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Abstract 

This Ph.D. dissertation consists of four chapters and mainly deals with the dynamics 

of several neural network models described by delay differential equations, difference 

equations and stochastic differential equations. 

In Chapter 1, some background of neural networks and the motivations of this 

work are briefly addressed. 

In Chapter 2, Liapunov functional method and the theory of monotone dynam­

ical systems are employed to obtain some delay independent and delay dependent 

stability results for the general continuous-time Cohen-Grossberg neural networks 

with distributed delays. Detailed local stability and bifurcation analysis are also 

given in this chapter for the bidirectional associative memory (BAM) neural net­

works with and without self-connections. 

Chapter 3 is devoted to the study of discrete-time neural networks with delays. 

Specifically, we first derive some global stability results for the discrete-time neural 

networks with variable delays and then investigate the capacity of the discrete-time 

BAM neural networks by giving the number of all possible stable periodic solutions. 

The stochastic neural networks are studied in Chapter 4, in which some cri­

teria for the almost sure exponential stability, mean square exponential stability 

are established for stochastic Cohen-Grossberg neural networks with and without 

delays. 
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Chapter 1 

Introduction 

What is a neural network? As stated by Hirsch [46], a neural network could be many 

things: a piece of hardware, a computer, an algorithm and so on. In this thesis, we 

only consider artificial neural networks, that is, networks of interconnected elements 

behaving like biological neurons. Such a network is usually described by a system 

of differential equations (continuous-time) or difference equations (discrete-time). 

For eaeh single neuron, the simple structure results in a very simple mathematical 

formula so that the function of a single neuron can be easily fulfilled by a simple 

electrical element. However, when many such simple neurons are connected to form 

a network, which results in a system of coupled differential equations (or difference 

equations), the whole network could have very rich dynamics and thus could admit 

various applications. 

We plan to discuss three types of artificial neural networks: continuous-time 

neural networks; discrete-time neural networks and stochastic neural networks. They 

all have the following common characteristics: 

(i) to each neuron i, a variable is associated to represent its state or activation; 

1 
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(ii) a real valued weight Wij is assigned, with lwijl giving the strength of the con­

nection between two neurons i and j, and the sign of Wij telling whether the 

connection is excitatory (wij > 0) or inhibitory (wij < 0); 

(iii) each neuron is assigned a nonlinear function (activation function, or transfer 

function), which yields an output to other neurons in the network. 

The first mathematical model of biological neurons was proposed by McCulloch and 

Pitts in 1943 [76], in which the evolution of the network is governed by the system 

of difference equations 

Xi(t + 1) = S (t WijXj(t)- ()i) , i = 1, 2, ... , n, 
J=l 

(1.0.1) 

where Xi is the state variable associated with neuron i, Wij represents the synaptic 

coupling strengths between neurons j and i. ()i is a threshold and the transfer 

function s(x) is the unit step function. Although McCulloch and Pitts showed that 

such a network can carry out any logical calculation and thus can be viewed as a 

kind of computer working in parallel manner, there was not a good algorithm for 

choosing the synaptic couplings for the desired output until 1961, when Caianiello 

[8] introduced a learning algorithm based on the well-known Hebb's learning rule. 

For many other neural network models, we refer to [27]. 

The theory and applications of neural networks have been greatly developed 

since 1980s after Cohen and Grossberg's paper [24] and Hopfield's paper [50] were 

published. In [24], Cohen and Grossberg discussed a network model now known 

as the Cohen-Grossberg neural network (CGNN) model described by a system of 
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ordinary differential equations 

:i:,(t) = a,(x,(t)) ( b;(x,(t)) - t, t,;s;(x;(t))) , i = 1, · · · , n, (1.0.2) 

In [50], Hopfield proposed an additive network known as the Hopfield neural network 

(HNN) described by the following system 

i=1,2, ... ,n, (1.0.3) 

which was later implemented by electric circuits to fulfill various tasks such as lin­

ear programming, solving the sales-man problem [95], etc. Due to their promising 

potential for the tasks of classification, associative memory, parallel computations, 

and their ability to solve difficult optimization problems, (1.0.2) and (1.0.3) have at-

tracted great attention from the scientific community. Various generalizations and 

modifications of (1.0.2) and (1.0.3) have then been proposed and studied, among 

which is the incorporation of time delay into the model. In fact, due to the finite 

speeds of the switching and transmission of signals in a network, time delays do 

exist in a working network and thus should be incorporated into the model equa­

tions of the network. More detailed justifications for introducing delays into model 

equations of neural networks can be found in [73], [80] and the recent book [106]. 

Marcus and Westervelt [73] first introduced a single delay into (1.0.3) and con­

sidered the following system of delay differential equations 

(1.0.4) 

They observed both experimentally and numerically [73] that delay could destroy a 

stable network and cause sustained oscillations and thus, could be harmful. System 
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(1.0.4) has also been studied by Wu [107], Wu and Zou [112]. Recently Gopalsamy 

and He [36], and van den Driessche and Zou [97] studied a further generalized version 

with multiple delays 

n 

xi(t) = -bixi(t) + L WijSj(xi(t- Tij)) + Ji, i = 1, 2, ... , n. (1.0.5) 
j=l 

For the Cohen-Grossberg model (1.0.2), Ye, Michel and Wang [119] introduced de­

lays by considering the following system of delay differential equations 

x,(t) = -a;(x;(t)) (b;(x;(t)) - t, t w!J) s;(x;(t- r,))) , i = 1, 2, ... , n. (1.0.6) 

Established in the pioneering work of Cohen and Grossberg [24] and Hopfield [50] 

was the "globally asymptotic stability" of systems (1.0.2) and (1.0.3), respectively, 

in the sense that given any initial conditions, the solution of the system (1.0.2) 

(or (1.0.3)) will converge to some equilibrium of the corresponding system. Such 

a "global stability" in Hopfield [50] and Cohen and Grossberg [24] was obtained 

by considering some energy functions under some assumptions, among which the 

symmetry of the connection matrix T is crucial. 

When it comes to the delayed systems (1.0.4), (1.0.5) and (1.0.6), it is natural 

to expect that such a global stability remains if the delays are sufficiently small. 

Indeed, such an expectation was confirmed in [118] and [119] under a certain type 

of symmetry conditions on the connection matrices. When a network is designed 

for the purpose of associative memories, it is required that the system have a set of 

stable equilibria, each of which corresponds to an addressable memory. The global 

stability confirmed in [50], [24], [118] and [119] is necessary and crucial for associative 

memory networks. However, an obvious drawback of the above work is the lack of 
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description or even estimates for the basin of attraction of each stable equilibrium. 

In other words, given a set of initial conditions, one knows that the solution will 

converge to some equilibrium, but does not know exactly to which equilibrium it 

will converge. In terms of associative memories, one does not know precisely what 

initial conditions are needed in order to retrieve a particular pattern stored in the 

network. Furthermore, the work of [118] and [119] cannot tell what would happen 

when the delays increase. Usually large delay could destroy the stability of an 

equilibrium in a network. Even if sometimes the delay does not change the stability 

of an equilibrium, it could affect the basin of attraction of a stable equilibrium. For 

such a topic, see [2], Pakdaman et al [83] and [84], or Wu [106]. 

On the other hand, in applications of neural networks to parallel computation, 

signal processing and other problems involving the solutions of optimization prob­

lems, it is required that there be a well-defined computable solution for all possible 

initial states. In other words, it is required that the network should have a unique 

equilibrium that is globally attractive. In fact, earlier applications of neural net­

works to optimization problems have suffered from the existence of a complicated 

set of equilibria [95]. Thus, the global attractivity of a unique equilibrium for the 

system is of great importance for both practical and theoretical purposes, and has 

been the major concern of many authors. For the Hopfield type neural networks, 

see, for example, Belair [3], Cao and Wu [12], Gopalsamy and He [36], Hirsch [47], 

van den Driessche and Zou [97], Lu[69], Matsuoka [74], Guan, Chen and Qin [38]. 

But, to the best of our knowledge, for the Cohen-Grossberg type neural networks, 

results appeared in the literature are very few (See, [98], [99], [102], [103] and [119]), 

especially when multiple delays (infinitely distributed delays, finitely distributed 
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delays, variable delays) are involved in the model. 

In designing and implementing a network, it is preferable and desirable that the 

neural network not only converge, but also converge as fast as possible. It is well 

known that exponential stability gives a fast convergence rate to the equilibrium. 

Therefore, we expect to obtain some exponential stability results as well. 

As we mentioned before, the delays in a network have impact on its dynamics. 

One way to see how the delays will affect the dynamics of a neural network is to 

carry out a bifurcation analysis by viewing some delay as the bifurcation parameter. 

In this work, we will consider the bidirectional associative memory (BAM for short) 

neural networks with multiple delays and study the Hopf bifurcations caused by the 

self-connection delay and off-diagonal connection delays, respectively. 

In associative memory, the capacity of the network is a big issue that needs to 

be concerned with. Thus, in this work, we will study the capacity of discrete-time 

BAM neural networks. Our results show that even though the discrete-time BAM 

neural networks allow relatively small equilibrium capacity, the delayed discrete­

time BAM neural networks can admit large capacity for stable periodic solution 

under certain conditions. 

We also notice that researchers have paid little attention to the study of stochas­

tic neural networks. This encourages us to explore the dynamics of stochastic neural 

networks. Note that a stochastic neural network can be viewed as a deterministic 

neural network with stochastic perturbations, it is therefore of importance to iden­

tify the role of stochastic perturbation in the dynamics of neural networks. To this 

end, we shall mainly study the stability including almost sure exponential stability 

and mean square exponential stability for both stochastic Cohen-Grossberg neural 



networks with and without delays. 

Throughout this thesis, the following general notations are adopted: 

lR : the set of real numbers 

ll4 : the set of all nonnegative real numbers 

JRn=JRXJRX···XlR 
n 

]Rnxn : the set of n x n real matrices 

xT = (x1 , · · · , Xn) : the transpose of x 

wr : the transpose of the matrix w 

IIWII2 = (max{i>.i : ). is an eigenvalue of wrw}) 112 

N(a) ={a, a+ 1, · · ·, }, N(a, b)= {a, a+ 1, · · ·, b -1, b}, wherea < b 

a(W) : the (point) sepctrum set of an matrix M 

p(W) :the spectral radius of the matrix W 

C: C([-T, 0], Rn) 

lic/>11 = sup{i¢(0)1,0 E [-7,0],¢ E C} 

Lip(!) =sup {I f(u~=~(v) I , u -:f. v, u, v E R}. 
Other notations will be specified in the context. 

7 

The rest of the thesis is organized as follows: In Chapter 2, the Liapunov 

functional method is first employed to discuss the stability of the general continuous-

time Cohen-Grossberg neural networks with distributed delays. The Hopfield neural 

networks with infinite (finite) distributed delays, periodic inputs, are then studied. 

Moreover, the detailed local stability and bifurcation analysis are also given in this 

chapter for the bidirectional associative memory (BAM) neural networks with and 

without delayed self-connections. The exponential stability of discrete-time neural 

networks with variable delays and the capacity of stable periodic solutions in the 

discrete-time BAM neural networks are investigated in Chapter 3. The almost 
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sure exponential stability, mean square exponential stability of the stochastic neural 

networks with and without delays are established in Chapter 4. 



Chapter 2 

Dynamics of Continuous-Time 
Neural Network Models with 
Multiple Delays 

In this chapter, we study the (global) stability of some general continuous-time 

neural networks with multiple delays. We also consider the local stability and 

Hopf bifurcation of delayed BAM neural networks with and without delayed self-

connections. 

In Section 2.1, some global stability results for the Cohen-Grossberg neural 

networks with infinite distributed delays and finite distributed delays are established 

by using Liapunov functional method. 

Section 2.2 is devoted to the stability of Hopfield neural networks with infinite 

and finite distributed delays. By analyzing the associated characteristic equation, 

we obtain the local stability for Hopfield neural networks with infinite distributed 

delays. Moreover, the stabilization roles of inhibitory self-connections for Hopfield 

neural networks with finite distributed delays are identified via the theory of mono­

tone dynamical systems. 

9 
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In Section 2.3, we first apply our results obtained in Section 2.1 to the BAM 

neural networks to obtain some global stability results and then investigate the 

local stability and Hopf bifurcation and establish the corresponding algorithms to 

determine the direction and stability of the Hopf bifurcation. Some examples and 

numerical simulations are also presented. 

2.1 Continuous-time Cohen-Gross berg neural net­
works with distributed delays 

Cohen and Grossberg [24] proposed a neural network model (CGNN) in 1983 de­

scribed by the following system 

X;(t) = -a;(x;(t)) (b;(x;(t)) - t, a;;9;(x;(t))) , i E N(l, n) (2.1.1) 

where i E N ( 1, n) and n ?: 2 is the number of neurons in the network; xi ( t) describes 

the activation of the ith neuron at time t; ai represents an amplification function and 

the function bi can include a constant term indicating a fixed input to the network; 

the n x n connection matrix A = ( aij) tells how the neurons are connected in the 

network; the activation functions gj, j E N(1, n) show how the neurons react to the 

input. As pointed out in [24], the system (2.1.1) includes a number of models from 

neurobiology, population biology and evolution theory, among which is the Hopfield 

neural network (HNN) model 

n 

xi(t) = -bixi(t) + L aii9i(xj(t)) + h i E N(1, n) (2.1.2) 
j=l 

where Ii (i E N(1, n)) is a fixed input from outside of the network. Systems (2.1.1) 

and (2.1.2) have attracted great attention of the scientific community and have been 
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extensively investigated, see, for example, [3], [9], [12], [13], [14], [15], [16], [17], [31], 

[32], [36], [38], [45], [56], [58], [64], [69], [73], [74], [79], [97], [101], [102], [103], [107], 

[113], 1114], [115], [116], [117] and [119]. Instead of considering discrete time delays 

like in [36], [97], we incorporate time delays which are continuously distributed 

over an infinite interval reflecting the fact that the distant past has less influence 

compared to the most recent neurons' states on the current states of system (2.1.1) 

and obtain the following CGNN model with infinite distributed delays 

(2.1.3) 

where the delay kernel functions kij(t) are assumed to be piecewise continuous and 

satisfy 

kij(t) ~ 0, t ~ 0, 100 

kij(t)dt = 1, 100 

tkij(t)dt < 00. (2.1.4) 

We now give some assumptions which will be used later: 

(Hl) For each i E {1, 2, · · · , n }, ai is continuous and satisfies 0 < g_i :::; ai( u) :::; ai· 

(H2 ) For each i E {1, 2, · · · , n}, bi is continuous and strictly increasing. 

The activation functions 9i(x), i E N(1, n), are typically assumed to be sigmoid, 

that is, they are required to satisfy the following 

(A1) Yi E C 2 (JR), g~(x) > 0, for all x, supxElRg~(u) = g~(O) = 1, i E N(l, n); 

(A2) 9i(O) = 0 and limx---t±oo 9i(x) = ±1. 

One commonly used such function is g(x) = tanh(x). 
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The above assumptions (AI) and (A2 ) imply the monotonicity and smoothness 

of the activation functions. However, as argued in [97], for some purposes, non­

monotone and non-differentiable activation functions would be better candidates 

and have been frequently adopted in implementation. Such a practical motivation 

suggests that sometimes we may consider the following replacement for (AI) and 

(A2): 

(5I) :For each i E N(1, n), 9i JR. ---t JR. is globally Lipschitz continuous with a 

Lipschitz constant Li; 

(52) F'or each i E N(1,n), l9i(x)l:::; Mi, x E JR. for some constant Mi > 0. 

Clearly, (5I) - (52) implies (A1) - (A2). 

The initial conditions associated with (2.1.3) are of the form 

xi(s) = ¢i(s), i E N(1, n), (2.1.5) 

where (¢1 , ¢2 , · · · , ¢n) =: ¢ belonging to the Banach space BC of bounded and 

continuous functions that map ( -oo, 0] into JR.n, with the uniform norm llc/JIIoo = 

sup8~0 l¢(s) I, where 1·1 is a chosen norm on JRn. For the general standard existence, 

uniqueness, continuation of results for the system (2.1.3), we refer to [37], [39], [42], 

[108]. 

We first establish an existence result for an equilibrium of system (2.1.3). 

Theorem 2.1.1. If (HI)- (H2 ) and (51)- (82 ) (or (A1)- (A2 )) hold, then there 

exists at least one equilibrium for system (2.1.3). 
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Proof. By (H1), we know that x* is an equilibrium of (2.1.3) if and only if x = 

x* = (xi,··· , x~f is a solution of the equations 

b;(x;)- t, a;;g;(l
00 

k;;(t- s)x;ds) = 0, i E N(l, n). (2.1.6) 

From (S2), we have 

t, a;;9;(l
00 

k;;(t- 8)x;ds) :S t, Ja;;IM; =: P;, i E N(l, n). 

Since (H2 ) holds, then bi1 exists and is strictly increasing. Now consider 

fori E: N(l, n). We have 

It follows that (h1 , h2, · · · , hnf maps a bounded set D := [-D1 , D1] x [-D2, D2] x 

· · · x [-Dn, Dn] to itself. Then the existence of the equilibrium follows from the 

Brouwer's fixed point theorem (Theorem 3.2, [26]) and the proof is thus completed. 

D 

Let x* be an equilibrium of (2.1.3) and u(t) = x(t) - x*. Substituting x(t) = 

u(t) + x* into (2.1.3) leads to 

•<;( t) = -a,( u; ( t)) (/l;( u;( t)) - t, a;;f; (l
00 

k;; ( t - 8 )u; ( 8 )d8)) (2.1. 7) 

fori E N(l,n) where ai(ui(t)) = ai(ui(t) +xi), /3i(ui(t)) = bi(ui(t) +xi)- bi(xi), 

fJ = 9J(f~oo kij(t- s)uj(s)ds + xj)- 9J(xj). 
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Next, we will use Liapunov functional method to establish some sufficient condi­

tions to guarantee the global stability of the equilibrium of (2.1.3). Such Liapunov 

functional method to achieve the global stability for functional differential equations 

with infinite delay has been used in [6], [18], [62], [63]. 

Theorem 2.1.2. Assume that (HI), (H2 ) and (51), (52 ) hold. If there exist 'Yi > 0, 

and Qi > 0 such that 

(2.1.8) 

and 

J-i := m_in {Qi'YiQi- Li ~a1 1a1ilq1 } > 0, (2.1.9) l<~<n L...J 
-- j=l 

then every solution of (2.1.3) will finally approach to the equilibrium x*, namely, 

xi(t) -+ x; as t-+ oo, i E N(1, n). (2.1.10) 

Proof. Combining (2.1.7) with (2.1.8), we can estimate the upper righthand deriva­

tive of lui(t) I as below 

n+ lui(t) I sgn( ui(t) )ui(t) 

< -Q;'Y;Iu;(t)l + lii; t,L;Ia;;l['oo k;;(t- s)lu;(s)lds 

-Qi'Yilui(t) I + ai t L1 laij 1joo kij(s) luJ(t- s) Ids, (2.1.11) 
j=l 0 

where 

{ 

1, X> 0, 
sgn(x) = 0, x = 0, 

-1 X< 0. 
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Let V(t) = V( u)(t) be defined as 

V(t) ~ t, (q;lu;(t)l + 1>;q; t,L;Ia;;l /,oo k;;(s) L, lu;(w)ldwds). (2.1.12) 

Then 

and the upper righthand derivative of V(t) along the solution of (2.1.7) satisfies the 

following 

v+v(t) < t, q, ( -Q<;'Y;Iu,(t) I+ a, t, L; Ia;; I /,
00 

k;;(s) lu;(t- s)lds) 

+ taiqi t Ljlaij11oo kij(s) (luj(t)l-luj(t- s)l) ds 
i=l j=l 0 

< t, ( -m,,q,lu.(t)l + a,q, t, la;;IL;Iu;(t)l) 

--t, ( Q<;'Y;q;- L; t,<>;la;;lq;) lu;(t)l 

(2.1.13) 
i=l 

This shows the zero solution of (2.1.7) is stable and 2:~=1 lui(t)l is bounded for all 

t;::::: 0, thus the solutions of (2.1.7) exist globally. Moreover, we have 

V(t) +I' l (t, lu.(s)l) ds :S V(O). 

On the other hand, 

V(O) ~ t, ( q,lu,(O)I + a,q, t,L;Ia;;l f k;;(s) { lu;(w)lfihlds) 

< t (qi + Li tajqjlajil {oo skji(s)ds) sup l¢i(w)- x:l < oo, 
i=l j=l Jo wE(-oo,O] 
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which implies that 
n 

f(t) := L lui(t)l E L1 (0, oo). (2.1.14) 
i=l 

It is clear that f(t) is nonnegative and is defined on [0, oo ). Estimate implies the 

boundedness of f(t), which, together with (2.1.7), leads to the boundedness of 

ui(t), i = 1, 2, · · · , n. This in turn implies that f(t) is uniformly continuous on 

[0, oo). By Lemma 1. 2. 2 of [34], we obtain 

n 

L lui(t)l-+ 0 as t--+ oo, (2.1.15) 
i=l 

which shows that (2.1.10) holds. The proof is complete. 0 

Remark 2.1.1. As stated in {62}, {63}, the space BC may cause problems for the 

usual well-posedness questions and compactness of solution semifiow related to june-

tional differential equations with infinite delays. It is suggested in {62}, {63}, instead 

of BC, a more friendly space UC9 {the definition can be found in {39}, {42}, {62}, 

{63}, {108}), can be adopted. However, in Theorem 2.1.2 {also in Theorem 2.1.3), we 

use estimates of solutions in IRn in the proof of the global convergence result. Thus, 

neither· the choice of BC nor UC9 will cause any problem for our global convergence 

property. 

Corollary 2.1.1. If {2.1.8) holds and {2.1.9) is replaced by 

1'1 :~ 1~~. { Q!(Y; ~ L; t,<>;la;;l} > 0, 

then the equilibrium x* of {2.1. 3) is globally asymptotically stable. 

(2.1.16) 
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Proof. Condition (2.1.16) implies (2.1.9) holds for Qi = 1, i E N(1, n), and thus this 

corollary follows directly from Theorem 2.1.2. D 

By using a different Liapunov functional, we have 

Theorem 2.1.3. Assume that (HI), (H2), (81), (82 ) and (2.1.8) hold. If there exist 

positive real numbers Pi > 0, and TJi > 0 such that fori E N(1, n) 

(2.1.17) 

then the equilibrium x* of (2.1. 3) is globally asymptotically stable. 

Proof. Define V(t) = V(u)(t) by 

(2.1.18) 

Now we can estimate the upper righthand derivative of V(t) along the solution of 

(2.1. 7) as follows 

v+v ( t) <:: t, Pi (-2l]<(Y;ui(t) + 2a, lu; I t L; Ia;; 1/,
00 

k;; ( s) lu;(t - s) Ids) 
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The rest of the proof is similar to that of Theorem 2.1.2. 0 

Varying the parameters in Theorem 2.1.3, we immediately have 

Corollary 2.1.2. Assume that (H1)- (H2), (SI)- (82) and (2.1.8) hold. If one of 

the following conditions holds for some positive real numbers 'T/i,Pi, i E N(1, n), then 

the equilibrium x* of (2.1. 3) is globally asymptotically stable. 

(2.1.19) 

n n 

2"'·"'·P·- a·p·"' Ja··IL·- L·"' Ja··la·p· > O· ~t It t t t ~ t} J t ~ }t J J l (2.1.20) 
j=l j=l 

n n 

2Q(Yi- aiL JaijlLj- Li L Jajilaj > 0; (2.1.21) 
j=l j=l 

n n 

2Q(YiPi- aiPi L Jaijl- Lf L Jajilajpj > 0; (2.1.22) 
j=l j=l 

n n 

2Q(YiPi- aiPi L JaijlL]- L Jajilajpj > 0; (2.1.23) 
j=l j=l 

n n 

2Q(Yi- aiL Jaijl- Lf L Jajilaj > 0; (2.1.24) 
j=l j=l 

n n 

2Q/Yi- aiL JaijlL]- L Jajilaj > 0. (2.1.25) 
j=l j=l 

Proof. The above conditions can be obtained by letting Pi = 1; 'T/i = 1; Pi = 'T/i = 

1; 'fli = L; 'fli = Li ,Pi= l,'fli = L; Pi= l,'fli = Li, in (2.1.17), respectively. 0 

It is well known that exponential convergence to an equilibrium means fast con­

vergence in the network, and thus, is desirable in the implementation of artificial 
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neural networks. Regarding the global exponential stability of the equilibrium of 

(2.1.3), we have 

Theorem 2.1.4. In addition to the conditions in Theorem 2.1.2, if we further as-

sume that 

(2.1.26) 

holds for some positive numbers c5 and T0 , then the equilibrium of (2.1.3} is globally 

exponentially asymptotically stable. More precisely, we have 

(2.1.27) 

where cl > 0 and al > 0 will be specified later. 

Proof. From (2.1.11), we have 

Since (2.1.9) holds, we can choose a positive real number a1 E (0, 6) such that 

(2.1.28) 

Let Yi(t) = eu1tlui(t) I, a direct calculation shows that 

n+yi(t) eO"lt (allui(t)l + n+lui(t)l) 

< eO"lt (allui(t) I - !X/Yi lui(t) I + CYi t Lj laij I roo kij(S) luj (t - s) Ids) 
J=l lo 
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Define 

V(t) = V(y)(t) = t ( q;y;(t) + li;q; t, L;la;;l1
00 

k;;(s)e"" l, Y;(w)dwds) . 

(2.1.29) 

It is easy to show that 

D+V(t) = t ( q,D+y,(t) + Di;q; t, L; la;;ifooo k;;(s )e""(Y;(t) - Y;(t- s) )ds) 

< t ( -q;(!!;/; - <TI)Y;(t) + li;q; t, L;la;; 1],00 

k;;(s)e""Y;(t)ds) 

= - t ( q;(!!;'Yi- rrr) - L, t, Oi;'l;la;;ifooo k;;(s)e"''ds) y;(t) 

n 

< -v LYi(t) 
i=l 

< 0, 

which indicates that 

V(t) ~ V(O). 

Hence, we have 
n 

L QiYi(t) < V(t) ~ V(O) 
i=l 

< t (QiYi(O) + aiqi t Ljlaijl rX> kij(s)se<l"lSds sup Yj(w)) 
i=l j=l Jo wE( -oo,O) 

< t (qi + Li tajqjjajil roo kji(s)se(J18 ds) sup Yi(w). 
i=l j=l Jo wE(-oo,O) 
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Putting 

max {q· + L· ~li·q·Ja··lk··} 1 <i<n ~ ~ ~ J J J~ J~ 

C 
·- -- j=1 

1 .-
mm {q·} 

1:Si:Sn ~ 

and noting that 

sup Yi(w) = sup eowl¢i(w)- x:l:::.; sup l¢i(w)- x;J, 
wE( -oo,O] wE( -oo,O] wE( -oo,O] 

we have 
n n 

LYi(t):::.; c1 L sup l¢j(w)- xjl, 
i=1 j=1 wE( -oo,O] 

which implies that 

n n 

Llxi(t)-x;J::;C1e-u1tL sup 1¢i(w)-xjJ. 
i=1 j=1 wE( -oo,O] 

(2.1.30) 

Thus the proof is complete. D 

Similarly, we have 

Theorem 2.1.5. Assume that all conditions in Theorem 2.1.3 and (2.1.26} are 

satisfied. Then the equilibrium of (2.1. 3) is globally exponentially stable in the sense 

that the following inequality holds. 

(2.1.31) 

where c2 > 0 and 0"2 > 0 are given by 

max {p· + Li ~li-p·Ja·ilk··} 1 <i<n ~ · ~ J J J J~ 
- - 1]~ . 1 

C - J= 
2-

min {p·} 
1:Si:Sn ~ 
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and 

a 2 < sup {a E ( 0, 0) : 2Q!;Pi'Yi - p;a - IT;p; t, I a;; IL;~; 

- L~ taiPilaiil {oo kji(s)eusds > 0, i E N(l, n)}. 
TJ~ i=l lo 

Corollary 2.1.1 together with Theorem 2.1.4 immediately gives 

Corollary 2.1.3. If all conditions of Corollary 2.1.1 and (2.'1.26) are satisfied, then 

the equilibrium of ( 2.1. 3) is globally exponentially stable. 

Combining Corollary 2.1.2 and Theorem 2.1.5, we have 

Corollary 2.1.4. If all conditions of Corollary 2.1. 2 and (2.1. 26) are satisfied, then 

the equilibrium of (2.1. 3) is globally exponentially stable. 

If the kernel functions kij(t) are assumed to take some special forms in (2.1.3), 

such as 

k··(t) = { lij(t), t E [0, Tij] 
~1 0, otherwise, 

then the duration intervals for time delays are finite, and thus the corresponding 

Cohen-Grossberg neural network model can be described by 

(2.1.32) 

where i E N(l, n) and the delay kernel functions lij(t) are subject to 

(2.1.33) 

Using similar arguments, we have 
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Theorem 2.1.6. Suppose that (H1), (H2), (81), (52), (2.1.8} and (2.1.9} hold. Then 

the equilibrium x* of (2.1. 32) is globally exponentially stable in the sense that 

(2.1.34) 

with T =max (Tij, i,j E {1, 2, · · · , n} ), a3 > 0 such that 

{ 

n 1Tji } min a-"'·q·- q·a3 - L· "'a-q·Ja··l l··(s)ea38 ds > 0 1<i<n -~~~ ~ ~ ~L....J J J J~ J~ 
-- j=1 0 

and 

max {q· + L- ~a-q·Ja··IT-·ea3Tji} 
1 <i<n ~ ~ L....J J J J~ J~ 

C ·- -- j=1 
3.-

mm {q·} 
1::;i::;n ~ 

Theorem 2.1.7. Assume that (HI), (H2), (51), (52 ) and (2.1.8} hold. If there exist 

positive real numbers Pi > 0, and 'T/i > 0 such that (2.1.17} holds, then the equilibrium 

x* of (2.1.32} is globally exponentially stable with 

(2.1.35) 

where a4 > 0 such that 

min {2a-p·"'·- p·a4 - a·p· ~ Ja--JL-'11·- Li ~a-p·Ja··l1T l--(s)ea48 ds} > 0 1<i<n -~ ~ 1 ~ ~ ~ ~ L....J ~J J"!J · L....J ~ J J~ J~ 
- - . 1 TJ~ . 1 0 

J= J= 

and 

{ 
L- n } ~ - U4T·· max p· +- "'""'a·p·Ja··IT··e 3' 1 <i<n z . L....J J J JZ JZ 

-- 'T/z . 1 

C - J= 
4- . 

mm {p·} 
1::;i::;n z 
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2.2 Hopfield neural networks (HNNs) with dis­
tributed delays 

Letting ai = 1, bi(x) = bix +hi E N(1, n) with bi > 0, i E N(1, n) in (2.1.3) leads 

to the Hopfield neural network model with distributed delays 

(2.2.1) 

In this section, we will first consider the case where the inputs hi E N(1, n), are 

constants and then study the case where the inputs hiE N(1, n), are functions of 

timet and are periodic with period w, that is, Ii(t) = Ii(t + w) for all t. 

Note that the models with discrete delays can be included in our models by 

choosing suitable kernel functions, for example, taking the delay kernel functions 

kij(t) = r5(t- Tij), i, j E N(1, n). (2.2.2) 

System (2.2.1) has been briefly studied by Burton [7], Gopalsamy and He [36] 

and Mohamad and Gopalsamy [79]. However, as we will see, their conclusions can be 

included in our results as special cases. An application of system (2.2.1) can be found 

in Tank and Hopfield [95]. Clearly the Hopfield neural networks with distributed 

delays (2.2.1) has the same equilibria as the system (2.1.3) does and hence based on 

the same assumptions, we know (2.2.1) admits at least one equilibrium. 

2.2.1 Global stability of HNNs 

Since (2.2.1) is a special case of (2.1.3),results established in Section 2.1 all apply to 

(2.2.1). For convenience of applications, in this subsection, we state some criteria 
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for the global stability of (2.2.1). First, applying Theorem 2.1.2 and Theorem 2.1.4 

to system (2.2.1), we have 

Theorem 2.2.1. If there exist qi > 0, i E N(1, n) such that 

(2.2.3) 

then the equilibrium x* is globally asymptotically stable. In addition, if (2.1.26) 

holds, the x* is globally exponentially stable. 

Letting qi = 1, i E N(1, n) in (2.2.3), we have 

Corollary 2.2.1. If 

v1 := min {b·- L· ~ ia··l} > 0 l<i<n z z L...J JZ 
-- j=l 

(2.2.4) 

holds, then we have the same results as Theorem 2. 2.1. 

Remark 2.2.1. Corollary 2.2.1 coincides with Theorem 3.3 in {79}. 

Applying Theorem 2.1.3 and Theorem 2.1.5 to system (2.2.1), we have 

Theorem 2.2.2. If there exist Pi > 0, 'T/i > 0, i E N(l, n) such that 

min 2b·p· -p·'"' ia··IL·n.·- ____:'"' ia··lp· > 0 
{ 

n L· n } 
l<i<n Z Z Z L...J ZJ )'/) . L...J JZ J l 

-- j=l "h j=l 

(2.2.5) 

then the equilibrium x* is globally asymptotically stable. In addition, if (2.1.26) 

holds, the x* is globally exponentially stable. 
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2.2.2 Local stability of HNNs 

This subsection is dedicated to local stability analysis. Instead of (51 ) and (52), we 

assume that (A1 ) and (A2 ) hold and bi > 0 for i E N(l, n). Linearizing (2.2.1) at 

an equilibrium point x* = (xi, x;, · · · , x~f gives 

(2.2.6) 

Then the characteristic equation (for the characteristic equation of functional dif­

ferential equations with infinite delays, we refer to [94]) is 

where 

F(A) = det 

F(A) = 0, 

-A- b1 + cuku (A) 
cz1k21 (A) 

C1nk1n(A) 
Cznkzn(A) 

Theorem 2.2.3. If F(O) =I 0 and there exist qi > 0, i E N(l, n) such that 

( -bi + lciil)qi + L lcij 1% :::; 0, fori E N(l, n), 
#i 

then the equilibrium of ( 2. 2.1) is asymptotically stable {41}. 

(2.2.7) 

(2.2.8) 

(2.2.9) 

Proof. Let A be a root of (2.2.7). Then A is an eigenvalue of the matrix D = (dij) 

with dii = -bi + Ciikii(A), dij = cijkij(A), i =I j fori, j E N(l, n). Let b = (d~j) with 

A - -1 A - _ 1 - 0 A dij - qi dij%· Then D- Q DQ, where Q- dtag(q1, q2 , · · · , qn)· SoD and D are 
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similar and thus have the same eigenvalues. Let ~ be an eigenvalue of b. Applying 

the Gershgorin's theorem [33] to b, we know that for some i E {1, 2, · · · , n} 

that is, 

Therefore, we have 

If Re(.A) 2 0, then 

and 

Hence, we have 

I ~- d--1 < '""'id··l ~~ - L....J ~J ' 

#i 

Re(.A) = Re(~) ~ Re(dii) + Lqi1 ldiJI%· 
#i 

#i 

Multiplying both sides of the above inequalities by qi, we get 

qiRe(.A) ~ (-bi + lciil)qi + L lciJI%, 
#i 

which implies that Re(.A) ~ 0. From the analysis, we know the equality occurs only 

when .A is real and F(O) =f. 0 implies .A can not be 0. So we must have Re(.A) < 0. 
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This is a contradiction with our assumption Re(A.) ~ 0. Thus we show that all 

the roots of F(A.) have negative real parts, which implies that the equilibrium x* is 

locally asymptotically stable [41]. D 

Remark 2.2.2. If we denote K = -B + ICI with B = diag(b1, b2, · · · , bn) and 

ICI = (lcijl) and use a similar argument as in {9}, then Theorem 2.2.3 can be modified 

to: If -K is weakly diagonally dominant in the sense of {49} and F(O) # 0, then 

the conclusion in Theorem 2.2.3 still holds. 

2.2.3 HNNs with finite distributed delays 

In this subsection, we study the Hopfield type neural networks with finite distributed 

delays described by 

X;(t) ~ -b;(x;(t)) + t, a;;9; (1~"' k;;(t- s)x;(s )ds) + J;, i E N(l, n), (2.2.10) 

where Tij ~ 0 for i, j E N(1, n) with T = max{ Tij, i, j E N(1, n)} and the delay 

kernels satisfy 

kij(t) ~ 0, lr;; kii(t)dt = 1, i, j E N(1, n). 

Note that (2.2.10) includes 

n 

xi(t) = -bi(xi(t)) + l:aijgj(Xj(t)) + Ji, i E N(1,n), (2.2.11) 
j=l 

and 
n 

xi(t) = -bi(xi(t)) + 2:: aijgj (xj(t- Tij)) + Ji, i E N(1, n), (2.2.12) 
j=l 

as special cases. We will establish some global attractivity results for (2.2.10), which 

can not be derived from the results in Section 2.1. Instead, we will employ the ideas 
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and techniques in van den Driessche, Wu and Zou [96] and van den Driessche and 

Zou [97] to show how to stabilize the Hopfield neural networks (2.2.10) with general 

activation functions and distributed delays via the self-inhibitory connections. 

Unlike in [96] and [97], we do not require any differentiability for the activation 

functions and the time delays are not necessary to be fixed constants, indeed they 

are distributed over a finite interval. We will see later, by applying our results to 

(2.2.12), that the results in [96] and [97] are reproduced with a better estimate for 

the smallness of effective delays. 

The initial conditions associated with (2.2.11) are set to be 

(2.2.13) 

and the associated ones for (2.2.10) are 

Xi(s) = c/>i(s), s E [-T, 0], i E N(1, n). (2.2.14) 

We assume that for each i E N(1, n) 

. . . bi ( u) - bi ( v) 
bi IS contmuous With ~ mi > 0. 

u-v 
(2.2.15) 

By a similar proof to that of Theorem 2.1.1, we can establish the following 

existence result for an equilibrium of system (2.2.11). 

Theorem 2.2.4. Assume that gi, i E N(1, n) satisfy (52 ) and (2.2.15) holds, then 

joT eveTy input J, theTe exists an equilibTium for· system (2.2.11). 
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2.2.3.1 Global stability of (2.2.11) 

Let x* be an equilibrium of (2.2.11). Substituting x(t) = u(t) +x* into (2.2.11) leads 

to 

ui(t) =- [bi(ui(t) + x;)- bi(x;)- t aij(9i(ui(t) + xj)- 9i(xj))l , (2.2.16) 
J=l 

which can be denoted by 
n 

ui(t) = -f3i(ui(t)) + LaijSj(uj(t)),i E N(1,n) (2.2.17) 
j=l 

where /3i(ui(t)) = bi(ui(t) +xi)- bi(xi), si(ui(t)) = 9i(ui(t) + xj)- 9i(xj). If we 

let u == (u1, · · · , UnY E Rn, T = [aij]nxn, s(u) = (s1(ui), · · · , sn(un))r, B(u) = 

(f31(ui), · · · ,/3n(un)f ERn, then system (2.2.17) can be rewritten as 

u(t) = -B(u(t)) + Ts(u(t)). (2.2.18) 

It is obvious that x* is globally asymptotically (exponentially) stable for (2.2.11) if 

and only if the trivial solution u = 0 of (2.2.17) or (2.2.18) is globally asymptoti­

cally (exponentially) stable. Moreover, the uniqueness of the equilibrium of (2.2.11) 

follows from its global asymptotic (exponential) stability. 

From Theorem 2 of [31], we have 

Theorem 2.2.5. Suppose (2.2.15), (S1) and (S2 ) are satisfied. Assume also that 

for each i E N(1, n), 

usi(u) > 0 when u =/: 0. (2.2.19) 

Then, for every input J, system (2.2.11) has a unique equilibrium x* which is globally 

asymptotically stable if the matrix W* defined by 

W* = diag(p~~1 , · · ·, p~:n)- ~ (PT + Tr P) (2.2.20) 
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is positive definite for some P = diag(p1, · · · ,pn) with Pi> 0, i E N(1, n). 

A direct corollary of this theorem is 

Corollary 2.2.2. Suppose (2.2.15), (81) and (82 ) and (2.2.19} hold. If for some 

Pi > 0, i E N(1, n) 

(2.2.21) 

holds, then the equilibrium x* of (2. 2.11) is globally asymptotically stable. 

If (2.2.21) is strengthened a little bit, we can actually obtain the global expo-

nential stability, as is stated in the following theorem 

Theorem 2.2.6. Suppose (2.2.15), (81) and (82 ) and (2.2.19) hold. If 

(2.2.22) 

holds for some positive numbers p1 , p2 , • • • , Pn, then, for every input J, system(2.2.11) 

has a unique equilibrium which is globally exponentially stable in the sense that 

n 

L lxi(t)- x;l ::; C1e-1nt, 
i=l 

where cl, al will be specified later. 

Proof. Let oi > 0 be defined by 

oi := miPi- max(O, Li(Piaii + LPjlajil) 
#i 

and let a 1 > 0 be a number such that 

o := m_in {oi- Pia1} > 0, fori E N(1,n). 
1:::;~:::;n 

(2.2.23) 
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Define V(t) = V(u(t)) by 
n 

V(t) = LPiea-1tluil· (2.2.24) 
i=l 

Then 

D~ 211) V ( t) - t, p;e"'' [ a,ju;( t) I - sign( a;( t))I,B;( u; ( t)) - t, a;;s; ( u; ( t)) ]] 

< t, e"'' (p,a,ju,(t)l- p;m;lu;(t) I + p,a;, ls;(u,(t) )I + ~P;Ia;; lis;( u;(t)) 1) 

= t, e"'' (v.adu,(t)l- p;m;lu;(t) I + p;a;; Is;( a;(t) )I + ~P;Ia;;lls;( u;(t))l) 

= tea-1t (piallui(t)l- Pimilui(t)l + (piaii + ~Pilaiil) lsi(ui)l) 
~=1 J'f~ 

n 

< -6ea-1t L lui(t)l 
i=l 

This shows that V ( t) is a Liapunov function and hence 

n 

V(t) ~ V(O) = LPil¢i(O)- x;l =:Co< oo 

and thus we have 

Co 
with G\ := . { }" 

mm p· 
l~i~n ~ 

i=l 

n n 

L lui(t)l = L lxi(t)- x;l ~ C1e-a-1t 
i=l i=l 

(2.2.25) 

(2.2.26) 

0 

Remark 2.2.3. Corollary 2.2.2 and Theorem 2.2.6 show that the self-inhibitory 

connections do play an important role in stabilizing a network. 
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2.2.3.2 Global attractivity of HNN s with finite distributed delays 

Note that the delays do not change the equilibrium, but the stability may be lost if 

the delays are too large. It is natural to expect that the stable equilibrium of the 

system without delays remains stable for the delayed system when the delays are 

sufficiently small. In order to give an estimation for the smallness, we are going to 

use the powerful theory of monotone dynamic systems. To be more precise, we shall 

use the related theory about the nonstandard ordering -exponential ordering. 

In the following, as in [91], the partial order ~ on IRn will be the usual com­

ponentwise ordering. The partial order cjJ ~ '1/J on C := C([ -T, 0], IR.n) will mean 

¢(0) ~ '1/J(O) for each 0 E [-T, 0]. The inequality x < y (x « y) between two vectors 

in IRn will mean x ~ y and Xi < Yi for some (all) i E N(l, n). The inequality cjJ < '1/J 

in C will mean that cjJ ~ '1/J and cjJ =/= '1/J, and cjJ « '1/J will mean that ¢(0) « '1/J(O) for 

all 0 E [-T, 0]. 

Let D be an n x n essentially nonnegative matrix, that is, D + )..J is entry-wise 

nonnegative for all sufficiently large >.. Define 

Kv = { '1/J E C: '1/J 2: 0 and '1/J(t) 2: eD(t-s)'ljJ(s), -T ~ s ~ t ~ 0}. 

It can be seen that Kv is a normal cone and thus it induces a partial order on C 

denoted by ~D, in the usual way, that is, if cjJ ~D '1/J if and only if '1/J- cjJ E Kv and 

cjJ <v '1/J means cjJ ~D '1/J and cjJ =/= '1/J, cjJ «v '1/J is similarly defined. 

Consider the functional differential equation 

x'(t) = f(xt), (2.2.27) 

where f : C --+ :IRn is globally Lipschitz continuous. By the fundamental theory of 
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FDES [41], the system (2.2.27) generates a semi-flow <P on C by 

<P(t, </>) = <Pt(</>) = Xt(</>), t ~ 0, </> E C 

for those t for which Xt ( ¢>) is defined. 

The following theorem is from Smith and Thieme [93] 

Theorem 2.2. 7. Assume the following conditions are satisfied 

(In) If ¢>,'1/J E C satisfy¢> '5:n '1/J and K is a proper subset of N(1,n) such that 

¢>k « '1/Jk, k E K and ¢>k(O) = '1/Jk(O) for k E N(1, n) - K then for some 

p E N(1,n)- K 

(SMn) If¢>, '1/J E C satisfy¢> '5:n '1/J and¢>« '1/J then 

f('l/J)- f(¢>) ~ D('lj;(O)- ¢>(0)). 

Then <P is strongly order preserving (SOP) on C under '5:n. 

Using the above theorem, we will show that the semiflow <P generated by the 

solution of (2.2.10) is SOP under the exponential ordering, if the diagonal delays 

corresponding to negative self-connections are sufficiently small. 

Theorem 2.2.8. Assume that bi(u) is Lipschitz continuous with Lip(bi) = 'Yi for 

i E N(l, n), aij ;::: 0 fori =I j, T is irreducible and 9i satisfies 

(2.2.28) 
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If the diagonal delays Tii corresponding to negative aii are sufficiently small, satisfy-

mg 
1 

7,·· <-
~~ - * l r­

~ 

(2.2.29) 

where r; will be given below, then the semi-flow <I> generated by the solution of 

(2.2.10} is SOP under ~D· 

Proof. Take D = diag(d1, · · · , dn) with 

(2.2.30) 

where ri > 0, i E N(1, n), are constants to be specified later, then Dis essentially 

nonnegative. For the system (2.2.10), we have 

/;( ¢) ~ -b,(¢,(0)) + t, U;;9; (I:,, k;;( -s)¢;(s)ds) + J;, i E N(l, n). (2.2.31) 

Let ¢, 1/J E C satisfy ¢ ~D 1/J and ¢ « 1/J. Then 

J;( .P) - j;(¢) ~ -b;(¢;(0)) + t, a;;9; (L, k;;( -s),P;(s)ds) 

+b;(¢;(0)) - t, U;;9; (I:" k;;( -s)¢;(s )ds) 

- [ bi ( 1/Ji ( 0) - bi ( cPi ( 0)) l 

+ t,a;; [9;(1:,. k;;(-s),P;(s)ds)- 9;(1:,, k;;(-s)¢;(s)ds)] 

> -'Yd1/Ji(O)- cPi(O)] + aii[gi(l:ii kii( -s)'lj;i(s)ds) 

-9;(I:,. k;;( -s)¢,(s)ds)] + f1. a;;[9;(I:., k;;( -s),P;(s)ds) 

-gj(l: .. kij( -s)cf;j(s)ds)]. 
'J 
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Clearly if the matrix Tis a nonnegative matrix, then (SMn) holds. In the following 

we therefore may assume that aii < 0 for some i E N(l, n). Then for such ani, 

fi ( 7/J) - fi ( ¢>) - di[ c/>i ( 0) - 7/Ji ( 0) l 
?:::: -l'i[7/Ji(O)- c/>i(O)] + aii[gi(f~T;; kii( -s)7/Ji(s)ds)- gi(f~T;; kii( -s)cf>i(s)ds)] 

+(!'i + ri)[7/Ji(O)- c/>i(O)] 
= ri[7/Ji (0) - c/>i (0)] + aii [gi (f~7 .. kii ( -s )7/Ji ( s )ds) - gi (f~7 .. kii ( -s) c/>i ( s) ds)] 

" " 
?:::: ri[7/Ji (0) - c/>i (0)] + aiiLi J~7 .. kii ( -s )[7/Ji ( s) - c/>i ( s) ]ds 

" 
On the other hand ¢> ~D 7/J implies that 7/J- ¢> E Kn and hence 

7/J(O)- ¢>(0) ?:::: e-Ds[?jJ(s)- cf>(s)], for s E [-r, 0], 

that is 

This indicates that 

.l:;; kii( -s)[7/Ji(s)- c/>i(s)]ds < 1:;; kii( -s)e-(r;+r;)s[7/Ji(O) - c/>i(O)]ds 

< [7/Ji(O)- cf>i(O)]e(r;+y;)T;;. 

Therefore we have 

provided that 

fi(7/J)- fi(¢>)- di[7/Ji(O)- c/>i(O)] 

?:::: (ri + aiiLieT;;(r;+y;)) [7/Ji(O)- c/>i(O)] 
> 0. 

r· > ia··IL·e 7 ;;(r;+'Y;) i E N(l n) 
~ 'lot ~ ' ' • 

Inequality (2.2.32) is satisfied if and only if 

ln__Ii_ 
la;;IL; . N(l ) 

Tii < , 'l E , n . 
l'i + ri 

(2.2.32) 

(2.2.33) 
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Now let 
ln-8 -

( ) la;;IL; . N(1 ) Ti s := , z E , n . 
'Yi + s 

(2.2.34) 

A simple calculation shows that ii(s) < 0 for s > laiiiLi, +i(laiiiLi) > 0 and 

Ti(laiiiLi) = 0. Therefore ri(s) attains its maximal value /; for s > iaii ILi at 

r;, where r; is the unique positive root of equation 

'Yi s 
h(s) := 1 +- -ln-

1 

IL = 0, for siaiiiLi. 
s aii i 

Taking ri = r; in (2.2.30) fori E N(1, n), then (SMD) holds if the diagonal delays 

Tii corresponding to the negative aii satisfy 

Tii < __!_, i E N(1, n). 
r~ 

~ 

(2.2.35) 

The property (ID) can be easily verified under the assumption that the connection 

matrix T is irreducible. Thus the proof is complete. 0 

Since Corollary 2.2.2 and Theorem 2.2.6 imply the uniqueness of the equilibrium 

x* of system (2.2.11), which shows that under the same assumptions, the equilibrium 

x* of system (2.2.10) is unique. Note that the phase space here is X = C = 

C([-r, 0], Rn) and it is easily seen that every non-equilibrium point in X can be 

approximated from below and from above under the exponential ordering. Also 

from the boundedness of the activation functions, it is easy to show that every 

bounded set B C X has a bounded orbit and thus the relatively weak compactness 

requirement (C) in [91] is met. Thus Theorem 2.2.8, together with Theorem 2. 3. 1 

of Smith [91], immediately gives 
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Theorem 2.2.9. Assume that {2.2.28) holds and bi satisfies 

T is in·educible and aij ~ 0 fori =1- j. If either {2.2.21) or {2.2.22} holds, then 

the system (2. 2.10) has a unique equilibrium which is globally attractive provided 

the diagonal delays Tii corresponding to negative aii are sufficiently small satisfying 

{2.2.29}. 

Letting s = elaiiiLi in (2.2.34), we have 

Corollary 2.2.3. Under the same assumptions as the above theorem except that 

{2.2.29} is replaced by 

1 
Tii :::; I I L , i E N ( 1, n). 

'Yi + e aii i 
(2.2.36) 

Then we have the same conclusion. 

Note that in Theorem 2.2.9 and Corollary 2.2.3, the connection matrix T is 

supposed to be irreducible and the off-diagonal terms aij ~ 0, j =1- i. Motivated by 

[96], we will remove those restrictions. Indeed, we have 

Theorem 2.2.10. If either {2.2.22} or 

... + ~ Pilaijl + Pjlajil < . mi . E N(1 ) 
P~ an L....t 2 P~ L. ' z ' n ' 

j~ ~ 

(2.2.37) 

for some Pi > 0, i E N(1, n), then system {2.2.10} has a unique equilibrium which is 

globally attractive provided the diagonal delays Tii corresponding to negative aii are 

sufficiently small such that {2.2.29} holds. 
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Proof. Let a+ =max( a, 0) and a- =max( -a, 0). Then a+ and a- are nonnegative 

and a= a+- a-, lal =a++ a-. Define n x n matrices A= (Aij) and B = (Bij) by 

A·.= { aii, for j = i B-. = { 0, 
~J a& + s, for j =I= i ' ~J aij + s, 

for j = i 
for j =I= i 

(2.2.38) 

where s > 0 will be specified later. Now system (2.2.10) can be rewritten as 

n t n t 

i:i(t) = -bi(xi(t))+ L Aij9j(1_ .. kij(t-s)xj(s)ds)-L Bij9j(1_ .. kij(t-s)xj(s)ds)+k 
j=1 t r,1 j=1 t r,1 

(2.2.39) 

Let Yi =-xi, i E N(l, n). Then (2.2.39) can be embedded into the following system 

with dimension 2n: 

Yi ( t) 

= -bi(xi(t)) + ~7=1 Aii9i(JLr;i kij(t- s)xj(s)ds) 

+ ~j=1 BiifiU'Lr;i kij(t- s)yj(s)ds) + Ji 

= -qi(Yi(t)) + ~7=1 Bij9j(JLr;i kij(t- s)xj(s)ds) 

+ ~7=1 Aiifi(.h~r;i kij(t- s)yj(s)ds)- Ji, 

i E N(l, n) (2.2.40) 

where Qi(x) and fi(x) are defined by qi(x) = -bi( -x) and fi(x) = -gi( -x) , respec-

tively, for i E N(l, n) and x E R. Clearly Qi has the same property as bi does and 

fi has the same property as 9i does. Define ui(t), i E N(l, 2n) by 

ui(t) = Xi(t), Un+i(t) = Yi(t), i E N(l, n), 

bi( u), i E N(l, 2n) by 

and hi(u), i E N(l, 2n) by 
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Then (2.2.40) can be rewritten as 

2n t 

u,(t) = -b;(u;(t)) + ~ W;;h;(L,,, K;;(t- s)u;(s)ds) +I;, i E N(l, 2n) (2.2.41) 

where Ji = Ji and In+i = -Ji fori E N(l, n), the 2n x 2n matrix W = (wi1) is given 

by 

W=(~ !) 
and 8i1, Kij for i, j E N(l, 2n) are given by 

and 

Kij = Kn+i,j = Ki,n+j = Kn+i,n+j = kij, i, j E N(l, n). 

It is obvious now that Aij > 0 and Bij > 0 for i, j E N(l, n) and j =/= i and thus 

Wij > 0 for i, j E N(l, 2n) and W is irreducible. So if condition (2.2.37) holds for 

some Pi > 0, i E N(l, n), then we are able to choose a sufficient small s > 0 such 

that 

(2.2.42) 

which implies that for Pi > 0, i E N(l, 2n) with Pi =Pi and p~+i =Pi fori E N(l, n), 

we have 

* ·-+~Pilwijl+Pjlwjil *mi . N(l 2 ) 
Pi Wn ~ 2 <Pi L· , 'l E , n . 

j~ ~ 

(2.2.43) 

If (2.2.22) is true for some Pi > 0, i E N(l, n), then similarly we can find sufficient 

small s > 0 such that 

n n 

aiiPi + LP1la1il + s LP1 <Pi 7~, i E N(l, n), 
jf.i jf.i ~ 

(2.2.44) 
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which implies that for Pi> 0, i E N(l, 2n) with pi= Pi andp~+i =Pi fori E N(l, n), 

we have 
2n 

p;wii + LP;Iwiil < p; ~~, i E N(l, 2n). (2.2.45) 
#i % 

Applying Theorem 2.2.9 to the system (2.2.41) immediately completes the proof. D 

2.2.3.3 Examples 

Example 2.2.1. Consider 

-1/2 ) ( tanh(~x1 (t)) ) ( ] 1 ) 
1/2 tanh(~x2(t)) + J2 · 

(2.2.46) 

Here, T = ( ~J~ -~J~ ) , bi(xi(t)) = xi(t), si(xi) = tanh(2xdV3), mi = 

1, Li := ~ for i = 1, 2. Clearly, by choosing p1 = p2 = 1, all conditions of 

Corollary 2.2.2 are satisfied. Therefore, the system (2.2.46) has an equilibrium, 

which is globally asymptotically stable. We point out that Corollary 2 of [69] cannot 

be applied to system(2.2.46). 

Note that the stabilizing role of inhibitory self-connection given in (2.2.21) and 

(2.2.22) is conditional for the delayed network (2.2.10), in the sense that the corre­

sponding delays Tii must be small. This is demonstrated in the following example. 

Example 2.2.2. Consider the CNN networks with two neurons 

{ 
i:1(t) = -x1(t)- 0.5f(xi(t- Tn)) + 1.7f(x2(t- T12)) 

i2(t) = -x2(t) + 1.25f(xi(t- T21))- 0.6j(x2(t- T22)) 

where f(s) = ~ (Js +II- is- lJ). 

(2.2.47) 
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Applying Theorem 2.2.9 to this example, we know that the system (2.2.47) has a 

unique equilibrium (x1 , x2 ) = (0, 0) which is globally asymptotically stable whenever 

the diagonal delays are small, satisfying 7 11 :::; 0.463, 7 22 :::; 0.408. This conclusion 

is shown by Figure 2.1. However, if (2.2.29) is not satisfied, then it is possible for 

system (2.2.47) to have a solution which is not asymptotically stable. Indeed, if we 

let 7n = 1.2, 712 = 0.5, 7 21 = 2.0, 7 22 = 1.0, the numerical simulation Figure. 2.2 

shows that system (2.2.47) has a periodic solution. While Corollary 2.2.3 gives a 

smaller estimation of the diagonal delays as 7 11 :::; 0.424, 7 22 :::; 0.38. 

Figure 2.1: Numerical simulation for (2.2.47). Here we choose: J 1 = J2 = 0 
and the related data as: tn = -0.5, t 12 = 1.7, t 21 = 1.25, t 22 = -0.6 and 7 11 = 
0.45, T12 = 0.5, 721 = 2.0, 722 = 0.4; the initial data are: x 1 (s) = -0.8, x 2 (s) = 1.9 
for s E [-2, 0]. 
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1.5 . 

Figure 2.2: Numerical simulation for (2.2.47) with r 11 = 1.2 and r 22 = 1.0. 

2.2.4 HNNs with periodic inputs 

In this subsection, we consider the HNNs with periodic inputs, 

xi(t) = -bixi(t)-t aij9j(1t lij(t-s)xj(s)ds)+Ii(t), t :2:: 0, i E N(l, n), (2.2.48) 
j=l t-Tij 

where Ji(t) = Ii(t + w) fort :2:: 0 and the activation functions gj, j E N(l, n) satisfy 

(51 ) and (52 ). The initial conditions associated with (2.2.48) are given by 

with 111>11 = maxl::Si::Sn 11</>ill, 11</>ill = maxsE[-r,oJI</>i(s)l fori E N(l,n). Letting 
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which gives 

(t) < ( (0) Qi) -b;t Qi 
Xi _ Xi + {; e - {;. 

~ ~ 

(2.2.49) 

Therefore, we have 

lxi(t)i :=:; 2~-i + lxi(O)Ie-b;t :=:; 2~-i + lxi(O)I, 
~ ~ 

(2.2.50) 

which shows that the solution of (2.2.48) is defined on [-r, oo). Denote x(t) = 

(xl(t),x2(t), ... ,xn(t)f, cp = (¢1,¢2, ... ,</Jn)r. Let (T(t)¢)(0) = x(t+O,¢) for 

e E [--r,O]. Then T(t)cp is defined for all t 2:0 and is an w-periodic process [41]. 

From (2.2.50), we can see T(t) is also a bounded map (mapping bounded sets to 

bounded sets) and point dissipative. Hence from Theorem 4.1.11 in [40], we have 

Theorem 2.2.11. Assume that the activation functions gi, i E N(1, n) in (2.2.48) 

are continuous and satisfy (S2 ), then (2.2.48) has an w-periodic solution. 

Denote, by x(t) = (x1 (t), · · · ,xn(t)f, thew-periodic solution claimed in Theo­

rem 2.2.11. We will prove that thew-periodic solution x(t) is globally exponentially 

stable .. 

Theorem 2.2.12. Assume that (S1) and (S2 ) hold. If (2.2.3} or (2.2.5) holds, then 

thew-periodic solution x(t) (2.2.48) is globally exponentially stable. 

Proof. Let x(t) be a solution of (2.2.48) other than x(t). Then we have 

D+[xi(t)- xi(t)] = -bi [xi(t)- xi(t)] + :E7=l aii9i(JLTij lii(t- s)xi(s)ds) 

- :Ej=1 aii9i(JLTij lij(t- s)xi(s)ds) 
(2.2.51) 

Letting ui(t) = xi(t)- Xi(t), we then have 

n+lu,(t)l <; -b,lu,(t)l + t, la.;IL; [~"'' l;;(t- s)lu;(s)!ds. 



45 

Using similar arguments to that in previous subsection, we complete the proof. D 

For the HNNs with infinite distributed delays and periodic inputs 

X;(t) = -b;x;(t) - ~ a;;g;([~ k;;(t- s)x;(s)ds) + I,(t), t 2 0, 

with Ji(t) = Ii(t + w), i E N(l, n), using the result in [75], we have 

(2.2.52) 

Theorem 2.2.13. Assume that (S1 ) and (S2 ) hold. Then system (2.2.52) admits an 

w-periodic solution. Moreover, if (2.2.3) or (2.2.5) holds, thew-periodic solution is 

globally stable. In addition, if (2.1. 26) holds, then the w-periodic solution is globally 

exponentially stable. 
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2.3 Stability and Hopf Bifurcations of Bidirec­
tional Associative Memory Neural Networks 
(BAMNNs) 

In this section, we consider the delayed bidirectional associative memory (BAM) 

neural network described by the system 

{ 
~i(t) : -xi(t) + l:I=l aiifi(Yi(t- Tij)) + Ii 
Yi(t) - -yi(t) + l:j=l bij9j(Xj(t- rij)) + Ji 

and the delayed BAM neural network with self-connections described by 

{ 
~i(t) = -xi(t) + Ciisi,i(xi(t- dii)) + 2:~= 1 aiifi(Yi(t- Tij)) + Ii 
Yi(t) = -yi(t) + liis2,i(Yi(t- mii)) + l:j=l bii9i(xj(t- rij)) + Ji. 

(2.3.1) 

(2.3.2) 

Here, cii and lii are the weights of self-connections; dii and mii are the associated 

self-connection delays; aij, bij, i, j E N(1, n) are the connection weights between 

the neurons in two layers: the I -layer and the J -layer. On the I -layer, the 

neurons with states denoted by xi(t) receive the inputs Ii from outside and the 

inputs outputted from those neurons in the J -layer via activation functions (input­

output functions) k While, on the J -layer, the neurons whose associated states 

denoted by Yi(t) receive the exterior inputs Ji and the inputs outputted from those 

neurons in the I -layer via activation functions (output-input functions) 9i· The 

non-negative constants Tij, rij, i, j E N(1, n) are the associated delays due to the 

finite transmission speed among neurons in different layers. 

When there is no delay present, (2.3.1) reduces to a system of ordinary differential 

equations which was investigated by Kosko [59]-[61]. Although system (2.3.1) can be 

mathematically regarded as a Hopfield type neural network, which was extensively 

investigated recently (see, for example, [3], [12], [29], [31], [35], [38], [50], [69], [73], 
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[74], [95], [97] and [107]) with dimension 2n, we will retain the model (2.3.1) as 

it stands since we do not want to alter the bidirectional interplay of the input­

output nature of the two layers. Networks with such a bidirectional structure have 

practical applications in storing paired patterns or memories and the ability to search 

the desired patterns via both directions: forward and backward directions. See 

[36], [59]-[61] and [77] for details about the applications on learning and associative 

memories of neural networks. 

As far as multiple delays are concerned, for the stability analysis, Gopalsamy 

and He [36] established some delay-independent stability criteria for (2.3.1) and 

Mohamad [77] addressed its global exponential stability. Note that in [96] and 

[97], as well as in Section 2.2 of this thesis, the stabilization role of self-inhibitory 

connections in Hopfield type neural networks has been revealed. It is natural to 

incorporate the self-inhibitory connections into (2.3.1) if we want to stabilize the 

BAM network. In this section, we therefore consider the stability of BAM neural 

network model with self-connections and we show the self-inhibitory connections do 

play a stabilization role in the BAM neural networks. On the other hand, not much 

work has been carried out in the literature for the bifurcation analysis of (2.3.1) and 

(2.3.2) .. Due to the complexity arising from the multiple delays and high dimension, 

even for the Hopfield type neural networks, very little work has been accomplished 

for the bifurcation analysis. For cases of general n but with only one single delay, we 

refer to Wu [107] and Wu and Zou [112] and for planar systems, i.e., the networks 

with two neurons, we refer to [28], [82], [86] and [105], where it was assumed that 

two delays are equal or are different but without self-connections (this is the case of 

n = 1 in (2.3.1)); For the networks with a special architecture, i.e. ring structure, 
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Campbell [10], Campbell, Ruan and Wei [11], Ncube, Campbell and Wu [81] and 

Shayer and Campbell [90] obtained some nice results for the bifurcations. We may 

regard the BAM neural network models (2.3.1) and (2.3.2) as a Hopfield type neural 

networks with another special architecture, i.e. bidirectional two-layer structure. 

2.3.1 BAMNNs without self-connections: model (2.3.1) 

If we assume that in the BAM model (2.3.1), the activation functions fi, gi, i E 

N(1, n) are continuous and bounded, similar to Theorem 2.1.1, we can show that 

(2.3.1) has at least one equilibrium. Therefore, without loss of generality, we can 

place lit at the origin and assume that Ji = Ji = 0 and fi(O) = gi(O) = 0 for 

i E N(1, n), and hence (2.3.1) reduces to 

{ 
xi(t) = -xi(t) + 'Ej=1 aijfi(yj(t- Tij)) 

ili(t) = -yi(t) + 'Ej=1 bijgj(xj(t- rij)). 

2.3.1.1 Global stability of (2.3.3) 

(2.3.3) 

We may establish the following global stability results by applying Theorems 2.2.1 

and 2.2.2 to system (2.3.3): 

Theorem 2.3.1. Suppose fi and gi are Lipschitz continuous. If one of the following 

conditions holds for some positive real numbers Pi, qi, (i, T/i, i E N(1, n), 

{ 
Lip(gi) 'Ej=1 lbjilqj <Pi 

Lip(fi) 'Ej=1 lajiiPj < qi, 

{ 

Pi 'I:J=l iaij~~j + Lip;i(g;) 'I:J=l lbJilqj < 2pi 

"\;""n I b I Lip2(f;) "\;""n I I qi LJj=l ij T/j + -e-i - LJj=l aji P} < 2qi, 

{ 
~ 'Ej=1 (Pilaijl + %lbjil) < Li$(g;) 

~ 'Ej=1 (qi lbij I+ P} lajil) < Li;Cfi)' 

(2.3.4) 

(2.3.5) 

(2.3.6) 
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then the system (2.3.3} is globally asymptotically stable (if (2.3.4) holds, we can get 

the global exponential stability). 

Note that we can obtain some easily verified sufficient conditions to guarantee 

the global stability of (2.3.3) by varying the numbers Pi, qi, ~i and 'T/i in the above 

inequalities. For example, letting Pi = qi = 1 for i E N(1, n) in (2.3.4), we have 

Corollary 2.3.1. If 

n n 

Lip(gi) L lbJil < 1, and Lip(fi) L iaJil < 1 (2.3.7) 
j=1 j=1 

hold, then the system (2. 3. 3) is globally exponentially stable. 

Remark 2.3.1. When gi and fi, i E N(1, n) are smooth and satisfy 

g~(O) = supg~(x), f;(o) = supf;(x), fori E N(1,n), 
xER xER 

Corollary 2.3.1 reproduces the main results of {35} and {77}. 

2.3.1.2 Local stability and Hopf bifurcation of (2.3.3) 

In this subsection, we do some analysis on the local stability and Hopf bifurcation 

of (2.3.3). To this end, we assume that the activation functions fi and gi are differ-

entiable. The existence of multiple delays makes such an analysis extremely hard, 

if not impossible. Thus, we just focus on a special case of (2.3.3): the delays in the 

same layer are identical, i.e., we consider 

{ 
~i(t) : -xi(t) + 2:I=1 aiJfJ(YJ(t- 71)) 

Yi(t) - -yi(t) + Lj=1 bijgj(Xj(t- 72)). 

Then the linearization of (2.3.8) at 0 gives 

-xi(t) + 2:;=1 aiJYJ(t- 71) 

-yi(t) + 2:;=1 f3ijXj(t- 72) ' { 
~i(t) : 
Yi(t) -

(2.3.8) 

(2.3.9) 
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where O:ij = aiifj(O), f3ij = bijgj(O) fori E N(1, n). Denote then x n identity matrix 

by En, and let A= (o:ij), B = (f3ij) and 7 = 7 1 + 72· Let 

Then the associated characteristic equation is 

detW = 0. (2.3.10) 

If 

do := det ( ~ ~ ) f 0, 

then z = -1 can not be a root of (2.3.10). In the sequel, we assume that d0 f 0 and 

look for roots z of (2.3.10) satisfying z f -1, and thus (z + 1)En is nonsingular. It 

follows from Theorem 1.23 of [30] that 

detW = det((z + 1)En)det[W/(z + 1)En], 

where [W/(z + 1)En] is the Schur complement of the block (z + 1)En in W (for the 

definition of Schur complement, we refer to [30]). Therefore, (2.3.10) is equivalent 

to 

det[(z + 1)2 En- e-zr BA] = 0. (2.3.11) 

It is easy to see that z is a solution of (2.3.11) if and only if there is). E o-(BA) such 

that 

(2.3.12) 

Hence, if Aj, j E N(1, n) are the eigenvalues of BA, then (2.3.11) is equivalent to 

the n scalar equations 

(2.3.13) 



51 

Analyzing the distribution of roots of (2.3.13), we have 

Theorem 2.3.2. Let >..j, j E N(l, n) be eigenvalues of BA. Then the following 

statements hold. 

(I) The zero solution of system (2.3.8) is asymptotically stable when T = 0 if and 

only if 

IRe( 0\j)J < 1, j E N(l, n); (2.3.14) 

(II) The zero solution of system (2.3.8) is asymptotically stable for all non-negative 

T if 

J>..jJ < 1, j E N(l, n). (2.3.15) 

Proof. Note that the zero solution is asymptotically stable if and only if all roots 

of (2.3.11) have negative real parts. Case (I): T = 0, then (2.3.13) reads, for each 

j E N(l, n) 

(2.3.16) 

which shows that 

z=-1±0\j. 

It is easily seen that Re(z) < 0 if and only if (2.3.14) holds. 

Case (II): Letting Aj =a+ ib and z = u + iv and substituting them to (2.3.13), we 

have 

which gives 

(l+u)2 -v2 

2(1 + u)v 

e-u7 [acos(vT) + bsin(vT)] 

e-u7 [bcos(vT)- asin(vT)]. 
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Taking square on the both sides of the above two equations and summing them up, 

we get 

or 

(2.3.17) 

Hence if u ~ 0, the left hand side of (2.3.17) will be greater than or equal to 1. 

However, the right hand side e-url>.jl < 1 due to u > 0 and (2.3.15). This shows if 

(2.3.15) holds, then (2.3.11) does not admit a root with nonnegative real part and 

thus the proof is complete. D 

From the above theorem, we see that for positive r, if (2.3.15) does not hold, 

then the stability of the zero solution of (2.3.8) may be destroyed. To check this 

point, in what follows we assume that 

max !ReAl < 1 < max I.Ajl· 
jEN(l,n) jEN(l,n) 

(2.3.18) 

Here and in what follows, we will restrict our attention to the case that BA is a 

nonzero matrix having only real and purely imaginary eigenvalues. Since BA is a 

real matrix, its imaginary eigenvalues must appear in pairs. Thus we may assume 

that 

with 

p+ 2q = n 
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and 

and 

In such a case (2.3.18) demands that 

ap < 1, (2.3.19) 

and 

(2.3.20) 

and 

(2.3.21) 

or 

(2.3.22) 

Lemma 2.3.1. Suppose that (2.3.22) holds. For each bj > 1, define 

1 1- w2 

r(bj) = ~arcsin 
6

. 1
, 

J J 
(2.3.23) 

where Wj = yfc5j=l. Then we have 

(a) At r( bj), (2. 3.12) with A = ibj has a pair of purely imaginary simple roots ±iwj 

and all other roots have negative real parts. 

(b) r E [0, r(bj)), all roots of (2.3.12) with).= i8j have negative real part8. 

(c) 
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Proof. Suppose z = iw is a root of (2.3.12) with A= ibi. Then we may get 

which shows that 

w=~ 

and 

T = ~ (arcsin 
1 ~iw

2 

+ 2k7r) , 

where 0 < arcsin 1§;2 < 1r and k is an integer. Clearly r(Jj) is the least such 

positive 7. Hence at r(Ji), (2.3.12) with A= ibi has a pair of purely imaginary roots 

±iJ(5j- 1. Let H0i (z, r) = (z + 1 )2 
- ibie-z7

• Then 
8::i = 2(1 + z) + irbie-z7

• 

Notice that H0i = 0 and 
8
:: = 0 give T = - z!l, which implies z is real. This 

shows that the multiple zeros of H0i(z,r) have to be real, and hence iJb.j=l is a 

simple purely imaginary root of (2.3.12) with A = ibi. Next we show that (2.3.12) 

with A = ibi has no root with positive real part. Suppose, by way of contradiction, 

that z = u + iv with u > 0 is a root of (2.3.11) with A = ibi. Since the roots of 

(2.3.12) continuously depend on the parameter r, using Lemma 2.1 of [25], there 

exists /j- E (0, r(bi)) such that (2.3.12) with A = ibi has a purely imaginary root 

at r = f, which contradicts the fact that r( bi) is the smallest such r. Thirdly, we 

will show that (c) of this lemma is true. Differentiating both sides of (2.3.12) with 

respect to r leads to 

dz(r) I 
dT T=T(Oj) 

-ib ·e-z7 z I 
'T + ~(z + 1) T=T(Oj). 
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A straightforward calculation yields 

R dz(r) I = (6j- 1)[2 + 6j + 2r(6j)] 
0 

e dr r=r(oi) (r + 2) 2 + 4(6j + 1) > · 

Let r(x) be defined by 

1 2- X 
r(x) = JX=1 arcsin--, for x > 1. 

x-1 x 

Then (d) of this lemma follows from the fact that T ( x) is decreasing for x > 1. Thus 

the proof is complete. D 

Similarly, we have 

Lemma 2.3.2. Suppose that (2.3.21} holds. Then for each ak < -1, define 

1 . 2wk 
r(ak) =- arcsm --, 

wk -ak 
(2.3.24) 

where wk = Jlakl- 1, we have 

(i) At r(ak), (2.3.12} with A= ak has a pair of purely imaginary simple roots ±iwk 

and all other roots have negative real parts. 

(ii) T E [O,r(ak)), all roots of (2.3.12) with A= ak have negative real parts. 

(iii) 

Proof. (i)-(iii) can be obtained from Lemma 5 of Wei and Ruan [105]. (iv) follows 

from the fact that the function 

1 . 2Vx=l 
r(x) = JX=l arcsm 

X -1 X 
for x > 1 
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is decreasing. D 

If both (2.3.21) and (2.3.22) are satisfied, then we may define 

(2.3.25) 

which is the least value ofT destabilizing the trivial solution of (2.3.8). Let x = x*(b'I) 

be the unique solution of the equation 

Then we have 

1 . 2~ 
~ arcsm = r(61). 

X 

if la1l < x*(b'I) 
if la1l 2:: x* ( 61) 

(2.3.26) 

In order to use the general Hopf bifurcation theory for functional differential equa­

tions developed in [43], we assume that 

(2.3.27) 

By the above lemmas, we immediately have the following result on local stability 

and bifurcation for system (2.3.8). 

Theorem 2.3.3. If (2.3.19}-(2.3.22} and (2.3.27} are satisfied, then we have 

(1) If T E [0, r*), then the zero solution of (2.3.8} is asymptotically stable; 

(2) If T > r*, then the zero solution of (2.3.8} is unstable; 

(3) Hopf bifurcation occurs at T = r*. That is, system (2.3.8} has a branch of 

periodic solutions bifurcating from the zero solution near T = r*. 
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2.3.1.3 Direction and stability of Hopf bifurcation 

In the above subsection, we have shown that Hopf bifurcation occurs at some value 

r* = r; + T~ for the BAMNNs without self-connections. In this subsection, by 

using the normal form method and the center manifold theory in [43], we will give 

an algorithm to determine the direction, stability and the period of the bifurcating 

periodic solutions. Usually, the direction and stability of Hopf bifurcation can be 

computed by the general algorithm developed in [43] (see also [57]). But in the 

practical application, it is not an easy job for high dimensional cases. We will give 

a specific algorithm for a special case. More precisely, we will consider the BAM 

neural networks with 2 neurons in each layer, that is n = 2 in (2.3.8). Moreover, 

noting that the most often used activation function tanh(x) has the property 

tanh'(O) I 0, tanh" (0) = 0, and tanh'" (0) I 0, 

we may assume that the activation functions in (2.3.8) satisfy: 

(P) for i E N(1, n) ff(O) I 0, f:'(O) = 0, ff"(O) I 0 and g:(O) I 0, g?(O) 

0, g?'(O) I 0. 

Since when n = 2, the matrix BA is a 2 x 2 matrix, then based on the analysis in 

the previous subsection, we have two cases to consider: case (1) both eigenvalues of 

BA are real; case (2) the eigenvalues of BA are a pair of purely imaginary numbers. 

In what follows, we will deal with case (1). In this case, (2.3.19) and (2.3.21) require 

that the two real eigenvalues a 1 and a 2 of BA satisfy 

(2.3.28) 
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Obviously r* = r(al) in this case. It is seen from the conclusions of Lemma 2.3.2 

and Theorem 2.3.3 that all roots of (2.3.10) other than ±iw0 with w0 = Jla11- 1 

have negative real parts, and the root of (2.3.10) 

>.(r) := a(r) + iw(r) 

satisfying a( r*) = 0, w( r*) = w0 admits 

and 

a'(r*) := da(r*) > 0 
dr 

w'(r*) = dw(r*) = -w0 (2 + r* + r*w0 ) 

dr (2 + r*)2 + (r*w0 )2 · 

Following the idea in [105], we let r* = ri + r; with ri < r2 and T = r* + p, = 

(ri + p,) + r;, where 1~-tl ::; r;- ri- Then p, = 0 is the Hopf bifurcation value for 

system (2.3.8). Choose the phase space as 

C = C([-r;, 0], ct), 

where we use C4 instead of JR4 for the convenience in the later computation. Now 

the system (2.3.8) can be rewritten as 

±1(t) -x1(t) + auy1(t- ri-p,)+ a12Y2(t- ri-p,) 

+a;\y~(t- ri-p,)+ a~2Y~(t- ri- J-t) + O(yt, Yi) 

±2(t) -x2(t) + a21y1(t- ri-p,)+ a22Y2(t- ri-p,) 

+a~1 y~(t- ri-p,)+ a~2y~(t- ri-p,)+ O(yt, Yi) 

ill(t) -y1(t) + f3uxl(t- r2) + f312x2(t- r2) 

+f3~1x~(t- r2) + f3i2x~(t- r2) + O(xt,xi) 

i12(t) -y2(t) + f321x1(t- r2) + f322x2(t- r2) 

+f321 x~(t- r2) + f322x~(t- r;) + O(x{,xi) 

(2.3.29) 
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i, j E N(l, 2). 

Let U = (x1(t), x2(t), Y1(t), Y2(t)f, B1 = ( ~ ~ ) and B2 = ( ~ ~ ) , and 

a;\¢~( -7~- p,) + ai2¢1( -7~- p,) + O(¢j, ¢!) 

a21 ¢~( -7~ - p,) + a22¢1( -7i - p,) + 0( ¢j, ¢!) 

fii1 ¢~ c -7n + fii2<P~ c -7n + o c <Pi, <Pi) 
F(p,, ¢) = 

fi21 <P~c -7n + fi22<P~c -72) + oc<Pt <Pi) 

for¢== (¢1, ¢2, ¢3 , ¢4)r E C. Then system (2.3.29) can be rewritten as 

(2.3.30) 

where Ut(O) = U(t + 0) for 0 E [-72, 0]. Let 

{ 

-Id 
rJ(O, p,) = B18(0 + 7~ + p,), 

-B28(0 + 72), 

0=0 
0 E [ -7~ - p,, 0) 

0 E [-72,-7i- p,) 

(2.3.31) 

where I d is the identical matrix and 8 is the usual Dirac function. For ¢ E C, define 

{
¢, OE[-72,0) 

A(p,)¢(0) = J~T2 drJ(s, p,)¢(s), 0 = 0 
(2.3.32) 

and 

( ) ,.~, { 0, OE[-72,0) 
R It ¥J = F(p,, ¢), 0 = 0 (2.3.33) 

Then (2.3.29) can be further rewritten as 

(2.3.34) 

Let C* = C1([0, 7n C4). For 'ljJ E C*, we define, the adjoint operator A*(O) of A(O) 

by 

(2.3.35) 
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where 'TJT is the transpose ofrJ. For¢; E C([-T;,o],Ci) and 1/J E C([O,T;],C4 ), we 

define the bilinear form 

(2.3.36) 

where a· b = L~=l aibi for a= (at, a2, · · · , an)T and b = (b1 , b2, · · · , bnf· As usual, 

we have 

< 1/J, A(O)¢; >=< A*(O)'ljJ, ¢; > . 

It is easily seen that -\(0) = iw0 is an eigenvalue of A(O), and -iw0 is an eigenvalue 

of A* ( 0). Denote their corresponding eigenfunctions by q ( 0) and q* ( s), respectively, 

namely, 

A(O)q(O) = iw0q(O), and A*(O)q*(s) = -iw0q*(s). 

We compute here with 

q(O) = q(O)eiwoB, and q*(s) = q*(O)eiwos (2.3.37) 

where 

and 

q*(O) (qr(o),q;(o),qi(O),q~(O))T 

D('!/Jt(O), '!/J2(0), 'ljJ3(0), 'ljJ4(0))T 

with 



and 

and 

D 

[T;(P3(all + a21'¢2(0)) + P4(a12 + a22'¢2(0)) 

+T;(,BnQ3 + ,621Q4 + q2(0)(,B12Q3 + ,622Q4)]} -l. 

Then q and q* satisfy 

< q*,q >= 1, and < q*,q >= 0. 

If Ut is a solution of (2.3.34), we define 

z(t) =< q*, Ut >, w(t, 0) = w(z, z, 0) = Ut(O)- 2Re{z(t)q(O)}. 

Then on the center manifold for (2.3.34) at p, = 0, 
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holds. Therefore, at p, = 0, (2.3.34) can be reduced to an ordinary differential 

equation 

i(t) =< q*, A(O)Ut +RUt>= iw0z(t) + q*(O) · F0 , (2.3.38) 



where 

Fa= F(O,w(z,z,O) + 2Re{z(t)q(O)}). 

We may rewrite (2.3.38) as 

i(t) =< q*, A(O)Ut +RUt>= iwaz(t) + 9(z, z), 

where 

9(z, z) q*(O) ·Fa 

~ ~ ~z 
92a2 + 9uzz + 9a22 + 9212 + · · · 
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(2.3.39) 

(2.3.40) 

(2.3.41) 

We know from [43] and [57] that in order to study the stability and direction of 

the Hopf bifurcation, it is crucial to compute these coefficients 92a, 911 , 9a2 and 921 . 

Observing that 

and 

where 
2 ~ 

(t *) (i)( *)z (i)( *) _ (i)( *)z 
Wi , -Tj = W 20 -Tj 2 + W 11 -Tj ZZ + W 02 -Tj 2 + · · · 



fori E N(1, 4) and j = 1, 2, we then have 

9(z, z) q*(O) ·Fa 

qi(O) (aily~(t- r;) + ai2y~(t- r;)) 

+q;(o) (a;1 y~(t- r;) + a;2 yg(t- r;)) 

+q;(o) (;J;1 x~(t- r;) + ;J;2x~(t- r;)) 

+q:(o) (;J;1x~(t- r;) + ;J;2x~(t- r;)) 

+0(U4
). 

Expanding the above and comparing the coefficients with (2.3.41), we have 

and 

920 = 9n = Yo2 = 0 

921 qi(O) (ai1lq3( -r;Wq3( -r;) + ai2lq4( -r;Wq4( -r;)) 

+q;(o) ( a;1jq3( -r;) l2q3( -r;) + a;2lq4( -r;Wq4( -r;)) 

+q;(o) (;J;1Iq1(-r;Wq1(-r;) + ;J;2Iq2(-r;)l2q2(-r;)) 

+q:(o) (;3;1iq1 ( -r;) l2ql ( -r;) + ;3;2iq2( -r;Wq2( -r;)) . 

Now we define 

and 
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The above analysis, the general theory on Hopf bifurcation [43] and the fact that 

1-t2fi2 < 0 immediately give 
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Theorem 2.3.4. Assume that n = 2 in {2.3.8}, the activation functions have the 

property {P) and both eigenvalues a 1 , a 2 of BA are real satisfying {2.3.28}. Then 

the direction and stability of Hopf bifurcation of {2.3.8} can be determined by the 

sign of f.12· Indeed, if J12 > 0(< 0), then the Hopf bifurcation of {2.3.8} at 7 = 7* 

is supercritical {subcritical} and the periodic solution of {2. 3. 8} bifurcating from the 

Hopf bifurcation value 7 = 7* is asymptotically orbitally stable {unstable}. Moreover, 

the period of the bifurcated periodic solutions are given by 

Example 2.3.1. Consider the following BAM neural network with two neurons on 

each layer 

-x1 (t) +an tanh(y1(t- 7I)) + a12 tanh(y2(t- 71)) 
-x2(t) + a21 tanh(y1(t- 7I)) + a22 tanh(y2(t- 71)) 
-yl (t) + bn tanh(x1 (t - 72)) + b12 tanh(x2 ( t- 72)) 

(2.3.42) 

-y2(t) + b21 tanh(x1(t- 72)) + b22 tanh(x2(t- 72)). 

Corollary 2.3.2. If 

(2.3.43) 

and 

(2.3.44) 

hold for some positive Pi, Qi, i = 1, 2, then the zero solution of {2. 3.42} is globally 

asymptotically stable {exponentially} for any choice of 7 1 and 7 2 . 

Remark 2.3.2. If Pi = Qi = 1, i = 1, 2 in {2.3.43} and {2.3.44), then Corollary 

2. 3. 3 reproduces the main theorem in {77}. 
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If we take 

a 11 = 1, a 12 = -1, a21 = -1, a22 = 1.2 (2.3.45) 

and 

bu = 0.8, b12 = 1, b21 = 1, b22 = -2 (2.3.46) 

and 7i = 0.1, then we have 

7* = 0.6568, a 1 = -3.7391 < -1, a 2 = 0.1391 < 1 

and 

w0 = 1.6550, g21 = -4.4504- 2.5948i, 0 1 (0) = -2.2252- 1.2974i 

and 

J-i2 = 2.2252, /32 = -4.4504, T2 = 1.9872. 

This means the zero solution of system (2.3.42) with (2.3.45) and (2.3.46) is asymp-

totically stable if 7 1 + 7 2 < 7* = 0.6568, and the Hopf bifurcation occurs at 

7 1 + 7 2 = 0.6568. Furthermore the Hopf bifurcation is supercritical and the bifur­

cating periodic solutions are asymptotically orbitally stable. Moreover, the period 

of the bifurcation periodic solutions can be estimated by 

with E = ( lcl )112
• The numerical simulations, which are performed by the DDEs 

J-12 

Solver developed by Shampine and Thompson [89], are given in Figs.2.3-2.4 
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2.3.2 BAMNNs with delayed self-connections 

Now we turn to the stability and Hopf bifurcation for the BAM neural networks 

with delayed self-connections. 

2.3.2.1 Global stability of (2.3.2) 

We assume that (2.3.2) has at least one equilibrium. Indeed, by using the Brouwer 

fixed point theorem [26], we can establish 

Lemma 2.3.3. Suppose the activation functions fi, gi, i E N(l, n) are continuous 

and bounded, then (2.3.2} has at least one equilibrium. 

Hence we can always perform a transformation such that the origin is the equi-

librium of the new system. Therefore, without loss of generality, in what follows, 

we assume that Ji = Ji = 0 and fi(O) = gi(O) = s1,i(O) = s2,i(O) = 0 fori E N(l, n). 

Then (2.3.2) reduces to 

{ 
~i(t) = -xi(t) + ciisl,i(xi(t- dii)) + L~=l aijfi(yj(t- Tij)) 

Yi(t) = -yi(t) + liis2,i(Yi(t- mii)) + Lj=l bijgj(xj(t- rij)). 

Theorem 2.3.5. If there exist some Pi > 0, Qi > 0, i E N(l, n), such that 

{ 
JciiiL~p(si,i)Pi + L~p(gi) Ll=l lb1il% <Pi 

lliiiL2p(s2,i)Qi + L2p(fi) Lj=l ia1iiP1 < Qi, 

then the zero solution of (2.3.47) is globally exponentially stable. 

(2.3.47) 

(2.3.48) 



Proof. The proof can be achieved by defining a Liapunov functional as 

V(t) = t,P• ( lx,(t)i + le;;ILip(si,<) l .. , lx;(s)ids + 

t, Ia;; I Lip(!;)["'' IY;(s) ids) + 

t, Q; ( IY;(t)i + ll;;ILip(s,,;) [""' IY;(s)ids + 

t, lb;;ILip(g;) L,, lx;(s)ids). 
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D 

Theorem 2.3.6. If there are some real positive numbers Pi, Qi, ~, 'TJi, i E N(l, n) 

such that 

(2.3.49) 

and 

(2.3.50) 

hold) then system (2.3.47) is globally asymptotically stable. 

Proof. The proof can be completed by using a different Liapunov functional defined 

by 

V(t) tPi (x~(t) + lciilj~ .. sL(xi(s))ds + t ~~ijlit .. f}(Yi(s))ds) 
~=1 t d., J=l '-,J t-T,3 

+ t,q; (Yi(t) + ll;;l L .. sl,,(Y;(s))ds+ t, 1
;;

1 L, gj(x;(s))ds). 
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D 

Next we assume that s1,i is set to be gi and s2,i = fi for each i E N(1, n). Then 

we have 

Lemma 2.3.4. Assume that there are some positive real numbers Pi, qi such that 

(2.3.51) 

and 

qilii + ~ t Jqibij + pjajil < L. q(J-), i E N(1, n) 
j=l zp ~ 

(2.3.52) 

hold. Then system (2.3.47) admits a unique equilibrium which is globally asymptot-

ically stable if no delay is present. 

Proof. This lemma can be proved by using the main results of [31] and embedding 

this system to a single layer network with dimension 2n. Also we can use the 

following Liapunov function to prove this lemma. 

(2.3.53) 

D 

Using a similar argument to the one in [100], but taking 

n 

V(t) = L (Pilxi(t)J + qiJYi(t)J), (2.3.54) 
i=l 

we can establish 

Lemma 2.3.5. If there are some positive constants Pi, qi such that 

(2.3.55) 
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and 
n 

qilii + I::Pilaiil < L. q(J-)' i E N(1, n) 
j==l ~p z 

(2.3.56) 

hold and no delay is present in (2.3.47), then system (2.3.47) is globally exponentially 

stable. 

Note that the delay dependent stability results in [96] and [97] are for smooth 

activation functions. In Section 2.2.3 (see also [100]), we have recently generalized 

the results in [96] and [97] to a general model with non-differentiable activation func-

tions, where an even better estimation for the smallness of delays is given. Applying 

the delay dependent stability results established in Section 2.2.3 to (2.3.47), we have 

Theorem 2.3.7. Assume that the activation functions fi, gi, i E N(1, n) are non-

decreasing and Lipschitz continuous, and the delays dii, mii corresponding to Cii < 

0, lii < 0 fori E N(1, n) satisfy 

1 1 
d··<- m··<-zz _ d* , zz _ m * (2.3.57) 

where d* and m* are the unique positive roots of equations 

(2.3.58) 

respectively. If for some positive constants Pi, qi, i E N(1, n), either (2.3.55) and 

(2.3.56) or 

{ 

PiCii + ~ "Ej==l (Pi I aij I + %I bji I) < Li;(g;)' . 
1 n . ~ E N(1, n), 

qilii + 2 Lj==l (qilbijl + Pilaiil) < Li£(!i)' 
(2.3.59) 

hold, then the trivial solution of system (2. 3.4 7) is globally attractive. 
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2.3.2.:2 Local stability and Hopf bifurcation 

In this subsection, we focus on local stability and Hopf bifurcation for the BAM 

neural network with delayed self-connections (2.3.2) by viewing the self-connection 

delay as a parameter. We assume that Ji = Ji = 0 and fi(O) = 9i(O) = s1,i(O) = 

s2,i(O) = 0 fori E N(1, n) so that the zero is a trivial solution of (2.3.2). In addition, 

since we will discuss the linear stability, we may assume that all the activation 

functions in (2.3.2) are differentiable with neuron gains 1, that is, 

f{(O) = g~(O) = s~,i(O) = s;,i(O) = 1, i E N(1, n). 

From now on, we assume that 

The linearization of (2.3.2) at the origin is 

{ 
~i(t) = -xi(t) + f3xi(t- a)+ ~1=1 aiiYi(t- 71) 

Yi(t) = -yi(t) + {Jyi(t- a)+ ~j=1 bijXj(t- 72) 
(2.3.60) 

As in Section 2.3.1, denote the n x n identity matrix by En, A = (aij), B = (bij) 

and 7 = (71 + 72)/2 and let 

and 

* _ ( -e-z72 B (z + 1 - {Je-zu)En ) 
W - (z + 1 - {Je-zu)En -e-zn A . 

Then the associated characteristic equation of (2.3.60) is given by 

detW = 0. (2.3.61) 
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Note that 

detW = ( -1)ndetW*. 

In what follows, we assume that 

detB =/= 0, (2.3.62) 

which implies that e-z72 B is nonsingular. Then from Theorem 1.23 of [30] we have 

detW* = det(e-z72 B) det[W* je-Z'T2 B], 

where [W* ;e-z72 B] is the Schur complement of the block e-z72 Bin W* (See, e.g.,[30]). 

Therefore, (2.3.61) is equivalent to 

(2.3.63) 

It is easily seen that z is a solution of (2.3.63) if and only if there is a >. E a(BA) 

such that 

(2.3.64) 

Hence, if >.j, j E N(1, n) are eigenvalues of BA, then (2.3.61) is equivalent to n 

scalar equations 

For any Aj E a(BA), j E N(1, n), we can write it as 

>..1 = j>..1jeiB;,01 E [0,211"), 

and then (2.3.65) is equivalent to 

z + 1 - f3e-zu ± /l);ie-Z'T ei~ = 0. 

(2.3.65) 

(2.3.66) 



Let z == J-t + iw, then (2.3.66) is equivalent to 

{ 

R(J-t, w) := J-t + 1- f3e~tta cos(w<7) ± Vf\iTe~JtT cos(wr- Oj/2) = 0 

l(J-t, w) := w + f3e-tta sm(w<7) =f Vf\iTe-w sm(wr- Oj/2) = 0. 

Noticing that 

R(J-t,w) ~ 1-l/31-~' for all J-l ~ 0,0" ~ O,r ~ 0, 

we immediately have 

Theorem 2.3.8. Assume that {2.3.62) holds. If 

vt\1 + 1/31 < 1, 0" ~ 0, 'T ~ 0, 

where 
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(2.3.67) 

then all roots of {2. 3. 65) have negative real parts, and hence the trivial solution of 

{2. 3. 2) is asymptotically stable. 

From R(J-l, w) = 0 and l(J-l, w) = 0, we obtain 

and hence, 

or 

1-l = -1 + f3e-tta cos(w<7) :r= ~e-w cos(wr- Oj/2), 

w = -f3e-tta sin(w<7) ± ~e-tt7 sin(wr- Oj/2). 

(2.3.68) 

(2.3.69) 



If we assume that 
1 

() < 0, and Jf\1 < -(),a E [0, _
2

(3], 

then, it follows from (2.3.69) that 

w < -2(3 for f.1 2::: O,r 2::: 0, and wa E [0, 1]. 

Letting the left hand side of (2.3.70) be M(J.1), we then have 

M(O) 1 + w2
- 2(J(cos(wa)- w sin(wa)) + (32

- IAjl 

Moreover, we have 

1 + (32 -IAjl- 2(Jcos(wa) +w2 + 2(Jwsin(wa) 

> w2 + 2[jw(wa) 

w2 (1 + 2(Ja) 

> 0. 

> 0. 

This shows that M(M) > 0 for all f.1 > 0 and thus we have 
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(2.3. 71) 

Theorem 2.3.9. If (2.3. 62) and (2.3. 71) hold, then for all T ;:::: 0, the trivial solution 

of {2. 3.2) is asymptotically stable. 

In the following, we will regard a as the parameter and try to find its critical 

value at which the bifurcation occurs. 
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Letting 0' = 0 in (2.3.66), we have 

and hence 

R(f-l, w) 2': 1 - f3 - /1);1 for all f-l 2': 0, 

which indicates 

Lemma 2.3.6. If 

f3 < 1 - /1);1, (2.3.72) 

then all roots of (2. 3. 66) have negative real parts at 0' = 0 for all 7 2': 0. 

Next we investigate if 0' > 0 will destroy the stability. Theorem 2.3.2 and Lemma 

2.3.6 suggest that in order to explore the possibility that 0' > 0 destroys the stability, 

we need to assume that (2.3. 72) and 1!31 + J>:j 2': 1 hold, or equivalently, 

(2.3. 73) 

Under this assumption, we know for any fixed 7 2': 0, all roots of (2.3.66) have 

negative real parts when 0' = 0 and it is possible for some roots having non-negative 

real parts when 0' > 0. It follows from [11] that the only way to achieve this is by 

way of crossing the imaginary axis. 

Note that z = 0 can not be a root of (2.3.66) due to (2.3.73). If z = iw with 

w > 0 is a root of (2.3.66) if and only if 

{ 
f3 cos(wO') = 1 ± ~ cos(w7- ~) 

f3sin(w0') = -w ± ~ sin(w7- ~) 
(2.3.74) 
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which gives 

~( e. e.) /32 
= 1 +I .Xi I+ w2 ± 2y JAjJ cos(wr- ~)- w sin(wr- ~) . (2.3.75) 

Eq.(2.3.75) can have either finitely many or no root for w > 0. In the case 

of finitely many roots, we denote them by wf(.Xi), l = 1, 2, ... , m. It follows from 

(2.3. 7 4) that 

± _ 1 ( 1 ± y'f:\jT cos(wf(.Xj)r- ~) ) -· ± ( ) 
(]" - wf ( Aj) arccos j3 + 2br -. (J"l,j k , (2.3.76) 

where p E N(O) = N. In the case where (2.3.75) has no root, we denote the 

corresponding (J"tj(O) = oo. The above analysis and a direct calculation give 

Lemma 2.3.7. Assume that (2.3. 73) holds. Then 

(i) all roots of (2.3. 66) have negative real parts for any fixed r 2:: 0 and for 

(2.3.77) 

(ii) Eq. (2.3.66) has a pair of simple purely imaginary roots and all other roots have 

negative real parts at(]"= (J"(Aj); 

(iii) at least one root of (2.3.66} has positive real part if 

(2.3.78) 

Here d.Xi) := min{(J"tj(O),(J"1~/0), l E N(1,m)}. Moreover, 

dRe(z) I # 0 
d(J" . 

z=~w 
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if and only if 

where T± (),i, w) is the solution of 

(2.3.79) 

and in the case that (2.3. 79} has no solution, we denote T±(Aj, w) = oo. 

Let 

a*= min{ a(Aj), j E N(l, n)} = a(Aj0 ), for some j 0 E N(l, n). 

Then a* is the first critical value at which Hopf bifurcation possibly occurs. Corre-

sponding to such value, we denote iw by iw0 , Aj0 by Ao, and a by a0 . Summarizing 

the above analysis and applying the standard Hopf bifurcation Theorem in [43], we 

have 

Theorem 2.3.10. Assume that (2.3.62} holds. Let IAI = m?JC{IAil: Aj E a(BA)}. 
1:::;~:::;n 

(I) If 

(2.3.80) 

then the trivial solution of (2.3.2} is asymptotically stable at a = 0 for all 

T ~ 0; 

(II) If 

(2.3.81) 

then the trivial solution of (2.3.2} is asymptotically stable for a E [0, a0 ) and 

unstable if a > ao. 
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(III) Hopf bifurcation occurs at a = a0 provided 

m(-\o) = 1, r =/= r(Ao, wo), 

where m(-\0) is the multiplicity of -\0 being an eigenvalue of the matrix BA. 

Remark 2.3.3. If m(-\0 ) = 2 in (III) of the above theorem, Hopf-Hopf bifurcation 

occurs at a = a0 . 

2.3.2.3 Hopf bifurcation and its direction and stability for r = 0 

The direction and stability of the Hopf bifurcation established in Section 2.3.2.2 is 

not easy to confirm and thus in this subsection, we will focus on a special case: 

r = 0, and give the Hopf bifurcation theorem and an algorithm for direction and 

stability. Note that (2.3.2) is now reduced to 

Let 

and 

{ 
~i(t) : -xi(t) + f3sl,i(xi(t- a))+ "'L.;=l aijfJ(yj(t)) 

Yi(t) - -yi(t) + (3s2,i(Yi(t- a))+ L;=l bijgj(xj(t)) 

wt = V/32
- (1 ±~cos 0~)2 =f ~sin °~ 

± ( ) - 1 1 ± v1Q cos ~ a i 0 - ~ arccos (3 . 
wj 

(2.3.82) 

If wt cf. JR+, we denote the corresponding at(o) = oo, where Aj = l-\ilei0i is the 

j-th eigenvalue of BA and j = 1, 2, ... , n. Let a(Aj) = min(aj(O), aj(O)) and 

ao = m.in { a(-\j)} = a(Aj0 ) for some j 0 E N(1, n). 
l:Sz:Sn 

For this special case, one can easily show that the condition r =/= r± ( Aj, w) for w > 0 

holds. Thus, Theorem 2.3.10 reads in this case as following 
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Theorem 2.3.11. Assume that (2.3.62} holds. 

(i) If 

(2.3.83) 

then the trivial solution of (2.3.82} is asymptotically stable at a= 0. 

(ii) If 

(2.3.84) 

then the trivial solution of (2.3.82} is asymptotically stable for a E [0, a0 ) and 

unstable if a > ao. 

(iii) Hopf bifurcation occurs at a= ao provided m(.\o) = 1. 

We assume for simplicity that the activation functions in (2.3.82) satisfy 

l (0) = g~' (0) = s~,i(O) = s~,i(O) = 0, fori E N(l, n), 

as the prototype functions tanh(x) and arctan(x) do. Then the Taylor expansion of 

(2.3.82) at zero has the form 

:h(t) = -xi(t) + f3xi(t- a)+ L:,j=1 aijYj(t) 

Yi ( t) 
+--yixf(t- a)+ L:,j=1 aijYJ(t) + h.o.t. 

-yi(t) + f3yi(t- a)+ L:,j=1 bijXj(t) 

+aiyf(t- a) + L:,j=1 bijx1(t) + h.o.t. 

(2.3.85) 

where h.o.t. stands for the high order terms, 'Yi = (3s';:i(0)/6, ai = /3s~:i(0)/6, a:i = 

aijf;'' (0)/6, bij = bij9;' (0)/6, i,j E N(l, n). Let a= ao+Jl, then Theorem 2.3.11 im­

plies that Hopf bifurcation occurs at I"= 0. By using the general method introduced 
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in [43], we can give a specific algorithm to determine the direction and stability of 

such Hopf bifurcation as below. Note that a direct calculation shows that 

Our algorithm is given as follows: 

Algorithm 

1. Put eto := 1 + iwo - (3e-iwocro; 

2. Find an eigenvector Q = (q1 , q2 , ••• , qnf for matrix BA corresponding to its 

eigenvalue A.0 , i.e., 

(A.oEn- BA)Q = 0; 

3. Let 

h P - ( )T P* - ( * * * )T. w ere - Pl,P2,. · · ,Pn , - P1,P2, · · · ,Pn , 

4. ComputeD, which is defined by 

5. Let 

C, (0) 3D { t, q; ( ~j IP; l
2
p;e-;wouo + t, nj, lq• l'q,) 

+ tpj (ajlqil 2qje-iwocro + i~)jk1Pki 2Pk)} 
J=l k=l 
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6. Let 

tt2 = -Re( C1 (0) ). 

Then we have 

Theorem 2.3.12. If tt2 > 0 ( < 0), then the Hopf bifurcation of (2.3.82) occurred at 

CJ = CJo is supercritical (subcritical) and the periodic solutions of (2. 3. 82) bifurcating 

from Hopf bifurcation value are asymptotically orbitally stable (unstable). 

2.3.2.4 Some examples and numerical simulations 

Example 2.3.2. A BAM neural model with three delays. 

Consider the following BAM neural network with two neurons on each layer 

{ 

~1(t) = -x1(t) + f3f(x1(t- C7)) + auf(Y1(t- 71)) + a12f(y2(t- 71)) 
x2(t) = -x2(t) + f3f(x2(t- C7)) + a2d(y1(t- 71)) + a22f(y2(t- 71)) 
iJ1(t) = -y1(t) + f3f(Y1(t- C7)) + buf(x1(t- 72)) + b1d(x2(t- 72)) 
iJ2(t) = -y2(t) + f3f(Y2(t- C7)) + b2d(x1(t- 72)) + b22f(x2(t- 72)) 

(2.3.86) 

where f(x) = tanhx. 

Corollary 2.3.3. If 

(2.3.87) 

and 

(2.3.88) 

hold for some positive Pi, Qi, i = 1, 2, then the zero solution of (2.3.86) is globally 

asymptotically stable for all CJ ~ 0, 7 1 ~ 0 and 7 2 ~ 0. 
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Take ~ = -2, and A = ( ~i~o ~~2° ) , B = ( ~:~ ~2~o ) . Then from 

Theorem 2.3.7 we know that the zero solution of (2.3.86) is globally attractive for 

all 7 1 2: 0 and 7 2 2: 0 provided a ~ 0.1572. The eigenvalues of matrix BA are: 

A. 1 = 0.1391, A.2 = -3.7391. If 7 = (71 + 7 2 )/2 = 0, then a direct calculation gives 

a0 = 0.5598 with the associated ,\0 = 0.1391, w0 = 1.4543. This shows that the zero 

solution of (2.3.86) is asymptotically stable when a E [0, 0.5598), 7 1 = 72 = 0 and 

local periodic solutions appear via Hopf bifurcation near a = 0.5598. The numerical 

simulations are shown in Figs.2.5-2.6. If 71 + 72 = 0.02, we can compute that 

a0 = 0.5544 and the associated A.0 = -3.7391, w0 = 3.7038. This implies that in 

this case the zero solution of (2.3.86) is asymptotically stable when a E [0, 0.5544) 

and Hopf bifurcation occurs around a = 0.5544. The numerical simulations, are 

given in Figs.2.7-2.8. We acknowledge that all numerical simulations presented here 

were performed by the DDE23 Solver developed by Shampine and Thompson [89]. 

Figure 2.5: Hopf bifurcation occurs when a is near the critical value a0 , here we 
use 7 = 0, a = 0.58 and just give the first component x1 (t) vs t. The behavior of 
x2(t), Y1(t) and y2(t) are similar to that of x1(t). 
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0.5,-----,------,-----,-----.,.-----,-== I x,(t) I 

-0.5 

Figure 2.6: Locally stable solution of (2.3.86) is obtained when a < a0 , here 
T1 = T2 = 0, a= 0.55 and x1(t) vs tis shown. The behavior of x2(t), Y1(t) and Y2(t) 
are similar to that of x1 ( t). 

Figure 2.7: Long time behavior of solution of (2.3.86) which bifurcates from 
the zero solution when a is near the critical value ao, here we use T1 = 0.008, T2 = 
0.012,a = 0.57. The component x1(t) is shown here and the behavior of x2(t), y1(t) 
and y2 (t) are similar to that of x1 (t). 
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0.5,--------,-------.-------::== I x,(t) I 

-0.5 

_,OL_ ____ ---,5:':-0 -----,:-:-:00,------------,',50 

Figure 2.8: The zero solution of (2.3.86) is locally stable when CJ < CJo, here 
T 1 = 0.008, T2 = 0.012, CJ = 0.54. The behavior of x 2 (t), y1 (t) and y2 (t) are similar 
to that of x 1 (t). 

Example 2.3.3. Ring structured neural network models. 

A general neural network model with a special connection architecture, i.e., ring 

structure, was investigated by Campbell in [10]. A simplified such model takes the 

form 

(2.3.89) 

where .i = 1, 2, ... , k and u0 = uk. In the case where k = 4, (2.3.89) was discussed 

in [11] on the local stability and Hopf bifurcation. Note that we can topologically 

regard (2.3.89) as a simple BAM model when the number of neurons k is an even 

number. For example, a ring of 6 neurons shown in Fig.2.9 can be reorganized as a 

BAM neural model with n = 3 shown in Fig. 2.10. 

For general even number k = 2n. Let 

Xj(t) = U2j-l (t), Yj(t) = U2j(t), j = 1, 2, ... , n. 
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(J 

(J 

Figure 2.9: A ring of six neurons. 

T 
T 

T T 

v 
(J 

Figure 2.10: The BAM neural network obtained from the ring of six neurons. 



Then we can rewrite (2.3.89) as 

{ 
~j(t) = -xj(t) + S2j-l(xj(t- a))+ h2j-I(Yj-l(t- r)) 

Yi(t) = -yj(t) + S2j(Yj(t- a))+ h2j(Xj(t- r)), 
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(2.3.90) 

where y0 (t) = Yn(t). For convenience, we may further rewrite (2.3.89) as 

{ 
~j(t) = -xj(t) + s1,j(xj(t- a))+ fj-I(Yi-l(t- r)) 

Yi(t) = -yi(t) + s2,j(yi(t- a))+ gj(Xj(t- r)), 
(2.3.91) 

Without loss of generality, we can assume that zero is an equilibrium of (2.3.91), 

then its linearization at zero is 

{ 
xj(t) = -xj(t) + ajXj(t- a)+ bj-IYj-1(t- r) 

ih(t) = -yj(t) + aj+nYj(t- a)+ bj+nXj(t- r), 
(2.3.92) 

where aj = s~,j(O), ai+n = s~,j(O), bj+n = gj(O), j = 1, 2, ... , n and bj = Jj(O), j = 

1, 2, ... , n- 1, bo = bn = fb(O). If we let ai = {3 for j = 1, 2, ... , 2n, and denote 
0 0 0 bn 

bn+l 0 0 
bl 0 0 0 

0 bn+2 0 
A 0 b2 0 0 ,B . Then we can 

0 0 bn-1 0 
0 0 

apply our results to this model to discuss the local stability and Hopf bifurcation, 

regarding the self-connection delay a as the parameter. Note that in [10], {3 works 

as the parameter, and in [11], T does that job. Using our main results, we can obtain 

the bifurcation analysis by varying a and this together with [10] and [11] can enrich 

the bifurcation analysis for the neural networks with ring structure. 

In the following, we restrict our attention to a special case: T = 0 and bj = b for 
0 0 0 b2 

b2 0 0 0 

j = 1, 2 ... , 2n. We then have BA = 0 b
2 

0 0 , which implies 

nxn 
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that 

o- ( B A) = { AJ, j = 1, 2, ... , n} 

with AJ = b2ei0i, eJ = (j-~)271". (In particular, if n = 2, this corresponds to the model 

investigated in [11]) and we have .\1 = b2 and .\2 = -b2 .) Let 

e. e. .I e. e. 
w} = (32

- (1 + lbl cos ~ )2 - lbl sin ~, wJ = y (32 
- (1 - lbl cos ~ )2 + lbl sin ~, 

and 

1 1 1 + I b I cos ~ 2 1 1 - I b I cos ~ 
o-J = - 1 arccos (3 , o-J = 2 arccos (3 , 

wJ wJ 

for j E:: N(1, n). If wj ~ JR+, s = 1, 2, j E N(1, n), we denote the corresponding 

o-J = +oo. Set o-0 =min{ o-J : j E N(1, n), s = 1, 2} = o-j~ for some j 0 E N(1, n) and 

s0 E {1, 2} . We denote .\0 = .\10 = b2 eiOo and w0 = w;;. Letting 

_ 1 · (3 -iw0 u0 _ -i(j00 ) _ O:o * _ O:o · N(1 ) o:o- + ~wo- e , Qj- e , P1- bQj' Pj- bQj' J E , n , 

and 
b 

D = 2no:o (1 + f3o-oe-iwouo) . 

This gives 

and 

(2.3.93) 

Ill /U Ill Ill 

h - sl,;(O) - s2,i(O) d*- 9J (0) d d - fj-1(0) d - d f . N(l ) w ere 11 - 6 , O:j - 6 , 1 - 6 an j-1 - 6 , n - 0 or J E , n . 

Corollary 2.3.4. Suppose that b =f. 0. 

(1) If (3 < 1-lbl, then the zero solution of (2.3.89} is asymptotically stable at o- = 0. 
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(2) If (3 < -11-lbll, then the zero solution of {2.3.89) is asymptotically stable for 

cr E [0, a0 ) and unstable if a > ao. 

(3) Hopf bifurcation occurs at a = a0 and its direction and stability are determined 

by p,2 given by (2.3.93), namely, the Hopf bifurcation is supercritical (subcrit­

ical) and stable (unstable) if p,2 > 0 (J.L2 < 0). 

For example, taking k = 4, r = 0, sj(x) = -2 tanh(x) and hj(x) = 2 tanh(x) 

in (2.3.89), then we have a0 = 0.5612, .\0 = -4, w0 = 3.7321, Oo = 1r, and J.L2 > 0. 

This shows that in the case k = 4, (3 = -2, and b = 2, Hopf bifurcation occurs at 

a = 0.5612, which is supercritical and the bifurcated periodic solutions are asymp­

totically orbitally stable. The corresponding numerical simulations are presented in 

Figs.2.11-2.12. 

0.1 

-0.1 

-0.2 . 

-0.5 '------'------'--'----'------'--'-----------'-----'---'-------
100 110 115 120 125 130 135 140 145 150 

t 

Figure 2.11: A periodic solution of (2.3.89) bifurcates from zero solution at 
a = 0.57. Here b = 2, (3 = -2, k = 4, the component x1 (t) is shown and the 
behavior of X2 ( t), y1 ( t) and Y2 ( t) are similar to that of x1 ( t). 
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-1o ~ -----:5':-o ---:-'1o7o -----,-:15-=-o ------:::-200::---------:::'250 

Figure 2.12: The zero solution of (2.3.89) is locally stable when a = 0.55 < a0 . 

Here b = 2, f3 = -2, k = 4, the component x1 (t) is shown and the behavior of x 2 (t), 
y1 (t) and y2 (t) are similar to that of x 1(t). 

If k = 6 and sj(x) and hj(x) remain the same, then we can compute that 

a0 = 0.4209, .\0 = -4( -~ + "?i) = -4eiBo, ()0 = 2
; and ~-t2 > 0. This shows 

supercritical Hopf bifurcation occurs at a = 0.4209 and the bifurcating periodic 

solutions are asymptotically orbitally stable. 

Remark 2.3.4. Our result works for (2.3.89} whenever k is an even number. 

2.3.2.5 Discussions 

We have investigated the stability including both global and local stability and Hopf 

bifurcation for the BAM neural networks with delayed self-feedback. An effective al-

gorithm to determine the direction and stability of the Hop£ bifurcation is developed 

for a special case (7 = 0). In the case 7 ::/= 0, a similar algorithm can be expected. 

As an example, we showed that a ring structured neural network model with even 

number neurons could be reorganized as a BAM model and thus our results and al-
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gorithm obtained in this section are applicable to such a neural network. Indeed we 

successfully employed our results to consider the bifurcation of a simplified neural 

network model with ring structure (2.3.89) by viewing the self-connection delay as 

a parameter. Several specific examples and their numerical simulations were also 

presented to demonstrate our results. 



Chapter 3 

Dynamics of Discrete-time Neural 
Networks 

In this chapter, we study the dynamics of delayed discrete-time neural networks. 

When a neural network is updated discretely, the model describing the network is 

in the form of a system of difference equations (See, e.g., Hopfield [50]). On the 

other hand, in numerical simulations and practical implementation of a continuous­

time neural network, discretization is needed, leading again to a system of difference 

equations. Therefore, it is of both theoretical and practical importance to study 

the dynamics of discrete-time neural networks. For the same reasons as stated 

in the introduction of this thesis, we will incorporate time delays into the network 

models. More precisely, in Section 3.1, we will discuss the exponential stability of the 

discrete-time neural networks with variable delay and establish some criteria based 

on linear matrix inequalities (LMis) to guarantee the global exponential stability 

and obtain some componentwise exponential stability results by using embedding 

technique. Section 3.2 is devoted to the study of the capacity for storing stable 

periodic solutions in the discrete-time BAM neural networks. 
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3.1 Exponential stability of discrete-time neural 
networks with variable delay 

Consider the discrete-time neural network model with variable delay 

m 

xi(n + 1) = aixi(n) + L Wij9j(Xj(n- k(n))) + h n E N(O), i E N(l, m) (3.1.1) 
j=l 

where k(n) are positive integers with 0:::; k(n) :::; k, ai E (0, 1). 

System (3.1.1) can be regarded as the discrete analog of the continuous-time 

Hopfield neural network model 

m 

xi(t) = -aixi(t) + L Wij9j(Xj(t- r(t))) + h i E N(1, m). 
j=l 

(3.1.2) 

However, generally speaking, the dynamics of discrete-time neural networks may be 

quite different from that of the continuous-time ones. For instance, the stability 

criteria established for system (3.1.2) may not be applicable to system (3.1.1). In 

the literature, there have been some papers (e.g., [23], [52], [53], [54], [55] and 

[68]) discussing the dynamics, including the stability, of some discrete-time neural 

networks. But for the delayed discrete-time neural networks, stability, especially 

exponential stability results are very few in the literature, in contrast to continuous-

time neural networks with delays. 

Our aim in this section is to investigate the exponential stability of system (3.1.1) 

by combining Liapunov function method, comparison method for monotone system 

and LMI approach. The latter approach has recently been used in [65] and [88]. Note 

that in terms of LMis, our criteria can be tested by efficient and reliable algorithms 

[5]. 
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3.1.1 LMI based criteria for exponential stability 

We use the following notations: z+ = N(O); .X(W): the set of eigenvalues of the 

matrix W; AM(W): the largest eigenvalue of the symmetric matrix W; Am(W): the 

smallest eigenvalue of the symmetric matrix W; wr: the transpose of the matrix 
1 

W; w- 1 : the inverse of the matrix W; llxll = CL.:7:1 xy) 2 : the Euclidean norm of 

the vector x = (x1, x2, ... , xmf E Rm and IIWII = IIWII2: the matrix norm induced 

by the Euclidean vector norm. 

The initial conditions associated with (3.1.1) are of the form 

xi(s) = c/>i(s), i = N(1, m), sEN( -k, 0). (3.1.3) 

Throughout this subsection, we assume 

(H) For each i E N(1, m), 9i : R---+ R is globally Lipschitz continuous with 

sup 
u,vEJR.,u;iv 

can be written in matrix form: 

x(n + 1) = Ax(n) + W g(x(n- k(n)) +I, n E N(O). (3.1.4) 

As usual, a vector x* = (xi, x;, ... , x:nf is said to be an equilibrium of (3.1.4) if it 

satisfies 

x* =Ax*+ Wg(x*) +I. 
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Based on our assumption on the activation functions, it is easily seen that (3.1.4) 

admits at least one equilibrium. 

In what follows, S > (2::) 0 means the matrix S is symmetric and positive 

definite(semi-positive definite). From the theory of matrices, we have the following 

facts 

Lemma 3.1.1. (i) If A> 0, B 2:: 0, a> 0, then A+ B > 0, aA > 0; 

(ii) A= ( ~~~ ~~~ ) > 0 if and only if An > 0 and A22- A21Aii1 A12 > 0; 

(iii) Ji'or any real matrices A, B, C and a scalar E > 0 with C > 0, the inequality 

holds. 

Proof. (i), (ii) and (iii) can be found in [30] and [87], respectively. 0 

If we let y(n) = x(n) - x* and f(y(n)) = g(x(n)) - g(x*), then the stability of 

equilibrium x* of (3.1.4) corresponds to that of the zero solution of the system 

y(n + 1) = Ay(n) + W f(y(n- k(n)), (3.1.5) 

where f has the property: 

llf(y)ll::; IILIIIIYII, (3.1.6) 

with L = diag(h, l2, ... , lm)· 

We are now in a position to state our main results in this subsection, which are 

based on LMis approach. 
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Theorem 3.1.1. Assume that the variable delay k(n) is bounded, satisfying 0 :::; 

k(n) :::; k and !).k(n) = k(n + 1)- k(n) < 1. If there exist two scalars q > 1, E > 0 

and two matrices P > 0, R > 0 such that 

( 
R WTPA ) 

;APW P-qAPA-LQL >O, (3.1.7) 

then the equilibrium x* of {3.1.4) is exponentially stable. More precisely, for any 

solution x(n) of {3.1.4), the inequality 

holds, where 

and 

llx(n)- x*W:::; q-nc1 sup llx(s)- x*W, 
sEN(-k,O) 

C 
_ >w(P) + c5-\M(Q)IILW . h c5 _ 1- (1/q)k 

1 - Am(P) ' wzt - q- 1 

(3.1.8) 

Proof .. Define V(n) = V(y(n)) by 

n-1 
V(n) = qnyT(n)Py(n) + L t fT(y(s))Qf(y(s)). (3.1.9) 

s=n-k(n) 

Then 

!).V(n) - V(n + 1)- V(n) 

= qn+1yT(n + 1)Py(n + 1)- qnyT(n)Py(n) 
n n-1 

+ I: qs fT(y(s))Qf(y(s))- I: qs fT(y(s))Qf(y(s)) 
s=n+1-k(n+1) s=n-k(n) 

< qn+1 (Ay(n) + W f(y(n- k(n)))f P (Ay(n) + W f(y(n- k(n)))) 

-qnyT(n)Py(n) + qn fT(y(n))Qf(y(n)) 

-qn-k(n) fT(y(n- k(n)))Qf(y(n- k(n))), 



which further gives 

.6.V(n) S: qn+1yT(n)APAy(n)- qnyT(n)Py(n) + qn JT(y(n))Qf(y(n)) 

+qn+1[yT(n)APW f(y(n- k(n))) + JT(y(n- k(n)))WT PAy(n)J 

+ JT(y(n- k(n)))(qn+1wT PW- qn-k(n)Q)f(y(n- k(n))). 

From Lemma 3.1.1 (iii), we have 

yT(n)APWf(y(n- k(n))) + JT(y(n- k(n)))WTPAy(n) 
s; Ejr(y(n- k(n)))Rf(y(n- k(n))) + ~yr(n)APW R-1wr P Ay(n). 

Therefore, we have 

.6.V(n) S: -qnyT(n) ( P- qAPA- LQL- ~APWR-1WTPA) y(n) 
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-qn-k(n) JT(y(n- k(n))) (Q- ql+k(n)(ER + wr PW)) JT(y(n- k(n))). 

Recalling that Q = ql+k(cR+ wr PW), we know from Lemma 3.1.1 that Q > 0 and 

Q - ql+k(n) ( ER + wr PW) > 0. This shows that 

where 0 = P-qAPA-LQL-;APWR-1WTPA. Condition (3.1.7) andLemma3.1.1-

(ii) imply that n > 0 and hence 

.6.V(n) s; 0. 

Therefore, we have 

-1 

V(n) S: V(O) - yT(O)Py(O) + L q8 JT(y(s))Qf(y(s)) 
s=-k(O) 

-1 

< .\M(P)IIv(O)W + L .\M(Q)IILWIIv(s)W 
8=-k 

- (.\M(P) + 8.\M(Q)IILW) sup llv(s)W. 
sEN(-k,O) 
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On the other hand, from the definition of V(n) that 

We then obtain 

II ( )112 < -n)IM(P) + £5.\M(Q)II£112 II ( )112 
y n _ q ,\ (P) sup y s , 

m sEN(-k,O) 

which gives (3.1.8) and thus the proof is complete. D 

Theorem 3.1.2. Assume that there are two matrices P > 0, E > 0 and a scalar 

CJ E (0, 1) such that 

( 
E wrPA ) 

APW CJ P - AP A > O 

and 

Then every solution of {3.1.4) is exponentially stable with 

where 

and 

llx(n)- x*W::; C2CJ'Yn sup llx(s)- x*W, 
sEN(-k,O) 

;y =sup{ 'Y E (0, 1) : 0 < C3 ('Y) < 1}. 

Proof. Define V(n) = V(y(n)) = yr(n)Py(n), then we have 

(3.1.10) 

(3.1.11) 

(3.1.12) 

(3.1.13) 



and 

~V(n) = yT(n + 1)Py(n + 1)- yT(n)Py(n) 

= (Ay(n) + W f(y(n- k(n)))f P (Ay(n) + W f(y(n- k(n)))) 

-yT(n)Py(n) 
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= yT(n)(APA- P)y(n) + fT(y(n- k(n)))WTPAy(n) 

+yT(n)APWf(y(n- k(n))) + fT(y(n- k(n)))WT PW f(y(n- k(n))) 

Using Lemma 3.1.1-(iii), we can further have 
' 

~V(n) ::; yr(n)[-P+APA+APWE-1WTPA]y(n) 

+ JT(y(n- k(n)))[E + WT PW]f(y(n- k(n))) 

< yr(n)[-P + APA + APWE-1WTPA]y(n) 

+..\M(E + WTPW)IILII 2 IIY(n- k(n))W 

- -(1- a)yr(n)Py(n)- yT(n)[aP- APA- APWE-1WTPA]y(n) 

+..\M(E + WTPW)IILWIIY(n- k(n))W 

Notice that condition (3.1.10) and Lemma 3.1.1-(ii) imply that aP - APA -

APW:E-1 wr P A > 0. This shows that 

~V(n)::; -(1- a)V(n) + AM(E + WTPW)IILWiiy(n- k(n))W,n E N(1), 

and hence we have 
n-1 

V(n) ~ anv(o) + AM(E + wr PW)IILII 2 L O"n-1-s lly(s- k(s)) 11 2 . (3.1.14) 
s=O 

From (3.1.13), it follows that 

V(O)::; ..\M(P)IIy(O)W::; ..\M(P)II sup llx(s)- x*W. 
sEN(-k,O) 
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Thus, (3.1.13) together with (3.1.14) shows that 

where 

c - AM(L: + wrPW)IILW 
4

- Am(P) . 

Condition (3.1.11) guarantees that ')r E (0, 1) exists. Multiplying both sides of 

(3.1.15) by a-in, we have 

Letting 

a-1nlly(n) W ~ a<1-1)n AM(P) sup llx(s)- x* W 
Am ( P) sEN( -k,O) 

n-1 

+C4 Lan-1-s-;ynlly(s- k(s))W 
s=O 

< AM(P) sup llx(s)- x*W + C4a-1+(1-t)n X 
Am ( P) sEN( -k,O) 
n-1 

L a-(1-;y)s a-'Yk(s)a-'Y(s-k(s)) lly(s- k( s)) W. 

s=O 

z(n) := sup a-'Yslly(s)W 
sE[-k,n] 

and noticing that k(n) ~ k and a E (0, 1), we obtain 

< ~M~;j sup llx(s)- x* W + C4a-;yk _ 
1 

z(n) 
m sEN(-k,O) a'Y -a 

AM(P) * 2 
A (P) sup llx(s)- x II + C3 (')r)z(n), 

m sEN(-k,O) 

(3.1.16) 



which shows that 

Therefore, 

z(n) = sup o--'YsJJy(s)W 
sE[-k,n] 

< sup (~Mi;j sup llx(s)- x* W + C3(1)z(s)) 
sE[-k;n] m sEN( -k,O) 

~Mi:j sup llx(s)- x*W + C3(;y)z(n). 
m sEN(-k,O) 

This indicates that 

that is, 

JJy(n) wo--'Yn ~ z(n) ~ c2 sup llx(s)- x* w, 
sEN(-k,O) 

JJy(n)W ~ o-1nC2 sup llx(s)- x*W. 
sEN(-k,O) 

This shows the proof is complete. 
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D 

Remark 3.1.1. Theorem 3.1.1 and Theorem 3.1.2 show that the equilibrium of 

{3.1.4) is unique under the hypotheses of these theorems. 

Remark 3.1.2. In Theorem 3.1.1, we require !:::..k(n) < 1, while Theorem 3.1.2 

only requires that k(n) be bounded. In Theorem 3.1.1, the condition {3.1. 7) is delay-

dependent thr-ough the expression of Q, while the condition (3.1.1 0) in Theorem 3.1. 2 

is independent of the delay, even though the delay does have impact on the solution 

orbits which can be seen from (3.1.12). 
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Remark 3.1.3. Based on Theorem 3.1.1 and Theorem 3.1.2, we can determine 

an upper bound of q in (3.1.8) and a lower bound of a in (3.1.12) so that the 

neural network (3.1.4) has rapid convergence. This requires us to solve the following 

optimization problems: 

{ 
Maxq 
Subject toP> 0, R > 0 and (3.1. 7) is satisfied 

(3.1.17) 

and 

{ 
Mina 
Subject toP> O,I: > 0 and (3.1.10) and (3.1.11) are satisfied, 

(3.1.18) 

respectively. Note that (3.1.17) and (3.1.18) can be solved easily by the LMI Toolbox 

such as the Scilab developed by INRIA and ENPC in France, which is available 

at:www-rocq.inria.fr/scilab/. 

The following example demonstrates the feasibility of our main result. 

Example 3.1.1. Consider 

{ 
x1(n + 1) = 1/2x1(n) + 1/4tanh(x1 (n -1)) + 1/8tanh(x2 (n -1)) 

(3.1.19) 
x2 (n + 1) = 1/2x2 (n) + 1/4tanh(x1(n- 1)) + 1/16 tanh(x2 (n- 1)). 

In this example, k(n) = k = 1, L = I, W = ( ~J! ~J~6 ) , and if we take 

R = I, P = ( 1
0
6 1~8 ) , E = 0.5 and q = 1.2, we then find that R > 0, P > 0, 

c > 0, q > 1 and (3.1.7) holds. This shows, according to Theorem 3.1.1, that the 

zero solution of (3.1.19) is globally exponentially stable with the exponential decay 

rate less than 1/q = 5/6. 
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3.1.2 Componentwise exponential stability 

Under certain circumstances, one may wish to estimate the rate of convergence 

of each or some of the neurons in the network. This subsection deals with such 

componentwise convergence. To this end, we will employ the comparison method in 

monotone dynamical systems. Due to the variety of connections in a network, the 

network system may not be monotone and thus the comparison method can not be 

applied directly. Motivated by the work of Chu [23] and van den Driessche, Wu and 

Zou [96], we will first use an embedding technique to embed the model system into 

a monotone dynamical system with (double) higher dimension and then from the 

global componentwise convergence of the new system, we obtain that of the original 

system. 

As is in Section 3.1.1, we only need to consider the stability of the zero solution 

of system (3.1.5), that is, 

y(n + 1) = Ay(n) + W f(y(n- k(n)). (3.1.20) 

In this subsection, we assume that for each i E N(1, m), fi satisfies 

0 < fi(u)- fi(v) < l- ~ -1-
- _ ~' 10r u r v. 

u-v 

Denote w+ = (w~), w- = (wij) with w~ = max{wij,O},wij = max{-wij,O} 

and h(-s) =- j(s). It follows from W = w+- w- that (3.1.20) can be embedded 

into a 2m-dimensional system 

[ ~~~ 1 ~j ] = [ ~ ~ ] [ ~~~j ] + [ ~~ ~= ] [ {~~~~ = ~~~jj ] . (3.1.21) 

Let 

z(n) = [ ~~~j ] , B = [ ~ ~ ] , C = [ ~= ~= ] , F(z(n)) = [ ~~~~~jj ] , 
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then (:3.1.21) can be rewritten as 

z(n + 1) = Bz(n) + CF(z(n- k(n))). (3.1.22) 

For system (3.1.22) we have the following comparison theorem. 

Theorem 3.1.3. Let cj;(n) and 'ljJ(n) be two solutions of (3.1.22) with initial data 

cj;(s), 'ljJ(s), s E N( -k, 0). Then cj;(n) :s; 'ljJ(n) provided that cj;(s) :s; 'ljJ(s) for s E 

N( -k, 0). Moreover, if cf;(n) satisfies 

cf;(n + 1) ~ Bcj;(n) + CF(cj;(n- k(n))), n ~ 0, 

and z(n) is the solution of {3.1.22) with initial data z(s), sEN( -k, 0), then z(s) :s; 

cj;(s), sEN( -k, 0) implies z(n) :s; cf;(n), n ~ 1. 

Proof. Taking advantage of the fact that both B and C are non-negative matrices, 

we can easily complete the proof by using the method of induction. D 

A eonsequence of Theorem 3.1.3 is the following 

Corollary 3.1.1. Assume for system (3.1.20) and system (3.1.22) that initial data 

y(s),cf;(s) = [ ~~;j] ,s E N(-k,O) satisfy-v(s) :s; y(s) :s; u(s),s E N(-k,O), then 

the corresponding solutions y(n) of (3.1.20) and cf;(n) = [ ~~~? ] of (3.1.22)satisfy 

-v(n) :s; y(n) :s; u(n) for n E N(1). 

In order to establish the componentwise exponential stability, we need to intra-

duce the definition of Class K 0 and Class K for matrices. 

Definition 3.1.1. Let A E {A= (aik),i,k = 1, .. . ,n; aik :s; O,i #- k}. The matrix 

A is said to be of class K 0 (respectively, K) if there is a vector x > 0 such that 

Ax ~ 0 (respectively, Ax> 0). 



105 

Denoting L = diag(l1, ••. , lm), D = [ ~ f ] and the identity matrix with 

dimension m by Im, and using the property of matrices of class K 0 and class K, we 

may establish our componentwise exponential stability result as follows. 

Theorem 3.1.4. Assume that there is a C7 E (0, 1) such that 

is of class K 0 . Then the zero solution of (3.1.20) is componentwise (globally) ex­

ponentially stable in the sense that for every solution y(n) of (3.1.20), there exist 

~o, 'flo E ~m with ~o > 0 and 'flo > 0 such that 

Proof. 01 E Ko implies that there exists a vector (~, TJf E ~2m with~ E ~m, TJ E 

~m and ~ > 0, TJ > 0 such that 

Let y(n) be a solution of (3.1.20) with given initial data y(s), s E N( -k, 0). We then 

can find a positive constant q such that -qTJ:::; y(s) :::; q~ for sEN( -k, 0). Denoting 

the solution of (3.1.22) with initial data ¢(s) = [ ~~;j ] = q [ ~ ] , s E N( -k, 0), 

by cp(n) = [ ~~~j ] , we then have -v(n) :::; y(n) :::; u(n) for n E N(1). The fact 

that 01 [ q~ ] > 0 implies that z(n) = [ qC7:~ ] , n EN( -k), satisfies 
qTJ - q(J TJ 

z(n + 1) 2: Bz(n) + CDz(n- k(n)), for n 2: 0, 

which shows that z(n) = [ qC7:~ ] , n E N(1) is a solution of the following inequality 
q(J TJ 

z(n + 1) ~ Bz(n) + CFz(n- k(n)), for n ~ 0, 
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with initial data z(s) = [ ~~:~ ] , s E N( -k, 0). The fact that ¢>(s) = q [ ~ ] < 

[ qa:~ ] , sEN( -k, 0), and Theorem 3.1.3 imply that 
qa r7 

¢>(n) ~ z(n) = [ ~~:~ ] , n E N(1). 

This indicates that 

for all n E N(1). Thus y(n) -+ 0 exponentially and componentwise as n-+ oo and 

the proof is complete. 0 

Corollary 3.1.2. If 

0~ := /2m - B - CD 

is of class K, then the zero solution of {3.1.20) is componentwise {globally) expo­

nentially stable in the sense of Theorem 3.1.4. 

Proof. Oi is of class K implies that there is a a E (0, 1) such that 0 1 defined as in 

Theorem 3.1.4 is of class K 0 . Therefore the proof follows from Theorem 3.1.4. o 

Denoting IWI = (lwijl), we have 

Corollary 3.1.3. If there exists a a E (0, 1) such 0 2 := aim- A- a-kiWIL is 

of class K 0 or equivalently if 0~ := Im -A- IWIL is of class K, then the zero 

solution of {3.1.20) is componentwise (globally) exponentially stable in the sense of 

Theorem 3.1.4. 
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Proof. Since D2 := o1m- A- O"-k IWIL is of class K 0 , there exists a positive vector 

~ E IRm such that D2~ 2: 0. This implies that 

which shows that D1 is of class K 0 and then the conclusion follows from Theo-

rem 3.1.4. D 

Remark 3.1.4. In {30}, the matrices of class K 0 (K) are called M -matrices (non­

singular M -matrices). Many other equivalent definitions are also available in {30}. 

For example, a matrix M is of class K if (a) all principal minors of M are positive; 

or (b) every real eigenvalue of M is positive. 

Remark 3.1.5. The embedding technique used in the proofs of Theorem 2.2.9 and 

Theorem 3.1.4 was used by Chu {23] to get the specific performance for a class of 

discrete-time neural networks without delay; by van den Driessche, Wu and Zou {96} 

to obtain global attractivity for the continuous-time Hopfield neural networks with 

constant delays; by Wu and Zhao {111} for delayed differential systems and by Smith 

{92} for difference systems. 

Next, we give an example to demonstrate the componentwise exponential stabil-

ity of a two-neuron network. 

Example 3.1.2. Consider 

{ 
x 1 (n + 1) = 1/2x1 (n) + 1/4tanh(x1(n- 2))- 1/4tanh(x2 (n- 2)) 

(3.1.23) 
x2 (n + 1) = 1/4x2 (n) - 1/8 tanh(x1 (n- 2)) + 1/2 tanh(x2 (n- 2) ). 
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. ( 1/2 0 ) ( 1/4 -1/4 ) In th1s example, m = 2, L = I2 and A= 0 1; 4 , W = _ 1; 8 1/2 · 

It is easy to verify that n~ = h- A- IWIL = ( -~J: -~J! ) is of class K and 

thus, by Corollary 3.1.3, every component of each solution of (3.1.23) exponentially 

converges to zero. 

3.1.3 Discussions 

In this section, some LMI based criteria for the exponential stability and compo­

nentwise exponential stability are derived for the (autonomous) discrete-time neural 

networks with variable delay. The LMI based criteria have the advantages that they 

can be numerically verified by using LMI algorithms and the componentwise expo-

nential stability can be obtained by examining if the related matrices are of class K 

or not, which admits many effective methods. 

Note that the globally exponential stability achieved in this section shows that 

the equilibrium is unique under the stability conditions. Applying the theory in 

asymptotic autonomous systems, we may even establish some related convergence 

results for the asymptotic autonomous discrete-time neural networks. For instance, 

consider 

x(n + 1) = A(n)x(n) + W(n)g(x(n- k)) + I(n), n E N(O), (3.1.24) 

where A(n) -+A, W(n) -+ W, I(n) -+I as n-+ oo. That is, the limiting system of 

(3.1.24) is system (3.1.4). Then we have 

Theorem 3.1.5. Assume that all conditions in Theorem 3.1.1 or in Theorem 3.1.2 

or Theorem 3.1.4 are satisfied, then all solutions of (3.1.24) will converge to the 

unique equilibrium of the limiting system (3.1.4}. 



109 

Proof. By the variation of constants formula, it is easy to show that given any 

bounded initial data, the solution of (3.1.24) will be bounded. Under the assump­

tions, we know that thew limit set of a solution sequence of (3.1.24) is an internally 

chain transitive set of its limiting system (3.1.4)(See [48] for the definition of inter­

nally chain transitive sets and their properties). On the other hand, by the Strong 

Attractivity Theorem (Theorem 1.2.1, [120]), under the given conditions, an inter­

nally chain transitive set of (3.1.4) is an equilibrium set. This shows that all solu­

tions of (3.1.24) converge to the unique equilibrium of the limiting system (3.1.4). D 

3.2 Capacity of Periodic Solutions in Discrete­
Time Bidirectional Associative Memory Neu­
ral Networks 

One of the main tasks that artificial neural networks can fulfil is associate memory. 

In associative memory neural network, the addressable memories or patterns are 

stored as stable equilibria or stable periodic solutions. Thus, for the purpose of 

the associate memories, it is desirable for the network to have as large capacity as 

possible for retrievable memories. In terms of the terminology of dynamical systems, 

this requires that the network admit as many as possible stable equilibria or stable 

periodic solutions. 

In continuous-time models, the series papers [19]-[22] established the co-existence 

of multiple periodic solutions and described their domains of attraction. However, 

all these periodic solutions, except one, are unstable and they have large domains of 

attraction only in some sub-manifolds. On the contrary, for the discrete-time models, 



110 

a large number of stable periodic solutions can possibly coexist. In this context, 

Zhou and Wu [121], [122] proved the existence of 2 stable periodic solutions with 

special periods for a class of discrete-time neural network model with two identical 

neurons. For this model, Zhang and Wu [109] recently explored the existence of 

periodic orbits with all possible periods and even provided a formula to compute 

the number of all possible stable periodic orbits. More recently, Wu, Zhang and Zou 

[110] extended the idea in [109] to a model with ring structure and showed that the 

number of neurons and the delays all have impacts on the periodic solutions capacity 

of the neural network model under certain conditions. One naturally wonders what 

would happen if the network has other types of connection structure. For general 

connection topology, it is very difficult, if not impossible, to answer this question. In 

this section, we will further consider a class of discrete-time neural network model 

with more trainable parameters and with another special connection topology: BAM 

models. As is seen in Chapter 2, a ring network with even number of neurons is a 

special case of BAM networks. More precisely, we study the delayed discrete-time 

BAM neural network model described by 

{ 
xi(n) : /3ixi(n- 1) + I::1 aijfj(Yj(n- kj)) 

Yi(n) - aiyi(n- 1) + L:j=l bij9j(xj(n- lj)) 
(3.2.1) 

where /3i, ai E (0, 1), i E N(1, m) are decay rates, aij, bi}l i, j E N(1, m) are the 

connection weights between the neurons in two layers: X -layer with neurons whose 

states denoted by xi, i E N(1, n) and Y -layer with neurons whose states denoted 

by Yi, 'i E N(1, n), and the positive integers ki, li, i E N(1, m) are the associated 

delays due to the finite transmission speed among neurons in different layers in the 
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network. The activation functions fi, gi, i E N(l, m) are of class CL(r,R]' where 

CL£ ·= {! ·JR---+ JR/If(x) -11:::; E, x E (r, R], } 
(r,R] · · IJ(x) +II::=; E, x E [-R, -r) ' 

and the constants E > 0, 0 :::; r :::; R as well as /3i, ai E (0, 1), i E N(l, m) will be 

specified later. We will show that for this network, the delays, together with the size 

of the network, also have advantageous impact on the capacity of stable periodic 

solutions. 

Note that the delays in (3.2.1) do not change the number of its equilibria. How­

ever, as we will show, they are related to the number of periodic solutions of (3.2.1) 

under certain assumptions and indeed the delayed discrete-time BAM neural net-

works can have large periodic solution capacity to store the paired patterns or mem-

aries. 

3.2.1 Preliminaries 

As usual, a solution of (3.2.1) is a sequence 

{(x1 (n), x2(n), ... , Xm(n), Yl(n), Y2(n), ... , Ym(n))} 

of points in JR2
m which is defined for every integer n ~ -max { ki, li, i E N(l, m)} 

and satisfies (3.2.1) for n ~ 1. In what follows, we denote 

m m 

A= (aij)mxm, B = (bij)mxm, K = L ki, L = L li 
i=l i=l 

and suppose that: A is strongly diagonally dominant, that is, 

aii > L iaij I =: Ai, i E N(l, m) 
#i 



and B is strongly quasi-diagonally dominant, i.e., 

Let 

bii+1 > L lbiJI =: Bi,i E N(1,m), where bmm+1 := bm1· 

#i+1 
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fori E N(1, m). Setting w(n) := (u1(n), v1(n), u2 (n), vz(n), ... , um(n), vm(n)) by 

and letting 
i i 

ki := L:kj, ka := o, ri := L:z1, ra := o, 
j=1 j=1 

we then may rewrite (3.2.1) as 

w(n + 1) = F(w(n)), 

where F: JRK+L -+ JRK+L is defined by 

Fs(w) := { Fs(w), s E S := {li + kj, j = i- 1, i, and i E N(1, m)} 

Ws+1, S E N(1, K + L)- S 

with 

and 

m 

F!-;+k;-1 (w) := f3iWf;+k;-1 + L aiJIJ(wri+ki-1 +1) 
j=1 

m 

F- - (w) ·- a-w- - + '""b ( - - ) l;+k; .- ~ l;+k; ~ iJgJ Wzi-1 +ki-1 +1 · 
j=1 

(3.2.2) 

(3.2.3) 
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We denote the solution of (3.2.2) with initial value w(O) by w(n, w(O)), n = 

1, 2, .... For w = (w1, ... , WK+L) E ~K+L, its norm is defined by 

llwll = max{lwil,j E N(1, K + L)}. 

Let 

We assume that the following holds: 

0 < R. < 1(1- b) 0 <a· < 1(1- B; ) 
/J~ 2 a;; ' ~ 2 b;i+ 1 ' 

. 1-/3; A; /J~ a;; 

{ 

1-2/3; !!;ji [1 _ (1 _ 2 R.) b] } 

E < mmiEN(1,m) 1-2a; bii+l [1 - (1 - 2a·) ....f!.L] ' 
1-a; B; ~ bii+l 

R > d(1 +E) =: b*' 

• tz ~ /J~ ~J=1 ~J 

{ 
a··- A-- R.b*- "~ la··IE } 

r < mmiEN(1 m) - =: a*. 
' b--+1- B-- a·b*- "~ lb- ·IE ~~ ~ ~ ~J=1 ~J 

Let r* := min{R- b*, a*- r} and define 

ac :=a* - c, be := b* + c, for c E [0, r*). 

In the sequel, we will use the following notations: 

{ 
1, X 2:: 0 

sgn(x) := _ 1, x < 0 for x E R 

sgn(x) = (sgn(x1), ... ,sgn(xm)), for x = (x1, ... ,xm) E IRm. 

I;:== {a= (a1,a2, ... ,aK+L) E JRK+L;ai E {-1, 1} ,j E N(1,K + L)} 

CLfr~~] = {f : IR -t IR; lf(x) - f(y)l ~ Lip(!) lx- Yl, x, y E [-R, -r) U (r, R]} 

0 :=={wE JRK+L; llwll E (r,R)} 

f2(o·,c) :={wE JRK+L; llwll E [ac,bc],sgn(wi) = O"i,a = (o-1,· .. ,O"K+L) E I;} 

n(o·) := { w E JRK+L; llwll E (r, R), sgn(wi) = O"i, 0" = (o-1, ... 'O"K+L) E I;} 

O*(a) := {wE JRK+L; llwll E (r, b*), sgn(wi) = ai, a= (o-1, ... , aK+L) E I;}. 
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We point out that CL(r,R] and CLti,~] include those frequently used sigmoid func­

tions when r and R are properly chosen. 

3.2.2 Multiplicity of stable periodic solutions 

Define a mapping 1r : E ---t E by for any a E E 

for j E N(1, K + L- 1) 
for j = K + L 

For p •2=: 2, the mapping nP : E ---t E is given by 

and it follows that 

for j E N(1, K + L- p) 
for j = K + L - p + 1, ... , K + L 

and 

We denote by 

Ep := {a E E : nP a = a, 1rq a =!= a, q E { 1, 2, ... , p - 1}} 

(3.2.4) 

the set of all p-periodic points of 1r in E for p = 1, 2, .... Thus E1 is the set of all 

fixed points of 1r in E. 

The following lemma is needed in the proofs of our main results. 

Lemma 3.2.1. Assume that K and L are positive integers. Then 

(i) for each p E N(l, K + L), Ep =I= 0-<====} pI K + L; 
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(ii) 

(iii) for each p E N(1, K + L), the number of elements in ~P' denoted by N(~p), is 

given by 

Proof. See [109] or [110] 

p= 1, 
pis prime, 
otherwise. 

We next give an existence result for periodic solutions of system (3.2.2). 

0 

Theorem 3.2.1. Assume that (DH1) is satisfied and h, 9i E CL(r,R] fori E N(1, m). 

Then for any panda with p I K +Land a E ~P' (3.2.2) has a p-periodic solution 

{ w(n, (.<./')}nEN· 

Proof. We first show that for any a E ~ and c E [0, r*), 

Define 

where 

We claim that 

F: O(a, c) ---+ 0(1ra, c). 

m 

h1(z) := /31zo + L aij/j(Zj) 
j=l 
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To this end, we have two cases: 1)z1 2:': 0; 2)z1 < 0, to be considered. If z1 2:':: 0, we 

then have 

and 

h1(z) :S f31bc + an(1 +E)+ L la1jl(1 +E) :S be, 
. j~1 

h1(z) 2:': -(31bc + an(1- E)- L la1jl(1 +E) 2:': ac, 
#1 

which are due to 

m 

(1- f31)bc 2:': (1- (3I)b* = (1- (3I)d(1 + E*) 2:': L la1jl(1 +E) 
j==1 

and 

m 

< a*+ (31b*::; an- L la1jl- L la1jiE 
jfl j==1 

au(1- E)- L la1jl(1 +E). 
#1 

Similarly, for case 2), we can show that 

Therefore our claim is true. Using this argument and the definition ofF, we can 

show that 

sgn(Fj(w)) = sgn(wJ+1) = aH1,j = 1, 2, ... , K + L- 1 

and 
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This shows that for any wE O(o-, c), 

F(w) E O('rro-,c). 

Notice that O(o-, c) is convex and closed. Then for any p I K + L and o- E L:p, we 

have 

FP(f2(o-, c)) c 0(1rPo-, c) = O(o-, c) 

and hence the continuous mapping FP admits a fixed point in O(o-, c), which is ex­

actly a p-periodic solution, denoted by { w(n, wu)}nEN, of (3.2.2) with initial value 

in O(a·, c). The proof is complete. D 

Theorem 3.2.2. In addition to the conditions in Theorem 3.2.1, assume that /i, 9i E 

C Lfr~~l with 

J :=.max {f3i + f laiiiLip(fj), ai + t lbiiiLip(gj)} < 1. 
zEN(l,m) j=l j=l 

Then 

(I) For any p I K + L and o- E L:p, (3.2.2) has a unique p-periodic solution 

{w(n, wu)}nEN with wu E O(o-, 0) and this solution is exponential stable in 

the sense that for any wu with llwu - wu II < r( o-), we have 

where 

~ := JK~L < 1, c := e-(K+L) > 0 

and 
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(II) If {w(n)}nE.N is a p-periodic solution of (3.2.2) in 0, then pI K +Land there 

exists a unique a E Ep and some wa E O(a,O) such that w(n) = w(n,wa). 

(III) For any solution {w(n, w(O))}nEN of (3.2.2) with llw(O) II E (a* - r*, b* + r*), 

there exist a unique p E N with p I K + L and a unique a E Ep such that 

lw(n,w(O))- w(n,wa)ll:::; CCIIw(O)- wall, n EN. 

(IV) For pEN with pI K + L, (3.2.2) has N(Ep) p-periodic solutions in 0, which 

are all exponentially stable. If p f K + L, (3.2.2) has no p-periodic solution 

in 0. 

To prove this theorem, we first establish the following useful lemmas under the 

same assumptions. 

Lemma 3.2.2. For w', w" E O(a, c)(O, O*(a)), we have 

(3.2.5) 

Proof .. This can be easily proved by the fact that J E (0, 1) and the definition of 

F. D 

Lemma 3.2.3. If {w(n,w(O))}nEN is a p-periodic solution of {3.2.2) in 0, then 

llw(n,w(O))II:::; b*. 

Proof .. Since {w(n, w(O))}nEN is a p-periodic solution of (3.2.2) in 0, we can obtain 

a p-periodic solution {(x1(n), ... , Xm(n), YI(n), ... , Ym(n))}nEN for (3.2.1). We will 

show that 
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where 

·- ~7:=1 [aijl ·- ~J=l lbijl . _ 
di .- f3 ' di+m .- ' 'l- 1, 2, ... 'm. 

1- i 1-ai 

By way of contradiction, suppose that for some i, there exists n0 such that [xi(no)l > 

di(1 +E), say, xi(no) = di(1 +E) + &0 (the proof for the case Xi(n0 ) < -di(1 +E) is 

similar) for some 80 > 0. Then from (3.2.1), we have 

x;(no- I) = ;, ( x,(no) - t a;;/;(Y;(n- k;))) 

> ;, ( d;(l+ <)Ho-t Ia;; I(!+<)) 

1 
f3i Oo + di(1 +E) 

> di(1 +E)+ 80 (since f3i < 1) 

Xi (no). 

Repeating this procedure, we can show 

which is a contradiction. Thus we have shown that for all n E N, 

which implies that 

[[w(n,w(O))[[ S b* := max{di(l +E),i E {1,2, ... ,2m}} 

and the proof is complete. 0 
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Lemma 3.2.4. If {w(n, w(O))}nEN is a p-periodic solution of (3.2.2) in n, then 

pI K + L and w(n, w(O)) = w(n, wa) for some CJ E :EP, and wa E O(CJ, c). 

Proof. Note that 

n = U U O(CJ). (3.2.6) 
qfK+LaEEq 

Then there exist q and CJ with q I K +Land CJ E :Eq such that w(O) E O(CJ). From 

Lemma 3.2.3, we further know w(n, w(O)) E O*(CJ). Moreover, for such q and CJ, it 

follows from Theorem 3.2.1 and Lemma 3.2.3 that (3.2.2) has a q-periodic solution 

denoted by {w(n,wa))} with w(n,wa)) E O(CJ,c) for n EN. Therefore for each 

n EN, we have 

llw(n,w(O))- w(n,wa)ll llw(n + pq(K + L), w(O))- w(n + pq(K + L), wa)ll 

II (FK+L)pq(w(n, w(O))) - (FK +L)pq(w(n, wa)) II 

< JPqllw(n,w(O)) -w(n,wa)ll, 

which shows that w(n, w(O)) = w(n, wa) for n E Nand q = p and hence p I K + L. 

D 

Now we are in the position to prove Theorem 3.2.2. 

Proof of Theorem 3.2.2: 

(I). The existence and the uniqueness follow from Theorem 3.2.1 and Lemma 

3.2.4. We just need to show the exponential stability. For any n E N, we have 

n = s(K + L) + q with q E {1, 2, ... , K + L- 1}, and then for any GP with 



llt:tl,.- wo-11 < r(a), it follows from Lemma 3.2.2 that 

IIFs(K +L)+q (wo-) - ps(K +L)+q (wo-) II 

< IFs(K+Ll(wo-) _ ps(K+L)(wo-)11 

< Pllwo-- wo-11 

C~(s(K+L)+K+L-lllwo-- wull 

< CCIIwu-wull-

(II). The proof follows from Lemma 3.2.4. 
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(III). We may find acE [O,r*) such that llw(O)II E [ac,bc]· Now let a E I: with 

a= sgn(w(O)), that is, WO" := w(O) E O(a, c). Since I;= upiK+L L:p, there must exist 

a unique p I K + L such that a E I:P" For such a and wu, there exists a p-periodic 

solution { w(n, wu)}nEN· The rest of the proof follows from Lemma 3.2.2 and (I). 

(IV). This follows from the definition of N(I;p), (I) and Lemma 3.2.4. 

Remark 3.2.1. (I) gives a domain of attraction for each stable periodic solution of 

(3.2.2). 

It is possible for two periodic solutions to have the same orbit. To distinct orbits, 

we give a definition for equivalent periodic solutions: 

Definition 3.2.1. Two p-periodic solutions {w(n,w(O))}nEN and {w(n,w(O))}nEN 

are said to be equivalent, denoted by 

w(n, w(O)) rv w(n, w(O)), 

if ther-e exists q E {1, 2, ... ,p- 1} such that 

w(n, w(O)) = w(n + q, w(O)). 
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In other words, two p-periodic solutions are equivalent if they generate the same 

orbit. 

Lemma 3.2.5. For any p I K + L and any a, if E L:P with a -=/:- if, then the two 

p-periodic solutions { w(n, wu)}nEN and { w(n, w"")}nEN generated by wu and w"" are 

equivalent if and only if there exists a q E { 1, 2, ... , p - 1} such that 

Proof. Suppose a, if E L:p and if = 1rqa for some q E {1, 2, ... ,p- 1}. Note 

that pq : O(a, 0) --+ 0(1rqa, 0) and w(n + q, wu) = w(n, Fq(wu)), which implies 

that w(n, Fq(wu)) is a p-periodic solution with initial value Fq(wu) E 0(1rqa, 0) = 

0(5, 0). On the other hand, we know that w(n, w"") is a p-periodic solution with 

initial value w"" E 0(5, 0) too. Therefore, we have 

w(n, w"") = w(n, Fq(wu)) = w(n + q, wu), n = 0, 1, ... 

That is, {w(n,wu)}nEN and {w(n,w"")}nEN are equivalent. Next suppose 

and thus there exists q E {1, 2, ... ,p -1} such that w(o,wu) = w(q,w""). It follows 

that 

This completes the proof. D 

Consequently, we have 
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Corollary 3.2.1. For any pI K + L and any a E ~P' we have 

and 

If we use n(p) to denote the number of all p-periodic orbits of (3.2.2) (and thus 

that of (3.2.1)), then we have 

Theorem 3.2.3. Vp E N with p I K + L, 

Proof. The proof follows immediately from the definition of N(~p) and Corol­

lary 3.2.1. 

Remark 3.2.2. The number of all periodic orbits of (3.2.1} is 

n(K + L) = L n(p). 
p[K+L 

The related numbers for N(~p), n(p) and n(K + L) are given in the following 

tables. 

p 1 2 3 4 5 10 15 20 
N(~p) 2 2 6 12 30 990 32730 1047540 
n(p) 2 1 2 3 6 99 2182 252377 

Table 3.1: N(~p) and n(p) for some p. 
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K+L 2 3 4 5 10 15 20 
IK+L 1,2 1,3 1,2,4 1,5 1,2,5,10 1,3,5,15 1,2,4,5,10,20 

(K +L) 3 4 6 11 108 2192 52488 

Table 3.2: n(K + L) for some K + L. 

3.2.3 Discussions 

We have shown that the delayed discrete-time bidirectional associative memory 

neural network (3.2.1) can admit EPIK+L n(p) stable periodic solutions. We have 

also investigated the relation between the number of periodic solutions and the sum 

of all delays ( K + L) and discussed the multi-stability of those periodic solutions. 

This shows that (3.2.1) is a network model admitting large capacity of stable periodic 

solutions and thus, has great potential for applications in associative memories of 

periodic patterns. 

Note that for a simple two-neuron discrete-time neural network with delayed 

feedback, [109], [121] and [122] discussed the existence and stability of periodic 

solutions, and [109] also showed the large capacity of periodic solutions. However, 

in their models, there are just a few parameters, and thus as pointed out in [109], it 

is hard to train the network to store the large number of stable periodic solutions. 

In contrast, there are many parameters in (3.2.1), which can be used to train the 

network to have the ability to generate a large number of stable periodic solutions so 

that the network can serve the purpose storing large number of content-addressable 

memories or patterns. 



Chapter 4 

Dynamics of Stochastic Neural 
Networks 

We have studied the dynamics of continuous-time neural networks and discrete-time 

neural networks in Chapter 2 and Chapter 3, where both type of neural network 

models are deterministic. However, in real nervous systems and in implementation 

of artificial neural networks, noise is unavoidable and should be taken into consider­

ation in modelling the activation of neurons [44] . It is therefore important to study 

the stochastic neural networks. In this chapter, we will study the stability of the 

general stochastic Cohen-Grossberg neural networks and stochastic delayed Cohen­

Grossberg neural networks by employing Liapunov methods, Razumikhin techniques 

and LMI approaches. Note that some stability results for the stochastic Hopfield 

neural networks with specific activation functions were established in [4], [66] and 

[67]. 

For the basic theory of stochastic differential equations and stochastic functional 

differential equations, we refer to [1], [71 J, [72] and [78]. 

The rest of this chapter is organized as follows. Section 4.1 is devoted to the 
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study of stochastic Cohen-Gross berg neural networks. The almost sure exponential 

stability and mean square stability of stochastic Cohen-Grossberg neural networks 

with multiple delays are discussed in Section 4.2. 

4.1 Stability of stochastic Cohen-Grossberg neu­
ral networks 

Consider the stochastic Cohen-Grossberg neural network model described by 

du(t) = -A(u(t))[b(u(t))- W g(u(t))]dt + a(u(t))dB(t), t 2': 0, (4.1.1) 

where 'U(t) = (u1(t), ... , un(t))T is the neuron states vector; A(u(t)) = diag(ai(ui(t))); 

b(u(t)) = (b1(u(t)), · · ·, bn(u(t))f; W = (wij)nxn is the connection matrix; g(u) = 

(g1 ( u1), • • • , 9n( un) )T is the activation functions vector; a = ( aij )nxn is the diffusion 

coefficient matrix and B(t) = (B1(t), ... , Bn(t)f is an n-dimensional Brownian 

motion. 

From the standard textbook [71] on stochastic differential equation, we know 

that for any given initial data u0 there is a unique solution denoted by u(t; u0 ) for 

the system (4.1.1) if we assume that ai(u),gi(u),aij(u) are locally Lipschitz and 

satisfy the linear growth condition. 

In what follows, we assume that bi(O) = 0, 9i(O) = 0 fori E N(1, n) and a(O) = 0 

so that u = 0 is a trivial (equilibrium) solution of ( 4.1.1). 

For convenience, we introduce some definitions. 

Definition 4.1.1. Let (0, :F, P) be a probability space, X and Xk7 k 2:: 1 the JRn_ 

valued random variables. If there exists a P-null set 0 0 E :F (meaning P(00 ) = 0} 
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such that for every w ff 0 0 , the sequence {Xk(w)} converges to X(w) in the usual 

sense in JR.n, then {Xk} is said to converge to X almost surely and we write 

lim Xk = X a.s .. 
k---too 

Definition 4.1.2. The trivial solution of system (4.1.1} is said to be almost surely 

exponentially stable if 

lim sup~ log(lu(t; uo)l) < 0 
t---too t 

a.s. 

for all u0 E JR11' . 

Definition 4.1.3. The trivial solution of system (4.1.1} is said to be almost surely 

exponentially unstable if 

liminf ~ log(lu(t; uo)l) > 0 
t---too t 

a.s. 

for all uo E IRn . 

Throughout this chapter, we follow the standard notation to denote the mathe­

matical expectation or mean of a random variable~ byE(~). 

Definition 4.1.4. The trivial solution of system ( 4 .1.1) is said to be exponentially 

stable in mean square if 

for all Uo E JR.n . 

. 1 
hmsup -log(Eiu(t; u0W) < 0 

t---too t 

Let 0 2
•
1 (IRn x 114; 114) denote the family of all nonnegative functions V ( u; t) on 

JR.n x Rt which are twice differentiable in x and once in t. For each such V(u; t), we 



define an operator .CV associated with ( 4.1.1) as 

where 

.CV(u;t) = Vt(u;t) + Vu(u;t)(-A(u(t))[B(u(t))- Wg(u(t))]) 

+~trace[aT ( u(t) )Vuu ( u; t)a( u(t) )], 
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(4.1.2) 

T/( . ) _ 8V(u;t) u = (8V(u;t) ... 8V(u;t)) T/ = (8
2
V(u;t)) Vt U, t - 1 Vu 1 , , Vuu !l !l · 

{)t OUI OUn uuwuj n xn 

We will need the following assumptions: 

(HI) for each i E N(1, n), there is 'Yi > 0 such that ubi(u) ~ "fiu2
; 

(H2) for each i E N(l, n), lgi(u)l::; Lilul; 

(H3) for each i E N(1, n), ugi(u) > 0 for u-=/: 0; 

(H6) for each i E N(l, n), 0 ::; b;(uL=~;(v) ::; f3i Vu, v E R with u-=/: v. 

Our special notations are as follows: lui = c~=~=l ut) 1
/
2 for u = (ul, u2, ... l Unf E 

Rn; for a matrix Q, IQI = Jtrace(QTQ) denotes its trace norm; Q > 0(~ 0) means 

the matrix Q is symmetric positive (semi-positive) definite and >-m(Q) and AM(Q) 

denote its smallest eigenvalue and largest eigenvalue, respectively. 

The following lemma plays a crucial role in establishing our main results in this 

section. 

Lemma 4.1.1. Assume that there exists a symmetric positive definite matrix Q and 

two real numbers J1 E R and p ~ 0 such that 
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and 

( 4.1.3) 

Then we have 

limsup!log(lu(t;uo)l) ~ -(p- !!:_
2

) a.s. 
t--+oo t 

whenever u0 -=I 0. If p > ~' then the trivial solution of (4.1.1) is almost surely 

exponentially stable. 

Proof .. This lemma follows from Theorem 4.3.3 [71] by letting V(u; t) = uTQu. D 

Based on this lemma, we establish our main results in this section as follows. 

Theorem 4.1.1. Suppose that (H1), (H2), (H4) and (H5) hold. Assume also that 

there are a matrix Q = diag(q1, q2 , ... , qn) > 0, a real number p 2::: 0 and some 

positive constants ~i, i E N(1, n) such that (4.1.3) and 

{ 

n L· n } >. ·- min 2a·q·"~·- a·q·"' lw .. I£.C.- ____: "a·q·lw .. l > 0 .- • ( ) Z Z !Z Z Z ~ ZJ J<,J (: ~ J J JZ • 
~Nl~ ~ 

j=l j=l 

If p > ~ with 

J.L := k m~iEN(l,n) qi _ A , 
mmiEN(l,n) qi maxiEN(l,n) qi 

then the trivial solution of (4.1.1) is almost surely exponentially stable, i.e., 

limsup!log(lu(t;u0)1) ~- (p- !!:_) a.s. 
t--+oo t 2 

whenever u0 -=I 0. 



Proof. Let V(u, t) be V(u, t) = uT(t)Qu(t). Then, by (4.1.2), 

£V 2uTQ[-A(u)b(u) + A(u)W g(u)] + trace(aTQa) 
n n n 

-2 L ai ( ui)qiuibi ( ui) + 2 L ai ( ui)qiui L Wijgj ( Uj) 
i=1 j=1 j=1 

+trace( aT ( u )Qa( u)) 

Following from the assumptions (Hl), (H2), (H4) and (H5), we have 

n n n 

£V < -2 L aiqi'"'fiUi + 2 L aiqiui L lwijiLjlujl 
i=1 j=1 j=1 

+trace(aT ( u)Qa( u)) 
n n n l 

< -2 L aiqi'Yiui + L aiqi L lwiiiLj(~jui + [u]) 
i=1 j=1 j=1 J 

+ max qila(uW 
iEN(1,n) 

n [ n L· n l -tt 2aiqi'Yi- aiqi f; lwiiiLi~i- ~: f; aiqilwiil ui 

+ max qila(u)l2 

iEN(1,n) 

n n 

< -.\Lui + k max qi Lui 
. iEN(1,n} . 
~=1 ~=1 

< (- .\ + k m~xiEN(1,n} qi) t qiui 
maxiEN(1,n} qi mmiEN(1,n) qi i=1 

J.tUTQu 

The the rest of the proof is a consequence of Lemma 4.1.1. 

Note that if J.t < 0, then one can take p = 0. Thus, we have 
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Corollary 4.1.1. Suppose that (HI), (H2), (H4) and (H5) hold. Assume also that 

there are a matrix Q = diag(q1 , q2, ... , qn) > 0 and some positive constants ~i, i E 
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N(1, n) such that 

If 

f-l := k m~iEN(l,n) Qi _ A < O, 
mmiEN(l,n) Qi maxiEN(l,n) Qi 

then the trivial solution of (4.1.1} is almost sure exponential stable, i.e., 

. 1 f-l 
hmsup-log(Ju(t;u0)J) ~- a.s. 

t-too t 2 

whenever u0 =!= 0. 

If we denote [w]+ = max{O, w }, then the same argument, together with assump-

tion (H3), gives the following 

Theorem 4.1.2. Assume that that (H1)-(H5) hold. Assume also that there are a 

matrix Q = diag(q1, q2 , ... , qn) > 0 and a real number p 2': 0 such that (4.1.3} holds 

and 

If p >~with 
;... 

·- kmaxiEN(l,n) Qi A 
/-ll .- . - ' 

mmiEN(l,n) Qi maxiEN(l,n) Qi 

then the trivial solution of (4 .1.1) is almost surely exponentially stable, i.e., 

limsup~log(Ju(t;u0 )J) ~- (p- /-ll) a.s. 
t-too t 2 

whenever u0 =!= 0. 
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Corollary 4.1.2. Suppose that (Hl)-(H5) hold. Assume also that there is a matrix 

Q = diag(ql, Q2, ... , Qn) > 0 such that 

-:x :=.min {2aiQi'Yi- 2aiqiLi[Wii]+- aiQi t JwijlLj- Li t ajqjjWjil} > 0. 
tEN(l,n) . l '-'-. · l --~. · 

J= ,Jr-t J= ,Jr-t 

If 

k
maxiEN(l,n) Qi 

/-ll := . 
mmiEN(l,n) Qi 

...... 
,\ 

-----<0, 
maxiEN(l,n) Qi 

then the trivial solution of (4.1.1) is almost surely exponentially stable, i.e., 

lim sup~ log(Ju(t; u0 ) J) ~ I-Ll 
t-+oo t 2 

a.s. 

whenever uo =/= 0. 

Under other assumptions, we may obtain an instability result. 

Theorem 4.1.3. Assume that (H2)-(H4) and (H6) hold. If there are a matrix 

Q = diag(q1 , q2 , ... , Qn) > 0 and a real number p > 0 such that 

(4.1.4) 

holds for all u E JRn and Ja(u)J2 ~ kJuJ 2, then the solution of (4.1.1} satisfies 

liminf ~ log(Ju(t; uo)J) ~ f!.- p 
t-+oo t 2 

a.s. 

whenever u0 =/= 0 and fl will be specified later in the proof. Particularly if~- p > 0, 

then (4.1.1) is almost surely exponentially unstable. 



Proof. Let V = uTQu = I:;~=l QiUT, then 

£V -2uTQA(u)b(u) + 2uTQA(u)W g(u) + trace(aT(u)Qa(u)) 
n n n 

> -2 L ad3iqiu~ + 2 L gi ( ui) L ajQjWjiuj 
i=l i=l j=l 

+ min{qi, i E N(l, n)}la(u)l 2 

n n 

> -2 L ad3iqiu~ + 2 L[wiir Liaiqiu~ 
i=l i=l 

n 

> -v L QiU~ +min{ qi, i E N(l, n)}klul 2
, 

i=l 

where 

{ 
L· n n } 

v := iEr;J~~n) 2ad3i + qi~. ~. a1q1lw1il + ai. ~. L11wi11- 2[wiiraiLi 
J=l,J=I~ J=l,J=I~ 

and [wii]- = min(O, Wii)· Then we have 

where 

n 

£V 2:: p L QiU~, 
i=l 

p := k min{qi, i E N(l, n)} _ v. 
max{qi, i E N(l, n)} 

The rest of the proof follows from Theorem 4.3.5. of [71]. 
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4.2 Stochastic Cohen-Grossberg neural networks 
with multiple delays 

As stated in Chapter 1 of this thesis, time delays can not be avoided in many 

networks. Therefore, we will study the delayed stochastic neural networks in this 
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section. Let us first consider the stochastic Cohen-Grossberg neural networks with 

constant delays modelled by 

n n 

dui(t) = -ai(u(t))[bi(u(t))- L Wijgj(uj(t- Tij))]dt + L aij(uj(t))dBi(t), t 2:: 0, 
j=l j=l 

(4.2.1) 

where Tij E [0, r] are associated delays and the other terms are the same as in Sec­

tion 4.1. We assume for any given initial data¢>= (¢>1 , ¢>2 , ... , cf>n)T E C([-r, O],IRn), 

system ( 4.2.1) admits a unique solution denoted by u( t; ¢>). 

Theorem 4.2.1. Assume that (H1), (H2), (H4) and (H5) hold. Assume also there 

are positive numbers Pi, ~i, i E N(1, n) with max{pi, i E N(1, n)} = p and P = 

diag(pl,P2, ... ,pn) such that 

and 

where 

PiailwijiLj 
qij = ~j . 

Then the trivial solution of (4.2.1} is exponentially stable the following mean square 

sense: 

withE E (0, 52-) satisfying 
p 

. 1 
hm sup -log(Eju(t; ¢>) 1

2
) ::; -E 

t-too t 



Proof. For any fixed ¢>,we denote u(t; ¢>) = u(t) and define 

V(u,t) = tpiu;(t) + ttQij lt u;(s)ds, for (u,t) E IRn x [O,oo). 
i=l i=l j=l t-Tij 

By Ito formula [71], we have 

dV(u, t) = ( t -2p,u,a;(u,)[b;(u,) - t, w;;g;(u;(t- r;;) )] 

+ t t, q;;(u;(t)' - uj(t- r;;)) + trace(aT (u)Pa( u))) dt 

+2uT(t)Pa(u(t) )dB(t). 

Note that 

t -2p;u;(t)a;(u;(t)) [b;( u,(t)) - t, W;;9;(u;(t- T;;))] 

s; t ( -2a,po,ui(t) + 2p,a,[u,(t)[ t, [w;;[L;[u;(t- r;;)[) 

s; t (-2<>;P('fiUi ( t) + p,a, t, [w;; [L; I (e;ui + ~ uj ( t - T;;))) 

and 

trace(at(u(t))Pa(u(t)) S pja(u(t))J 2 S pkJu(t)J 2
. 

We therefore have 

dV(u, t) S -chJu(tWdt + 2uT(t)Pa(u(t))dB(t). 
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ForEE: (0, ~), 

eft (EV(u, t)dt + dV(u, t)) 

< eEt[-(61 - EP)Iu(tW + E I,: qij 1~7 . u~(s)ds]dt 
~,J 'J 

+2e£tuT (t)Pa( u(t) )dB(t). 

Integrating the above inequality from 0 to T and then taking the expectation give 

where 

C1 := EV(u,O) = t, (v . .Pi(O) + t,q•; [,, .Pj(s)ds) < oo. 

It is seen that 

where II <Pi II = maxsE[ -T,O] I <Pi ( s) 1- Hence, 

ea E'V(u, T) ~ 01 + 02 + EE ~ qi{Tije€Tij 1T e€tu~(s)ds 
~,J 

{T n 

-E Jo ~(61- Ep)e€tu~(t)dt 

< 01 + 02 + E03E 1T edlu(tWdt- E 1T(61- Ep)e€tlu(t)l 2 dt 

01 + 02 + E 1T [E03 + Ep- 61] e£tlu(t)l 2dt, 



where 
n n 

C . ~ 2 tT;jiiA,. 112 C ·- rna ~q ,.,.. e£Tji 2 .= E L...JQi}'Tije 'f'j , 3 .-. X L...J ji'ji · 
. . zEN(1,n) . 
Z,J J=1 

By our choice of E, we obtain 

which implies 

and hence 

The proof is complete. 

. 1 
hm sup -log Elu(tW :::; -E. 

t-too t 

Using Razumikhin technique [71], we may obtain 

Theorem 4.2.2. Assume that (H1), (H2) and (H4) hold. Let 

)..1 =.min {2ai)'i- ai t lwijiLj}, >.2 = . max {Lit lwjilaj}. 
zEN(1,n) . zEN(1,n) . 

J=1 J=1 
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If )..1 > )..2 , then the trivial solution of (4.2.1) is exponentially stable in the following 

mean square sense: 

where TJ :::; )..1 - q,\2 with q > 0 satisfying 

In addition, if {H5) holds, then the trivial solution of (4.2.1) is almost surely expo-

nentially stable, i.e., 

limsup~loglu(t;¢)1:::; _!1, 
t-too t 2 

a.s .. 
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Proof. The proof can be completed by letting 

1 n 

V(u, t) = 2 ?= u~(t) 
~=1 

and applying Theorem 5.6.1 and Theorem 5.6.2 in [71]. D 

We next consider the stochastic Cohen-Grossberg neural network model with a 

variable delay described by 

du(t) = -A(u(t))[b(u(t))- W g(u(t-r(t)))]dt+a(u(t), u(t-r(t)), t)dB(t), (4.2.2) 

where r(t) E [0, r]. We assume that a(O, 0, t) _ 0 so that u = 0 is the trivial solution 

of (4.2.2). Then we have 

Theorem 4.2.3. Assume that (HI), (H2), (H4) hold and there exist three matrices 

D 1 2:: 0, D 2 2:: 0, D 3 2:: 0 such that 

for all ( u, y, t) E JRn X ]Rn x Rt-. Assume also that there exist M > 0 and P = 

diag(p1, P2, · · · , Pn) > 0 with p = maxiEN(l,n) Pi such that 

where A = diag(ai). Let 

If .\1 > A2 2:: 0, then the trivial solution of (4.2.2) is almost surely exponentially 

stable, i.e., the following holds: 

lim sup ~logiu(t; ¢)1 S _'!:_ 
t--+oo t 2 

a.s., 



where r E (0, .\1 - .\2 ) is the unique root of 

ProaL Let V(u, t) be defined as 

Then 

n 

V(u, t) = LPiu;(t) = uT(t)Pu(t). 
i=l 

n 

.CV(u, y, t) < - L 2aiPil'iu~(t) + gT(y)WT APu + uT PAW g(y) 
i=l 

+trace(O"T ( u, y, t)PO"( u, y, t)) 

< -2uT(t)diag(ani)Pu(t) + uTPAWM-1WT APu 

+gT(y)Mg(y) + ptrace(O"T(u, y, t)PO"(u, y, t)) 

+gT(y)Mg(y) + p(uTD1u + gT(y)D2g(y) + yTD3y) 

-ur[2diag(ani)P- j)D1- PAwM-1WT AP]u 

+gT(y)(M + pD2)g(y) + yT(pD3)y 

-uTDu + gT(y)(M + fJD2)g(y) + yT(pD3)y 
n n 

< ->.1L:u~+>.2LY?. 
i=l i=l 
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In the above, we have used Lemma 3.1.1 stated in Chapter 3. The rest of the proof 

follows from Theorem 2.1 of [4]. D 

Remark 4.2.1. In the above theorem, based on Schur complement [30], n > 0 if 

and only if 

( 
M wrAp ) 

0 PAW 2diag(ani)P- pD1 > ' 
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which can be easily verified by an LMI algorithm [5]. 

Example 4.2.1. Consider 

d( x1(t)) = ( 4 0) ( x1(t)) d ( 2 -2) ( g1(x1(t-r))) dt 
x2(t) - 0 2 x2(t) t + 1 1 g2(x2(t- r)) 

+G1 ( g1(x1(t- r)) ) dB(t), 
g2(x2(t- r)) 

where g1(x) = g2(x) = tanh(x), r = 1.2, G1 = ( 
0
0
5 0.~5 ) and B(t) is a 2-

dimensional Brownian motion. It is easily seen that in this example a 1 = a 2 = 1, 

1"1 = 4, ')'2 = 2, D1 = D3 = 0, D2 = G[G1 > 0. If we choose M = P = I then 

(' 4 0) 0 = O 
2 

> 0 and )q = 2 and ..\2 = 1.25. Therefore, from Theorem 4.2.3, 

the trivial solution in this example is almost surely exponentially stable with r = 

0.2705 E (0, ..\1- ..\2) = (0, 0.75). 
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