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Abstract

The interfacial structure of Au (metal) on Si(100) , Si(1ll ) and SrO, (non-metal)

substrates are studied owing to their immense use in the microelectronic industry. The

interface study is important for understanding the structure-property relationships in

materials.

The final orientation distribution of metallic crystalline films grown on these

amorphous /crystalline, amorphous substrates namely AuiSiOz/Si(100); AuiSiOz/Si(111);

AuiSiOz is strongly influenced by preferred orientations . Preferred orientations can be

due to atomic mismatch, interface defects, anisotropy in crystal nucleation, growth rates,

kinetics, etc. Geometric models have tried to explain the phenomena occurring at the

interface to some extent.

The orientation of Au {I l l}, close-packed planes was found to be of low energy as the

annealing temperature was increased , also a greater numbers of Au peaks of higher

intensity were observed , implying more rotation of Au particles into preferred

orientations of low energy . Orientations were observed to be influenced by Silicon

substrates across native oxide of 20-35 A;this suggests the effect of long range ordering

via interfacial layer. The XRD/Pole figures, SEM/EDS and AFM were the tools used to

characterize the prepared samples . The average crystallite size was determined by various

methods on stage III samples and it was found to be fairly consistent.
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Chapter I

Chapter 1

Introduction

1.1 Purpose and Motivation behind Interface Studies

Introduction

Internal interfaces are extended defects in materials including grain boundaries and

interphase boundaries, found in every natural or artificially produced material.

Integrated-circuit technology is an area of research encompassing several different

materials and thus interfaces play a crucial role in the performance of these devices.

Production of microelectronic devices, multi phase and composite materials requires a

study of the interface which is paramount in understanding the structure-property

relationships in materials [1]. Orientation relationships between the two phases and the

defect structure at the interface are important factors controlling the structure-property

relationships in crystalline systems.

Extreme service conditions sometimes prevail ; such as high temperature, aggressive

surrounding media and electromigration at high current densities. Thus the structure of

interface must be regarded from the point of view of the whole complexity of the
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thennodynamic conditions at the time of fabrication, growth and exploitation of the

device, generally in thermodynamic non-equilibrium [2-5]. Therefore, interface

engineering is an important field in materials engineering. Factors like orientation

relationship, interfacial misfit and interface kinetics playa key role in the control of

internal interface . Interface properties depend upon a large number of independent

variables. This makes the study of interface properties very complex. The structure of an

interface and its dependence on the independent variables makes the task of

understanding interfaces even more challenging .

For the situation where the interface is formed between crystals with similar bonding we

come across misfit dislocations at the interface and these are consistent with the concept

of atomic matching. In such crystals impurity distribution at the interface has a role to

play at the grain boundaries.

For the system where the interface is formed between crystals with different bonding, the

situation becomes more complicated [1-5, 7]. To explain these interfaces numerous

models have been proposed. Mostly they are geometrical models based on

crystallographic orientation relationships . Geometric models have not been very

successful in explaining the phenomena occurring at the interphase boundaries. Thus

there is a constant debate as to what explains the interfacial phenomena best and thus new

models have come along in quest of providing a better explanation.
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Researchers have followed approaches different from geometrical models by including

parameters other than geometry. This has been done by investigation of new interface

systems in order to establish new models which can explain the preferred orientations at

the interface. An attempt in this direction was made when electronic effects were

considered to form and transform the structure of the interface and the orientation

relationships [6]. Space charges were believed to influence the structure of the interface

of a metal/ionic crystal system. A long range force is thus believed to exist across thin

amorphous interlayer in some metal non-metal systems . This reason was not accepted

completely for explaining preferred orientations across amorphous interlayers. Perhaps

surface topology and/or pressure effects playa greater role than originally considered.

It is very important to understand the reason behind this phenomena of Au settling into

the preferred orientations and to do this we studied orientation relationships for the

following systems, AU/Si0 2/Si (100), AU/Si0 2/Si (111) and AU/Si0 2•

1.2 Overview of Thesis

This chapter is followed by the Literature Review section (chapter 2). This will include a

discussion on crystalline-crystalline and crystalline-amorphous systems based on the

concepts of interfacial energy, thermodynamics, epitaxial growth and lattice misfit

considerations.
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The Experimental section (chapter 3) in this thesis includes a brief discuss ion on the

historical development of sphere-plate technique , substrates used, experimental procedure

and the characterization techniques used. The techniques used for characterizing sphere

plate samples , X-ray Diffraction (XRD)-Pole Figure Determination, Scanning Electron

Microscope (SEM)-Energy Dispersive Spectroscopy (EDS) and Atomic Force

Microscope (AFM) are discussed in some details.

The Results and Discussion (chapter 4) has all the results obtained for our prepared

sphere-plate samples. The results obtained from XRD-Pole Figures, SEM-EDS and AFM

are then discussed individually. This is followed by comparisons amongst various results

and its interpretation. These results were found to be consistent with the findings in the

literature review .

The Conclusions (chapter 5) gives a brief account of interpretation of results.
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Chapter 2

Literature Review

2.1 Theory

Literature Review

Determination of the nature of linear defects from contrast observations in electron

microscope or field-ion microscope is a tedious process. The detection and analysis of

defects is therefore in most cases done by macroscopic observations of parameters such

as the misorientation of grains and overall boundary plane and partially from detailed

observations of the defects or the structure of the boundaries themselves [7].

One common feature of all theories proposed to explain the phenomena occurring at the

phase boundaries or interface is that for some given misorientation between two grains

there exists at least one specific grain boundary plane with a specific low energy structure

which the interface tries to attain. Any change from this low energy configuration due to

misorientation of grains , plane or structure would result in a high energy and unstable

configuration. There are situations where such changes in the energy configuration from

a lower to higher value is required and this might be due to maintaining macroscopic

relationship between grains. Therefore in these cases the interface retains the lowest
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energy configuration over most of its area and the residual misfits will be localized to

defects in the interface.

2.1.1 CSL Model

Properties observed for boundaries between grains with certain orientation relationships,

(e.g. changed migration rate) form the experimental basis for the coincident site lattice

(CSL) model. CSL relationship is characterized either by the reciprocal of density of

common lattice points, L, [8] or by the angle of rotation around the axis with the lowest

Miller indices (see figure 2.1). Perfect crystal matching has lattice points coincident or

L =1. A simple twin has the next highest coincidence with L =3. In CSL theory the low

energy grain structure is usually considered to contain the highest possible density of

common lattice points.

A 3D CSL has an angle of misorientation e,given by the expression [9-11]:

All possible cubic systems can be described by the function:

L= x 2 + Ny 2

Where x and yare integers .

N =h 2 +k 2 +/2

h, k and I are the miller indices of the plane or the direction perpendicular to that plane.
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A CSL is always generated for a rotation of 1800 about a rational direction of <hkl>.

While using the above equations for determining L, we keep on dividing the number by 2

until we get an odd number.

(a) (b)

Figure 2.1: Schematic of two superimposed crystal lattices showing rotation effect and

CSL: (a) pattern produced by rotating two cubic crystals 36.90 about [001], (b) L=5 CSL

pattern outlined [9].

The CSL model has some limitations and to understand that two kinds of deviations from

the ideal CSL boundary must be considered. Firstly, due to a misorientation of the two

grains from the ideal position and secondly, due to deviation of the interface from the low

energy plane.

A network of structural dislocations superimposed on the coincidence boundary

accommodate for the small misorientations due to coincidence relationships. Bollmann
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gave a formal theory to explain such dislocations [12]. The lattice points must change

when the Burgers vector b is introduced and then any two points connected by b in the

original configur ation will occupy a common site, implying that the step in the boundary

must be associated with a dislocation if the low energy structure is to be maintained on

both sides of the dislocation [13]. A general misorientation will be in the 3D space and

thus require three non-coplanar Burgers vectors to define it. The length of b is inversely

proportional to the reciprocal density of common lattice points , L and is proportional to

L-,v, .

Coincidence boundary is said to be at its lowest energy configuration when it lies in the

most densely packed plane of the superlattice, formed by placing atoms at the lattice

points of the two interpenetrating lattices after rotation about its axis. The energy of this

boundary is supposed to be higher when it lies on the planes with lower densities of such

sites. If a boundary is forced to lie at an angle to the close packed plane in the

coincidence lattice , it will tend to take up a stepped structure such that it has a maximum

area in the close packed planes of the coincident lattice [8].

The CSL model depends on the presence of coincident sites. The number of such

coincident sites will decrease with increase in the value of L, [12]. The model makes no

sense for the situation where for the upper limit of L, the difference between the energy

of coincidence boundary and energy of a "random" boundary is negligible .



Chapter 2 Literature Review

The CSL model has been applied successfully to grain boundaries and interphase

boundaries where orientation relationships were described as the cusps in the interfacial

energy versus misorientation. Interfacial structure can be understood in terms of atomic

mismatch between two crystals across the interface for any degree of misorientation or

rotation about the axis using this geometric model.

2.1.2 O-Lattice Model

The O-lattice model or lattice of origins model is a geometric perspective of interface

structure . It follows the CSL concept in a generalised way to assume ordered interfaces

and the points, lines and planes of coincidence are called the O-points, O-lines and 0

planes respectively (see figure 2.2). The O-lattice changes continuously between the

discreet CSL's [11]. Misfits between O-points is accommodated by dislocations by

forming low energy structure, these points are the one with minimum strain energies of

exact matching between two interpenetrating lattices . All CSL's can be described as

superlattices of certain O-lattices as CSL is composed of only coincident lattices and

since all O-points are not coincident. Thus all CSL points are regarded as O-points but

vice-ver sa is not always true. Calculations reveal that not all O-points are associated with

low energy [14], thus we conclude that this is entirely a geometrical concept so we can

make no prediction about energetic significance of different kinds of O-points .
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Figure 2.2: The O-lattice: CSL lattice plus the dashed lines [9].

2.1.3 DSC Model

The displacement shift complete model can be understood by considering the case when

two interpenetrating point lattices stay in coincidence orientation but not necessarily in

coincidence position. Thus it becomes a translation of the second lattice with respect to

the first lattice such that there is no change in the structure and pattern (see figure 2.3).

The lattice formed by this translation is the DSC lattice [11].

This model is a variation to the CSL model and involves a great deal of understanding of

dislocation structures at the interfaces. The model describes the internal interfaces as an

internal interface consisting of fit and misfit regions across the boundary. The regions of

fit are patches of partial lattice matching across the boundary and the regions of misfit are

line defects having dislocation , step or ledge character.

10
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Figure 2.3: The DSC lattice of L=5 patterns: [9].

Thus DSC model provides a method to quantify the nature of variations in defects such as

ledges occurring at grain and interphase boundaries .

2.1.4 Plane Matching Model

The plane matching (PM) model is applied to interfaces of low index which are

misoriented in such a way that their continuity of parallel planes are restored by a set of

periodic defects (see figure 2.4). This is possible in a crystal system under the condition

that the atom planes are close packed, i.e. {I OO}, {IIO}and {Ill} in fcc crystals.

The boundary plane is not very crucial in this model. A PM boundary is regarded as a

limiting case of a CSL model. In the PM model the boundaries created are all considered

to be of low energy and low-indexes as compared to the CSL model where only the ones

at specific misorientations are of low energy configuration.

11
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(a) (b)

Figure 2.4: The Plane matching model for twist misfits: (a) unrelaxed planes , (b) relaxed

planes [7].

It has been demonstrated that the PM model can predict the spacing and orientation for

high angle grain boundaries in fcc metals [15].

2.1.5 Wulff Construction

A small crystal at equilibrium has a specific shape at a particular temperature. Assuming

net force on it is zero we have [16]:

ydA=O

A polycrystalline thin film on a substrate is an example of non-equilibrium since the

crystallites are not satisfying the above equation. The Wulff's theorem for equilibrium

condition corresponds to one crystal having {hkl} face exposed such that:

fy(hkl) dA(hkl) is minimum .

12
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Where , y(hkl) is the surface energ y and is a function of crystal orientation [17-18] ,

dA(hkl) is the differential area perpendicular to <hkl> . Thus to deduce the equilibrium

shape of a small crystal we require to know y(hkl) and vice-versa (figure 2.5).

(a)

1"10)

(b)

Figure 2.5: Polar y-plot in 2D: (a) for f.c.c crystal oriented along < 1To>, (b)

equilibrium shape of the crystal derived from Wulff plot in 3D, [11].

The Terrace-ledge-kink (TLK) model is proposed to facilitate representation of surface

energies as a function of orientation [16]. The TLK model is used to explain the

formation of Kossel crystal where the kink site is a repeatable step and moving kink

around does not change the number of T, Land K atoms or the energy of the surface .

TLK model helps in developing atomic structure of surface and thus facilitates

understand ing temperature dependence of surface energy in a greater depth .

13
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Wulff's construction is a polar diagram of y(8) or the y-plot. Wulff's construction is a

problem in calculus of variation and its derivation to determine the mechanical stability

of a particular orientation was originally flawed [18]. The equilibrium for any crystal

according to Wulff's theorem occurs when JydA is minimum, i.e. when one draws the

perpendicular through y(8) and takes the inner envelope. For Kossel Crystal the y-plot

shows that the equilibrium form is a cube . For more complicated crystals, equilibrium

forms can be a polyhedron and in these cases sharp cusps exist on the Wulff plot. The

width of the crystal facets is inversely proportional to the surface energy as seen in the

figure. The deepest cusps on the y-plots represent the singular faces (figure 2.5 (bj), High

energy faces mayor may not exist on the y-plot. Between singular faces rounded regions

exist where the faces are rough.

Whether an orientation is mechanically stable or not depends on the surface stiffness:

y(8) + d2Y~8) > or < 0
ae

The case of negative stiffness leads to faceting [16]. This condition can occur at a 2D

surface or along steps or dislocations on a ID surface in elastically anisotropic media

having unstable directions [19]. Facets are generally low-energy and low-indexed planes

formed by breaking of an arbitrarily orientated, originally flat surface into hill-and-valley

structures composed of two or more facets. A flat surface on the equilibrium shape of the

Wulff's construction represents stability (figure 2.5 (bj). Surfaces of other orientations

14
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are unstable and will show faceting and, if kinetically feasible , the surface will break

down into flat crystal surfaces.

The equilibrium shape and surface energy anisotropy of crystals was determined

experimentally by annealing small single crystals in ultrahigh vacuum and observing the

phenomena of faceting and the shape of the crystal as a function of temperature. For fcc

lead and gold experiments have been done and have been found to be informative

because they do not dissolve carbon from the substrate. SEM studies of lead particles on

graphite show faceting along the planes (l1l) and (l00). The surface energies can be

measured by measuring the width of facets and it was found to be inversely proportional

to temperature . The measurements for lead and gold over graphite [20-21] show that

maximum surface energy anisotropy at 200°C and 1000°C are 6% and 3.4% respectively

along <113> and <110> directions. The anisotropy between (l11) and (100) was less

than 2% for lead and 1.9% for gold deposits.

Thus it is evident from above discussion that shape of the balls is influenced by y-plot

and surface energy anisotropy . Also it is know from liquid-solid interface studies that

wetting angle/contact angle is influenced by the density of defects and impurities at the

interface which also affects the growth pattern. The equilibrium form of a small crystal

on a substrate includes close-packed faces, i.e. {1l1}, {100}, {1l0} for f.c.c metal

crystals and {110}, {I OO} for b.c.c metal crystals.

15
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2.2 Crystalline-Crystalline Interfaces

Literature Review

For crystalline-crystalline studies the structure and properties are controlled mainly by

the orientation relationships between the crystals. The defect structure at the interface is

also very important. The phenomena at the interphase boundary can be best explained by

the interfacial energy concept. The energy of an interphase boundary depends on many

physical/chemical/geometrical factors such as the atomic mismatch at the interface, type

of bonding at interface, size and shape of phases. As a result, to explain these

observations researchers proposed many models to analyse the activity at the interface of

crystalline-crystalline interface boundaries [11].

The proposed models in section 2.1 have left out one or more of the factors affecting the

interface and thus are limited in nature and their comparison with experimental results

have not always shown good alignment. One of the reasons can be the doubtful

assumption made while formulating these models that equilibrium boundary conditions

apply. Often it is found that the kinetics is more dominant than thermodynamics in the

formation of an interfacial structure .

16
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2.3 Amorphous-Crystalline Interfaces

Literature Review

The discussion about amorphous-crystalline interfaces is derived from the study of

liquid/solid interfaces [22-23]. Monte Carlo simulations models have been developed to

model random events at the liquid/solid interfaces . These simulations can approximate

density calculation and structure by observing positions of atoms at the interfaces at

distances of the order of few monolayers on either side.

Jackson [23] gave a theory based on the nearest neighbour bond model which assumes

the presence of extra molecules to be randomly arranged on a crystal surface. It was also

shown that the change in free energy on adding molecules to a fraction of possible sites

on the surface can be related to the dimensionless entropy of crystallization. Faceting and

non-faceting could be predicted for atomically smooth and rough surfaces using

Jackson's model. A parameter is introduced called the Jackson's a parameter given by

the formula below valid for solid/liquid interfaces at equilibrium melting temperature Tm-

Where, ~Hm is the heat of melting, kB is the Boltzmann's constant, Tmis the bulk melting

temperature, z is the number of nearest neighbours in the solid, Zt is the lateral

coordination number of an atom within a layer parallel to the surface layer. The first term

in the a parameter is the thermodynamic factor and the second term is the geometric

factor.

17
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When a < 2, we have a rough interface as solid liquid phases are completely mixed .

When a »2, we get a smooth interface with very few defects. The transit ion from

smooth to rough occurs when a == 2.

(a) (b)

Figure 2.6 : Schematic depicting possible growth patterns in crystals : (a) showing non

faceted growth , (b) showing faceted growth in crystals [11].

Crystals near Tm with a < 2 can grow by random atomic attachment to a rough interface,

whereas those with a > 2 should grow by nucleation and propagation of islands on low

indexed facet planes (see figure 2.6). The derivations made on the basis of this model are

approximate due to nearest-neighbour limitation of the model , but it has been reasonable

indicator between isotropic and faceted growth corresponding to rough and smooth

solid/liquid interfaces.

18
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Interfacial kinetics is described by Cahn [22] in qualitative terms by introducing the

concept of "diffuse interface ". Interfaces are either sharp (smooth) or diffuse (rough) so

that due to inter-diffusion the transition from solid to liquid takes place over a number of

atomic layers and the thermodynamic properties vary continuously across the interfacial

zone [22, 24].

In relation to the orientation dependence on interfacial energy, it has been known for

liquid/solid fcc metal systems that (111) or (100) planes when parallel to the interface

have somewhat lower energy than interfaces having other crystal orientations.

For liquid/solid cubic metal systems the interfacial anisotropy is as large as 20 % with the

interface of low energies being the (Ill) and (100) close-packed planes parallel to the

interface [11]. For some studies involving faceting behaviour of inclusions entrapped in a

solid matrix, it is also found that the anisotropies were as high as 100 % for solid/liquid

hexagonal metal systems .

Not much is known about orientation dependence on interfacial energy for amorphous

crystalline systems where the amorphous phase is solid, similar to crystalline Au on

amorphous glass. For studies of thin metallic film deposition on amorphous glass, factors

for orientation dependence have not been explained satisfactorily. Also , since preferred

orientations can also be due to many reasons such as anisotropy in crystal nucleation,

19
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growth rates or cusps in interfacial energy curve of substrate and overgrowth etc. , it is

still an unanswered question.

2.4 Epitaxial Growth

The term Epitaxy is a Greek word meaning 'arrangement on'. The original definition said

that epitaxy is a phenomenon of oriented-growth between two crystals when parallelism

is involved between the lattices of similar lattice spacings. The epitaxial growth depends

on the misfit (f), given by:

Where, as and af are the lattice parameters for the substrate and the film respectively. It

was believed earlier that lattice misfit is the only parameter for epitaxial growth; this was

found not to be true as epitaxy depended on many other factors like substrate/deposit

properties, etc.

For the case where a crystal grows from vapour in a single component system, the

differences in interfacial energy or strain energy that can occur between the growing

layer and substrate during the growth process (homoepitaxy), does not need to be

considered. These parameters need to be considered when growing a material of a

different phase on top of a substrate, this phenomena is called heteroepitaxy [11]. The

wetting behaviour of the growing material is also as important as the presence of strain

and lattice mismatch between the layers.

20
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The four primary growth modes of an epitaxial film growing on a substrate are (see

figure 2.7):

• Layer-by-Iayer growth or Frank-Van der Merwe (PM) growth mode.

• The island growth mode or Volmer-Weber (VW) growth mode.

• The island growth mode where island grows on top of an initial smooth layer or

the Stranski-Krastanov (SK) growth mode .

• The columnar growth mode. In this growth low atomic mobility leads to the

formation of highly defective atomic columns of material on substrates.

(a) (b) (c) (d)

Figure 2.7: Schematic representation of growth modes for deposition on crystalline

substrate : (a) PM mode, (b) columnar growth mode, (c) SK mode and (d) VW mode [11].

The PM or ledged growth mode and columnar or continuous mode of growth results as a

balance between the interfacial energy and the lattice mismatch between the layers.
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2.5 Interfacial Energy

Literature Review

The deposition of a crystal A on a substrate crystal B, having similar crystal structure that

are chemically bonded together, requires a change in energy to form an interface

boundary and is given by the mathematical expression:

L\E=YA +YB - E AB +Em

Where, YA and YB are the surface energies of the single crystals A and Band EAB is the

interfacial energy [25] and Em is the misfit energy. The equation can be modified to

incorporate the charge transfer term for evaluating interfacial energy of between

dissimilar materials A and B [26]. The misfit energy term Emcomes into the picture for

crystals differing in lattice parameters.

An expression was derived for the study of grain boundaries, relating the interfacial

energy to the misorientation or rotation angle between the boundary plane and mean

[100] direction for two grains in an isotropic simple cubic material. This helps in making

the plot between the interfacial energy and misorientation. The plot has cusps or local

minima in interfacial energies for some particular misorientation values corresponding to

orientation relationships with good lattice match. The relationship of the low interfacial

energy corresponding to surface tension for grain boundaries is also very important [27].

The excess surface free energy is responsible for the shape of metal particles deposited on

the surface of a substrate .
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2.6 Thermodynamics of Surfaces and Interfaces

Literature Review

Surface processes at the interface are important in understanding interfacial phenomena.

Thermodynamic relationships provide an interesting correlation between macroscopic

and atomistic views of surface processes. Thermodynamically the surface tension can be

viewed in terms of surface free energy or Gibbs free energy per unit volume . Thus,

entropy comes into the picture and the surface tension (reversible work) is determined by

the change in surface free energy of new surface formed. The surface free energy (y),

surface entropy (S) and the temperature are related by the formula:

S=-(~)

The shape taken by the overgrowth on the substrate will be determined by minimizing the

surface free energy . The resulting shape is called the equilibrium shape. The equilibrium

shape is determined by Wulff construction which is a plot between the surface free

energy and the anisotropy giving us an idea as to why faceting occurs in various systems.

The Wulff construction has been discussed before and it appears that we can determine

the equilibrium shape of overgrowth or crystal by the surface energy consideration. In the

case when the surface tension is the same for all surface orientations the equilibrium

shape will be a sphere as for that shape the surface energy is the minimum. But since, in

reality the surface free energy varies with orientation, thus the equilibrium shape will be

one that minimizes the surface free energy and will tend to enlarge the surface area, of

those surfaces orientations which have lower surface tensions and decrease the area of
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those surface orientations which have higher surface tension s. Thi s is the reason for

faceting in crystal overgrowths.

The Gibbs free energy equation can be used to describe equilibrium at the surfaces and at

interfaces :

i1G =i1H-Ti1S

i1G = E+ Vi1P-Ti1S

Where , i1G is the change in Gibbs free energy at the interface, i1H is the change in

enthalpy at the interface , i1S is the change in entropy at the interface , i1P is the change in

pressure, E is the internal energy, V is the volume and T is the temperature at the

interfacial boundary .

At a constant pressure and an assumption that small volume change is accommodated by

lattice matching across the interface boundary the equation reduces to:

i1G=E-Ti1S

For AgJAg boundaries in sphere-rotation experiments [28], interfacial energy versus

misorientation curve s were plotted with variation in pressure and it was observed that the
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curve shifts upwards with increase in pressure. The numb er of cusps decrea sed and the

width of the cusp s decreased.

Similar experiments were done with Cu/Cu sphere-plate samples [29] , it was found that

the curve shifts downwards as the temperature was increased. The orientation

relationships corresponding to the low energy grain boundaries are affected by the

entropy of vibration.

A study done on pure silver and silver alloys with and without segregation [31] shows

that the entropy of mixing due to solute segregation decreases the interfacial energy and

also removes some cusps in the interfacial energ y versus misorientation curve.

The total entropy (~Stotal) of an interfacial boundary is given by the contributions from

mixing (~Smixing), vibration (~Svibralion) and configuration (~Sconfiguralion).

~S lotal =~S mixing +~S vibration +~Sconfiguration
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2.7 Experimental Problem Formulation

Literature Review

Now before we move on to the Chapt er 3, Experimental , we decide the problem to work

upon with some background study to it.

The systems chosen for study in this thesis are Au/SiO z/Si(lOO); Au/SiO z/Si(lll) and

AU/SiOz. These systems are examples of crystalline/amorphous/crystalline and

crystalline/amorphous systems . The reasons for orientation and growth of metal on a

crystalline, non-metal with an interlayer or on an amorphous non-metal are still not fully

understood .
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Figure 2.8: Au-Si phase diagram.
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From the literature it is evident that there is an epitaxial growth of crystalline metal on a

crystalline non-metal with an amorphous interlayer and this means that long range

ordering effect is there which causes the metal to settle in preferred orientation. The

growth of crystalline metal on the amorphous substrate is also following the same pattern

except that it is not having growth in epitaxial direction. The reasons for such behaviour

are owed to the concept of cusps in interfacial energy versus misorientation curve, and

we will strengthen that theory in this thesis by the facts presented from our experimental

results.

The electronic effects were considered to be one of the reasons for such orientation

distribution in the cases where we don't consider long-range ordering effects but

determining electronic effects data, such as subsurface space charge for the non-metals to

prove this premise is not feasible for many crystals and interphase boundaries. The

indirect measurement of orientation of metal on non-metal substrate with amorphous

interlayer is relatively easier to measure experimentally.

The AulSi system is chosen because it has been studied extensively in the past and data

from epitaxial experiments are available for comparison. The AulSi system in a

temperature range of 700°C to lOOO°C will form a solid-liquid [32] mixture which upon

cooling will go through the eutectic transformation. The sphere-plate samples are

annealed in the above temperature range and presence of any eutectic phase after

annealing the sphere -plate samples will be an indication that the amorphous oxide

27



Chapter 2 Literature Review

interlayer had holes and thus it is quiet clear that a direct contact existed between the two

crystalline phases of metal and non-metal.

Distler et al. [33] could grow epitaxial metallic thin films through amorphous interlayer

of Si02, C, polyethylene on sodium chloride and mica substrates. Distler's work could

not be reproduced by Chopra et al [34]. He could not grow epitaxial films of noble metals

on crystalline substrates with amorphous interlayer and so it was questioned if the

amorphous coating was uniform on the substrate since epitaxial growth can occur at

regions which are bare or along ledges or cleavage steps and then spread laterally.

The experimental technique used must be free from major uncertainties and able to detect

low energy boundaries or cusps in the interfacial energy versus misorientation curve.

Thus the modified version of the sphere-plate technique is used to study preferred

orientations of crystalline metallic phases on crystalline non-metallic phase separated by

an amorphous interlayer and on amorphous substrates.

The sphere-plate technique is appropriate as it is based on the statistical average [27] of

large number of individual events (_10 7 experiments) reducing the uncertainties and

eliminating possibilities of holes in the amorphous interlayers. This technique has been

successfully and extensively used in the past to study low energy interfaces of crystals in

direct or indirect contact with each other [29, 30].
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2.8 Research & Motivation

Literature Review

Developing a method for synthesizing gold nanoparticles on silicon substrates, covering a

large area is very important for microelectronic industry and extensive research is being

carried out in this area. Synthesis of aligned nanoparticles of gold on laser-generated

templates [47], involves a three step procedure: first , substrate is laser-irradiated and a

periodic nanorippled structure is produced; second, thin film of gold is grown by using

ion-beam sputter deposition followed by a thermal treatment which facilitates formation

of self-aligned gold nanoparticles. The technique can be used in a large number of

substrate/film combinations.

Low-energy electron microscopy [48] was used to show that Au deposition at around 400

°C leads to an arrangement of 3D islands at single-layer steps on Si (111). This shows

that a metallic thin film breaks into irregular shaped particles during annealing.

In another research gold negative-ion implantation technique [49] is used to form a single

layer of crystalline gold nanoparticles. This metal nanoparticle embedded in insulator can

be used as a single electron device and shows effective Coulomb blockade at room

temperature.

Metal nanoparticles (Au), in application for silicon based electron devices are formed in a

thin Si02 layer [50]. Optical reflection properties are used to study the state of

nanoparticles, i.e. particle size, distribution depth.
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Interfacial adhesion between Au films on SiOx/Si substrates [51] is found to be

significantly improved by an organic dendrimer monolayer. Quantitative results were

obtained by nanoscratch tests performed for dendrimer-mediated Au films; it was found

that the films were twice as strong as compared to simple films . This proves improved

adhesion in films due to the presence of dendrimer layer.

Thin silicon nanowires were synthesized [52] using chemical vapour deposition

technique, catalyzed by gold nanoparticles deposited on silicon substrates. These

nanowires grew epitaxially in <Ill> directions on Si (100) substrates. A critical

thickness of nucleating gold films was observed below which Si nanowire synthesis was

not observed. A study of dependence of the Au-Si alloy droplet size and size distribution

on the starting gold film thickness and the annealing conditions was made. A modified

heating sequence was used which allowed growth of nanowires with diameters less than

20 nm. This is a significant step in producing electronic devices.

Thus, we see that the application of metallic particles on Si02/Si substrates is increasing

in the micro/nano-electronic industry, underlining the importance of research in this area.

The Sphere-plate technique is one of the methods of forming nanosized particles of gold

on silica/silicon substrates. The various characterization techniques used help in verifying

the synthesis of nanosized gold particles on the substrates. This thesis is a step towards

achieving this goal.
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Chapter 3

Experimental

3.1 Introduction

Experimental

The technique used to study the interface of Gold/Silica/Silicon systems is a modified

version of the sphere-plate technique. It basically extends from the original sphere-plate

technique [27] which was used to study metal on metal and has been successfully applied

in many systems to the observation of low energy interfaces for crystals in direct contact

with each other. The sphere-plate technique is based on the measurement of the statistical

average of a large number (~107 per experiment) of individual orientation events, i.e.

balls per plate sample (see figure 3.1). Thus the effect of a few possible irregularities, for

example holes in the amorphous oxide layer separating the two crystalline phases [27, 35,

43], on the final results is negligible. When compared with vapour-phase epitaxy

experiments where a few flaws in the system could indeed affect the final result of the

orientation relationship between the overgrowth and the substrate which is more

collective for the film and not a statistical average of many individual events.
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Figure 3.1: Schematic of a sphere-plate sample: Cross-section showing gold deposited on

silicon with an interiayer of SiOz present, showing good statistics.

Upon annealing the single-crystal spheres rotate into orientation relationships which

correspond to lowest interfacial energy. Thus rotation is driven by an energy change

which follows the gradient in the vicinity of the cusp in the interfacial energy curve

(figure 3.2).

---------------1

---------------t---------------

J.G

"

r.lisorientation

Figure 3.2: Interfacial energy vs. misorientation curve: [27].
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3.2 An Account of the Sphere-Plate Technique

Experimental

The original sphere-plate technique, namely version 1 was developed in 1974 [35, 43] to

study grain boundaries in metals and alloys. The next version came in 1978 to eliminate

the undesirable electrolytic neck removal step and was called the first modification. The

version 3, also called the second modification was developed in 1982 and this is where

the technique was first applied to metals on non-metal substrates. The third and final

modification was made in 1986 and is called version 4 of the sphere-plate technique. This

modification of the sphere-plate technique was an important step towards reducing the

contamination at the interfacial region. The modified version 4 basically involves the

deposition of a thin polycrystalline film of the sphere material directly onto the substrate

which forms the other half of the interface [35]. This process is followed by annealing the

film which breaks the film into single crystalline particles which then freely rearrange

themselves into lowest interfacial energy configurations by rotation of these spheres as

shown in figure 3.3.

The spherical metal particles rotate themselves until they reach equilibrium or align

themselves to the preferred orientations as in the substrate. It is evident from figure 3.3

that the misorientation and mismatch decreases as planes align themselves in a special

configuration. The planes try to align themselves parallel to the planes on the substrate

thereby achieving a lower interfacial energy by virtue of its being into preferred

orientations of low energy.
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(a)

Experimental

(b)

Figure 3.3 : Sphere rotation of balls due to annealing: Rotation occurs from (a)

Intermediate anneal stage (stage II) , to reach (b) High temperature anneal stage (stage

III), with minimum interfacial energy. Angles 8 1 and 82 correspond to the misorientation

values at the two stages as seen in figure 3.2.

There are three stages of film evolution; thin film deposition, film breaking into islands

during the intermediate anneal stage and finally rotating into balls after the high

temperature anneal stage (figure 3.4).

~ 0@~.DfI® ~

I ~ -I Stage II 1-, Stage III I

Figure 3.4: Stages of single crystal sphere formation by sphere-plate technique: Stage I,

as-evaporated film ; Stage II, intermediate anneal stage; Stage III, high temperature anneal

stage.
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3.3 Substrates Used

Experimental

The substrates used were Silica glass (Si02) and Silicon (Si) , both are non-metallic in

nature. The glass substrate is amorphous and Silicon substrates are crystalline.

Amorphous Si02 disks 2.5 mm x 1.0 mm were obtained from Esco Products Co. Inc

(figure 3.5)

Amorphous Si02

'mm
1d
T Glass Plate

Figure 3.5: Schematic of glass substrate used: Showing dimensions and structure of

amorphous Si02 having short range order .

The semiconductor substrates, Si(IOO) and Si(lII) used were obtained by a substrate

supplier and were supplied by the website www.universitywafer.com and Motorola. The

Si(lOO) and Si(III) were offset by ±OS in orientation with the normal to the plane; with

an equilibrium layer thickness of Si02 of 20-30 A and 30-40 A respectively [37]. This

oxide layer is called the native oxide layer and is formed due to atmospheric oxidation. A
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diamond scribe was used to cut the Si(100) and Si(1ll) wafers along <100> and < I I I>

directions respectively, as shown in Figure 3.6.

Si (100) Wafer

001

Si(111)Wafer

110

(a) (b)

Figure 3.6: Schematic of Si(100) and Si(1ll) showing directions and orientation of

planes on the wafer: (a) Orientation of planes in Si(IOO) and Si(lll) wafer used as
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substrates, (b) The unit cell of Silicon having diamond a structure is shown with the

corresponding planes shaded.

A ±5° offset was a product specification but we also know from the literature that this

forms ledges and steps enhancing epitaxial growth.

3.4 Experimental Procedure

3.4.1. Substrate Cleaning

This is one of the most important steps in the version 4 of the sphere-plate technique

which we are incorporating to study the interface between the metal (Gold) and non

metal (Si02/Si(1 I l)/Si(IOO)) . The unwanted deposits on the substrate can affect the film

growth, orientation and adhesion. The cleaning technique depends on the nature of

substrate chosen, contaminants present and the degree of cleanliness required. Residues,

fingerprints, oil, lint, dust and other airborne particles are the commonly encountered

contaminants.

The substrate cleaning procedure requires the bonds between the contaminants and the

substrate to be broken. These bonding forces between the substrate and contaminants are

generally weak forces and thus may be broken by cleaning in detergent solution, by

chemical means as in solvent cleaning or by providing enough energy to the impurities to

vaporize them (i.e. by heating or particle bombardment). Etching a few layers of the
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surface molecules is an approach used effectively to clean a surface in various

applications, provided that the etch pits are not formed.

A modified cleaning procedure #7059 by Corning, NY was used to clean the substrates

before the Au film was deposited on it. The substrates were placed in glass holders at all

times to prevent them from getting scratches and before thin film deposition they were

cleaned in a clean hood using the procedure described below.

The steps in the Corning Glass modified cleaning procedure #7059, Corning, New York,

carried out for the substrates Si02/Si(1 11)/Si(lOO) in our experimentation were:

I) 5 minutes in boiling distilled water .

2) 5 minutes in a beaker containing 25 ml boiling Acetone and its vapors

condensing on a cold trap .

3) Same procedure in step 2 with Methanol.

4) Same procedure in step 2 with Propanol.

3.4.2 Thin Film Deposition

Sphere-plate samples were prepared by vapour deposition technique using a Varian Bell

Jar. High-purity (99.999%) Au in wire form is put in a tungsten basket, 7 em from the

source in a vacuum of 1 x 10-5 Torr, and is deposited on the substrates Si02, Si(lll) and

Si(lOO) which was in a plate form . The substrates were rotated throughout the
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evaporation process to ensure uniform and continuous growth of thin films without any

starting texture. Au film of 0.1 11mthickness was grown at ambient temperature (298 K).

3.4.3 Annealing Sphere-Plate Samples

The next step was annealing of the as-deposited sphere-plate samples in a clean quartz

glass tube furnace using inert N2 atmosphere at ambient pressure. Intermediate annealing

at 0.5-0.7 Tm (530°C) with a holding time of 1.0 hour caused the film to break and form

island. The final annealing step at szo-c with a holding time of 1.0 hour was required to

break up the film further into spheres and rotate the spheres into low-energy orientation

relationships as shown in figure 3.7 .

(A)

-.

SiO' +~

(a)
(B)

~~ISLANDS

SiO, ....~Si

(b)

~... SPHERI

SiO' +~Si

(c)

Figure 3.7: Schematic of the stages of film evolution on glass and silicon substrates: (a)

As-deposited stage, (b) Intermediate anneal stage and (c) High temperature anneal stage

for (A) Au on Si02, (B) Au on Si(lll )/Si(l 00) sphere-plate samples.
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The summary of the interfacial systems studied is provided in the table 3.1 shown below.

Table 3.1: Summary of experimental procedures for studied inter facial systems.

Interface Type Substrate Intermediate Final
and System Preparation Annealing Annealing

Temperature/Holding Temperature/
Time Holding Time

Crystalline Cleaned using 530°C/lhr 920°C/lhr
Amorphous Coming #7059

AulSiO z glass cleaning
method

Crystalline Cleaned using 530°C/lhr 920°C/1hr
Amorphous Coming #7059
Crystalline glass cleaning

AulSiO z/Si(lll ) method
Crystalline Cleaned using 530°C/lhr 920°C/lhr
Amorphous Coming #7059
Crystalline glass cleaning

AulSiO z/Si(100) method

In the next step once the sample s were prepared they are characterized by X-ray

Diffraction (XRD)-Pole Figure Determination, Scanning Electron Microscope (SEM)-

Energy Dispersive Spectroscopy (EDS) and Atomic Force Microscopy (AFM). These

characteri zation techniques are discussed in detail in the following section including

details of setup and working principles .
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3.5 Characterization of Sphere-Plate Samples

3.5.1 X-ray Diffraction and Pole Figure Determination

The XRD is based on the principle of path difference between two rays of a beam of X

rays. The difference between the lengths of path travelled lead to difference in phase.

This phase difference is the reason behind the variation in the amplitude . The X-ray

diffraction pattern ofa pure substance is, therefore, like a fingerprint of the substance.

A diffracted beam is defined as a beam composed of large number of scattered rays

mutually reinforcing one another (figure 3.8). Thus we see that diffraction is a scattering

phenomenon of X-rays over atoms while interacting with it. The diffraction beam is a

built up of the rays scattered by all the atoms of the crystal which come in the way of

incident beam and the diffraction of the monochromatic X-ray takes place only at the

particular angles of incidences which satisfy the Bragg's law. The phase relation

determines whether we have a destructive or a constructive interference. The intensity of

diffracted X-ray beam is extremely small as compared to that of the incident beam owing

to the fact that most of the phase differences create a destructive interference. The peaks

observed in the diffraction pattern are due to the (hkl) planes with high electron density

which reflect strongly.

The Bragg's law is given by:

nA. = 2dsin8
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Where , n is the order of reflection, d is the plane spacin g, A. is the wavelength and 8 is the

half of diffraction angle (figure 3.8) . The (hkl) value of the plane is related to the'd '

spacing by the lattice parameter 'a' of the unit cell.

X-ray Tube .~ ~~ Detector

Incident Beamk~~ r.;;'flected Beam

di~l~ nA=2dsin8
e~

Figure 3.8: Schematic representation of diffraction of X-ray by a crystal.

The XRD instrument used for experiments was the Rigaku D/Max-2200V-PC. X-rays

were generated using Cu-K, radiation in a Cu-tube with the Cu-anode at a potential of 40

kV and current of 40 rnA. The 8-28 scans were taken for the samples for values of 28

between 100 to 1400 at a scan speed of 1°/min. The software used for the operation of 8-

28 scans was provided by Rigaku. The sampling width was 0.020 for measuring the X-ray

intensity . The parameters set for the tube end are, divergence slit at 0.50 and divergence

slit height at 1.2 mm . At the detector end the scatter slit was fixed at 10 and receiving slit

at O.3 mm.

The software used for search-match of chemical phase identification was purchased from

Materials Data Inc. (MDt) and was called the MDt version 6.5. The search-match verifies
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the Au and Si phases using the Powder Diffraction Files (PDF's). These were purchased

from the Joint Committee on Powder Diffraction Standards (JCPDS), International

Centre for Diffraction Data (ICDD) , PA, USA, 2003.

The projection of a sphere with its pole density onto a plane is called a pole figure. An

(hkl) pole figure is defined as a projection showing the density of (hkl) poles in a given

direction in a sample with its pole density being directly related to its hkl integrated

intensity [36]. The Schulz reflection method was used with the source and counter kept at

28 angle for the (Ill) cubic metal or non-metal. The Schulz reflection method is used

primarily since it is effective in exploring the central region of the pole figure which is

not possible by using transmission methods.

A pole figure is scanned by measuring the diffraction intensity of a given reflection with

constant 28 at a large number of different angular orientations of a sample. A contour

map of the intensity is then plotted as a function of the angular orientation of the

specimen. The pole figure measurement requires a multipurpose sample holder. The pole

figure measurements were made on Rigaku D/Max-2200Y-PC. The data was recorded on

a Personal Computer by interfacing it with the X-ray scintillator counter and using

RINT2000 /PC software which also plotted the pole figures in 20. Thus, the orientation

distribution of the Au particles on the substrate was measured by recording X-ray pole

figures using Cu- K; radiation for which the 28 values for Si(lll) and Au(lll) are
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28.442° and 38.184° respectively . The operating conditions for the generation of Cu-K,

radiation were 40 kV and 40 rnA.

The values of the parameters a and 8 were varied for the continuous scans using the

Schulz reflection method (figure 3.9). The a angle was varied between 15° and 90° with a

step size of 2° and the 8 angle was varied between 0° and 360° with a step size of 2° in a

coaxial scheme of scanning.

The intensity of any given reflection is proportional to the number of (hkl) planes in

reflecting condition. Hence, the pole figure gives the probability of finding a given (hkl)

plane normal as a function of the specimen orientation. If the crystallites in the sample

have random orientation the contour map will have uniform intensity contours . X-ray

intensity scans can also be plotted on a chart for particular areas of interest on the pole

figure, thereby revealing the fine structure of intensity distribution .
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Figure 3.9 : Schematic diagram of Schulz reflection method : Showing the rotational

angles a , 8 about the AA' and BB' axis for drawing pole figures [36].

3.5.2 Scanning Electron Microscopy and Energy Dispersive Spectroscopy

The image formed in an SEM is very different to the way it is presented to the operator

because it is generated not by optical means but by secondary electron detection. The

column of an SEM contains an electron gun and electromagnetic lenses. The lenses are

operated in a way so as to produce a very fine electron beam, which is focused on the

surface of the specimen as seen in the figure 3.10. The beam is scanned over the

specimen in a series of lines and frames called a raster. The raster movement is

accomplished by means of small coils of wire carrying the controlling current in the scan

coils.

Figure 3.10: Schematic of a SEM showing its working.

45



Chapter 3 Experimental

The specimen is bombarded with electrons over a very small area. Several things happen

to these electrons . They may be elastically reflected from the specimen, with no loss of

energy. They may be absorbed by the specimen and give rise to secondary electrons of

very low energy, together with X-rays. They may be absorbed and give rise to the

emission of visible light, an effect known as cathodoluminescence. And they may give

rise to electric currents within the specimen. All these effects can be used to produce an

image. The most common method is image formation by means of the low-energy

secondary electrons . This is the one we see in our SEM micrographs in the next chapter.

The secondary electrons are selectively attracted to a grid held at a low positive potential

with respect to the specimen. Behind the grid is a disc held at positive voltage with

respect to the specimen . The disc consists of a layer of scintillant coated with a thin layer

of aluminium. The secondary electrons pass through the grid and strike the disc, causing

the emission of light from the scintillant. The light is led down a light pipe to a

photomultiplier tube which converts the photons of light into a voltage. The strength of

this voltage depends on the number of secondary electrons that are striking the disc. Thus

the secondary electrons produced from a small area of the specimen give rise to a voltage

signal of a particular strength . The voltage is led out of the microscope column to an

electronic console, where it is processed and amplified to generate a point of brightness

on a cathode ray tube screen . An image is built up simply by scanning the electron beam

across the specimen in exact synchrony with the scan of the electron beam in the cathode

ray tube. The EDS analysis was done by using the data from the detection of X-rays.
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The SEM used for experimentation for this thesis is the Hitachi 5570. The operating

conditions are 20 kV potential at a working distance of 15 mm and 0.1 rnA beam current.

The samples were attached to the holder using double-sided tape. The magnification is

varied to concentrate on particular spots of interest. The quality of picture obtained is the

interplay between the SEM parameters such as working distance, magnification, 3D

effect, contrast, spot size, etc.

In a SEM the magnification results from the ratio of the area scanned on the specimen to

the area of the television and not from objective, intermediate or projector lenses to

magnify the image. Increasing the magnification in an SEM is therefore achieved quite

simply by scanning the electron beam over a smaller area of the specimen. The method of

image formation in the SEM is similar to the ones where elastically scattered electrons,

X-rays, or photons of visible light are used for image formation except that the detection

systems are different in those cases. Secondary electron imaging is the most common

because it can be used with almost any specimen and is less time consuming.

Energy Dispersive Spectroscopy (EDS) is an attachment on the SEM used for performing

chemical analysis of the materials studied. Bombarding a specimen with electrons causes

X-rays of characteristic wavelengths and energies to be emitted from the spot where the

beam strikes the specimen. The EDS was carried out with an attachment to the SEM

called Tracor Northern 5500 EDX. Computer analysis of the wavelength or energy

spectra makes it possible to measure accurately the nature and quantity of different
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elements in the material. The technique is of great value in materials science, particularly

because of the range of the elements detected (Na to U), which includes the materials

studied (Au, Si) and an area as small as 111m2can be analyzed with precision.

The detector in the SEM for detecting the secondary electrons was the Everhart-Thornley

detector. The EDS attachment used a Si(Li) solid state detector to detect the X-rays for

EDS analysis of samples.

Since the output from the SEM is a train of voltages, the operator can exert considerable

control over the character of the image. Focus, magnification, brightness and contrast can

all be controlled just by turning knobs on the console. In addition, the specimen can

usually be tilted and rotated so that it can be examined from a wide range of viewpoints.

The output from the microscope can be computer processed so that successive frames are

combined and averaged, producing a striking reduction in random noise levels.

48



Chapter 3 Experimental

3.5.3 Atomic Force Microscopy

The Atomic Force Microscope (AFM) is one of the many types of scanned-proximity

probe microscopes that work by measuring local properties, such as size, height, optical

absorption, magnetism etc. with a probe or "tip" placed very close to the sample. The

small probe-sample separation of the order of the instrument's resolution makes it

possible to take measurements over a small area. AFM uses a sharp, micro-machined

cantilever that is placed in light contact with the sample and rides along the sample as it

scans it. To acquire an image the microscope raster scans the cantilever over the sample,

measuring the desired local property. The raster scan operates in three modes , namely ,

the contact mode, non-contact mode and tapping mode . The critical components that

affect sensitivity and precision of AFM are the scanner, cantilever detector and control

system. Feedback obtained from the control system is crucial in analysis of data.

For this thesis we used an AFM to characterize our samples (in tapping mode) and the

name of the instrument used was MFP-3D Atomic Force Microscope, Asylum Research ,

California, schematic shown in figure 3.11; Cantilever of silicon, "Olympus AC 160TS",

resonant frequency -300 kHz. For this tip the potential maintained for the drive of the

oscillation of the cantilever was 140 mV at a frequency of 305 KHz and at a scan rate of

1 Hz. The AFM used had a Nanopositioning System (NPS) [40], which allows the MF-
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3D controller to maintain good control over the x-y position while operating in a closed

loop.

Scanned-probe systems do not use lenses, so the size of the probe rather than diffraction

effects generally limits their resolution. The probe or the cantilever sensor used in the

MFP-3D is an optical lever. Optical interference can occur between the laser light

reflected off the cantilever and the reflected laser off the sample. This can be reduced by

improving diffraction in optics and using a low coherence light source. This can eliminate

interference and provide a sensitive optical lever detection method. The noise in the

optical lever detector determines the smallest forces between the cantilever and the

sample that can be measured.

MFP-3D NPS System
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Figure 3.11 : Schematic of working model of an AFM : The instrument's name is MFP-3D

AFM, Asylum Research, California [40]. This system had a side-on optical camera

attached to it.

The AFM used in this thesis was operated in the tapping mode. Tapping mode AFM

operates by scanning a tip attached to the end of an oscillating cantilever across the

sample surface. The cantilever oscillates at or near its resonance frequency with

amplitude ranging typically from 20nm to 100nm [41] . The tip lightly taps the sample

surface during scanning, contacting the surface at the bottom of its swing (figure 3.12)

F..dbackloopEleetronlca:
ntalnl nltant IClltlon mpltU.
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Figure 3.12: Tapping Mode AFM: [41].
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A feedback loop maintains a constant cantilever oscillation by vertically moving the

scanner until a set amplitude is achieved. The computer stores the vertical position of the

scanner at each data point in order to form the topographic image of the sample surface.

Operation can take place in ambient and liquid environments. In liquid, the oscillation

need not be at the cantilever resonance. In tapping mode we can obtain a higher lateral

resolution on most samples. The lateral force is lower and thus it is less damaging to soft

samples imaged in air.

Laser light from a solid state diode is reflected off the back of the cantilever and collected

by a position sensitive detector (PSD) consisting of two closely spaced "quadrant

photodiodes" whose output signal is collected by a differential amplifier. Angular

displacement of the cantilever results in one photodiode collecting more light than the

other photodiode, producing an output signal, the difference between the "quadrant

photodiode" signals normalized by their sum, which is proportional to the deflection of

the cantilever (See figure 3.13).

Figure 3.13: Beam Deflection in AFM: [41].
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The major components of the silicon probe used are its substrate, cantilever and tip. The

substrate is the body of the probe. It is the portion of the probe handled by the tweezers

during installation into the cantilever holder. The cantilever is the portion of the probe

that projects off of the end of the substrate. The tip mounts on the end of the cantilever.

The tip is the portion of the probe that comes in proximity to the sample surface. The tip

of the rectangular cantilever (Olympus AC160TS) used is tetrahedral in shape. The point

of the tip has a radius of curvature < 10 nm.

One advantage of Tapping Mode AFM is an absence of lateral forces which exert torque

on the cantilever. Unlike traditional contact AFM, the feedback loop keeps a vibrating

cantilever at constant amplitude rather than keeping a cantilever at a constant deflection.

The tip on the cantilever is modulated through mechanical excitation at its resonance. A

laser beam reflects off of the micro fabricated cantilever, onto a mirror, and then reflects

onto a photodiode array . The laser spot oscillates vertically across the array as a result of

the vibrating cantilever. The signal from the photodiodes rectifies, and then passes

through a low pass filter into a DC voltage (RMS Amplitude). The magnitude of RMS

amplitude is proportional to the amount of cantilever motion. The feedback system

compares the RMS amplitude to the set point voltage .

For our AFM setup , the tip's relationship to the sample results in a small Z piezo

movement which indicates that the cantilever is engaged with the sample surface.
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There are some basic rules followed while working in tapping mode :

1) The set point voltage was always lower than the RMS voltage.

2) The difference between the RMS voltage when the tip is off the surface and the set

point voltage dictates the amount of damping or "tapping force." The larger the

difference, the greater the tapping force .

3) The RMS voltage controls the amount of energy that is in the cantilever. This is

important to note because some samples are stickier than others. The tip may stick and

hold to the sample surface if the RMS amplitude is too small. Increasing the RMS

amplitude and the set point voltage may relieve this problem.

Contact mode AFM is a more traditional approach of operation. In this mode attractive or

repulsive forces are measured between a tip and the sample [38] . In repulsive contact

mode, the instrument lightly touches a tip at the end of a cantilever to the sample. As a

raster-scan drags the tip over the sample, a detection apparatus measures the vertical

deflection of the cantilever, which indicates the local sample height. Thus, in contact

mode the AFM measures hard-sphere repulsion forces between the tip and sample .

In Non-contact mode, AFM derives topographic images from measurements of attractive

forces; the tip does not touch the sample [39].
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AFM can achieve a resolution as high as 10 pm under some special conditions , and

unlike electron microscopes, can image samples under liquids.
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Chapter 4

Results and Discussion

4.1 Introduction

Results & Discussion

The prepared samples of the systems mentioned previously were studied by

characterizing them with XRDlPoie Figure, SEMIEDS and AFM techniques. The sphere-

plate samples were obtained by annealing vapour deposited thin metal films on a

substrate to study the reorientation of metal particles and examine the preferred

orientations and the directional orientation. The polycrystalline thin film of Au, with

annealing, breaks into islands by grain boundary grooving and is followed by

spheroidization and particle coarsening (see figure 4.1).

~ !ill(iJj~ ...JIUJhi\1 ~::- _I 5tageII I-I 5t.geIlI I
Figure 4.1 : Three stages of sphere-plate technique: Stage I, as-evaporated film; Stage II,

intermediate anneal stage; Stage III, high temperature anneal stage .
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As seen from the figure 4.1, we see the three stages of film depo sition and re-orientation.

The first stage is the as-deposited polycrystalline film . In the intermediate anneal stage

(530DC) we see how the film break s into islands with Au particles of uneven shape and

size . In the high temperature anneal stage (920 DC), Au particles rotate into spheres and

settle themselves in the more stable preferred orientation planes with (111) planes aligned

parallel to the interface. As the annealing temperature is increased the Au also aligns into

(222) preferred orientations. These observations were made by inspecting the peaks of

intensity versus 28 plots obtained by XRD .

Ranecm crent aton

000000000000 00 00000

1

Figure 4.2: Cusps in the Interfacial Energy versus Misorientation plot : Showing random

and preferred orientations of ball s in stage I and stage III of the sphere-plate techn ique

[27].
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Au has, face centered cubic unit cell and Silicon has a diamond structure. The most

preferred plane for Au to grow is (Ill) as it is the most closed packed, but in spite of this

we have different planar orientations for the growth of Au particles on Silicon substrates.
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4.2 XRD and Pole Figure Results
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Figure 4.3 : XRD patterns for stage I: As-evaporated Au on SiOz/Si(lll )/Si (lOO) sphere-

plate samples.
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Figure 4.4 : XRD patterns for stage II: Intermediate Anneal Au on Si0 2/Si(l 1l )/Si(l OO)

sphere-plate samples .
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Figure 4.5: XRD patterns for stage III: High Temperature Annealed Au on

Si02/Si(11 l )/Si(lOO) sphere-plate samples.
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Compari son of figure 4.3, 4.4 and 4.5 indicates the preferred orientation planes for the

three samples at three different annealing temperatures . It is very clear that Au(lll) and

Au(222) planes are the preferred orientations for Au on all substrates studied.

In XRD the X-ray used for characterizing the samples can penetrate up to a depth of 20

urns (figure 4.6). Thus the information contained in the reflected X-rays is also of the

substrate material along with the Au deposited on it. For this reason we could observe

peaks of Si(lII), (222) and Si(400) in spite of an interlayer of Si02 in our Si substrates

and also we even observed the Si02peak for glass substrate .

Figure 4.6: X-ray diffraction of sphere-plate samples: Schematic showing incident X-ray,

sample , reflected beam and detector in characterization by XRD technique .
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The tables below summarize the raw data and results from the XRD patterns in figures

4.3 to 4.5.

Table 4.1: XRD peaks data for as-evaporated stage samples: Stage 1.

SiOz substrate Si(111) substrate Si(lOO) substrate

Peak I(cps)/28(deg) Peak I(cps)/28(deg) Peak I(cps)/28(deg)

Si02 173120.48 Si(I11) 1570128.64 Si(400) 284655/69 .16

Au(lll) 68/38.48 Au(lll) 63/38.26 Au(I11) 76/38.24

Table 4.2: XRD peaks data for intermediate anneal stage samples : Stage II.

SiOz substrate Si(ll1) substrate Si(lOO) substrate

Peak I(cps)/28(deg) Peak I(cps)/28(deg) Peak I(cps)/28(deg)

Si02 175/20.7 Si(lll) 266377/28.56 Si(400) 72331/69.3

Au(lll) 1550/38.38 Au(lll ) 4666/38.34 Au(lll) 1695/38.44

Au(222) 105/81.82 Au(222) 382/81.84 Au(222) 238/81.88
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Table 4.3: XRD peaks data for high temperature anneal stage samples : Stage III.

Si02 substrate Si(111) substrate Si(lOO)substrate

Peak I(cps)/28(deg) Peak I(cps)/28(deg) Peak I(cps)/28(deg)

Si02 95/21.76 Si(lll) 266311/28.76 Si(400) 258710/69.06

Au(lll) 75373/38.14 Au(lll) 24593/38.14 Au(lll) 5255/38.14

Au(222) 9640/81.68 Au(222) 3591/81 .66 Au(222) 325/81.68

Au(220) 40/64.56 Au(200) 8/44.38

Au(200) 48/44.38

Au(311) 290/77 .52

The raw data helps us in concluding that as the temperature of annealing was increased

we observed higher peaks of Au. The gold particles rotated themselves into preferred

orientations. Different preferred planes were also observed to be showing peaks which

were not visible for the as-evaporated samples.

Thus from the XRD data, we confirm the presence of gold and silicon, looking at their

peaks. The peak of Au increasing in intensity and orientation with annealing temperature

signifies that the Au film breaks into islands followed by its rotation into Au balls . Thus

XRD was helpful in confirming the preferred orientations of the planes in the samples.
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Pole figures were useful in determining the directional orientations of the samples and it

was found that with increase in annealing temperature we got better directional

alignment.

(a) (b)

Figure 4.7: Pole figures of AulSiOzlSi samples in the stage I.

(a) (b)

.~
.;

Figure 4.8: Pole figures of AulSiOzlSi samples in the stage II.
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(b)

Figure 4.9: Pole figures of AulSi02/Si samples in the stage III.

In the figures 4.7, 4.8 and 4.9 shown above we have, (a) AulSi(100) , (b) AulSi(111) .

Where the upper part is for Au(11l) poles of Au balls and lower part is for

Si(100)/Si(11l) poles of respective substrate .

Since the pole figures have similar pattern for both halves , we choose to show only the

upper part of the pole figure for the Au(111) poles of Au and the lower portion represent

the (11l) poles of the substrate. All pole figures are set at 28 =(111) plane for Au(111)

poles or for Si(111) poles.
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The following orientation relations were observed from the pole figure analysis for Au on

Si samples:

Table 4.4: Orientation relationships for Au/Si02/Si(lOO) samples : In all the three stages

of sphere-plate technique.

Stages Planar relationships Directional relationships

As-evaporated, stage I (lll)Au II uooi, without direction

Intermediate anneal, stage (I1l)Au II (lOO)Si without direction

II, (530 DC) (lOO)Au II (lOO)si without direction

High temperature anneal, (lll)Au II (lOO)Si without direction

stage III, (noDC) (lOO)Au II (lOO)Si without direction

(lOO)Au II (lOO)Si <lOO>Au II <lOO>si "epitaxy"

Table 4.5: Orientation relationships for Au/Si02/Si(lll) samples: In all the three stages

of sphere-plate technique.

Stages Planar relationships Directional relationships

As-evaporated, stage I (111)Au II (l1l)si without direction

Intermediate anneal , stage II (I1l)Au II (111hi without direction

(530 DC) (111)Au II (111hi <111> Au II <111> si

High temp erature anneal, ru n., II (lll)si without direction

stage III, (n oDC) (lOO)Au II uooi, <lll>Au II <lll>si "epitaxy"
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(a) (b)

(c)

Figure 4.10: Pole figures of AulSiO z samples for all stages: (a) As-evaporate sample,

stage I, (b) Intermediate anneal sample, stage II (c) High temperature anneal sample,

stage III.

The images of pole figure in figure 4.10 for Au(lll) poles on SiOz glass is different than

the pole figures for Au on Si(figure 4.7 to 4.9), where Si had a separate pole figure for the

bottom half, as we do not have a separate pole figure for the substrate glass. This is

because substrate glass is amorphous and the pole figure for it will be blank as no poles

exist.
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The following orientation relations were observed from the pole figure analysis for Au on

sio, samples:

Table 4.6: Orientation relationships for Au/SiO z samples: In all the three stages of

sphere-plate technique.

Stages Planar relationships Directional relationships

As-evaporated, stage I (lll)Au II Amorphous sio, without direction

Intermediate anneal, stage II (lll)Au II Amorphous s.o, without direction

(530°C)

High temperature anneal, uu», II Amorphous Si02 without direction

stage III, (920 °C)

Observation of pole figures suggests that the X-ray intensity of the poles increases with

annealing temperature which corresponds to an increasing number of planes aligning into

these preferred orientations. The orientations also correspond to cusps in the interfacial

energy curve which form interfaces of low interfacial energy . The higher the X-ray

intensity the more preferred are the orientations. One of the preferred orientations for the

systems of Au on Si substrates is epitaxial (see "epitaxy" in table 4.4 and 4.5).

These orientation relationships for {Ill} metal close packed planes were also reported to

be present in previously studied fcc metal/Si02 and Ag/Si interface systems by X-ray

methods [42-43].
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Orientations for (200) metal close packed planes have also been reported in Ag/Si and

Au/Si interface systems by X-ray methods [43] and cross-sectional transmission electron

microscopy [32,44-46].

We observed that the as-evaporated polycrystalline film of Au is having an orientation

relationship with the crystalline substrate through an amorphous interlayer, confirming

that epitaxial growth occurs through the amorphous interlayer as in the literature .
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4.3 SEM Results

Results & Discussion

(a) (b) (c)

Figure 4.11: SEM micrographs of Au/SiOz/Si(ll1) samples after stage III: The

magnifications are (a) 12,000 X, (b) 30,000 X and (c) 50,000 X respectively .

(a) (b) (c)

Figure 4.12: SEM micrograph s of Au/SiOz/Si(lOO) samples after stage III: The

magnifications are (a) 4,000 X, (b) 12,000 X and (c) 30,000 X respectively .
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(a) (b) (c)

Figure 4.13: SEM micrographs of AulSiOz samples after stage III: The magnifications

are (a) 12,000 X, (b) 30,000 X and (c) 60,000 X respectively.

Looking at the SEM micrographs (see figures 4.11 to 4.13) of the stage III samples we

observed spherical balls of Au, which confirms our sphere plate and particles rotating

into lowest interfacial energy configuration theory.

The SEM pictures shown above are for the stage IIIor the high-temperature anneal stage

of the three sphere-plate samples. The micrographs of as-evaporated and intermediate

anneal samples were also studied and it was confirmed by observation that stage l/as

evaporated sample showed polycrystalline grain morphology and the stage 2/intermediate

anneal sample showed uneven shaped, island like Au particles. This observation

combined with the spherical gold particle observation is consistent with the theory of

sphere rotation and Au particles settling into minimum energy, preferred orientations.
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SEMIEDS have an electron beam striking the sample (figure 4.14). This electron beam

has a penetration depth. The detector detects the secondary electrons coming out of the

sample up to a depth of 0.1 urns and thus the image is formed. The X-rays emitted from

this volume have information between the depth of l-Z pms . These X-rays were used for

EDS analysis of the samples and thus ascertaining the elements on the sample (Au, Si).

Incident electronbeam

detec1c~

seco rce ry eiectrcre ----i~~~~~~\.'->-"--"'-....,

Backscatte red electrcns
X-rays

Figure 4.14: Electron beam interaction of sphere-plate sample: Schematic to show, how

SEMIEDS are used to characterize samples by secondary electron imaging and X-ray

analysis respectively.

The Secondary electrons for imaging were detected by Everhart-Thornley detector and

X-rays for EDS analysis were detected by Si(Li) solid state detector. The SEM images

gave us 3D pictures of high resolution.
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On observing these SEM micrographs (figures 4.11 to 4.13) it is noted that some faceted

particles of Au are present. These particles were having distortions from a perfectly

spherical shape and it can be concluded that since these samples have undergone

annealing the Au particles have attained a final equilibrium shape. The facets are the

sides of planes which have minimum surface energy and are favourable for growth of the

particle. Also from the Jackson's model we get an indication that for amorphous

crystalline interfaces we get faceting for a > 2.

The particles of Au after sphere rotation follow a pattern as observed from the SEM. All

the particles were determined to be approximately in a range of 0.05 to 1 urn; this

phenomenon was consistent for all the stage III/high temperature annealed sphere-plate

samples. The SEM image was studied and a sampling of the size of the balls was done.

The size of approximately 100 balls was measured for all stage III sphere-plate samples

and we got the following data for the size distribution. Qualitative study was done on

stage III SEM micrographs to determine the particle size.

Table 4.7: Size distribution of Au particles on sphere-plate samples.

Sample Type Maximum Sizetjrrn) Minimum Sizetum) Average Sizetum)

AuiSiOvSi(l11) 0.72 0.06 0.15

AuiSiOvSi(lOO) 0.80 0.08 0.16

AulSi02 0.60 0.04 0.14

73



Chapter 4 Results & Discussion

Thus we see that the average particle size is 1.5-1.6 times the thickness of the

polycrystalline film. This owes to the fact that the film "breaks-up" at the grain

boundaries, during the annealing process . Surface diffusion occurs during this stage and

we see particles of different sizes building up on the substrate. The average size is higher

than the film thickness as the breaking of film leads to empty space between islands in

the intermediate anneal stage and spheres in the high-temperature anneal stage.

It was also observed that the size of Au spherical particles on the substrate Si(lOO) was

slightly greater than the Si(lll) substrate, followed by Si02 glass substrate. This

confirms the fact that Si02 has a definitive effect on the size and size distribution of Au

particles. The average Si02 interlayer thickness on Si(lOO) was 25 Aand on Si(lll) was

35 A[37], thus it is evident that the presence of more Si02caused the average size of Au

balls on Si(lll) to be less than that on Si(lOO). This could be due to the fact that Si02 has

amorphous structure with short-range order and thus growth of Au(lll) or Au(222) is

controlled differently. Also it seems that we are having long-range ordering due to

crystalline Si(lOO) and Si(lll) and this crystalline information is transmitted across the

interlayer , indicating that the interface runs right through the Si02 interlayer otherwise it

is not feasible to pass on the preferred orientation information through the amorphous

interlayer.
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4.4 AFM Results

Result s & Discu ssion

The AFM instrument used to characterize the sphere-plate sample s prob es with a Si

cantilever. This had a tip which scans the samples using raster scans and the morphology

and topography of the sample surface is detected in this process. The detector is a split

photodiode which detects deflection, amplitude or tip motion and Z piezo or cantilever

position from the reflected laser. The AFM instrument used had a laser beam for

detection purposes. The micrographs we obtained from the AFM studies report

information regarding the height (nm) , amplitude (nm) and phase shift (deg) . This

information can be interpreted from the scale that comes along with each micrograph (see

figure 15); this scale can have colour contrast to distinguish between regions of different

height , amplitudes and phase shifts .

[ 3

(a)
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[ 3

[ 3

(b)

Results & Discussion

o ~
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(c)

Figure 4.15: AFM micrographs for stage III, AuiSiOzISi(lOO) sample: showing (a) height

(nm), (b) amplitude (nm) and (c) phase (deg).
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The height resolution has good precision but the lateral resolution along the width is not

very accurate. The trace observed on the micrograph can be explained as the convolution

of the tip with sample topography . The tip may pick up particles which will then change

its shape. The height micrograph (figure 4.15) gives the height, amplitude micrograph

tells us the error and the phase micrograph or the phase shift gives us the phase image.

The error or the noise is comparable to the derivative of the height image.

The error in estimation of lateral width can be judged by using the specification of the

Olympus AC160TS cantilever (looking at figure 4.16) and the height of particles which

the tip is scanning. The lever width is 50 urn and the tip radius is < 10 nm. We can

approximately have an error between ±40 nm. The lateral error is large and thus we

cannot expect to determine crystallite size with accuracy using AFM technique.

w-so

OMCL-AC160TS-

(a) unit. urn (b) unit: mm

Figure 4.16: Schematic of Olympus AC160TS showing dimensional details: (a)

rectangular cantilever with tetrahedral tip, (b) Si cantilever showing the size of chip [39].

The AFM instrument was used to study various types of samples prepared by sphere-

plate technique which included all three stages of film evolution . The AFM micrographs
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confirm that there are round shaped parti cles (stage III samples) of Au present on the

surface . Since we started with a uniform polycrystalline film (stage I), it is thus evident

that the film broke along the grain boundaries when annealed at 530°C (stage II) and

920°C (stage III).

The micrographs distinguish variations in height of the round particles on the substrate.

Observing the micrograph height, amplitude metric of all the samples, it appears that the

height of the balls lie somewhere between 0.05 to 0.2 ums , this seems understandable as

the film from which these balls are formed also lies in the same thickness range (-0.1

urns) . The height distribution of Au particles varies between 0.05 to 0.2 urns.

AFM study can only be used to predict the relief features of the particles. Limitations

exist in getting information about the interface as the scans are for the surface only and in

predicting the shape of the particles accurately owing to low lateral accuracy. A better

height resolution is an advantage over other characterization techniques like SEM , XRD

etc ., and there is no significant indication of faceting of Au particles.

From the SEM results, the approximate size distribution of faceted Au particles are

between 0.05 to 0.2 urns. Thi s combined with the height distribution from the AFM , 0.05

to 0.2 urns, indicates that the particles are very close to having a spherical shape of

approximate average size 0.15 urns (from SEM ).
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4.5 Lattice Misfit Calculations

The lattice misfit can be expressed by the formula :

Results & Discussion

Where, as is the lattice parameter of substrate (Si) = 5.4309A and af is the lattice

parameter of the deposited film (Au) =4.0786A, [36]. Upon calculation using the above

formula, we find that for 1x1 and 2x1 Au/Si system, the lattice misfit is as high as

33.156% and 33.422% respectively .

Table 4.8: Calculated misfit values for a few cubic crystal arrangements.

Au / Si system Misfit(%)

Ix1 33.156

2x1 33.422

3x2 11.229

4x3 0.133

5x4 6.524

From the table 4.8 above, one sees that the misfit value for 4x3 Au/Si system is the

lowest and thus according to the theory behind geometric models, it is expected to show

better epitaxial growth of Au film on Si substrate if it follows the 4x3 arrangement of

cubic crystals.
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Results & Discussion
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Figure 4.17 : Schematic showing lattice misfit in different crystal arrangements: (a) 2xI,

(b) 3x2 and (c) 4x3 Au/Si systems.

From the literature review, the CSL model seems to explain the lattice matching tendency

of crystalline-crystalline interfaces. A Coincidence boundary is said to be at its lowest

energy configuration when it lies in the most densely packed plane of the superiattice.

The Au particles have therefore aligned into low energy configurations of preferred

planes. This can be observed from the XRD data which shows preferred orientations

taken by Au particles when annealed to intermediate and high temperature anneal stages .
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The O-lattice suggests that Misfits between O-points is accommodated by dislocation s by

forming low energy structure , these points are the ones with minimum strain energies of

exact matching between two interpenetrating lattices . The O-Lattice model like CSL

model explains to some extent the reason for particles choosing to settle in certain

preferred orientations.

DSC models suggests that regions of fit are patches of partial lattice matching across the

boundary and the regions of misfit are line defects having dislocation , step or ledge

character. Since the substrates Si(lOO) and Si(lll) are grown tilted off axis by ±O.5°, this

would help the growth of thin films on the substrate due to the formation of steps and

ledges which are regions of fit or matching enhancing the possibility of epitaxial growth.
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4.6 Scherrer Formula Estimation of Crystallite Size

The Scherrer's formula approach can be used to estimate size of very small crystals from

the measured width of their diffraction curves.

B=~
t cos Bj,

Where B is in radians, t is the average diameter of crystal, A is the wavelength of the

incident X-rays (Cu-K, radiation = 1.54178 A)and SBis the diffraction angle.

B is the breadth at half intensity maximum.

zo

Figure 4.18: Diffraction curve showing peaks with different B values.
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The crystal size is inversely proportional to the breadth at half-intensity maximum. The

breadth is due to small crystal effect alone but the peak broadening is actually due to the

crystal size as well as the machine broadening. Where the crystal size is determined from

the data and the machine broadening is due to the error in the machine.

B = B(average crystal size) + B (machine).

Neglecting B(machine), assuming the peak broadening due to machine is negligible .

Table 4.9: Estimated crystallite size of Au using Scherrer's equation: in the stage III

sphere-plate samples.

Substrate Crystal Size, t tum)

Si(lOO) 0.0934

Si(lll) 0.0934

Si02 0.0989

The size of crystals or gold particles calculated from the Scherrer's formula are quiet

different when compared with the ones estimated visually by statistical means from the

SEM. Apart from being smaller than SEM picture values they are also very close to each

other.

The Scherrer's equation is accurate only for particles in the range 0.05 to 0.2 urns [36].

Thus we are in the correct range to apply Scherrer's equation to our system and

determine the particle size.
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Scherrer's equation uses XRD data which is from a larger cross-section (e-Irnm'') as

compared to SEM picture which is only for 0.5 to 6 urns spot size cross-sections. Thus it

is expected that XRD data should predict the crystal size to a higher degree of accuracy

than SEM micrographs.
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Chapter5

Conclusions

Conclusions

1. Preferred orientations were measured for Au balls on Si(IOO), Si(111) and Si02

substrates and the most preferred orientation was found to be the closest-packed

plane {Ill} for fcc Au. This low energy interface is the most stable due to the

presence of close packed planes and directions. Additional preferred orientations

were observed for Au{200} on Si(IOO) substrate and Au{200}, Au{220} and

Au{311} on Si02 substrate.

2. These preferred orientations are low-energy configurations and corresponds to the

cusps in the interfacial energy curve. As the annealing temperature was increased,

the metal became more stable and rotated to form spheres of low energy

orientation .

3. Long-range ordering of Au may be occurring across native oxide layers on

Si(100) and Si(111) substrates to account for the epitaxial preferred orientation

observed in each system.
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4. SEM morphology gives a good 3D image of the Au balls with average lateral

resolution between 0.05 to 0.2 urns. Photomicrographs shows both round shapes

and the phenomena of faceting. It shows particles to round in shape.

5. AFM morphology gives a better height resolution (0.05 to 0.2 urns) rather than

lateral resolution. The AFM image showed the Au particles to be nearly spherical

in shape without indication of faceting.

6. Faceting of balls was observed from the SEM micrographs and it adheres to the

Wulff construction argument. Faceting in amorphous-crystalline and crystalline

amorphous-crystalline systems confirm with Jackson's theory.

7. The lattice mismatch was calculated to be the lowest (0.133%) for the 4x3

configuration of Au on Si cubic crystals. It was found to be as low as 0.133 % for

4x3 type arrangement of cubic crystals.

8. Scherrer formula was used to determine Au crystal size and it was found to be

between 0.05 to 0.2 urns, in tandem with the SEM and AFM estimations.
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