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ABSTRACT 

Lung surfactant (LS) stabilizes the alveoli during normal respiration by reducing 

surface tension of the alveolar air-water interface. Among other diseases, dysfunction of 

the material occurs in acute respiratory distress syndromes (ARDS). During ARDS, 

plasma proteins leaked from capillaries inhibit LS surface activity. As models for ARDS, 

bovine lipid extract surfactant (BLES) and dipalmitoylphosphatidylcholine (DPPC) in 

monolayer and bilayer dispersions, with and without bovine serum albumin (BSA), were 

studied. The studies were conducted using Langmuir and adsorption surface balances 

(monolayer), atomic force microscopy (AFM), differential scanning calorimetry (DSC), 

transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy 

(FTIR). Surface balance studies suggested that BSA inhibited surfactant adsorption to the 

air-water interface to form monolayer films, and such films did not reach low surface 

tension upon compression. AFM showed the appearance of well defined gel-like or 

condensed domains in films of BLES alone, but with BSA added, these domains 

appeared less defined, more numerous, and other fluid-like new domains were also 

detected. With DSC, BLES (2 mgs/ml) bilayer dispersions showed a broad gel to liquid 

crystalline phase transition between 20-40°C, and addition ofBSA (12.5-250 wt% of 

BLES lipids) to BLES (or DPPC) made the transition more diffuse suggesting protein 

interactions with the bilayer. TEM studies showed elongation of BLES multilamellar 

vesicles and only minor alterations of such structures with the addition of BSA. FTIR of 

similar BLES/BSA dispersions suggested that BSA associated with the head group 



regions of the phospholipid and also affected the hydrophobic tail regions, as monitored 

from CH2, C=O and P04- vibrational stretching modes. This study suggests that albumin 

inhibits surfactant by perturbing surfactant lipid packing in monolayers and bilayers. 

Such alterations may lead to poor surface activity of LS as found in ARDS and other 

diseases. 
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INTRODUCTION 

1.1 Surfactant 

Lung surfactant (LS) is a complex mixture of lipids and proteins lining the 

hypophase of the alveolar epithelium and maintaining lung stability by reducing the 

surface tension (y) of the lung air-water interface. LS is secreted by alveolar type II cells, 

which form part of the outer cellular interface of the alveoli along with other epithelial 

cells and macrophages (Clements, 1957; Goerke, 1974; King and Clements, 1972). In 

the alveolar hypophase, surfactant forms vesicles and tubular myelin (TM), and at the 

air/liquid interface, LS is adsorbed as putative mixed lipid-protein films. The major 

functions of LS are to prevent alveolar collapse at low lung volume and to preserve 

bronchiolar patency (air-way opening) during normal respiration. Also, its major 

immunological functions are to protect the lungs from injuries and infections caused by 

inhaled particles and micro-organisms (reviewed by Griese, 1999). 

To work properly, LS must be fluid enough to adsorb rapidly to the alveolar 

interface to form monolayer films. These films must be rigid enough to promote near 

zero surface tensions (y) during the alveolar compression. The ability ofLS films to 

attain a y of close to 0 mN/m during lateral compression, stabilizes the lung alveoli at end 

expiration by counteracting forces at alveolar collapse (Goerke, 1998). Alteration and 

inactivation of LS in the lung may lead to several respiratory syndromes such as acute 

respiratory distress syndrome (ARDS), hyaline membrane disease, and acute lung injury 



(ALI) (reviewed by Flores and Phelps, 1997; Griese, 1999; Lewis and Jobe, 1993; and 

Possmayer eta!., 2004). 

1.2 Composition of Surfactant 

Biochemically, mammalian LS is composed of approximately 90% lipid by 

weight and 1 0% protein. The lipid component is made up of phospholipids and neutral 

lipids. The protein component contains the surfactant proteins (SP-) SP-A, SP-B, SP-C, 

and SP-D, which have been studied for structure and properties, and how they interact 

with surfactant lipids (reviewed by Johansson eta!., 1994; Possmayer eta!., 2001; 

Veldhuizen eta!., 1998). 

1.2.1 Lipids 

About 90o/o by weight ofthe lipid fraction ofLS is phospholipids, 80% of which 

is phosphatidylcholine (PC) (Veldhuizen eta!., 1998; Yu eta!., 1983). 

Dipalmitoylphosphatidylcholine (DPPC) is the most abundant PC, making up about 65% 

of the weight of the phospholipid component in most mammals. DPPC is important in 

the function of LS, and plays an essential role in decreasing y. This is the only 

component of LS which can be packed tightly into condensed films at 3 7°C, and such 

packing can lower they of an air-water interface to near zero values. There is also a 

significant portion of phosphatidylglycerol (PG) in LS. PG abundance in LS varies 

considerably from species to species and during fetal lung development. PG can be 

replaced by another negatively charged phospholipid, phosphatidylinositol (PI), without 
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affecting the surface properties of lowering they at the air water interface (reviewed by 

Robertson eta!., 1992). DPPC and PG are unusual phospholipids and are not found in 

most mammalian membranes (Veldhuizen et a!., 1998). Other minor phospholipids 

present in LS are phosphatidylethanolamine (PE), phosphatidylserine (PS), 

sphingomyelin (SM), lysophosphatidylcholine (LPC), and lyso-bis-phosphatidic acid 

(LBPA) (Body, 1971; Notter and Finkelstein, 1984; Shelley eta!., 1984). Not much is 

known about the function of these lipids; however, some of them are important 

constituents of biological membranes. Some studies have shown that the lamellar body 

(LB) limiting membrane of LS may contain higher levels of PE and SM. As well the 

minor phospholipid components could be involved in signaling events related to LS 

metabolism (reviewed by Veldhuizen eta!., 1998). 

The non-phospholipid components of LS include neutral lipids such as cholesterol 

and triglycerides. Cholesterol has been known to enhance the adsorption rate of DPPC 

vesicles, presumably by increasing fluidity and improving film respreading (Fleming and 

Keough, 1988). It is also known to regulate the crystallization behavior of LS (Larsson et 

a!., 2003). However, by increasing fluidity, cholesterol limits the minimum y obtainable 

during compression, because the sterol cannot be squeezed out easily from DPPC

cholesterol mixed films at high packing densities (Notter eta!., 1980). This is a reason 

why cholesterol is removed from some modified natural surfactants for clinical therapies. 

Other studies with neutral lipids combined with DPPC and PG mixtures stated that the 

mixtures adsorbed well, but were not effective in attaining low y (Veldhuizen eta!., 

1998). 
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Bovine Lipid Extract Surfactant (BLES) is a modified natural surfactant extracted 

from repeated cow lung washings (lavage), modified from the extensively studied bovine 

pulmonary surfactant (Yu eta!., 1983). It has the water soluble surfactant proteins SP-A 

and SP-D and the neutral lipids such as cholesterol and triglycerides removed for better 

surface activity. BLES was the surfactant used for the present study, due to its consistent 

composition, availability, and success as the only clinical replacement surfactant 

developed in Canada (see section 1.7). 

1.2.2 Proteins 

SP-A and SP-D make up the hydrophilic surfactant protein pool, and SP-B and 

SP-C are the hydrophobic surfactant proteins, associated with surfactant lipids. 

The most abundant protein by weight in LS is SP-A, which has a mass of 

approximately 32 -35 kDa (depending on glycosylation) per monomer. It is a 

glycoprotein with three distinct structural domains. A long stretched collagenous domain 

is connected via a linking region to a globular domain. This is the site where calcium 

dependent binding occurs to lipids (Haagsman eta!., 1989). SP-A consists of 18 

monomers organized by covalent disulphide bonds and non-covalent interactions, having 

an octadecameric mass of 640 kDa. SP-A has been shown to accelerate the adsorption of 

LS phospholipids at the air-water interface (King and Clements, 1972; Palaniyar eta!., 

2000; Schurch et a!., 1992), and reverse inhibition of LS by serum proteins (Cockshutt et 

a!., 1990). It is also involved in the structural organization of LS, and is an essential 
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component in the formation of tubular myelin. As well, it stimulates the defense system 

which depends on macrophages (Wright, 1997). 

SP-D is the second hydrophilic protein, with a mass of 37-50 kDa per monomer 

(depending on glycosylation and species). It is also a collagenous carbohydrate-binding 

lectin glycoprotein, such as SP-A. It has a larger collagenous domain than SP-A, and is 

attached directly without a connecting region to the calcium dependent carbohydrate 

recognition domain. The lectin SP-D exhibits calcium dependent carbohydrate binding 

activity to receptors, however does not bind any lipids except phosphatidylinositol, which 

is not present in lung surfactant in any significant amount (Floros and Phelps, 1997). SP

D does not contain cysteine residues and this prohibits interhelical disulphide crosslinks, 

like those in SP-A. SP-D has 12 monomers, 4 of which form a cross-like structure which 

may bind to bacteriallipopolysaccharides and to cell surfaces forming large networks of 

cells or bacteria (Crouch, 1998). SP-D is an aqueous protein found in alveolar fluid, 

whereas SP-A, SP-B and SP-C are almost entirely found in association with LS lipids. 

SP-D has been suggested to counteract the inhibitory effect of SP-A on phospholipid 

secretion (Floros and Phelps, 1997). As well, SP-D binds PI and ceramides in a calcium 

dependent manner. Not much else is known about SP-D, however. Some studies suggest 

that SP-D is not a "surfactant-associated protein", considering it does not show major 

surface activity with surfactant lipids (Taneva eta!., 1997). SP-D gene knockout mice 

show no altered y of extracted LS but do show high LS lipid secretion, or a condition 

called alveolar lipidosis (Ikegami et al., 2000). 
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Although SP-A and SP-D have minimal effect on the surface activity ofLS 

phospholipids, SP-B and SP-C have significant effects. SP-B and SP-C are both 

hydrophobic proteins and are thought to be responsible for rapid formation of LS 

monolayers at the air-water interface (Possmayer, 1990; Yu and Possmayer, 1990). The 

proteins also help in the insertion and removal of phospholipids during the expansion and 

compression of the LS film (reviewed by Perez-Gil and Keough, 1998). As well, they 

both increase the uptake of phospholipids into type II pneumocytes (reviewed by Griese, 

1999). 

SP-B is a cysteine-linked homodimer with a monomeric molecular weight (M.W.) 

of 8. 7 kDa. It consists of 4 amino acid repeats with a conserved periodicity of cysteine 

residues in each repeat. The repeats are linked by regions rich in proline and glycine. 

The third repeat contains an additional cysteine residue that may be involved in inter 

chain disulphide bond formation (reviewed by Johansson eta!., 1994). SP-B has many 

functions. Like SP-A, it is important for the formation of TM (Floros and Phelps, 1997). 

TM is the material in LS thought to be the most surface active. As well, SP-B induces 

bilayer contact sites and subsequent lipid mixing in the presence of negatively charged 

phospholipids, divalent or monovalent cations, or lowered pH. Also, SP-B increases the 

size of small unilamellar vesicles and causes vesicle fusion (Rice eta!., 1989). In 

addition, SP-B accelerates the formation of a surface active film composed of 

phospholipids at the air water interface by means of an increase in adsorption rate of LS 

lipids (reviewed by Johansson eta!., 1994), and this is affected by the presence of 

calcium ions. As well, SP-B appears to affect the squeeze out of unsaturated lipids from 
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the surface film ofLS, resulting in a DPPC- enriched monolayer (Floras and Phelps, 

1997; Nag eta!., 1999). In addition, SP-B interacts with phosphatidylglycerol at the 

surface of the bilayer membrane in a concentration-dependent manner (Baatz et al., 

1990). SP-B increases order in the lipid head group region of a lipid bilayer and not in 

the membrane interior (Baatz et al., 1990). Genetic knock-out of the SP-B protein is 

lethal, and the animals die within a few hours ofbirth (Clark et al., 1995; Melton eta!., 

2003; and reviewed by Johansson et al., 1994). 

SP-C is the only surfactant protein expressed exclusively by type II cells in the 

mature lung. It is one of the most hydrophobic natural monomeric peptides with its 

carboxy-terminus being extremely hydrophobic, and it has aM. W. of 4.2 kDa. It is a 

mainly a-helical membrane-spanning molecule and has two covalently linked palmitic 

acid residues attached to the cysteines near the N -terminus (Beers and Fisher, 1992). 

The hydrophobic helix and acylation are important for anchoring the protein to the 

membrane (Floros and Phelps, 1997), and can act as a transmembrane protein. The main 

known function of SP-C is to enhance the surface activity of the surfactant lipids. This 

occurs through acceleration of the rate of adsorption of lipids at the air-water interface. 

SP-C also allows for an increase in the resistance of LS to inhibition by serum proteins 

(Holm eta!., 1988). As well, SP-C stabilizes the surface activity of the LS film during 

the expansion and compression involved in breathing by possibly forming multilayer 

structures (reviewed by Perez-Gil and Keough, 1998). In addition, SP-C disturbs the 

ordering of the acyl chain region or lipid packing of DPPC in bilayer models, and 

broadens the gel-fluid phase transition temperature (Johansson, 1998). SP-C knock-out 
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mice however do not show any significant altered surface activity although they develop 

other problems such as altered lung fluid-balance, and eventually perish a few weeks 

after birth (Glasser eta/., 2001). Both SP-B and SP-C are normally present in lipid 

extracts ofLS used for clinical treatment (such as BLES) because of their 

hydrophobicity. 

1.3 Surfactant Life Cycle 

LS assumes several structural and morphologic forms during its life span in the 

type II alveolar cell and in the hypophase. After synthesis by type II cells, LS is secreted 

into the alveolar space. Secretion of LS from type II cells is assumed to be induced by 

deep sighing breaths and the resulting large increases in lung surface area (Wirtz and 

Dobbs, 2000). After secretion, it undergoes several processes such as adsorption, surface 

film formation, film refining, self assembly, and monolayer-bilayer-multilayer 

transformation. It also undergoes phase transitions at an air-water interface in vitro 

(reviewed by Nag eta/., 2000). During secretion, lamellar bodies (LB) are formed, 

which can transform into lattice bound tubes called tubular myelin (TM), in the presence 

of calcium, SP-A, and SP-B (Wright and Hawgood, 1989). Figure 1 shows structures of 

LB and TM in lavaged rat LS. LB have concentric layers of unit bilayer membranes that 

have similar structural features to multilamellar liposomes or vesicles (Goerke, 1998). 

The TM is thought to be the precursor of the surface active film and is present in high 

amounts in the large aggregate (LA) [Fig. l(a)] form ofLS (Floros and Phelps, 1997; 

Veldhuizen et a/., 1996). TM structures are nano-tubules that have a square lattice 

8 



Figure 1 : Transmission Electron Micrographs (TEMs) of lavaged rat surfactant large 

aggregate, with tubular myelin (TM) and lamellar bodies (LB) identified. The LB are the 

secretory materials which transform into TM. In disease and dysfunction, TM structures 

are absent (see Fig. 2). The electron micrographs were done by embedding rat LS in 

Lowricryl and staining using uranyl acetate. The black lines are oftypical bilayer (40-50 

A) thickness. [The TEM were a generous gift from Stephen Hearn, Cold Spring Harbour 

Laboratory, New York (Unpublished Data)]. 
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network where the bilayer membranes intersect at a perpendicular angle and form the 

walls ofthese tubes (Groniowski and Walski, 1979). LS monolayers possibly reside at 

the alveolar interface for hundreds of breathing cycles before replacement by further 

secretion (Pison et al., 1996). LS vesicles are presumably created in the hypophase from 

cycling of large aggregates, and the smaller vesicles (small aggregates) are taken up 

preferentially by the type II pneumocytes and reutilized for LS synthesis (Gross, 1995). 

It is presumed that the LA or TM forms a surface active layer or film, and the film, after 

recycling (due to breathing cycles), is converted into small aggregates (SA). The LA and 

SA forms are different in composition of surfactant proteins (Gross, 1995). 

Approximately 50% by weight of the LS is present in the alveolar space, in the form of 

LA, and 50% is in the form of SA (Griese et al., 1996), however this ratio changes 

dramatically in lung disease (Veldhuizen et al., 2002). The typical LA form of LS from 

rat lungs is shown in Figure 1. 

1.4 Acute Respiratory Distress Syndrome 

The first studies on lungs and the alveolar lining materials were carried out in the 

1950s and 1960s (Ashbaugh et al., 1967; Avery and Mead, 1959; Clements, 1957; Pattie, 

1955, 1958). John A. Clements first discovered the surface tension reducing properties of 

lung lavage (Clements, 1957). The surface tension-area (y-A) behaviour of lung derived 

surfaces was first studied using the Langmuir-Wilhemy surface balances by these authors 

(King and Clements, 1972). They were the first to suggest that LS probably existed at the 

lung air-water interface as monolayer films, since most of the molecules ofLS were 
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amphipathic. They noted that the y of the lung derived surface varied from 46 to 

1 OmN/m, and that the surface exhibited hysteresis and provided a characteristic elasticity 

to the fluid surface (Goerke, 1974, 1998). Schurch et al. (1976) measured they of the 

lung interface in situ, and substantiated that the values were very close to those found by 

King and Clements ( 1972), at near 1 mN/m at end expiration. 

Acute Respiratory Distress Syndrome was first described by Ashbaugh et al. 

(1967). They observed 12 patients who weren't responding to the usual modes of 

therapy, and were exhibiting clinical, physiological and pathological courses of events 

that were similar to infant respiratory distress syndrome (otherwise known as hyaline

membrane disease) (Avery and Mead, 1959). Hyaline (shiny-appearance) membrane 

disease was found to be due to lack of ample secretion of LS (A very and Mead, 1959). In 

ARDS the patients exhibited severe dyspnoea, tachypnoea, cyanosis that is refractory to 

oxygen therapy, loss of lung compliance, and diffuse alveolar infiltration (Ashbaugh et 

al., 1967; reviewed by Lewis and Jobe, 1993). In all patients, ventilation was assisted or 

controlled by a respirator and measurements were made when the patient was in a relaxed 

or steady state. As well, the minimum y observed in patients was 24 mN/m whereas in 

normal situations it was less than 10 mN/m, when LS from such lungs were studied in 

vitro. Other features noticed were the presence of a patchy bilateral alveolar infiltrate 

visible in the x-ray of the chest, as well as the presence of protein-rich layers in the 

microscopic appearance of the lungs. All this led Ashbaugh and his colleagues to 

collectively define the symptoms of these patients as adult respiratory distress syndrome, 

and today it is defined as acute respiratory distress syndrome (ARDS). 
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In 1994, the American-European Consensus Conference Committee defined 

ARDS, and ALI as a syndrome of inflammation and increased capillary permeability that 

is associated with a constellation of clinical, radiologic, and physiologic abnormalities 

that cannot be explained by left atrial or pulmonary capillary hypertension (Bernard et 

al., 1994). The Conference Committee also mentioned several risk factors for ARDS. 

They include aspiration, diffuse pulmonary infection, near-drowning, toxic inhalation, 

lung contusion, sepsis syndrome, and cardiopulmonary bypass. Ware and Matthay 

(2000) mentions that sepsis is associated with the highest risk of progression to ALI or 

ARDS, by approximately 40%. 

The annual incidence ofthe disease in the US is about 75 per 100,000 population 

according to the National Institutes of Health (NIH) (Murray, .1977), whereas the 

consensus mentions approximately 150,000 cases per year (Bernard et al., 1994). The 

mortality rate is approximately 40-60%, and the majority of deaths are attributable to 

sepsis or multi organ dysfunction rather than primary respiratory causes (Doyle et al., 

1995). 

The acute phase of ARDS is characterized by the influx of protein rich edema 

fluid into air spaces as a consequence of increased permeability of the alveolar-capillary 

barrier or leakage of blood vessels (Pugin et al., 1999). There are two types of cells 

present in the alveolar epithelium of adult lungs. Flat type I cells, which make up 90% of 

the surface area, are easily injured. However, the cuboidal type II cells make up the 

remaining 10% and are more resistant to injury. The functions of the type II cells include 

surfactant production, ion transport, and proliferation (reviewed by Ware and Matthay, 
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2000). Increased permeability of the epithelium can contribute to alveolar flooding. As 

well, the loss of epithelial integrity and injury to type II cells disrupt normal epithelial 

fluid transport, impairing the removal of edema fluid from alveolar space (Sznajder, 

1999). Also, injury to type II cells reduces the production and turnover of LS, 

contributing to surfactant abnormalities. In addition, loss of the epithelial barrier can lead 

to septic shock in patients with bacterial pneumonia (reviewed by Ware and Matthay, 

1999). In ARDS, inflammation gives rise to phospholipases, proteases, and other 

mediators within lung tissue. Damage to the alveolo-capillary membrane allows for these 

compounds, along with cellular degradation products and blood derived lipids and 

proteins, access to the alveoli where they can impair the surface-active function of LS 

(Holm et al., 1999). Another mechanism of injury is evident when neutrophils 

predominate in pulmonary edema fluid obtained from affected patients, suggesting 

neutrophil dependent lung injury (Pittet et al., 1997). Other mechanisms included injury 

by cytokines, ventilator-induced lung injury due to high volumes and pressures of 

mechanical ventilation, and abnormalities in the production, composition, and function of 

LS (Ware and Matthay, 2000). 

To resolve the cause of this disease, many suggestions have been made. Alveolar 

edema can be resolved by the transport of sodium and chloride from the distal air spaces 

into the lung interstitium (Matalon et al., 1996). As well, in clinical studies, clearance of 

alveolar fluid can cause improved oxygenation, a shorter duration of mechanical 

ventilation, and an increased likelihood of survival. As well the removal of insoluble 
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protein is important since hyaline membranes provide a framework for growth of fibrous 

tissue (reviewed by Griese, 1999; and Ware and Matthay, 2000). 

Several approaches to treatment have been discussed. These include prophylaxis, 

supplementation with oxygen and positive end-expiratory pressure, mechanical 

ventilation, pharmacologic therapy through the use of corticosteroids, and nonsteroidal 

anti-inflammatory drugs, fluid and hemodynamic management, synthetic and natural 

surfactant therapy, and inhaled nitric oxide and other vasodilators (Bernard and Brigham, 

1986; Spragg and Lewis, 2003; reviewed by Ware and Matthay, 2000). Although these 

may help, there is still an onset of the disease, with a 40-60% mortality rate, so more 

studies have to be carried out to understand the mechanisms of dysfunction and surfactant 

replacement for more effective modes of therapy. 

1.5 Lung Surfactant and ARDS 

Jacobson et al. (1993) found an occurance of free surfactant particles in the 

tracheal aspirates of 30 patients without and 23 with ARDS. They also found the 

presence of fibrinogen in the aspirates of only 5 of 3 0 patients without, but in 20 out of 

21 patients with ARDS. The surfactant particles are identical to those found in the type II 

cells of the alveolar epithelium. There are several studies, which show the importance of 

LS in lung activity, and the inactivation causing ARDS (reviewed by Griese, 1999). 

Studies have shown that phospholipid composition was altered (decreased PC and PG 

with increased PI and PE), surfactant associated proteins were decreased (SP-A), and 

alveolar LS aggregate forms were altered (reviewed by Lewis and Jobe, 1993). Changes 
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in alveolar surfactant aggregate metabolism leads to a decrease in the functionally active 

aggregate pool size within the air space. Increased alveolar phospholipase activity may 

also enhance surfactant aggregate conversion (Veldhuizen eta!., 1996). 

Plasma proteins have been known to inhibit LS function which in turn leads to 

ARDS. Figure 2 shows TEM's of normal and dysfunctional LS forms from rat lung 

lavage. The lung injury here was induced using hyperventilation ex vivo (Panda et al., 

2004; Veldhuizen eta!., 1998). The general concentration of plasma proteins in the 

normal rat lungs was -300 ~g/lung pair, whereas in injured lungs, the concentration was 

-830 ~g/lung pair, almost a three fold increase (Panda et al., 2004). Also, they of such 

ventilation injured surfactant did not reach below 20mN/m. Holm et al. (1988) found 

that at low surfactant concentrations, plasma proteins significantly inhibit LS adsorption, 

resulting in an increase in the equilibrium y. At low surfactant concentration of 0.5 

mg/ml, plasma proteins prevent the LS suspension from reaching y below 21 mN/m, a 

value that is generally considered incompatible with normal physiological function 

(Goerke, 1998; Enhoming, 1977). 

There are possibly many mechanisms by which protein may inhibit LS. It can 

inhibit either by interactions with surfactant phospholipids in the bulk phase or surface 

layer, by inserting into the intact surface film, or by competing with surfactant molecules 

for space at the air-liquid interface during adsorption (Holm et al., 1999). Holm eta!. 

(1988) found that large amounts of plasma proteins injected beneath a preformed 

surfactant film do not affect equilibrium y, the opposite of the phenomenon that was 
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Figure 2: TEM's ofNormal LS rat lavage (LB and TM) and a dysfunctional LS from a 

hyperventilation injured rat LS (Panda et al., 2004). Lamellar bodies and tubular myelin 

formation is completely disrupted, and small aggregates and other unknown structures 

(Veldhuizen et al., 2002) are mostly found in such lavaged LS from injured lungs. [The 

EM's were a generous gift from Stephen Hearn, Cold Spring Harbour Laboratory, New 

York (Unpublished Data)]. 
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observed when proteins are added simultaneously with the surfactant suspension. 

Keough et al. (1989) found that the plasma proteins albumin, globulin, and fibrinogen 

detract from the ability of LS to adsorb to the air-water interface using a pulsating bubble 

surfactometer. As well, in surface balance studies, each of the proteins altered some of 

they-A properties of the isotherms of surfactant films. The proteins decreased the 

minimum y which the surfactant films attained on compression, and decreased the areas 

occupied per molecule of the lipid. The proteins also reduced the areas of hysteresis 

between compression and expansion isotherms, and decreased the rate of change of y 

with area at the point of initial expansion of the mono layers (Keough et al., 1988). 

Various studies reviewed by Holm, (1988) mentioned that when injected beneath 

the surface of a stirred subphase, albumin adsorbed to an equilibrium y of only 50 mN/m. 

When albumin and surfactant were combined in dispersion and injected together, there 

was a substantial reduction both in adsorption rate and rise in final equilibrium y 

compared to the surfactant alone. They hypothesized that albumin acted primarily 

through competitive adsorption and blocking of the air water interface for lipid molecules 

of LS to adsorb. As well, it has been stated that plasma proteins may also impair LS 

adsorption by associating with surfactant aggregates in the subphase during lung injury 

(Holm, 1999, and references there in). 

1.6 Bovine Lipid Extract Surfactant 

The modified LS used in this study was Bovine Lipid Extract Surfactant 

(BLES™) obtained from BLES Biochemicals Inc., in London, Ontario. BLES is a 

19 



modified natural LS hydrophobic extract from bovine lung lavage. It contains mainly 

~50% DPPC, 35% unsaturated PC, ~10% acidic phospholipids such as PG, and at 2% of 

the weight of lipids, SP-B and SP-C, among other minor phospholipids of surfactant (Yu 

eta!., 1983). BLES was used as a standard model of natural LS due to its consistent 

composition and surface activity, its availability in large amounts, and its cost 

effectiveness as a Canadian product. Previous studies using various extracted surfactant 

preparations have suggested contradictory results due to various extraction artifacts, 

contaminants, and compositions quite different from their natural surfactants (Holm, 

1992). SP-A, SP-D, and neutral lipids (cholesterol) are removed from the surfactant for 

better surface activity, however, BLES contains all other lipids and the hydrophobic 

proteins SP-B and SP-C as found in bovine lavaged LS. 

1.7 Albumin 

Albumin (Figure 3) is one of the most structurally defined plasma proteins and is 

one of the most abundant proteins in the circulatory system, with a concentration of 

approximately 40g/l in human plasma (Rosenoer eta!., 1977). Albumin contributes to 

80% of the colloid osmotic blood pressure (Carter and Ho, 1994). Serum albumin is 

chiefly responsible for the maintenance of blood pH as well as a carrier for fatty acids 

(Figge et al., 1991). 

Albumin is first synthesized in the liver as preproalbumin. The signal peptide is 

then removed, and a 6-residue pro-peptide is cleaved from theN-terminus to give mature 

albumin. 
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Figure 3: Topographical cartoon structure of serum albumin. Arrows point to the lipid 

binding regions of the molecule. Taken from the Protein Data Bank 

(http://www.rcsb.org/pdb/molecules/le7i- icon.gif) 
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Bovine serum albumin (BSA) is a single polypeptide of about 600 AA's (Brown, 

1975). It has an approximate M.W. of 66,000 Da. Albumin's pi is about 4.7 in 0.15 M 

NaCl. It is a highly water soluble protein with a strong negative charge of -17 per 

residue at pH 7 (Peters, 1985). The protein is composed of 3 homologous domains 

divided into 9 loops by 1 7 disulphide bonds. About 67% of the protein is a-helical, and 

the remaining polypeptide is made up of turns and loops connecting the domains. There 

are very few f3-sheets in the structure. Disulphide pairing is located mostly between 

helical segments. This suggests that the disulphides are protected from reducing agents at 

neutral pH (Peters, 1985). 

The denaturation temperature of bovine serum albumin (BSA) is around 65 °C 

(Wetzel eta!., 1980). Upon denaturation, there appears to be a loss in a-helical structure 

and increase in antiparallel f3-sheets. 

There are 4 buried clusters embedded within the structure, which appear to be the 

lipid binding domains. These clusters are favorable for hydrophobic interactions with 

lipids such as free fatty acids (Bardos-Nagy and Galantai, 2003). These areas are rich in 

hydrophobic amino acids such as phenylalanine, leucine, methionine, alanine, valine, and 

isoleucine. These hydrophobic regions may suggest a propensity of albumin to interact 

with LS lipids. 

Albumin has many functions such as binding and transporting fatty acids, 

maintenance of colloid osmotic blood pressure, free radical scavenging, platelet function 

inhibition, and anti-thrombic effects. It also affects capillary membrane permeability, is 

involved in foaming when interacting with other proteins (Poole et al., 1984), forms 
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soluble aggregates (Matsudomi et al., 1993), and is involved in reversible ligand binding 

(Goodman, 1958). 

1.8 Present Study 

This-study tested the interaction and association ofLS with one ofthe serum 

proteins: albumin. The hypothesis for this work is based upon whether albumin interacts 

with specific lipid molecules ofBLES and if this can be biophysically observed. The 

study focuses on testing the hypothesis that albumin would insert or at least affect the 

headgroup region of the bilayer or monolayer, and that the effect is translated deep into 

the hydrophobic part of the bilayer. Biophysical studies were performed on monolayer 

films, as well as bilayer vesicle dispersions ofBLES. The techniques used were 

Langmuir and adsorption surface balances (Monolayer), differential scanning calorimetry 

(DSC), atomic force microscopy (AFM), transmission electron microscopy (TEM), and 

Fourier transform infrared spectroscopy (FTIR) (reviewed by Nag et al., 2002a, 2004b). 

Surfactant monolayers were used in the surface balance and AFM studies, and bilayer 

dispersions were used in DSC, FTIR, and TEM studies. 
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MATERIALS AND METHODS 

2.1 Materials 

Bovine Lipid Extract Surfactant (27mgs/ml in 5ml vials) was a generous gift from 

Dr. Dave Bjarnson ofBLES® Biochemicals Inc. (London, Ontario). 1, 2-dipalmitoyl-sn

glycero-3-phosphatidylcholine (DPPC) was purchased from Sigma-Aldrich (St. Louis, 

MO). Chloroform and methanol were HPLC grade solvents (99%) purchased from 

Fisher Scientific (Ottawa, ON). Delipidated bovine serum albumin (BSA) (Protease-free, 

Fraction V, 99%, catalogue number- A3059-50G) in crystallized form was purchased 

from Sigma-Aldrich Inc., (St. Louis, MO). 

All experiments were carried out in doubly distilled water (ddH20) at pH of7, 

unless otherwise stated. All glassware used in the monolayer experiments were chromic 

acid washed, rinsed thoroughly, and baked at 180°C for 2 hours prior to use, to remove 

any organic and surface active contaminants, as discussed previously (Nag et al., 1996, 

PhD Thesis). 

BLES was combined with 12.5-250% (w/w) ofBSA for DSC, FTIR, and 

monolayer studies. These concentrations are physiologically/pathologically relevant to 

what occurs in ARDS and lung injury (1 :1 protein: lipid ratios). Extremely high 

concentrations of2000-3000% (w/w) ofBSA (10:1 and 20:1) were also used, as 

previously used in some in vitro studies in the laboratory of others (Holm et al., 1999). 

These high concentrations are laboratory-assigned to show maximal inhibition, however 
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this may not be physiologically relevant, except in certain cases such as RDS where most 

of the surfactant secretion does not occur. 

2.2 Organic extraction of BLES lipids and proteins 

For some film, mass spectrometry, and AFM studies, BLES was extracted in 

hydrophobic solvents from aqueous dispersions (as supplied by BLES ®Biochemicals 

Inc.) by the method of Bligh and Dyer (1959). Briefly, 0.8 volume ofBLES dispersion in 

saline (27mg/ml), two volumes of methanol and one volume of chloroform were added. 

This mixture was vortexed and shaken vigorously. This was followed by one volume of 

chloroform, and more vortexing and shaking to mix the solvents thoroughly. Then one 

volume of ddH20 was added, and the mixture was vortexed and shaken again. The 

mixture was then centrifuged at 1 000 rpm for 1 minute to separate the organic and 

aqueous layers. The bottom organic phase was extracted with a Pasteur pipette, done 

carefully as to not mix the layers, and placed in a glass vial. The aqueous phase was 

extracted again as described above with chloroform and then with 2:1 chloroform: 

methanol (C:M). The subsequent organic layer extractions were pooled with the previous 

organic layer. This was then dried under nitrogen gas, and redissolved in 3: 1 C:M to 

appropriate concentrations required for the specific experiments. 

The concentration of phosphorus in extracted BLES was obtained by a modified 

version of the Bartlett analysis of organic phosphorus in surfactant (Keough and Kariel, 

1987; Bartlett, 1959). The estimated weight of the phospholipids in BLES was 
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determined by multiplying the total phosphorus concentration by 25 [(M.W. ofP= 31), 

where 3Ix25 is the approximate M.W. ofthe phospholipids]. 

2.3 Preparation of Buffer 

For certain DSC studies the buffer was prepared with 145 mMol NaCl, 5 mMol 

Tris-HCl, and 2 mMol CaCh dissolved in ddH20. The pH was then adjusted to 6.9 using 

a pH meter and titration with 0.1 M HCl until the desired pH was reached. For most 

other studies ddH20 was used, since specific ions can dramatically alter the LS structure 

and function, as well as affect the structure of albumin. Future studies with specific ions 

(Na+, Ca 2+) are underway in our laboratory, with these systems. 

2.4 Technigues 

Biophysical studies on BLES +/- BSA were carried out using mass spectrometry, 

surface balance (monolayer) studies, atomic force microscopy (AFM), differential 

scanning calorimetry (DSC), electron microscopy (EM), and Fourier transform infrared 

spectroscopy (FTIR). 

2.4.1 Mass Spectrometry 

For the compositional analysis of the phospholipids ofBLES, electrospray 

ionization mass spectrometry (ESI-MS) was performed on hydrophobic extracts. An 

Atmospheric Pressure Ionization-Mass Spectrometer (API-MS) was used. This mass 

spectrometer is part of an Agilent 1100 series LC/MSD chromatographic system (Model 
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No. GC-G 1946A, Agilent, Missisauga, ON). Some initial studies were conducted in the 

facilities at the Department of Fisheries and Oceans under the supervision of Dr. Joseph 

Banoub, whose expertise in this system of lipid analysis was utilized. In the FIA mode 

(flow injection analysis) chloroform: methanol (C:M) sample solutions are injected into a 

quadropole mass analyzer with a mass range ofm/z 50-3000 and a mass accuracy of0.1 

amu. About 100 ~1 of extracted BLES (1mg/ml) in C:M (3:1 vol:vol) was added to 50 ~1 

ofNH40H (1 0 mM), and this was injected into the mass spectrometer after mixing. The 

NH40H removed all the sodiation in the sample, so that only non-sodiated peaks 

appeared (Harbottle eta!., 2003). · Spectra in the positive as well as negative ion modes 

were obtained. The negative ion mode spectrum was obtained without the addition of 

NH40H to BLES. All data is displayed as the molecular weight (M.W.) (as mass/charge 

or mlz where z=1) in Daltons. 

For analysis of the hydrophobic proteins in BLES a matrix-assisted laser 

desorption-time of flight mass spectrometer (MALDI-TOF MS) was used, available in 

our university's C-CART (Centre for Chemical Analysis, Research and Training) facility. 

The instrument is an Applied Biosystems Voyager DE- PRO [(modified from DE-RP) 

(Serial No. 5-2437, Foster City, California)] equipped with a reflectron, delayed ion 

extraction and high performance N2laser (337 nm). Both positive and negative ion 

detection was available. In the linear mode an upper mass range of 3 50 kDa with a 

resolution of 1,000 (for m/z 17,000) was used in the positive ion mode. A solvent 

solution of 10 ~1 of extracted BLES (250mgs/300 ~1) was diluted to 200 ~1 of C:M 35:65, 

20 ~1 H20, and 20 ~1 acetic acid, as previously discussed by Gustafsson et al. (2001). 
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This solution was combined with sinapinic acid, dried to form a matrix, and then 

analyzed by the mass spectrometer, using laser desorption, at a time of flight 

spectrometer detection range of 3000- 17,000 Da. 

2.4.2 Surface Balance (Monolayer) Studies 

A custom designed Langmuir surface balance with a teflon ribbon barrier (leak 

proof) was used, the construction and operation of which have been described previously 

(Nag et al. , 1990). The dimensions of the Teflon trough give a surface area of 165 cm2
, 

which is used as 100% of pool area in the isotherms. Surface tension-pool area (y-A) was 

used in all studies, as accurate area/molecule information can not be calculated for 

adsorbed films. However, approximately 40 nmoles of BLES phospholipids were used in 

each monolayer study. A motorized Teflon barrier compresses and expands the 

monolayer. Surface tension is measured by a roughened Wilhelmy platinum dipping 

plate hanging on a force transducer (Nag et al., 1990). A subphase of ddH20 was added 

to the trough before spreading or adsorbing the films. When needed, BSA was dissolved 

directly in the sub phase before the experiments. The BLES monolayer (in C:M 3: 1) was 

spread on top of the subphase for the compression-expansion experiments with and 

without BSA. In other studies, dispersions ofBLES + BSA were adsorbed to a desired y. 

The monolayer was initially spread or adsorbed to a y of 65 mN/m before compression. 

Compression-expansion was done at a speed of 506 mm2/sec. By compressing the 

monolayer, the transition of the lipids from fluid to condensed (gel-like) phase was 

initiated, and this is measured as a surface tension-pool area (y-A) isotherm in our studies 
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(Nag eta!., 1998). In this study, only 80% compression was possible due to 20% of the 

area being occupied by the Wilhelmy plate and a circular window for optical observation. 

In certain studies similar monolayers were deposited on to mica slides using Langmuir

Blodgett techniques for structural studies using AFM (Nag eta!., 1999). All experiments 

were performed at an ambient but monitored temperature of 23 ± 1 °C, due to the lack of 

heating and cooling controls on our instrument (Nag et al., 1990). 

Adsorption experiments were carried out in a small cylindrical teflon cup (volume 

of 6.28 cm3
, and surface area of 6.28 cm2

). BLES/BSA dispersions were injected 

underneath the surface of the ddH20 in the cup, and were consistently stirred, using a 

magnetic stirrer. Adsorption to the surface (determined by surface tension drop) was 

measured as a function of time (sec), using a Wilhelm platinum plate as discussed in a 

previous study (Nag et al., 1998). 

2.4.3 Atomic Force Microscopy 

AFM allows for imaging structures of mono layers deposited on an atomically flat 

surface such as mica or glass, and suggests topographical variation of a surface as in the 

case of scanning electron microscopy (SEM). However with AFM, height difference and 

surface topography are determined from the movement of a small tip (20nm in diameter), 

supported by a cantilever and no sample coating and electron beams are required as in 

SEM (Nag et al., 2004b). In principle, the tip can tap or be in constant contact with the 

surface of the material. Movement of the cantilever with the tip are from the sample 

surface, seen as a deflection of a sensor laser, which then reports the surface topography 
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(or the variation of the signal coming from the movement of the cantilever in contact with 

the surface) of the object or monolayer. The experiments in this study were carried out 

on a Langmuir-Blodgett surface balance (Kibron Scientific, Helsinki, Finland) (Harbottle 

eta!., 2003). BLES was solvent spread or adsorbed onto the ddH20 or BSA subphase. 

The material was absorbed to a y close to 55mN/m, and then compressed at 0.04 

nm2/molecule/min (an approximation from the amount of 40 nmoles lipids adsorbed). 

The film was then deposited onto freshly cleaved mica plates at a y of 50, 40, and 20 

mN/m by a slow lifting of mica from the subphase (Blodgett deposits). The AFM was 

then performed, using the contact mode, on these freshly deposited samples using a 

Nanoscope Ilia (Digital Instruments, Santa Barbara, CA) at the University of Western 

Ontario. Details of the AFM methodology are discussed elsewhere (Nag eta!., 2004b). 

The AFM images were displayed in two or three dimensions, and further processing 

using line sections were performed using the Nanoscope Ilia software (Harbottle eta!., 

2003; Nag eta!., 2004b). 

The deposited films were also imaged using a time of flight-secondary ion mass 

spectrometer (TOF-SIMS) (details described by Harbottle et al., 2003). The method 

required sputtering of the surface of the film by an inert beam of gallium ions, with 

detection of fragments of the specific molecules in a TOF tube at different molecular 

masses. These fragments were simultaneously mapped in a 10 x 10 J..Lm region, and their 

intensities were plotted to show the two dimensional distribution. 
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2.4.4 Differential Scanning Calorimetry 

DSC is a technique that measures the thermodynamic melting properties of 

phospholipids bilayers, as they undergo a phase transition from gel to liquid crystalline 

phase upon heating. Studies were performed on a MC-2 Differential Scanning 

Calorimeter (Serial No. 025, Microcal, LLC Inc., Northhampton, Massachusetts) and data 

analyses were performed using Origin Software (Microcal LLC Inc.). Water was used as 

a reference in one of the cells, and the samples were inserted into the other cell. The 

volume in both cells was 1.192 ml. Experiments were run over a temperature range of 

10-50 °C at a scan speed of 60 °C/hr. The sample, at an initial temperature of 1 0°C, was 

heated to the desired end temperature. Only heating could be performed due to 

instrumental limitations. A total of three heating scans were performed for each sample, 

with a 60-minute break in between to cool back to the initial temperature of 1 0°C. 

Slower scan rates did not show any appreciable difference with the ones performed in the 

fast rates, and were not pursued further. The scans were performed and were plotted as 

heat capacity as a function of temperature, and were later baseline normalized to 

kcal/mole of phospholipids (which was performed by the Origin Software). All 

experiments were done in triplicate. Normally, the second or third scan out of the three 

cycles was displayed in the data, as previously described by others (Keough and Kariel, 

1987). 
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2.4.5 Electron Microscopy 

Transmission electron micrographs were obtained for BLES/BSA dispersions. 

Samples were fixed in 4% glutaraldehyde and water, and stained with 1% Os04. The 

sample was then pelleted by centrifugation and left overnight. The sample was then 

dehydrated with acetone, and embedded in an epoxy TAAB 812 resin, followed by 

ultrathin (100nm) sectioning of the resin block using a Reichert OmU2 ultra microtone to 

90 nm thicknesses. It was then counterstained with uranyl acetate and lead citrate, and 

examined with a Zeiss EM109 transmission electron microscope, and photographs of the 

images were obtained. Details of such methods applied to LS are discussed by others 

(Nag et al., 1997a). 

2.4.6 Fourier Transform Infrared Spectroscopy 

FTIR experiments were performed with a Bruker Tensor 27 infrared spectrometer 

(Bruker, Billerica, Massachusetts). This instrument is equipped with a MIRacle 

Attenuated Total Reflection (ATR) accessory allowing rapid and easy Fourier transform 

analysis of liquid and solid samples. BLES dispersions (27mgs/ml) mixed with different 

concentrations of BSA were added to the surface of a zinc crystal, from which an infrared 

laser beam was reflected. Samples were not degassed prior to addition to the crystal. 

The sample was exposed to the infrared laser, and a sensor detected the frequency shifted 

wavelengths of the beam. The frequency shift of the incident light occurs due to the 

molecular vibrations of the C-H, C-C etc. bonds of the phospholipids of the sample 

(Dluhy and Mendelsohn, 1988). The spectra appears as a series of peaks in either 
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transmittance or absorbance mode, as a function of wavenumber (in± 1 cm-1
). Studies 

with different concentrations of BLES suggested CH2, CH3 and C=O signals could be 

obtained from dispersions above 60 mgs/ml concentration. However, due to specific 

alignment of the zinc crystal (experimental limitation) it couldn't be resolved if the CH2 

and CH3 stretching vibrations were from the phospholipid chains or the headgroup 

regions as the signal intensity did not alter with higher concentration of the samples. 
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RESULTS 

3.1 Mass Spectrometry 

Different types of mass spectrometry were performed on BLES to determine the 

accurate and detailed composition of the lipids and proteins. Electrospray ionization 

mass spectrometry (ESI-MS) was done to determine the phospholipid composition of 

BLES. NH40H was added to the BLES (in C:M 3:1) as mentioned in the materials and 

methods, to remove the sodiated peaks (Harbottle et al., 2003). Figure 4 shows the 

positive ion (a) and negative ion (b) ESI spectra of the phospholipids. In the positive ion 

mode, DPPC (16:0116:0 PC) was the most abundant phospholipid at 734 Da (mass in 

Daltons/charge where charge = 1 ), and the next most abundant was 

palmitoyloleoylphosphatidylcholine (POPC) (16:0/18:1 PC) at 760 Da. Other prominent 

peaks were 1-palmitoyl-2-myristoyl-phosphatidylcholine (PMPC) (16:0114:0 PC) at 707 

Da, 1-palmitoyl-2-palmitoyloleylphosphatidylcholine (16:0/16:1 PC) at 732 Da, 1-

palmitoyl-:2-stearoyl-phosphatidylcholine (PSPC) (16:0118:0 PC) at 747 Da, and 

dioleoylphosphatidylcholine (DOPC) (18: 1118:1 PC) at 782 Da. In the negative ion 

mode, 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) (16:0118: 1 PG) was the most 

prominent peak (at 747 Da) and the next was dipalmitoylphosphatidylglycerol (DPPG) 

(16:0/16:0 PG) at 721 Da. The other peaks were probably less abundant negatively 

charged phospholipids present in BLES such as PI, and other phosphatidylglycerols (PG). 

MALDI-TOF was done to determine the hydrophobic protein compositions of 

BLES. Fig. 4 (c) shows the peaks of the lipid associated proteins of BLES. There is a 
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Figure 4: Mass spectrum profiles showing the composition of bovine lipid extract 

surfactant. The profile in (a) is the ESI mass spectra in positive ion mode of the 

phospholipids ofBLES, with dipalmitoylphosphatidylcholine (16:0/16:0 PC) being the 

most abundant, and 1-palmitoyl-2-oleoylphosphatidylcholine (16:0/18:1 PC) being the 

next most abundant. Other phospholipids visible are 14:0/16:0 PC, 16:0/16:1 PC, 

16:0/18:0 PC, and 18:1/18:1 PC. The profile in (b) is in the negative ion mode, with 

16:0/18: 1 PG being the most abundant, and 16:0116:0 PG also present in significant 

amounts. The rnlz (mass/charge where z = +1, and thus m = M.W. in Daltons) ofthe 

lipids is shown in the brackets []in the figures. The spectrum in (c) is the MALDI-TOF 

mass spectra of the hydrophobic proteins (SP-B & SP-C) ofBLES. 
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prominent peak at 4041 m/z which corresponds to SP-C, and two peaks at 8676 and 

17320 rnlz which correspond to the SP-B monomer and dimer respectively. The data of 

MALDI-TOF ofBLES suggests SP-C is present in a higher amount than SP-B, in bovine 

surfactant. 

These lipid and protein compositions of BLES are in agreement with previous 

studies performed using other assay methods on bovine lavaged LS (Yu et al., 1983), but 

are more accurate in mass resolution. Also, this lipid profile was in close agreement with 

those ofESI-MS of human LS performed by Postle, (2000) and on isolated SP-B/C from 

porcine lungs (Nag et al., 1997b). 

3.2 Monolayer Experiments 

Adsorption experiments were carried out in which BLES or BLES+BSA 

dispersions were injected beneath the interface at a concentration of 0.25 mg/ml, and the 

adsorption of the lipids to the surface was measured as a function of time (in seconds), 

monitored by a change in y. Concentrations of 0.25 (1 00% w/w), 0.625 (250% w/w), and 

5 mg/ml (2000% w/w) of BSA were added to BLES dispersions (0.25 mg/ml) while the 

total volume was kept constant, and the mixtures were incubated at 3 7°C for one hour. 

Figure 5 shows the adsorption curves for BLES, and BLES + BSA mixtures. These 

experiments are repeatable, and each curve is an average of three independent 

experiments, with the standard deviations noted by the error bars. BLES alone adsorbed 

rapidly to a minimum y of 30 mN/m (near the equilibrium y of25mN/m), whereas in 

mixtures with BSA, a decrease in the magnitude of the drop in yin the same 
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Figure 5: Adsorption isotherms (surface tension vs time) ofBLES dispersion (0.25 

mg/ml) with varying concentrations of BSA in the dispersions at 23 ± °C. The first sixty 

seconds of the curve was used in monitoring they of the clean air-water interface before 

injecting the samples. The curves are an average of 3 different sets of experiments, with 

standard deviations, shown by the bars of the n=3 experiments. BSA has been shown to 

be adsorbing to a y of 45-50 mN/m under these conditions by others (Taneva and 

Paniaotov, 1984). 
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time period was observed. Pure BSA adsorbs to a y of about 45-50 mN/m as determined 

in a number of previous studies (Taneva and Panaiotov, 1984). BLES + 2000% BSA 

(w/w) showed the least drop in y, with a final y of approximately 55mN/m, significantly 

higher than the equilibrium y of30mN/m for BLES alone. This suggests that BSA does 

not allow the BLES dispersion to adsorb as well to the air-water interface. 

Compression-expansion experiments were done with BLES + BSA mixed 

dispersions spread onto a ddH20 subphase. Figure 6 compares multiple compression

expansion cycles of adsorbed films ofBLES (40 nmoles) (a) with multiple cycles of 

BLES + 250% BSA (b). Cycles were carried out at a fast speed of 506 mrn2/sec. BLES 

alone showed a reduction ofy to a minimum of 17.9 mN/m, whereas when BSA was 

added to the dispersion, there was a drop to 27.9 mN/m, at least at 80% of film area 

compression. This suggested that when BSA was added to the BLES dispersions, and the 

film was compressed, BSA interfered with lipid packing and deterred BLES from 

reaching low minimum y. A low y was not reached even at larger area compression, 

since BSA may have occupied more space in the films and was difficult to squeeze-out. 

As in (a), for BLES alone, multiple cycles seemed to reduce the plateau area (30% in the 

first cycle) with successive cycles (30% to 15%). This suggested possibly some sort of 

loss of material from the films ("squeeze-out") over multiple cycles (called film refining). 

Previous studies have shown that pure BSA films show a broad transitional plateau at 

about 50 mN/m, and collapse at 35mN/m (Taneva and Panaiotov, 1984). In our BLES + 

BSA film (b) the plateau was seen to be prominent over 5 cycles in the BLES + BSA 
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Figure 6: Surface tension vs relative pool area isotherms for compression expansion 

cycles ofBLES (a) and BLES + BSA (250% w/w) (b) mixed dispersions adsorbed onto a 

ddH20 subphase. Total pool area (100%) was 165 cm2 and only 80% compression was 

possible due to 20% of the area being occupied by the Wilhelmy plate and a circular 

window for optical observation. Multiple cycles were performed for each. The 

concentration ofBLES dispersion used was 0.09 mg/ml of lipid plus 0.225 mg/ml BSA. 

All experiments were performed at an ambient but monitored room temperature of 23 ± 

1 °C. All compression-expansion experiments were repeated 3 times for reproducibility, 

and only a representative plot is shown for clarity. 
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films. With successive cycles, there was no change in the plateau region (50% area), 

suggesting that BSA could not be removed from these films by squeeze-out, through 

multiple cycling. This suggests that BLES lipids and BSA mix together very well and 

such mixtures cannot be easily separated out even with expansion. 

Compression-expansion experiments were further performed where BLES (in 

C:M 3:1) (lmg/ml) was solvent-spread on the surface ofthe ddH20 subphase. BSA was 

dissolved in to the subphase, before the addition ofBLES. Cycles were carried out at a 

speed of 506 mm2/sec. Figure 7 compares the first cycle ofBLES with the first cycle of 

BLES (40 nmoles) + 250% BSA (w/w). BLES films alone reduced y to 7.9 mN/m when 

compressed, whereas BLES + 250% BSA (w/w) dropped to a minimum y of31.1 mN/m. 

This result suggests that albumin adsorbs onto the BLES monolayers and can interfere 

with the packing of lipids at the surface during compression. This is possible if BSA 

adsorbs separately and inserts into the BLES films in the chain hydrocarbon region of the 

lipids. 

Figure 8 compares solvent-spread BLES film isotherms with increasing 

concentrations of BSA dissolved in the subphase. Once again, the first cycle of the 

compression-expansion experiments were compared. The films were compressed and 

expanded at 506 mm2/sec. It was evident that with increasing concentrations ofBSA, 

there was less of a reduction in the minimum y. This implies that with more BSA added, 

the ability of the films to reach low y is disrupted in a step-wise fashion. There was also 

a change in the surface tension and length of the plateau with increasing BSA; eventually 

the plateau was lowered to -52 mN/m at the maximum amount of BSA. 
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Figure 7: Surface tension vs relative pool area (y-A) isotherms for compression expansion 

cycles of solvent-spread mono layers of (-) BLES and ( ---) BLES + 250% BSA (w/w) 

(0.225 mgs/ml in the subphase). The amount ofBLES spread on the surface was about 

40 nmoles of phospholipid as assayed using the phosphorus assay ofthe hydrophobic 

extract ofBLES. Arrows indicate the direction of compression(>) and expansion(<). 
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Figure 8: Surface tension vs relative pool area isotherms of the first compression

expansion cycle of solvent-spread mono layers of BLES ( 40 nMoles ), and BLES with 

different concentrations ofBSA (w/w) dissolved in the hypophase (12.5%- 0.02 J.lg/ml; 

25%- 0.04 J.lg/ml; 50%- 0.08 J.lg/ml; 100%- 0.16 J.lg/ml; 250% - 0.41 J.lg/ml). The 

BLES: BSA stoichiometry is calculated assuming all the dissolved protein in a 200ml 

subphase interacts with the 40nM of lipid in the film. 
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Multiple dynamic cycles were also carried out, for BLES and BLES + BSA films. 

Five cycles were run continually with no stop in between cycles. Figure 9 compares 

BLES (a) with BLES + 250o/o BSA (w/w) (b) films. In Fig. 9(a), the first cycle ofBLES 

films shows the decrease to the minimum y, and the subsequent cycles show a decrease in 

the drop. This suggests that subsequent compressions possibly do not allow the materials 

to be re-adsorbed back in the films, to produce such low y. As a result, the minimum y 

shown in the first cycle was not observed in subsequent cycles. However in Fig. 9 (b) all 

cycles show that the minimum y was reached (although y was not as low as those in 

BLES alone), and the cycles exhibited very low hysteresis. By cycle 5, almost no 

difference between compression and expansion was noticed. As suggested by Fig. 6 and 

Fig. 9, we can thus conclude that the solvent spread or adsorbed films ofBLES with BSA 

are similar. This would indicate that similar BLES lipid- BSA interactions occur whether 

the protein approaches the monolayers from the subphase (Fig. 9), or whether the protein 

interacts with the BLES bilayer in dispersions (Fig. 6) which forms the adsorbed 

mono layers. Previous studies have suggested that, at least in the case of porcine and rat 

surfactant lipid extracts, solvent spread or adsorbed films are equivalent at equal y (Nag 

eta!., 1998; Panda eta!., 2004). 
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Figure 9: Surface tension vs relative pool area graph of multiple cycles of solvent-spread 

monolayers of(a) BLES, and (b) BLES + 250% BSA (w/w). 
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3.3 AFM Experiments 

AFM experiments were carried out on BLES/BSA films adsorbed from 

dispersions, and the films deposited on mica. Films were adsorbed until the suggested y 

(as noted in the AFM figures) were reached, and then compressed at 0.04 

nm2/molecule/min. Deposits onto freshly cleaved mica were obtained for AFM 

measurements at the desired y, using a vertical upstroke (pulling the mica sheet out of the 

water with film, using the Blodgett deposit method). Figure 10 shows AFM images of 

(a) a deposit ofBLES films taken at 40 mN/m, and (b) a deposit ofBLES + BSA (1:1) 

films taken at the same y. With BLES alone, clearly distinct condensed domains (bright 

regions) were visible, with a higher height than the surrounding fluid phase of the film. 

The height of the condensed domains appeared to be- 0.7- 0.9 nm higher compared to 

the surrounding fluid phase of the film. With BSA added in such BLES films, the 

appearance of gel domains was less clear. The film appeared disrupted, with certain 

small areas with domains, and became very heterogeneous in appearance in other areas. 

The condensed domains were less distinct than those observed in Fig. 10 (a) ofBLES 

alone. This suggests that the ordered or condensed (gel-like) domains ofBLES are 

disrupted by BSA. Other microstructures and domains with heterogeneous topography 

and fluid like properties also appear. 

Fig. 11 (a) shows a line section through the AFM image to show the heights of 

specific domains compared to the surrounding fluid phase. Fig. 11 (b) shows a molecular 

model of the lipids of BLES when they undergo a phase transition to condensed domains 

and how this can be imaged using AFM. Note the condensed lipids are compacted 
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Figure 10: AFM images of(a) deposit ofBLES films on mica taken at a r of 40mN m-1
, 

and (b) one ofBLES + BSA (100o/o w/w) film taken at the same y. The adsorbed films 

were compressed at a speed of 0.04 nm2/molecule/min and stopped at desired r for 

deposit on mica sheets submerged in the subphase. Image areas are 60 J..Lm2 x 60 J..Lm2 x 

30 nm (colour coded bar shown). The white areas of the images are 1-2 nm higher than 

the surrounding darker areas. 
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Figure 11 : Line section through an AFM image from a BLES deposited film is shown in 

(a). The white areas correspond to the highest peaks, and the darker areas correspond to 

the lower regions. A molecular model showing the compacted BLES lipids when they 

are in condensed domains is shown in (b). The line section (a) suggests there is~ 0.7-

1 nm difference between the condensed domains and the surrounding fluid phase, as 

shown by the light grey arrows. The centers of the domains have spotted (white dots) 

structures which are much higher. These may be other multilayer structures (2.5 nm) or 

artifacts of imaging. The tilts of the phospholipids chains in the fluid (i), condensed (ii), 

and solid (iii) phases as shown in (b). 
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(tightly-packed), and appear higher than the fluid lipids, due to the ordering of the 

hydrocarbon chains in such domains, and also tilted more perpendicular to the air -water 

interface than the surrounding fluid phase (Nag eta/., 2004a; reviewed by Kaganer eta/., 

1999). 

Figure 12 shows AFM images of BLES films with different concentrations of 

BSA in the subphase, deposited at 30 mN/m. With BSA added in a concentration of 

100% w/w (a), the film appeared heterogeneous, suggesting slight disruption, and in 

500% w/w (b), the appearance of domains was much less, in fact they were hardly visible 

at all. And finally, with BSA added in 2000o/o w/w, the film could only be deposited at a 

y of 50 mN/m (c). These films could not reach low y below 45mN/m, therefore only a 

deposit at y of 50 mN/m was taken. This film appeared to consist mostly of sheets or 

plates of material. Thus in the images, there is no clear way to distinguish between lipid 

or protein domains. The AFM images ofBLES (Harbottle et al., 2003; Nag eta/., 

2004b) and some of the BLES + BSA films are close approximations to those observed 

previously in normal and dysfunctional rat LS respectively (Panda eta/., 2004). 

Figure 13 shows the 3-Dimensional view of the AFM images of (a) BLES, (b) 

BLES + BSA (1 00% w/w), and (c) BLES + BSA (250% w/w) films deposited at a y of 30 

mN/m. These images suggest a clearer view of the different types of domains appearing 

in each sample, and their height profile. It appeared that either the domains in (b) and (c) 

(with BSA) were lower in height than the surrounding fluid phase, or the fluid phase had 

structures which were 2-3 times higher (~20 nm) than the condensed phase. This is 

possible due to BSA, being concentrated in the fluid phase. 
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Figure 12: AFM images ofBLES/BSA films of(a) BLES + BSA (100% w/w), (b) BLES 

+ BSA (500% w/w), and (c) BLES + BSA (2000% w/w) taken at a y of 50 mN/m. The 

film in (c) could not be compressed to a lowery than 40-50 mN/m (see text). Image areas 

are 40~m x 40 ~m x 10nm. White areas are 1-2 nm above the surrounding darker areas, 

and dark brown areas are 1-2 nm below the surrounding areas. 
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Figure 13: Three dimensional view of AFM images of(a) deposit ofBLES (b) BLES + 

BSA (1 00% w/w), and (c) BLES + BSA (250% w/w) taken at a y of 30 rnN/m. Image 

areas are about 1 0 Jlm x 1 0 Jlm x 20nm. Either the condensed domains in (b) and (c) 

(with BSA) are lower in height than the surrounding fluid phase, or the fluid phase has 

structures which are 2-3 times higher (~20 nm) than the condensed phase. This is 

possible due to BSA penetrating the fluid phase, or structures formed in the fluid phase, 

which are higher than the condensed regions. The white spots are individually too large 

(2-3 Jlm) to be single albumin, but might be protein aggregates. 
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These AFM studies suggest that not only does BSA in BLES dispersions adsorb 

into the surface monolayers, they probably occupy the fluid phase and are enriched in this 

phase. BSA shifts the equilibrium drawing lipids from condensed phases to fluid phases 

and thereby the condensed domains disappear at the highest BSA concentration (at 

2000% w/w). This suggests a complete disruption of lipid packing. The sheet like 

structures in Fig. 12( d) may suggest that films with a high amount of BSA collapse into 

some multilayered forms. 

3.4 TOF-SIMS 

Figure 14 shows Time of Flight-Secondary Ion Mass Spectrometry (TOF-SIMS) 

positive ion images ofBLES (a), and BLES + 10% BSA deposited films (b). As 

observed in AFM, the domains of BLES are affected by BSA. With AFM, although new 

domains appear at high BSA concentrations it is not clear what these domains are made 

of or the localization of the protein in BLES. Previous studies on pure BLES using TOF

SIMS films have suggested that the domains of BLES are made of mainly DPPC and 

DPPG (Harbottle et al., 2003). In Fig. 14 (a)(i) and (b)(i) the DPPC peak (at mass 734) 

image characteristic ofBLES films is shown, and in Fig. 14 (a)(ii) and (b)(ii) the NH4+ 

peak image characteristic of proteins (at the amino fragments) (at mass 18) is shown. 

The light patches are where the specified molecular fragments appear, whereas the dark 

patches show the lower yield of the fragment. In (a) it was evident that DPPC was 

present in the BLES mixture through out the films, although some seemed to be 
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Figure 14: Time of Flight- Secondary Ion Mass Spectrometry (TOF-SIMS) positive ion 

images ofBLES films (a), and BLES + 10% BSA films (b) deposited at a y of 40 mN/m. 

The images (a)(i) and (b)(i) show the 734 peak which corresponds to the DPPC molecule 

ofBLES. The images (a)(ii) and (b)(ii) show NH/, a characteristic peak of proteins. 
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concentrated in domains (i), whereas the NH4 + peak characteristic of protein was not (ii). 

In the BLES + BSA film (b) we could observe distinct peaks of the master ion DPPC 

(M.W. = 734) (i) and BSA (NH/) (ii). By comparing (b)(i) and (b)(ii) it is evident that 

DPPC condensed domains in BLES + BSA films were devoid ofBSA, which was only 

present in the surrounding fluid phase. The black regions in (b )(i) suggest the absence of 

the protein (BSA) in the condensed phase, and presence ofDPPC in this phase. This was 

deduced from comparing these images with previous studies of BLES, where no distinct 

peaks of (N~ +) were observed, although SP-B and SP-C are present in BLES. However 

these hydrophobic proteins either do not generate major signals (2% w/w of lipids in 

BLES) or they possibly do not fragment as easily as the water soluble BSA. 

3.5 DSC Experiments 

The DSC thermal melting profiles of(a) DPPC, and (b) DPPC + 100% BSA 

(w/w) reconstituted dispersions are shown in Figure 15. The heating rate for these scans 

was 60°C/h. Scans were calibrated to kcaVmole. DPPC alone showed a midpoint of 

phase transition temperature (T m) at 41 °C, where as when BSA was added, there was a 

decrease of the midpoint of transition temperature to 39°C. There was also a broadening 

of the transition peak, suggesting that BSA is affecting the phase transition ofDPPC 

lipids from gel to liquid crystalline phase, or the gel phase is easier to melt at a lower 

temperature. As well, BSA was found to alter the small pre-transition of the melting 

profile quite dramatically at around 35°C (the small peak at the 30-35°C range). 

However, no such transition occurs in the BSA profile, thus, it is not a protein transition. 
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Figure 15: DSC melting profiles of (a) DPPC (2mg/ml) dispersions (multi-lamellar 

vesicles), and (b) DPPC + 100% BSA (10 mgs/ml) (w/w) dispersions. Scan rate was 

60°Cih. Scans were cai brated to kcal/mole of phospholipid, and temperature of the 

midpoint of transition i noted on the graph. All DSC experiments were done 3 times, 

but only one data set is shown for clarity. Scan 1 is shown for both graphs however scan 

2 and 3 are the same as i n 1. The transitions from scan to scan (3 heating and cooling 

cycles) were reversible _ 
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This suggests that the protein somehow alters the ripple phase formation or the curvature 

of the vesicles at this temperature. 

Figure 16 shows DSC scans for (a) BLES dispersions and (b) BSA solutions, at a 

scan rate of 60°C/h. For BLES, the midpoint of transition temperature was 26°C. For 

BSA, the peak represented the denaturation temperature of the protein, which was at 

65°C. This is close to previous studies done with human serum albumin, where the 

denaturation occurred at 61 °C (Watanabe et al., 2001 ). The curves for DPPC and BLES 

were both reproducible in three heating scans. This suggested that the transitions in the 

lipids were reversible. However, the transition (denaturation) ofBSA was not reversible, 

and only 1 scan was performed, although multiple times with different samples. 

Figure 17 shows DSC scans for BLES with increasing concentrations of BSA 

added to the vesicles. There appeared to be some disruption in the phase transition of the 

BLES lipids. As well, there appeared to be a slight broadening of the transition peak, 

with increasing concentrations ofBSA. This suggests that the protein interacted with the 

bilayer, and lengthened the phase transition process of some of the gel lipids to the fluid 

phase. BSA does not interfere with the BLES DSC profiles since the peaks are about 40 

°C apart, in the mixed systems. 

Figure 18 (a) shows a comparison of two different addition methods for BSA, (ii) 

one where BSA is added to the preformed BLES dispersion of vesicles, and (iii) where 

BSA is present during the formation or reconstitution of dried BLES lipids to form the 

vesicles. In (iii) the BLES was extracted from the aqueous dispersions into C:M 3:1, and 
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Figure 16: DSC melting profiles of(a) BLES (2mg/ml), and (b) BSA (20mg/ml). No 

observable transition could be noted for BSA at lower concentration. Normalized scan 1 

is shown for both graphs. Scan rate was 60°Cih. The average temperature of the 

midpoint of transition is noted on the graph, for BLES (26°C), and the denaturation 

temperature for BSA (65°C). The scan for BSA could only be performed once, and the 

protein could not be re-natured upon cooling. The second and third scans of BSA were 

similar to a flat baseline. The DSC could not operate above 78°C and therefore the curve 

for BSA is incomplete. Multiple scans with different samples, however, were repeatable, 

and for BSA denaturation, the first scan was repeatable. 
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Figure 17: DSC melting profiles of (a) BLES (2mgs/ml), (b) BLES + 25% BSA (w/w) 

(0.5 mgs/ml), (c) BLES + 100% BSA (w/w) (2mgs/ml), and (d) BLES + 250% BSA 

(w/w) (5mgs/ml) added directly to the vesicles dispersions and incubated for 1 hour prior 

to DSC. Scan rate was 60°C/h, and scans were normalized to kcal/mole of BLES 

phospholipids by baseline corrections. Three separate sets of experiments were 

performed for these BLES/BSA mixtures with 3 individual scans per experiment, and 

scan 2 is shown for clarity. The midpoint of the diffuse transition was found to shift by± 

1 °C in the mixtures with BSA, and slight broadening of the transition was observed. 

Scan 2 and 3 were similar and reversible, for all samples. 
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Figure 18: In (a), DSC scans of (i) BLES (2mgs/ml), (ii) BLES + 250% BSA (w/w) 

(5mgs/ml) added to the preformed vesicles, and (iii) BLES vesicles formed by 

reconstitution in the presence of 250% (w/w) BSA. In (b), DSC scans of (i) BLES + 

250% BSA (w/w) diluted in ddH20, and (ii) BLES + 250% BSA (w/w) added to Tris 

HCl/NaCl Buffer with 2mM CaCb. Scan rate was 60 °Cih. Scans were normalized to 

kcal/mole of BLES phospholipid. Scan 2 is shown for all graphs. 
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dried under a stream of nitrogen. Dissolved BSA was then added to the dried BLES and 

the vesicles were reconstituted in ddH20 by heating to 45°C and vortexing. There is a 

difference in the graphs, with the vesicle formation in the presence of BSA 

(reconstitution) causing a decrease in the midpoint transition temperature. It appears that 

in the reconstituted vesicles, the protein seems to interact by decreasing the thermal 

transition temperature more significantly than in those where they were added to the 

preformed vesicles in the dispersions. It is possible that all the bilayers of the 

multilamellar vesicles are affected by the protein dissolved between the layers in this 

reconstituted system, and thereby a lower transition midpoint for this reconstituted 

BLES/BSA system is evident, compared to the one where BSA was added to the 

preformed vesicle (Fig. 1 7). 

Figure 18 (b) shows a comparison ofthe effect of ions or change of the buffer 

that the BLES/BSA dispersions are diluted in. In (i) the dispersion was diluted in ddH20, 

and in (ii) the dispersion was diluted in a Tris HCl/NaCl/CaCh (2mM) buffer 

(preparation shown in Materials and Methods). There was a similar trend observed in 

both mixtures, in that, the protein decreased the thermal transition temperature slightly. 

This suggested that, at least in the experiments performed for BLES + BSA, no 

significant changes were observed with either ddH20 or buffer. Therefore, this suggests 

that as long as the pH of the systems is near 7, ionic conditions do not alter (DSC 

measurable) the gel to liquid crystalline transitions in these lipid-protein dispersions. 
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3.6 Transmission Electron Microscopy 

Figure 19 shows TEMs ofBLES dispersion (a) and BLES dispersion plus 250% 

BSA (w/w) added to the dispersion (b). With BLES alone, the dispersions appeared to be 

multi-lamellar and the vesicles appeared tightly packed and more spherical. However, 

when 250% BSA was added, the vesicles had appearances in some cases that seemed to 

show more loosely packed lamellae. Further image analysis is required to confirm such 

appearances, as only 2-3 samples of this mixture were analyzed and only one 

representative image is shown. 

3. 7 FTIR Experiments 

Figure 20 shows a cartoon diagram of the DPPC molecule with the major bond 

vibrations that can be observed using FTIR. 

Initially, complete spectral scans were done for DPPC, BLES, and BSA (Figure 

21) in transmittance modes. By looking at the full spectra, there seemed to be very little 

difference between the samples, due to extremely weak signals. Prominent peaks such as 

H20 and C02 appeared in the full spectra, and submerged the weak bands of CH2, Amide 

I, and Amide II. The C=O peaks are close to those of C02 and thus couldn't be further 

analyzed. Since it was very difficult to distinguish between the different samples, scans 

were performed focusing only on the specific range of wavenumbers of the areas of 

interest, where the stretching modes of certain bonds of the phospholipids molecule, such 

as the P02-, C=O and CH2 appeared (Mautone et al., 1987). 
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Figure 19: TEMs of(a) BLES (2mgs/ml) vesicles and (b) BLES + 250% BSA (w/w) (5 

mg/ml) where BSA was added to the preformed BLES dispersions. Samples were 

prepared and embedded according to materials and methods (Section 2.4.5), and they 

were positively stained with uranyl acetate and lead citrate. Black lines in the images are 

about 4-5 nm thick suggesting that they are lipid bilayers. Scale bar applies to both 

Images. 
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Figure 20: Diagram of the DPPC phospholipid molecule, showing the vibrational bands 

observed by FTIR. These bond stretches have been observed by others (Mendelsohn and 

Mantsch, 1986) using specific deuterated lipids at exact bond positions. However, the 

CH2 and CH3 stretching modes are an average from the chains as well as the headgroup 

region, and cannot be clearly distinguished without specific deuteration of the groups in 

the lipids. 
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Figure 21: Complete FTIR spectra of dispersions of (a) 27mg/ml DPPC, (b) 27mg/ml 

BLES, and (c) 27mg/ml BSA. The spectra are all obtained in transmittance mode. The 

total number of scans carried out in each sample was 15. The spectra look very similar 

with prominent peaks such as the H20 (at 3333 cm-1
), C02 (at 2350 ± 10 cm-1

), and CH2 

stretching modes (at 2850 and 2925 cm-1
). FTIR spectra were obtained for 3 independent 

samples. 
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The specific range spectra were all done in absorbance mode. By comparing the 

transmittance and absorbance modes, there was very little difference, so all spectra were 

conducted using absorbance (Figure 22). 

In Figure 23 (a), the P02- asymmetric stretching mode was focused on and 

compared with different concentrations of BSA, as this group is only present in the 

head group of the lipid molecule. With increasing concentrations of BSA, there was a 

broadening of the peak at 1228 cm-1
• This suggested that the BSA was interacting with 

the P02- group, and that it was affecting the motions ofthe P-0 bonds in the head group 

of the molecule. Fig. 23 (b) shows a similar pattern occurring with the C=O stretching 

mode. Once again, there was a change in the 173 3 peak. This group is also located near 

the head region of the molecule, at the end of the phospholipid chain. 

Fig. 23 (c) and (d) shows graphs focused on the CH2 symmetric and asymmetric 

stretching modes of the BLES/BSA system respectively. It is not clear whether or not the 

signals were coming from the head group and/or tail region for CH2 and CH3, since these 

bonds appear in both regions of the molecule, and possibly the average data was 

displayed. This suggests that BSA perhaps makes more room between the lipids in the 

head or tail region, and so the methyl groups have higher motion or vibrations. It is clear, 

however, that BSA affects the CH2 stretching modes of the phospholipid molecule. 
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Figure 22: Spectra (3000-1400 cm-1
) of comparison of transmittance and absorbance 

modes for 27 mgs/ml BLES. Both spectra look the same with one being the reverse of 

the other. 
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Figure 23: FTIR graphs focusing on the P02- asymmetric stretching mode (a) of (i) 

BLES, (ii) BLES + 50% BSA (w/w), (iii) BLES + 100% BSA (w/w) and (iv) BLES + 

250% BSA (w/w) dispersions in water. In (b) FTIR graphs focusing on the C=O 

stretching mode of(i) BLES, (ii) BLES + 12.5% BSA (w/w), and (iii) BLES + 100% 

BSA (w/w). In (c), FTIR graphs focusing on the CH2 symmetric stretching mode of(i) 

BLES, (ii) BLES + 12.5% BSA (w/w), (iii) BLES +50% BSA (w/w), (iv) BLES + 100% 

BSA (w/w), and (v) BLES + 250% BSA (w/w). In (d), FTIR graphs focusing on the CH2 

asymmetric stretching mode of the same mixtures in (c). Spectra are in absorbance 

mode. 
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Figure 24 shows spectra for each of the stretching modes with very high 

concentrations ofBSA added. Spectrum (a) focuses on the P02- symmetric stretching 

mode. There seemed to be a shift in the P02- asymmetric stretch, as well as the 

appearance of another peak which is the phosphate ester stretch. This once again 

suggests that BSA disrupted the lipid packing, by interacting with the head groups. This 

may have caused space between the groups, allowing less movement of the bonds, at 

least in the head group region. Spectrum (b) shows a similar trend with a shift in the 

C=O peak, suggesting that the BSA probably approached the head group region, and 

some of the protein inserted slightly into the hydrophobic area of the bilayers. 

Fig. 24 (c) and (d) show once more a reduction in the CH2 peaks, but appearance 

of the CH3 peaks (at 2871 and 2970 cm-1
). Once again, it is unclear if these signals are 

coming from the head group region alone, or from the head and tail regions combined. In 

any case, BSA caused a disruption of the stretching of these hydrocarbon bonds. If the 

signals were mainly from the CH2 of the hydrocarbon chains, then it suggests that BSA 

inserted between the phosphatidylcholine molecules, and the effect was translated into 

the central hydrophobic core. This was substantiated by the increase in the peaks 

appearing for CH3 at 2871 em -I, and suggested the possibility of increased motion of the 

CH3 at the end of the fatty acyl chains. 
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Figure 24: FTIR spectra of BLES focusing on the addition of high concentrations of 

BSA. In (a), the P02- symmetric stretching mode of (i) BLES, (ii) BLES + 2000% BSA 

(w/w), and (iii) BLES + 3000% BSA (w/w). In (b), C=O stretching mode of (i) BLES, 

(ii) BLES + 2000% BSA (w/w), and (iii) BLES + 3000% BSA (w/w). In (c), CH2 

symmetric stretching mode of (i) BLES, (ii) BLES + 2000% BSA (w/w), and (iii) BLES 

+ 3000% BSA (w/w). In (d), CH2 asymmetric stretching mode of (i) BLES, (ii) BLES + 

2000% BSA (w/w), and (iii) BLES + 3000o/o BSA (w/w). Spectra are in absorbance 

mode. High concentrations were studied because the spectra obtained of the lower 

concentrations had high variability (since the signals were very weak). However, the 

highest concentrations ofBSA were chosen to demonstrate the laboratory assigned 

concentrations where BSA-induced complete inhibition of BLES occurs, as shown in 

previous studies and in fig. 5. 
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The FTIR data taken collectively suggests that at lower concentrations of BSA 

only minimal perturbations of the BLES bilayers are observed. However, at very high 

concentrations (Fig. 24), the P04-, CH2, CH3, and C=O stretches are altered. Since the 

C=O and P04- are distinct for the headgroup region, we can assume that BSA at least 

affects the packing of the phospholipids in the outermost layers of the multilamellar 

vesicle bilayer. Further studies using a fluid cell (where theIR beam passes through the 

whole sample) as well as selective labeling of lipids by deuterium at CH3 and CH2 

regions of the headgroups are required to comprehensively understand these systems 

(Dluhy and Mendelsohn, 1988; Mendelsohn et al., 1984). 
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DISCUSSION 

A number of previous studies on LS inhibition, and the possible mechanisms 

involved in such inhibitions in vitro have been performed by others (Enhorning, 1977; 

reviewed by Griese, 1999; Holm et al., 1988; reviewed by Holm, 1992; Holm et al., 

1999; Keough et al., 1989; Panda et al., 2004). Also, some of these studies have looked at 

the effects of physiological changes in the lung, such as ions, pH, and temperature fluxes, 

as well as serum protein transport on the function and inhibition of LS (Holm, 1992). 

Many serum proteins have been studied such as albumin, fibrinogen, C-reactive protein, 

and globulin, among others, and all have been shown to inhibit LS function, by 

preventing the reduction of y (mN/m) in the lipid-protein films to near 0 mN/m 

(Amirkhanian and Taeusch, 1993; Casals et al. , 1998; Fuchimukai et al., 1987; Holm, 

1992; Holm et al., 1988; Keough eta!., 1989; Liu and Chang, 2002; Panda et al., 2004). 

These studies have shown that LS-protein films could reduce y only to 25-30 mN/m in 

the presence of serum protein, and adsorption to the equilibrium y values of 20mN/m is 

also inhibited. However the concentrations of proteins tested have been quite variant and 

in most cases non-physiological or non-pathological, and various different surfactant 

preparations have been used. 

In a recent study, Panda et al. (2004) had examined LS from normal, ventilated, 

and injured ventilated lungs of rats, and had noticed a 3 fold increase in the amounts of 

serum protein associated with surfactant in the injured ventilated lungs compared with 

normal lungs. The soluble proteins were approximately 280 J..Lg/lung pair in normal lungs 
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versus 830 J..Lg/lung pair in injured lungs, whereas the phospholipid levels were similar, in 

both. This means that the lipid:protein mass ratio of 4:1 in normal lungs had decreased to 

1: 1 in injured ventilated lungs, showing a possibility of a much greater lipid- serum 

protein interaction in lung disease. However, most previous studies had not examined 

such small ratios when testing inhibition in the laboratory. Studies on albumin and on 

other serum proteins have been done using extremely high concentrations of protein, such 

as 500% w/w of surfactant lipids (Enhorning eta!., 2000), and others with 1:10, 1:15, 

and 1:20 lipid:protein ratios (Holm, 1992; Notter, 2000; Otsubo and Takei, 2002). These 

have shown LS inhibition in varying degrees. Some studies have tested lower 

concentrations, similar to the physiological concentrations (Amirkhanian and Taeusch, 

1993; Casals et al., 1998; Liu and Chang, 2002). However they utilized fibrinogen and 

C-reactive protein which have a much greater inhibitory effect than albumin and thus 

require very low concentrations (Enhorning et al., 2000, Nag eta!., 2004c). Also in one 

such study it was suggested that there may be specific protein-ligand interactions such as 

C-reactive protein (CRP) with PC headgroups (Nag eta!., 2004c). However all these 

studies are difficult to compare considering the varying amounts of proteins used, 

composition of surfactant, and only a single type of surface tension measurement was 

performed (reviewed by Holm, 1992). As well, these studies used different types of 

model lipid- protein (SP-B/C) surfactants and very different surface-activity techniques 

such as the capillary surfactometer, which measures air flow (Enhorning et a!., 2000). 

Our study attempted to determine the interaction of LS with albumin at physiological 
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concentrations as well as at the higher concentrations used by others, in a monolayer and 

bilayer system of a defined extracted bovine lung surfactant (BLES). 

Different but complementary techniques were used in this study, such as 

Langmuir-Blodgett dynamic compression-expansion, adsorption, TOF-SIMS, and AFM 

to study the interaction of albumin with BLES mono layers, and DSC, FTIR and TEM 

with BLES bilayers at very low and high concentrations of BSA. Through these 

complementary studies, we were able to observe the biophysical properties of LS which 

suggest possible molecular mechanisms of the different ways that albumin may interact 

with bovine LS monolayers or bilayers. In this study, interactions were examined with 

only the lipid components of bovine surfactant, however, the presence ofSP-B/SP-C 

(Fig. 4) may also have mediated such interactions. Figure 25 shows molecular dynamics 

(computer) simulation images of a DPPC monolayer and a bilayer, and the possible areas 

that albumin can interact with these model membranes, as used in our study. 

Although the present study focuses on various monolayer as well as bilayer 

systems, the discussion is mainly based on information obtained from individual 

techniques. This is due to information or results obtained by a specific method allowing 

for testing a subsequent method. For example, imaging monolayer domain formation (as 

in AFM) was first performed, and then TOF-SIMS suggested the composition of the 

domains. Electron microscopy suggested albumin did not disrupt bilayer structures 

overall, and thus DSC was performed. Most of the samples were tested simultaneously 

using the multiple methods. 
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Figure 25: Molecular model of a BLES monolayer (a) and bilayer (b) with BSA. The 

model was constructed using 40 DPPC molecules using Molecular Dynamic simulations. 

These were a generous gift of Derrick Lee and Dr. V. Booth from the Computer and 

Visualization Center in the department of Physics (Unpublished Data). Arrows show the 

possible areas that BSA (protein) might affect the BLES lipids. In monolayers, it might 

penetrate near the head group region (i) which could translate into extra movement of the 

hydrocarbon chains. The protein may also perturb or have a disordering effect deep into 

the bilayer interior (ii), causing an increased movement of the chains. In bilayers, the 

protein might also affect the head group regions of the bilayers (iii), it may not penetrate 

deep into the bilayer (iv), however it could affect the movement of the phospholipid 

chains (X). It may also have a greater effect when located in between the bilayers of 

multilamellar vesicles in reconstituted vesicles (Y) (as in Fig. 18). 

96 



97 

Normal System 

(X) 

(Y) 

Reconstituted 
System 



4.1 Mass Spectrometry 

ESI-MS and MALDI-MS enabled us to accurately determine the different 

phospholipid, and protein components ofBLES. 

With ESI run in the positive mode, the major phospholipid found was DPPC (at 

mlz 734) and the next major one was POPC (at m/z 760). In the negative mode, we 

found POPG to be the most prominent (at m/z 747) and DPPG to be the next prominent 

phospholipid (at m/z 721). The positive mode was acquired by using the solvents 

suggested by Harbottle et al. (2003) . Similar compositions have been shown previously 

with BLES (Harbottle et al., 2003) and bronchoalveolar lavage fluid in humans (Postle, 

2000; Postle eta!., 1999). In these studies it was found that ions such as Na+ and K+ 

interact strongly with the lipids and conjugate ions [M + 23 (Na+)] are normally detected. 

However, we found that by adding NILtOH, the conjugate metal ions could be removed 

and only parent or native ions were detected. The ESI-MS result suggests that the lipid 

composition ofBLES is very close to those ofhumans (Postle, 2000; Postle et al., 1999) 

and some other mammalian species (Paananen eta!., 2002; Postle eta!., 2001). The 

abundance of each phospholipid may vary slightly compared to the· other studies, but that 

may be due to different animal sources of LS extracts. For example, Paananen eta!. 

(2002) studied the phospholipid molecular species composition of eustachian tube lavage 

fluid, and Postle et al., (1999) studied the phospholipids' molecular species composition 

of bronchoalveolar lavage of humans. The distribution of at least DPPC and POPC, 

however, was very similar to those in BLES, in both of these studies. 
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MALDI-TOF MS on BLES was done to compare the amount ofSP-B and SP-C 

present in bovine LS. To the best of our knowledge, this is the first time the hydrophobic 

protein ratios have been directly measured in an LS system with the lipids. The ion 

observed at rn/z 4041 was assigned to SP-C, and the ions observed at rn/z 8676 and rn/z 

17320 were assigned to the SP-B monomer and dimer respectively. It was determined 

that there was approximately 2-3 times as much SP-C in BLES than SP-B. Previously, 

MALDI-MS had been applied to isolated SP-B and SP-C. Nag et al., (1997b) used 

MALDI on fluorescently labelled porcine SP-B and SP-C to determine if the proteins 

were intact and fluorescently labelled. They found the characteristic ion for the 

unlabelled porcine SP-C at rn/z 4186 and that for the porcine SP-B at rn/z 8710. The 

difference in molecular weights of SP-C in this study with those in BLES is possibly due 

to the SP-C having slightly different amino acid composition. Bovine SP-C is found to 

have a molecular weight of approximately 150 Da less than porcine SP-C (Johansson, 

1998). As well, Gustafsson et al. (2001) did studies using MALDI on isolated SP-C 

using the solvent mixture that was mentioned in the materials and methods section of this 

study. They found the characteristic ion for non-palmitoylated SP-C at rn/z 3738. The 

difference in the M.W. of SP-C in the mentioned study and the molecular weight of SP-C 

in BLES determined in our study suggests that SP-C in BLES is intact and contains the 

two palmitoyl chains. 
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4.2 Surface Balance (Monolayer) Studies 

The surface balance was used to study the interaction of albumin with BLES 

monolayers as well as the mixed bilayer dispersion used to adsorb such monolayers. In 

adsorption experiments the monolayers were studied by injecting BLES/BSA mixed 

dispersions underneath the clean surface of the ddH20 subphase. Results suggested that 

BLES/BSA mixed dispersions did not lowery to the same degree as that obtained with 

BLES dispersions alone. As well, with increasing concentrations of BSA (12.5-250% 

w/w) added to BLES, the y decreased by about 20-10 mN/m in the first 90 seconds 

compared to the rapid decrease in y of 40mN/m obtained for BLES alone. This suggests 

that albumin inhibits surface adsorption ofBLES lipids to the air water interface. This 

occurs possibly by albumin competing with the lipids for the surface and, therefore, 

preventing some of the lipids from reaching the surface at once or delaying a tightly 

packed monolayer formation. With increasing concentrations of albumin added to BLES, 

possibly more albumin competes for the surface, therefore preventing more of the BLES 

lipids from adsorbing to the surface. After the initial 90 seconds, the protein and lipids 

must have settled on the surface, causing very little change in y after that point. A similar 

trend was observed in previous studies with various serum proteins (Fuchimukai eta!., 

1987; Holm et al., 1985; Holm eta!., 1987; Holm eta!., 1988; Keough et al., 1989; 

McEachren and Keough, 1995; Wang and Notter, 1998). In a number of these studies 

inhibition of adsorption was somewhat similar to those observed here. An equilibrium 

surface tension (y ~ 25mN/m) was never reached under any of the conditions of this 

protocol. Wang and Notter (1998) and Holm et al. (1988) studied calf lung surfactant 
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extract (CLSE) obtained from excised lungs. CLSE differs in composition from BLES in 

that it contains all the neutral lipid components of natural LS, whereas BLES has the 

neutral lipids removed, however equilibrium adsorption was the same as ours. 

Additionally, McEachren and Keough (1995) used porcihe pulmonary surfactant, which 

also has a different composition than BLES, but the inhibition of CRP was similar as with 

our high concentration of albumin. Furthermore, studies were done on other plasma 

proteins in addition to albumin, which are known to exhibit different inhibitory effects 

(Fuchimukai eta!., 1987). Although different techniques such as the pulsating bubble 

surfactometer, and adsorption apparatus were used in these studies, there seemed to be a 

general trend since adsorption was inhibited in all these studies similar to the results 

reported here. 

In compression-expansion experiments, BSA was dissolved in the ddH20 

subphase, and a BLES film was spread on the surface of the air-water interface. 

Compression-expansion cycles were done with different concentrations of BSA in the 

subphase, andy-A isotherms were obtained (Fig. 8). With increasing concentrations of 

BSA in the mixtures, the ability to reach minimum y of the BLES film was decreased, 

suggesting that albumin must have entered the film and interfered with further lipid 

adsorption. As well, with the adsorbed mixed BLES/BSA dispersions, the ability of 

BLES dispersions to reach minimum y was similar (Fig. 6). In addition, the transition 

plateau of the isotherm was prolonged when BSA was added, suggesting that the protein 

remained in the monolayers and strongly associated with the lipids at low y and could not 

be easily squeezed out. This also suggests that the phase transition that usually occurs 

101 



from an expanded to condensed phase in films upon compression of pure LS films was 

altered by BSA (Nag eta!., 1998). This correlates with our study using TOF-SIMS and 

AFM, in which we found the protein to be present in the fluid phase and possibly forming 

protein-BLES phospholipids complexes, which do not tend to be easily squeezed-out 

even after multiple cycling. 

Differences in the degree of y reduction of LS films are due to differences in the 

types of model surfactant film used, the type of instrument, the speeds of compression, as 

well as the procedure of incorporating the serum protein into the subphase. For example, 

Holm et al. (1999) studied calf lung surfactant extract (CLSE) using a pulsating bubble 

apparatus. CLSE may have a slightly different y lowering ability due to the different 

compositions of lipids and proteins in the extract. It is highly possible that small 

differences in composition, such as presence of cholesterol in CLSE, may cause the films 

to interact differently with BSA. As well, the pulsating bubble apparatus may produce 

different results than a Langmuir surface balance due to leakage of the films, and 

creeping of lipids in and around the barrier. In addition, Warriner et al. (2002) 

incorporated albumin into the subphase of a preformed replacement LS film, by injecting 

BSA beneath the preformed film. This difference in method may have also contributed 

to the differences in our results with theirs (as far as the minimum y reached) which was 

somewhat different than those observed here. 
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4.3 AFM and TOF-SIMS 

AFM has become a very powerful tool for imaging biological structures non· 

invasively, and many studies have been performed on model membranes (Chi et al. , 

1994; Engel and Muller, 2000; reviewed by Hansma et al., 1997; Janshoff, 2001). m 

very advantageous in that it can provide three dimensional information regarding 

materials at a molecular level, without staining or embedding of samples. Studies hm~ 

been performed on model lung surfactant using AFM (Baro et al., 1985; Flanders ana 

Dunn, 2002; Nag et al., 1999; Nag et al., 2002b; von Nahmen et al., 1997; Panaiotov~ 

al., 1996), however, at present, none have studied the interaction of plasma proteins ~th 

LS directly. This study obtained AFM images of BLES, and BLES films spread on a 

subphase with various concentrations ofBSA. BLES films alone, compressed to a low y, 

showed high, and well defined condensed domains. However, when BSA was added(!) 

the subphase before the BLES films were solvent-spread, the BLES lipid domains 

became less defined and more numerous. These films also appeared very heterogeneoas. 

In the image ofBLES:BSA 1:20 mixture [Fig. 12(c)], large areas without domains \\'ere 

visible with folded sheets. In the image of the BLES:BSA 1:5 mixture deposited at 

30mN/m [Fig. 12(b)] the film appeared almost completely homogeneous, and lipid 

domains were not visible. This might mean that at that concentration ofBSA, most ~the 

condensed (tightly packed) domains ofBLES were abolished, and the lipids were allliuid 

at that y (30 m1"\f/m). This would suggest that BSA does not allow phase separation of 

DPPC in BLES films. 
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Panda et al. (2004) noted well defined liquid condensed domains in the LS films 

of normal rat lungs, whereas there were smaller, intermediate height, possibly fluid 

domains in LS films of injured ventilated rat lungs. Another observation in our study was 

that in the mixture ofBLES: BSA 1:20 films, the r went down to only 50 m.N/m upon 

cycling. Panda et al. (2004) noted similar results with the injured ventilated LS films and 

postulated that the surfactant failed to attain low r because it did not spread at a rate high 

enough to keep up with the compression-expansion cycle during expansion. In any case, 

it is evident with AFM studies that albumin affects the formation of well defined domains 

of BLES, and also reduces the r lowering ability of BLES films. As well, the large 

amorphous regions found in BLES + BSA show that the proteins may have penetrated 

such films and were capable of forming domains themselves (Nag et al., 2004b ). 

Furthermore, the AFM results correlate well with the surface balance studies. The 

diminished formation of well defined domains shows that the phase transition of the 

lipids from liquid to condensed (gel-like) phase is diminished. Once again, the structure

function studies show that the disruption of BSA on lipid packing occurred, and can be 

correlated. 

TOF -SIMS was applied to deposited BLES/BSA films to observe the localization 

of BSA in BLES films. As mentioned before, previous studies on pure BLES films using 

TOF -SIMS have suggested that the condensed domains of BLES are made of mainly 

DPPC and DPPG (Harbottle et al., 2003). In our results, it appeared that BSA was absent 

in the condensed phase and present in the fluid phase of these films, whereas DPPC was 

present more in the condensed phase. These results correlate with the results obtained 
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from AFM, in that BSA seemed to interact with the BLES lipids in the fluid phase, and 

prevent them from forming more condensed domains, at a low y. Previous studies have 

looked at the localization of surfactant lipids and proteins (such as SP-C) in films using 

TOF-SIMS (Bourdos et al., 2000; Galla et al., 1998; Harbottle et al., 2003). Results 

examining the surfactant lipids were similar, in that DPPC lipids formed the condensed 

domains upon compression of the film suggesting that phospholipids could phase 

segregate out of the fluid phase at low y. However when a soluble protein (BSA) was 

present in the films, the phase segregation process was not only altered but, specifically, 

the protein concentrated the fluid phase, causing this alteration. 

The TOF -SIMS technique is limited to the rate of desorption of material from 

structures such as our BLES films, during sputtering by a primary ion beam (Bourdos et 

al., 2000). The signal from BSA for the NH4 + ion was weak, due to the fact that either 

BSA did not completely fragment, or the protein did not desorb completely from the 

films to produce the signal. It also leads to another interesting possibility that the lipid

BSA complexes formed in the fluid phase (bright spots in AFM images) were difficult to 

fragment and/or also desorb from the films. In that case, the BSA-BLES (fluid lipid) 

interactions were possibly stronger than those of the protein with the condensed phase. 

4.4 Differential Scanning Calorimetry 

Previous studies have been done with DSC on surfactant dispersions (Hosokawa, 

2003; Keough and Taeusch, 1986; Mautone et al., 1987; McMurchie et al., 1983; Shiffer 

et al., 1993) as well as on pure albumin (Giancola et al., 1997). This study looked at the 
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effect of addition of albumin to BLES on the thermotrophic chain melting properties of 

BLES bilayers. With addition of albumin to both DPPC and BLES bilayer dispersions, 

there was a slight decrease in midpoint temperature, as well as a broadening of the 

transition peaks. This suggests that albumin disrupted the outer lipid bilayer of the multi

lamellar vesicles [Fig. 25 (b)], and affected the ability of the lipids to undergo a phase 

transition to the fluid phase. This is evident from the peaks shifting to a slightly lower 

transition temperature. Since BSA disrupted the packing, the gel regions also became 

more fluid, and the phase transition temperature was lowered. This suggests that when 

BSA interacts with the bilayer, it increases the fluidity of the lipids, thereby impeding the 

lipids from forming a tightly packed gel phase. This in turn causes the heterogeneity of 

the transition, as well as the shift in temperature to lower values. 

Our DSC results strongly correlate with the studies on monolayers. It seems that 

in both mono layers and bilayers of BLES a similar interaction is occurring with BSA and 

BLES, in that BSA disrupts the lipid packing and the phase transition between fluid to gel 

phase. This is only possible (as seen in our TOF-SIMS results) if the protein interacts 

strongly with the lipids in the fluid phase. Once this occurs (whether in monolayers or 

bilayers) it is difficult to remove the protein's effect by changing the packing parameters 

either by thermal cycling in DSC or surface pressure cycling in monolayers. It is, 

however, puzzling that a water soluble protein would normally penetrate the bilayer 

hydrophobic core. However, since BSA has a number of hydrophobic pockets and its 

main function in plasma is to transport fatty acids after binding to them, significant 

hydrophobic interactions between BLES bilayers and BSA cannot be ruled out. 
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However, the possibility that BSA may actually disrupt packing at the head group of the 

phospholipids, and that such effects cause a more loose packing of the chains, seems like 

a more feasible explanation. 

Experiments were also carried out to determine the difference in the effect of 

BSA, when BSA is on the outside of the first bilayer, or when it is inserted into the water 

layer of multiple bilayers of the multilamellar vesicles (ML V). When BSA was 

reconstituted into the ML V, there was a decremental shift in midpoint transition 

temperature by about 3 °C since, possibly, more bilayers were affected in the dispersions 

in the reconstitution experiment (Fig. 18). As well, using buffer instead of ddH20 caused 

a slight increase in the area under the curve. It is possible that more BSA was present 

between the multiple lamellae of these reconstituted vesicles. As BLES contains a host 

of lipids which are charged, ionic repulsions between the lipid head groups and the 

negatively charged protein is also possible as seen in the FTIR stretching changes of the 

phosphate bonds. This may explain the elongation of the vesicles observed in the TEM 

[Fig. 19 (b)]. 

Studies observing the interaction of phospholipids and extrinsic (water-soluble) 

proteins using DSC have been carried out by others (Chapman eta/., 1974; Galantai and 

Bardos-Nagy, 2000; Gomez-Fernandez et al., 1979; reviewed by Bach, 1983). Similar 

trends to our results have been observed. For example, Galantai and Bardos-Nagy, 

(2000) observed an increase of the pre-transition temperature ofDMPC and DMPG 

liposomes when human serum albumin was added. As well, Chapman eta!. (1974) 

observed a decrease in melting temperature of DPPC dispersions when cytochrome C 
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was added. In these studies, the lipid-protein ratios were much higher than those used in 

our study. Therefore, these results cannot be accurately compared to our results, since 

the mixtures tested were functionally and compositionally very different from LS/BSA, 

and studied as models of biological membranes (Chapman eta!., 1974; Bach, 1983). 

4.5 Transmission Electron Microscopy 

TEM was done to determine the effect of BSA on the BLES bilayer vesicles 

visually. In the TEM with BLES alone, the vesicles appeared concentric and tightly 

packed. However, when BSA was added, the vesicles appeared elongated and less tightly 

packed. This suggests that BSA may incorporate between the BLES lipid bilayers, and, 

possibly, may affect the packing of lamellae in the MLV. By doing so, it is suggested 

that BSA disrupts the inter-bilayer packing, and loosely packed liposomal structures are 

thus observed. However, major TEM analysis with various concentrations ofBSA added 

to BLES are required to get a quantitative handle on these structures. 

There have been previous studies done on EMs of BLES, but none, to our 

knowledge, have looked at the effect of plasma proteins on BLES using this technique 

(Nag et al., 2004a). In the lung during disease and dysfunction, such structures as 

defined ML V and TM are absent. It seems our study suggests that the plasma proteins 

may disrupt the organization of LS bilayers, or possibly the secretory form of LB in vivo 

(Fig. 19). This in turn may not allow such vesicles to undergo a transformation to TM, or 

the most surface active form, as suggested by others (Nag eta!., 2002a; Larsson et al., 

2003). 
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As seen in the DSC results (Section 3.5), the effects of protein on the outer most 

bilayer of the ML V as well as in the reconstituted systems were not reversible. A 

previous study using giant ML V of BLES has shown the presence of gel domains at 3 7°C 

(Nag et al., 2002a). Also, in our study we have observed such domains in mono layers. It 

is possible that the BSA probably interacts with BLES monolayers or bilayers at or close 

to the gel-fluid phase transition regime. This is possible since other studies have shown 

that interaction of proteins and additives with pure lipid bilayers occurs during defect 

formation (near the domain boundaries) and during domain nucleation in typical 

membrane systems (Mouritsen eta!., 1989). For BSA + BLES systems, as the first scan 

of the DSC is always different (data not shown) from the two successive scans, it is 

evident that the protein interaction may occur with such defects or domains during their 

formation at 3 7°C during the first scan. The AFM results clearly suggest that protein 

decreases the condensed domains and eventually abolishes them at least in monolayers. 

4.6 Fourier Transform Infrared Spectroscopv 

Infrared Spectroscopy is an emerging technique in the study of complex 

biochemical systems. IR has many advantages over other techniques such as 

fluorescence spectroscopy, as external probes are not required. It can monitor 

absorptions in all regions of the molecule, in contrast to fluorescence spectroscopy which 

monitors only the chromophores of a target molecule. As well, the time scale for 

measurements is fast compared to other techniques (Dluhy and Mendelsohn, 1988). 

Techniques that demand high sensitivity are now routinely available using FTIR 
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instruments, thereby decreasing the amounts of materials required for some studies 

(Dluhy and Mendelsohn, 1988). 

This study used FTIR to determine the change in peak frequency and 

wavenumber of the bond stretches in the phospholipids molecule of BLES and also when 

BSA is added to BLES. Several vibrational modes were observed: the P02- asymmetric 

(at 1228 cm-1
) and symmetric (at 1089 cm-1

), C=O (at 1733 cm-1
), and CH2 symmetric (at 

2851 cm-1
) and asymmetric (at 2920 cm-1

) stretching modes (Fig. 23-24). During our 

study, we observed that some peaks were shifted, whereas others were broadened. A 

shift to a higher wavenumber indicated an increased fluidity in the sample. For example, 

the P02- asymmetric peak (Fig. 23) seemed to move to a higher wavenumber (1228 cm-1 

up to 1240 cm-1
) with BSA. This would suggest that the protein induced some sort of 

fluidity, since others have shown that a shift to higher wavenumbers for lipid means more 

fluidity (Dluhy and Mendelsohn, 1988). Slight broadening ofthe C=O peak was 

observed, which may be related to hydration of the system as suggested by others (Lis et 

a!., 1976). Lis eta!. has shown a broadening of specific peaks in DMPC membranes to 

be related to an increase of hydration of the system. CH2 and CH3 peaks were not altered 

dramatically however were slightly broadened. 

The FTIR of pure protein did not show any C=O and P02- peaks, and therefore, is 

assumed not to directly contribute to the lipid peaks ofBLES. The CH2 peaks were 

present in all samples, however, these protein peaks did not add to the BLES system 

since they were reduced in amounts. 
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With increasing concentrations of BSA, the main peaks of BLES in the headgroup 

(P04-, C=O) were suppressed, and shifted slightly to different wavenumbers. At 

extremely high concentrations of BSA, the CH2 peaks were also sometimes absent and 

new peaks appeared for the CH3 groups (Fig. 24). The effect ofBSA on the phosphate 

stretching vibrations suggests that the negatively charged protein may also be interacting 

with the head group region through charge-charge repulsions. This columbic repulsion 

possibly occurs as BSA at pH 7 is highly negative ( -1 7 charge per protein) and this may 

have repulsive effects with the negatively charged phospholipids such as PG in BLES. 

The CH2 stretching modes may not be informative because we are not sure whether the 

C-H stretching vibrations are observed from the hydrophobic chains, or from the head 

group, as both contain CH2 and CH3 groups. Further studies are required using 

deuterated phospholipids in BLES using FTIR. However, introduction of probes has its 

limitations, and other strategies of concentrating BLES and using liquid cells may have to 

be adopted. 

Many of the FTIR signals seen were weak, due to the water absorption and C02 

absorption bands (since the samples were not degassed, and were in contact with air) in 

the full spectra. Therefore, it was difficult to see the changes in each of the stretching 

modes in the complete spectra, at low concentrations of BSA. 

Previous studies have looked at the stretching modes of the bonds in the 

phospholipid molecules of similar surfactants and membrane lipid systems (Arrondo and 

Gofii, 1998; Chia and Mendelsohn, 1996; Dluhy et al., 1989; Mautone et al., 1987; 

Mendelsohn eta!., 1 ~84; Mendelsohn and Mantsh, 1986; Reilly et al., 1989). Dluhy et 
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a!., (1989) examined the stretching modes of intact pulmonary surfactant isolated from 

bovine lung lavage, as a function of temperature and noticed an increase in wavenumber. 

At room temperature however, the wavenumber of the CH2 stretching modes were very 

similar to our results varying only by one or two wavenumbers (Mautone et al., 1987). 

The difference may be due to the fact that natural LS has cholesterol in it (and thus may 

be more fluid) whereas BLES does not. Reilly et a!. (1989) used DSC and FTIR to study 

the interaction of SP-A reconstituted into a binary lipid mixture of acyl chain 

predeuterated DPPC: DPPG. They observed that high levels of SP-A induced an 

ordering of the phospholipids, as shown by an increase in temperature of phase transition, 

and also an incremental shift in wavenumber with an increase in temperature. As an 

attenuated system (A TR) was used by these authors, it is possible that our FTIR does not 

have the sensitivity to detect such changes. However, it is more likely that BSA does not 

have the same effect as SP-A, due to completely different structural and functional 

properties of the protein. In fact, few previous studies have shown SP-A to remove the 

inhibition of surfactant caused by plasma proteins (Casals eta!., 1998; Cockshutt et al., 

1990; Nag et al., 2004c). Taking into account the disrupting effect ofBSA on BLES and 

these other studies on SP-A, it is highly possible that SP-A actually increases the ordering 

of the phospholipids in surfactant. This also may be the reason why SP-A enhances the 

adsorption [instead of inhibiting it (as BSA)] of LS lipids by ordering them (Nag et al., 

2004c). This ordering (into specific structures such as TM and more compact bilayers) 

may be tolerated with a reasonable amount of inhibitory proteins, but is eventually 

destroyed after a certain concentration of protein is reached. This may be the reason TM 
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type structures are not observed in dysfunctional surfactant dispersions (Panda eta!., 

2004). 

Some other studies have looked at protein lipid interactions with LS lipids, as 

well. Mendelsohn et al. (1984) noted a shift in wavenumber of the CH2 stretching modes 

of PS when the transmembrane protein glycophorin was added to the PS membranes. 

This shift was towards a higher wavenumber, suggesting disorder of the lipids induced by 

the protein. These results correlate with ours, in that the protein was perturbing the 

bilayer packing, causing disorder of the hydrophobic chains. Similar results using FTIR 

have been observed in studies of DMPC with gramicidin A, DPPC and ATPase, DPPC 

and bacteriorhodopsin (Cortijo et al., 1982), and DMPC with glycophorin (Mendelsohn 

and Mantsch, 1986). Although these studies have observed the effects of different types 

of proteins with different lipids, the trend is the same as our results with BLES/BSA, with 

slight differences in wavenumber. Others looked at lipid-protein interactions in 

membranes using a similar technique such as Raman spectroscopy. Lis et al. (1976) have 

shown that fibrinogen and albumin caused the CH2 band to broaden, indicating that both 

proteins caused the lipid to undergo a conformational change to a more fluid phase. As 

well, the CH3 band increased to a greater extent compared to CH2, indicating that 

albumin and fibrinogen may penetrate the hydrocarbon chain, or the effect is translated to 

such regions, as we have observed in our studies. 

The FTIR results relate to the previous observations of packing of BLES 

monolayers, as well as the DSC results on BLES bilayers. FTIR studies showed a 

penetration of BSA into the bilayer membrane, affecting lipid packing and disrupting the 
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stretching vibrations. This is similar to the DSC results, in that BSA appears to perturb 

the bilayer membrane, changing the pre-transition ofDPPC as well as the broadening of 

the gel to fluid transition. The monolayer studies using AFM and TOF-SIMS also show 

that the protein is present in the fluid regions of the lipids. 

4.7 Summary and Conclusions 

LS is essential for lung function and normal respiration. Dysfunction of LS can 

contribute to diseases such as ARDS, among others. During ARDS, plasma proteins are 

one of the major contributors to inhibition ofLS surface activity. Several studies have 

looked at effects of different plasma proteins (at various concentrations) on LS activity, 

however, to our knowledge, none to date have looked at the effect of small and large 

concentrations of serum albumin (more physiological), with mono layers and bilayers of 

LS. 

In this study, several experiments were done on BLES monolayers and bilayers, 

and propositions have been made regarding some possible molecular interaction and 

association of albumin with BLES. Monolayer studies showed that albumin inhibits 

surfactant adsorption to an air-water interface, and does not allow low y by BLES to be 

reached (> 1 OmN/m). As well AFM studies showed that albumin inhibits the formation 

of well defined domains at low y, or a decrease in condensation of the films. TOF-SIMS 

studies showed that albumin remains mostly in the fluid phase of lipids. DSC studies 

showed that albumin broadens the phase transition, and causes a decremental shift in 

midpoint transition temperature therefore suggesting that the protein perturbs bilayer 
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packing, and slightly fluidizes such bilayers. As well, FTIR showed that the protein 

associates with BLES bilayers near the head group and the effects are possibly translated 

deep into the hydrophobic core. By using different techniques, we were able to observe 

similar patterns of the interaction of albumin to BLES lipids, thereby suggesting a 

molecular model for the interaction of a serum protein with lung surfactant model 

membranes. 

These results have prompted us to suggest a possible mechanism for albumin 

inhibition of surfactant. The inhibition is possibly caused by interaction and association 

of the protein with surfactant lipids in the fluid phase of mono layers and bilayers. 

Perturbation of lipid chain packing is possible if the proteins' effect is not only in the 

hea,d group region but also deep in the core of the layers (Fig. 25). These results validate 

the hypothesis posed in section 1.8. 

4.8 Future Directions 

Further studies should be done to better understand the mechanism in which 

albumin, or other plasma proteins affect surfactant function. Wang and Notter, (1998) 

suggested that supplementation with large amounts of exogenous CLSE would be 

effective in reversing inactivation by the mixture of blood proteins. This could be useful 

for a future study, by increasing the concentration ofBLES and determining the effects of 

high concentrations of albumin on it, to determine if albumin still competes for the 

surface, and decreases BLES adsorption. Holm et al. (1999) noted that free fatty acid 

lysophosphatidylcholine (LPC) was found to reduce surface activity even at high 
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concentrations of LS where inhibition by other serum proteins was abolished. It was 

suggested that LPC and albumin act in different ways to inhibit the films from reaching 

lowy (Cockshutt and Possmayer, 1991). This may be a suggestion for future study: 

testing the different inhibition mechanisms of plasma proteins, and free fatty acids on 

BLES. In addition, experiments should be done with multiple ionic and buffered states. 

Further FTIR studies should be done to determine the effect of albumin on the 

hydrophobic tails of the phospholipid molecules, as well, the temperature dependent shift 

in wavenumber when a protein is added to the mixture, and the effects would be 

interesting to observe. In addition, experiments should be done on how albumin affects 

surfactant proteins SP-B and SP-C present in BLES, probably by labeling such proteins 

with chromophores. Some of these studies are being attempted in our laboratory, by 

others. 
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