











i

Decompositions of Matrices and
Linear Transformations

© Lu Wang

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the
requirements for the degree of

Master of Science in Mathematics

Department of Mathematics & Statistics

Memorial University of Newfoundland
August 2011

St. John’s Newfoundland



Abstract,

The aim of this thesis is to discuss how to express a matrix (or a linear transfor-
mation) as the sum of two invertible matrices (or invertible linear transformations)
with some constraints. The work for this thesis is two-fold. Firstly, it is proved that
if R is a semilocal ring or an exchange ring with primitive factors Artinian then R
satisfies the Goodearl-Menal condition if and only if no homomorphic image of R is
isomorphic to either Zj or Zg or Ma(Zs). These results correct two existing results
in the literature. Secondly, for the ring R of linear transformations of a right vector

space over a division ring D, two results are proved in this thesis: (1) If |D] > 3,

then for any a € R there exists a unit u of R such that both a + u and a — u™" are
units of R; (2) If |D| > 2, then for any a € R there exists a unit u of R such that
both a—u and a —u~" are units of R. Result (1) extends a result of H. Chen [7] that
the ring of linear transformations of a countably generated right vector space over a
division ring D with |D| > 3 satisfies the condition that for any a € R, there exists
u € U(R) such that a+uand a—u~' € U(R). And result (2) answers a question
raised by H. Chen [7] whether the ring of linear transformations of a countably gen-
erated right vector space over a division ring D with |D| > 2 satisfies the condition
that for any a € R, there exists u € U(R) such that a —u and a —u™ € U(R).

C i of these diti with some well-k in ring theory are

also discussed.
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Chapter 1

Introduction

Throughout the thesis, R denotes an associative ring with identity, U(R) denotes
the group of units of R, J(R) denotes the Jacobson radical of R. Z, denotes the ring
of integers modulo n and M, (R) denotes the n x n matrix ring over R. We write
IaR to mean that I is an ideal of R.

In 1954, Zelinsky [26] proved that every element in the ring of linear transforma-
tions of a right vector space Vp over a division ring D is the sum of two units unless

D = Z, and the dimension of Vp is one. Also, in 1998, Nicholson and Varadara-

jan [19] proved that every linear ion over a ble-dimensional vector
space is the sum of an idempotent and an automorphism. In addition, in 2010, H.
Chen [7] proved that the ring R of linear transformations of a countably generated
right vector space over a division ring D with |D| > 3 satisfies the condition that for
any a € R, there exists u € U(R) such that a+u and a —u™' € U(R). H. Chen
[7] also raised the question whether the ring of linear transformations of a countably

generated right vector space over a division ring D with | D| > 2 satisfies the condition
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that for any a € R, there exists u € U(R) such that a —u and a —u™" € U(R).
These are the motivation for us to discuss the decompositions of matrices and linear
transformations in this thesis.

A ring R is said to satisfy unit 1-stable range if whenever aR+bR = R, there exists
u € U(R) such that a+bu € U(R). In 1984, Menal and Moncasi [16] proved that if R
satisfies unit 1-stable range, then K,(R) = U(R)/V(R), where V(R) is the subgroup
of U(R) generated by {(ab+ 1)(ba+1)~1 : ab+ 1 € U(R)}. Here K;(R) denotes the
Ky-group of R, which is an important topic in homological algebra, topology, algebraic
geometry and etc. Notice that for a ring R, K,(R) = GL(R)/[GL(R), GL(R)), where
GL(R) is the direct limit of GL,(R), the group of invertible matrices in My, (R), and
[GL(R), GL(R)] is the commutator subgroup of GL(R).

Later in 1988, Goodearl and Menal [9] showed that the unit 1-stable range is
always satisfied by a ring R with the condition that for any z,y € R, there exists a
unit u of R such that both z — u and y — u™" are units of R. The latter condition
was called the Goodearl-Menal condition by H.Chen [5] in 2001. Goodearl and Menal
[9] also provided many classes of rings which satisfiy the Goodearl-Menal condition.
Here we recall some concepts in ring theory used in this thesis. A ring is called simple
if it is a non-zero ring that has no (two-sided) ideal besides the zero ideal and itself.
A ring R is semilocal if R/J(R) is semisimple Artinian. The notion of an exchange
ring was introduced by Warfield [24] via the exchange property of modules. Here we
use an equivalent condition of an exchange ring obtained independently by Goodearl
[10] and Nicholson [18]: a ring R is an exchange ring if and only if for each a € R
there exists e? = e € R such that ¢ € aR and 1 — e € (1 —a)R. And an exchange

ring with primitive factors Artinian s an exchange ring whose primitive factors are
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Artinian. A ring R is called right self-injective if every R-homomorphism from a right
ideal of R into R can be extended to an R-homomorphism from R to R. A ring R is
called strongly 7-regular if the descending chain aR D a?R 2 a®R 2 - is stable for
alla € R.

As mentioned before, a ring R is said to satisfy the Goodearl-Menal condition if
for any z,y € R, there exists a unit v of R such that both z—u and y—u~" are units of
R. For brevity, we will use the term GM-condition for the Goodearl-Menal condition.
The class of ring satisfying the GM-condition is closed under direct products and
homomorphic images. Besides the GM-condition we are concerned with the following

two conditions on R:

Condition (P). A ring R is said to satisfy (P) if for any a € R, there exists u €

U(R) such that a+u,a—u~' € U(R).

Condition (Q). A ring R is said to satisfy (Q) if for any a € R, there exists u €
U(R) such that a —u,a—u™' € U(R).

In this thesis, we mainly concern about rings with the GM-condition and the ring
of linear transformations with Conditions (P) and (Q). It is proved that if R is a
semilocal ring or an exchange ring with primitive factors Artinian, then R satisfies
the GM-condition if and only if no homomorphic image of R is isomorphic to either
Zy or Zy or M(Zy). As a consequence, it is proved that, if R is a ring such that
R/J(R) is right self-injective strongly -regular, then R satisfies the GM-condition if
and only if no homomorphic image of R is isomorphic to either Zs or Zg or My(Z).
These results correct two existing results (see 6, Theorem 3.4] and [6, Theorem 4.1]),

and disprove a claim in [6] (see [6, p.753]) and a claim in [7] (see [7, p.432)).



The incorrect statement that a semilocal ring R satisfies the GM-condition if
and only if no homomorphic image of R is isomorphic to either Zy or Zg has been
implicitly used in making/proving several claims about rings with related conditions
(see [6, p.753], [7, Proposition 9], (7, p.6]), so the argument’s validity needs to be
established. And this is done here.

Let R be the ring of linear transformations of a right vector space over a division

ring D. We proved that if |D| > 3, then R satisfies (P); If |D| > 2, then R satisfies

(Q). C ions of these conditions with some well-k itions in ring theory

are briefly discussed.



Chapter 2

Rings with the Goodearl-Menal

condition

First let us recall a ring R satisfies the GM-condition if for any z,y € R, there
exists a unit  of R such that both z —u and y — u™" are units of R.

The unit 1-stable range condition has been discussed by several authors. For
example, Menal and Moncasi [8] proved that if R satisfies unit 1-stable range, then
Ki(R) = U(R)/V(R), where V(R) is the subgroup of U(R) generated by {(ab+
1)(ba+1)" s ab+ 1 € U(R)}. Later Goodearl and Menal [9] proved that if a ring
R satisfies the GM-condition then it satisfies unit 1-stable range. They also provided
many classes of rings satisfying the GM-condition. In this chapter, we prove that if R
is a semilocal ring, then R satisfies the GM-condition if and only if no homomorphic
image of R is isomorphic to either Zy or Z3 or M2(Z2). As consequences, we also
prove that, for an exchange ring R with primitive factors Artinian or a ring R such

that R/J(R) is right self-injective strongly m-regular, R satisfies the GM-condition if




artan et R

and only if no homomorphic image of R is isomorphic to either Z, or Zg or Ma(Zs).

Applications of these results are discussed.

2.1 Semilocal rings
We begin with the following example

Example 2.1.1 The ring My(Za) does not satisfy the GM-condition.

g ensmvonz = (). (0 2)- (0 0)-(0)-C )G ) |

It s easy to check that, for A = ; : and B = : ; . there does not exist a unit
U of Ma(Zs) such that A — U, B — U~! are units of Ma(Zs).

It is clear that Ma(Zs) is semilocal. Also since it is simple, no homomorphic image
of My(Z) is isomorphic to either Z; or Zg. Thus Ma(Zs) is a counter-example to
H.Chen’s result [6] that a semilocal ring R satisfies the GM-condition if and only if
1o homomorphic image of R is isomorphic to either Zs or Zs, and this raises the
question of which semilocal rings satisfy the GM-condition. The main result in this

chapter is the following
Theorem 2.1.2 Let R be a semilocal ring. The following are equivalent:

1. R satisfies the GM-condition.

2. No hic image of R is i hic to either Zs or Zg or Ma(Zs).

The proof of the theorem relies on the following theorem and three lemmas.




Theorem 2.1.3 IfMy(R) and My (R) both satisfy the GM-condition, then Miyym(R)

satisfies the GM-condition
Proof. Let A, B € My m(R). Write

A= An A o Bu B :
An An By B
where Ay, By € My(R), Az, Bz € Min(R), A1 and Byy are n xm matrices, Az and
By are m xn matrices. By our assumption, there exists a unit U in My (R) such that
X = Ay - Uy, Y := By — U are units of M(R). Now Ay — Ay XAy, By —

ByY !By, are matrices in M,,(R). By assumption, there exists a unit Uy of M (R)

such that
X' = (An - AnX""Ap) - Us
Y': = (By - BuY ™' Bu) - Uy
Ui 0
are units of My (R). Then, U := is & unit of My4m(R) such that
0 U
avo( X Ap B I 0\ [X A ,
An AnX"'Ap+ X' ApX 1 0 X
B_y-i= Bz _ I 0 Y Bp
Bn BaY 'Bu+Y' BaY™' I 0 v
are units of M4 (R). This completes the proof. o

Lemma 2.1.4 If D is a division ring with |D| > 4, then My (D) satisfies the GM-

condition for all n > 1.




Proof. By Theorem 2.1.3, it suffices to show that D satisfies the GM-condition. Let
z,y € D. If z = 0, choose 0 # u € D such that u™' # y and then we have that
z—u#0andy—u #0. If y =0 choose 0 # u € D such that u # z and then
we have z —u # 0 and y — u~ # 0. If & # 0 and y # 0, choose 0 # u € D such
that u # 2 and u # y~, and we have & — u # 0 and y — ™" # 0. So D satisfies the
GM-condition. o

Next we show that My, (Zs) (n > 2) and M,,(Zy) (n > 3) satisfy the GM-condition.
The idea in proving Lemma 2.1.4 does not apply to these cases, because none of Zs,
Zs and My(Zy) satisfies the GM-condition. The long verifications of the next two

examples are given in the Appendix.
Example 2.1.5 My(Zs) and My(Zs) satisfy the GM-condition.

Example 2.1.6 Ma(Z2), My(Z2) and Ms(Zy) satisfy the GM-condition.

Theorem 2.1.3 can be used to show that M,(Zs) (n > 2) and Ma(Zs) (n > 3)
satisfy the GM-condition based on Examples 2.1.5 and 2.1.6.
Lemma 2.1.7 M, (Zs) satisfies the GM-condition for all n > 2.
Proof. For any n > 2, n=2s or n.= 3s or n= 2s +3, where s is a positive integer.
1t follows from Example 2.1.5 and Theorem 2.1.3 that M,(Zs) satisfies the GM-
condition. o
Lemma 2.1.8 M,(Z,) satisfies the GM-condition for alln > 3.

Proof. For any n.> 3, n=3s orn =4s orn =55 or n.=3s+4 or 35+ 5, where s

is a positive integer. It follows from Example 2.1.6 and Theorem 2.1.3 that Ma(Z2)



satisfies the GM-condition. o

We are ready to prove Theorem 2.1.2.

Proof of Theorem 2.1.2.

Suppose that R satisfies the GM-condition. If § is a nonzero homomorphic image of
R, then S satisfies the GM-condition. Because none of Z, Zs and My(Zy) satisfies
the GM-condition, S is not isomorphic to either of Za, Zs and My (Zs).

Conversely, suppose that no homomorphic image of R is isomorphic to Z; or Zs
or Ma(Zy). Notice that R satisfies the GM-condition if and only if R/J(R) satisfies
the GM-condition. So we may assume that J(R) = 0. Since R is semilocal, R =
M, (Dy)®- - -©My, (D), where s > 1,n; > 1 and D; is a division ring fori = 1,.... 5.
By our assumption, no homomorphic image of My, (D1) is isomorphic to Z; or Zg or
Ma(Zo). Thus, either ny = 1 with |Dy| > 3, or my = 2 with |[Dy] > 2, or my > 3.
Hence, by Lemmas 2.1.4, 2.1.7 and 2.1.8, My, (Dy) satisfies the GM-condition. It is

similar to show that My, (D;) satisfies the GM-condition for i = 2,...,s. Hence R

satisfies the GM-condition. o

2.2 Exchange rings with primitive factors Artinian

Theorem 2.2.1 Let R be an eachange ring with primitive factors Artinian. The

Jollowing are equivalent:
1. R satisfies the GM-condition.

2. No homomorphic image of R is isomorphic to cither Zy or Zs or Ma(Za).




Proof. As seen in the proof of Theorem 2.1.2, (1) implies (2) for any arbitrary ring.
Now suppose that (2) holds. Assume on the contrary that R does not satisfy the
GM-condition. Then there exist 2,y € R such that, for each u € U(R), either
z—ug¢U(R) ory—u~' ¢ U(R). For an ideal I of R and r € R, we write R = R/I

and 7 =7+ I € R. Thus,
F={I<R:z-ug¢UR) orj—u" ¢ UR) Vae UR)}

is not empty. It is easily seen that  is an inductive set, so by Zorn's Lemma F has
a maximal element, say 1. Because every unit of (R/I)/J(R/I) is lifted to a unit
of R/I, the maximality of I implies that J(R/I) = 0. We next show that R/I is
indecomposable. In fact, if R/I is decomposable, then there exist ideals Iy, I of R

such that I G I; G R (i = 1,2) and
R/I=R/L@ R/ via r+ 1 (r+L,r+h).

By the maximality of I, there exists a unit v+ Iy in U(R/I;) with inverse v/ + I and
aunit w+ I in U(R/I) with inverse w' + I such that (z+ 1) — (v+ 5), (y+ 1) —
(' + 1) € UR/L) and (z + b) — (w+ L), (y + I2) — (' + I) € U(R/I). Thus,
(v+ I, w+ I) is a unit of R/I; ® R/I, with inverse (v'+ I, w' + I2) and, moreover,
(@+ N2+ ) — (v+ I, w+ D) and (y+ I,y + I) — (V' + I;,w’ + I2) are units of
R/I;® R/I,. This shows that there exists a unit u+I in R/I with inverse u'+ I such
that (z+1) — (u-+1) and (y+1) — (u'+I) are units of R/I. This contradiction shows
that R/I is indecomposable. Thus R/I is a semiprimitive, indecomposable exchange
ring with primitive factors Artinian. Now by Menal [4, Lemma 1], R/T is a simple
Artinian ring. Because R/I does not satisfy the GM-condition, by Theorem 2.1.2
R/I =7, or R/I =Zs or R/I = My(Zy). This contradicts (2). o
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Every one-sided perfect ring (in particular, one-sided Artinian ring) is strongly
m-regular. A von Neumann regular ring in which every idempotent is central is called
a strongly regular ring.

Corollary 2.2.2 Let R be a ring such that R/J(R) is right self-injective strongly

w-regular. The following are equivalent:

1. R satisfies the GM-condition.

2. No homomorphic image of R is isomorphic to either Zy or Zy or Ma(Za).

Proof. The implication (1) = (2) is clear. To show the implication (2) = (1), we can
assume that J(R) = 0. Then by [12], R is a finite direct product of matrix rings over
strongly regular rings. Thus, one can easily show that every primitive image of R is

Artinian. Hence (1) holds by Theorem 2.2.1. a]

2.3 Some consequences

Recall that a ring R satisfies (P) if for each a € R there exists u € U(R) such
that a +u,a —u~' € U(R), and a ring R satisfies (Q) if for each a € R there exists
u € U(R) such that a — u,a — u™* € U(R). These conditions have been discussed in
[7). 1t is clear that Z; does not satisfy (Q) and that neither Zy nor Zs satisfy (P).
Moreover, the GM-condition implies both (P) and (Q), and the classes of rings which
satisfy (P) and (Q) are closed under direct products and homomorphic images. In (7,
Proposition 9], the author gave a proof of the claim that a semilocal ring satisfies (P)
iff no homomorphic image of R is isomorphic to Z or Zs, and at the end of the article,

made the claim that a semilocal ring R satisfics (Q) iff R satisfies unit 1-stable range

11



The claim and its proof are implicitly involved with the use of the incorrect statement

that a semilocal ring R satisfies the GM-condition iff no homomorphic image of R
is isomorphic to Zs or Zg (see the last paragraph of [7]), so their validity need be

clarified.

Proposition 2.3.1 Let R be a semilocal ring. The following are equivalent:
1. R satisfies (P).
2. 1+u,1—u€U(R) for someu € U(R).
3. No homomorphic image of R is isomorphic to Zy or Zs.

Proof. (1) = (2). By (1), there exists u € U(R) such that 1 +u,1 —u"' € U(R). It
follows that 1+ u,1—u € U(R).

(2) = (3). If (2) holds for R then (2) holds for any nonzero homomorphic image

of R. But neither Z, nor Zg satisfy (2). So no hic image of R is is
to Zy or Zy.

(3) = (1). Noting that R satisfics (P) iff R/J(R) satisfies (P), we may assume
that J(R) = 0. Thus, R = My, (D) @ -+ ® M,,(D,), where s > 1, n; > 1 and

D is a division ring for i = 1,...,s. By (3), no homomorphic image of My, (D) is

isomorphic to Zs or Zg. Thus, either ny = 1 with |Dy| > 3, or my > 2.

I |Dy| > 3 or my > 3, then M, (D)) satisfics the GM-condition by Theorem 2.1.2,
so it satisfies (P). Moreover, Mj(Zs) satisfies the GM-condition by Theorem 2.1.2,
so it satisfies (P). Lastly, My(Z) satisfies (P) by [7, Example 8]. This shows that
M, (D) satisfies (P). It is similar to show that M, (D;) satisfies (P) fori =2,...,s.

Hence R satisfies (P). o




Proposition 2.3.2 Let R be a semilocal ring. The following are equivalent:

1. R satisfies (Q).

2. No homomorphic image of R is isomorphic to Zy
3. R satisfies unit 1-stable range.

4. Every element of R is the sum of two units.

Proof. (1) = (4) = (2). These are clear.

(2) = (1). Because R satisfies (Q) iff R/J(R) satisfies (Q), we may assume that
J(R) = 0. Thus, R = My, (D) @+ @ My, (D,), where s > 1, n; > 1 and D; is a
division ring for i = 1,....,s. By (2), no homomorphic image of My, (D;) is isomorphic
to Zy. Thus, either ny = 1 with [Di] > 2, or my > 2.

It is clear that Zs satisfies (Q). By Theorem 2.1.2, every division ring D with
|D| > 3 satisfies the GM-condition, and hence satisfies (Q). Thus, My, (Dy) satisfies
(Q)ifny = 1and [Dy] > 2. 1f [Dy| > 3 and ny > 2, then My, (Dy) satisfies the
GM-condition by Theorem 2.1.2, and hence satisfies (). Finally for any n > 2,
Proposition 2.3.1 shows that M,,(Z,) satisfies (P) and hence satisfies () because
2 = 0 in My(Z,). Therefore, My, (Dy) satisfies (Q). It is similar to show that
2

M, (D)) satisfies (Q) for i ..,s. Hence R satisfies (Q).

(2) 4 (3). This was proved by Wu [25, Corollary 4]. Since Wu’s article is pub-
lished in Chinese, we include a proof for the readers convenience. Notice that R

13



satisfies unit 1-stable range iff R/J(R) satisfies unit 1-stable range and the class of

rings satisfying unit 1-stable range is closed under direct products and direct sum-
mands.

Suppose (2) holds. To show (3), we can assume that J(R) = 0. Thus, R =
M,, (D)@ - -®M,, (D), where s > 1,n; > 1 and D; is a division ring for i = 1,.....,s.
By (2), no homomorphic image of My, (Dy) is isomorphic to Zy. Thus, either ny = 1
with [Dy| > 2, or n; > 2. Since the GM-condition implies unit 1-stable range, by
Theorem 2.1.1 to see that M, (D, ) satisfies unit 1-stable range we only need to show
that Zs and My(Zs) satisfy unit 1-stable range. But it can easily be verified that
Zy and My(Z,) satisfy unit 1-stable range. So My, (D) satisfies unit 1-stable range.
Similarly, My, (D;) satisfies unit 1-stable range for i = 2,...,s. Hence R satisfies unit
I-stable range.

Suppose that (2) does not hold. Then R/I = Z, for an ideal I of R. Hence
12 J(R) and so Z, is a homomorphic image R/J(R). Since R is semilocal, it follows
that Zs is isomorphic to a direct summand of the ring R/J(R). Since Z, does not
satisfy unit 1-stable range, we deduce that R/J(R) does not satisfy unit l-stable
range, and hence R does not satisfy unit 1-stable range. [a}

Arguing as in proving Theorem 2.2.1, one can show the following
Theorem 2.3.3 Let R be an exchange ring with primitive factors Artinian.
1. The following are equivalent:
(a) R satisfies (P).

(b) 1+ u,1—u€ U(R) for some u € U(R).

14
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(¢) No homomorphic image of R is isomorphic to either Zy or Zs.
2. The following are equivalent:

(a) R satisfies (Q)-

(b) No homomorphic image of R is isomorphic to Zy.

(¢) R satisfies unit 1-stable range.

(d) Every element of R is the sum of two units.



Chapter 3

The ring of linear transformations

Recall that a ring R satisfies Condition (P) if for any a € R, there exists u €
U(R) such that a + u,a — u™" € U(R), and a ring R satisfies Condition (Q) if for
any a € R, there exists u € U(R) such that a —u,a —u™" € U(R).

Many authors have discussed the decomposition of linear transformations. For
example, Zelinsky [26] proved that every linear transformation of a right vector space
over a division ring D is a sum of two automorphisms unless D = Z, and dim(V) =
1. Nicholson and Varadarajan [19] proved that every linear transformation over a
countably generated vector space is the sum of an idempotent and an automorphism.
Also Chen [7) proved that the ring of linear transformations of a countably generated
right vector space over a division ring D with |D| > 3 satisfies (P). Chen [7] also
raised the question whether the ring of linear transformations of a countably generated
right vector space over a division ring D with |D| > 2 satisfies (Q). In this chapter,
extending Chen’s work, we prove that the ring of linear transformations of a right

vector space over a division ring D with |D| > 3 satisfies (P) and we anwser Chen's
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question by showing that the ring of linear transformations of a right vector space

over a division ring D with |D| > 2 satisfies (Q)-

3.1 Condition (P)

The following theorem is an improvement of the main result of [7, Theorem 5]
that the ring of linear transformations of a countably generated right vector space

over a division ring D with |D| > 3 satisfies (P).

Theorem 3.1.1 Let End(Vp) be the ring of linear transformations of a right vector

space V over a division ring D. If |D| > 3, then End(Vp) satisfies (P).

To prove this theorem, the following lemma is needed.
For a countably infinite dimensional right vector space Vp, a linear transformation
f € End(Vp) is called a shift operator if there exists a basis {v1,v2, ., Un, . .} of V.

such that f(v;) = visy for all i

Lemma 3.1.2 [7] Let V be a countably infinite dimensional right vector space over
a division ring D and f € End(Vp) be a shift operator. Then there egists g €

U(End(Vp)) such that f + g, f —g~* € U(End(Vp)).

Proof. By fixing a basis of Vp, we can identify f with a matrix

X 0 0

Y X 0 - 00 01
A= , where X = , Y=

0Y X - 10 00



X 0 0 - 000 -

0 X 0 - Yy oo0-..
Let B = and C = . Then B?* = C* = 0 and

00 X - 0Y 0 -

A = B+C. Thus, 14 B is invertible with inverse 1- B. We see that A+(1-B) = 1+C'

and A—(1—B)™'=A- (1+ B) =C — 1 are invertible. o

Proof of Theorem 3.1.1. Let f € End(Vp). Let S be the set of all ordered pairs
(W, g), where W is an f-invariant subspace of V and g, flw + g, flw — g™ are units
of End(Wp) (where f|y is restriction of f to W). Clearly, ((0),1) € S.

Define a partial ordering on S by setting (W’,¢') < (W, g) whenever both are in
S, W' CW and ¢’ = glw

Suppose that {(Wa,ga) : @ € A} is a totally ordered subset of S. We define
g € End((UW,)p) by setting g(z) = ga(z) (a € A, & € W,), and it is easy to see that
(UWWa,g) € S and (Wi, ga) < (UWa, g) for all a € A. It follows from Zorn’s Lemma
that there exists a maximal element (U, h) in S; we prove this theorem by showing
that U = V. We assume that U # V, and show that this leads to a contradiction.

Let us fix ¢ € V\U. Let Vg := U + K where K is the subspace of V' spanned
by {z, f(x), f2(z),...}, and write Vy = U @ N where N is a nonzero subspace of Vo.
Since U is f-invariant, there is a linear transformation f : Vo/U — Vo/U given by
J(®) = F(0) (for v € V). Let : Vg — N be the projection on N along U. There is
a natural isomorphism ¢ : Vo/U — N such that ¢(7) = x(v) (for v € V;). Thus 6 :=
ofg~! € End(Np), and so 8 = @f. Since Vo/U is spanned by {z, f(z), /*(z), ...},

N is spanned by {(2), ¢(J(&)), ¢(72(®)),. .-} = {#(2),00(2),6%(7),..}. Thus,
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cither 6 € End(Np) is a shift operator or Np is finite dimensional. So, by Lemma
3.1.2 and Proposition 2.3.1, there exists a € U(End(Np)) such that 0+a and 6—a~"
are all units of End(Np). Let g : Vo — Vo be given by g(u+v) = h(u) + a(v)
(u€U,v € N). Then gis a unit of End((Vs)p). We next show that f +g and f — ¢!
are units of End((Vp)p)-

For u € U and v € N, we have
(%) (f+9)(u+v) = (f+h)(w) + [f(v) + a(v))-
Applying 7 to both sides of (x) gives

7(f + 9)(u+v) = 7f(v) + a(v) = ¢J(v) +a(v) = pf(D) + a(v)
= 0p(0) + a(v) = Or(v) + a(v) = 6(v) + a(v)
= (0+a)(v).
If (f + g)(u+v) = 0, then (6 + a)(v) = 0 and so v = 0. It follows from () that
(f +h)(u) =0, and hence u = 0. Thus, f +g: Vo — Vj is one-to-one.
Clearly, U C Im(f +g). For any w € N, there exists v € N such that (8+a)(v) =
w. Thus, w = (0 + @)(v) = 7(f + ¢)(u+v) € Im(f +g) (as U C Im(f +g)). So
f—g:Vo— Vpis onto. Hence f + g is a unit of End((Vo)p)-
It is similar to show that f — g~1 is a unit of End((Vo)p)-
Thus, (Vo,g) € S and (U, k) < (Vo,g), contradicting the maximality of (U, h). So
U =V and the proof is complete. o

There remains a question to be considered:

Question 3.1.3 Let D = Z; or D = Zg and let Vp be a right vector space of infinite

dimension. Dose End(Vp) satisfy (P)?



3.2 Condition (Q)

In Chapter 2, we proved that, for a semilocal ring R, R satisfies the GM-condition

if and only if no ic image of R is i ic to Z; or Zy or May(Za). Also,

R satisfies (P) if and only if no ic image of R is i ic to Z; or Zy.

In addition, R satisfies (Q) if and only if R satisfies unit 1-stable range if and only if

no ic image of R is i ic to Zy. Clearly, under the condition of a

semilocal ring, the GM-condition implies Condition (P), and Condition (P) implies
Condition (Q) and unit 1-stable range. It is easy to verify that the ring Zy satisfies
(Q), but not (P). But it is unknown whether (P) implies (Q). We first give a
sufficient condition for (P) to imply (Q). A ring R is called right continuous if every
right ideal is essential in a direct summand of Ry and every right ideal isomorphic to

a direct summand of Ry is itself a direct summand.

Theorem 3.2.1 Let R/J(R) be a right continuous ring. If R satisfies (P), then it
satisfies (Q)-

Proof. Because every unit of R/J(R) can be lifted to a unit of R, R satisfies (P)
(vesp. (Q)) if and only if R/J(R) satisfies (P) (resp. (Q)). Thus, we can assume that
Ris semiprimitive, right continuous. By Utumi [21], R is von Neumann regular; so 2
is a regular element of R. By [27, Lemma 7], R = § x T where 2 is a unit of § and 2is
a nilpotent element of 7. Thus 2 € J(T) € J(R). Since J(R) = 0,2 = 0 in T. Since
R satisfies (P), T satisfies (P). This, together with the fact that 2 = 0 in T\ implies
that T satisfies (Q). It remains to show that § satisfies (Q). Because R is right

continuous, S is right continuous. So every element of S is the sum of an idempotent
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and a unit by [2, Theorem 3.9], and 2 € U(S). Thus, by [3, Theorem 11], for any
a €S, a=u+vwhereu € U(S) and v* = 1. This shows a—v = a—v~' = u € U(S).
So § satisfies (Q). Hence R = § x T satisfies (Q) o

As a consequence of Theorem 3.2.1, the following theorem is an affirmative answer
to Chen’s question [7, p.6] whether the ring of linear transformations of a countably
generated right vector space over a division ring of more than two elements satisfies

(@

Theorem 3.2.2 Let End(Vp) be the ring of linear transformations of a right vector

space V' over a division ring D. If |D| > 2, then End(Vp) satisfies (Q).

Proof. Let R = End(Vp). It is well-known that R is a right self-injective, von
Neumann regular ring. So R/J(R) = R is right continuous. If |D| > 3, then R
satisfies (P) by Theorem 3.1.1, so R satisfies (Q) by Theorem 3.2.1. Thus, we can
assume that |D| = 3, i.e., D = Zq. Since R is right sclf-injective, every element of R
is the sum of an idempotent and a unit by [2, Theorem 3.9). Since D = Zg, 2 is a

unit of R. Hence, by (3, Theorem 11], for any a € R, a = u+v, where u € U(R) and

% = 1. This shows a — v = a — v = u € U(R). Hence R satisfies (Q) o

We have been unable to answer the following

Question 3.2.3 Let D = Z, and let Vi be a right vector space of infinite dimension.

Dose End(Vp) satisfy (Q)?
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Appendix A

Here we verify that the rings Ma(Zs), Ms(Zs), Ms(Zs), Ma(Zs) and Ms(Zs) all
satisfy the GM-condition. The complete set of n x n matrix units is denoted by
{Eyj :1<ij <n) Foranyijwithl<ij<nandanya€ R, welet
Pyj = I-Ey—Ej;+ Eyj+ Ej; and Tyj(a) = I+aE;;. Note that P} = I = T;;(a)T;j(~a)
in M, (R). The transpose of a square matrix ring A is denoted by A™. Ann xn

companion matrix over R is a matrix in My (R) of the form

01 0 0
0 0 1 0
0 0 0 1
w a a an-1,

Let a,b € R. If there exists u € U(R) such that a —u,b—u~! € U(R), then we write

@b (or a b to emphasize the unit u). The next lemma is obvious.




Lemma A.1 Let a,b € R, u,z,y € U(R), and let o be an automorphism or anti-

automorphism of R. Then:

2 a b iff say ™yl
The following well-known result is needed.

Lemma A.2 (15, p.192] Let F be a field and n > 2. Then every A € My(F) is
By 0
similar to its rational canonical form B = , where s > 1, B isa

0 Ba
companion matriz of size n;, and, when necessary we can assume that 1 < ny < ng <

<,
For a field F, the rank of any A € M,,(F) is denoted by rank(A).

Remark A.3 Let F be a field and let A € My(F) with rank(4) = n. To show
Ao B for all B € Mu(F) it suffices to assume that A = I and B is an arbitrary

rational canonical form.

Proof. Since rank(A) = n, there exist units X, Y in Ma(F) such that XAY = I. By
Lemma A.2, there exists a unit Z in My(F) such that Z(Y~'BX~')Z'=B', where
B'is the rational canonical form of Y~'BX 1. Then (ZX)A(YZ™") = 212" =1
and (YZ~1)"'B(ZX)! = Z(Y-'BX~!)Z~! = B'. By Lemma A.1(2), we know that
A Bif and only if (ZX)A(YZ™!) & (YZ))"'B(ZX)"", that is I < B'. Hence,
I & C for every rational canonical form C in M,(F) implies that A < B for all
B € My(F). o
We show that M,(Zs) with n = 2,3 satisfies the GM-condition.
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Example A.4 My(Z;) satisfies the GM-condition.

Proof. Let A, B € My(Zs). We need to show that A « B. This is certainly true if

A= 0. So we assume that A # 0. Because A is equivalent to cither (' ) or I, by
00

Lemma A.1(1) we can assume that A= ( ' :) orA=1
o

Case 1: A = (; :) Write B = (“ :) Mad—be+a+d+1#0, let
”:(:. :) and then A & B. So we may assume that ad — be +a +d+1= 0. If
b#0,let U= (T :) and then A & B. So we can also assume b = 0. If ¢ # 0,
let U = (: ;) and then A & B. So we can also assume that ¢ = 0. If a # 1, let

U= (T : ) and then A & B. So we can further assume that a = 1. It follows

that d=2andso B= (' "). But we sce that A & B for U = :"
0 2 1

Case 2: A= I. By Remark A.3 we can assume that B coincides with its rational

canonical form. Thus, either B = (" ‘:) or B=(°"), where a,b € Zy. For
0 i

B:(" :),chooseu=(“ l)whena#ﬂa.nddmoseU:(: ;) when a =0,
o 3

and we see that A & B. ForB:(" ’),choosev=(: “) when b—a+1#0
. 2

.mdchoosel/:(“ n)whenb~u+l:0,andweseethntAL’~B. o
12
A ring R is said to satisfy the 2-sum property if every element of R is the sum of
two units.
Lemma A.5 Let Ay, By € My(R), and A = (“ u) B= ("‘ ) € Muim(R).
o ‘s
If Ay By in My(R) and My (R) satisfies the 2-sum property, then A «» B in

A4




st dhg i i L e e i

Moim(R).

Proof. Write B = ( ::, 2“) By hypothesis, there is a unit Uy of My(R) such that
X:=A-U, and Y := B, - U}!

are units of My(R). Thus By — BnY "' Biz € Myn(R). Since My (R) satisfies the

92-sum property, there is a unit U of My (R) such that Z := (B — BnY ™ Bpa) — Uy

is a unit of M, (R). Then U := (”‘ ”) is a unit of My (R) such that
0w

A-U= (“' : ) o
0 Uz
O B (1 o\(v B
By BaY 'Bu+Z ByY-' 1 0z

are units of My4m(R). So A & B. o
Example A.6 Mj(Zs) satisfies the GM-condition.

Proof. Let A, B € My(Z3). We need to show that A — B. As done in Example A.4,

we can assume that A= * °) withs<3orA=L1A=(" °
00

where s < 3,
then A «» B by Lemma A.5 because Ma(Zs) satisfies the GM-condition (by Example
A4) and Z satisfies the 2-sum property. Hence we can assume A = . By Lemma

A.2 and Remark A.3, we can assume that B is one of the following matrices:

a 00 a 00 010
Bi=[o s o), Bo={00 1), Bs=[0 0 1], whr a,bcEZs.
00 ¢ 0 b ¢ aboc

Case 1: B = By. If abc = 0, we can assume that ¢ = 0 by Lemma A.1(1). Then
Lemma A.5 shows that A <» B. So we can assume that abe # 0. If one of a,b,c is 1,

we can assume that ¢ = 1. By Example A.4, there exists a unit Uy of Ma(Zs) such

25



that I, & ( °> in My(Zs), and hence A & B where U = (”‘ °>, So we can
0 b 0 2

010
further assume that a = 2. But we see A& B where U= { o o 1 | with
)
201
Utl=(100
010
Case 2: B = By. Choose 0 # z € Zg such that = # (a — 1)(b — c), and we see
0 0 20 Lot
that A Bwhere U= [0 2 o | withU'=( 0 2 0
1o o« 2= 00
Case 3: B = By. Choose « € Zg such that z # 2 — a+b — c. Then we have
200 200
A% BwhereU={0 2 o |withU'=|0 20 o
s 02 =02
an a2 0 bu bz 0
Lemma A.7 Let A, B € My(Zs) withA= | au 0 o | andB=|tn o b
0 0 o 0 by b
Then A S B for some unit U of Ms(Za).
0 0 1
Proof. Take U = { 0 1 ts |. Then A& B holds. o
1 ba b,

by bz big
Lemma A.8 Let A, B € My(Zy) with A = Eyy and B = [ tm 0 1 |. Then
b b2 O

AY B for some unit U of My(Z).

Proof. By Lemma A.7, we can assume that either by = 1 or by = 1. If big = byt = 1,

b1 ba
then Tip(bar) Pis BPasTos (biz) = Ta(ban) Pos | bm bas 0 | Tos(brz) =
10 b



phaieis d i o s G

bu 1 b2 bu 1 b b 1 b

Too(bn) | 1 0 tw |Toa(biz) = | 1 0 b |Tos(bid) = | 1 0 b |. So
b bz O 0 b 0 by o+

A Ti(bn) Py BPosTis(br) by Lemma A.7. But since Tog(br) PrsAPoTio(bar) =
100 100

Tas(bi2) { 0 0 0 | Ta(b) = (0 0 0 | = A, we have A < B by Lemma A.1(2).
000 00 0

Hence we can assume that one of byg and by, is 1 and the other is 0. Because AT = A,

Ao Biff A BT by Lemma A.1(1). Hence without loss of generality, we can assume
by 1 0

that byg = 1 and by = 0. If b = 1, then BTyg(1) = | tm 0 ba |;50 A > BTxg(1)
bz,

0 by
by Lemma A.7. But, since Txs(1)A = A, we have A < B by Lemma A.1(2). Hence

we can finally assume that by = 1, by = 0, and bip = 0. Then Ty (bas) BPys =

w10 w10
Ty(bas) b 4 0 | = « o o |, and hence A « Ty (bas)BPys by Lemma.
0 0 by 0 0 by
)
A7, But, since PyyAT3(b) = ( 0 0 o | Toa(bas) = A, we have A > B by Lemma
000

A.1(2). The proof is complete.

Now we prove that Mi,(Z,) with 3 < n < 5 satisfies the GM-condition.
Example A.9 Ms(Z,) satisfies the GM-condition.

Proof. Let A, B € My(Z;). We need to show that A — B. This is clearly true if
A=0o0r B=0. So we suppose A # 0 and B # 0.

Case 1: rank(A) = 1 or rank(B) = 1. Without loss of generality we assume
rank(A) = 1. By Lemma A.1(2), we can further assume A = Ey. If By, be the lower
right 2 x 2 supmatrix of B, then by Lemma A.2 there is a unit P of My(Zs) such

0

that PBpP~! = ( “) or PBpP~! = ( ‘) where a,b € Zo. Let U = (‘ !
0 s 5 b o r
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Then A =UAU™" and UBU™! = (

+ PBnP~!
b bz bis b bz b
assume that either B=| bz o o JorB=|tn 0o 1
bn 0 b bmoa b
b bz b bu b b

fB={tan a o |, thenPaB=/|0ba 0o

). Hence, by Lemma A.1(2), we can

,50 A < PyB by Lemma

bia

b 0 b n a0

A8, But since APy = A, we have A < B by Lemma A.1(2).
b bz b b biz
HB={om o 1| thenTu®)B =t o

boa b

. w0
Lemma A.8. But since ATy (b) = A, we have A > B by Lemma A.1(2).

1), s0 A Tu(h)B by

Case 2: rank(A) = 2 or rank(B) = 2. Without loss of generality we assume

rank(A) = 2. By Lemma A.1(2), we can further assume A =

LI By

is the upper left 2 x 2 supmatrix of B, then by Lemma A.2 there is a unit P of

Mj(Zs) such that PByy P~ = ( “) or PByP-! =
o b

') where a,b € Zy. Let
v

U=(""). Then A =UAU~! and UBU™! = ("B“" - ) Hence, by Lemma
01 ..

o
A.1(2), we can assume that either B={ 0 5 b
bai bsz b,
0 1 b
Subcase 1: B = a b by |. Wehave
bs bsa b,
510
A= Tia(b13) PraAT () Tss(b2) = Tis(b)Prz | 1 0 o
000
2 oo )
010 | Ta®Tsatbe) = (0 1 0 | Tu(®)Thu(ba) =
oo e
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100
00 0

Toa(0) T (bs2) = Tha(brs)
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100

000



10 b
and B’ := Ty (by2) T1 (b) BPizTis(b1s) = Toa(bs) Tu(b) | v @ bas | Tia(bra) =

bsa by bas
1o o oo Lo o
Tulbs)Tu®) [ 5 o o] =Tulw){ 0 o «]={0 o« «| Ha=0,
bz b baz ba x, 0 by
then A' « B' by Lemma A.T; so A « B by Lemma A1(2). If a = 1, then
1o oo b0 1
A'Typ(by) = A and Tia(b)B' = [0 1 4y |- Let U™ = {0 1 tg,41 |. Then
0 0 U
oot 1
U=+ 1 o), and ATy(byy) — U and Typ(bs1) B’ — U~ are units of M(Zy). That
100

is, A'Ti(byy) & Taa(bsn) B This implies A’ B, which in turn implies A < B by

Lemma A.1(2).

a 0 by 010
Subcase 20 B = [ o & by |. Wehave 4 := APp = [ 1 0 o | and
bu b ba 00 o
0 b bn

« 0 s |. ByLemma A.1(2), toshow A B it sufficcs to show

A o By,
(1) 1f byg = byy = 0, then Ay > B; by Lemma A.7.
()
(2) Suppose by = 0 and by = 1. Then By = (o o by |. Let U™ =
1 bs2 bas
0 0 1 1o o L
o 1 b )andVri={0 1 b ) ThenU={+ 1 o ]andV={0 1 n
Lt b 00 1 ) 00 1

It can be checked that Ay & By if a = 1 and that Ti(bss)Ar & ByTia(bss) if a = 0.
Hence A; By by Lemma A.1(2).
(3) Suppose by = 1 and by = 0. As seen in (2), AT < Bf, s0 Ay « By by

Lemma A.1(1).
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(4) Suppose byy = 1 and by = 1. Then By = [ a 0 s |. Ifa =1, then
1 b bu
0 b 1
To()By = (1 o b | and ATp(l) = Aj; so as done in (3), AT(1) «
0 b
01 o
Ty(1) By, showing A;  By. Ifb=1, then ByTys(1) = ( « 0 s | and Tos(1)A4; =
1 b o«

Ay; s0 as done in (2), Toa(1)A; < BiTx(1), showing Ay < By. If a = b =0, then
00 1 11
Bi={0 0 b | Letz=byg+bg+bsbp+1 ThenU:=|0 1 0 |=U"
1 bi by 001

U :
and, moreover, Ay & By. Hence in subcase 2, we have proved A; < By.

Case 3: rank(A) = rank(B) = 3. In view of Remark A.3, we can assume

100
that A = I3 and B is one of the following matrices: By = I3, B, = [ 0 o >,
01

1
010 (IR 110
By={o0 0 1) wherebc€Z. Let U= (0 11| withU"=[011
1b e 001 001
)

&

Then A « B follows from the facts that LiTy(1) & Ty (1)By, Tis(1)IsTn(1

(1) ByTis(1), and ITya(0)Tar (1) & Tin (1) Ta(c) Bs. o

Lemma A.10 Let A, B € Myy1(Zs) and suppose My (Z,) satisfies the GM-condition.

If rank(A) < n and rank(B) < n, then A < B in Mas1(Z2).

Proof. By Lemma A.1(2), we can assume that A = (” ") with s < n and
)

rank(B) < n. There exist units P and @ of Mo1(Z) such that PBQ = ‘4: Z
whete k < n. Hence PB= (™ °) Q@ = (™ *) and 4Pt = (* "), where
0 ) 00

Ay, By € My(Za). Since M, (Z;) satisfies the GM-condition, there is a unit Uy of
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M, (Z) such that A; ¥ By. Hence A & B where U = ("‘ ”)_ -
01

Lemma A.11 For a,b€ Zy, I — ( “) and I & (“ ‘) in May(Z).
0 ot

Proof. Let B = ( “). To show I, <+ B we can assume that B = (" “) where
0 b 00

1

where U = (" ‘). o
L

Example A.12 My(Z,) satisfies the GM-condition.

5 <2 by Lemma A.1(2), and s0 I & B where U = (“ ‘), Moreover, I & (“ ‘)
1 .

Proof. Let A, B € My(Z,). We need to show that A — B. In view of Example A.9
and Lemma A.10, we can assume that either rank(A) = 4 or rank(B) = 4. Without
loss of generality we assume that rank(A) = 4. By Remark A.3, we may further

assume A = I; and B is one of the following matrices:

w000 w000 100
0o b 00 0 b 00 a b 00
B = 1By = By = f
00 e 0001 0001
0004 00 ¢4 00 e
w000 0100
0010 0010
Bi= ,By= )
0001 000
0 b e d abed

where a,b,c,d € Z. By Lemma A.11, there exist units Py, Py of Ma(Zz) such that
L8 ( “) and I, 8 < “) in My(Zs). It follows that I, & By where P =
0 b o4
1001
(" “).Icisslmi]axtoseethnbAHB,whend:l, Letty=| " ° "' ° | ta=
0 P 0110
)
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1111 0001 1111

0010 1110 0111
WUs=Us= Us=
0110 1010 00 11
1000 1000 0001

To verify A «» By, we can assume d = 0. We see that

1000 0100 01
1o 1100 1
Tn(1) [Pl (1) = PipTn(1) = Tu(l) =

0010 00
0001 0001 00

K 0600 0 b0 0

Uy a=b b 0 0 a b 00 a 0 0 0
4 = Tu(1) = Tu(1) Ta(1) =

0 001 0001 0001

0 0 e d 00 cd 00 ¢ d

Tn(1) PraBaTyr (1), if ¢ = 0 and that Ty (1)sPra ¥ PraBaTn(1) if ¢

follows.
1000 1100 w100
000 a0 00
Because 1T (T() = | Tp)= [ ! 1}
1 010 0001
0011 0011 00 ¢
0100
w000
=Ti(1) = Ty(1)Ton (b) By, we see Iy > By.
0001
00 ¢
1000 1000 w0 o
0 0 1
Because I Ta(@Ta() = | © ' ° |Tay= 2 "0 )& °°
0010 0010 )
00 a1 o1 0 b et
w000
0010
=Tip(1) = Tip(1)Tig(d) Ba, we have Iy < By.
0001
0 b e
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Looo 1000
Finally, Iy < By, since LTa(NTu@ = ° ' ° ° | Tu@={ ' °°
0010 0010
100t 1o at
" 1o 0 1 00
0 1 o 10
8 = Tis(d) = Ta(d)Tu (1) Bs. o
0 o 0 01
ab-1¢0 o bt 0 d

Example A.13 M;5(Z,) satisfies the GM-condition.

Proof. Let A, B € Ms(Zs). We need to show that A < B. In view of Example A.12
and Lemma A.10, we can assume that either rank(A) = 5 or rank(B) = 5. Without
loss of generality we assume that rank(4) = 5. By Remark A.3, we may further

assume A = I and B is one of the following matrices:

a 0000 a0 000 a 0000
06000 06000 06000

Bi=]00 coo|l,Ba=[0o0coo|,Bs=]0oo0o010f,
000do0 00001 00001
000 0 ¢ 000 d e 00 ¢ d e
a 000 0 a 0000 01000
00100 00100 ab 000

By=]0o0 0 1 0[,Bs 0 b coof,Bg=f0oo0 01 0f,
00001 00001 00001
0 b ocd e 000 d e 00 ¢ d e

where a,b,¢,d, e € Z,. By Lemma A.11 and Example A.9, there exists a unit Uy of
<00

My (Zs) and a unit Uj of My(Zs) such that I & ( “> andI; % (0 4 o). Ttfol-

0

00 e

lows that I; & B, where U = (”‘ o ) It is similar to see that I5 < B; for i = 2,3,
0w



b 00 01 Vo
s1100 011
and Iy — Bgwhenb=1. Let Uy=Us=[1 0 1 1 o|andUs=]0 0 1 1 1.
10010 00011
1000 0000
10000 10000\ fao 0 o
01000 01000 Joo 1 o
Because IsTa(€)T52(1) = [0 0 1 0 o Toa()=fo0 0 1 0 o/ &[0 0 o 1
00010 ooo1of Joo o
000t 010 et 0 b -1 d
w0000
00100
Tia(1) |0 0 o 1 o =Tsa(1)Ts(e) B, we have Iy — By.
00001
0 b e d,

To verify Iy < Bj, we first assume ¢ = 1. Then there is a unit P of Ms(Z2)

w00
such that PByP~! = (x :) where X = (" ‘) andY = [0 0 1], and we
0 v
ol
see that Iy «» PB;P~) by arguing as in proving Iy — By. So by Lemma A.1(2),

Iy = P[P « P-\(PBsP~")P = By, Hence, we can assume that ¢ = 0. Then we

have
10000 10000 a 00 0 0
01000 01000 00100
IsTsa(1)Tsa(e) = [0 0 1 0 o| Toa(e)=1{0 0 1 0 of B [0 s 00 0f=
00010 00010 00001
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