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ABSTRACT 

The antioxidant activity of ethanolic extract of canola meal at 100, 200, 500 

and 1000 ppm and commercially-available flavonoids at 200 ppm level on refined

bleached canola oil was examined and compared with commonly used synthetic 

antioxidants such as BHA/BHT/CA (butylated hydroxyanisole/butylated 

hydroxytoluene/citric acid) at 250 ppm and TBHQ (tert-butylhydroxyquinone) at 200 

ppm levels. Accelerated oxidation under Schaal oven test conditions at 65°C was 

investigated over a 17 day period. Progression of oxidation was monitored by 

employing weight gain, peroxide value, conjugated diene value, TOTOX value and 

2-thiobarbituric acid reactive substances (TBARS) tests. Canola extracts at 500 and 

1000 ppm levels were better than BHA/BHT/CA, but less effective than TBHQ. 

Among the flavonoids tested, myricetin, quercetin, rutin and (-)epicatechin were 

more effective than BHA/BHT/CA in retarding the formation of primary and 

secondary oxidation products. Myricetin was the most effective flavonoid tested. 

In order to identify the most active antioxidative compound in the ethanolic 

extract of canola meal, the extract was passed through a Sephadex LH-20 column and 

fractionated into seven major fractions according to UV absorbance, phenolic and 

sugar contents. Fraction IV showed the best antioxidative activity as evaluated in a 

(3-carotene-linoleate model system. Further separation of fraction IV by thin layer 

chromatographic techniques indicated that the compound responsible for strong 

antioxidative activity of fraction IV was phenolic in nature. Spectroscopic studies 
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indicated that this compound was 1-0-~-D-glucopyranosyl sinapate (1-0-~-D

glucopyranosyl 3,5-dimethoxy-4-hydroxy cinnamate). 

A novel nuclear magnetic resonance (NMR) spectroscopic method was also 

used to monitor oxidation of canola and soybean oils. The ratios of aliphatic to 

olefinic and aliphatic to diallylmethylene protons in both oils indicated a steady 

increase in their numerical values with increasing the length of storage period. A 

highly significant correlation was found between these ratios and TOTOX values of 

both oils, thus suggesting that NMR methodology can be used as an effective means 

to simultaneously estimate both primary and secondary oxidation changes in both 

canola and soybean oils. 

iii 



ACKNOWLEDGEMENTS 

My sincere appreciation is conveyed to Dr. F. Shahidi for providing me an 

opportunity and financial support to succeed the degree at Memorial University of 

Newfoundland. His guidance, direction and encouragement given throughout this 

study and also in the preparation of this manuscript are greatly acknowledged. I am 

thankful to the Canola Council of Canada for their generous financial support 

provided for this research. My special appreciation is extended to Dr. A.D. Rahimtula 

for his valuable suggestions given as a supervisory committee member. Invaluable 

help given by Dr. C.R. Jablonski in NMR work and as a supervisory committee 

member is greatly appreciated. Thanks are extended to Dr. B. Gregory for his help 

in mass spectral analysis. My sincere thanks are extended to Ms. N. Brunet, for her 

kind help in NMR analysis. Special thanks are conveyed to Dr. R. Amarowicz for 

his invaluable suggestions and help given throughout this study. I appreciate friendly 

unreluctant support given by Mr. R.B. Pegg during the course of this study. I would 

like to extend my thanks to all members of Dr. Shahidi's laboratory for creating a 

pleasant and interesting environment to working. Finally, special thanks are extended 

to my loving wife for helping me in all possible ways to succeed. 

lV 



TABLE OF CONTENTS 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 

ACKNOWLEDGEMENTS ....................................... iv 

TABLE OF CONTENTS ........................................ v 

LIST OF FIGURES ............................................ ix 

LIST OF TABLES ............................................. xi 

LIST OF ABBREVIATIONS .................................... xiii 

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

CHAPTER 2. LITERATURE REVIEW ............................. 4 

2.1 Production of canola and its products (oil and meal) in Canada 4 

2.2 Chemistry of fats and oils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

2.3 Oxidation of fats and oils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
2.3.1 Autoxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
2.3.2 Photooxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
2.3.3 Thermal oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
2.3.4 Factors affecting lipid oxidation . . . . . . . . . . . . . . . . . . . . . . 14 

2.4 Control of lipid oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
2.4.1 Removal of oxygen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
2.4.2 Hydrogenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
2.4.3 Use of antioxidants and synergists . . . . . . . . . . . . . . . . . . . . 18 

2.4.3.1 Mechanism of action of antioxidants . . . . . . . . . . . . . 18 
2.4.3.2 Synthetic antioxidants . . . . . . . . . . . . . . . . . . . . . . . 23 
2.4.3.3 Natural antioxidants . . . . . . . . . . . . . . . . . . . . . . . . 30 

2.5 Measurement of lipid oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
2.5.1 Primary changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

2.5.1.1 Measurement of changes of reactants . . . . . . . . . . . . 34 

v 



2.5.1.2 Measurement of hydroperoxides . . . . . . . . . . . . . . . . 35 
2.5.1.3 Measurement of conjugated dienes . . . . . . . . . . . . . . 37 

2.5.2 Secondary changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 
2.5.2.1 Thiobarbituric acid value . . . . . . . . . . . . . . . . . . . . . 38 
2.5.2.2 p-Anisidine value . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
2.5.2.3 Measurement of carbonyls . . . . . . . . . . . . . . . . . . . . 41 
2.5.2.4 Measurement of hydrocarbons and fluorescent 

products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 
2.5.3 Recent developments in measurement of lipid oxidation . . . . . 44 

2.6 Problems related to oxidation of canola oils . . . . . . . . . . . . . . . . . . 45 

CHAPTER 3. MATERIALS AND METHODS ....................... 48 

3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

3.2 Preparation of canola extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

3.3 Preparation of oil for accelerated oxidation studies . . . . . . . . . . . . . 49 

3.4 Separation of RB-canola oil into neutral lipids (NL), glycolipids, 
(GL) and phospholipids (PL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

3.5 Fractionation of canola meal extract . . . . . . . . . . . . . . . . . . . . . . . . 52 
3.5.1 Sephadex column chromatography . . . . . . . . . . . . . . . . . . . . 52 
3.5.2 Thin layer chromatography . . . . . . . . . . . . . . . . . . . . . . . . . 54 

3.6 Chemical analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 
3.6.1 Analysis of fatty acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 
3.6.2 Acid value (A V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 
3.6.3 Iodine value (IV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
3.6.4 Peroxide value (PV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
3.6.5 Conjugated diene value (CD) . . . . . . . . . . . . . . . . . . . . . . . . 59 
3.6.6 2-Thiobarbituric acid reactive substances (TBARS) . . . . . . . . 59 
3.6.7 p-Anisidine value (An V) . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 
3.6.8 TOTOX value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
3.6.9 Determination of phenolic content of fractions separated by 

column chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
3.6.10 Determination of sugar content of fractions separated by 

column chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 

vi 



3.7 UV absorbance of column chromatographic fractions . . . . . . . . . . . . 62 

3.8 Evaluation of antioxidant activity . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

3.9 Instrumental analysis of the most active antioxidative compound of 
canola extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 
3.9.1 UV spectrophotometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 
3.9.2 Mass spectrometry (MS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 
3.9.3 Proton and carbon nuclear magnetic resonance spectrometry . . 64 

3.10 NMR spectrometry of oil samples . . . . . . . . . . . . . . . . . . . . . . . . . 64 

3.11 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

CHAPTER 4. RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . 65 

4.1 Chemical properties of refined-bleached canola oil . . . . . . . . . . . . . 65 

4.2 Stability of refined-bleached canola oil as affected by the addition 
of CE, flavonoids and synthetic antioxidants measured by various 
physical and chemical indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 
4.2.1 Effect on weight gain, peroxide and conjugated diene values . . 68 
4.2.2 Effect on 2-thiobarbituric acid reactive substances (TBARS) 

formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 
4.2.3 Effect on TOTOX value . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

4.3 Screening of the most active antioxidative compound of CE . . . . . . . 90 
4.3.1 Fractionation of the crude canola extract . . . . . . . . . . . . . . . . 90 
4.3.2 Antioxidative activity of fractions following column 

chromatographic separation . . . . . . . . . . . . . . . . . . . . . . . . . 92 
4.3.3 Characterization of the column chromatographic fractions . . . . 92 
4.3.4 Structural analysis of the most active antioxidative 

compound of canola extract . . . . . . . . . . . . . . . . . . . . . . . . . 95 

4.4 Proton NMR study of canola and soybean oils during accelerated 
oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 
4.4.1 Chemical properties of refined-bleached-deodourized (RBD) 

canola and soybean oils used for proton NMR studies . . . . . 103 
4.4.2 Proton NMR spectra of RBD canola and soybean oils . . . . . 103 
4.4.3 Relative changes in the proton NMR absorption pattern of 

RBD canola and soybean oils during accelerated oxidation . . 106 

vii 



4.4.4 The relationship between TOTOX value and the ratios of 
aliphatic to olefinic and aliphatic to diallylmethylene 
protons during accelerated oxidation of RBD canola and 
soybean oils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 

CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . 114 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 

viii 



LIST OF FIGURES 

Figure 2.1 General scheme for autoxidation of polyunsaturated fatty acids 
and their consequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

Figure 2.2 Photosensitized oxidation process. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

Figure 2.3 Structure of flavonoids and related compounds. . . . . . . . . . . . . . . . . 24 

Figure 2.4 Forms of copper complexes with flavones and flavanones. . . . . . . . . . 25 

Figure 2.5 Possible reaction between TBA and malonaldehyde. . . . . . . . . . . . . . 39 

Figure 2.6 Possible reactions between p-anisidine and malonaldehyde. . . . . . . . . 42 

Figure 3.1 Fractionation of ethanolic canola meal extract. . . . . . . . . . . . . . . . . . 53 

Figure 4.1 Effect of added canola extract and synthetic antioxidants on the 
weight gain of refined-bleached canola oil stored at 65°C. . . . . . . . . . 69 

Figure 4.2 Effect of added flavonoids and synthetic antioxidants on the weight 
gain of refmed-bleached canola oil stored at 65°C. . . . . . . . . . . . . . . 70 

Figure 4.3 Structures of some flavonoids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

Figure 4.4 UV absorbance (A), phenolic and sugar contents (B) of eluates from 
Sephadex LH-20 column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 

Figure 4.5 Antioxidant activity of fractions separated on a Sephadex 
LH-20 column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

Figure 4.6 TLC chromatograms of fractions separated on a Sephadex 
LH-20 column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

Figure 4.7 TLC chromatogram of fraction number IV after P-carotene spray. . . . . 96 

Figure 4.8 UV spectrum of the most active antioxidative compound of 
canola extract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 

ix 



Figure 4.9 1H Nuclear magnetic spectrum of RBD canola oil. . . . . . . . . . . . . . 105 

Figure 4.10 Relationship between TOTOX values and the ratio of aliphatic to 
olefinic protons (Rao) of oxidized RBD canola and soybean oils. . . . 109 

Figure 4.11 Relationship between TOTOX values and the ratio of aliphatic 
to diallylmethylene protons (RaJ of oxidized RBD canola and 
soybean oils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 

Figure 4.12 Relationship between peroxide values and the ratio of aliphatic to 
olefinic protons (RaJ of oxidized RBD canola and soybean oils. 112 

Figure 4.13 Relationship between peroxide values and the ratio of aliphatic 
to diallylmethylene protons (RaJ of oxidized RBD canola and 
soybean oils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 

Figure A.1 Standard line of concentration dependence of TBARS as reflected 
in the absorbance of TBA-malonaldehyde complex. . . . . . . . . . . . . 134 

Figure A.2 Mass spectrum of the most active antioxidative compound of 
canola extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 

Figure A.3 1 H NMR spectrum of the most active antioxidative compound of 
canola extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 

Figure A.4 13CeH} NMR and attached proton spectra of the most active 
antioxidative compound of canola extract . . . . . . . . . . . . . . . . . . . 137 

Figure A.5 1H-1H COSY spectrum of the most active antioxidative compound 
of canola extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 

Figure A.6 Chromatogram (TLC) of the sugar component obtained upon 
hydrolysis of the most active antioxidative compound of canola 139 

X 



LIST OF TABLES 

Table 2.1 Commonly used synthetic food antioxidants. . . . . . . . . . . . . . . . . . . 27 

Table 2.2 Maximum usage levels (ppm) permitted by US FDA in specific 
application of antioxidants, from Code of Federal Regulations. . . . . . 28 

Table 2.3 Allowable daily intake (ADI) of synthetic antioxidants. . . . . . . . . . . . 29 

Table 2.4 Sources of natural antioxidative compounds. . . . . . . . . . . . . . . . . . . 31 

Table 2.5 Comparison of major fatty acids of some edible vegetable oils. . . . . . 46 

Table 3.1 Types and levels of additives used in RB canola oil for accelerated 
oxidation studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

Table 4.1 Acid value, iodine value, peroxide value and lipid classes of 
refined-bleached canola oil (without additives). . ....... ·. . . . . . . . 66 

Table 4.2 Fatty acid composition (area %) of refined-bleached canola oil 
(without additives) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 

Table 4.3 Effect of CE, BHA/BHT/CA and TBHQ on peroxide value of 
refined-bleached canola oil stored at 65°C. . . . . . . . . . . . . . . . . . . . 72 

Table 4.4 Effect of flavonoids, BHAIBHT/CA and TBHQ on peroxide 
value of refined-bleached canola oil stored at 65°C. . . . . . . . . . . . . . 73 

Table 4.5 Effect of CE, BHA/BHT/CA and TBHQ on conjugated diene 
value of refined-bleached canola oil stored at 65°C. . . . . . . . . . . . . . 74 

Table 4.6 Effect of flavonoids, BHA!BHT/CA and TBHQ on conjugated 
diene value of refined-bleached canola oil stored at 65°C. . . . . . . . . . 75 

Table 4.7 Effect of CE, BHA/BHT/CA and TBHQ on TBARS value of 
refined-bleached canola oil stored at 65°C. . . . . . . . . . . . . . . . . . . . 79 

Table 4.8 Effect of flavonoids, BHA!BHT/CA and TBHQ on TBARS value 
of refined-bleached canola oil stored at 65°C. . . . . . . . . . . . . . . . . . 80 

xi 



Table 4.9 Effect of CE, BHA/BHT/CA and TBHQ on TOTOX value of 
refined-bleached canola oil stored at 65°C. . . . . . . . . . . . . . . . . . . . 83 

Table 4.10 Effect of flavonoids, BHA/BHT/CA and TBHQ on TOTOX 
value of refmed-bleached canola oil stored at 65°C. . . . . . . . . . . . . . 85 

Table 4.11 1H NMR assignment of the most active antioxidative compound. 99 

Table 4.12 13CeH} NMR assignment of the most active antioxidative 
compound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 

Table 4.13 Chemical properties of refined-bleached-deodourized (RBD) 
canola and soybean oils used for 1H NMR study. . . . . . . . . . . . . . . 104 

Table 4.14 Total olefinic, diallylmethylene and aliphatic protons of RBD 
canola and soybean oils during accelerated oxidation at 65°C. . . . . . 107 

xii 



ACS 

ADI 

AnY 

AOCS 

AOM 

APT 

AV 

BHA 

BHT 

CA 

CD 

CE 

EC 

ESR 

FAME 

FDA 

GC 

GC-MS 

GL 

HPLC 

LIST OF ABBREVIATIONS 

- American Chemical Society 

- Allowable daily intake 

- p-Anisidine value 

- American Oil Chemists' Society 

- Active oxygen method 

- Attached proton test 

-Acid value 

- Butylated hydroxyanisole 

- Butylated hydroxytoluene 

- Citric acid 

- Conjugated diene 

- Canola extract 

- European Commission 

- Electron spin resonance 

- Fatty acid methyl ester 

- Food and Drug Administration 

- Gas chromatography 

- Gas chromatography-Mass spectrometry 

- Glycolipids 

- High pressure liquid chromatography 

Xlll 



ISC 

IV 

JECFA 

MA 

NL 

NMR 

PG 

PL 

PUFA 

PV 

PVC 

RB 

RBD 

SAS 

SCF 

TBARS 

TBHQ 

TLC 

TMS 

USDA 

uv 

- Inter system crossing 

- Iodine value 

- Joint expert committee of food additives 

- Malonaldehyde 

- Neutral lipids 

- Nuclear magnetic resonance 

- Propyl gallate 

- Phospholipids 

- Polyunsaturated fatty acids 

- Peroxide value 

- Polyvinyl chloride 

- Refined bleached 

- Refined bleached deodourized 

- Statistical analysis system 

- Scientific Committee for Food 

- Thiobarbituric acid reactive substances 

- tert-Butylhydroxyquinone 

- Thin layer chromatography 

- Tetramethylsilane 

- United State Department of Agriculture 

- Ultraviolet 

xiv 



DEDICATED 

TO 

MY LOVING PARENTS 



CHAPTER 1 
INTRODUCTION 

Canola is the most important vegetable oil for the Canadian edible oil industry. 

The development of genetically improved canola varieties boosted the use of canola 

oil in food applications. The content of saturated fatty acids in canola oil is the 

lowest among all common sources of edible vegetable oils. The ratio of linolenic to 

linoleic acid in the oil is approximately 1:2 and this is considered to be nutritionally 

favourable (Ackman, 1990). However, development of off-flavours, due to the 

autoxidation of unsaturated fatty acids in canola oil, especially linolenic acid, is often 

criticised (Tokarska eta/., 1986). The oxidative deterioration of canola is similar to 

that of other vegetable oils (Hawrysh, 1990) and involves primarily autoxidative 

reactions which are accompanied by various reactions having oxidative and non-

oxidative characters (Gray, 1978). 

Antioxidants are major ingredients which protect the quality of oils by 

retarding oxidation. In the edible oil industry synthetic antioxidants and chelating 

agents are often used because they are effective and inexpensive. Currently BHA 

(butylated hydroxyanisole), BHT (butylated hydroxytoluene) and a mixture of 

BHA/BHT/CA (citric acid) are used as antioxidants in the canola oil industry. 

However, the increased popularity of natural food additives may prompt more food 

manufacturers to replace synthetic antioxidants with ingredients containing natural 

antioxidative compounds (Marshell, 1974). Therefore, research on natural additives 

has gained momentum as they are considered to pose no health risk to the consumers. 
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Most naturally-occurring antioxidative compounds are flavonoids, phenolic acids, 

lignans, terpenes, tocopherols, phospholipids and polyfunctional organic acids (Dugan, 

1980). Canola meal has been reported to have a high content of phenolic compounds 

(1-2% of defatted meal) (Dabrowski and Sosulski, 1984; Kozlowska et al., 1990; 

Shahidi and Naczk, 1992). These compounds include phenolic acids (Kozlowska et 

a/. 1983; Zademowski, 1987), flavonoids (Zademowski eta/., 1991) and condensed 

tannins (Shahidi and Naczk, 1989). However, the presence of high levels of phenolic 

compounds in canola meal is undesirable due to adverse effects on the nutritional and 

organoleptic properties of the meal (Clandinin and Robblee, 1981; Kozlowska eta/., 

1990). Therefore, removal of phenolic compounds from canola meal and proper 

utilization of phenolics would present new opportunities for the canol a meal industry. 

In order to evaluate the oxidative deterioration of fats and oils, a number of 

tests have been developed. Although sensory methods are the most sensitive tests 

available, they are not always practical because they are time consuming, expensive 

and often lack reproducibility (Gray, 1978). Many chemical and instrumental methods 

have therefore been developed to assess oxidative deterioration of fats and oils. These 

methods detect either primary or secondary changes during lipid oxidation and have 

been found to correlate with subjective tests or descriptive sensory analysis. 

However, methods to determine both the primary and secondary products of lipid 

oxidation simultaneously have not been developed. Therefore, it is of interest to the 

edible oil industry to search for methods which may fulfil this requirement. Nuclear 
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Magnetic Resonance (NMR) spectroscopy is considered to have the potential for 

quantitation of the extent of lipid oxidation (Shahidi, 1992). This method measures 

the relative changes that occur in NMR absorption pattern of lipid fatty acids during 

oxidation. 

The first objective of this study was to extract and identify potent antioxidative 

canola phenolics, and to compare their antioxidant activity with the synthetic 

antioxidants in canola oil. Commercially available flavonoids were also investigated 

for their antioxidative efficiency in canola oil. In addition to commonly used methods 

of analysis, proton NMR was also used for monitoring the oxidative deterioration of 

canola and soybean oils. 



CHAPTER 2 
LITERATURE REVIEW 

2.1 Production of canola and its products (oil and meal) in Canada 

Rapeseed is grown around the world for its oil. The word "canola" is used for 

genetically modified Canadian rapeseed varieties that are low in both erucic acid and 

glucosinolates. According to the most recent definition, canola is referred to as a 

rapeseed cultivar that contains less than 2% erucic acid in its oil and less than 30 

pmoVg of one or any combination of four of the known aliphatic glucosinolates 

(gluconapin, progoitrin, glucobrassicanapin and napoleiferin) in the defatted meal 

(Shahidi, 1990). These "double low" cultivars belong to both species of Brassica 

campestris and Brassica napus. 

Canola is the most important oilseed crop in Canada. Its production in the 

1989/90 crop year was 3.06 million metric tonnes (Anon., 1990) and was larger than 

the production volume of soybean ( 1.18 million metric tonnes ). The production of 

canola oil in Canada in 1989/90 was 1.29 million metric tonnes. The export of canola 

is mainly in the form of seed, oil and meal. The oil is mainly used for cooking or as 

salad oil (50%) while 16% of it is used for margarine and 34% for shortening 

production (Statistics Canada, 1991 ). 
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2.2 Chemistry of fats and oils 

Fats and oils are essential nutrients for humans and animals. They are the 

most concentrated source of energy by contributing 9 kcal!g of lipid (Nawar, 1985), 

serve as carriers of fat-soluble vitamins (A, D, E, and K) and also provide essential 

fatty acids. Fats and oils give flavour and taste to the foods, and also serve as a 

processing medium (Sherwin, 1990). 

Neutral lipids, known as triacylglycerols, are the main component of vegetable 

oils and consist of a molecule of glycerol esterified with three molecules of fatty 

acids. A liquid lipid at ambient temperature is referred to as oil and the solid lipid 

is known as a fat. However, the same material may be referred to as an oil or a fat 

in different regions of the world, depending on the climate (Patterson, 1989). In a 

triacylglycerol molecule, the three fatty acids may be of the same (simple 

triacylglycerol) or of different kind (mixed triacylglycerol). 

Natural fatty acids are alkyl carboxylic acids and generally contain an even 

number of carbon atoms and are usually unbranched, straight chain molecules (Taylor, 

1973). However, fatty acids of branched chain and uneven number of carbon atoms 

are also found in nature, but in small quantities (Patterson, 1989). When the carbon 

atoms in the hydrocarbon chain of a fatty acid hold their full complement of hydrogen 

they are defined as saturated fatty acids. Saturated fatty acids are most stable either 

in the free state or in the triacylglycerol form and pack together more easily in the 

solid state due to their contour arrangement. This behaviour favours a higher melting 
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point of the fat. As the chain length of fatty acid increases the melting point of the 

material rises steadily (Patterson, 1989). 

Fatty acids with two or more carbon-carbon double bonds are referred as 

polyunsaturated fatty acids (PUFA). The double bonds in natural unsaturated fatty 

acids exist in the cis form which is associated with softness and liquidity. The double 

bonds and the methylene (-CH2-) group immediately adjoining them (a methylene 

group) are notably reactive. When the methylene group lies between two double 

bonds (eg. linoleic acid, C18:2) the activity is further enhanced (Patterson, 1989). 

The kind of fatty acids present in a triacylglycerol has a marked · effect upon 

its physical and chemical behaviour. The fatty acid arrangement in the triacylglycerol 

molecule affects the texture and melting behaviour of the fat. Therefore, changing of 

the distribution of fatty acids in the triacylglycerol molecule provides an imponant 

way of lipid modification (Taylor, 1973; Patterson, 1989). 

Oilseeds are generally processed by using expeller, screw, or hydraulic presses, 

solvent extraction, or cold pressing. The oil so obtained contains neutral 

(triacylglycerols) and polar lipids, especially phospholipids, free fatty acids, sterols 

and sterol esters, waxes, pigments, phenolic compounds and contaminants. Refining 

removes polar compounds, pigments and contaminants from the oil (V aisey-Genser 

and Eskin, 1982). The refined oils contain predominantly triacylglycerols, usually in 

the range of 98-99 % of the total lipids. 
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2.3 Oxidation of fats and oils 

Lipid oxidation, leading to rancidity, has been recognized since antiquity as 

a problem in the storage of fats and oils and also of lipid-containing foods. 

Characteristic changes associated with the oxidative deterioration of vegetable oils and 

animal fats include the development of unpleasant tastes and odours as well as 

changes in colour, viscosity, specific gravity and solubility (Labuza, 1971; Enser, 

1987). Several authors (Labuza, 1971; Frankel, 1980, 1982; Kanner et al., 1987; 

Hsieh and Kinsella, 1989; Min et al., 1989; Bradley and Min, 1992) have reviewed 

the mechanisms of lipid oxidation and the subsequent effects of lipid oxidation in 

foods. Since this study is limited to vegetable oils, the oxidation of vegetable oils 

will be discussed in terms of autoxidation, photooxidation and thermal oxidation. 

2.3.1 Autoxidation 

Autoxidation is a natural process that takes place between molecular oxygen 

and unsaturated fatty acids in the environment. Autoxidation of unsaturated fatty 

acids occurs via a free radical mechanism that consists of basic steps of initiation, 

propagation and termination. Initiation of this process may happen due to the 

abstraction of a hydrogen atom adjacent to the double bond in the fatty acid (RH) and 

this may be catalyzed by light, heat or metal catalysts to form a free radical (Reaction 

1). The resultant alkyl free radical (R") reacts with atmospheric oxygen to form an 

unstable peroxy free radical (Reaction 2) which may in turn abstract a hydrogen atom 
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from another unsaturated fatty acid to form a hydroperoxide (ROOH) and a new alkyl 

free radical (Reaction 3). The new alkyl free radical initiates further oxidation and 

contributes to the chain reaction. The chain reaction (or propagation) may be 

terminated by formation of non-radical products (Reactions 4-6). 

Initiation: 

RH initiator... R" + H" (1) 

Propagation: 

(3) 

R" + o ~ Roo· 

[ROO. +

2 

RH -> ROOH + R. 

(2) 

Termination: 

R" + R" ~ RR (4) 

R" + ROO" ~ ROOR (5) 

ROO" + ROO" ~ ROOR + 0 2 (6) 

The mechanism of autoxidation in lipids has been postulated by Farmer et al. 

(1942), Boland and Gee (1946) and Bateman et al. (1953). The propagation step of 

the autoxidative process includes an induction period when hydroperoxide formation 

is minimal (Labuza, 1971; Hawrysh, 1990). The rate of oxidation of fatty acids 

increases in relation to their degree of unsaturation. The relative rate of autoxidation 

of oleate, linoleate and linolinate was reported to be in the order of 1:40-50:100 on 
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the basis of oxygen uptake and in the order of 1:12:25 on the basis of peroxide 

formation (Hsieh and Kinsella, 1989). Therefore, oils that contain relatively higher 

amounts of PUFA possess stability problems. Also the breakdown products (alcohols, 

aldehydes, ketones, hydrocarbons, etc.) of primary lipid oxidation products 

(hydroperoxides) are sources of off-flavours. These compounds may also interact with 

other components of the food and cause several other functional and nutritional 

changes (Sherwin, 1978). A generalized scheme for autoxidation and its possible 

consequences is illustrated in Figure 2.1. 

2.3.2. Photooxidation 

The degradation of fats and oils during exposure to light is an important factor 

influencing their flavour stability. Photooxidation or photosensitized oxidation occurs 

in the presence of photosensitizer and visible light, and proceeds faster than 

autoxidation (Hawrysh, 1990). During photooxidation, singlet oxygen eo2) is 

generated by interaction of light and a photosensitizer (Gunstone, 1984) which then 

reacts with the methylene group adjacent to the double bonds of the unsaturated fatty 

acids to form hydroperoxides (Chan, 1977: Frankel, 1985). Photosensitizers can be 

dyes (eosin, erythrosine, methylene blue, rose bengal), natural pigments (chlorophyll, 

riboflavin, hematoporphyrin), metallic salts (cadmium sulphide, zinc oxides, zinc 

sulphide), transition metal complexes and polycyclic aromatic hydrocarbons such as 

anthracene (Min et al., 1989). 



Initiation 

Propagation 

Breakdown products 

such as ketones, aldehydes, 
alcohols, hydrocarbons, acids, 
epoxides 
(including rancid off-flavor 
compounds) 

10 

RH 

H abstraction 

Initiators (uv light, 
1o

2
, metal catalysts, heat, etc.) 

R" (lipid free radicals)------ Termination 

~Oxidation of pigment•, 

ROOH (Hydroperoxides) 

Polymerization products 

(dark color, possibly toxic) 

flavors and vitamins 

Insolubilization of proteins 

(changes of functionality 

and texture) 

Figure 2.1 General scheme for autoxidation of polyunsaturated fatty acids of lipids 
and their consequences (Shahidi and Wanasundara, 1992). 
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The ground state photosensitizer (Sen) absorbs visible or near ultraviolet light 

and becomes the excited singlet state photosensitizer crsen*) which has a short life 

time. 1Sen· rapidly converts into the ground state by emitting fluorescent light or to 

the excited triplet state sensitizer CSen*) by intersystem crossing (ISC). 3Sen· has a 

much longer life time than 1Sen· and decays to ground state slowly by emitting the 

phosphorescent light. Efficient sensitizers for the generation of singlet oxygen are 

long lived 3Sen· (Min eta/., 1989; Bradley and Min, 1992). The triplet excited state 

sensitizer CSen*) takes two major reaction pathways of Type I and Type II to 

accomplish photosensitized oxidation of unsaturated lipids (Figure 2.2). 

In the Type I mechanism (sensitizer-substrate) pathway, 3Sen· serves as a 

photochemically-activated free radical initiator and reacts with substrate (RH) to 

produce free radicals by hydrogen transfer or electron transfer. The produced free 

radicals react with triplet state oxygen C02) to produce the oxidized products that 

readily breakdown to form free radicals that can initiate free radical chain reactions. 

The rate of type I reaction is dependant on the type and concentration of the sensitizer 

and substrate (Bradley and Min, 1992). 

In the Type IT mechanism (singlet oxygen), 3Sen • reacts with triplet oxygen 

C02) to generate singlet oxygen COJ. The singlet oxygen so produced reacts with 

the substrate (RH) to give ROOH. There is also an electron transfer from 3Sen • to 

triplet oxygen to produce superoxide radical anion co2·-) and sensitizer radical cation 

(Sen"+) with a chance of less than 1% (Min eta/., 1989). Electron-rich compounds 
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hv ISC 
Sen--------

Type I Type II 

RH 302 

l I 
R. + ·senH 302 102 

l'o, 
I I RH 

I 
I 
I 
I 
I 
I 
I 
I 

• Roo· 

lRH 

0 2·- +Sen* ROOH 

ROOH + R. 

Figure 2.2 Photosensitized oxidation process. 
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such as simple olefins, dienes and aromatic compounds favour the type II pathway. 

The rate of the type II reaction mainly depends on the solubility and concentration of 

oxygen present in the food system. Traces of the sensitizer chlorophyll in vegetable 

oils would tend to promote photosensitized oxidation by type II pathway because 

oxygen is more soluble in lipids and non-polar solvents than in water (Bradley and 

Min, 1992). The involvement of singlet oxygen in the photosensitized oxidation is 

of Type II which occurs rapidly and thus accounts for almost all photosensitized 

oxidation reactions (Min et al., 1989). 

Photooxidation of vegetable oils is a major concern in the food industry as 

they contain natural protosensitizers and are commercially sold under light (Labuza, 

1971; Frankel, 1980; Simic, 1980). The prooxidant effect of chlorophyll, pheophytin 

and pheophorbide on the light-induced oxidation in soybean oil is due to the 

photosensitizing activity of these pigments on singlet oxygen generation (Frankel et 

al., 1979; Endo et al., 1985). The products of photosensitized oxidation includes both 

non-conjugated and conjugated diene hydroperoxides, compared to free radical 

oxidation which produces conjugated diene hydroperoxides only (Rawls and Van 

Santen, 1970). Carotenoids have been known to act as quenchers for either singlet 

oxygen or triplet sensitizer in singlet oxygen lipid oxidation. Tocopherols are also 

known to serve as free radical scavengers and singlet oxygen quenchers (Min et al., 

1989). 
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2.3.3 Thermal oxidation 

During heating (as in deep fat frying), the oil is subjected to high temperatures 

(180-190°C) in the presence of air and moisture. Under such conditions, oxidation, 

hydrolysis and thermal degradation are relatively rapid and no induction period is 

detected (Hawrysh, 1990). As the oxidation, hydrolysis and thermal reactions 

proceed, the functional, sensory and nutritional quality of the frying oils are changed 

(Stevenson et al., 1984). The breakdown products formed from oil during heating (at 

frying temperature) include volatile and non-volatile decomposition products. 

Formation of volatile decomposition products, changes the flavour of oil itself and 

also the flavours of the fried foods (Chang eta/., 1978). Formation of non-volatile 

decomposition products is largely due to thermal oxidation and polymerization of the 

unsaturated fatty acids in the fried fat. These products cause physical changes such 

as darkening of colour, increase in viscosity and decrease in the smoke point of the 

fat as well as chemical changes such as increase in the content of free fatty acids and 

carbonyl value (Hawrysh, 1990). 

2.3.4 Factors affecting lipid oxidation 

Food systems contain numerous non-lipid components that affect the oxidation 

of lipids; while some enhance the rate of lipid oxidation, some tend to suppress it 

(Love, 1985). The number, position and geometry of the double bonds of unsaturated 

fatty acids affect the rate of lipid oxidation. The cis isomers oxidize more rapidly 



15 

than the trans isomers and conjugated double bonds are more reactive than non-

conjugated olefines (Nawar, 1985). 

The oxidation rate of lipids is independent of oxygen pressure when the 

oxygen supply is unlimited. At low oxygen pressure, however, the rate is 

approximately proportional to the oxygen pressure (Korycka-Daht and Richardson, 

1978; Sherwin, 1978). Temperature and surface area also affect the partial pressure 

of oxygen (when temperature increases, oxygen becomes less soluble) (Nawar, 1985). 

In general, the rate of oxidation increases as the temperature is increased (Erickson 

and List, 1985). Ultraviolet and near ultraviolet lights have strong accelerating effect 

on fat and oil oxidation (Sherwin, 1978). This may be due to photosensitized 

oxidation as discussed earlier. 

Transition metals, particularly those possessing two or more valency states 

with a suitable oxidation-reduction potential between them (eg. Co, Cu, Fe, Mn, Ni), 

are major pro-oxidants (Gordon, 1990). At concentrations as low as 0.1 ppm, they 

can decrease the length of the induction period and increase the rate of oxidation (El

Zeany et al., 1974). Trace amounts of heavy metals are encountered in most edible 

oils. They may be originated from the soil when plant is grown or from equipment 

used in processing and storage. Trace metals are also naturally present in all food 

tissues and fluids of biological origin and are present in both bound and free forms 

(Nawar, 1985). Contribution of metals ions to lipid oxidation involves two radical 

producing reactions, one (Reaction 7) involves the metal in its lower oxidation state, 
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and the other (Reaction 8) in its higher oxidation state (Hiatt et a/., 1968). 

~+ + ROOH ~ M<n+t>+ + OH- + Ro· (7) 

M<n+l)+ + ROOH ~ MD+ + Roo· + H+ (8) 

The relative importance of these reactions varies with the type of metal and 

other factors (eg. coordination, solvent, substrate), but the rate of reaction (7) is 

generally much faster than that of reaction (8). The two reactions can operate as a 

cycle so that the overall effect of the metal ion would be to produce more radicals. 

The enzyme lipoxygenase, present in most plants tissues, specifically 

oxygenates PUFA and PUFA esters containing a cis, cis-1,4-pentadiene moiety located 

between carbon 6 and 10 from the methyl terminus. Off flavour development in 

soybean and soybean products is highly dependant on the action of various 

endogenous lypoxygenases as subsequent decomposition of the resulting 

hydroperoxides yields rancid flavours (Richardson and Hyslop, 1985). 

2.4 Control of lipid oxidation 

Since oxidation of lipids containing unsaturated fatty acids can proceed via 

different mechanisms, several strategies are possible to minimize oxidation. 

Knowledge of key mechanism(s) for the initiation of lipid oxidation facilitates 

devising methodologies to control lipid oxidation. 
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2.4.1 Removal of oxygen 

Since oxygen is an essential reactant in lipid oxidation, control of oxygen 

availability is a critical variable in minimizing oxidation of unsaturated fatty acids. 

As discussed earlier, the rate of oxidation of unsaturated fatty acids is affected by 

oxygen pressure when the partial pressure of oxygen in the reaction system is less 

than 100 mm (Pryor, 1973; Sherwin, 1978). The level of available oxygen may be 

controlled by vacuum packaging (Lindsay, 1977; Josepson et al., 1985) and by using 

oxygen scavengers such as glucose oxidase and ascorbic acid oxidase (Hsieh and 

Kinsella, 1989). These precautions reduce the rate and extent of lipid oxidation, 

especially when combined with antioxidants and low temperature storage in dark. 

2.4.2 Hydrogenation 

Hydrogenation of vegetable oils has been patented as a method of stabilizing 

them. Selective hydrogenation of soybean oil is practiced in the United States. This 

process reduces the linolenic acid content of the oil to a minimum and products so 

obtained are used in the production of margarines and shortenings (Cowan and Evans, 

1962; Patterson, 1989). However, hydrogenation reduces the degree of unsaturation 

of fatty acids and lowers the nutritional value of PUPA-containing fats. 
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2.4.3 Use of antioxidants and synergists 

Antioxidants are added to fats and oils to retard oxidation and to reduce 

development of rancidity. However, antioxidants cannot improve the quality of an 

already oxidized food products. According to the USDA Code of Federal Regulations 

[21 CFR 170.3 (0) (3)], "antioxidants are substances used to preserve food by 

retarding deterioration, rancidity or discolouration due to oxidation" (Dziezak, 1986). 

Synergists are substances that enhance the activity of antioxidants without having their 

own antioxidant effect (Nawar, 1985). Ideal food-grade antioxidants in addition to 

being safe, should not affect the colour and flavour of food and must be effective at 

low concentrations, easy to incorporate, survive after processing and be stable in the 

finished product (carry-through properties) as well as being available at a low cost 

(Coppen, 1983). 

2.4.3.1 Mechanism of action of antioxidants 

On the basis of lipid oxidation processes, antioxidants can be grouped into two 

mechanistically distinct classes. One group of antioxidants can inactivate two 

important radical species, involved in chain propagation steps, alkyl peroxy (ROO") 

and alkyl (R") radicals, and they can be grouped as chain breakers or primary 

antioxidants (Heish and Kisella, 1989; Gordon, 1990). This group includes the most 

common food antioxidants (AH) which interfere with lipid oxidation by rapid 

donation of a hydrogen atom to lipid radicals according to reactions (9) and (10). 
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ROO" + AH ~ ROOH + A" (9) 

RO" + AH ~ ROH + A" (10) 

Primary antioxidants are able to donate a hydrogen atom to a lipid radical and 

produce a radical from the antioxidant which is more stable than the lipid radical or 

is converted to other stable products (Gordon, 1990). Even though phenol itself is 

inactive as an antioxidant, alkyl substituted phenolic compounds are the most effective 

antioxidants used in foods (Uri, 1961; Sherwin, 1990) . . Substitution of alkyl groups 

in the 2,4 or 6 position increases the electron density on the hydroxy group by an 

inductive effect and thus increases their reactivity with lipid radicals. Substitution at 

the 4th position with an ethyl or n-butyl group rather than a methyl group improves 

the activity of a phenolic antioxidants, however, longer chain or branched alkyl groups 

in this position decrease the activity (Ingold, 1960). The strong electron donating 

effect of a methoxy substituent is an important contributor to the effectiveness of 2-

tert-butyl-4-methoxyphenol (BHA) as an antioxidant 

The radical formed from the reaction of a phenol with a lipid radical is 

stabilized by delocalization of the unpaired electron around the aromatic ring as 

indicated by the valence bond isomers (Reaction 11). The stability of the phenoxy 
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ci 0 

6 )IJ o· (11) 

• 

radical (A") reduces the rate of propagation of the autoxidation chain reaction since 

propagation reactions such as (12)-(14) are very slow as compared with reactions (2) 

and (3). 

A" + 0 2 ~ AOO" (12) 

AOO" + RH ~ AOOH + R" (13) 

A" + RH ~ AH + R" (14) 

Stability of the phenoxy radical is further increased by the presence of bulky 

groups in the 2 and 6 positions as in 2,6-di-tert-butyl-4-methylphenol, BHT (Gordon, 

1990). However, the presence of bulky substituents in the 2 and 6 positions also 

reduces the rate of reaction of the phenol with lipid radicals (Reactions 9 and 10). 

The presence of second hydroxy group at the 2 or the 4 position of a phenol increases 

the antioxidant activity. The effectiveness of a 1,2-dihydroxybenzene derivative is 

increased by the stabilization of a phenoxy radical by an intramolecular hydrogen 
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transfer (Reaction 15). The antioxidant activity of dihydroxybenzene derivatives is 

partly due to the fact that the semiquinonoid radical produced initially can further 

oxidiz~ to a quinone via reaction with another lipid radical or may disproportionate 

to a quinone and a hydroquinone molecule (Reaction 16). 

o-H 

(15) 

o· OH 

OH o· ¢ ¢ 0 

0 0 
OH OH 

0 • >< .. (16) 

/ ~ 
Roo" ROOH RCX:l ROOH 

OH OH 0 

The effect of antioxidant concentration on the rate of autoxidation depends 

on several factors including antioxidant structure, oxidation conditions and the 

substrate. Often the antioxidant activity of phenolic compounds is lost at high 

concentrations and they may act as prooxidants due to involvement in initiation 

reactions (Cillard et al., 1980; Lundberg et al., 1947). 
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Secondary antioxidants prevent the introduction of chain initiation radicals into 

the system (Heish and Kinsella, 1989). These may operate by a variety of 

mechanisms including binding of metal ions, scavenging of oxygen, decomposition 

of hydroperoxides to non-radical species, absorption of UV radiation or deactivation 

of singlet oxygen. Secondary antioxidants usually show antioxidant activity if a 

second minor component is present in the system (Gordon, 1990). Citric acid, 

ethylenediaminetetraacetic acid (EDTA) and phosphoric acid derivatives 

(polyphosphates) may extend the shelf life of lipid-containing foods by chelation of 

metal ions which act as prooxidants. Ascorbic acid, ascorbyl palmitate, erythrobic 

acid (isoascorbic acid) or sodium erythrobate are also used to stabilize fatty foods. 

Ascorbic acid is oxidized to dehydroascorbic acid when it functions as an oxygen 

scavenger, its activity is enhanced in the presence of tocopherols. Ascorbyl palmitate 

is more effective as an antioxidant because of its increased solubility in the fat phase 

(Cort, 1974a). It has been shown that enzymes like superoxide dismutase and catalase 

can remove formed superoxide radical anion (02"-) and hydrogen peroxide, 

respectively, which are important in lipid oxidation of biological system (Kellog and 

Fridovich, 1975). Similarly P-carotene can inhibit lipid oxidation initiated by xanthine 

oxidase, perhaps due to its quenching effect of singlet oxygen. Amino acids have also 

been implicated as having some chelating ability, however, their application in oils 

is limited due to solubility problems (Labuza, 1971). 
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Many of the flavonoids and related phenolic compounds show marked 

antioxidant properties (Mehta and Seshadri, 1959). Structures of these flavonoids and 

related compounds are given in Figure 2.3. Flavonoids and related compounds are 

known as primary antioxidants and act as free radical acceptors and chain breakers. 

Flavonoids are known to chelate metal ions at the 3-hydroxy-4-keto group and/or the 

5-hydroxy-4-keto group (when the A ring is hydroxylated at position 5; Shahidi eta/., 

1991). An o-quinol group at the Bring can also demonstrate metal chelating activity 

(Pratt and Hudson, 1990). Hudson and Lewis (1983) have demonstrated the ability 

of flavonoids to form complexes with a cupric ion (Figure 2.4) using UV spectral 

studies. Such complexation may contribute to the antioxidative action of flavonoids. 

Chelation of metal ions renders them catalytically inactive. 

2.4.3.2 Synthetic antioxidants 

Use of synthetic antioxidants, mainly phenolic compounds, in foods has been 

in practice since the late 1940's (Sherwin, 1990). The application of antioxidants to 

foods is governed by Federal regulations. Food and Drug Administration (FDA) 

regulations require that antioxidants and their carriers be declared on the ingredient 

labels of products and should be followed by an explanation of their intended purpose 

(Dziezak, 1986). Synthetic food antioxidants currently permitted for use in foods are 

butylated hydroxytoluene (BHn, butylated hydroxyanisole (BHA), propyl gallate (PG) 

and tert-butylhydroquinone (TBHQ). In Canada, BHA, BHT and PG are allowed for 
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Figure 2.3 Structure of flavonoids and related compounds (Shahidi and 
Wanasundara, 1992). 
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3-Hydroxyflavone 5-H ydroxyflavone 

3-H ydroxyflavanone 5-H ydroxyfla vanone 

Figure 2.4 Forms of copper complexes with flavones and flavanones (Hudson 
and Lewis, 1983). 
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food use but not TBHQ. Tables 2.1 and 2.2 summarize the permissable synthetic 

food antioxidants and some of their properties and levels of allowable use. 

The mode of action of phenolic antioxidants as free radical acceptors has been 

discussed previously. Degradation of phenolic antioxidants (mono-, di-, or tri

phenolic antioxidants) during the course of oxidations of fats and oils has been 

demonstrated. The formation of antioxidant dimers is the most common feature of 

the degradation of antioxidants. These are produced by the formation of phenoxy 

radicals followed by radical rearrangement and coupling reactions (Kikugawa et al., 

1990). Degradation products of BHT, BHA (Kikugawa eta/., 1990), PG (Kurechi and 

Kunugi, 1983a) and TBHQ (Kurechi et al., 1983; Kurechi and Kunugi, 1983b) show 

their own antioxidant activity in model systems. 

The toxicology of synthetic antioxidants has become one of the most 

controversial areas in the continuing debate on the safety of food additives. Several 

studies on laboratory animals have been carried out to address safety issues related 

to the use of synthetic antioxidants. The Joint FAO/WHO Expert Committee on Food 

Additives (JECFA) and European Commission (EC) Scientific Committee for Food 

(SCF) have established and acceptable daily intake (ADI) for these antioxidants rather 

than expressing whether particular additives are acceptable or not. ADI values 

reported so far are summarized in Table 2.3. 



Table 2.1 Commonly used synthetic food antioxidants. 

BHA BHT Gallates TBHQ 

OH 01-1 OH OH 

Chemical qccrn3~ (C~I3C * CICI"'JI3 H0¢0H ¢'Ciffi3)3 Structure I ~I ~I I 
OCH:J CH3 COOR OH 

R=Propyl or Dodecyl 

N 
Carry-through Very good Fair-good Propyl: Poor Good ......,J 

properties Dodecyl: Fair-good 

Synergism With BHT With BHA With BHA 
and gallates 

Solubilities (% w/v} Propyl Dodecyl 
Water 0 0 0.35 0.0001 I 
Animal fat 30-40 20-30 1 5-10 
Vegetable fat 40 20-30 1 1 5 
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Table 2.2 Maximum usage levels (ppm) permitted by US FDA in specific 
application of antioxidants, from Code of Federal Regulations (Dziezak, 
1986). 

Food BHAa,b 

Dehydrated potato shreds 50 

Active dry yeast 1000r 

Dry breakfast cereals 50f 

Potato flakes 50 

Potato granule 10 

Poultry products& 100r 

Dry sausagesh 30f 

Fresh sausagesh 100r 

Dried meaf 100r 

a 21 CFR 172.110 
b Given levels are for total BHT and BHA 
c 21 CFR 172.115 
d 21 CFR 184.1660 
e 21 CFR 172.185 
c BHA only 
& 9 CFR 381.147(f)(3) 
h CFR 318.7(c)(4) 
i BHT only 

BHT'·c pod TBHQe 

50 -- --

-- -- --

50 -- --

50 -- --

10 -- --

100i 100 100 

30i 30 30 

100i 100 100 

100i 100 100 
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Table 2.3 Allowable daily intakes (ADI) of synthetic antioxidantsa. 

Antioxidant ADI mg/kg body weight 

PG 0- 25 

TBHQ 0-0.2 

BHA 0 - 0.5 

BHT 0- 0.125 

a Barlow (1990) 
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2.4.3.3 Natural antioxidants 

During the last few decades natural alternatives for synthetic antioxidants have 

been studied. Food manufacturers as well as consumers prefer natural food additives 

although possible beneficial effects of those antioxidants can not always be 

substantiated (Marshell, 1974). Many foods contain compounds with antioxidative 

activity but some foods are of limited use as additives because they impart specific 

flavour, aroma or colour to the finished product. Natural antioxidants can be 

extracted from these foods and also from other materials that are not generally used 

as food. Sources of natural antioxidative compounds and their main active 

components reported in the literature are listed in Table 2.4. 

Antioxidative compounds of oilseeds like soybean, cottonseed, peanut and 

sesame have been investigated by some research workers. Most of the work come 

into the conclusion that the antioxidant activity is not due to a single compound; it is 

usually due to a group of compounds and also due to the synergistic activity of 

phospholipids and amino acids (Hayes et a/., 1977; Hudson and Ghavami, 1984). 

However, it is interesting to find the most active antioxidative compound from the 

natural sources. Research on soybean has concluded that its antioxidative activity is 

due to isoflavone glycosides, phenolic acids, amino acids, peptides and tocopherols 

(Hayes eta/., 1977; Pratt eta/., 1981). In peanuts, dihydroquercetin and taxifolin 

were identified as antioxidative flavonoids (Pratt and Miller, 1984). Quercetin and 

rutin were found to be the main antioxidative compounds in cottonseed (Whittern et 



Table 2.4 Sources of natural antioxidative compounds. 

Source Antioxidative compounds References 

Oils and oilseeds Tocopherols and tocotrienols Schuler (1990) 
Lignans ( eg. sesamol in sesame) Namiki (1990), Fukuda eta/. (1985) 
Phospholipids, isoflavones (eg. soybean) Rackis (1972), Hayes eta/. (1977), Pratt 

eta/. (1981), Nairn eta/. (1976) 

Phenolic acids and condensed tannins, Namiki (1990), Shahidi and Wanasundara 
flavonoids ( eg. dihydro quercetin and (1992), Pratt and Miller (1984), Whittem 
taxifolin in Peanut) et a/. (1984), Rhee et a/. (1979) 

Cereal grains C-glycosyl flavonoids (eg. isovitexin in Osawa et a/. (1985), Ramarathnam et al. 
rice) (1986, 1988, 1989) 

Phenolic acids, phospholipids (eg. oats) Schuler (1990) 

Fruits and vegetables Ascorbic acid, hydroxy carboxylic acids, Pokorny (1991), Namiki (1990) 
flavonoids, carotenoids 

Fungi Phenolic compounds Aoyama et al. (1982) 

Continued .. .. 



Table 2.4 (continued) 

Sources Antioxidative compounds References 

Spices and herbs Di-terpene lactones (eg. rosamanol in rosemary Inatani, et al. (1983), 
and sage), di-phenol glycoside (eg. rosemarie Namiki (1990), Nakatani and 
acid in rosemary), allyl phenol and lignans (eg. Kukuzaki (1987), Kikuzaki and 
mace), flavonoids (eg. perilla plant), capsicin (eg. Nakatani (1989), Nakatani and 
capsicum and black pepper), tetrahydro curcumin Inatani (1984), Jitoe eta/, (1992) 
(curcumin) 

Leaves and leaf waxes Catechins (eg. tea), tannins, ~-diketo compounds, Matsuzaki and Hara (1985), Su 
and medicinal plants nordihydroguaiaretic acid (NDGA) et al. (1988), Shahidi, et a/. 

(1992), Namiki (1990) 

Proteins and protein Amino acids, dihydropyridins, maillard reaction Kirigaya et al. (1968), Namiki 
h ydrol yzates products (1990) 

Woodsmoke Phenolic compounds Maga (1988), Barylko-Pikielna 
(1977) 
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al., 1984). Sesame seeds are found to contain sesamolinol, sesamol and sesamolin 

which are attributed to the superior oxidative stability of the oil (Fukuda eta/. 1985). 

Both the flour and methanolic extracts of mustard and canola seeds have shown 

antioxidative activities in meat model systems (Shahidi, 1988; Shahidi and 

Wanasundara, 1992). However, the chemical nature of the active compounds of 

mustard or canola seeds were not elucidated. 

Recently published review articles (Namiki, 1990; Pokorny, 1991; Shahidi and 

Wanasundara, 1992) and books (Hudson, 1990) have extensively discussed the 

occurrence, active ingredients and several other aspects of natural antioxidants. Most 

of these compounds have been shown to be as effective as BHA and BHT in model 

system studies, and those from established food sources such as sesame are expected 

to be safe as food additives. However, the development of antioxidants of natural 

origin compared to synthetic antioxidants will not be easy with respect to applicability 

to different food varieties, stability, solubility, ease of manufacture, cost, etc. It is 

also important to evaluate the safety of these natural additives due to the fact that 

there is no assurance that natural substances are non-toxic and safe. 

2.5 Measurements of lipid oxidation 

The available methods to monitor and measure the extent of lipid oxidation in 

lipid-containing foods and biological systems may be divided into two groups. The 

first group measures primary changes and the second group measures secondary 
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changes that occur in each system (Coxon, 1987; Gray and Monahan, 1992). Primary 

changes are generally measured by (a) oxygen uptake, (b) loss of unsaturated fatty 

acids and (c) hydroperoxide values (PV). Secondary changes are monitored by using 

the content of (a) carbonyls (as dinitrophenyl hydrazone or by gas chromatography), 

(b) malonaldehyde and other aldehydes (TBA test), (c) hydrocarbons (pentane value), 

and (d) fluorescence products (1-amino-3-iminopropane structure). However, the 

appropriate method to measure the extent of oxidation in a system depends on the 

particular food product and the way it has been processed and stored. 

2.5.1 Primary changes 

2.5.1.1 Measurement of changes of reactants 

Methods that measure primary changes of lipids may be classified as those that 

quantify loss of reactants (unsaturated fatty acids, oxygen) or formation of primary 

lipid oxidation products (hydroperoxides). These methods are more suitable to 

measure low levels of oxidation in uncooked products at low temperatures (Coxon, 

1987). Measurement of changes in fatty acid composition is not widely used in 

assessing lipid oxidation since it requires total lipid extraction, separation into lipid 

classes and conversion into derivatives suitable for gas chromatographic analysis. 

However, it has been proven that this method serves as a useful technique to identify 

which class of lipids and fatty acids are involved in the oxidative changes (Coxon, 

1987; Gray and Monahan, 1992) and also to assess lipid oxidation simulated by 
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different metal complexes that give different products (Gutteridge and Halliwell, 

1990). Changes in iodine value due to loss of unsaturation during accelerated 

oxidation studies may also be used (Hudson, 1983). 

During oxidation of lipids the oxygen in the air above the lipid surface slowly 

reacts with it and changes in the oxygen pressure may be measured quantitatively. 

This is the principle used in the Sylvester test. The principle used in the Sylvester 

test is that oil is subjected to high temperature (100°C) in a closed system and the 

drop of pressure in the system is quantified as oxidation proceeds. Increase in weight 

of fat due to absorption of oxygen during accelerated oxidation is measured under 

Schaal oven test conditions. This is a convenient method for measuring the length of 

the induction period (Olcott and Einest, 1958; Rossell, 1983). 

2.5.1.2 Measurement of hydroperoxides 

The classical method for quantification of hydroperoxides is the determination 

of "peroxide value" (PV). The hydroperoxide content which is generally referred to 

as peroxide content is determined by an iodometric method. This is based on the 

measurement of the iodine released from potassium iodide by the peroxides present 

in lipids. Drawbacks of this method are absorption of iodine at unsaturated bonds of 

the fatty acids and liberation of iodine from potassium iodide by oxygen present in 

the solution to be titrated (Gray, 1978). Several other chemical methods have been 

suggested to measure PV. Colorimetric methods based on the oxidation of Fe2
+ to 
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Fe3
+ and the determination of Fe3

+ as ferric thiocyanate, and a 2,6-dichlorophenol-

indophenol procedures are reported in the literature (Gray and Monahan, 1992). In 

studies on the oxidation of biological tissues and fluids, measurement of fatty acid 

hydroperoxides is more common than measuring their decomposition products. Fatty 

acid hydroperoxides can be analyzed by high performance liquid chromatography 

(HPLC) or their corresponding hydroperoxy acid reduction products may be 

determined by gas chromatography-mass spectrometry (GC-MS) (Hughes et al., 1983, 

1986). Fluorescence methods have been developed to determine hydroperoxides by 

allowing them to react with substances that form fluorescent products; eg. luminol and 

dichlorofluorescein (Gray, 1978). Although determination of peroxide value is a 

common measurement of lipid oxidation, its use is limited to the initial stages of lipid 

oxidation. 

The Active Oxygen Method (AOM), also referred to as Swift test of the 

American Oil Chemist's Society, is the most commonly used accelerated method for 

assessing the oxidative stability of fats. This method is based on the principle that 

aging and rancidification of a fat is greatly accelerated by aeration in a tube held at 

a constant elevated temperature (Rossell, 1983). The peroxide value reached by the 

AOM at which a fat will be rancid by organoleptic evaluation varies with the nature 

of the fat (Dugan, 1955). An automated version of the AOM apparatus, known as 

Rancimat, is now available. Laubi and Bruttel (1986) compared the AOM and the 

Rancimat methods for evaluation of PV and found that the Rancimat method yielded 
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results equivalent to the AOM. Rancimat plots the conductometric determination of 

volatile degradation products by measuring conductivity against time. Despite the 

high cost of the apparatus, Rancimat is currently regarded as the method of choice for 

fat stability studies. 

2.5.1.3 Measurement of conjugated dienes 

Oxidation of polyunsaturated fatty acids is accompanied by an increase in the 

ultraviolet absorption of the product. Lipids containing methylene interrupted dienes 

or polyenes show a shift in double bond position during oxidation due to 

isomerization and conjugation formation (Logani and Davies, 1980). The resulting 

conjugated dienes show intense absorption at 234 nm and similarly conjugated trienes 

show absorption at 268 nm. Farmer and Sutton (1946) indicated that the absorption 

increase is proportionate to the uptake of oxygen and to the formation of peroxides 

in the early stages of oxidation. St. Angelo et a/. (1972 and 1975) studied the 

autoxidation of peanut butter by measuring the PV and the increase in absorbance at 

234 nm due to the formation of conjugated dienes. They concluded that the 

conjugated diene method can be used as an index of stability of peanut butter in place 

of, or in addition to the PV. The conjugated diene method is faster than the PV 

determination, is much simpler, does not depend upon chemical reaction or colour 

development, and requires a smaller samples size. 



38 

2.5.2 Secondary changes 

The primary products (peroxides) of oxidized fats are transitionary 

intermediates which decompose into various secondary products and measurement of 

these secondary products as an index of lipid oxidation is more appropriate. This is 

due to the fact that while primary oxidation products are colourless and flavourless, 

secondary products of oxidation are generally flavour-active. Secondary oxidation 

products include carbonyls (ketones and aldehydes), hydrocarbons, etc. 

2.5.2.1 Thiobarbituric acid value 

One of the oldest and the most frequently used test for assessing lipid 

oxidation in foods and other biological systems is the 2-thiobarbituric acid (TBA) test. 

The extent of lipid oxidation is reported as the TBA number and is expressed as 

milligrams of malonaldehyde (MA) equivalents per kilogram of sample or pmoles of 

MA equivalents per gram of sample. Malonaldehyde is a relatively minor lipid 

oxidation product that is formed during the oxidation of polyunsaturated fatty acids 

and reacts with TBA to produce a coloured complex with an absorption maximum at 

530-532 run (Tarladgis et al., 1964; Gray, 1978). The adduct formed by condensation 

of 2 moles of TBA with 1 mole of MA is shown in Figure 2.5. Dahle et a/. (1962) 

postulated a mechanism for formation of MA and indicated that only peroxides which 

possess unsaturation, ~. y to the peroxide group are capable of undergoing cyclization 

with the ultimate formation of MA. Such peroxides could be produced from fatty 
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TBA-MA adduct 

Figure 2.5 Possible reaction between TBA and malonaldehyde. 
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acids containing three or more double bonds (Dahle et al., 1962; Coxon, 1987). The 

other products of lipid oxidation, namely other aldehydes and dienals (alka-2,4-

dienals) may also react with the TBA reagent to form a pink-coloured complex with 

the same absorption maximum as the MA-TBA complex (Marcuse and Johansson, 

1973). Therefore, the term "thiobarbituric acid-reactive substances" (TBARS) is now 

commonly used in place of TBA number or value (Ke eta/., 1984; Gray and Pearson, 

1987). There are certain limitations when using the TBA test for evaluation of the 

oxidative state of foods and biological systems because of the chemical complexity 

of these systems. Dugan (1955) has reported that sucrose and some compounds in 

woodsmoke react with the TBA reagent to give a red colour. Baumgartner et al. 

(1975) have also found that a mixture of acetaldehyde and sucrose when subjected to 

the TBA test produced a 532 nm absorbing pigment identical to that produced by MA 

and TBA. Modification of the original TBA test have been reported by Marcuse and 

Johansson, (1973), Ke and Woyewoda, (1979), Rabbles-Martinez et al. (1982), 

Pokorny et al. (1985), Shahidi et al. (1987), Thomas and Funes (1987) and Schmedes 

and Holmer (1989). However, it has been suggested that changes in TBARS for a 

particular situation can show the relative amount of lipid oxidation occurring in the 

food system during storage or processing. It is always preferable to quantitate the 

extent of lipid oxidation by a complementary analytical procedure to verify the results. 

Several attempts have been made to establish a relationship between TBA 

values and the development of undesirable flavour characteristics of fats. It has been 
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shown that flavour thresh holds have a good correlation between the TBA values of 

vegetable oils including soybean, cottonseed, corn, safflower (Gray, 1978) and canol a 

oil (Hawrysh, 1990). 

2.5.2.2 p-Anisidine value 

p-Anisidine value is used to measure secondary products of lipid oxidation. 

This method determines the amount of aldehydes (principally 2-alkenals and 2,4-

dienals) in animal and vegetable fats and oils. Aldehydes in an oil and the p-anisidine 

reagent are reacted in an acidic solution (AOCS, 1990). The proposed reaction of p

anisidine with aldehydes to form yellowish products is shown in Figure 2.6. List et 

al. (1974) reported a highly significant correlation between anisidine values of salad 

oils processed from undamaged soybeans and their flavour acceptability scores. 

2.5.2.3. Measurement of carbonyls 

An alternative approach to determine extent of lipid oxidation is to measure 

the total or individual volatile carbonyl compounds formed by degradation of 

hydroperoxides. Hexanal, one of the major secondary products formed during the 

oxidation of linoleic acid in oils (Frankel et al., 1981) and other aldehydes have been 

used to follow lipid oxidation in meat products. Shahidi et al. (1987) reported a 

linear relationship between hexanal content, sensory scores and TBA numbers of 

cooked ground pork, while St. Angelo et al. (1987) established a similar correlation 
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for cooked beef. These studies suggested that compounds usually associated with 

lipid oxidation could be used as marker compounds to follow development of off

flavou:-s in lipid-containing foods. 

2.5.2.4 Measurement of hydrocarbon and fluorescent products 

Oxidative studies with methyl linoleate and soybean oil (Selke et a/., 1970) 

revealed that saturated hydrocarbons could be detected when aldehydes are either 

absent or undetectable. Evans et a/. (1967) have reported that pentane is the 

predominant short chain hydrocarbon formed through thermal decomposition of 

linoleic acid. Correlation of flavour acceptability scores and pentane formation have 

been used to determine rancidity of oils by gas chromatographic techniques (Gray, 

1978). Significant correlations were obtained between the amount of pentane 

produced and the number of rancid descriptions of aged vegetable oils and potato 

chips (Warner eta/., 1974). Headspace pentane concentration and sensory scores for 

rancidity development in stored freeze-dried pork samples was reported by Coxon 

(1987). 

Another secondary change that occurs in biological materials during 

autoxidation is the formation of fluorescent products from the reaction of MA with 

amino compounds such as proteins and nucleotides (Gray, 1978; Coxon, 1987). 

Advantages of the fluorescence method as a mean of measuring lipid oxidation have 

been reported (Dillard and Tappet, 1971; 1973). The method which is very sensitive 
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can detect fluorescent compounds at a level of one part per billion and was found to 

be 10 to 100 times more sensitive than the TBA assay. 

2.5.3 Recent developments in measurement of lipid oxidation 

Lipid oxidation in foods and biological systems has conventionally been 

studied by monitoring the primary and secondary lipid oxidation products. On the last 

twenty years advances in pulse radiolysis (Simic, 1980) and electron spin resonance 

or ESR (Schaich and Borgi, 1980) techniques have facilitated the detection and study 

of short-lived free radical intermediates. Use of ESR to detect free radicals (ESR 

detects species with unpaired electrons only) requires rapid freezing, lyophilization or 

spin trapping (Davies, 1987). Although the application of ESR is precise to study 

lipid oxidation in animal tissues and other biological model systems its application to 

food systems is relatively new. However, a method to determine both the primary 

and secondary products of lipid oxidation simultaneously has not been developed. 

Due to the differences in chemical nature of these products it is not possible to 

postulate a chemical method. The solution to this problem may be obtained when 

changes in the protons in an oxidizing molecule are considered carefully. A 

possibility of use of proton Nuclear Magnetic Resonance CH NMR) to evaluate 

oxidative changes of fatty acid molecule has been described by Saito and Udagawa 

(1992) and Shahidi (1992). 



45 

2.6 Problems related to oxidation of canola oil 

Canola oil has a unique fatty acid composition which differentiates it from 

other edible vegetable oils. In general, canola oil has a higher oleic acid (C18:1) 

content (56-63%) and lower linoleic acid (C18:2) content (19-22%) than most other 

edible vegetable oils (Table 2.5). Canola oil has a high content (8-14%) of linolenic 

acid (C18:3) as compared to other vegetable oils such as soybean, sunflower, olive 

and com. The higher unsaturated fatty acid content, especially C18:3, in canola 

influences oil quality and stability. Fresh canola oil is odourless, bland and light 

coloured. During storage, canola oil develops off-flavours and its quality deteriorates 

due to autoxidation (Hawrysh, 1990). 

According to Canadian canola oil standards (Section 43, Schedule II, Processed 

Products Standards, 1987), a high quality canola oil should have a PV below 2.0 

meq!kg. For fresh commercially processed canola oils, a PV of less than 2.0 meq!kg 

is associated with sensory scores indicative of oils that are bland (Hawrysh et a/., 

1988; 1990). 

Stability of canola oil with respect to its flavour deterioration has been 

investigated in the past several years. Studies done by Hawrysh and co-workers 

(1989) concluded that container material and light play an important role in 

determining oxidative stability of canola oil. Storage of canola oil in amber coloured 

bottles under simulated supermarket conditions lowered peroxide formation and 

delayed flavour deterioration as compared to when it was stored in clear glass bottles. 



Table 2.5 Comparison of major fatty acids of some edible vegetable oils (w/w% fatty acids)3
• 

Fatty acid Canola Soybean Corn Safflower Sunflower Peanut Olive 

14:0 0.05 0.1 - 0.1 - 0.1 -

16:0 3.55 10.8 11.4 6.5 6.2 10.0 11.0 

16:1 0.28 0.2 - 0.4 - 0.1 0.8 

18:0 1.38 4.0 1.9 2.3 4.7 2.3 2.2 

18:1 55.58 23.8 25.3 12.2 20.4 47.1 75.8 

18:2 21.87 53.3 60.7 77.4 68.8 33.6 8.3 

18:3 12.99 7.1 0.7 0.4 - - 0.6 

20:0 0.43 - - - - - -

20:1 1.78 0.2 - - - 1.4 0.3 

22:0 0.20 - - - - - -

22:1 1.63 - - - - - -

a Ackman (1990) 
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McMullen (1988) and Hawrysh (1989) showed that packaging of canola oil in 

polyvinyl chloride (PVC) bottles is not suitable for prolonged storage because of 

permeability of PVC to oxygen. Warner eta/. (1989) showed that the exposure of 

low erucic acid rapeseed oil to fluorescent light (7535 lux at 30°C) increased PV and 

the flavour scores of the oil decreased. It has been concluded that to retard oxidative 

deterioration and to minimize off-flavour development, packaging materials selected 

for canola oils should be amber in colour (Hawrysh eta/., 1989) or impervious to 

light of low wavelengths (Sattar et al., 1976a,b). Heating of canola oil to frying 

temperature develops an unpleasant room odour (Dobbs eta/., 1978; Eskin, 1989) that 

has been described as painty with buttery, sweet, sulphur-like and possessing fishy 

notes. Niewieadomski (1970) attributed this unpleasant odour to the oxidation of 

unsaturated fatty acids and later McKeag ( 1977) suggested that the heated room odour 

of canola oil may be due to the oxidation of linolenic acid. Hydrogenation reduces 

the linolenic acid content of canola oil and tends to decrease heated room odour 

development in the product (Dobbs eta/,. 1978; Eskin eta/., 1989a). Comparison of 

the flavour and oxidative stability of low- and high-linolinate canola oils showed that 

low-linolinate canola oil had improved flavour quality and storage stability (Eskin et 

a/., 1989b). 



3.1 Materials 

CHAPTER 3 
MATERIAL AND METHODS 

Canola seeds and oils, either fresh, refined bleached (RB) or refined bleached 

deodourized (RBD) containing no antioxidants were obtained from CSP Foods (now 

CanAmera), Saskatoon, Saskatchewan. RBD soybean oil was obtained from 

CanAmera Foods, Hamilton, Ontario. Synthetic antioxidants namely tert-

butylhydroquinone (TBHQ), butylated hydoxyanisole (BHA), butylated hydoxytoluene 

(BHT) and commercially available flavonoids (apigenin, chrysin, [-]epicatechin, 

kaempferol, morin, myricetin, naringenin, naringin, quercetin, rutin and taxifolin) were 

obtained from either Sigma (St. Louis, Missouri) or Aldrich Chemical Company 

(Milawaukee, Wisconsin). Monoglyceride citrate (CA) was obtained from Griffiths 

Laboratory, Scarborough, Ontario. All other chemicals used in this study were ACS 

grade or better. 

3.2 Preparation of canola extract 

Canola seeds were first ground using a Moulinex coffee grinder, then defatted 

with hexenes using a Soxhlet apparatus and air dried overnight. Defatted canola meal 

(6.0 g) was extracted with 100 ml of 95% ethanol for 20 min at 80°C. The extraction 

was repeated two times and residual meal was separated by centrifugation (10 min at 

5000 x g). Ethanolic extracts were combined and evaporated to dryness under 

vacuum at 40°C. This procedure was repeated to obtain a sufficient amount of canola 
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extract. The dried extract so obtained from several 6.0 g lots of defatted canola meals 

was transferred into air-tight glass vials and stored at -20°C until use. 

3.3 Preparation of oil for accelerated oxidation studies 

The dried canola extract, synthetic antioxidants and flavonoids were applied 

to RB canola oil at levels indicated in Table 3.1. The additives were dissolved in a 

minimum amount of absolute ethanol, then added to the oil (200 g) and mixed 

thoroughly for 10 min using an ultrasonic water bath. Control samples of oil 

contained the same minimum amount of ethanol used to dissolve additives. Since the 

oil samples were cloudy and turbid when 500 or 1000 ppm of canola extract was 

used, another set of experiments were carried out using 500 and 1000 ppm levels of 

extracts followed by centrifugation (15 min at 5000 x g) to remove undissolved 

matters. 

The weight gain of 2.0 g of canola oil, as such or treated with different 

additives, (in triplicate) in glass petri dishes (60 mm diameter and 15 mm height), was 

carried out after removing traces of water in a vacuum oven set at 35°C overnight. 

Each sample was reweighed and stored in a forced-air oven (Thelco, Model 2, 

Precision Scientific Co. Chicago) at 65°C. The rate of oxidation in terms of weight 

increase was recorded at 24 h intervals over a period of 20 days. The time required 

for a 0.5% weight increase for each oil sample was taken as the index of stability 

(Olcott and Einest, 1958). 
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Table 3.1 Types and levels of additives used in RB canola oil for accelerated 
oxidation studies. 

Additives Level 

Canola extract 100 ppm (CE-100 ppm) 

200 ppm (CE-200 ppm) 

500 ppm (CE-500 ppm) 

500 ppm (CE-500 ppm, centrifuged) 

1000 ppm (CE-1000 ppm) 

1000 ppm (CE-1000 ppm, centrifuged) 

BHA/BHT/CAa 100/100/50 ppm (BHA/BHT/CA-250 ppm) 

TBHQ 200 ppm 

Apigenin 200 ppm 

Chrysin 200 ppm 

(-)Epicatechin 200 ppm 

Kaempferol 200 ppm 

Morin 200 ppm 

Myricetin 200 ppm 

Naringenin 200 ppm 

Naringin 200 ppm 

Quercetin 200 ppm 

Rutin 200 ppm 

Taxifolin 200 ppm 

a citric acid as its monoglyceride citrate derivative 
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A 25 ml sample of each treated oil was stored separately under the same 

conditions in open glass containers (30 mm diameter and 60 mm height) for other 

chemical analysis. Samples from each treatment were removed on days 0, 2, 5, 9, 13, 

and 17, flushed with nitrogen, sealed with parafilm and stored at -20°C until analysed. 

For nuclear magnetic resonance (NMR) studies samples (25 ml, RBD canola 

and soybean oils) were stored under the same accelerated oxidation conditions 

described above for up to 30 days. Sampling was done at 5 day intervals. 

3.4 Separation of RB canola oil into neutral lipids (NL), glycolipids (GL) and 
phospholipids (PL) 

Separation of lipid classes was done according to the method described by 

Christie (1982). Samples of the RB canola oil (1.75 g) were applied to a silicic acid 

column (1.25 em internal diameter and 20 em height; 100 mesh silicic acid powder, 

Mallinckrodt Canada Inc. Pointe-Claire, Quebec). First the neutral lipid (NL) fraction 

of oil was eluted with chloroform (1200 ml), then monogalactosyl diacylglycerol and 

digalactocyl diacylglycerol were eluted with chloroform-acetone (50:50 v/v, 900 ml) 

and acetone (1200 ml), respectively. Finally methanol (1200 ml) was used to elute 

the phospholipid (PL) fraction. Solvents were removed under vacuum using a rotary 

evaporator at 40°C. All fractions were weighed and the weight percentage of NL, GL 

(both mono and digalactocyl diacylglycerol) and PL was calculated. 
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3.5 Fractionation of canola meal extract 

Fractionation of ethanolic extract of canola meal was carried out according to 

the scheme given in Figure 3.1. 

3.5.1 Sephadex column chromatography 

A column (1.5 em diameter and 77 em height) was packed with Sephadex LH-

20 (particle size 25-100 pm, Pharmacia, Uppsala, Sweden). A 0.5 g sample of dried 

canola meal extract was dissolved in 3 ml of methanol and was subsequently 

introduced to the top of the column. The same solvent was used for elution and 8 ml 

fractions were collected using a LKB Bromma 2112 redirac fraction collector 

(Phamacia, Uppsala, Sweden). 

According to UV absorbance values and contents of phenolics and sugars, 

samples were separated into seven major fractions (I, II, ill, IV, V, VI and Vll) and 

antioxidant activity of each fraction was evaluated in a J3-carotene-linoleate model 

system. Fraction number IV showed the highest antioxidant activity and was further 

separated by thin layer chromatography (TLC). Antioxidant activity of separated 

bands were determined using a J3-carotene-linoleate spray as given in Section 3.8. 

The same fraction (fraction IV) was also loaded onto preparative TLC plates and the 

band corresponding to the Rr value of the most active antioxidative compound 

(determined by cochromatography) was isolated. Further purification of this 

compound is described in Section 3.5.2. 
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Dried canola extract 

! 
Fractionation by column chromatography 

(Sephadr LH-20) 

I II Ill IV v VI vn 

Antioxidant activity ((3-carotene-linoleate model system) 

Thin layer chromatography (silica gel) 
(chlorofonn/methanoVwater, 65:35: 10) 

! 
Fraction IV 

! 
Thin layer chromatography (silica gel) 
(chlorofonn/methanoVwater, 65:35:10) 

Antioxidative activity jcarotene-liooleate spray) 

The most active antioxidative compound 

l 
Identification 

Figure 3.1 Fractionation of ethanolic canola meal extract 
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3.5.2 Thin layer chromatography (TLC) 

Different fractions separated by Sephadex LH-20 chromatography (Figure 3.1) 

were loaded onto thin layer chromatographic (TLC) plates (Silica gel, 60 A mean pore 

diameter, 2-25 pm mean particle size, 250 pm thickness, Sigma Chern. Co., St. Louis, 

Missouri). Chromatograms were developed in a glass chamber 22 em x 22 em x 10 

em (Fisher Scientific Ltd. Toronto, Ontario) using chlorofonn/methanoVwater 

(65:35:10, v/v/v) as the mobile phase (Amarowicz eta/., 1992). After drying, bands 

were located by viewing under short (254 nm) and long (365 nm) UV radiation 

(Spectraline, Model ENF-240C, Spectronics Co. Westbury, New York). The 

following sprays (spray 1 and 2) were used to tentatively identify chemical classes of 

compounds. 

Spray 1. Ferric chloride-potassium ferricyanide: FeC13- K2Fe(CN)6 

Equal volumes of 1% (w/v) aqueous solutions of each salt were freshly mixed 

(producing an orange-brown solution). Phenols give blue colour with this reagent 

immediately (Barton eta/., 1952). 

Spray 2. Ferric chloride in alcohol: FeC13 

A 2% (w/v) solution of FeC13 in absolute ethanol was prepared. Phenolics 

with trihydroxy and dihydroxy groups give distinct blue and green colour, with this 

reagent, respectively. Other phenolics give a red or brown colour (Reio, 1958). 
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The fraction with highest antioxidative activity in a f3-carotene-linoleate model 

system (fraction IV) was loaded onto a similar TLC plate and chromatogram was 

developed using chloroform/methanol/water (65:35:10, v/v/v). The antioxidant 

activity of separated bands was determined according to the procedure given in 

Section 3.8. 

To obtain sufficient quantities of the most active antioxidative compound, 

fraction IV was subjected to preparative TLC separation. Band with the same Rr 

value of the most active antioxidative compound (seen in analytical TLC) was scraped 

and extracted with spectral grade methanol. The mixture was centrifuged (3 min at 

5000 x g) and the supernatant was evaporated to dryness under vacuum at 40°C. The 

dried residue was used for further analysis. 

3.6 Chemical analyses 

3.6.1 Analysis of fatty acids 

Fatty acid composition of RBD soybean and canola oils and RB canola oil was 

determined. Fatty acid methyl esters (FAME) were prepared by transmethylation of 

the lipid fatty acids in 6% H2S04 in 99.9 mole% of methanol at 65-70°C for 15 h 

(Keough and Kariel, 1987). After extraction of the methyl esters into hexane, they 

were analyzed using a Perkin-Elmer 8310 GC equipped with a 30m x 0.25 mm 

column (SP 2330, Supelco, Oakville, Ontario). Oven temperature was initially 180°C 

for 12 min and was ramped to 200°C at 20°C/min and held there for 8 min. The 
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injection port and flame ionisation detector temperatures were 230°C and 250°C, 

respectively. The flow rate of the helium carrier gas was 25 ml/min. Identification 

of FAME was based on the comparison of their retention times with those of FAME 

standard mixture (Supelco INC, Oakvill, Ontario). Quantification was performed by 

the computer control using area normalization. 

3.6.2 Acid value (A V) 

Acid value of oil samples was determined according to the AOCS (1990) 

method. Samples (15-20 g) were weighed into a 250 ml glass Erlenmeyer flask and 

50 ml of 95% (v/v) ethanol (neutralized with 0.5N KOH) and 2 ml of 1% 

phenolphthalein indicator solution were added to it. The contents were mixed and 

heated until the temperature was reached to 70°C. The mixture was then titrated with 

a standardized 0.1N potassium hydroxide (KOH) solution until a permanent pink 

colour appeared. A blank titration was conducted each time. The A V was expressed 

as the number of milligrams of KOH required to neutralize the free fatty acids in a 

gram of oil. 

AV = 
(VSample- VBiank) x NKOH x 56.1 

Mass of sample (g) 

Where V = volume of potassium hydroxide (ml) and N = normality of potassium 

hydroxide. 
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3.6.3 Iodine value (IV) 

Iodine value of oil samples was determined according to the AOCS (1990) 

method. Samples (0.1-0.2 g) were weighed into a 250 ml glass-stoppered Erlenmeyer 

flask and 10 ml of chloroform was added to it. After thorough mixing, the flask was 

wrapped in aluminium foil and 25 ml of Hanus iodine solution was added to it and 

the mixture was allowed to stand for 30 min in dark. After this period, a 10 ml 

solution of 15% potassium iodide (KI) and 100 ml of distilled water were added to 

the sample. The mixture was then titrated with a standardized 0.1N solution of 

sodium thiosulphate (N~S203) with constant shaking until the yellow colour had 

almost disappeared. Then 0.5 ml of a solution of starch indicator (1% w/v) was 

added to the mixture and titration was continued until the blue colour of starch-iodine 

complex disappeared. A blank titration was conducted each time. The IV was 

expressed as the uptake of iodine in grams by 100 g of oil. 

IV= 
(VBlank - VSample) x NN~SP3 x 12.692 

Mass of sample (g) 

Where V = volume of sodium thiosulphate solution (ml) and N = normality of sodium 

thiosulphate solution. 
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3.6.4 Peroxide value (PV) 

The method described by AOCS (1990) was used to determine PV of the oil 

sampJes. Samples (2.0-4.0 g) were weighed into 250 ml glass-stoppered Erlenmeyer 

flasks and 30 ml of acetic acid-chloroform (3:2, v/v) solution was then added to each. 

The contents were mixed until oil was dissolved and then 0.5 ml of saturated 

potassium iodide (KI) solution was added to it. The mixture was allowed to stand in 

stoppered flasks with occasional shaking for exactly 1 min and then 30 ml of distilled 

water was added to it. The liberated iodine was titrated with standardized 0.01N 

sodium thiosulphate (NazS20 3) solution, with constant shaking, until the yellow colour 

had almost disappeared. About 0.5 ml of starch indicator solution (1% w/v) was then 

added to the flask and titration was continued with vigorous shacking until the blue 

colour of the solution had disappeared. A blank titration was conducted each time. 

PV was expressed as the uptake of milliequivalents of active oxygen (i.e. peroxide) 

per kilogram of oil. 

PV = 
(Vsample - VBiank) x NNazS20 3 x 1000 

Mass of sample (g) 

Where V = volume of sodium thiosulphate solution (ml) and N = normality of sodium 

thiosulphate solution. 
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3.6.5 Conjugated diene value (CD) 

Conjugated diene value of oil samples was measured by the method of IUPAC 

(1987). Oil samples (0.02-0.04 g) were weighed into 25 ml volumetric flask, 

dissolved in isooctane (2,2,4-trimethylpentane) and made up to the mark with the 

same solvent. The solution was thoroughly mixed and the absorbance was read at 234 

nm using a Hewlett-Packard 8452A diode array spectrophotometer. Pure isooctane 

was used as the reference. Conjugated diene value was calculated as: 

CD = 
A 

(c x d) 

Where A = absorbance of the solution at 234 nm, c = concentration of the solution 

in g/100 rnl solution and d = length of the cell (em). 

3.6.6 2-Thiobarbituric acid reactive substances (TBARS) 

The direct method of determining TBARS value by AOCS (1990) was used. 

Oil (50-200 mg) was accurately weighed into a 25 ml volumetric flask and dissolved 

in a small volume of 1-butanol and made up to volume with same solvent. Five 

rnillilitres of this solution was transferred into a dry test tube to which 5 ml of fresh 

TBA reagent (200 mg TBA in 100 rnl 1-butanol) was added. The contents were 

thoroughly mixed and heated in a water bath at 95°C for 120 min. Heated samples 

were cooled and the absorbance of the resultant coloured complex was read at 532 
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nm. A standard curve was prepared using 1,1,3,3-tetramethoxypropane (TMP) as 

malonaldehyde (MA) precursor (Yu and Sinnhuber, 1967). Micromoles of MA 

equivalents in a gram of oil, expressed as TBARS value, was calculated using the 

equation C = (0.355A532)/w, r = 0.995 (for details see Figure A.1 in the Appendix). 

3.6.7 p-Anisidine value (An V) 

The p-Anisidine value is defined as the optical density measured at 350 nm 

in a 1.0 em cell of a solution containing 1.0 g of the oil in 100 ml of a mixture of 

solvent and reagent according to the method described in AOCS (1990) multiplied by 

100. A 0.5-2.0 g of oil was weighed into a 25 ml volumetric flask and dissolved in 

isooctane (2,2,4-trimethylpentane), to the mark. Absorbance of the solution at 350 nm 

was read as soon as possible using a reference cell filled with the solvent. Five 

millilitres of the solution was then transferred into a dry test tube and 1.0 ml of p-

anisidine reagent (0.25 g p-anisidine/100ml of glacial acetic acid) was added to it. 

The absorbance of the solution was then measured at 350 nm after exactly 10 min. 

A solution containing five rnillilitres of isooctane and 1.0 ml p-anisidine reagent was 

used as the blank. The An V was calculated by the following formula. 

25 x (1.2A5 - AB) 
AnV = 

m 

Where As = absorbance of the solution containing oil after reaction with the p-
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anisidine reagent, AB = absorbance of the solution containing oil and m = mass of the 

oil sample (g). 

3.6.8 TOTOX value 

The total oxidation (TOTO X) value was calculated from PV and An V data for 

each sample according to the following equation. 

TOTO X value = 2PV + An V 

3.6.9 Determination of phenolic content of fractions separated by column 
chromatography 

Concentration of total phenolics of each fraction was estimated colorimetrically 

using the Folin-Denis reagent as described by Swain and Hillis (1959). To a 0.1 ml 

of the test solution 0.25 ml Folin-Denis reagent, 0.5 ml saturated N~C03 and 2 ml 

distilled water were added and mixed thoroughly. After 30 min standing at room 

temperature, the mixtures were centrifuged and absorbance values at 725 nm were 

recorded. 

3.6.10 Determination of sugar content of fractions separated by column 
chromatography 

The sugar content of each fraction was estim~ted by mixing 0.1 ml of sample 

with 0.05 ml of 80% (v/v) phenol solution and 5 ml concentrated H2S04 (Dubois et 
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al. , 1956). Absorbance of the samples at 490 nm was read after 30 min standing at 

room temperature. 

3. 7 UV absorbance of column chromatographic fractions 

A 0.1 ml of each sample fraction was mixed with 2 ml of spectral grade 

methanol. Absorbance of each sample at 280 nm was measured using a Hewlett

Packard 8452A diode array spectrophotometer. 

3.8 Evaluation of antioxidant activity 

Antioxidant activity of the isolated fractions was evaluated using a J3-carotene

linoleate model system (Miller, 1971). A solution of P-carotene was prepared by 

dissolving 2.0 mg of P-carotene in 10 ml of chloroform. One millilitre of this 

solution was then pipetted into a round-bottom flask. After removing chloroform 

under vacuum using a rotary evaporator at 40°C, 20 mg of purified linoleic acid, 200 

mg of Tween 40 emulsifier and 50 ml of aerated distilled water were added to the 

flask with vigorous shaking. Aliquotes (5 ml) of this prepared emulsion were 

transferred into a series of tubes containing 2 mg of each fraction (fractions I to VII) 

or BHA for comparative purposes. As soon as the emulsion was added to each tube, 

the zero time absorbance was read at 470 nm. Subsequent absorbance readings were 

recorded at 15 min intervals by keeping the samples in a water bath at 50°C until the 

colour of J3-carotene had disappeared (about 120 min). 
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Relative antioxidant activity of band components on the developed TLC plates 

were detected using the P-carotene spray method described by Pratt and Miller (1984). 

Nine milligrams of P-carotene was dissolved in 30 ml chloroform. Two drops of 

linoleic acid and 60 ml of ethanol were added to the P-carotene chloroform solution. 

This solution was sprayed on TLC plates which were then exposed to day-light for 

2-3 h or until the background colour was bleached. Bands in which the yellow colour 

persisted were considered as having antioxidant activity and the colour intensity was 

related to their activity strength. 

3.9 Instrumental analysis of the most active antioxidative compound of canola 
extract 

3.9.1 UV Spectrophotometry 

UV absorption spectrum of the most active antioxidative compound in 

methanol after purification, was recorded using a Hewlett-Packard 8452A diode array 

spectrophotometer. 

3.9.2 Mass spectrometry (MS) 

All mass spectra were recorded using an electron ionization (EI) mode at 70 

e V with a 7070 HS Micromass double focusing mass spectrometer. The temperatures 

used were source at 200°C, probe at 100-300°C and scanning at 20-25°C. 
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3.9.3 Proton and carbon nuclear magnetic resonance spectrometry 

NMR spectra were recorded on a General Electronic 300-NB spectrometer. 1H (at 

300 MHz) and 13CeH} (at 75.5 MHz) NMR data were collected at room temperature in 

CD30D. Chemical shifts were reported relative to tetramethylsilane (TMS) internal standard. 

3.10 NMR spectrometry of oil samples 

Proton NMR eH NMR) spectra of the oil samples, subjected to accelerated oxidation, 

were recorded using a 300 MHz nuclear magnetic resonance spectrometer (General Electric 

GN-300) in CDC13 solvent Tetramethylsilane (TMS) was used as the internal standard. 

Solutions containing approximately 35 mg oil in CDC13 were placed in NMR tubes and the 

spectra were recorded. The total number of protons under each peak was calculated on the 

basis of integration of methylene protons of the triacylglycerol backbone. 

3.11 Statistical analysis 

All experiments and/or measurements were replicated 3 times. Mean values ± 

standard deviation were reported for each case. Analysis of variance and Tukey's 

studentized range test (Snedecor and Cochran, 1980) were performed on Statistical Analysis 

System (SAS Inc. 1990, North Carolina, USA) to evaluate the significance of differences 

between different mean values. Relationships of parameters were established using a linear 

regression method. 



CHAPTER 4 
RESULTS AND DISCUSSION 

4.1 Chemical properties of refined-bleached canola oil 

Fresh refined-bleached (RB) canola oil was used in this study. It had low acid, 

iodine and peroxide values as summarized in Table 4.1. The Canadian standards 

(Canada Agriculture Products Act. 1955) require that high quality canola oil have an 

acid value of less than 0.6 mg KOH/g oil, an iodine value between 110 and 126 g 

iodine/1 00 g oil and a peroxide value below 2 meq!kg oil. 

Small amounts of glycolipids (1.38%) and phospholipids (1.02%) were present 

in this RB oil and the rest were neutral lipids (97.60%). The low content of polar 

lipids may be due to their partial removal during the degumming process. The total 

fatty acid composition of RB canola oil indicated that it contained approximately 58% 

oleic, 23.50% linoleic, 9.37% linolenic acids and a small amount of erucic acid 

(0.27%) (Table 4.2). According to the Canadian standards, erucic acid content of 

canola oil should not exceed 2% of its total fatty acids. The fatty acid composition 

of the oil used in this study showed the typical fatty acid profile of canola oil as 

reported by Hawrysh et al. (1988) and McMullen et al. (1991). 
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Table 4.1 Acid value, iodine value, peroxide value and lipid classes of refined
bleached canola oil (without additives). 

Parameter Content 

Acid value (mg KOH/g oil) 0.05 ± 0.00 

Iodine value (g iodine/100 g oil) 112.0 ± 1.9 

Peroxide value (meq/kg oil) 0.20 ± 0.01 

Lipid classes (weight%): 

Neutral lipids 97.6 ± 0.8 

Glycolipids 1.38 ± 0.21 

Phospholipids 1.02 ± 0.16 
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Table 4.2 Fatty acid composition (area %) of refined-bleached canola oil 
(without additives). 

Fatty acid Content 

C16:0 4.23 ± 0.00 

C16:1 0.23 ± 0.00 

C18:0 1.89 ± 0.01 

C18:1 57.70 ± 0.10 

C18:2 23.50 ± 0.10 

C18:3 9.37 ± 0.03 

C20:0 0.63 ± 0.00 

C20:1 1.84 ± 0.01 

C22:0 0.33 ± 0.01 

C22:1 0.27 ± 0.01 
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4.2 Stability of refined-bleached canola oil as affected by the addition of canola 
extract (CE), flavonoids and synthetic antioxidants measured by various 
physical and chemical indices 

4.2.1 Effect on weight gain, peroxide and conjugated diene (CD) values 

Effect of added CE, BHA/BHT/CA and TBHQ, at levels of 100-1000 ppm, on 

weight gain of canola oil during accelerated oxidation is presented in Figure 4.1. The 

time required for a 0.5% weight increase (Olcott and Einset, 1958) of oil sample was 

taken as the length of induction period. It was 5.0, 6.0, 6.3, 6.5, 7.8 and 8.5 days for 

oils to which CE-100, CE-200, BHA/BHT/CA-250, CE-500, CE-1000 and TBHQ-200 

were added, respectively. Weight gain data of canola oil treated with different 

flavonoids as compared with BHA/BHT/CA and TBHQ are shown in Figure 4.2. All 

flavonoid-treated samples showed a delayed induction period compared to the control. 

The time required to achieve a 0.5% weight increase by the sample was 3.5 days for 

apigenin, kaempferol, chrysin and naringenin, 4.0 days for taxifolin, 5.5 days for 

naringin and morin, 5.8 days for quercetin, 6.0 days for rutin, 7.0 days for 

(-)epicatechin and 15 days for myricetin. The corresponding value for the control 

sample was 3.2 days. 

The extension of the induction period of the oil by using CE-500, CE-1000 

and TBHQ was 2, 2.5 and 2.7 times that of the control, respectively. Furthermore, 

samples containing CE-500 and CE-1000 had a delayed induction period compared 

to that of BHA/BHT/CA which is commonly used in canola oil. Extension of the 

induction period by (-)epicatechin and myricetin was 2 and 5 times that of the control, 



69 

Figure 4.1 Effect of added canola extract and synthetic antioxidants on the weight 
gain of refined-bleached canola oil stored at 65°C. 
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Figure 4.2 Effect of flavonoids and synthetic antioxidants on the weight gain of 
refined-bleached canola oil stored at 65°C. 
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respectively. Furthermore, (-)epicatechin and myricetin were more effective than 

BHA!BHT/CA; however, myricetin was even more effective than TBHQ, the strongest 

synthr.tic antioxidant used by the food industry. 

A gradual increase in the percent weight gain of all oil samples towards a 

maximum value with a subsequent decrease during the extended storage period was 

noticed. The increase in the weight gain may be due to the addition of oxygen to 

lipid molecules to form hydroperoxides during primary stages of oxidation. The 

decrease in weight gain in later stages of oxidation may be due to volatile nature of 

breakdown products of lipid hydroperoxides. Fanner et al. (1942, 1943) and Privett 

and Nickell (1956) have reported that addition of oxygen to lipid to form peroxides 

is reasonably quantitative during the initial stages of autoxidation. Olcott and Einset 

(1958) have reported that the weight gain serves as a useful technique to evaluate the 

effect of antioxidants on the oxidative stability of edible vegetable oils. Ke and 

Ackman (1976) reported that the method is simple, has a satisfactory reproducibility 

and can be used to compare oxidation of lipids obtained from different parts of fish. 

However, surface exposure of the sample to air is an important variable in 

determining the rate of oxidation, therefore, use of equal size containers to store 

sample is very important in carrying out the experiments (Kwon et al., 1984). 

Peroxide and conjugated diene (CD) values of canola oil samples containing 

CE, flavonoids, BHAJBHT/CA and TBHQ are presented in Tables 4.3, 4.4, 4.5 and 

4.6. Both of these indices measure primary products of lipid oxidation. Addition of 



Table 4.3 Effect of CE, BHA/BHT/CA and TBHQ on peroxide value (meq/kg oil) of refined-bleached canola oil stored 
at 65°C1

• 

Storage period, Days 
Treatment 

0 2 5 9 13 17 

Control 0.37±0.01 a 22.5±0.73 83.6±0.53 125.0±4.03 159.0±3.03 183.4±2.1 a 

CE-100ppm 0.32±0.02a 7.86±1.25b 42.8±0.6b 63.3±0.3b 94.6±1.5b 107.3±2.2b 

CE-200ppm 0.31±0.03a 1.92±0.11 d 38.8±0.3c 62.2±0.9b 92.0±0.6c 102.5±1.2c 

CE-500ppm 0.30±0.003 1.47±0.15d 32.9±1.0e 53.1±1.1c 87.2±1.2d 102.1±2.0c 

CE-500ppm 0.33±0.01 3 1.62±0.05d 33.1±0.7e 54.4±0.5c 91.9±0.8c 108.2±3.1 b 
(centrifuged) 

CE-1000ppm 0.32±0.033 1.31±0.02d 22.7±0.48 43.2±0.7e 80.0±0.9e 93.5±0.6d 

CE-1000ppm 0.34±0.01a 1.45±0.01 d 28.7±0.7f 48.2±0.7d 78.0±1.0e 102.2±3.1c 
(centrifuged) 

BHA/BHT/CA-250ppm 0.31±0.0Y 3.03±0.12c 36.5±1.4d 55.1±1.0c 62.8±0.7f 78.4±0.3e 

TBHQ-200ppm 0.32±0.043 1.13±0.11 d 2.02±0.23h 3.77±0.28f 5.37±0.488 64.0±0.6f 

1 Values in the same column bearing different superscripts are significantly (P>0.05) different. 



Table 4.4 Effect of flavonoids, BHA/BHT/CA and TBHQ on peroxide value (meq/kg oil) of refined-bleached 
canola oil stored at 65°C1 

Storage period, Days 
Treatment 

0 2 5 9 13 

Control 0.37±0.01a 22.5±0.7a 83.6±0.5a 125.0±4.0a 159.0±3.0a 

Flavones: 
Apigenin 0.37±0.01a 20.1±0.1 b 63.4±0.1b 107.2±1.5b 153.3±1.2b 

Chrysin 0.35±0.01a 22.2±0.2a 65.8±0.3b 93.1±2.3d 145.4±2.7d 

Flavonols: 
Kaempferol 0.37±0.01a 12.0±0.4e 47.1±1.4de 96.9±1.2c 145.2±1.7d 

Morin 0.36±0.04a 9.41±0.51f 38.4±1.4gh 64.4±0.7f 130.3±2.5e 

Myricetin 0.36±0.01a 2.62±0.11i 10.2±0.4j 12.o±0.Y 27.8±0.1j 

Quercetin 0.34±0.03a 7.41±0.218 31.3±0.3i 54.7±0.88h 100.7±1.3f 

Rutin 0.37±0.00a 4.63±0.12h 45.2±0.6e 64.2±1.1f 133.3±1.4e 

Flavanones: 
Naringenin 0.35±0.01 a 14.6±0.1c 40.4±l.t8 52.5±0.7h 85.5±l.Oh 

Naringin 0.36±0.01a 13.6±0.3d 48.0±0.4d 57.5±0.18 85.9±0.3h 

Flavononols: 
Taxifolin 0.38±0.02a 21.9±0.2a 55.5±0.4c 76.9±0.7e 149.3±1.2c 

Flavan-3-ol: 
(-)Epicatechin 0.36±0.01 a 8.00±0.108 41.1±0.3f 46.9±0.5i 90.9±1.38 

BHA/BHT/CA 0.31±0.05a 3.02±0.10i 36.5±1.4h 55.1±1.08h 62.8±0.i 

TBHQ 0.32±0.04a 1.13±0.12j 2.02±0.23k 3.77±0.28k 5.37±0.48k 

1 Values in the same column bearing different superscripts are significantly (P>0.05) different. 



Table 4.5 Effect of CE, BHA/BHT/CA and TBHQ on conjugated diene value 1 of refined-bleached canola oil stored at 
65°C2

• 

Storage period, Days 
Treatment 

0 2 5 9 13 17 

Control 2.19±0.02a 4.72±0.02a 8.80±0.49a 13.11±0.61' 19.8±0.3a 21.7±0.1a 

CE-100ppm 2.18±0.09a 3.18±0.06b 5.48±0.29b 8.51±0.19b 13.3±0.0b 14.9±0.1 b 

CE-200ppm 2.19±0.01a 2.61±0.01c 5.15±0.72b 8.32±0.02bc 12.6±o.oc 14.6±0.1b 

CE-500ppm 2.17±0.ooa 2.57±0.02c 4.82±0.26b 8.16±0.12bc 11.5±0.0d 14.5±0.1b 

CE-500ppm 2.16±0.01a 2.59±0.01c 4.77±0.20b 7.96±0.01bc 12.5±0.2c 14.8±0.1b 
(centrifuged) 

CE-1000ppm 2.14±0.01a 2.29±0.10d 4.23±0.60b 7.72±0.01 be 10.7±0.1e 13.8±0.1c 

CE-1000ppm 2.18±0.02a 2.61±0.ooc 4.50±0.01b 7.61±0.55c 11.4±0.1d 13.9±0.2c 
(centrifuged) 

BHA/BHT/CA-250ppm 2.15±0.01' 3.14±0.01 b 5.04±0.04b 8.20±0.03bc 10.8±0.2e 13.7±0.1c 

TBHQ-200ppm 2.17±0.12a 2.31±0.00d 2.43±0.ooc 2.55±0.11 d 3.41±0.11f 9.93±0.03d 

1 Conjugated diene value = A/(c x d) where, A = absorbance of the solution at 234nm, c = concentration of the solution 
in g/100ml of solvent, and d = length of the cell in em. 

2 Values in the same column bearing different supescripts are significantly (P>0.05) different. 



Table 4.6. Effect of flavonoids, BHA/BHT/CA and TBHQ on conjugated diene value' of refined-bleached 
canola oil stored at 65°C2 

Storage period, Days 
Treatment 

0 2 5 9 13 

Control 2.19±0.02a 4.72±0.02a 8.80±0.43a 13.1±0.6a 19.8±0.33 

Flavones: 
Apigenin 2.24±0.ooa 4.68±0.01 3 8.72±0.073 12.2±0.13 18.4±0.5ab 

Chrysin 2.18±0.063 4.57±0.02a 7.74±0.083 10.9±0.1b 15.5±0.1cd 

Flavonols: 
Kaempferol 2.23±0.01 3 3.54±0.03ab 5.44±0.02abc 9.16±0.08cd 17 .5±0.5abc 

Morin 2.14±0.023 2.51±0.02b 6.53±0.83ab 9.07±0.07cd 13.8±0.1de 

Myricetin 2.24±0.043 2.69±0.02b 2.71±0.01 be 2.72±0.0!8 7.64±0.07& 

Quercetin 2.20±0.023 3.94±0.11 ab 5.88±0.11 abc 9.10±0.19cd 11.8±0.1ef 

Rutin 2.22±0.033 3.45±0.67ab 6.57±0.01 ab 8.80±0.08cd 16.0±2.6bcd 

Flavanones: 
Naringenin 2.14±0.053 3.08±0.66ab ·· 5.23±0.61'bc 8.39±0.08cde 10.2±0.1fg 

Naringin 2.23±0.ooa 3.49±0.06ab 6.33±0.42ab 7.57±0.03ef 11.7±0.1 ef 

Flavononols: 
Taxifolin 2.22±0.0la 4.62±0.023 7.10±0.523 9.30±0.09c 18.2±0.5abc 

Flavan-3-ol: 
(-)Epicatechin 2.23±0.053 3.13±0.01ab 6.61±0.17ab 6.96±0.0t 12.l±O.lef 

BHA/BHT/CA 2.15±0.01 a 3.14±0.01ab 5.04±0.04abc 8.20±0.03de 10.8±0.2( 

TBHQ 2.17±0.123 2.31±o.ooc 2.43±o.ooc 2.55±0.11& 3.41±0.11& 

1 Conjugated diene value = N(c x d) where, A = absorbance of the solution at 234nm, c = concentration of 
the solution in g/1 OOml of solvent, and d = length of the cell in em. 

2 Values in the same column bearing different superscripts are significantly (P>0.05) different. 
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CE at 100 to 1000 ppm levels to canola oil significantly (P>0.05) decreased the 

peroxide values during accelerated oxidation. These data indicated that an increase 

in the addition level of CE paralleled a decrease in the formation of peroxides. 

However, peroxide values of canola oil samples treated with 200, 500 and 1000 ppm 

of CE were similar for up to day-2. After day-5, peroxide values of the samples 

containing varying concentration of CE were significantly (P>0.05) different. It was 

also observed that centrifugation of canola oil samples treated with CE at 500 anu 

1000 ppm levels to remove insoluble residues did not affect the decrease of peroxide 

value of the oil. For up to 17 days, the peroxide values of the con·trol sample 

increased from 0.37 meq/kg (fresh oil) to 183.4 meq/kg (oxidized oil) but the 

corresponding values for oil treated with CE-500 and CE-1000 were smaller. It 

changed from 0.30 to 102.1 and from 0.32 to 93.5 meq/kg, respectively. CE was 

most effective at 1000 ppm level and gave much lower peroxide values than the 

control, BHAIBHT/CA and other CE-treated oil samples (Table 4.3). Peroxide values 

of canola oil treated with 200 ppm TBHQ were lowest throughout the period studied 

as compared with other additives (CE and BHAIBHT/CA). 

Consideration of the change of CD values of the samples indicates small 

differences in this parameter during the initial stages of oxidation. However, during 

later stages, TBHQ and CE-1000-treated samples had a significant effect on lowering 

CD formation. Removal of any undissolved residues in the oil by centrifugation had 

no significant effect on the lowering of the CD values of the samples. The 
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effectiveness of CE at 500 and 1000 ppm was superior to that of BHA/BHT/CA. The 

CD values of samples treated with 1000 ppm of CE were the lowest of all CE-treated 

samples. A similar trend was observed in corresponding peroxide values. 

Addition of flavonoids to canola oil resulted in the reduction of peroxide as 

well as CD values compared to the control sample (Tables 4.4 and 4.6). When 

different groups of flavonoids are compared, flavonols showed lower peroxide and CD 

values. In general, the effect of flavones, flavanones and flavonols on primary 

oxidation product formation was almost similar. Among the flavonols tested, 

myricetin gave rise to the lowest peroxide and CD values throughout the storage 

period. The effect of myricertin was far better than BHA/BHT/CA mixture as 

indicated by lower peroxide and CD values. However, TBHQ maintained the 

strongest inhibitory activity on the formation of primary lipid oxidation products 

throughout the length of storage period. Furthermore, it was noted that the ability of 

· these additives (CE, flavonoids and synthetic antioxidants) to suppress peroxide and 

CD formation was decreased with increasing the length of storage period. 

Since hydroperoxides are the primary products of lipid oxidation (Labuza, 

1971), peroxide value provides a clear indication of the oxidative state of vegetable 

oils. However, due to instability of peroxides in the oxidation pathway, measurement 

of peroxide value provides only information about the initial oxidation potential of the 

oil. Conjugated diene value is also a measure of the degree of formation of primary 

products of lipid oxidation. It has been observed that conjugated dienes are formed 
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due to the shift in double bond position upon oxidation of lipids containing dienes or 

polyenes (Logani and Davies, 1980). St. Angelo et al. (1975) have suggested that CD 

values can be used as an index of stability for lipid-containing foods. Farmer and 

Sutton (1943) indicated that CD method can be used as a measurement of primary 

oxidation since it correlates well with hydroperoxide value. 

Hawrysh et al. (1988) and McMullen et al. (1991) have reported that TBHQ 

at 200 ppm level of addition markedly reduced the formation of peroxides but 

BHAJBHT/CA at 250 ppm level was less effective in retarding the formation of 

peroxides in canola oil under accelerated oxidation conditions. According to the 

results obtained from this experiment CE (>200 ppm) and myricertin were found to 

be more effective in lowering peroxide and CD formation in canola oil than 

BHAJBHT/CA (250 ppm) but were less potent than TBHQ (200 ppm). 

4.2.2 Effect on 2-thiobarbituric acid reactive substances (TBARS) formation 

TBARS value measure secondary products of lipid oxidation and it is the most 

frequently used indicator to monitor oxidation of vegetable oils. In this experiment 

addition of CE, flavonoids, BHAJBHT/CA and TBHQ to canola oil showed a 

significant (P>0.05) effect on reducing TBARS formation as compared with the 

control sample (Tables 4.7 and 4.8). Among these additives, TBHQ was most 

effective in retarding TBARS formation at 200 ppm level. Ability of TBHQ (200 

ppm) to lower TBARS values of stored canola oil has been reported in the literature 



Table 4.7 Effect of CE, BHA/BHT/CA and TBHQ on TBARS value (pmoVg oil) of refined-bleached canola oil stored 
at 65°C1

• 

Storage period, days 
Treatment 

0 2· 5 9 13 17 

Control 0.30±0.02a 0.68±0.03a 1.25±0.03a 1.82±0.13a 2.72±0.01a 3.57±0.03a 

CE-100ppm 0.29±0.04a 0.44±0.03b 0.97±0.02b 1.29±0.03b 2.05±0.02b 2.39±0.14b 

CE-200ppm 0.28±0.04a 0.41±0.04be 0.85±0.01 be 1.28±0.01 b 1.94±0.02c 2.10±0.03c 

CE-500ppm 0.27±0.023 0.40±0.0 1 be 0.78±0.04c 1.20±0.03be 1.84±0.02d 1.99±0.02c 

CE-500ppm 0.27±0.0P 0.40±0.02be 0.88±0.01 be 1.22±0.02be 1.90±0.03cd 2.15±0.07c 
(centrifuged) 

CE-1000ppm 0.26±0.033 0.37±0.03be 0.60±0.02d 1.09±0.01 c 1.39±0.01( 1.59±0.09de 

CE-1000ppm 0.25±0.013 0.38±0.05be 0.72±0.13cd 1.17±0.02be 1.43±0.01f 1.66±0.04d 
(centrifuged) 

BHA/BHT/CA-250ppm 0.25±0.01 3 0.42±0.01b 0.96±0.07b 1.19±0.01 be 1.51±0.02e 1.77±0.06d 

TBHQ-200ppm 0.27±0.023 0.33±0.02c 0.36±0.04e 0.39±0.06d 0.58±0.048 1.42±0.03e 

1 Values in the same column bearing dufferent superscripts are significantly (P>0.05) different. 



Table 4.8 Effect of flavonoids, BHAJBHT/CA and TBHQ on TBARS value (pmoVg oil) of refined-bleached 
canola oil stored at 65°C1 

Storage period, Days 
Treatment 

0 2 5 9 13 

Control 0.25±0.01a 0.68±0.01a 1.25±0.03a 1.82±0.10a 2.71±0.243 

Flavones: 
Apigenin 0.23±0.ooa 0.59±0.02b 1.15±0.04abc 1.56±0.05ab 2.20±0.06bc 

Chrysin 0.30±0.01a 0.64±0.0 1 ab 1.08±0.04bcd 1.39±0.10bc 2.20±0.09bc 

Flavonols: 
Kaempferol 0.30±0.03a 0.45±0.42cd 0.64±0.03i 1.39±0.05bc 2.12±0.11 cd 

Morin 0.29±0.02a 0.42±0.05de 0.99±0.02cde 1.19±0.03cde 2.22±0.11 be 

Myricetin 0.23±0.04a 0.34±0.04( 0.36±0.02j 0.40±0.038 0.76±0.02h 

Quercetin 0.27±0.023 0.40±0.02def 0.68±0.07hi 1.22±0.41 bcde 1.81±0.08def 

Rutin 0.30±0.01a 0.36±0.03ef 0.75±0.04ghi 1.15±0.06cde 1.94±0.05cde 

Flavanones: 
Naringenin 0.24±0.ooa 0.47±0.02cd 0.83±0.02fgh 0.99±0.06def 1.44±0.07fg 

Naringin 0.30±0.02a 0.50±0.01c 0.74±0.48 ghi 0.89±0.05ef 1.36±0.038 

Flavononols: 
Tax.ifolin 0.27±0.023 0.58±0.04b 0. 84±0.03 efg 1.27±0.05bcd 1.95±0.08cde 

Flavan-3-ol: 
0.76±0.0t (-)Epicatechin 0.26±0.ooa 0.35±0.03( 0.65±0.03i 1.68±0.11 efg 

BHA/BHT/CA 0.25±0.01a 0.42±0.0 1 de 0.96±0.07def 1.19±0.01 bcde 1.51 ±0.02fg 

TBHQ 0.27±0.023 0.33±0.02( 0.36±0.04j 0.39±0.068 0.58±0.04h 

1 Values in the same column bearing different superscripts are significantly (P>0.05) different. 

00 
0 
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(Hawrysh eta/. 1988, 1990). Addition of CE (>200 ppm) was equivalent or slightly 

better than that of BHA/BHT/CA. At 1000 ppm level, CE was able to lower TBARS 

value~ more effectively than BHA/BHT/CA even at day 17. Oil treated with CE-1000 

showed 46, 52, 40, 49 and 56% reduction in TBARS on days 2, 5, 9, 13 and 17, 

respectively, while BHA/BHT/CA-treated samples showed 38, 23, 34, 44 and 50% 

reduction (Table 4.7). The general trend of flavonoids on TBARS formation, showed 

that flavonols and flavanones were more effective than other types of flavonoids. 

Among flavonoids tested, myricetin, quercetin, (-)epicatechin were able to maintain 

>40% inhibition of TBARS formation for up to 9 days of storage (Table 4.8). Rutin 

was able to inhibit TBARS formation by 47 and 40% at days 2 and 5, respectively, 

however, its effectiveness was less after 9 days of storage. It was clear that the effect 

of myricetin was the strongest among flavonoids and it was similar to that of TBHQ 

in reducing TBARS values of oil samples throughout the storage period. The overall 

order of potency of flavonoids on inhibition of TBARS formation was as follows: 

Myricetin > (-)epicatechin > naringin > naringenin > quercetin > 

rutin > morin > kaempferol > taxifolin > apigenin > chrysin. 

The 2-Thiobarbituric acid (TBA) test measures the secondary oxidation 

products of lipids mainly aldehydes (or carbonyls) which may contribute to off-flavour 

of oxidized foods. Results of this study indicate that CE and some of the flavonoids 

tested have a marked effect on the inhibition of the formation of TBARS of canola 

oil. The effect of CE in suppressing TBARS formation was better than 
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BHA/BHT/CA but less than that of TBHQ. Effectiveness of myricetin was similar 

to that of TBHQ. This findings lends support to previous reports (Vaisey-Genser and 

Ylimaki, 1985; Hawrysh et al., 1988; McMullen et al., 1991) that BHA/BHT/CA is 

less effective than TBHQ in reducing TBARS formation of canola oil and further 

concluded that this mixture is not the best antioxidant for improving the storage 

stability of canola oil despite its common use by the oil industry. Furthermore, results 

of this study confirms that BHA!BHT/CA is not as effective as CE (at ~200 ppm) or 

some of the flavonoids and TBHQ at 200 ppm level of addition. 

4.2.3 Effect on TOTOX value 

The total oxidation or TOTOX value of treated (CE, BHA/BHT/CA and 

TBHQ) oil samples are given in Table 4.9. Oil samples treated with CE (at ~200 

ppm) had comparatively low TOTOX values. Oil samples treated with 200 ppm CE 

· had 50% lower TOTOX values up to 13 days of storage as compared with those of 

the control sample. The lowest TOTO X values were noticed for 1000 ppm level of 

addition of CE resulting in 90, 73, 65, 52 and 50% inhibition on days 2, 5, 9, 13 and 

17 of storage, respectively. However, as compared with the BHA/BHT/CA after 9 

days, CE-1000-treated oil had a slightly higher TOTOX values perhaps due to higher 

peroxide values (Table 4.5) in the CE-1000-treated oil during later stages of storage. 

Most of the flavonoids tested, except chrysin, were effective in reducing 

TOTOX values. Myricetin, quercetin, morin, kaempferol, rutin and (-)epicatechin 



Table 4.9 Effect of CE, BHA/BHT/CA and TBHQ on TOTOX value1 of refined-bleached canola oil stored at 65°C2
• 

Storage period, Days 
Treatment 

0 2 5 9 13 17 

Control 2.15±0.21a 50.5±1.1a 186.4±2.3a 287.3±5.5a 362.3±8.9a 423.3±4.8a 

CE-100ppm 1.85±0.03a 19.5±1.2b 95.5±0.2b 145.2±4.4b 210.3±4.9b 242.3±5.7bc 

CE-200ppm 1.90±0.06a 5.78±0.41cd 84.5±0.3c 141.2±1.4b 203.4±2.9bc 231.3±2.8cd 

CE-500ppm 1.81±0.02a 4.66±0.38d 71.8±2.7d 124.2±2.1d 196.4±3.9c 230.4±7 .6cd 

CE-500ppm 2.03±0.09a 4.91±0.06d 74.4±1.9d 126.4±2.5c 207 .6±3.6bc 246.3±4.5b 
(centrifuged) 

CE-1000ppm 1.92±0.06a 4.02±0.12d 50.2±1.3f . 98.2±1.8e 175.4±3.4d 209.4±4.6e 

CE-1000ppm 1.89±0.02a 4.43±0.30d 62.9±2.1e 111.1±3.7d 175.4±5.4d 225.2±9.6d 
(centrifuged) 

BHA/BHT/CA-250ppm 1.89±0.42a 7.75±0.28c 80.9±1.2c 129.5±2.6c 146.3±2.7e 183.4±2.6( 

TBHQ-200ppm 1.78±0.10a 3.64±0.10d 5.26±0.37& 10.6±0.4f 13.3±1.3f 143.1±2.5& 

1 TOTO X value = 2PV + An V 
2 Values in the same column bearing different superscripts are significantly (P>0.05) different. 
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served best in lowering TOTOX values (<45%) as compared with the control sample 

for up to 5 days of storage (Table 4.10). Among the flavonoids tested myricetin was 

the most effective flavonol which was also superior to BHA/BHT/CA. Myricetin

treated oils had TOTOX values which were 6.7, 22.0, 27.7, and 64.7 on days 2, 5, 9 

and 13, respectively. Corresponding values for BHA/BHT/CA-treated oils were 7.75, 

80.9, 129.5 and 146.3 and those for the control sample were 50.5, 186.4, 287.3 and 

362.3, respectively. However, TBHQ lowered TOTOX values better than all other 

antioxidants used in this study. 

Changes in TOTOX values provide information regarding progression of 

formation of primary and secondary oxidation products. CE had a marked effect in 

lowering the TOTOX values of canola oil when compared with the commonly used 

synthetic antioxidant mixture, BHA/BHT/CA. Among the flavonoids tested, myricetin 

exerted the strongest effect in retarding oxidation of canola oil and lowering the 

· TOTOX values. TOTOX value is often considered as a useful indicator of oxidation 

of oils because it combines evidences about the past history (p-anisidine value) with 

the present state of the oil (peroxide value) of the oil (Rosse!, 1983). 

The crude canola extract possesses good antioxidative properties as evidenced 

by weight gain, peroxide, CD, TBARS and TOTOX values of the oil. Development 

of oxidative rancidity during accelerated oxidation at 65°C may be pursued, under 

these conditions, 1 day is equivalent to that aged for 1 month at ambient temperatures 

(Evans et al., 1973). Effectiveness of CE at 500 and 1000 ppm levels was better than 



Table 4.10 Effect of flavonoids, BHA/BHT/CA and TBHQ on TOTOX value1 of refined-bleached canola oil 
stored at 65°C2 

Storage period, Days 
Treatment 

0 2 5 9 13 

Control 2.15±0.21 a 50.5±1.1a 186.4±2.3a 287.3±5.5a 362.3±8.93 

Flavones: 
Apigenin 2.13±0.073 43.9±0.2c 143.3±2.5b 249.4±4.6b 336.4±2.6b 

Chrysin 2.05±0.073 48.7±1.8ab 143.5±5.7b 210.4±5.SC 333.3±7.3b 

Flavonols: 
Kaempferol 2.01±0.043 25.9±1.0( 97.8±1.9de 229.4±7.3bc 326.4±2.9b 

Morin 1.98±0.033 20.7±1.28 83.5±4.58 152.2±2.7bc 301.3±7.7c 

Myricetin 1.95±0.073 6.70±0.20i 22.0±1.1i 27.7±3.4h 64.7±2.18 

Quercetin 1.89±0.013 15.1±1.6h 69.3±1.4h 124.3±3.8fg 225.5±2.5d 

Rutin 1.95±0.023 11.1±0.8i 98.8±5.5de 143.5±3.6ef 295.8±3.3c 

Flavanones: 
Naringenin 2.10±0.073 33.5±0.3d 94.9±3.7ef 136.3±8.4ef 198.2±3.8e 

Naringin 1.99±0.103 29.5±0.4e 109.4±4.5d 134.4±5.8ef 191.1±3.2e 

Flavononols: 
Taxifolin 2.06±0.143 47.3±2.7b 119.0±2.6c 173.6±3.8d 334.4±2.4b 

Flavan-3-ol: 
(-)Epicatechin 2.13±0.133 23.7±0.2( 87.6±2.3fg 103.5±2.28 199.1±4.4e 

BHA/BHT/CA 1.89±0.423 7.75±0.28j 80.9±1.28 129.2±2.7ef 146.3±2.4( 

TBHQ 1.78±0.103 3.64±0.10k 5.26±0.37j 10.6±0.4h 13.3±1.3h 

1 TOTOX value= 2PV +AnY. 
2 Values in the same column bearing different superscripts are significantly (P>0.05) different. 

00 
VI 
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that of BHA!BHT/CA (250 ppm) but less than that of TBHQ (200 ppm). Apart from 

being a stronger antioxidant, CE did not impart any visible colour (at higher 

concentrations after removing residual extract) or perceivable odour to the treated 

canola oil. These qualities suggest the potential use of ethanolic extracts of canola 

meal as a natural antioxidant for use in canola oil, and possibly other edible oils. 

The scientific literature in the past two decades is replete with reports on 

antioxidative activity of natural sources. Different kinds of seed hulls and meals have 

been studied for their antioxidative properties. Ethanolic extracts of navy bean hull 

(Onyenebo and Hettiarachchy, 1991), oat hull (Duve and White, 1991), methanolic 

extracts of cottonseed (Whittern et a/., 1984), peanut hull (Duh et a/., 1992), and 

aqueous extract of soybean flour (Rhee eta/., 1979; Ziprin eta/., 1981) show strong 

antioxidative effect on vegetable oils, J3-carotene-linoleate and meat model systems. 

Most of these antioxidative compounds are of phenolic nature. However, only a few 

reports are available on antioxidative ability of Brassica seed meals. It is well known 

that the phenolic content of Brassica seed meals is quiet high (1-2%) compared to 

other oilseeds (Kozlowska eta/., 1983; Dabrowski and Sosulski, 1984, Shahidi and 

Naczk, 1992). Shahidi eta/. (1991) have reported that low pungency mustard flour 

extracts effectively reduced warmed over flavour (WOF) developed in meat model 

systems. They have indicated that the antioxidative efficacy of these extracts was 

directly proportional to their total content of phenolics. Ph~nolic compounds of 

Brassica (especially rapeseed or canola) include phenolic acids (free, esterified and 
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insoluble bound) (Zadernowski, 1987, Shahidi and Naczk, 1992), flavonoids 

(Zadernowski et a/., 1991) and condensed tannins (Shahidi and Naczk, 1989). 

Antioxidative activity of separated rapeseed phenolic acids examined in a ~-carotene

linoleate model system has also been reported by Nowak eta/. (1992). 

Among the flavonoids tested in this study, flavonols namely myricetin, 

quercetin and rutin and (-)epicatechin (flavan-3-ol; Figure 4.3) were found to have the 

strongest antioxidant properties and stabilizing effect on canola oil. The flavonones, 

naringenin and naringin were (Figure 4.3) also effective but were less potent than 

those of flavonols or flavan-3-ol. Flavonoids may act as primary antioxidants by 

donating a hydrogen atom to the peroxy radicals derived from oxidizing fatty acids 

(Torei eta/., 1986), may also function as free radical acceptors or chain breakers, and 

may serve as metal chelators (Hudson and Lewis, 1983). Larson (1988) has reported 

that quercetin and some flavonoids are also potent quenchers of singlet oxygen. 

It has been found that the antioxidative activity of flavonoids is generally 

governed by their chemical structure (Shahidi eta/., 1991). All flavonoids possessing 

a 3', 4'-dihydroxy configuration have antioxidant activity. Myricetin with an 

additional hydroxy group at the 5' position shows a better antioxidant activity than 

that of its corresponding flavonol devoid of a 5' -hydroxy group, i.e. quercetin (Figure 

4.3). Naringin and naringenin with a single hydroxyl group on the B-ring possess 

only slight antioxidative activity. Therefore, hydroxylation of the B-ring is the major 

consideration for antioxidant activity of flavonoids. Rutin with a etherified sugar 
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Taxifolin: 3,5,7 ,3',4'-penta-OH 

(-)Epicatechin: 3,5,7 ,3' ,4' -penta-OH 

Figure 4.3 Structures of some flavonoids. 
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moiety at its 3rd (C-ring) position showed a lower antioxidant activity than quercetin 

which has a hydroxyl group at 3rd position. Therefore, glycosyl substitution of 

flavonoids reduces their antioxidant activity, perhaps due to lack of their ability to 

donate a hydrogen atom to lipid free radicals. In addition, (-)epicatechin which is a 

flavan-3-ol showed an antioxidant activity similar or superior to that of quercetin. 

The relationship between hydroxylation of flavonoids and antioxidant activity has 

been well documented (Hudson and Lewis, 1983; Pratt and Hudson, 1990; Shahidi 

and W anasundara, 1992). Myricetin possessing the largest number of hydroxyl groups 

in its structure was the most active flavonoid (see Figure 4.3). Similar results were 

obtained by Das and Pereira (1990) for palm oil and by Ramanathan and Das (1992) 

for ground fish samples. Our study also revealed that several flavonoids especially 

flavonols, flavan-3-ol and flavanones may be considered as potential antioxidants for 

the stabilization of canola oil. These flavonoids are naturally present in many plant 

· products which have been consumed. The comsumption of food flavonoids amounts 

to 1 g/day for human being (Kuhnau, 1976) safely since antiquity (Bete-Smith, 1954; 

Pokorny, 1991). In addition, food-derived flavonoids such as quercetin, kaempferol 

and myricetin have been shown to have anticarcinogenic and antimutagenic effects in 

both in vitro and in vivo studies (Kato eta/., 1983; Huang et a/., 1983; Mukhtar et 

a/., 1988; Francis eta/., 1989; Deschner eta/., 1991). 
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4.3 Screening of the most active antioxidative compound of CE 

Results of the Schaal oven test showed that addition of CE was able to retard 

oxidative deterioration of refined-bleached canola oil as evidenced by reduced 

peroxide, conjugated diene, TBARS and TOTOX values of the treated samples. Its 

effectiveness at >200 ppm level was better than BHA/BHT/CA (250 ppm). Therefore, 

the fractionation, isolation and identification of its most active antioxidative 

component was carried out (see below). 

4.3.1 Fractionation of the crude canola extract 

It was assumed that phenolic compounds present in canola seed may be 

responsible for its antioxidative activity. The extract was fractionated, using a 

Sephadex LH-20 column, according to molecular weight and polarity. Sephadex LH-

20 is regarded as an efficient medium for separation of plant phenolics (Johnston et 

al., 1968; Amarowicz, et al., 1992). The UV absorbance (at 280 nm) of different 

fractions of CE and the content of their phenolic compounds and sugars are presented 

in Figure 4.4. Five peaks were clearly defined according to the absorbance reading 

at 280 nm and the phenolic content of samples. A large peak was given for sugars, 

probably from glucosinolates and soluble sugars present in the canola extracts as 

reported by Amarowicz et al. (1990). Based on these data, samples were separated 

into seven major fractions (I, II, III, IV, V, VI and VII). 



91 

Figure 4.4 UV absorbance (A), phenolic, • and sugar, o contents (B) of eluates 
from Sephadex LH-20 column. 
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4.3.2 Antioxidant activity of fractions following column chromatographic 
separation 

Antioxidative activity of equal weights of each of the separated major fractions 

was determined in a J3-carotene-linoleate model system as illustrated in Figure 4.5. 

It can be seen that among the seven major fractions, fraction number IV possessed the 

strong antioxidative activity as it showed the best activity against bleaching of (3-

carotene. All fractions showed lower antioxidant activity than BHA. However, the 

crude canola extract showed a higher antioxidant activity than BHA in canola oil. 

This slightly inferior performance of the antioxidant activity in the fractions may be 

due to possible removal of other compounds which may have imparted synergistic 

activity or the combined synergistic effect of components present in the extract. 

4.3.3 Characterization of the column chromatographic fractions 

The thin layer chromatograms of the seven fractions under UV light or after 

spraying different reagents on them are given in Figure 4.6. It was observed that 

these fractions contain a mixture of compounds having different Rr values. Fraction 

number IV which had the highest antioxidant activity yielded nine fluorescent bands 

with Rc values of 0.20, 0.30, 0.40, 0.48, 0.53, 0.60, 0.64, 0.70 and 0.77 at 254 nm 

(plate A Figure 4.6) and five bands with Rc values of 0.40, 0.65, 0.78, 0.84 and 0.90 

at 365 nm (plate B Figure 4.6), respectively. This fraction contained eleven different 

phenolic compounds which produced a blue colour with ferric chloride-potassium 
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Figure 4.5 Antioxidant activity of fractions separated on a Sepadex LH-20 column. 
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Figure 4.6 TLC chromatograms of fractions separated on a Sepadex LH-20 column. 
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ferricyanide reagent (plate C Figure 4.6). Most of these bands detected with ferric 

chloride-potassium ferricyanide spray had Rr values similar to the bands observed 

under UV light. Chromatogram sprayed with ferric chloride showed that fraction 

number IV had eight different phenolic compounds with Rr values of 0.30, 0.40, 0.53, 

0.60, 0.78, 0.84 and 0.90. These phenolic compounds may contain trihydroxy 

substituents. It is reported that compounds with trihydroxy substituent give blue 

colouration with ferric chloride (Reio, 1958). Due to antioxidant activity of fraction 

number IV, further separation of this fraction by TLC was carried out. 

Antioxidant activity of individual components of fraction number IV was 

estimated using a f3-carotene-linoleate spray (Figure 4.7). This fraction contained four 

major antioxidative compounds with Rr values of 0.20, 0.50, 0.80 and 0.90. Among 

the four major bands, the band with an Rr value of 0.50 was found to be most 

effective in preventing oxidation of f3-carotene. This band was isolated and used for 

structural elucidation. 

4.3.4 Structural analysis of the most active antioxidative compound of canola 
extract 

The UV spectrum of the component with most antioxidative effect showed an 

absorption maximum at 330 nm (Figure 4.8). This absorption band may be due to the 

presence of sinapic acid or its derivatives as reported by Kozlowska et al. (1983), 

Dabrowski and Sosulski (1984) and Naczk et al. (1992). 
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Figure 4.7 TLC chromatogram of fraction number IV after ~-carotene-linoleate spray. 
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Figure 4.8 UV spectrum of the most active antioxidative compound of canola extract 



Q) 
(.) 
c 
~ 

..0 
'-
0 en 

..0 
<( 

1.2 r---------------------, 

1.0 

0.8 

0.6 

0.4 

0.2 

E 
c 

0 
C') 
C') 

0.0 LL ____ ....L.._ ___ __:J::::====~ 

200 300 400 500 

Wavelength (nm) 



98 

The mass spectral analyses showed two major fragment ions with rn/z of 180 and 

206 (see Figure A.2). The rn/z 180 fragment suggested the presence of a six carbon sugar 

moiety in the molecule. The other fragment may represent sinapic acid. The total 

molecular mass of the suggested compound was 386, and corresponded with these and 

other fragment ions present in the mass spectrum of the sample. 

Further characterization of the chemical nature of this compound, using the NMR 

facilities of the Department Chemistry, Memorial University of Newfoundland was carried 

out. The 1H NMR spectrum of this compound in deuterated methanol, CD30D, displayed 

eight resonances (see Figure A.3). Two doublet-doublets centered at o 3.85 Oer = 12Hz, 

Jeg = 1.8Hz) and 3.68 Oer = 12Hz, Irg = 4.8Hz), with a relative integration of each 

equivalent to one proton, were diagnostic of the He and Hr protons of the sugar moiety, 

respectively (Table 4.11). Two doublets at 0 7.72 (Jab= 16Hz) and 6.43 (Jab= 16Hz), with 

a relative integration of each equivalent to one proton, were assigned to the Hb and Ha 

olefinic protons of the phenolic acid moiety, respectively. The assignment of the resonance 

due to these olefinic protons is based on the chemical shifts predicted by using the 

additivity rule (Pretsch eta/., 1989). A singlet at o 6.93 with relative integration equivalent 

to two protons was assigned to the ~ protons of the phenolic ring. The relative integration 

equivalent to six protons was observed for a singlet at 0 3.87 which is diagnostic of two 

CH30 groups attached to the phenolic ring. The multiplet at o 3.41 represented all other 

protons of the sugar and phenolic acid moieties. An ester linkage in the molecule may be 

assigned on the basis of the chemical shift of Hd of the sugar moiety at o 5.57. 
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Table 4.11 1H NMR assignment of the most active antioxidative compound of canola. 

0 

0 

O(ppm) Multiplicity J Integration Assignment 

7.72 doublet Jab= 16Hz 1H Hb 

6.93 singlet 2H He 

6.43 doublet Jab= 16Hz 1H Ha 

5.57 doublet J = 7.8Hz 1H Hd 

3.87 singlet 6H CH30 

3.85 doublet-doublet Jef = 12Hz, Jeg = 1.8Hz 1H He 

3.68 doublet-doublet Jer = 12Hz, Jr8 = 4.8Hz 1H Hr 

3.41 multiplet other CH' s from 
sugar and 

phenolic acid 

Note - Assignment of coupling interactions (J) confirmed by a COSY experiment 
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The 13C{ 1H} NMR spectral data in CD30D revealed 13 resonances from the 

proposed 17 carbon adduct suggest considerable symmetry in the molecule (see Figure 

A.4). However, the signal for C-1 was obscured in the noise even after overnight 

scanning. Assignment for the 13C NMR spectrum was aided by attached proton tests 

(APT) data which showed the presence of three or four ipso carbons (at () 126.4, 

149.5 and 167.6), one methylene carbon (at 0 62.3) and one or two methyl carbons 

(at 0 56.8). The vinyl protons (at 0 6.43 and 7.72) and other methine protons of the 

phenolic acid and sugar moieties were correlated with their corresponding 13C 

resonances. The chemical shifts of all carbon atoms of the sugar moiety were in 

agreement with the standard values of !3-D-glucopyranose (Pretsch et al., 1989). Thin 

layer chromatography of the compound upon hydrolysis also indicated the presence 

of !3-D-glucopyranose using a set of monosaccharide standards (see Figure A.6) A 

summary of the 13CeH} NMR assignments is shown in Table 4.12. 

Based on the UV, MS as well as 1H and 13CeH} NMR spectral data, the most 

active antioxidative compound isolated from canola extract was identified. Its 

chemical name is 1-0-13-D-glucopyranosyl sinapate (1-0-13-D-glucopyranosyl 3,5-

dimethoxy-4-hydroxy cinnarnate ). 

Phenolic acids of canola and/or rapeseed include sinapic, p-hydroxybenzoic, 

vanillic, gentisic, procatechuic, syringic, p-coumaric and ferulic acids. (Kozlowska et 

al., 1990). However, sinapic acid is the major phenolic acid present constituting over 

73% of free phenolic acids and about 99% of phenolic acids released from esters and 
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Table 4.12 13CeH} NMR assignment of the most active antioxidative compound 
of canola. 

0 

0 

8 (ppm) 

167.6 

149.5 

148.4 

126.4 

115.2 

107.0 

95.8 

78.8 

78.0 

74.1 

71.1 

62.3 

56.8 

H 

HO......_!~H 
0 6 

Assignment 

coo 

C-3,5 

C-7 

C-4 

C-8 

C-2,6 

C-1' 

C-2' 

C-3' 

C-4' 

C-5' 

C-6' 

CH30 

Note- Signal from C-1 was obscured in the noise even after overnight scanning. 
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glycosides (Kozlowska et al., 1983). Antioxidant activity of canola sinapic acid has 

recently been reported by Nowak, et a/. (1992). Sinapic acid is a derivative of 

cinnamic acid and presence of a -CH=CH-COOH group in the molecule ensures a 

better antioxidant activity for the molecule as compared with benzoic acid derivatives 

possessing only a -COOH group (Cuvelier et al., 1992). In fact, sinapic, ferulic and 

p-coumaric acids, all cinnarnic acid derivatives, were found to be more active than 

benzoic acid derivatives such as procatechuic, syringic, vanillic and p-hydroxy benzoic 

acids. This may be due to participation of the double bond (-HC=CH-) in stabilizing 

the aryloxy radical by resonance. Several authors (Cort, 197 4b; Pokorny, 1987) have 

shown that the antioxidant efficiency of monophenolic compounds was increased 

substantially by substitution of electron donor alkyl or methoxy groups which 

stabilized the aryloxyl radical. In the molecular structure of sinapic acid two methoxy 

groups are substituted at the ortho position relative to the hydroxyl group. Therefore, 

a greater antioxidant activity is expected for the molecule. Esterification of the acid 

group with another bulky compound may further enhance its activity. Accordingly, 

the most active antioxidative compound of canola extract was identified as 1-0-f3-D

glucopyranosyl 3,5-dimethoxy-4-hydroxy cinnamate (Tables 4.11 and 4.12). However, 

the other chemical constituents (phenolic acids, flavonoids, tannins, etc.) in the crude 

extract may also possess either antioxidative or synergistic effects. Therefore, the 

overall antioxidant activity of canola extract is probably due to a combined effect of 

its most active component and other active constituents. 
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4.4 Proton NMR study of canola and soybean oils during accelerated oxidation 

4.4.1 Chemical properties of refined-bleached-deodourized (RBD) canola and 
soybean oils used for proton NMR studies 

Both RBD canola and soybean oils used for NMR studies had good initial 

qualities, i.e. having iodine values of 111 and 126 g iodine/100g oil and peroxide 

values of 0.91 and 0.54 meq!kg oil, respectively (Table 4.13). Fatty acid composition 

of both oils showed that canola oil contains a reasonably high content of monoenes 

as compared with soybean oil, but the latter had a higher total content of 

polyunsaturated fatty acids. 

4.4.2 Proton NMR spectra of RBD canola and soybean oils 

The spectrum of RBD canola oil is shown in Figure 4.9. The spectrum shows 

eight groups of signals labelled a to h. These signals are assigned as follows: a, 

hydrogen directly attached to double-bonded carbons (olefinic protons) and the 

methine proton in the glyceryl moiety (o 5.1 - 5.4 ppm); b, two methylene groups in 

the glyceryl moiety (0 4.0 - 4.4 ppm); c, CH2 groups attached to two double-bonded 

carbon atoms (diallylmethylene protons) (=HC-CH2-CH=; o 2.6- 2.9 ppm); d, three 

CH2 groups alpha to carboxyl groups (a-CH2; o 2.2 - 2.4 ppm); e, CH2 groups 

attached to saturated carbons and double-bonded carbon atoms (-CH2-C=; o 1.8- 2.2 

ppm); f, CH2 groups attached to saturated carbon atoms (=C-CH2-CH2; o 1.45 - 1.8 

ppm); g, CH2 groups bonded to two saturated carbon atoms ([CH2] 0 ; o 1.1 - 1.45 
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Table 4.13 Chemical properties of refmed, bleached and deodorized (RBD) canola 
and soybean oils used for 1H NMR study. 

Parameter Canola Soybean 

Iodine value (g iodine/100g oil) 111.0 ± 2.01 126.0 ± 3.20 

Peroxide value (meqlkg oil) 0.91 ± 0.02 0.54 ± 0.01 

Fatty acid composition (area %) 

C16:0 4.20 ± 0.02 10.20 ± 0.04 

C16:1 0.26 ± 0.01 --

C18:0 1.91 ± 0.02 4.22 ± 0.20 

C18:1 57.60 ± 1.51 24.40 ± 0.11 

C18:2 23.40 ± 1.00 52.00 ± 0.22 

C18:3 9.10±0.11 7.70 ± 0.20 

C20:0 0.81 ± 0.01 0.88 ± 0.01 

C20:1 2.00 ± 0.10 0.30 ± 0.04 

C22:0 0.34 ± 0.00 0.30 ± 0.05 

C22:1 0.38 ± 0.00 --
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Figure 4.9 1H NMR spectrum of RBD canola oil (peaks at 0.00 ppm and 7.26 ppm 
for TMS and CHC13 protons, respectively). 
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ppm) and h, three terminal CH3 groups (8 0.7- 1.0 ppm). Quantitative determination 

of protons in each group was calculated based on the integration of methylene protons 

(8 4.0- 4.4 ppm) of triacylglycerol backbone (4 protons in the two methylene groups 

in the triacylglycerol moiety). 

4.4.3 Relative changes in the proton NMR absorption pattern of RBD canota and 
soybean oils during accelerated oxidation 

+ a-CH2; 0.6- 2.5 ppm), olefinic (-HC=CH-; 5.1 - 5.4 ppm) and diallylmethylene 

( =C-CH2-C=; 2.6 - 2.9 ppm) protons of canola and soybean oils during oxidation is 

shown in Table 4.14. It was found that during a ·30-day storage, the relative number 

of olefinic (from 7.12 to 5.21 ppm for canola oil and from 8.12 to 5.88 ppm for 

soybean oil) and diallylmethylene (from 2.18 to 0.99 ppm for canola oil and from 

4.00 to 2.60 ppm for soybean oil) protons decreased and the total number of aliphatic 

(from 79.3 to 88.2 ppm for canola oil and from 75.6 to 86.0 ppm for soybean oil) 

protons increased. During the oxidation process, initially diallylmethylene protons are 

attacked by free radicals and then intramolecular rearrangement of the olefinic protons 

occurs (Saito and Udagawa, 1992). Therefore, the relative number of diallylmethylene 

and olefinic protons is decreased. Considering diallylmethylene and olefinic protons 

of both oils, soybean oil had a relatively higher proportion of both types of protons 

than canola oil (Table 4.14). This may be due to a higher content of polyunsaturated 

fatty acids in soybean oil as compared with canola oil (Table 4.13). 
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Table 4.14 Total olefinic, diallylmethylene and aliphatic protons of RBD canola 
and soybean oils during accelerated oxidation at 65°C1

• 

Storage Olefinic protons Diallylmethylene protons Aliphatic protons 
time 

(Days) Canola Soybean Canol a Soybean Canola Soybean 

0 7.12 8.12 2.18 4.00 79.28 75.64 

5 6.76 8.04 1.90 3.92 80.94 79.44 

10 6.37 7.60 1.86 3.80 83.32 80.48 

15 6.00 7.24 1.54 3.40 84.19 80.64 

20 5.57 7.08 1.36 3.36 85.62 84.89 

25 5.36 6.52 1.12 2.84 86.88 85.24 

30 5.21 5.88 0.99 2.60 88.18 86.00 

1Calculated on the basis of integration of methylene protons of the triacylglycerol 
backbone. 
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4.4.4 The relationship between TOTOX value and the ratios of aliphatic to 
olefinic and aliphatic to diallylmethylene protons during accelerated 
oxidation of RBD canola and soybean oils 

The ratio of aliphatic to olefinic protons {R..0 ) and aliphatic to diallylmethylene 

protons (RaJ were calculated. These ratios were increased steadily during the 

storage of both oils. The numerical values of Rao and Rad were plotted against the 

corresponding TOTO X values for both canola and soybean oils (Figures 4.10 and 

4.11, respectively). A highly significant correlation existed between both Rao and Rad 

and TOTOX values; correlation coefficients were 0.984 for Rao and 0.933 for Rad for 

canola oil and 0.985 for Rao and 0.969 for Rad for soybean oil. The linear regression 

equations of these relationships were as follows: 

TOTOXcanoia = 155.0Rao - 1662.0 

TOTOXcanoia = 16.4Rad - 433.3 

TOTOXsoybean = 208.9Rao- 1918.0 

TOTOXsoybean = 72.8Rad - 1297.0 

Therefore, it is clear that TOTOX values correlated well with NMR results, 

thus reflecting the applicability of this method to estimate formation of both primary 

and secondary products during oxidation of canola and soybean oils. Saito and 

Udagawa (1992) have recently used the NMR method for estimation of oxidative 

deterioration of brown fish meal. These authors correlated peroxide values with the 

NMR results. Correlation coefficients between peroxide values and Rao and Rad values 
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Figure 4.10 Relationship between TOTOX values and the ratio of aliphatic to olefinic 
protons CRao) of oxidized RBD canola and soybean oils. 
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Figure 4.11 Relationship between TOTOX values and the ratio of aliphatic to 
diallylmethylene protons (RaJ of oxidized RBD canola and soybean 
oils. 
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in this study were, 0.848, 0.623, 0.880 and 0.820 for canola and soybean oils, 

respectively (Figures 4.12 and 4.13). It was also noted that better non-linear 

correlations may exist between these variables. It is obvious that TOTOX values 

correlated better with Rao and ~d than peroxide values did. This is not surprising 

since both TOTOX values and NMR methodology estimate the overall changes in 

fatty acid profile and include both primary and secondary changes in canola and 

soybean oils during oxidation. The simplicity of the NMR analysis provides a rapid, 

non-destructive procedure for analysis of edible oils with respect to oxidative changes 

occurring during storage. 
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Figure 4.12 Relationship between peroxide values and the ratio of aliphatic to olefinic 
protons (Ra0 ) of oxidized RBD canola and soybean oils. 
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Figure 4.13 Relationship between peroxide values and the ratio of aliphatic to 
diallylmethylene protons (RaJ of oxidized RBD canola and soybean oils. 
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CONCLUSIONS AND RECOMMENDATIONS 

Ethanolic extract of canola meal showed strong antioxidant properties when 

added to refined-bleached canola oil. At an addition levels of 500 and 1000 ppm, the 

activity of the extract was better than that of BHAJBHT/CA (250 ppm) which is 

commonly used in the canola oil industry. Therefore, extracts of canola meal can 

potentially be used as alternative natural antioxidant system for stabilizing canola oil. 

The effectiveness of canola extract at these levels was less than that of TBHQ (200 

ppm), however, TBHQ is not permitted as a food additive in Canada. Canola extract 

did not impart any visible colour or perceivable odour to canola oil. 

The most active antioxidative component of canola extract, separated by 

chromatographic techniques, was a phenolic compound. Detailed spectral analyses 

identified it as 1-0-~-D-glucopyranosyl 3,5-dimethoxy-4-hydroxy cinnamate. 

The antioxidant activity of a number of flavonoids was also tested in this study. 

Results indicated that myricetin, quercetin and rutin, all flavonols and (-)epicatechin a 

· flavan-3-ol, were most effective in stabilizing canola oil. Naringin and narigenin 

(flavonones) were considerably less effective than flavonols and flavan-3-ol tested. 

A novel nuclear magnetic resonance (NMR) spectroscopy was also used to 

monitor oxidation of canola and soybean oils. The ratios of the integrated areas of 

aliphatic to olefinic protons and aliphatic to diallylmethylene protons of oils under 

different stages of oxidation correlated well with TOTOX values. The NMR 

methodology offers a rapid, non-destructive procedure for evaluation of the oxidative 

stability of edible oils, as exemplified for canola and soybean oils. 
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Based on the results obtained in this study it is recommended that: 

1. The effectiveness of ethanolic extract of canola in stabilizing other edible oils 

which are highly prone to oxidation be studied. 

2. The toxicological properties of the extract to be studied in order to meet possible 

legislative requirements for their commercial application in the edible oil industry. 

3. The applicability of 1H NMR as an indicator of oxidation of lipids in other food 

systems and relationship of this indicator with sensory properties to explored further. 
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APPENDIX 
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Figure A.1 Standard line of concentration dependance of TBARS as reflected 
in the absorbance of the TBA-malonaldehyde complex. 

Regression coefficient (r) = 0.995 
Equation of the line (Y=aX+b) where, 

Y =absorbance at 532nm (A53z} 
X = concentration of malonaldehyde (MA) in 5 ml solution, pmole (C) 
a= 14.116 
b = 0.0 

A532 = 14.116*C 

Therefore, C = 0.071A532 

Since the w grams of oil dissolved in 25 ml of solution, the MA 
concentration is: 

C = (0.355A532)/w (pmole of MA/g oil) 
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Figure A.2 Mass spectrum of the most active antioxidative compound of canola 
extract (Molecular ion was not observed). 
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Figure A.3 1H NMR spectrum of the most active antioxidative compound of canola 
extract. 
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Figure A.4 13C eH} NMR and attached proton spectra of the most active 
antioxidative compound of canola extract. 
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Figure A.5 1H- 1H COSY spectrum of the most active antioxidative compound of 
canola extract. 
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Figure A.4 Chromatogram (TLC) of the sugar component obtained upon hydrolysis 
of the most active antioxidative compound of canola. (1) sample, 
(2) rhamnose, (3) glucose, (4) mannose and (5) galactose. 
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Identification of sugar of the most active antioxidative compound of canola 
following acid hydrolysis 

Five milligram of the most active antioxidative compound, isolated as indicated 

before, was hydrolyzed at 100°C for 1 h using a 1.0 ml concentrated 

HCl/water/ethanol (6:3:9, v/v/v). After 1 h the sample was cooled and diluted with 

water (1.0 ml) and the phenolic acid portion of the molecule, was extracted with 

diethyl ether and removed. The aqueous layer containing the sugar of interest was 

loaded onto a TLC plate (Silica gel, 60 A mean pore diameter, 2-25 pm mean particle 

size, 250 pm thickness, Sigma Chern. Co., St. Louis, Missouri) with standard 

monosaccharides (Sigma Chern. Co. St. Louis, Missouri). The TLC plate was 

developed in a glass chamber 22 em x 22 em x 10 em (Fisher Scientific Ltd. Toronto, 

Ontario) using chloroform/methanol (60:40, v/v) with 0.02M sodium acetate as the 

mobile phase (Pifferi, 1965). Mter drying, bands were located and identified spraying 

with aniline-diphenylamine-phosphoric acid (Pifferi, 1965). 

Spray reagent: 

Four gram of diphenylamine, 4 ml of aniline and 20 ml of 85% phosphoric 

acid were dissolved in 200 ml acetone. After spraying, plate was heated at 85°C for 

10 min in an oven. 
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