

nscr positioning and tracking. In addition, the rapid growth of location bascd appli­

cations has spurred extensive research on localization . However localization in indoor 

enviromneuts still remains au elusive awl challenging problem as GPS (Global Posi­

tioning System) does not work inside buildings and the accuracy of other localization 

t echniques typically comes at the expense of addit ional infrastructure or cumbersome 

war-driving. Specifically, in places where Wi-Fi access points are sparsely deployed, 

loca lization becomes more challenging when relying only on Wi-Fi based technolo­

gies. For such environments, we propose a locali1mtion scheme which uses motion 

information from the smartphone's accelerometer , magnetometer , and gyroscope sen­

sors to detect steps and estimate direction changes. At the same time, we usc a 'Ni-Fi 

based fingerprinting t echnique for independent position estimation. These measure­

ments along with au internal representation of the environment arc combined using a 

Bayesian filter. This system will allow us to reduce the amount of t raining required 

and work in sparse Wi-Fi environments. 
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Chapter 1 

Introduction 

1.1 Smartphones for Sensor-Drive n Comput ing 

Recent advances in mobile devices, embedded sensors and hardware make it possible 

to envision a large scale wireless network of smart devices. Today's smartphones 

m e programmable and come with a set of cheap yet powerful embedded sensors, 

such as a GPS reciever , accelerometer , gyroscope, digital compass, microphone, and 

camera, which an~ enabling a new generation of personal and part icipatory sensing 

applications. Each device can be viewed as a "virt ual lens" acting as eyes and ears 

for the surrounding physical space [20]. 

T he smartphone is emerging as the main technology platform in the mobile mar­

ketplace with the munl>er of users expected to exceed one !Jillion IJy 2014 [35]. The 

so-called third screen is increasingly finding itself at home alongside t he T V and com­

puter screens. Research has found that 60% of mobile web usage is now taking place 

indoors, bringing smmtphones doser to the promise of being "::1Jways on" devicPs [18]. 
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So we see Mark Weiser 's vision becoming a reality [58] . 

Along wit h mobile devices, we also saw rapid advances in network technologies 

while network infrastructure became more extensive and more reliable. T his new level 

of ubiquitous network connectivity awl pervasive devices has cbablcd a new category 

of context-aware applications. Context is any informat ion which can be used t o 

charactcriz;c t he sit uat ion of an entity. An entity can be a pen;on, place or object 

t hat is considered relevant to the int eraction between a user and an applicat ion, 

including the applicat ion and users t hemselves . Hence, smar tphones bring us new 

opport unit ies to exploit user context, and make innovative mobile n.pplications. 

1.2 Mobile Phone Location Based Services 

T here ;tiC various ;:tspects of context t hat can be usd nl to personalize the service to t he 

user. User identity, orient at ion , history, time, purpose of use, physical surroundings, 

system propert ies, social and cult ural situat ion arc different areas of context in which 

research is being done [39] . One of t he most important d imensions of context is 

location. A user 's locat ion can be physical, logical or both. Physical or absolute 

locat ion can be described by geo-referenced coordinates whereas logical location is 

rela t ive, for example, inside a room or near some building. T his information can be 

exploited in a variety of applications for instance, targeted advertisement , geo-social 

networking, gaming etc. We are already seeing its impact on different industries like 

tourism , market ing, informat ion and emergency services. In recent years we have 

witnessed the explosion of Locat ion Based Applicat ions (LBAs) with the Apple iOS 

App Store alone having over 6400 LI3As [50]. The Android :.1arkct also has around 
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1000 LBAs with many applications being added on a daily basis [50]. Loopt [5], 

GeoLifc [4], Fomsqnare [3], Dodgeball [1] and more recently Facebook P laces [2] arc 

a few examples which exploit locat ion informat ion of the user in t heir applications. 

Wit h advances in mobile couunerce and the furt her development of software related 

to mobile locat ion , the LEAs market is forecast to reach $21 billion by 2015 with 

over 1.2 billion subscribers [13]. Researchers have been working on Location Based 

Services (LBS) for the past few decades and we see their applicat ions in the form of 

vehicular tracking and other navigat ion based services. However , due to the growth of 

mobile devices, new opportunities and challenges have come to surface for e.g indoor 

mobile targeted advertisement and indoor posit ion tracking. 

1.3 Indoor Pos it ioning and Tracking 

In the past most of t he at t ent ion was given to LBS in outdoor environments as G PS 

played t he dominant role in localizat ion . Recently, we arc scciug a paradigm shift 

in the mobile applications market, where indoor LBS is being considered t he new 

front ier. Due to t he increasing nutnbcr of mega size mult i-level constr uct ions like 

airports, shopping malls, universit ies and ot her facilit ies, people t end to spend more 

time indoors. People only spend 10-20% of their time outdoors [6] . Same research 

also indicates that more t han 70% calls originate from indoors which indicates great 

potent ial fot indoor LBS. 

In order to provide quality Ll3S, it is necessary to have a reliable, accurate, 

and real-time locat ion estimation of t he user/ device. Localization t echniques can 

be broadly class ified into t wo CC;ttcgorics, i.e infrastructure-based and iufrastructurc-
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less. They can be furt her categorized by core technologies used: cellular , W i-F i, GP S, 

I3luctooth, nltrasound, infrmcrl. , TIFID (rarl.io frequency identification), UWB (ultra 

wide bandwidth), or sensor-based . 

.Mobile devices, such as smartplwnes and music players, have recently begun to 

incorporate a powerful yet diverse set of sensors. These sensors include GPS reciever , 

microphones, cameras, proximity sensors, magndorndcrs, t emperature sensors, ac­

celorometers and gyroscopes. In t he future, other sensors like altimeters, barometers, 

etc may be incorporated in these devices. Today, GP S provides localization outdoors, 

hut precise inrl.oor t racking of people remains an open research problem. Due to t he 

small size of t hese smart devices, t heir ability to communicate with other devices, 

their considerable comput ing power and their nearly ubiquitous usc in our society, 

these devices open up excit ing new areas for localization and indoor positioning. 

Some of the systems which usc these sensors for mobile posit ioning arc ment ioned in 

[15] [16] [34] [59]. 

1.4 Research Questions 

According to our literature survey, t here has been a lot of progress in indoor local­

ization technologies. Active RF techniques [22] [41 ][54] (installing special hardware 

in the environment) can achieve an accuracy of mound a few centimetres whereas 

Passive RF [8][23][29][30][33][36] (using existing infrast ructure) can give a decent ac­

curacy of few metres . Using active TIF tcchniqnes is not scalable because every indoor 

environment is unique and to setup such infrastructure requires study of environment 

parameters which also adds to its cost . Passive TIF t echniLJUes arc getting more popu-
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lar because of their scalability, but extensive calibration is required for such systems. 

vVi-Fi , GSM, Bluctooth and other TIF t echnologies arc nscd for snch systems. Sky­

hook [50] uses a hybrid combination of GSM and Wi-Fi signals. F irst, it is assumed 

that the wireless radio map is long lived which is not the case C1S the topology of a 

network keeps changing over time. To cope with this problem, frequent war-driving 

may be required. War-dr'iv'ing is t he process iu which radio data and information is 

collected by going to the tagged locations in a vehicle and storing the information. 

Second , the coverage of such systems is also a limitation as t here may be areas where 

such a radio map can not he obtained . Examples include footpaths between buildings, 

inside buildings or rooftops because it is difficult for vehicles to access these locations. 

An IMU (Inertial Measurement Unit) , is an electronic device that measures and 

returns an object 's acceleration, orientation, and gravitational forces, using a com­

bination of accelerometers and gyroscopes and sometimes also magnetometers. An 

Inertial Navigation System (INS) is a navigation aid that uses an IMU to continu­

ously t rack the posit ion , orientation , aud velocity of an object without the need for 

external references. An INS can detect a change in its geographic position (longi­

t ude and !attitude), a change in its velocity (linear and angular), and a change in 

its orientation (rotation about an axis). It does t his by measuring the linear and 

angular accelerations applied to the system. Since it requires no external reference 

(after init iali?;ation), it is not only scalable bnt also cost-effective. This concC'pt is 

not new as aircrafts, ships, rockets , robots , and space vehicles make use of inertial 

guidaucc systems. 

Smartphone accelerometers have been used in some mobile localization schemes 

iu au assistivc or collaborative manner. In Surrouudscusc [34], they arc used as one 
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of the parameters for creating a unique mult idensional vector to distinguish between­

different locations, whereas CompAcc [15] uses it to count t he number of steps taken 

to estimate the distance t ravelled by a pedestrian. In other work [40][24][44][27], 

researchers have used accelerometer dat a to detect human activity such as walking, 

standing, climbing stairs, jogging, etc . 

Another aspect not considered iu lllost locali~ation tcclmologies is the t ime re­

quired to acquire position est imates . Most active rad io frequency and passive rad io 

frequency positioning schemes use complex algorithms to calculate the user 's position. 

The response t ime of such systems depend on multiple factors including the technol­

ogy used , number of radio scans required , size of the training data, processing power 

etc. This is why most indoor locali;.>;ation technologies fail to provide good real-t ime 

indoor mobile posit ioning and tracking. Another problem arises when RF signals are 

sporadic in a p A-rticulA-r environment . Dne to the plA-cement of access point s (AP ) 

and cell towers, there might be areas where Radio Frequency (RF) signals are not 

available. Similarly t here may be disrupt ions, in t he RF signals due to ::;parsity of 

APs , limits on radio range, energy resources, and noise which may prevent RF based 

positioning from being precise. In these kinds of environment it is better to rely on 

IMUs for localization with opport unistic RF based position correction. This leads to 

our fundamental research question: 

Can we use embedded inertial measurement Unit Sensors in mo­

bile phones assisted by sporadic Wi-Fi signals to provide near 

r eal-time indoor positioning and tracking? 

-:vlobile phone accelerometers are noisy and in t he presence of a gravitational gra-
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client , they are unsuitable for determining the direction of distance moved. If l g of 

acceleration is applied in a direction pcrpcnclicular to the direction of gravity, it is 

very d ifficult to determine which way the mobile phone has travelled. Here g is the ac­

celeration due to gravity. Most of the simple accelerometer based applications fail to 

detect this if t hey are not using another sensor , for example a magnetometer , coupled 

with it. However electronic coutpas::;cs arc very uoi::;y and they show a bias especially 

in indoor environments . We have to explore different kinds of fil ters to cater for such 

noise. The problem of distinguishing acceleration due to gravity from acceleration 

cine to motion can be solved if t he orientation is accurately tracked . Most of t he 

current INS based mobile localization schemes either use only accelorometers or they 

usc external custom made sensors attached to t he device like multiple accelerometers 

or a different combinations of accelerometers, gyroscope and magnetometers. Some 

also usc these customized sensors hy attaching on to tho. foot or other hody parts. 

Attaching external devices to a smartphone is not a feasible solution whereas ac­

celerometer only ::;olut ions are 4uite inaccm ate. \Vith gyroscopes added as one of t he 

new input sensors in smartphones, combinined with an accelerometer , movement in 6 

degrees of freedom can be tracked . We believe with t his added IMU sensor, we have 

an opportunity to build a mobile tracking system which is responsive and accurate 

for an indoor environment . 

1.5 Organization of Thesis 

T he reminder of this t hesis is organized as follows. We discuss related work in Chapter 

2. \ background of t he popular localiLmtion techniques i::; surveyed. Chapter 3 will 
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introduce t he concept of mobile indoor pedestrian tracking and localization and how 

embedded sensors in the latest smartphones can provide an opportunity for mobile 

user t racking. This includes sections describing our step counter algorithm using 

the accelerometer and gyro:;copc. Chapter 4 focuses on Wi-Fi La:;ed positioning 

schemes and their reliance on existing vVi-Fi infrastructure. Chapter 5 discusses our 

system architecture of using a motion module in collaLoration with W i-Fi focusing on 

sporadic RF environments. Evaluation and performance of t he system is described 

in C hapter 6. Chapter 7 reflects back on our system. Perspectives, conclusion and 

possible future work are discussed in this chapter. 

8 



Chapter 2 

Related Work 

T his chapter d iscusses some of t he related work already done in the area of locali:wtion 

for mobile devices. 

2.1 Overview of Current Localization Technologies 

GPS [19] based localizat ion systems are widely successful in outdoor applications but 

they are not applicable for indoor environments since the radio transirnissions from 

GPS satelites waves wi ll be attenuated and scattered by roofs , walls and other objects. 

There are several range-based techniques such as T ime-Of-Arrival (TOA), Time 

Difference Of Arrival (TDOA) , Angle-Of-Arrival, anr! Received Signal Strength In­

dication (RSSI) to estimate the distance from a particular device. Absolute location 

then can be compntecl using triangulation , trilateration, fingerprint matching or other 

probabilist ic methods. 

Using the tedmiques mentioned above, some cellular [53] and Wi-Fi [42] based 

solut ions are proposed which are less accurate t han t he GPS but give better per-
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formance in indoor environments. Place Lab [14] creates a wireless map of a region 

hy war-driving in the area. T he wireless radio map is composed of sampk d GP S 

locations, vVi-Fi Access P oint (AP) MAC addresses wit h RSSI, and cellular towers 

cell-ius at thc::;c locations. When a user t ravels t hrough the mapped area, it scans for 

beacons from such AP 's and cellular towers. The list of collected information is then 

compared to the wireless radio map available to estimate its location. 

Active Badge [54] is one of the early centralized indoor personal positioning sys­

tem making use of infrared t echnology. Badges worn by personnel t ransmit a unique 

infm red signal every 10 seconds. Each office within a building is equipped wit h one 

or more networked sensors which detect these transmissions. The location of the 

badge can thus be determined on the basis of information provided by these sensors. 

However , to cope with its limited range and propagation problems caused by obsta­

cks , Active Bat [22] was developed which used ult rasound pulses. The Cricket [41] 

location system uses a proximity-based lateration t echnique t o calculat e t he absolute 

location by comput ing t he difference between the arrival t ime of radio frequency sig­

nals and that of ultrasound. There are a lso systems available which use RFID and 

ltrawideband technologies for locating objects inside the building. 

Computer vision has also been used in localization. Microsoft 's Easy Living [25] 

uses real-time 3D cameras to provide stereovision-positioning capabilit ies in a home 

environment . Design based on phone cameras [45] is also attempted yielding encour­

aging results at t he room level but t he performance deteriorat es in areas like corridor 

corners. 

Amongst all t he localization technologies ment ioned in this section , Wi-Fi/ cellular 

based solut ions arc t he most popular [31]. Skyhook [50] collects raw J ata from Wi-F i 
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access points , GPS satellites and cell towers . It then uses advanced hybrid positioning 

a lgorithms to determine device posit ion with 10 to 20 meter accuracy. These types 

of solut ions are feasible for indoor environments and a valuable enhancement to GPS 

based localillation as they reduce location acquisit ion time significant ly. However, 

there is still room for considerable improvement . 

Skyhook currently e111ploys hundreds of drivers who continuously war-drive to 

create GSM/ Wi-Fi maps of new regions and update the existing ones. St ill, there 

are large areas which remains uncovered , including walking paths, shopping plazas, 

apmtment buildings, pmks and other indoor enviroments. 

Relying on Skyhook like solut ions has another problem. As they are dep endent 

on GSM/ vVi-F i infrastructure, large portions of the world docs not have such radio 

coverage. Hence, these solutions are not scalable. Furthermore, t here is a trade-off 

between localization energy and accuracy [17]. GPS is more accurate but consumes 

more energy than both Wi-Fi and GSM based localization [12]. F igure 2. 1 shows the 

power COllSlllnptiou comparison between GSM, vVi-F i and GPS. 

A lot of research is being done in activity recognit ion and wearable computing. 

The research in t hat area is now directly relevant to positioning and indoor local­

izat ion due to the fact t hat similar sensors are being used [61]. Several papers have 

studied activity recognition using accelerometers [27] [24] [44]. Although most of the 

r<'scarch assumes that sensors arc fixed to human bodies, for example, hip , foot or 

elbow, their results are still motivat ing for smartphone devices. 
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2.1.1 

Figure 2.1: Power Consumption among different technologies [17] 
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Performance Metrics for Evaluating Indoor Positioning 

Systems 

Every posit ioning technology has its own strengths and weaknesses. Thus , it is very 

important to comprehensively evaluate an indoor positioning system from different 

aspects. In order to evaluate a localization scheme, there are many performance 

metrics available. 

• Accuracy: Accuracy is the key metric for evaluating a localization technique. It 

is defined by how much the est imated posit ion deviates from the true position. 

• Precision: P recision indicates how often we expect to get the given accuracy. In 

other words it is t he degree to which repeated measurements under unchanged 

condit ions show the same results. 

12 



• Responsiveness: Responsiveness is defined as how quickly the location system 

out puts the location information. A long posit ioning delay will degrade t he 

user experience and t he perceived service quality. It is an important parameter, 

especially when c.lcaliug with mobility. Our system docs not focus oa t his metric 

when evaluating the system. 

• Scalability : Scalability is a very significant aspect of the syst em . It is the 

ease of deployiag t he system to new environments with random conditions. 

T he posit ioning system should be robust with respect to large and complex 

environments. 

• Calibration: Device Calibration is the process of forcing a device to conform to 

a given inpnt / output mapping. In terms of Wi-Fi-bascct posit ioning it can mean 

the measurements taken as training data. Calibration plays a very important 

role as uncalibratcd systems always have a lower accuracy. 

• Cost : The cost of an indoor posit ioniag includes t he cost of t he infrastructure 

installation , deployment, t raining and fut ure maintenance. In fact, high indoor 

positioning accuracy can always be obtained if a massive number of sensors or 

anchor points me deployed , hut often we cannot ::tfford such a high deployment 

and maintenance cost. Another important cost factor when running t he system 

in a real environment is power consumption . vVhen scaling to t housands or 

millions of autonomous small devices, it is clearly not feasible to change or 

recharge batteries very often. Thus energy efficiency should be a goal of any 

localization mechanism meant for a large-scale system. 

13 



2.2 Sensor Driven Indoor Posit ioning 

The proliferation of mobile phones is motivating researchers to look at other ways 

for more reliable and energy efficient indoor positioning of users which satisfy t he 

criteria mentioned above. To minimize deployment and infrastructure costs, different 

techniques and technologies arc being explored . In robotics, inertial sensors , laser 

range-finders and computer vision are used to provide accurate localization wit hout 

the requirement of fixed infrastructure. One type of sensor which seems applicable 

to people tracking is inertial measurement units . Accelerometers and gyroscopes a re 

being embedded in most of t he latest smartphones . Accelerometers measure the 3D 

linear accelerations of the device whereas gyroscopes give t he rotational speed . Most 

of these modern devices a lso include a magnetometer which can give raw magnetic 

readings and heading information. 

2 .2 .1 Estimat ing Lo cation 

Most of t he localization schemes arc based on estimating t he physical location of 

the ent ity. This can be absolute position analogous to GPS coordinate on a map 

or it can be a par t icular grid or anchor defined by a coordinate system in the en­

vironment . Some researchers have investigat ed pedometer based Pedestrian Dead 

Reckoning (PDR) techniques [15] [48] [60]. Woodman and Harle [60] showed that a 

foot mounted IMU can he used to track a user in a multi-floor building with a 0.5m 

accuracy for 75% of t he time. T hey assume that the user does not know his or her 

start ing positioning. 

T hey evaluate t heir system compared to BAT [22] which is accurate up to 3cm 
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Figure 2.2: F low of opera tions in CompAcc. [15] 
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for 95% of the time. Considering BAT system to be t he ground trut h and matching 

the positions estimated , their syst em gives an error less t hen 0. 73m 95% of t he t ime. 

Although they use foot-mounted IMUs, this kind of result is very promising for smart-

phone based IMCs. T he IMUs in smartplwnes are much cheaper hence less accurate 

and more sensitive to noises, but it is assumed t hat a human-cent ric application does 

not need to be that accurate as humans can tolerate errors of a few metres if their 

context is fully satisfied. 

CompAcc [15] is a scheme which deals with mobile phone localization without war 

driving. T he flow of op era tions is shown in F ig;ure 2.2. It uses electronic compasses 

and accelerometers in mobile phones to estimate walking pat terns and matches it 

against possil>k path signatures generated from digita.l maps. Although CompAcc 

[15] was evaluat ed outdoors as it uses GPS correct ion in t heir implementation , it 

has great pot ential for indoor environment. C01upAcc was tested offline as at t he 
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time a smartphone with both compass and accelerometer was not available to the 

anthors. It was evaluated as a comparison to Skyhook. CompAcc's performance 

is much better than Skyhook which is biased towards roads and streets. Energy 

consumpt ion of CompAcc is a lso much better than Skyhook aml GPS according to 

their investigation. Although t heir system is not ready for deployment t heir results 

arc very encouraging for similar indoor systems. 

Escort [16] is a war-driving-free navigation system for social environments to route 

mobile users to other mobile users in an indoor setting. The system uses a beacon 

which transmits ::tn aurl.io tone. Any mobile phone, when passing near this, can 

register itself. T his beacon then becomes the origin of a virtual coordinate system, 

where user path signatures and spatial intersections represent an edge and a vertex of 

a graph , respectively. This graph keeps t rack of user location and their trails. Using 

this graph , a general map of the location can be built to locate humans and route 

them to their destinations. An overview of the Escort system is shown in figure 2.3 . 

2.2.2 Classifying Logical Location 

Some researchers argue, that physical location alone, unless remarkabaly precise, may 

not be sufficient to express t he context of t he user. For example (Figure 2.4), in a 

scenario to identify two logical locations separated by a dividing wall , Martin et a l. 

[34] argue that even an idealized high accuracy localization scheme can place the user 

on t he wrong sirl.e of the w::tll. AAMPL [40] nses GPS ::tnd Coogle Maps to shortlist 

possible logical locations and then uses accelerometer data to classify different logical 

locations for example the system positions the nser to a c::tfe instead to ::t bookstore 
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Figure 2.3: The overview of the Escort system: Users report accelerometer and com-

pass readings as well as user encounters. The server forms user trails [16]. 

next doors. Here cafe and bookstore are two different logical locations. GPS is used 

to shortlist the number of possible logical locations and the accelerometer signature 

is captured for the user. It is then compared with the shortlisted possible locations. 

The best match is considered the location of the user. 

GPS Error 

range~ 

Starbucks RadioShack 

Figure 2.4: Dividing wall problem [34] 

SurroundSense [34] exploits cliversity of a place hy sensing the unique mnhience 

of the surroundings from sound, light , color , human movement and Wi-Fi signals to 
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crea te a fingerprint . This fingerprint can be matched from the fingerprint database 

to identify the logic::tl location. Such a solution is feasible hut the dat ::tbase would 

require frequent war-sensing as the ambience of locations might change over time. 

War-::>cusing is ::>imilar to war-driving, where the sensed information from the cu­

Yironment , for example light intensity, noise, temperature, etc is collected from all 

logical locations. In SurroundScnsc, authors compare the results of Wi-Fi Lased local­

ization and variants of t heir system. One which uses sound, accelerometer , light and 

color, a second which uses sound, accelerometer and Wi-Fi and the third which uses 

::tll the sensors combined to create an ::tmbience fingerprint. SnrroundSence ::tchieves 

an accuracy of 87% in identifying the correct logical location amongst the possible 

locations in their tests. 

2.3 Localization in Robotics 

Another related area of research which is close to indoor smart phone positioning 

is indoor robot localization. For an autonomous robot to navigate t hrough indoor 

environments, it rnu::>t have t he al>ility to detect the current environment (using allo­

centric sensors, e.g., ultrasonic, camera, or laser) and calculate its trajectory (using 

egocentric sensors, e.g., wheel encoders). One of the methods is to use probabilistic 

technique to generate a belief distribut ion b::tsed on its motion model using wheel 

encoders. These estimates are then improved (Measurement :\Aodel) by observing t he 

environment ::tnd finding l::tndm::trks ::tnd m::ttching them wit h pre-built maps. 13ased 

on t he movement t rajectory calculated by internal sensors, the robot can eliminate 

locations with low belief. As more and more low belief locations arc filtered out, 
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the robot can be localized at locations with high belief. T he robot localization is a 

core part of <tutonomous robotics in which it is required to achieve centimetre-level 

accuracy and high precision level. However , this technology is complex and expensive 

Loth in computation and t he implementation of positioning module [52]. 

Existing robot localization algorithms extract features from t he robot 's sensor 

measurements . Techniques used for measm e1ueut models, such as most model match­

ing approaches, extract geometric features such as walls or obst acles from the sensor 

data , which are t hen matched to models of the robot's environment. Landmark-based 

<tppro<tches sc<tn sensor re<tdings for the presence of b ndmarks to infer <t robot's po­

sition. This method has become very popular in recent years. The range of feat ures 

used by different approaches to mobile robot localiz<ttion vary and depend on what 

kinds of sensors are used . They range from artificial markers such as barcodes and 

RF transmitters to more natm al objects such as ambience and doors to geometric 

features such as corners and straight wall segments. 

Following is a simple example of mobile robot locali:.~ation. Bel(O expresses t he 

robot 's belief (uncertainty) that its current posit ion is~' where~ denotes t he arbitrary 

position of the robot within a global reference frame. The term location is used to 

refer to the variable: t he robot's x-coordinate. Internally a robot has a belief which is 

a probability distribut ion function of the robot 's possible position, although physically 

a robot always has a unique location at any point in t ime. 

F igure 2.5 provides a graphical example that illustrates the localizat ion algorithm. 

Initially, the location of the robot is uot kuown except for its direction . Thus, Bel(O 

is uniformly distributed over all possible locations shown in Figure 2.5(a) . From t he 

sensors, the robot detenniues t hat it is next to a door. This informat ion alone is 
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Fignre 2.5: A Mobile Robot rlnring Global Localization [51]. 

not enough to specify its position uniquely because of the presence of multiple doors 

in t he environment and part ially because the feature ext ractor might have an error. 

As a result , Bet(() is higher for door locations and lower everywhere else, as shown 

in Figure 2.5(b). Next as the robot moves forward, the density Bel(O is shifted in 

response to the robot motion as in Figure 2.5( c). Probability density is also slight ly 

flattened out, reflecting the uncertainty int roduced by movement. The robot now 

queries its sensors once more and finds out that again it is next to a door. T he 

result ing belief, in Figure 2.5(rl.) , now has a fairly accurate single peak which shows 

t hat the robot estimates with a high accuracy at where it is. 

T he central irl.ea in any map-b::tserl. robot posit ioning is to provide to the robot , 
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directly or indirectly, a description of the landmarks expected to be found during 

navigation. Due to advancement in the field of computer vision, cameras arc exten­

sively used in mobile robot localization [63][49][46]. The vision system searches and 

identifies the landmarks observed in an image it acquires and digitizes. It detects 

landmarks, usually this means extracting edges, smoothing, filtering, and segmenting 

regions on t he basis of differences in gray levels, color, depth, etc. Once they arc iden­

tified , the robot can use the provided map to estimate its position (self-localization) 

by matching the observation (image) against the expectation (landmark description 

in the database). Landmark detection can be done in various ways . Some methods 

might require object recognition to detect landmarks and other simpler ones might 

just compare current images taken from camera to those stored in the database to 

estimate the position and orientation of the robot in t he environment. 

2.4 RF Based Positioning 

There are several ways in which RF signals can be used for positioning. It is not easy 

to model t he radio propagat ion in indoor environment because of diffraction , scatter­

ing, shading, severe multipath, low probability for availability of line-of-sight (LOS) 

paths , and specific site parameters such as floor layout, moving objects, and numerous 

reflecting snrfaces. Different techniques have different acl.vantages ancl. disacl.vantages. 

Hence, using more than one type of posit ioning algorithms at t he same t ime could 

yield b <:ttcr performance. Triangulation , scene analysis algorit hms or proximity based 

algorit hm are developed to minimize positioning errors. 
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2.4.1 Proximation 

The most naive and simple way of localization would be to use proximity algorithms, 

as they provide symbolic relative location information. When there is a dense grid of 

hase stations or antennas , each having a known location, it is easier to implement this 

method because of its simplicity. When a target device detects a single base station, it 

is considered that the device is collocated with t hat station/antenna . When more t han 

one antenna detects t he mobile target, t hen t he one wit h the strongest signal is chosen 

to he t he candidate where the t arget device is located. It can he implemented over 

various different types of physical medium. Infrared radiation (IR) based systems and 

radio frequency identification (RFID) systems are frequently based on t his method . 

T he most prominent advantage of using infrared based solutions is its wide avail­

ability and t he simplicity of the infrastructure. It does not need costly installation and 

maintenance as IR sensors are usually very cheap. However , due t o the requirement 

of line-of-sight (LOS), it cannot be applied in complex indoor environment. 

Another ex::tmple is t he cell of origin (COO) method or cell identification (Cell­

ID). This method relies on t he fact t hat mobile cellular networks can identify t he 

approximate location of a mobile device by knowing which cell site the device is using 

at a given t ime. Cell-ID is already in use today and can be supported by every mobile 

device. The only problem with proximity based solutions is t hat it is assumed that 

the target is collocated wit h the access point (AP) in t his case the Cell-ID. T his can 

have hundreds of metres of error, which is not suitable for our applications. 
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2.4.2 Triangulation 

Triangulation uses the geometric propert ies of t riangles to estimate t he target loca­

tion. It has two derivations: lateration and angulation. The fundamental idea of 

triangula tion is depicted in Figure 2.6. Suppose the physical coordinates of three 

anchor points are known. T he distance between an anchor point and t he t racking 

target can he calculated via t he methods described in fo llowing subsections. Once 

the relative dist ances d1, d2 , and d3 are calculated, the position of t he target can 

he estimated using eit her the directions of the formed t riangle or t he intersection 

points of t he circles. Most of the cellular based localization solutions adopt these 

tedmiques . T he following subsection explains how we can get t hese dist ances from 

the transmitters. 

2.4.2.1 Lateration 

Lateration estimates t he posit ion of an object by measuring its distances from mult iple 

reference points . T hus, it is also considered a range measurement technique. Figure 

2. 7 shows t he distance d between mobile device and one such base st ation . T here are 

several ways of calculat ing t he distance d. 

Received Signal Strength (RSS): In free space, the signal strength is inversely 

proport ional to t he square of t he distance between t ransmitter and receiver . Such a 

rela t ionship can l>e captured by t heoret ic or empirical signal propagation lllodcls. In 

RSS based techniques, t he distance is measured based on the attenuation introduced 

l>y t he propagatiou of the signal from t he t ransmitting node to the receiving node. A 

model used in [43] [47] indicates t hat t he mean pat h loss increases exponent ially with 
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Figure 2.6: The distance hctween tmnsmitter and receiver. 

distance when not in free t:>pace and that the mean path lot:>s is a function of distance 

to t he n power. 

Pt Pr 

Access Point 
Mobite Device 

F igure 2.7: T he dit:>tance uetween t rausmitter auu receiver. 
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P T,( d) ex ( ~ ) n (2 .1) 

Here P L( d) men.ns the pn.th loss, n is t he men.n pn.th loss exponent which incl.icn.tes 

how fast path loss increases with distance, d0 is t he reference distance, and d is t he 

transmitter-receiver separation distance. The absolute mean path loss, in decibels, 

is defined as t he path loss from the t ransmitter to the reference distance do plus t he 

addit ional path loss described by Eq. 2. 1. 

PL(d) = PL(do) + 10np log10 (~) + X cr (2 .2) 

The a bove equation estimates absolute path loss where Xcr is a zero mean log­

normn.lly cl.ist.ributecl. m ncl.om vmin.ble. T he n n.ncl. CJ pmameters that a re to be es­

t imated empirically or theoretically. These are functions of the building types and 

would be unique for every building. Factors like floor / wall types , number of obstacles 

between t he t ransmitter and receiver and floor level would affect these parameters. 

Using t he above Eq. 2.2 and 2.3 r1 can be calculated as P L(d) is calcula ted from Eq. 

2.3 and put in Eq. 2.2 , where d is the only unknown variable. 

PL(d) = Pt - P,. (2.3) 

where Pt is the t rasmission power and Pr is the receiving power. 

T ime-Based Methods: Instead of measuring the distance directly using received 

signn.l strengths (R.SS) , t ime of arrival (TOA) or t ime difference of arrival (TDOA) is 

usually measured, and the distance is derived by multiplying the radio signal velocity 

and the travel time. The dist::tnce from the transmitter to the receiving unit is directly 
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proportional to t he propagation time. TOA measurements must be made with respect 

to signals from at least three reference points in order to determine t he position. 

d = f xs (2.4) 

Here s denotes t he t ravelling speed of t he signal, l the amount of time spent by 

the signal travelling from the transmitting to t he receiving node, and d the distance 

between the receiving node and transmitting node. Since speed is a known constant, 

d can be computed by observing t ime. 

The idea of TDOA is to determine t he relative position of the mobile transmitter 

by examining the d ifference in t ime at which t he signal arrives to multiple receivers , 

rather than the absolute arrival time of TOA. With two receivers at known locations , 

an emitter can be located onto a hyperboloid. A t hirct receiver at a third locat ion 

would provide a second TDOA measurement and hence locate t he emitter on a second 

hyperboloid. T he intersection of these two hyperboloids describes a curve on which 

the emitter lies . ow a fourth receiver will provide a third TDOA measurement. 

T he intersection of the resulting third hyperboloid with t he curve already found with 

the other t hree receivers defines a unique point in space. The emit ter's location is 

therefore fully determined in 3-D. 

In general using TOA has two problems. First , all t ransmitters and receivers in 

the system have to be precisely synchronized. Second, a timest Rmp must be labelled 

in the transmitting signal in order for t he measnring unit to discern the distance t he 

signal has traveled. TDOA does not have this problem as only time difference is 

required uetween the receivers. 
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Similarly t he Return Turnover Time (RTT) method emerges with the goal of 

solving the problem of synchronil~ation incurred by TOA. With TITT, the dist ance is 

calculated as follows : 

d = --'--( f._R_r_-_6_l)_x_ s 
2 

(2.5) 

tm· denotes the amount of time needed for a signal to travel from one device to t he 

other and lmck agaiu, 6 t the prcdctcnuincd t ime delay required by the hardware 

device to operate at t he receiving device, and s the speed of the transmitting signal. 

Time-based measurement methods are now in widespread use. However TOA based 

methods are limited by strict requirements of synchronization [64]. Received signal 

phase method and roundtrip time of flight are also used for range estimation in some 

systems. 

2.4.2.2 Angulation 

T he main advantage of Angle Of Arrival (AOA) is that a 3-D posit ion can he es-

timated with as few as three transmitters/ receivers. For 2-D posit ioning only two 

measuring devices arc required, and uo t ime synchronization between measuring de-

vices is required. T he system employs either an array of antennas or directional 

antennas. Angulation basically est imates an object by computing angles relative to 

mult ip le reference points. The location of the mobile device can be found by t he 

intersection of several pairs of angle direct ion lines from a base station [64]. 
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Figure 2.8: Using direct ional antennae to localize. 

2.4.3 Fingerprinting 

As ~tn ~tltern~tte to the propc:tgation-model based locc:tlizc:ttion solut ions, there is Wi­

Fi RSS fingerprint ing technique. This t echnique can be generally divided into two 

phases: 1) an offline phase and 2) an online phase. The offline phase is called t he 

training phase and t he online phase is called the positioning phase. In the offline 

phase, a radio map is created l>y st oring information about all t he visible AP and 

their RSSI values for all locations of interest, which can be called reference points or 

a,nchor points. After collecting t h i::; raw data, for each location a fingerprint has to 

be created. The idea is that each location in the area of interest will have a unique 

vector of AP and RSSI values. It is very important t hat the anchor points are also 

chosen in such a way t hat t hey increase t he accuracy and reliability of the system. 
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After t he training phase each anchor point was associated with a Wi-Fi fingerprint, 

these fingerprints arc then nserl. by t he posit ioning phase by comparing it to the 

current Wi-Fi measurements. The best mat ch will yield the highest likelihood for 

correct location. Chapter 4 will explain in detail our process for collecting Wi-Fi 

dat a, creation of fingerprints and Wi-Fi positioning. 

Algorithms used for comparison between Wi-Fi data collected in the positioning 

phase and t he fingerprints in the database can be classified into two main cat egories 

- determinis tic and probabilistic. In probabilistic techniques t he device's position is 

morl.elerl. as a mnrl.om vector. The canrl. irl.ate anchor 'Y is chosen if it has the highest 

probability. Usually the decision rule uses Bayes' theorem to calculate the likelihoods 

for all candidates. 

On the other hand t he deterministic framework is based on optimizing the simi­

larity between observed online TI.SS measurement and the fingerprint such as using a 

scoring method. Various techniques are used to optimize the similarity. In t he sim­

plest case usually the Euclidian distance is calculated but other distance metrics are 

also possible. The case in which the closest fingerprint match is considered , is called 

nearest neighbour. If J( anchors are considered then it is called K -Nearest Neighbour 

(KNN) and sometimes non-negative weights are used to compute the estimate which 

yields Weighted K-Nearest Neighbour (W KNN) . 

Although t he ba::;ic idea of Wi-Fi fingerprinting is straight forw::trd , there arc 

still many challenges and areas where researchers are working to improve t he finger­

print ing techniques. Kushki et al. [26] discuss five ruain such challenges for Wi-Fi 

fingerprinting-based techniques: 
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• Collecting data from a large number of posit ions is difficult . 

• Selection of APs in the positioning phase. 

• Pre-processing fingerprints to increase accuracy is difficult as it is difficult to 

pnxlctcrminc which AP's arc important for positioning. 

• Quantization of distance between the vVi-Fi RSS vectors in the signal space. 

• Building analytical models to evaluate system performance. 

To increase the accuracy of the posit ioning system, it is really important t hat t he 

training is clone in a proper way. Training process can be very laborious, especially 

for fu t ure updates and maintenance. In [32] the researchers have come up with a 

user feedback model for increasing the accuracy of t he system . T he user can give 

positive and negative feedback. Apart from the system anchor points , t he user can 

also create new audwr points if the user is standing at a uon surveyed position. 

Positive and negative feedback will increase t he weight of t he anchor points hence 

increasing t he accuracy. A lot of work is being done in using Wi-F i fingerprinting 

with focus being on maximizing accuracy and minimizing t he calibration needed to 

achieve it. [23] [26] [29] [30] [36] all try to improve W i-Fi fingerprint ing approach for 

localization . 
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Chapter 3 

Pedestrian Tracking and Position 

Estimation 

3.1 Introducing the Smartphone Se n sors 

The MEMS technology and smartphone sensors m arket are growing rapidly. T hese 

ME IS sensors are fuelling the growth of new consumer electronics devices, which 

in turn helps the growth of the :viEMS industry. Smartphones are getting smarter 

hcranse of all the sensors being added to them. By nsing sensor fusion , one can take 

information from all of t hese sensors to categorize the environment the user is in. As 

au example, iu a mall there are various types of stores next to each other. Each store 

will have its unique ambience. A cafe might have different type of lighting compared 

to a IJook::itore next doors. Even the light sensor mayiJe able to somehow differentiate 

between the two places . Microphone might be able to help d is tinguish amongst d ifl:'er­

eut plRces due to the IJackgrouud noise. Most of the latest sumrtphones are equipped 
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with sensors such as proximity sensors, C P S receiver , W i-Fi, magnetometers, light 

sensors, accelerometers and gyroscopes. T he coming generation of mobile devices arc 

set t o have many new types of sensors like alt imeter sensors t hat would be able to de­

tect your elevation. Additionally, phones will include more microphones, t emperature 

and humidity sensors t o bet ter determine their location and surroundings. 

For our research purposes we nee<..l.e<..l. t hose sensors to help us J.etenuine human 

motion and also estimate t he position of t he user in an environment . Apple current ly 

is a market leader in smar tphone technology wit h the iPhone capturing a major 

market share in the smart phone users. vVe chose iPhone 4 as our platform of choice 

to develop and test our system. The iPhone 4 comes with a bundle of sensors including 

magnetometer , Wi-Fi, accelerometer and gyroscope. T he iP hone is programmed 

in Objective-C, which is quite a simple language to learn and use. Objective-C 

is a superset of the C language, wit h some object oriented-programming features. 

The lOS APis and emulator (which runs on desktop/laptop MAC computers) make 

prograuunauility, UI design , and co<..l.e debugging an efficient process for J.evelopers. 

All frameworks are well designed and documented , abstracting t he developer from 

low level components. In addition, the motion sensor APis are cleanly designed and 

make accessing these devices simple and stright forward. In [37] the aut hors have done 

a performance evaluation of iPhone compared to another leading smartphone from 

Nokia. According to t hem the iPhone offers a r ich UI architecture, high computat ional 

capability, and an efficient application distribut ion system t hrough Apple's App Store 

compared to Nokia N95. 
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3 .1.1 Accelerometer 

An accelerometer is a device that can measure the force of acceleration, whether 

caused by gravity or by movement. The iPhone 4 uses t he LIS331DLH 3-axis MEMS 

bRse<i Rccelerometer pro<ince<i by STMicroelectroics. The magnitml.e <tn<i direction 

of acceleration can be measured , and used to sense t he orientation of the device. An 

<tccderometcr eRn therefore measure the <tccclemtion of <tn object it is att<tcherl to. 

Because an accelerometer senses movement and gravity, it can a lso sense the angle 

at which it is being hcl<i. T his feature allows apps t o automatically adjust the visual 

output to make it appropriate to t he direction of the screen . Apart from the tilt , it 

can also detect vibration so different gestures like shaking can be detected and put 

to use for different applications. Figure 3. 1 shows the axes of the 3D accelerometer 

as defined by Apple with respect to the iPhone. 

+ V 

+X 

- v 

F igure 3.1: Axes of Accelerometer 
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3.1.2 Gyroscope 

A gyroscope is a device for measuring orientation. A phenomenon called gimbal lock 

is one of the major problems with mechanical gyroscopes. It occurs when two of the 

three gimbal rings are aligned in the same plane due to rotation . This rednces t he 

system 's degree of freedom and t he gimbal would no longer be able to rotate and 

maintain the orientation. In recent years , inexpensive gyroscopes manufactured with 

MEMS t echnology have become widely available. These sensors work in a similar 

fashion to the linear accd erometers as they provide instantaneous reading of t he 

angular velocity. This value can be recorded and integrated over time to calculate 

the object 's orientation . Figure 3.2 shows t he axes of t he 3D gyroscope. 

+y 

- X 

+z 
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Figure 3.2: Axes of t he Gyroscope 
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3.1.3 Magnetometer 

The compass in the iPhone 4 is the AKM AK8975. The magnetometer is based on t he 

Hall Effect, which is one of a number of methods for detecting magnetic fields. The 

lOS framework provides us with the raw r, y,z components of t he sensed magnetic field 

vector in addition to the magnetic heading. Magnetic heading is a heading relative 

to the magnetic poles of the Earth which is different from true geodetic heading. The 

true heading is relative to t he actual North and South Poles of the Earth. Calculating 

true heading; requires the knowledge of the present posit ion, hence satellit e-based 

positioning is used to estimate the true heading. The magnetic heading also contains 

a two-part compass error: (1) magnetic variation due to the Earth's magnetic field 

and (2) magnetic deviation, which is t he local magnetic fluctuations. This can be clue 

to of metallic structures inside buildings or other electronic equipment. 

3.2 Understanding Human Gait using Accelerom­

eters 

Gait is the pattern of movement of the limbs and human gait is a popular topic 

in Medicine and Kinesiology. A particular way or manner of moving ou foot is t he 

definition for gait. Every person has his or her own style of walking and factors like 

injuries, aging and operations on t he feet might change a person 's style of walk. The 

gait pattern is very important for medical diagnosis of ambulation and estimation 

of energy consumption. In [28] they use a 3-axis accelerometer on the waist belt to 

detect the acceleration of the body. They then process this information to estimate 
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informat ion about the subject as gait pattern , speed of t he subject and total walking 

distance. 

Gait recognition is a vast topic on its own. Biometric gait recognit ion has been 

studied for ident ity verification as surveillance and forensic systems arc uccoming 

important. There are three different approaches in gait recognit ion; Machine Vision 

(MV) Based , Floor- Senso-r (FS) uased and W ea·rable Senso·r ( WS) based. In t he 

MV technique, several cameras are used to capture gait images and t hen different 

a lgorit hms can be used to determine the gait cycle. In the floor sensor approach 

the sensors are placed along the floor where gait data is measured when people walk 

across . The WS based gait approach is based on wearing motion sensors on the 

body of a person in different places like waist, pockets, foot or arms. The topic of 

accelerometer-based activity recognition is also not new. Bao and Intille [9] developed 

an activity recognit ion system to identify twenty activities using hi-axial accelerome­

t ers placed in five locations on the user 's body. [21][27][24][44] are studies in the same 

domain where they try t o classify human activity like standing, walking, jogging, run­

ning, climbing up sta irs and climbing down stairs using various ar t ificial intelligence 

and data mining techniques. 

'vVe assume that the user walks while holding t he smartphone in hand and with 

the +y-axes pointing in the direction of walking and the -z-axes pointing downwards. 

F igure 3.3 shows a typical pattrrn of :c- ,y- and z- measurements corresponding t o 

vertical, forward , and side acceleration of a walking person. This dat a represent 40 

steps taken in a straight line at a const ant pace. T he raw data outaincd is very similar 

to the data presented in [28][38] [61], where the accelerometer was att ached to the hip. 

T he only difference is t hat when the accelerometer was fixed to the hip, t he x-axcs 
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Fignro 3.3: Raw accd eromdor readings 

r0aclings w0ro moro stahlc t han those pr0sontcd h0rc. Tho reason hchincl this is t ho 

fact that when t he user walks, the anus sway with the motion giving higher x-axes 

readings . Figure 3.4 shows t he different stages in t he acceleration pattern. 

AC~~~~::T~Otl f-----~ .... ~e-lC-f!E.A-· s_·,_:f-.C-Rf-.AS_F_O --o.J..,--IU-(H-F-AS-E0----1 
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F ignre 3.4: \\Talking stagos and accdcration pattern when accderomoter attachecl to 

hip [65] 

Human gait analysis shows us that we can use t hese vertical and forward accel-

erations to cletermine steps tnken hy t he user. If we cnn est imate the steps taken hy 

the user , it will be easier to develop a reliable motion model which can be used for 

ck nd rcckoning. T hc following soctions descrihc how to clctcrminc clistance walkecl 
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and how a relia ble motion model can be used . 

3.3 P edometer Based Dead Reckoning 

An inertial navigation syst em (INS) is a navigation aid that uses a computer , ac­

celerometers and gyroscopes to continuously calcula te via dead reckoning the position , 

orienta t ion and heading of a moving object without any need for external references . 

Prior to satellite positioning systems, such as the United State's GPS or the EU's 

G alileo system, inertial navigation was relied upon to provide accurate posit ion data 

for a number of vehicles, including guided missiles , aircraft, submarines, and space­

craft . The classica l strapdown INS syst ems have lightweight computers along with 

iner t ia l sensors simply a t tached to t he body of the vehicle or object which calculate 

the attitude. At tit ude is t he orientation in space of the INS axes (body frame x ,y,;1,) 

with resp ect to the reference frame. Figure 3.5 shows inert ial reference frame which is 

not rotating with respect to t he fixed global posit ions. Accelerometers and gyroscop e 

are measuring acceleration and physical rotation in its own coordinate frame hence it 

is difficult to t ransform them to the global reference frame for localii~at ion . The axes 

of the Eart h frame are fixed with respect to earth and usually p arameterized with 

geogra phical coordina tes: latitude, longit ude and altitude. GP S uses the Earth frame 

of localization and navigation. We can define our own coordinate system too, for ex­

ample by choosing a point as origin and then aligning t he three axes orthogonally to 

c::tch other. This can be called the loc::tl n::tvig~Ltion frame. 

T he accuracy of such inert ial navigation scheme is a function of t he accuracy 

of sen!:>or inputs and the frequency of data capture. To calculate t he position, t he 
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Figure 3.5: Body frame(x,y,z) and local navigation frame(E ,N,U) 

acceleration samples must be integrated twice to obtain position. These integrations 

can int roduce errors in the data, known as integration drift. The problem stems 

from the fact t hat small errors in the acceleration measurements are integrated into 

larger errors as t ime progresses. Figure 3.6 shows au example of an INS. T he error 

increases as time and travelled dist ance increases . Aircrafts use strap-down INS for 

positioning but they involve very high quality inertial sensors and also need high 

computation power because of the complex equations involved. This may not h e 

possible in smartphones because of limited computing power and noisy L\1U sensors. 

T he other method which seems to be more reliable is inspired by pedometers. 

Early designs of pedometers used a weighted mechanical switch to detect steps, plus 
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Figure 3.6: Integration Drift 

a simple counter . When these devices were shaken, one could hear a metal ball sliding 

hack and forth. The latest pedometers use accelerometers to detect steps. They then 

employ various methods of step length estimation. Almost all of them use height and 

weight of t he user to state the length of t he stride [11]. 

Step detection is t he automatic determination of the moments at which footsteps 

occur. If accelerometer data is used to detect instant mot ion of the device, sudden 

changes in the movement have to be isolated from the constant effect of gravity. 

Figure 3.7 shows the magnit ude of the accelerometer readings after passing through 

a high-pass fil ter. The user t ook fo rty steps in a straight line, this can be observed in 

the graph as forty peaks. 

3.3.1 Distance Estimation Using a Step Counter 

T here are several algorithms available for step counters but most of them are primarily 

for accelerometers attached to the foot, hip or other body part . As we assume that 

the user will be holding t he device in the hand, different algorithms were investigated. 

Pan-Tompkins method is a real-t ime algorithm for detection of R peaks in 

elect rocardiogram (ECG) signal. R peaks are usually t he central and most visually 

40 



- M agnitude 

2 

1.8 
c: 

j:j~ ~ · WI 
·2 0.6 

1

1 
01) 

~ 0.4 
0.2 

0 
0.00 2.52 5.04 7.56 10.08 12.60 15.12 17.64 20.15 22.67 

Time 

Figure 3.7: Magnit ude of the accelerometer readings 

F igure 3.8: Block Diagram of Pan-Tompkins algorithm 

obvious part of the t hree graphical deflections seen on a typical electrocardiogram . 

Figure 3.8 shows the block diagram of the algorithm . In [61] this algorithm is applied 

to a foot mounted accelerometer. The Pan-Tompkins method is applied to a block 

of n.ccclerometer ren.dings. In their experiment they first pass the raw accelerometer 

signal t hrough a low pass filter to reduce the influence of artefacts in t he signal. The 

cut off frequency t hey chose was 20HI\. T he derivn.tive of t he filtered signal is then 

t aken to suppress the high-frequency components and enlarge the low frequency com-

ponents. Then they do t he squaring operation which enhances the larger values more 

t han the smaller values. Due to t he squaring and derivative operat ions mult iple peaks 

arise. T hey are smoothed through a moving-window integration fi lter. In the final 
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stage a peak-searching algorithm is applied to count the number of steps taken. Peak 

cl.ctect ion is a method which calculat es the st eps from the 3-axcs accelerometer read­

ings . A t hreshold value can be used to detect a peak. If t he changes in accelerat ion 

are too small, t he step counter will <liscar<l t hem . The step counter can work well by 

using t his algorithm, but somet imes it seems too sensitive. When t he device shakes 

or vibrates ran<lomly from a cause other t han walking, the step counter will also take 

it as a step . However , in [61] t he authors used a different approach to finding t he 

maximum. They called the points where step is detected as fiducial marks. From 

the pre-processed signal t he negative slopes are t ransformed to -1 and positive slop es 

are transformed to + 1. This way t he step cycle is conver ted into pairs of [ - 1, 1]. T his 

pair is referred to as the peak-searching interval. T he local maximum is marked as 

fiducial mark and hence detected as st ep. 

We implemented the same algorithm on a smartphonc t o sec if we can get t he 

same result . We made a small modification to t he peak-searching phase as we used 

static t hreshol<l instead of t he fi<licial mark method <lescribed above. F igure 3.9 shows 

the graphs at different st ages of the a lgorit hm. The performance of this algorit hm 

is not relia ble for a stepcounter , as t he error was always m ore than 60%. One of 

the reasons is that continuous motion is observed in t he acceleromet er readings when 

the device is held in the hands . In [61] the results are bet ter as t he accelerometer 

was attached to one of the feet. ·when t he strp is t aken by the foot on which t he 

acceleromet er is not attached , lower magnitude accelerometer readings are observed 

which arc smoothed out by t he lower pass filter. Hcucc when t he accelerometer 

attached foot 's heal touches t he ground , t here is a spike in the accelerometer signal. 

From Figure 3.9 we can observe t hat after t he fi ltering stage, derivative, squaring 
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and moving-window integrat ion does not help in detecting correct step count. In 

onr cxpcrimcnt the sampling frequency was GOH7. . The dat a was passed through a 

Butterworth low-pass filter with cut-off frequency of 10Hz. The following equations 

were used for derivative operator and integration. Only the last four terms were used 

for integration because we want to capture the spike. 

1 
y(n) = - [2x(n) + x(n - 1) - x(n - 3)- 2x(n- 4)] 

8 

1 
z(n) = N [x(n- (N- 1) + T(n - (N - 2) + ..... + x(n)] 

where N is chosen empirically as 10. 

(3.1) 

(3.2) 

In [38], the magnitude of the 3D accelerometer readings is taken. In t he second 

step the signal is passed through the Butterworth low-pass filter with order 20 with 

cut-off frequency of 5Hz. In t he final stage a hill detection and threshold calculat ion 

is done. Hill detection is similar to peak-searching in the previous st ep. In this 

case the threshold is chosen adaptivcly. In the implementation, t he buffer length of 

accelerometer readings is chosen to be 100 samples. T he threshold is selected after 

itera t ing over all the readings and then the munbcr of hills arc detected which count as 

number of steps in that block of accelerometer readings . After detecting the number 

of steps, the mean of peaks is calculated. The threshold is then selected as a factor of 

this peak mean. The result of this a lgorithm was pretty accurate and also dependent 

on the buffer size. W ith 30Hz of sampling frequency if the buffer length was more 

then GO samples it would give an accuracy of more then 80%. T he Table 3.1 shows t he 

comparison of accuracy between the three implementations. However , there is one 
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Figure 3.0: Results of the Pan-Tomkins method on the magnitude accelerat ion for G 

seconds. The dat a was collect by walking in a straight path . Stars are showing t he 

step detection . 
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disadvantage of this algorithm. As we are implementing it over a block of readings, 

the step count ing is not real time. For example if the sampling rate is 30Hz ancl we 

keep the buffer as 60 samples. The number of steps will be updated after 2s . Here is 

the Hill detection and threshold selection algorithm. 

I I Pseudocode fo r Hill Detect ion 

llinput:a[n] i s the buffer which contains past n acce l er ometer r eadings . 

llout put: s t epCount 

numberDfpeaksCount 0 

peakAccumulate = 0 

for all a[k] in the buffer do 

end for 

forwardSlope = a[k+1] - a[k] 

backwardSlope = a[k] - a[k-1] 

if forwardSlope < 0 AND backwardSlope > 0 then 

numberOfpeaksCount = peakCount + 1 

peakAccumulate = peakAccumulate + a[k] 

end if 

peakMean peakAccumulatelnumberOfpeaksCount 

s tepCount = 0 

for all a[k] in the buffer do 

forwardSlope = a [k+1] - a[k] 

backwardSlope = a[k] - a[k-1] 

if forwardSlope < 0 AND backwardSlope > 0 
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AND a [k] > C * peakMean 

stepCount numberOfpea ksCount + 1 

end if 

end for 

The algorithm that we chose for our stepcounter is inspirect by an analog pedome­

ter [65]. We used the Butterworth low-pass filter to remove the high frequency noise 

similar to the first st ep of the hill detection algorithm. The p eak detection algorithm 

is used to det ect the steps in the accelerometer readings. The threshold is empirically 

chosen as 0.14g, but using a static threshold may detect false steps as sudden move­

ment of t he hand held device may produce such measurements. Invalid peaks in t he 

peak det ection method must be discarded in order to find the true rhythmic steps . In 

our experiments we have assumed that people walk with speed between three steps 

per second to one st ep every two seconds [65]. Therefore the interval between two 

valid steps is defined as being in the t ime window [0.33 , 2.0]. T his t ime window is 

used to discard invalid vibrations. For example when a step is detect ed , no other step 

can be detected for auother 0.33 seconds . When a new step is detected between 0.33 

and 2 second the interval window moves and resets. 

To make sure that steps are rhythmic in nature, t he algorithm searches for 3 

consecut ive st ep det ections in successive time winnows. If this happens then t he 

algorit hm recognizes that the user is walking. The algorithm goes into a walk mode 

when t his rhythmic pnJ.tern is rccognizcct . Once in t he walk mode, if the connt 

manager realizes that the maximum window t ime has passed wit hout step det ection, 

it will go back to the stanct mode until it ctctects 3 consecutive steps again. This 
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algorithm was implemented on our iPhone and the result is shown is Table 3.1. In 

the experiments 500 steps were taken ::tnd the iPhone was held in t he hand. The 

experiment was repeated three t imes by two different users . This algorithm exhibited 

:::;imilar accuracy to t he hill detection algorithm out with t he added benefi t that it 

would update the step in real time whereas the hill det ection out puts t he total number 

of :::;teps taken in a t ime window every fixed t ime interval. The accuracy of t he 

stepcounter varies a litt le especially as when t he mobile device is held in t he hand , 

the sway of arms play an important factor in detecting steps. Different users may have 

different ::tccuracies, hut this can be fixed by increasing or decreasing t he sensitivity 

threshold. We chose this algorithm for our stepcounter to be used in our localization 

scheme. 

The template matching method [61] is also one of the ideas explored in the litera­

ture. The main concept of t he templat e-matching method is to generate a templa te, 

which represents a typical st ep cycle. In the unknown signal, an event is declared to 

be detected when there is a match between the signal and t he templat e to a certain 

degree. T his method was not implemented as template matching is more computa­

tionally expensive. 

After detecting t he number of steps , the distance walked can be calculated by 

multiplying stepcount by step length. Step length is t he dist ance from the heel print 

of one foot to the heel print of the other foot . This is the distance traw~led forward 

in one stride. This can be approximated by t he height of t he user [11]. 

D,, = Sc X l (3 .3) 
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where Dt is t he total distance walked , Sc is the step count and l being step legth. 

Table 3.1: Results on different implementation of step counters 

Algorithm Measured Step Count Mean Error in Steps (percent) 

Pan-Tompkins 810 - 62% 

Hill Detection 455 9% 

Our algorithm 442 11.6% 

3.3.2 Heading Estimation 

Once t he step is detected , it is important to know which direction the step was taken 

in. Smartphone magnetometers arc very noisy, especially in indoor environments. 

Figure 3.12 shows a map of our department where we tested by walking in three 

corridors , changing directions two times. First t he user is walking in a straight line 

and then turns right and walks straight t ill next corner of the corridor. The user 

turns right again and continue walking straight . The iPhone has a 3-axes gyroscope 

which can measure angular velocities about the axes. The motion framework of t he 

lOS SDK also provide us access to built in functions which manage and keep t rack 

of t he device attitude after the application starts. Rotation around z-axcs is called 

yaw and at the start of t he application it is calibrat ed with t he initial stable magnet ic 

heading. The result of magnetic heading is compared to yaw in F igure 3.10. It clearly 

shows that t he gyroscope is more stable in an indoor environment. The only problem 

is that a gyroscope only maintains t he local orientation of the device and hence it 

needs some kind of transformation to the global reference frame. A magnetometer on 
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the other hand provides us with a global heading. 

-Heading 

-Yaw 

Figure 3.10: Heading and Yaw readings collected after walking in t he corridors. 

As stated in Chapter 2 t hat in an indoor environments due to magnetic inter­

ferences these headings have high errors. But in our preliminary study of using t he 

magnetometer in an indoor environment , we found t hat although walking in a straight 

line in a corrirlor might fluctuate the hearling ±45 o , it will be enough to rlifferentiate 

between different corridors in an indoor environment most of the t ime. Maps of an 

indoor environment have a small number of orientations of the corridors. For example 

Figure 3.12 shows a map with only four possible orientations as the corridors are at 

90 o . Thus, t he user can either walk in only 0 o , 90 °, 1t:l0 ° or 270 o with respect to 

the coordinate system of t he map. This relies on t he assumption t hat t he corridors 

will differ in orientation by an amount larger than the magnetometer error. During 

the war sensing phase explained in the next chapter , we will collect heading informa­

tion of the possible orientations in a map. In this case a small t able of four entries 

(ivbgnetic Heading, User Orientation) would suffice. For every different environment 
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map, this information can be calculat ed for the possible orientations during the war 

sensing phase. There certainly will be areas where the local magnetic disturbances is 

larger than t he error tolerance for that particular orientation. Hence in this situation, 

wrong orientation will be detected. 

vVhen the application is started , the first phase would be the initialization phase 

in which we calibrate the gyroscope to t he map coordinate system using the magne­

tometer. During this phase the user can be asked to walk a few steps. If t he user 

cheats by walking in a direction which is not paralled to the corridor, for example 

between the walls of a corridor or in a circle t he calibration would be faulty ann affect 

the motion model. This is a reasonable calibration process as it would allow to check 

for stable magnetic heading readings. During the calibration magnetic readings arc 

recorded and voting is done to choose the init ial user orientation in the map envi­

ronment from the orientation selection table mentioned above. The voting process is 

employed inst ead of averaging because when the magnetometer is initialized the user 

might be standing in a high magnetic anomaly point and hence the wrong orientation 

can be selected. This orientation is then used for step direction. Chapter 6 will show 

the results of our calibration process . 

3.4 Motion Model 

In probabilistic robotics there is another key concept t hat of a belief. A belief is t he 

internal knowledge of the robot or a system about the state of the world . In our 

case the state means t he location of the subject in our environment. State cannot be 

measured directly out can be infcl'I'cd from its int cm al lJclicf. In probabilistic rolJot ic;s 
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Figure 3.11: Anchor point and Grid space 

beliefs are represented as a conditional probability distribution. This distribution 

assigns a probaoility to each possible hypothesis with regards to the t rue stat e. The 

state Xt is generated stochastically from the st ate Xt - l , meaning that the belief at 

time t is calculated from its past belief at time t - 1. The most general a lgorithm 

for cn,lcnhtting beliefs is given by B ayes .filter. Algorit hm 1 depicts t he Bn,yes filter. 

T his algorithm is recursively applied every iteration when belief bel (x 1) needs to be 

cn,lculated from bel (Tt- l) and the current control input sensory. T he I3ayes filter 

algorit hm possesses two essential steps. In Line 2, it processes t he control u 1 . It does 

so by calculating a belief over t he state :t:t based on t he prior belief over state :r1_ 1 

and the control u1 . T he control u1 carry information about change of st at e in the 

environment, which in our case is t he motion captured from t he st ep counter. This 

step of t he algorithm is also called prediction [52]. 

The second step of Bayes fi lter is called the measurement update. In line 3, t he 

Bayes fi lt er algorithm multiplies the belief bel (.'Et) by t he probability t hat measurement 

z1 may have been observed . It does so for each hypothetical posterior state x 1. To 
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compute the posterior belief recursively, the algorithm requires an initial belief bel(xo) 

at time t = 0. If we arc ignorant n.hout the initial condition we cn.n initialize using 

the uniform distribution. 

Algorithm 1: The y e.nend algorithm for Bayes fi lter-'iny 

1: for all Xt do 

2: bel(xt) = f p(xtlut , Xt_I) bel(.-rt_I)dxt-1 

3: bel(:r:t) = ryp( zt i:r:t )lwl (:rt) 

4: end for 

Output: bel(x,) 

Figure 3.12: Map of the Eugineeriug I3uildiug 

To study om motion model we divided om map into grid spaces. T he center of 
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these grid space has the anchor points which have known physical coordinates (x, y). 

The grid space between two anchor positions determines t he resolut ion or granularity 

of the positioning system (Figure 3.11). A number of issues arise when implementing 

grid localization . For a coarse grid , additional information is lost in the discretization 

process which affects the filter negat ively whereas with a fine grid , the computation 

cost increases. 

The X t describes a list of anchor points and is the hypothesis that the subject 

is in one of those positions . Figure 3.12 shows the map of the second floor of SJ 

Carew (Engineering huilrling) anrl the positions of all the anchor points. These anchor 

points are 6m apart. Algorithm 2 shows our motion model which uses rela tive motion 

information as measured by t he stepcountcr and gyroscope. 

In t he time interval [t - 1, t] the user advances from position Xt-1 to position Tt· 

The step counter anrl gyroscope report hack the relative change in position ( :r:rel , Y rel ). 

As we know the initial heading and current heading of the user , we can det ermine 

the user 's direct ion of travel. So from the last position and the new position we 

can determine Xrel and y ,.el which are distances travelled in the x-direction and t he 

y-direction with respect to our map. 

X rel =a cos(B + (3) 

Y rel = asin(B + (3) 

(3.4) 

(3 .5) 

where e is t he init ial orientation of the device during init ialization, (3 is t he yaw of 

the device and et is t he step length. 

T he corresponding relat ive mot ion parameters ( x*, y•) for the given poses x1_ 1 and 
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Algorithm 2: Motion model for computing p(x t !'ut, x1_ 1) based on m otion 

captured from step counter. Here the control u 1 is given by (:r rel, !Jrel ) , with 

X t = (x, y) and Xt - 1 = (x' , y'). Xrel and Yr el are the relative distance tm velled in 

:r-dircction and y-dirrction in map coordinates. They are calculated using steps 

taken and step direction. 

1: X*= x'- x ; 

2: Y * = y' - y ; 

3: c5.r. = Xr P.l -X* ; 

4: rly = !Jr el - Y*; 

5: pl = norm(c5x,CJ ); 

t:i : p2 = norm(6y , CJ ); 

7: result = pl * p2 

Output: result 
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Xt are calculated in Lines 1 and 2. These basically come from t he known positions in 

the map. The function TWTm.(n, b) implements an error rl.istribnt ion over a with zero 

mean and standard deviation of b which was empirically chosen as 4m. The motion 

model is used as step 2 in our I3ayes filter implementation. 
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Chapter 4 

Wi-Fi Positioning 

We start by introducing our baseline Wi-F i fingerprint-based approach . T he general 

idea of the baseline approach is similar in many respects to the systems reviewed in 

Chapter 2. However , we also refine existing fingerprint ing based approaches to make 

t hem more robust and suitable for integrating and processing user feedback. 

4 .1 The Concept 

Indoor positioning is challenging because of the non-line-of-sight transmission between 

receivers and transmitters. Walls, ceiling, equipment and humans obstruct the prop­

agiLt ing electromiLgnetic waves. As discussed in Chapter 2, there are various W i-Fi 

based schemes used for indoor localizat ion. Among them the location fingerprint ing 

t cchniqncs nsc existing in-bnilding communication infrastructure to provide low-cost 

and accurate localization. The fingerprinting technique is relatively simple to deploy 

compared to other techniques like t riangulation. In vVi-Fi t riangulat ion, the goal is t o 

map the RSSI (Received Signal Strength Indicat ion) as a function of dist ance and use 
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live RSSI readings to generate a ( x, y) location using a model. It is very difficult to 

make a model which satisfies every indoor environment, hence making it less reliable 

and robust . 

T he basic idea of fingerprint uascd positioning system is as follows. Suppose there 

is survey posit ion Pa where a mobile device can receive beacon frames from t he i­

th AP, 'i E { 1, 2, 3, .. . , N }. These beacon frames arc a type of management frame 

defi ned in IEEE 802 .11 st andard. These beacon frames are transmitted periodically 

and they announce all t he information related to the network. The information in 

these frames are also used for managing and cont rolling t he wireless link. The MAC 

address i\!h RSSI Pi and timestamp t i can be extracted from each beacon frame. The 

characteristics of IlSSI can be observed in Figure 4.1 as it shows the RSSI from an 

AP collected at different locat ions (anchor points) during a survey. As st ated before, 

the signal att ennation is different and unique for every indoor environment and hence 

it is difficult to model. 

If a t each anchor point located by posit ion ( x, y), multiple APs are visible, t he 

combinations of such RSSI values can be used to create a fi ngerprint for t his locat ion. 

To achieve this, we use a two-stage approach . In the first stage, which we call t he 

training phase, a radio map is crea ted for t he Location of Interest (LOJ). Figure 4.2 

shows the RSSI vectors which can be extracted from all t he access points . After 

collecting and storing these mw data of every location , fingerprints can be generated . 

Each \Vi-F i fingerprint is the pattern of signal strengths of a collect ion of W i-Fi access 

points visible in a part icular area and incorporates e.g ., the set of receivable APs, t he 

average RSSI or the number of t imes an AP is visible. During the second st age 

(positioning phase), t he rnouilc device scans for visible APs and creates a fingerprint 
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Figure 4.1: RSS readings from an AP at various survey point s [10] . 

at the yet unknown position of the user. T he positioning module then compares this 

fingerprint to all t he fingerprints stored in t he database and selects according to a 

system-specific similarity measure for the best matching counterpart . T he location of 

the best matching counterpoint can be returned to the user at the posit ion estimate. 

4.2 Training Phase 

In t he training phase, a set of reference points in the study area are selected as 

survey positions with known physical coordinates. T he training is conducted for each 

reference point. 
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Figure 4 .2: RSS Vector. 

4 .2 .1 Wi-Fi Warwalking 

In t he fir::>t ::>tage of the t ra ining, all the reference points on the map with known 

physical coordinates (.:r, y) are tagged with location IDs. All the anchor points in 

Figure u.l aml 0.2 arc chosen as the survey points for our experiments. Smaller 

dist ance between these anchor points might increase the accuracy of t he system, but 

it does not necessarily mean that t he precision will also improve as diHereut anchor 

points might have simila r Wi-Fi fingerprints. Also, when we choose the anchor points 

closer to each other, it makes the training phase more laborious. There is no standard 

guideline for whnt the si?.e of the grid should be. In our implementation we kept 

the grid size to b e 3m for the Engineering Building and 5.5m for the university 

tunnd environment, consid0ring our integration with motion modd nnd t he si7.f' of 
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the experimental area. 

Figure 4.3: Wi-Fi Warwalking Utility. 

To collect raw data, we implemented a small utility to scan W i-Fi APs aud save 

the data to our database. Figure 4.3 shows screenshot of our warwalking tool which 

takes posit ion ID and then scans for the Wi-Fi AP s. WaTwalking is done at all 

the anchor positions. vVarwalking is analogous to wardriving which is t he act of 

collecting data on the move in a vehicle. vVardriving is a common practice among 

td ecom anci ccllnlm companies as t hey coiled data for expansion and optimi11ntion 

of t heir network. In indoor environment inst ead of using a vehicle, we have to walk 

to collect the Wi-F i da t.a. 

When AP 's beacon is processed by NIC a great deal of informat ion is learned about 

60 



the particular AP. Each AP has a unique MAC address. Along wit h the MAC address, 

the RSSI is also recorded. In each \tVi-Fi scan , beacon frames from different APs me 

received and converted into a 2-tuple vector (i.e., MAC address and RSSI) . A single 

scan may not be able to capt ure beacon frames from all the APs nearby. T his maybe 

because of the different broadcasting periods of the APs or severe signal fad ing. To 

avoid utissing out any nearby AP which can later be found in an online scan, several 

scans are taken at the same posit ion. F igure 4.4 shows raw da ta collected for one 

such survey point . It shows t hat 41 scans were taken and the first scan showed 9 APs. 

Each AP 's MAC address and R.SSI value is stored. There are no general guidelines 

on t he number of scans needed for data collection but in our study and experimental 

area about 20 scans were enough to show all t he visible APs as more scans did not 

reveal any new visible AP. 
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Figure 4.4: Format of stored raw \tVi-Fi data showing one scan . 

61 



4.2.2 Wi-Fi Fingerprint 

After collecting the raw Wi-Fi data, in the second stage Wi-Fi fi ngerprints a re gen­

erated. Statistics are extracted from the raw data to generate an RSSI fingerprint of 

each smvey / reference point . A \ t\Ti-Fi .fin.r;erprint is defined as a 3-tnple (i.e., !viAC, 

Average RSSI, Count) vector containing a set of APs. We can also store t imestamp or 

RSSI variance which can also be used <'tS a feature for the fingerprint because research 

has shown that fluctuation and variance of RSSI of a particular AP also varies during 

the day. However in our implcmcnt<'ttion we have not considered these fc<'tturcs, but 

they may be addressed in our fu t ure work. Although these features could increase 

the accuracy and robustness of t he system however our research will focus ou t he 

improvements mobility introduces to fingerprint-based positioning. 

As described before the MAC field contains its MAC address , denoted as Mi. It is 

a unique ident ifier for each wireless network interface card. We use that to dist inguish 

among the different W i-Fi APs within range. The average RSSI Pi is an average of 

t he vVi-F i RSSI over t he sampling period. During data collection several scans nrc 

taken at the same locat ion. Each Wi-Fi scan contains the instantaneous RSSI values 

from each AP. As the RSSI values arc fluctuat ing, it is uecessary to take the meau 

value. The number of occurrences of t he AP during the sampling period , denoted Ci, 

is a lso part of the fingerprint . For a fixed number of W i-Fi scans, a large Ci value 

means that the AP can be heard for most of t he t ime, indicating that the AP will 

have a more reliable estimation of its RSSI value, which is a very important indicator 

for the reliability of an AP. F igure 4.5 shows the RSSI fingerprint vectors. After t he 

genera t ion of fingerprints, each survey point Ps is associated with its fingerprint F5 . 
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Figure 4.5: Fingerprint of nn anchor point 

4.3 Position Estimation 

In the posit ioning phase, live vVi-Fi measurements me done and the system then 

queries t he fingerprint database for a match. One Wi-F i scan during the posit ioning 

phase may genera.te a poor match as the scan may lack enough IlSSI data. According 

to Luo et al [32] the positioning error is greater if the number of scans is less than 

4 , Gut with 4 or more scans the posit ioning accuracy stai..Jilizes. T heir experiments 

were conducted in t he same test environment as ours. For our experimental purposes 

in the positioning phase the posit ioning module scans 4 t imes. The combined vector 

contains the set of APs visible during this active scanning period. The next st ep 

is to calculate the most likely position estimate by matching this vector to all t he 

fingerprints in the system. 
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Figure 4.6: Block diagram for rank based fingerprinting algorithm 

4 .3.1 R ank Based Fingerprinting algo rith m 

In classical fingerprinting algorit hms, vectors of RSSI measured in querying phase and 

training phase are directly compared to each ot her. Querying phase is the first part of 

the posit ioning f::tce when the positioning module scans for live RSSI re::tdings. T he 

nearest neighbour's method simply calculates the Euclidean distance in the signal 

space lJctween t he live RSSI reading cmd the fingerprints. A major drawback of 

using t his technique is that different devices , because of their hardware and software 

(sometimes devices of t he same make a nd model) , report different RSSI values which 

may differ from t he RSSI stored in t he database. This will degrade t he performance 
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of the posit ioning system . On the other hand , rank based localizat ion [33] uses only 

ranks of the nssr values because the rank information is Jess sensit ive to small signal 

variation. Therefore, the performance should be unaffected by the calibration of t he 

mol>ile device. 

F igure -! .6 shows the block diagram of t he rank based fingerprinting algorithm. 

In thi~ a lgorithm fir~t t he RSSI value~ mca~ured in t he querying phase from different 

APs are first sorted from strange t to weakest. Ranks (1, 2, 3, ... ) are assigned to AP · 

based on the posit ion in the sorted vector. Rank 1 is given to the strongest AP, 

meaning with the strongest RSSI value. Similarly, rank vectors are createo from t he 

fingerprints stored in the database. Ranks are assigned based on t he 1\IAC address 

and rank of AP in the querying phase. T hen this vector is also sorted strongest to 

weakest k eping the rank assigned to them. In ideal cases the sorted ranked vector 

from CJ.ltcrying phase ann sorted rankerl vector fron t raining phase will be identical 

henc showing perfect similarity. 

In case au AP which wm; in the querying ph~e w~ not found in the datalm~e, 

the ra nk vector created from the database is padded with 0, to achieve the same 

length as the rank vector from the query. Other techniques including t he application 

of a Gaussian kernel [26], which calculates the likelihood of an anchor point using 

the RSSI value similarity between two vectors, also face the dimension mismatch 

problem. In rf'a l indoor environment .. the dimension of the fingerprints of difff'rf'nt 

anchor points vary considerably. If simple likelihood calculation mechanism (e.g. , 

E uclidcau distance or cosine similarity) arc used , mismatching could lead t o large 

posit ioning errors . 
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4. 3.1.1 Calculating Similarity 

Spearman's foot rule distance measures the total elementwise displacement between 

two vectors. It is similar to the Manhattan distance for quantitat ive variables. Ac-

corning to [32] Spearman's foot rnle performs the best amongst other similarity mea-

sures. Assuming u k is the rank of the k-t h element in vector U, vk is the rank of t he 

k-th clement in vector V anrl n is the number of clements in vectors U and V then 

spearman's footrule distance can be computed as follows: 

n 

Ds = L luk - Vkl 
k= l 

4 .3.1. 2 Assigning Weight to Best Matches 

The similarity measure mentioned above return scores for every anchor point . The 

anchor point with the lowest score is considered the best match. Ideally using k 

smallest reference points to calculate the estimated position yields a bett er result. In 

[32] the aut hors use t he p-center algorithm to estimate the fi nal position est imate. In 

the rank based t echnirpH~ the rlistribntion of scores will rliffer for sever::tl reasons. T he 

number of APs visible in t he querying scan and posit ion where the scan was done 

affects the dist ribut ion of the scores. For instance if t he scan is done at a corner where 

20 APs are visible compared to another location where only 5 APs are visible, t he 

distribution of scores will diH"er a lot. A random test in the engineering building was 

done by selecting 13 anchor points. It was noted that the accuracy of the posit ion 

est imate appears to be independent of the score distribut ion. For each audwr points 

we have a list of scores after comparing wit h all t he fingerprints. Figure 4.7 shows 
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the maximum and minimum score dis t ribution. 

Another importrmt aspect to stnrl.y is evaluating the certainity in om hdid about 

the user position. As the user init iates the applicat ion, t he belief is uniformaly dis-

tributcd . Entropy is a measure of the uncertainty associated wit h a random variable 

and is also referred to as the expected value of t he information contained in a message, 

which in our case is the belief. Entropy is dccribcd by the following equation. 

n 

H(X) =- L:.)p(xi) logb p(xi)) (4 .1) 
i =l 

where p(.ri) , is t he probability mass function of xi· Entropy is maximized if t he 

distibution is uniform. It means t hat the uncertainity is maximum about the possible 

position of t he user. We need to know how certain we should be in order to inform 

the user of the possible user location. 

Figure 4.8 shows t he normalized ent ropy of the score distribution at each anchor 

voint . At positions G to 9 the accuracy was under 8m where as 1-4 awl 10-1:3 the error 

was greater than Sm. The best match a t positions 6 and 8 were estimated t he correct 

vosit ion but both t he ent ropy anJ mi11-rnax distribut ion docs not i11fcr a trend. From 

calculating ent ropy we wanted to find out if we can extract any information about t he 

certainty of the correct position est imate, so that we can assign a weight accordingly. 

But as seen from t he trends, this is not the case hence we userl. a rl ifferent ilpproach 

to use Wi-Fi for posit ion correction. vVe assign weight w1, w2, and w3 to the best 

3 milt.chcrl. ilnchor points only if they me illl wit hin 2 hop neighbours to eilch other. 

Otherwise we ignore the Wi-Fi scan. It means t hat each anchor point in the top 3 

matches should be ill t he same neighbourhood and have Hot more than one anchor 
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points between them which are not in the top 3 rank. Here we used weights of 0.4, 

0.3 ancl. 0.2 respectively for w l , w2, and w3 . We use t hese weights because we want 

t o give more weightage to the anchor points which more closer similarity with t he 

live Wi-Fi reading, Lut we only cou::;idcr the top 3 matchc::; a::; t he top 3 matchc::; arc 

more likely to be t he real position of t he user. 
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Chapter 5 

Hybrid Motion and Wi-Fi 

Integrated Localization Scheme 

This chapter explains the integration of motion based st epcounter described in Chap­

ter 3 awl a Wi-Fi based positioning scheme a::; landmark::; described in Chapter 4 in 

collabora tion to estimate positions of the users in an indoor environment . 

5.1 Motivation 

Different indoor localization schemes have different positioning accuracies, however 

there is no standard specifications availble yet req uiring localization technologies to 

meet certain reequirements. The localizat ion schemes which require extra equipment 

in t he environment like [22][41] are accurate up t o a few centimetres. Whereas Wi-Fi 

bas0d posit ioning like [32] cla im an accuracy of around 2-4m in ar0as where sufficient 

t raining data is available. Overall t he main challenges in indoor environments are 
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• CPS delivers poor performance when there is no line of sight between the C PS 

receiver and the sky, so pmctically they do not work indoors. 

• CPS aud Wi-Fi exhibit high-power cousurnpt ion [7][:34]. 

• In places where Wi-Fi is available in limited areas and access points arc deployed 

sparsely, localization becomes more challenging when relying only on Wi-Fi 

based technologies . 

Some researchers may argue t hat Wi-Fi based localizat ion techniques are suffi­

cient for indoor environment and the power consumption of Wi-Fi may not be a big 

concern because we might not w~ed localization service all the time. It might he 

true for a category of location-based application such as [20] in which t he user just 

wants to gco-tag a location. Nevertheless , the majority of location-based applications 

require continuous localization like location-based social networks , user tracking and 

n<'Lvigation etc. 

The bigger mot ivation for us are locations where Wi-Fi infrastructure is not that 

dense for example tunnels , skywalks and other areas in buildings where Wi-Fi is not 

available everywhere. For example in tunnels and parking lots , Wi-Fi might not be 

readily available but there might be points where certain AP signals are detected. 

vVe can treat these points as landmarks and they can be used as position correction 

if use motion-assisted localization scheme. 
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5 .2 Mobile Application 

5 .2.1 Platfornn 

There are several smartphones available in the market from handset manufacturers 

like Apple, Samsung, Nokia, Blackberry, Sony Ericsson, HTC. For mobile OS the most 

popuhr ones me iOS (Apple) , Android , Blackberry, (Coogle) , SGO(Nokia) . According 

to our literature survey most of the research groups work on Nokia S60 or Android 

platforms although some clio usc iPhonc in their research [37]. The reason for this is 

that they are open source and many third party API 's are available from t he developer 

community. In SGO, different developer plugins arc avuilaiJlc, for cxantplc pySCiO for 

quick development using python. For our purpose we would be using t he iPhone 

4 as it has all t he IMU sensors required for our research. Furthermore iOS SDK 

combined with Xcode developer tools make it very convenient t o debug the code, 

design the UI , manage the da ta, and analyze the application 's run-t ime performance. 

Unfortunately, the vVi-Fi API is not publicly available even for t he latest iOS SDK. 

Instead, we indirectly use iOS syst em calls via a private Wi-Fi framework called 

vViFiManugcr to tican ncariJy APs. 

Apart from the hidden private vVi-Fi framework, we use the iOS Core :\!Iotion 

Framework and Core Location Framework. T he Core Motion Framework gives us 

access to the raw accelerometer readings. IT also provides us with the device attit ude 

which uses internul calculution from the accelerometer and gyroscope. 'vVe use t his 

to calculat e the yaw of the device. Location framework is used to get the device 

magnetic heading, which we use for our heading estimation. 
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5.2.2 Interface 

T he goal of our touch-based UI design is to study and implement our proposed scheme 

and to test in the field . We used a simple map based interface showing anchor points 

and also displaying the relat ive probability d istribution by overlaying circles on t he 

anchor points. We display relative probability with a the anchor point with highest 

probability showing the lmgest circle. The map ran be zoomed in and ?.oomed out. 

F igure 5. 1 shows the user interface. 

F igure 5.1: Map interface of mobile app. Orange circles showing the relat ive proba­

bility distribution. 
No Service ~ 12:53 PM 
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5.3 System Architecture 

5.3.1 Design Overview 

Figure 5.2 shows the block diagram of our proposed system. In our localizat ion scheme 

we divided our map into grid spaces. The center of these grid spaces are the anchor 

points with known physical coordinates (.1: , y). The grirl. space between two anchor 

positions determines the resolution or granularity of the positioning system. The 

lwl(:rt) is the belief representation of onr environment where lwl (:1:i ) is the probability 

that the user being at 'i-th anchor point . The init ial belief of the system is assumed 

to !..><..! uniform as the syste111 docs not know where t he user is posit ioned . As t he 

magnetometer is noisier compared to the gyroscope when giving heading est imation 

[56], we use the magnetometer only for estimat ing the initial orientation of the user 

with respect to the environment so that we can detect which direction the user is 

facing. This is one of the assumptions of our system that we ask the user to face 

para llel to any corridor during the initiali:.>:ation so that t he system detects the initial 

orienta tion. After this initialization/ calibration process we keep track of the heading 

using t he gyroscope. Periodic re-initiali:wtion from the magnetometer 111ay o e useful , 

but it was not t ested in our experiments. vVe use t he st epcounter mentioned in 

Chapter 3 to estimate the distance travelled and gyroscope to estimate t he direction 

in which this distance is travelled . As shown in the Figure 5.2, accelerometers are 

used to detect the steps t aken . The stepcounter etnd the gyro-assisted heading for111 

part of the motion model described in Chapter 3. T he motion model is used to 

update the belief where the user is in our system after every fixed amount of steps. 

T he measurement uprlate uses our vVi-Fi locali:.>:at ion method described in Chapter 
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4 . Different strategies can be used for updating t he belief, which are discussed in the 

next section. 

F igure 5.2: System Architecture 

5.3.2 Update Strategies 

T here are various approaches to update t he lJelief frout the motiou model or t he 

measurement model. ·whenever the belief is updated , t he d isplay to t he user is also 

refreshed. T he following strategies can be considered: 

• Query Strategy: In <t query stmtegy, the system requests etn up(bte of the 

75 



position or the belief on demand. 

• Immediate Strategy: An immediate update is triggered when the posit ion 

ch;:mgr.s with rcgmd to thr. ln. t reported posit ion. 

• P e riodic Strategy: A pniodic npdate is triggered if a pre-defined time interval 

has elapsed since the last update. 

• Distance-Based stategy: In this strategy, the mobile device always keeps 

track of the distance between t he cnrrr.nt and last rr.portr.d posit ion. If t his 

distance exceeds a predefined thre hold, it performs an update. 

• Zone-based strategy: An update is initialized if the target enters or leaves a 

pnxld iued z;oue, where a z;oue cau be fixed as a single point , location or area. 

For t he mot ion model, we usc the immediate strategy to update our belief after 

a fixed number of steps. 'vVe do not use t ime as a factor to update our belief. 'vVhen 

there are no steps detected , it can be assumed t hat the user remains at the same 

location. On t he other hand , for Wi-Fi measurement update, we use query strategy. 

For example after a few hundred steps we might need to update as the error might 

have accnmnlated or the prohahility distribntion hr.come more uncert ain . 

5 .3.3 Position Presentation 

The user is interested in the final position estimated by the system. There can be 

sitnations where multiple anchor points have very similar probability for user position. 

In order to output the most likely position as t he position est imate, we need t o know if 

thr. hr.lir.f is not very 1mcr.rtain. For r.xampk, when thr. nsr.r. tarts the applicat ion , t hr. 
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belief is uniformly distributed and in this sit uation it is unwise to output a position 

estimate to the user. The position has to be ontpnttcrl. to t he user aft er knowing 

some kind of certa inty t hat the belief has converged to some probable positions . In 

Chapter G we tihow t hat we can calculate the entropy from the belief dititriLution to 

see the uncertaint ies. 
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Chapter 6 

Evaluation 

'vVe will explain our experimental methodology, settings, scenanos, and results in 

this chapter. Our main experimental goal is to measure t he benefit of using motion 

informat ion to track and position the user in an indoor environment. 

6.1 Methodology 

The system evaluation contains multiple phases. The first phase is to test t he perfor­

mance of our step counter which is a major part of our motion model. After checking 

the accuracy we can determine if it is good enough to be used in our motion model. 

T he il.C:C:uracy ami precision of our motion model is then tested in two different indoor 

environments. 

T he second phase is the evaluat ion of onr mensnrement moclel. I3y analyzing t he 

performance metrics, we can determine if it can be used for opportunistic measure­

ment update. Furthermore, it is important to test our system in an enviromncnt 

which has sparse 'vVi-Fi coverage. ext , we explore the benefit of using motion for 
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localization and tracking and analyse the advantages of using rank based Wi-Fi in 

sparsely rtistrihntcrt \tVi-Fi envi ronment. We measure the hencfit in t he following 

aspects: 

• System Performance 

Hy pothesis 1: The system accuracy and precision of motion assisted indoor 

positioning is better than other localization systems in sparse Wi-Fi environ­

ment. Most of the current indoor t echnologies used are essentially Wi-Fi only. 

T heir performance is related to very laborious training of the enviromncnt. Our 

system's motion model should be able to accurately position and track a user 

wa.lkiug in au indoor cuviroumcnt. The turus iu t he cuviromucnt arc helpful 

in shortlisting t he user 's possible positions. Although the error while walking 

in the same direction accumulates, t urning into another corridor should reduce 

this error. 'vVe argue that using t he motion model a lone is sufficient for short­

term user tracking. \tVi-Fi based corrections are beneficial, especially in sparse 

\tVi-Fi environments where there arc only a few access points. Our system will 

require only few Wi-Fi training points in these environments and would perform 

much better t han other vVi-Fi dependent indoor locali11at.ion schemes. 

• Cost 

Hypothesis 2: The system training and maintenance cost can be reduced. The 

system training effort is reduced in a sparse Wi-Fi environment as fewer survey 

points Ftrc needed for data collection. T he motion model docs not need itny 

training. i\1Iore import antly, if the environment has unique features in terms of 

corridor layont and number of turns, t he systC'm will rC'quire fewer \ iVi-Fi land-
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marks and can be more dependent on the motion model alone. When the indoor 

environment changes (e.g., \tVi-Fi infrastructure or environment b yont a lter­

ation), t he RSSI fingerprints database has to be updated or even re-generated 

from scratch in order to adapt to such changes. If the nuutber of such survey 

points are fewer the cost to update will be lower compared to other Wi-Fi based 

systems. 

• Scalability 

Hypothesis 3 : The system can work i:n dijj'e1 ·ent ·indooT envimnrnen ts. T he 

system is scalable as it can be quickly adapted to any environment, both with 

dense Wi-Fi and with limited Wi-Fi coverage. Only environment maps are 

needed wit h internal representation of possible user posit ion points. Moreover 

the resolut ion of the grids can also vary and the accuracy would not directly 

ciepenci on the gricl resolution. As accnracy ciepencis more on the stepcounter 

rather than how dense is the grid . 

• Robustness 

Hypothesis 4: T he system can TecoveT f rom false pos·ition estimates. Unusual 

movement of t he user may confuse the system. For example, if the user is 

walking in a circle, it is possible the system might become more uncertain 

about its posit ion . Vve argue that onr system over time can recover from this 

uncertainty. 

We will discuss t he experiments designed to validate these hypotheses in subse­

quent sections. 
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6.2 Experimental settings 

Experiments and evaluations of our motion model, measurement model and hybrid 

localiz:atio11 sclwrue were carried out in two co11trast i11g enviromueuts at Memorial 

University. The first was part of the 2nd floor of the Engineering Building. T he 

space was divided into a grid using a 3 x 3m cell siz:e. 42 positions were selected 

wit hin the hallways for the anchor points. 33 of these anchor points were surveyed 

for Wi-Fi data and a fingerprint was creat ed for each anchor points. T he survey 

points me t hose anchor points where vVi-Fi training was done and we have a Wi-Fi 

fingerprint available. The anchor points are possible locations the user can be in t he 

environment. The distance between two anchor points is nearly 6 steps (3.Gm) , so 

belief is chosen to be updated after every 6 st eps in this environment . F igure 6.1 

shows t he me1p of t he E ngineering Building field test environment . 

T he second environment is the Tunnel system which connects different buildings 

of t he uuiven;ity. There is 110 Wi-Fi coverage provided for t he tunnels. F igure 6.2 

shows the map of the tunnel system. T he only vVi-F i signals available are at entrance 

positions . Hence the areas of Wi-Fi AP visibility is very limited and also sporadic 

in natm e. T he Engineering Building has more sharp tmns, whereas the t unnel has 

smaller turns. T he distance between two anchor points here is 5.5m . T herefore t he 

hdicf uprl.ato. happo.ns aftf'r every 0 sto.ps . Most of tho. commo.rcie1l po.rl.ometers choose 

st ep length as 0.413 x h , where h is the height of the user . In our experiments step 

length is kept at O.G9m. 

T he major assumptions for our experiments are as follows 

• T he user is a lways located in the areas for which t he anchor points arc defined 
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Figure 6. 1: l\Iap of the Engineering Building. Green triangles are the anchor points 

where data has IJeen collected and t he system has fingerprints for those locations. 

Red circles are untrained areas. 

in t he syst em. 

• The device is always pointing in t he direction of the user 's motion. 

• T he user walks close to t he corridor 's center. 

6.3 Motion Model Evaluation 

6 .3 .1 Performance of Step Counter 

T h(') strp count(')r was cvalna t(')d by two diff(')rr,nt llS(')rs by walking GOO steps holding 

the device in t he hand . The experiment was repeated 3 times by walking the same 
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Figure 6.2: Map of part of the university t unnel. Green t riangles are the points where 

Wi-F i is spor<'tclically <W<'til<'tble and reel discs are positions where no Wi-Fi is <'l.vailable. 

Fingerprints for locations wit h green triangles are available. 

path. Figure 6.3 shows the accuracy of the step counter. Intuitively it can be seen 

that the step detection depends a lot on human gait . Apart from t his it also depends 

on how a user is hold ing t he device. Some users tend to hold t he device in a more 

stable manner while others sway their hands while walking. But this problem can be 

solved by mult iplying a user specific scaling factor to the threshold of step detection. 

The accuracy of the step counter was comparable to ot her commercial step counters 

av::tilablc on Apple 's ::tpp store. Therefore it was considcrcci rcli::tblc cnongh to usc in 

our motion model. 

6.3.2 Initial gyroscope calibration using magnetometer 

Figure 6.5 shows the magnetic map of the environment to show more deviations near 

the corners compared to the micidlc of t he corridors . When t he application starts, 

the gyroscope has to be initialized to the orientation of the user in the environment 

using magnetometer. T he magnetometer is noisy, a small experiment was done to 
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Figure 6.3: Number of steps det ected when walked 500 steps 

see t he stability of t he m:=tgnetic heading readings in t he environment . It has been 

noted tha t there is greater magnetic instabili ty :=tnd interference in the corners and 

intersections. T he standarrl. rleviation of magnetic readings in t he major parts of 

the corridors is 9 degrees whereas it is 21 degrees near or at t he corners. In order 

to correctly identify t he init i:=tl orient:=ttion, we set a check t hat in t he initialL~ation 

phase if t he magnetic readings have a standard deviation more t han 12 degrees. If 

so t he init ia lization process is repeated . Figure G.4 shows t he heading readings when 

approaching an intersection. The horizontal axis describes t he time in seconds. 

6.3.3 Accuracy of Motion Model 

In order t o test t he motion model t he user walked in t he corridors of the Engineering 

Building. Alt hough in t his experiment the vVi-F i integration was disabled but only 

those anchor points were considered in which we had Wi-F i fingerprints available. To 

denote the true posit ion of the user in the map a small human figure marker is used 
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Figure 6.4: Magnetic heading readings when walking from a center of a conidor t o 

the intersection of corridors in t he Engineering Building. 

Figure 6.5: Magnetic Map of Engineering Building. 

to show the t rue location and also the direction of walking. As the application st art s 

the <1lgorithm first calibrates for the heading of the rl.evice using the magnetometer. 

Once the calibrat ion is done, the gyroscope keeps track of the orientation of the user 

while walking. T he circles iu the screeushots in Figure Ei.Ei show the belief distribut ion 
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of the system. The anchor point with t he highest probability will show the biggest 

circle and a ll thc: remaining anchor points will have circle sizes relative to it as t hc: 

probabilities are normalized before belief distribution is shown to t he screen. This 

way it is easier to visualiz.e how the belief distribution is shift ing and converging. It 

can be observed from Figure 6.6a that all circles are of equal size as in t he beginning 

the belief is uniformly distributed . From Figure o.ob it can be observed that during 

the application start-up t he init ial orientation has been detected as towards the right 

(East) with respect to the map, hence the probability distribution shifts towards 

those corrirlors which h:we a pathway towmrls East. Figure 6.6( c-f) shows how t he 

probability distribution shifts a long the direction where the user is walking. Although 

a t this point t he algorithm is uncertain where the user is posit ioned . However, it can 

keep track if t he user t urns back and star ts moving in the opposite direction. 

The nser keeps walking towards the end of t he corridor and t urns right . Figure 

6.7a shows that the probability suddenly converges t o one of the anchor points near 

the com er. T his happens because t he algorit hm detects t hat t he user has taken a right 

turn. So that anchor point will have a higher probability to be t he t rue posit ion which 

will have t he same relative motion from a neighbouring anchor point. Figure 6.7b 

shows that user is t racked as the probability shifts in the same way as the movement 

of t he user. In Figure 6.7c two corner anchor points have almost equal probability as 

the belid was updated during the turn . T he bdicf is updated every 6 steps taken by 

the user. T his update frequency was chosen to correspond with t he distance between 

two anchor poiuts . T he user then turns hack start walking the same path t he user 

came from. Figure 6.7(d-f) shows that the belief of the system shifts correctly with 

t he motion of t he user. 
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In a similar experiment, we also considered other anchor points in the area which 

were rkpictecl <tS reel circles in Figure G.l. T hese anrhor points clo not have fingerprints 

as no Wi-Fi data was collected at t hese points . Other vVi-Fi only based solut ions 

would not work very well in these condit ions . Luo et al [32] did experiments under 

same conditions . Their error increased from 2m to 9m when they moved from trained 

area to untrained area. Figme 6.8(a-f) and Figure 6.9(a-f) depicts t he screenslwts of 

t he posit ioning application when it walks in t he unt rained area. 
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(a) (b) 

(e) (J) 

(e) (f) 

F igure G.G: Scrccnshots of Mot ion Model in Engineering I3nilding 
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(d) 

(e) (f) 

F igure G.7: Screenshots of Motion Nioucl in Engineering I3uiluiug Continued from 

F igure 6.6 
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Figure 6.8: Screenshots of Motion Model in Engineering Building in Unmapped Re-

gions 
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(a) (b) 

(c) (ci) 

(c) (f) 

Figure 6.0: Screenshots of Motion Model in Engineering Building in Unmapped Re-

gions Conitinued from Figure 6.8 
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6.3.4 Entropy of belief 

In another experiment the user was asked to walk in the corridor with our localizat ion 

app in the trained areas of Engineering Building. Figure 6.10a shows t he heat map of 

the probability distribut ion over t ime. T he x-axis rl.esc:ribe t he ith uprl.ate of belief. 

T he position IDs are listed on y-axis where the color intensity shows the probability 

of being at each location. T he belief at x36, x64 and x88 arc examples where t he 

position correction happens clue to t urning. Overall it can be seen t hat t he posit ion 

is tmckerl. pretty wdl along the path of the nser . From belief update x112 to x128 

the user changed his direction of walking after a few steps a couple of times creating 

a to-and-fro user trail. It can be observed in t he heat map t hat the uncertainty starts 

to increase as t he probability distribution spreads out. T hus, a malicious behaviour 

by the user in terms of walking in circles and moving to-and-fro in the corridor over 

short distances might confuse t he belief system. 

F igure 6.10b shows the entropy of the same heat map . At x5 t he ent ropy falls 

great ly clue to a turn. Init ially the: probability was uniform so t he entropy was max­

imum but as soon as the user turned t he belief became more certain clue to t he 

recognition of a comer. Every time the user t urns a corner , the uncertainty decreases 

and we can see a drop in entropy. After x112 the ent ropy increases, showing t he 

confusion caused by user motion . 

6.4 Rank Based Wi-Fi Measurement Model 

Our Wi-Fi localization scheme returns similarity scores between the current measure­

ment and every anchor point which has been surveyed for stored \Vi-Fi data. T he 
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lowest score is considered the best match . To test the rank based fingerprinting tech­

nique we assumed that the best match anchor point is t he estimated position. W e 

tested this in our Engineering Building at each anchor point. The error was recorded 

by logging the di~tance between t he ground t ruth and the e~timated output posi­

tion. Figure 6.11 shows the cumulative error distribution. The mean error was about 

4.1m. We compared our system with t he Wi-Fi l>ased localization scheme l>y Luo ct 

al [32] which uses a different fingerprinting approach for localization. They employ 

the Gaussian kernel, which is commonly used to calcula te the likelihood between an 

RSSI fingerprint in system anchors and the live RSSI measurement t o generate like­

lihood candidates. The top-k candidates are then used to determine a final posi tion 

using t he vertex p-centres problem. 

Figure 6.12 describes a sit uation in which t he vVi-Fi measurement was updated to 

a wrong location. This test was done in the Engineering Building, where t he Wi-Fi 

APs are denser and t he Wi-Fi environment is not sparse, meaning that at most of 

the locations , ~illlilar APs are visil>le. As in our Wi-Fi posit ioning nwdule we create 

a rank of the APs visible to compare it with a fingerprint , due to fluctuations of t he 

radio signals it is possible tha t it updates and positions the user at a wrong location. 

Similarly, there can be a scenario in which the error accumulates over time due to 

the motion of the user. In Figure 6.12a, it can be seen that, the user is present near 

the middle of the North corridor but the posit ion c:stimate is in the corner. However , 

over time the probability distribution starts growing more uncertain, as can be seen 

in F igure G.l2b and Figure G.l2c. 13ut after the tum, it again converges. F igure G. l 2d 

shows that the motion model would be able to recover in this situat ion. Although 

in a spar se vVi-Fi cHviromucnt, where the APi:> at one area arc distinct compared to 
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other areas, the error due to Wi-Fi will be smaller . 
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Figure G.lO: a) Motion monel heat map at Engineering I3nilrling with rlense Wi-

Fi coverage. Black annotations describing actual user position . b) Ent ropy in t he 

E ngineering Building . 
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Figure G.l2: Recovering from an erroneous position estimate dne to motion model. 
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6.5 Performance in a Sporadic Wi-Fi Environment 

To test our syst em in an environment which has sparse vVi-Fi coverage, we chose 

t he university tunnel syst em which has no Wi-F i available but sporadic signals arc 

available at the different entrances of t he t unnels from different buildings. Figure 6.2 

shows the map of one such section of t he t unnel. This figure shows 16 anchor points 

from one ent rance to another. All neighbouring anchor points are equally distant 

from each other . It is assumed tha t init ia lly the system does not know the user 's true 

position. Init iali:d ng with a Wi-Fi scan c:an initialize user posit ion if the user is in 

one of t he entrance areas. 

Fignre 6.13 shows the heat mnp of the user 's wnlk in t he t unnel. On horizontal­

axis we have t he belief updates and on vertical-axis we have the 16 anchor points . 

vVc annotated the map wit h approximate actual position of t he user to compare t he 

belief distribution wit h the movement of t he user. At xO t he belief is uniformaly 

distributed but from xO to x12 we can see that the belief slowly converges . From xl 2 

to x45 the probability distribut ion is not that scattered and posit ion estimates are 

more confident . From x45 to x60 the probability distribut ion becomes less reliable as 

the user changes his <i irection more frequently similar to the test done in Engineering 

Building. At x60 t he Wi-Fi measurement update is triggered . At this point it detects 

P OOl as t he most likely posit ion. The probability d istribut ion shifts heavily towar<is 

that position as we give higher weight to the anchor points with higher vVi-Fi simi­

larity. In t he t unnels the W i-F i is sporadically available in only P001-P004 and then 

P015-P 016 as described before. No Wi-F i is det ected in any anchor points between 

them. Hence when t he W i-Fi update step is triggered, due to the diversity of visible 
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AP 's between these two regions, t he position correction has smaller error. 
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Figure 6. 13: Heatmap of Motionmodel in the t unnel. 

F igure 6.14 shows the entropy of the belief in t he t unnel. If we colllpare t he 

entropy plotting of Engineering Building and tunnel it can be observed that the 

entropy in the tunnel does not drop as much as compared to the entropy in t he 

Engineering Building. This is hecanse the tnnncl lacks sharp t urns a..s compared to 

the Engineering Building. Although the accuracy from t he most probable posit ion 

estimate is comparable in hot.h locations the certainty is less because of the absence 

of sharp turns . At x51 to x59 it can be observed that due to the to-and-fro motion 

in the same corridor the entropy increases. It sharply decreases again at x(i0 when 

W i-Fi measurement update is triggered. 

~ext , we will consider t he hypotheses mentioned in section 6.1 m light of our 

experimental results. 

• System P cr formanr.c 
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Figure G.14: Entropy in t he Tunnel 

Hypothesis 1: The system acC'untcy and pnx'is'iun of motion assisted indoor 

positioning is better than other Wi-Fi only localization systems in sparse Wi-Fi 

environment. As it can be seen from the heatmaps of both environments tha t 

the syst em tracks and positions the user with fairly good accuracy regardless 

of the density of Wi-Fi covemge. For our experiments the accuracy in the En-

gineering Bnilcting was under 4m whereas in the tunnels it was aronnct 6m on 

average. T he best-performing but intensively trained Horus system [62] has a 

0. 7m to 4m average positioning error using 100 vVi-Fi scans and much smaller 

grid space (1.52 m and 2.13 m). Generally for our system a single accuracy fig-

ure can not be given as it depends upon t he shape and size of the environment . 

Sharp t urns help reduce positioning error estimates and long corridors accumu-

late errors. T he second factor is the amount of Wi-Fi lawlrnarks available for 

position correction . 

• Cost 
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Hypothesis 2 : The system training and maintenance cost can be reduced. We 

tested om system in two different environments . One had dense vVi-Fi coverage 

and had t raining data available for all the anchor points. On the other hand in 

the tunnel environnwnt, the vVi-Fi was ~poradically available at only G locations. 

No survey was done for those anchor points which had no vVi-Fi coverage so t hey 

were t reated as untrained anchor points. As different areas in such enviromuents 

have distinct Wi-Fi visibility, th is can be exploited to our advantage t o correct 

the position only and rely more on human motion for positioning. In our motion 

model evaluation, we ohserved tha t in the environment where t here me more 

t urns, t he posit ion estimate is better than the environment with less t urns. 

Turns help t he mot ion model to detect change in orientation and inherent map 

ma tching in the motion model help to converge the belief. Due to less reliance 

on Wi-Fi, minor changes in Wi-Fi infrastrnctm e will have less impact on the 

syst m perfprmance. 

• Scalability 

H y pothesis 3 : The system can woTk in diffe1'ent indoor environments. vVe 

tested our ~y~tem iu two completely coutrastiug envirotunents. One had sharper 

turns with denser vVi-Fi coverage and t he other had le ·s turns but sparse Wi-Fi 

enviromnent. Tlte grid size iu both t lte environment was also different as it 

was 3m in the Engineering Building and 5.5m in t unnel . This system is more 

scalable than other indoor positioning systems as it would require less t raining 

and would even work in sporadic Wi-Fi environments where \ 1\Ti-Fi only systems 

would fa il. 
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• Robustn ess 

Hypothesis 4 : The system can Tecouer from f alse position est'imates. In both 

the environments during our field test we confused t he system by walking in 

to-and-from (Figure 6.10b and F igure 6. 13) fashion to create more uncertainty 

in the hdief. vVhen t riggered Wi-Fi updates remove this amhiguity. If Wi-Fi is 

updated in the wrong location , it can be recovered in two different ways. The 

first one is due to the mot ion morl.cl t he hdid st arts to hccomc more uncertain. 

It starts to converge again if there is a turn which can uniquely position it. 

T he second way it cau be recovered is when another 'vVi-Fi update is triggered. 

Although vVi-Fi update can be erroneous too, but there is a chance that t he 

error is reduced . 
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Chapter 7 

Conclusion and Future Work 

7.1 Primary Contributions 

W i-F i based localization technologies are relatively robust and accurat e compared to 

other indoor localization technologies. One of the main factors for t hese technologies 

to be popular is that the infrastruct ure often already exist . T he R.SSI fingerprinting 

based schemes perform better t han triangulat ion based schemes because t hey do not 

depend on specific signal propagation models. Howc:ver , the system performam:e 

great ly depends upon t he rigorous training process and regular syst em maintenance 

in the form of regular fingerprint updates . T hese regular fingerprint updat es arc 

required if t here has been any changes in the environment in terms of replacing a 

access points or moving furnit ure et c. Iu addit ion to t hat, these systems do uot work 

in areas where W i-Fi coverage is sparsely distributed . 

T hese shortcomings can disable above ment ioned localiza tion systems. Moreover , 

because of high system overhearl in terms of t raining rlata anrl cost of war-rlriving, 

103 



we believe there is a need for more efficient and cost effective techniques. We believe 

that reducing training <Lnd metintetinence cost and incre<Lsing the syst em robustness 

are very promising research directions . 

In addit ion, we sec t ha t t he current generation of smart phoncs have various ern­

bedded sensors including motion sensors like accelerometers and gyroscope. Alt hough 

GPS receivers arc present in most smartphoucs, they arc of 110 help indoors . But 

magnetometers can be used to detect direction and heading. We recognize the op­

portunities presented by these sensors to detect human motion and the possibility to 

incorporate t his knowledge to help posit ion nsers in <Ln indoor environment. Hence, 

we would also not rely on any external infrastructure except vVi-Fi coverage which is 

likely to exist in many environments. 

In t his t hesis work, t he primary contributions are evaluation of a motion assisted 

indoor posit ioning system for <Ln indoor environment especietlly focused on sparse W i­

Fi coverage. vVe can use ideas from robotics in which a belief is maintained about 

the possible p osit ion estimate rather than relying on dead reckoning to output one 

fina l pose estimate. T he distance moved by the user is calculated by the number of 

steps taken and then estimating the user trail by calculating the direction of each 

step . T he user t rail is matched with p ossible path signatures from the environment 

map using t he motion model. T he best match yields a higher likelihood for position 

estimate. Hence more distinct features in terms of t urns and direction of corridors 

will give us higher accuracy. But in environments wit h similar corridors in terms of 

length and orientation, we will get multiple hypotheses for the user 's position. In 

this sit uation we use Wi-Fi based position correction . Our Wi-Fi position estimation 

tedmiqucs uses rank on t he visible APs based ou their strc11gths rather t han t he actual 
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RSSI values. This technique has an additional benefit of being device independent 

as different manufacturers of networks cards have different st anciarcis for RSSI values 

but rank information is invariant to any monotonic increasing t ransformation (bias 

and scale) [33]. Wi-Fi AP 's is used as lalHlmarks t o update the position Ldid when 

it is required by the system to update its position . This can happen after a fixed 

number of steps to avoid error accumulation due to the motion model. 

One of the major benefits of t his system is cost effectiveness. T he initial t rain­

ing required by doing war-driving and collecting Wi-Fi data decreases significantly. 

Although the tradeoff's hetween accuracy and cost of train ing will depend on t he 

environment, we can see the real benefit in such a system in sparse Wi-Fi coverage 

area. 

Based on t hese principles we built a prototype mobile application for the iPhone 

and conducted experiments to evaluate it. Onr experiments showed encouraging 

results and indicat e motion assisted posit ioning as a viable opt ion for indoor envi­

romneuts. The system is scalable anJ more cost effective t han W i-Fi only schemes 

because it requires less t raining. 

During the course of this research , a number of publications have been made. 

An overview of related indoor localization technologies which are using smartphone 

sensors are summarized in [55]. The research work in developing a stepcounter using 

sm8.rtphone accelerometer which is mentioned in Chapter 3 is presented in [56]. F i­

nally, a short overview of our research with some results in Chapter 4, Chapter 5 and 

Chapter G arc published iu [57] . 
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7.2 Discussion and Future Work 

vVe believe that this syst em can be further improved in a few interesting ways. For 

both mot ion model and Wi-Fi position estimation , we did not usc t he best strategy 

available because our goal was not to improve either separately. For example in t he 

step couutcr we arc dctcctiug the uumbcr of steps taken but using t he height of t he 

user as a parameter to determine t he stride length . A more adaptive approach could 

be taken here which uses information from accelerometer to also calcula te the stride 

length . Art ificbl intelligence techniques can be employed in the initiali7,at.ion phase 

for t he system to learn the human walking pattern and determine t he style of t he 

user to more accurately determine the number of steps. 

Similarly for Wi-Fi based localization , more accurate schemes could be employed. 

Pre-processing the APs after observing the environment for fl uctuations could improve 

the localization error. 

Auother interesting aspect in which t he syst em can be improved is to integrate 

human-centric collaborat ive feedback. Positioning accuracy and precision can be 

improved by collecting both posit ive and negative feedback from users in terms of 

orientat ion. Lno et al [32] user collaboration to improve syst em performance. If t he 

system gives a posit ion estimate to the user which the user feels is true, the user 

can leave a positive feedback which will result in putting higher weight to current 

system parameters . When the user is not happy with t he position estimation by t he 

positioning system, the user can leave a negative feedback similarly. In areas where 

there are no survey points, the user can help in creating one. This will also be helpful 

for decreasing system maintenance costs and improving accuracy of t he system over 
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time. 

Developing a mngnetic mnp is a lso one ideR which can be explored. In their case 

we have to observe how stable is the magnetic environment over time. In indoor 

environments there may be areas due to electronic equipment or wiring, where t he 

magnetic field pert urbations are distinctive. They can be used as landmarks similar 

to how we usc Wi-Fi. 

Camera based localization is also feasible, and it would be an interesting approach 

to use it in collabomtion with our system . In [34] they use vision as one of t he 

fingerprint parameters for logical locali;~,at ion t o differentiate between two locations. 

Normally when the user is holding the phone as in our assumption , the phone's 

forward camera is a lways pointing down at the floor. Most of t he indoor environment 

have tiles as floors or carpets. Tile counting or some kind of floor recognit ion during 

wRlking would he beneficial in improving the accnracy of the locali;~,ation system. 

vVe believe t hat some organizations or companies will devise specifications for 

iudoor posit ioning system iu t he near future. Wit h the potent ial rapid growth of 

location-aware services for public indoor environments such as airports, subway sys­

tems, museums, university campuses, shopping centers, etc t here will a lways be areas 

where vVi-Fi infrastructure will not be available and hence some reliable and scalable 

alternative technology would be needed . At this time we believe human motion based 

locali;~,ation schemes have great potentia l Rnd look to be very promising in reducing 

the cost both in the sense of maintenance and energy consumption. vVe also believe 

that more and more researchers will be attracted to exploit the various sensors uow 

available in smartphones for indoor localization. 
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