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ABSTRACT 

Human Pygopus2 (hPYG02) is a general chromatin remodeler that is 

overexpressed in, and required for the growth of, a number of tumo urs of diverse origin 

and their cell lines. This thesis explores the expression profile of hPygopus2 throughout 

the cancer cell cycle and identifies novel mechanisms by which it is activated. 

Examination of hPygopus2 expression and characterization of factors that enhance its 

expression could lead to better understanding of the signal ling networks at play in cancer. 

It was hypothes ized that hPygopus2 expression is induced in the G I phase of the cell 

cycle by factors that promote cell cycle progression. The tumour specific expression of 

hPYG02 and its requirement for cell proliferation, specifical ly at the G I /S transition, 

suggests that hPYG02 induction is c losely correlated w ith the cel l cycle. 

In a set of normal and cancer cell lines, hPygopus2 mRNA and protein levels 

were signi ficant ly reduced in G0, highest in G I and moderate in S and G2/M re lative to 

unsynchronized samples. Thi s cell cycle dependent expression suggested that hPygopus2 

may be a marker of the G I phase in proliferating ce lls. Furthermore, hPYG02 prote in 

leve ls in the G2/M phase re lative to the G I phase were inversely proportional to cell 

cyc le length, highlighting a potential utility ofhPYG02 in determining tumour cel l 

proliferation rate. 

The requirement of hPygopus2 for cancer cell pro I iferation and its high 

expression during the G I phase suggested that it is induced during this phase. Due to its 

well established ro le in breast cancer (BrCa), the induction of hPygopus2 by 17f3-

estradio l (E2) was studied. High leve ls of E2 and its receptor, Estrogen receptor a lpha 
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(ERa), are well established risk factors for the development and progression of BrCa. 

However, our knowledge of ERa transcriptional complex components (and their 

dynamics) at E2 target gene promoters, particularly in ERa negative (ERa-) BrCa, is 

incomplete. E2 treatment of BrCa cells enhanced hPygopus2 mRNA and protein 

expression via the binding of ERa and SP I transcription factor (SP I) complexes at the 

hPYG02 promoter. Promoter occupancy of these transcription factors required an intact 

estrogen response element half-site and GC-box and functional DNA binding domains of 

both proteins. While ERa binding to the hPYG02 promoter could be prevented by 

pretreatment with the ERa antagonist Fulvestrant, SP I binding was only reduced by 

RNAi. The ability of these proteins to independently occupy the hPYG02 promoter 

suggested that SPI may still play a role in hPYG02 activation in ERa- BrCa. In ERa­

BrCa cells, SP I expression was required for the activation of hPYG02 and several other 

"ERa-SP I" target genes and a reduction of SP I resulted in cell cycle arrest. Together, 

these findings suggested that in ERa+ BrCa, ERa and SP I have important roles in the 

regulation ofhPygopus2. The ability ofSPI to modulate hPygopus2 expression in the 

absence of ERa, suggested that hPYG02 expression might assist in chemotherapy 

selection in endocrine disruptor unresponsive BrCa tumours. 

The previously demonstrated induction of hPygopus2 by the E74-like facto r I 

(ELF I), a Retinoblastoma (RB) tumour suppressor regulated protein, suggested that 

deregulation of the RB-ELF I axis leads to overexpression of hPygopus2. The role of the 

human papillomavirus (HPV) in the inactivation of RB is well characterized. Ev idence 

was provided for hPYG02 as a cellular biomarker expressed in response to gene 

Ill 



Tzenov,2013 

deregulation by the main effector of HPY, the E7 oncoprotein, in cervical cancer (CxCa). 

hPYG02 levels were greater in high-grade lesions and squamous cell carcinomas as 

compared to normal epithelia. Similarly, hPygopus2 mRNA and protein levels were 

greater in HPY-positive CxCa cells relative to uninfected primary cells. RNAi mediated 

depletion of HPV-E7 increased, while ELF RNAi decreased, association of RB with the 

hPYG02 promoter in CxCa cell lines. Transfection of dominant active RB inhibited 

ELF )-dependent activation of hPYG02, while ELF I itself increased hPygopus2 

expression. Chromatin immunoprecipitation assays showed that RB repressed hPygopus2 

by inhibiting ELF I at the E26 transformation specific binding site in the hPYG02 

promoter. These results suggested that abrogation of RB by E7 resulted in derepression of 

ELF I, which in turn stimulated expression of hPygopus2. Thus, initiation of hPygopus2 

expression by ELF 1 was required for proliferation of CxCa cells and its expression 

therefore may act as a surrogate marker for dysplasia. 
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1.1 Foreword 

"While there are several chronic diseases more destructive to life than cancer, 

none is more feared ." 

- Charles Mayo 

Charles H. Mayo and William A. Hendricks, 'Carcinoma ofthe Right Segment of the 

Colon', presented to Southern Surgical Assoc. ( 15 Dec 1925). 

In Annals of Surgery (Mar 1926), 83, 357. 

1.2 Physiological and pathological types of tissue growth 

Cells in proliferating tissues are generated and maintained by a small pool of se lf­

renewing and rarely dividing stem cells (Weinberg, 2007d). During tissue growth and 

repair, stem cells divide asymmetrically to produce one new stem cell (to maintain the 

population) and one rapidly dividing transit amplify ing cell. The transit amplifying cells 

divide unt il the tissue has grown to the appropriate size or the damage has been repaired. 

At this time they switch from proliferation mode to differentiation mode (lose 

proliferation capacity) and mature to form the properly functioning tissue. 

Tissue growth can be induced by mitogens under either phys iological or 

pathological circumstances (Robbins, 2007a). If the cell morphology remains 

indistingui shable from normal cells and if removal of the stimulus that evoked the change 

causes cells to return to their normal size/number, then the process is regarded as 

physiological. Two examples of cell stimulation, which always remain subject to normal 
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regulatory mechanisms, include hypertrophy (increase in cell size) and hyperplasia 

(increase in cell number). 

Once cell proliferation becomes uncoordinated from phys io logical regulation it 

becomes disproportionate and results in neoplasia (Robbins, 2007b). Neoplasia refers to a 

range of progress ive conditions which beg ins with the slight delay in cell differentiation, 

due to the abnormal proliferation of undifferentiated stem cells and transit amplifying 

cells, and eventually ends with the complete inability of cells to differentiate. 

This multistage process is driven by the gradual accumulation of genetic 

mutations, epigenetic a lterations and/or increased mitogenic stimulatio n, a ll of which 

increase the activity of proteins that induce cell pro I iferation (oncogenes), and decrease 

the activity of proteins that restrict it (tumour suppressor genes) (Weinberg, 2007a; 

Weinberg, 2007f). The stem cells (evolving units), which acquire these genetic 

a lterations, gain proliferation advantages and begin to divide more frequently thereby 

generating more transit amplify ing cells which quickly outgrow their neighbouring 

normal cell counterparts (Weinberg, 2007d). 

The abnormal expansion of immature stem ce lls (and the corresponding decrease 

in mature cells) within an epithelium is the earliest form of a precancerous lesion and is 

referred to as dysplasia (or intraepithelial neoplasia) (Robbi ns, 2007b). Dysplas ia can be 

subdivided into low grade, in which the risk of transformation is low, and high grade, 

which is a more advanced progression toward malignancy. 

Abnormally proliferating stem cells in this population w ill eventually experience 

additional mutations, which makes their proliferation even more efficient and rapid and, 
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therefore, increases the likelihood of future genetic hits (Weinberg, 2007d). With the 

accumulation of each mutation, stem cells produce a different clone that wi ll eventually 

dom inate the local tissue environment and is responsible for genetic heterogeneity in 

tumours. 

Carcinoma in situ is a localized premalignant condition in which cells cease to 

differentiate all together, resulting in very rapid cell proliferation and the complete loss of 

tissue identity (Robbins, 2007b ). Eventually, the rate of genetic change outpaces the rate 

at which natural selection and the elimination of less fit subclones can occur (Weinberg, 

2007d). While the accumulation of these mutations may not affect the growth of the 

current neoplasm, it may be beneficial during later stages (metastasis and chemotherapy 

res istance) by adding variability to the cell population. 

When a tumour reaches a certain volume and its cells invade through the 

basement membrane and metastas ize, it is referred to as invas ive ma lignant carcinoma 

(Weinberg, 2007c). As insidious as primary tumours are, metastatic dissemination of 

tumour cells is responsible for 90% of morbidity and mortality in cancer. 

Metastasis is characterized by a complex process called "the invasion-metastasis 

cascade" (Weinberg, 2007c). After breaching the basement membrane, cells can 

intravasate into either lymphatic or blood microvessels, wh ich permits their transport to 

distant anatomical sites. At these s ites, the cells become trapped and subsequently 

extravasate into organs to form micrometastases. Eventually these micrometastases 

acquire the ability to colonize the tissue in which they reside and form macrometastases. 
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The fi na l stage of tumour progression and behaviour is its response to treatment. 

Treatment of disseminated cancer consists of a combinat ion of surgery to remove visible 

tumours and systemic chemotherapy to kill cancer cells w ithin micrometastases (Page 

and Takimoto, 2002). Chemotherapeut ic agents take advantage of the princ iple that 

rapidly div iding cells w ill be more susceptible at a g iven dosage. Thus, these 

antineoplastic drugs are meant to eliminate the majority of rapidly d ividing tumour cells, 

but in doing so, they avo id the infrequently dividing cancer stem cells (Reya et a l., 200 I). 

Unfo rtunately, rapidly div iding normal cells such as hai r fo ll ic les, gastrointestinal 

epithelia l cells and immune cells are susceptible to chemotherapy and thus, may cause 

adverse side effects (Page and Takimoto, 2002). 

1.3 Molecular and cellular regulation of cell proliferation 

1. 3.1 Physical and spatial restrictions 

As all cells are arranged in tight three d imensional networks (tissues or 

neoplasms), their pro li feration requires the disruption of intercellular and cell-substratum 

interactions (Makrilia et a l., 2009). T he fou r major groups of cell adhesion molecu les 

include cadherins, integrins, selectins, and immunoglobulin superfamily members. Once 

these adhesion molecules are down regulated and cells attain the capacity to divide, they 

must be stimulated in order to progress through the cell cyc le. 
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1.3.2 Regulatory components involved in cell proliferation 

Cell replication includes the duplication of chromosomes (during the synthesis, S, 

phase) and other cellular components (during the gap, G I and G2, phases) in the parental 

cell and their distribution (during mitosis or M phase) to the daughter cells, which are 

formed by physical separation (cytokinesis) (Morgan, 2007b). 

A complex network of regulatory proteins governs progression through the cell 

cycle phases (Morgan, 2007a). In particular, progression from G I into S is regarded as 

the most important transition. During G I the cell compi les and processes a wide array of 

extracel lular and intracellular signals and decides, at the restriction point in late G I, 

whether or not it will complete another entire cell cycle. Passing the restriction point 

represents an irreversible commitment to cell cycle entry, after which the cell becomes 

unresponsive to extracellular signals and the remaining cel l cycle events and phase 

transitions occur in a cell autonomous manner. 

The G 1/S transition, and other transitions, are very specific and highly regulated 

events overseen by the cell cycle control system (Morgan, 2007c). The cyc lin-dependent 

kinases (CDKs), a family of serine-threonine kinases, are the central components of this 

system. Like other kinases, these very stable enzymes catalyze the attachment of 

phosphate groups to protein substrates. CDK activity, which osci llates throughout the cell 

cycle, leads to the cyclic activation and inhibition of regulatory proteins (via 

phosphorylation) that initiate specific cell cycle phase events. 

The phosphorylation-mediated regu lation of CDK targets is achieved by phase­

specific CDKs (CDK I forM , CDK2 for G 1/S and S, and CDK4 and 6 for G I), which are 
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primarily governed by their interaction with the cyclin proteins (Morgan, 2007c). As the 

levels of the different cyclin proteins dramatically change throughout the cell cycle, their 

phase-specific interaction with CDKs leads to oscillations in C DK activity. Therefore, 

cyclins are also categorized according to cell cycle phase [Cyclin D (CCN D) is high in 

G I, Cyclin E (CCNE) is high during G liS, Cyclin A (CCNA) is high during Sand Cycl in 

B is high during M] . So, each cyclin-CDK complex is active during a specific phase and 

thus respons ible for the initiation of the critical events within that phase (Figure 1.1 ). 

An additional leve l of regulation includes CDK inhibitors (CK is), which can bind 

to cyclin-CDK complexes (or CDKs alone) and inactivate them (Morgan, 2007c). CKis 

are separated into two gro ups based on their function. The CDK interacting protein 

(CIP)/kinase inhibitory protein (KIP) family, which includes Cyclin dependent kinase 

inhibitors I A (p2 1 ), I B (p27) and I C (p57), is responsible for promoting cell cycle arrest 

in response to unfavorable environmental or intrace llular conditions. The more 

specifica lly targeting group ofCKis belongs to the inhibitors ofCDK4 (IN K4) fam ily 

and includes Cyc lin dependent kinase inhibitor 2A (p 16IN K4a), 2B (p 15), 2C (p 18) and 

20 (p 19). These proteins promote cell cycle arrest when cells encounter anti-pro liferative 

signa ls. The involvement of CK is in cell cycle progression is usua lly uncommon and 

reserved for abnorma l situations (such as cancer). Typically, cell cycle progression, 

especia lly through the G liS transition, is primarily dependent o n the levels of cyclins as 

CDK leve ls remain fairly constant throughout the cell cycle. 

T he principal factors responsible for transcribing cyclins belong to the E2F 

transcription factor (E2F) fam ily (Morgan, 2007c). E2F complexes are heterodimers 
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composed of one E2F subunit and one transcription factor Dp-2 (E2F dimerization 

partner 2) (TF DP) subunit. While these complexes preside over the expression of 

thousands of genes, the ir most critical targets are CCNE and CCNA. 

The transcriptional activity of E2F-TFDP complexes is regulated by the 

retinoblastoma family of transcriptional repressors (Nevins, 1998; Dyson, 1998). The 

Retinoblastoma (RB or RBI ) protein, the prototype of this family, and its related pocket 

proteins Retinoblastoma like I (RBL I or pI 07) and 2 (RBL2 or p 130) each interact with 

specific E2F-TFDP complexes to inhibit gene expression (Masciullo et a t. , 2000). 

RB directed inhibition of E2F factors is achieved by two separate but 

complementary means (Morgan, 2007c). First, the RB proteins recruit histone modifying 

enzymes (such as histone deacetylases) and chromatin remodeling complexes (such as 

Switch/Sucrose non-fermentable), which modify the local formation of chromatin such 

that it is unfavorable for transcription. Second, the RB proteins bind to the transcriptional 

activation domain of E2F factors and thereby block their activity. 

RB-mediated inhibition of E2F results in the down regulation of genes 

specifically required for the G I /S transition (Weinberg, 1995). This enables RB to 

provide a braking mechanism for proliferating cells and to permit cell cycle exit. It is 

important to mention that E2F complexes are not the only targets of RB. RB has been 

shown to bind to and inhibit the activ ity of several transcription factors (Morris and 

Dyson, 2001 ), thereby preventing transcription of several other genes required for cell 

cycle progression, notably the E74-like factor I (ELFl) (Wang et at. , 1993). 
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Figure 1.1 Overview of the regulatory components involved in cell cycle progression 

and their main functions (generated from information in Morgan, 2007c). 
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As RB is a nuclear phosphoprotein, its ability to inhibit gene expression is 

dependent on its phosphorylation status (Harbour and Dean, 2000). RB is in an active 

state when it is un- or hypophosphorylated and hyperphosphorylation leads to a 

conformational change, which prevents RB from binding to target protein such as E2F 

and ELF I . In order for cells to progress through the G I IS transition, RB must be 

inactivated, and remain inactivated, so that the cell cycle progression genes can be 

properly expressed and cell cycle progression can occur. 

1.3.3 Cell signalling induces progression through the restriction point 

In multicellular organisms cel l division and a ll other cell activ ities and actions 

(growth, differentiation, migration, apoptosis) are governed by a complex communication 

system known as cell s ignalling (Alberts et a l. , 2008). Entry into the cell cycle occurs 

only when a cell is exposed to the appropriate extracellular mitogens (Morgan, 2007a). 

These hormones, amino ac ids or peptides are attached to or secreted from neighboring 

cells or present within the extracellular matrix. 

An extensive array of receptors, present on or w ithin receiving cel ls, 

interpret/mediate these growth factors (Alberts et a l. , 2008). The two largest classes of 

receptors include the cel l surface bound receptors and the nuclear receptors. Cell surface 

receptors can be further subd ivided into G-protein coupled receptors, enzyme coupled 

receptors and proteolys is associated receptors/med iators. Ligand binding to any of these 

receptors initiates one or more intracellular s ignalling cascade(s) through several 

downstream adaptors, enzymes and s ignalling cascade components, wh ich fina lly lead to 
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the activation of specific transcription factors. Signalling via nuclear receptors is more 

direct. The ligand migrates through the cell and nuclear membranes and binds to its 

appropriate receptor, which then becomes an activated transcription factor. 

The activat ion of one or multiple transcription factors leads to induction of large 

cohorts of genes and activation of genetic programs (Weinberg, 2007b). While these 

pathways can lead to multiple outputs (proliferation, growth, di fferentiation, migration, 

and/or apoptosis ), that are dependent on ligand type, cell type (proteome) and stage of 

development: at one po int or another they all have the capacity to activate transcription of 

CCND. Under most conditions, expression of Cycl in D is the first and perhaps most 

important prerequisite for ce ll cycle progression. Mitogen induced expression of CCN D 

occurs early in the G I phase of the cell cycle because this is the only time that cells are 

sensitive to extracellular cues. Expression of CCND leads to formation of CCND­

CDK4/6 complexes which phosphorylate the RB prote in and changes its phosphorylation 

status from unphosphorylated to hypophosphorylated (Sherr, 1996). The moderately 

lowered activity of RB as a result of this phosphorylation causes a proportion ofthe E2F­

bound RB to dissociate. The resulting activation of E2F leads to transcription of CCNE 

and CCNA and translation of their gene products, Cyclin E and Cyclin A, respectively. 

These proteins form complexes with CDK2 to hyperphosphorylate and fully inactivate 

RB (Lundberg and Weinberg, 1998; Harbour et a l. , 1999). As inactivation of RB is the 

only prerequisite for cells to progress th rough the restriction po int, cancer cells have 

found severa l ways to achieve this . 
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1.3.4 Cell signalling, gene mutations and cancer 

Both normal and cancer cells utilize common mechanisms to promote 

proliferative growth, but in cancer cells relatively minor, yet critical modifications occur 

to remove normally existing restrictions on growth and/or unconditionally stimulate 

growth signalling (Weinberg, 2007b). 

The highly organized architecture of tissues acts as a potent tumour suppressor, 

thus, the disruption of cell adhesion and breakdown of tissue integrity is a prerequisite for 

abnormal cell pro I iferation (Crossin, 1991 ). Deregulation of cel l interactions provides 

cells with the phys ical capacity to divide. This eventually leads to anchorage independent 

growth and overcomes contact inhibition. 

Once cells are capable of cell division, they are induced to pro liferate by either 

acquiring genetic mutations or receiv ing excessive mitogenic stimulation (Weinberg, 

2007b ). Both these events activate/ increase levels or inactivate/decrease levels of cell 

cyc le control system components (cyclins, CDKs, CKis, RB) and/or internal cell 

signalling components (ligands, receptors, adaptors and enzymes, s ignalling cascade 

components and/or transcription factors) in a manner which allows the cell to ga in a 

proliferative advantage. 

I . 3. 5 Translation of intracellular signalling into cancer diagnosis and therapy 

While several cell cycle components are deregulated in a multitude of cancers, 

only some have been shown to be useful as diagnostic biomarkers and even fewer have 

been utilized as targets. For example, the p16INK4a tumour suppressor is part of a 
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feedback loop between RB and CDK4/6 and is up regulated when RB is phosphorylated 

for extended periods (Gupta et al., 20 I 0). It is overexpressed in cervical neoplasia as a 

result offunctional inactivation ofRB by the human papillomavirus (HPV) E7 

oncoprotein. As its expression correlates with degree of cervical squamous and glandular 

dysplasia, p 161N K4a has become a biomarker for diagnosis in addition to its prognostic 

and predictive utility. 

The cell signalling components which have been utilized as therapeutic targets 

contain active sites that can be bound (and thereby blocked) by e ither small molecule 

drugs or monoclonal antibodies (the two main types of rationally designed targeted 

therapies) (Weinberg, 2007e). While monoclonal antibody targets are restricted to the cell 

surface (because of their size), small molecule drugs are able to diffuse through the 

plasma membrane and target intracellular prote ins. 

A prominent example of a successful small molecule drug is Tamoxifen (TMX, 

Nolvadex or ICI 46, 474), the first targeted therapy. TMX interferes with 1713-estradiol 

(estrogen, E2) binding to the Estrogen receptor (ERa,) (A li et al., 20 II) and thereby 

prevents the transcription of target genes required for the pro liferation of breast cancer 

(BrCa) cells. Unfortunate ly the success ofTMX, and other ERa. antagonists, notably 

fulvestrant (FUL, Faslodex, ICI 182,780), is not common place, especia lly in the 

potentially more relevant Wnt signalling pathway. 

The Wnt s ignal transduction cascade is one of the most powerful pathways in the 

cell. During development, it is involved in critical processes like body axis patterning and 

tissue morphogenesis (Hatsell et a l., 2003; Reya and Clevers, 2005). In adults, it regulates 
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homeostas is in a myriad of tissues including breast, intestine and blood, and maintains 

stem cell populations. Thus, as expected, acquired mutations in genes encoding 

components of the Wnt cascade are implicated in the initiation and progression of several 

cancers, including breast, colorectal and cervical (Polakis, 2007; C levers, 2006). Wnt 

signalling is particularly important because of its role in stimulating cancer stem cells, the 

driving force behind many ( if not all) cancers. 

Unfortunately, the limited number of pathway components that are amenable to 

small molecule inhibition has hampered development of targeted Wnt pathway inhibitors 

(Ding et a l. , 2007). Dickkopf I, a Wnt receptor antagonist w hich inhibited differentiation 

of human osteoblast precursor cells that lead to multiple myeloma (Qiang et a l., 2008) 

and pyrvinium, a selective inhibitor of casein kinase I (CSNK I ), which a lso promotes 

degradation of several Wnt signalling pathway components [such as ~-Catenin, AX IN 

and human Pygopus (PYGO) 2] (Thorne et a l. , 20 I 0) are some notable successes. 

1.4 Wnt signalling and Pygopus 

1.4.1 Wnt signalling 

Wnt signalling is initiated when the Wingless type MMTV integration site family 

member (WNT; w ing less, wg, in Drosophila) ligands, secreted from neighboring cells, 

bind to Frizz led (FZD)/ low density lipoprotein receptor-related protein (LRP) cell surface 

complexes on target cells (Logan and Nusse, 2004) (F igure 1.2). Through Disheveled 

(DVL), this receptor complex transduces an inhibitory signal to the ~-Catenin (armadillo, 
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arm in Drosophila) destruction complex, which consists of AXIN, Adenomatous 

polyposis coli (APC), Glycogen synthase kinase 3 beta (GSK3B), Casein kinase I 

(CSNK I) and Protein phosphatase 2A (PP2A) (Cievers, 2006; Klaus and Birchmeier, 

2008). When active, this complex is responsible for the continuous degradation of (3-

Catenin and thereby the maintenance of its low cytoplasmic levels. Inhibition of the 

destruction complex permits the cytoplasmic accumulation and eventually nuclear 

translocation of (3-Catenin. In the nucleus, (3-Catenin interacts with the Lymphoid 

enhancer binding factor (LEF; pangolin, pan, in Drosophila)/Transcription factor (T-cell 

factor) (TCF) proteins and with the recruitment of transcriptional coactivators, such as B­

cell CLL/Iymphoma 9 (BCL9; legless, lgs, in Drosophila) and PYGO, Wnt target gene 

transcription commences. 

Although the first Wnt gene was discovered three decades ago (Nusse and 

Varmus, 1982), additional components of this pathway and other interacting factors are 

still being discovered. 

1.4.2 Pygopus 

In 2002, three independent laboratories identified Drosophila pygopus as a 

component of the Wnt signalling pathway (Belenkaya et al. , 2002; Parker et al., 2002; 

Thompson et al. , 2002). The same year, a fourth laboratory identified legless as a binding 

partner of pygopus (the interaction between which is mediated by the evolutionarily 

conserved plant homeodomain, PHD, of pygopus) that exerts its function by physically 

linking pygopus to armadillo (Kramps et al. , 2002). Subsequently Pygopus was shown 

1- 16 



Tzenov, 2013 

Figure 1.2 Schematic diagram showing the different components of the J3-Catenin 

dependent Wnt signal transduction pathway (adapted from Mosimann et al., 2009). 
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not only to anchor armadillo/ j3-Catenin in the nucleus (Townsley et al. , 2004; Tolwinski 

and Wieschaus, 2004; Krieghoff et al. , 2006) but also to exhibit essential transcriptional 

coactivator activity (Hoffmans et al., 2005; Stadeli and Basler,2005; Mosimann et al., 

2006). This activity is mediated by theN-terminal Homology Domain (NH D, which 

contains a nuclear localization sequence and is unique to Pygopus proteins) of pygopus or 

by the factors that it recruits. The observation that inhibition of pygopus function 

produces embryonic and adult phenotypes consistent with loss of wingless signalling 

established pygopus as a dedicated nuclear core component of the Wnt/wg pathway 

(Belenkaya et al., 2002; Parker et al., 2002; Thompson et a l. , 2002; Kramps et al. , 2002). 

In higher organisms, the Wnt dedicated function of Pygopus is not as straight forward. 

Mammals and amphibians have two Pygopus homologues, PYGOJ and PYG02, 

unlike flies, which have one gene (Belenkaya et a l. , 2002; Kramps et al. , 2002; 

Thompson et al. , 2002; Lake and Kao, 2003; Li et al., 2004). Because deletion of both 

genes produced the same developmental defects as deletion of PYG02 alone, the function 

of PYG02 appeared to be dominant (Schwab et a l., 2007). However, the ablation of 

Pygopus genes in mice did not phenocopy mutants with loss of Wnt signalling as it did in 

flies (Song et al. , 2007; Schwab et al. , 2007; Li et al. , 2007). The results yie lded by these, 

and other studies, support the role of Pygopus in some but not all Wnt-mediated 

processes in mammals. 

The Wnt-dependent processes in which PYGO is involved include lung 

morphogenesis (Li et al. , 2007), kidney (Schwab et al. , 2007), pancreas (Jonckheere et 

al. , 2008) and mammary g land (Gu et al. , 20 12) development, adult brain patterning 
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(Lake and Kao, 2003) and body axis formation (Kennedy et a l. , 20 I 0). The Wnt­

independent roles of Pygopus include its requirement for eye development (Song et al., 

2007), spermiogenes is (Nair et al., 2008) and embryonic brain patterning (Lake and Kao, 

2003). 

While there is no sing le clear explanation as to why human and Drosophila 

Pygopus proteins have different degrees of dedication to Wnt/wg signalling, there are 

some results which are consistent with the evolution of human Pygopus into a general 

chromatin remode ler and transcriptional activator. 

Due to a s ing le amino acid difference between the Drosophila and human PHD 

domain of Pygopus, only human PYGO can bind methylated lys ine residues on histone 

tails (Fiedler et al. , 2008; Kessler et al., 2009; Miller et al. , 20 I 0). Furthermore, this 

interaction can occur both in the presence and absence of BCL9 (a Wnt transcription 

coactivator). These results are consistent w ith a role of hPYG02 that is less confined to 

Wnt s igna lling. 

The broader role of Pygopus in chromatin regulation and as a general 

transcriptional coactivator was verified by the fi nding that its NHD can interact with 

histone modifying enzymes [CREB binding protein (Andrews et al. , 2009), 

myelo id/lymphoid or mixed lineage leukemia 2 (Chen et al. , 20 I 0)] , chromatin 

remodeling complexes [SPT-ADA-GCN5 acetylase complex (Chen et al. , 20 10)], 

transcriptional coactivators [mediator complex subunit 12 and 13 (Carrera et a l. , 2008)] 

and general transcriptional machinery [TAF4 RNA polymerase II , TATA box binding 

protein-associated factor (Wright and Tj ian, 2009)] . The essential role of Pygopus in 
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several processes and the need to identify novel cancer biomarkers, led to studies 

examining its role and requirement for cancer. 

1.4.3 The expression, requirement andfunction of human Pygopus2 in cancer 

The essential role of human Pygopus2 (hPYG02) in several types of cancers is 

well established with studies initia lly carried out in our laboratory. Our group showed 

that hPYG02 was overexpressed in epithelia l ovarian cancer cell lines and patient 

samples and that its knockdown halted growth in the cel l lines (Popadiuk et a l., 2006). 

hPYG02 was also up regulated in several BrCa lines and malignant breast tumours and 

was required for the pro liferation of BrCa cells (Andrews et al., 2007). hPYG02 protein 

overexpression in gliomas exhibited a positive correlation (Wang et a l. , 20 I 0), and was 

significantly associated (Chen et at., 20 11 ), with tumour grade. It was also requ ired for 

proliferation of glioma (Wang et a l. , 20 I 0) and glioblastoma cells (Chen et al. , 2011 ), 

specifically arresting cells in the G I phase when knocked down. In contrast, 

overexpression of hPYG02 in glioma cells promoted pro liferation by enhancing 

progression through the G 1 /S checkpoint (Chen et at., 20 1 1 ) . Brembeck et at. expanded 

our knowledge of hPYG02 in the colon by showing that its expression increased in 

adenomas and co lon tumours compared to normal ti ssues (Brembeck et a t. , 20 II). Lastly, 

Moghbeli et a l. showed that hPYG02 mRNA was overexpressed in esophageal squamous 

ce ll carcinoma (Moghbe li et at. , 20 13). Thus, wh ile the up regulation and requirement of 

hPygopus2 in cancer has been freq uently observed, understanding the funct ional role of 

hPYG02 in cancer remains a challenge. 
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Knockdown of Pygopus in colorectal cancer cells reduced Wnt reporter activity 

(Thompson et al., 2002) suggesting a Wnt signalling modulatory role in these cells. The 

association of hPYG02 with histone modifying enzymes (myeloid/ lymphoid or mixed 

lineage leukemia 2 and SPT-ADA-GCN5 acetylase complex) augmented Wnt-dependent 

transcription and led to the expansion of BrCa stem-like cells (Chen et al., 201 0). In 

HeLa (cervical adenocarcinoma) cells, stable overexpression ofhPYG02 exhibited anti­

apoptotic properties by counteracting vinblastine induced cell death (De et al., 2009). 

Recent data from our lab (Andrews et al., Accepted) suggests that the interaction between 

hPYG02 and the nucleolar protein Treacher Collins Franceschetti syndrome I was 

required for transcription of ribosomal DNA in a variety of cancer cell lines. Another 

recent study demonstrated that acute deletion of hPYG02 in MMTY-Wntl transgenic 

mice decreased tumor initiation capability and that chronic loss of hPYG02 delayed 

mammary tumour development (Watanabe eta., 20 13). 

These observations raise the possibility that Pygopus has multiple functions in 

cancer, but despite its requirement and overexpression, few studies have examined what 

factors are responsible for hPygopus2 up regulation. 

1.4.4 The regulation ofhPygopus2 by £ 74-likefactor 1 

In a previous study from our lab (Andrews et al. , 2008), ELF I was found to 

associate with the hPYG02 promoter and modulate its activ ity. ELF I knockdown 

resulted in a decrease in hPYG02 promoter activity and overexpression of ELF I caused 

an increase in endogenous hPYG02 mRNA levels. 
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ELF! belongs to the E26 transformation specific (ETS) family of transcription 

factors (Thompson et al., 1992). The 27 ETS members are identified by the highly 

conserved 85 amino acid ETS DNA binding domain (DBD), which recognizes the core 

GGAA/T sequence (ETS binding site, EBS) (Seth and Watson, 2005). The EBS is found 

in numerous promoters, consistent with the ability of ETS factors to act as positive or 

negative gene regulators. ELF 1 specifically was initially described as a lymphoid specific 

protein because it bound to several lymphoid gene promoters (Thompson et al., 1992), 

but has subsequently been shown to have a role in a wide variety of processes such as 

development (Janknecht et al. , 1989; J in et al. , 2009; Calero-Nieto et al. , 20 I 0; Choi et 

al. , 201 I), mitogenesis (Moreau-Gachel in et al. , 1988), oncogenesis (Moreau-Gachel in et 

al. , 1988; Seth et al., 1989) and viral gene activation (Markovitz et al., 1992; Leiden et 

al. , 1992; Clark et al., 1993). As deregulation of some of these processes leads to 

carcinogenesis, the role of ETS factors, including ELF!, in cancer cannot be understated. 

Several studies examining the expression of ELF I in cancer have been conducted. 

ELF 1 is overexpressed in osteosarcoma (Bassuk et al. , 1998), BrCa (Scott et al. , 2000), 

prostate cancer (Gavrilov et al., 2001 ), endometrial carcinoma (Takai et al., 2003b ), 

cervical cancer (Nicolet al., 2008) and glioma (Sahin et al. , 2009). Furthermore, its 

expression in several types of cancer correlates with other well-established biomarkers. 

ELF I expression in non-small cell lung cancer correlated with Survivin (Yang et 

al. , 20 10) and Vascular endothelial growth factor (Yang et a l., 2009) protein expression 

and was associated with metastasis, differentiation, clinical stage and prognosis. ELF! 

expression is also corre lated with the Proliferating cell nuclear antigen (PCNA) protein 
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labelling index, clinical stage, histological grade, invasion and clinical outcome in 

endometrial carcinomas (Takai et al., 2004) and epithelial ovarian carcinoma (Takai et 

al., 2003a). As these correlations are quite noteworthy and s ignificant, it is surprising that 

there have only been three studies in which ELF I function has been examined. 

As mentioned earlier, ELF I activated hPYG02 in BrCa (Andrews et al., 2008). 

ELF I also bound to the promoters of the Hepatocellular carcinoma suppressor I 

(HCCSJ) gene in liver cancer (Zhu et al., 2006) and to the TEK tyrosine kinase, 

endothelial gene in melanoma (Huang et al. , 2006), and induced their expression. 

The expression, subcellular localization, and protei n-protein interactions of ELF I , 

all of which affect its ability to bind promoters, is dependent upon post-translational 

modifications. For example, 0-GicNAc glycosylation and phosphorylation (luang et al., 

2002) of ELF I increases its molecular weight from 68 kilodaltons (kDa) to 98 kDa, but 

also causes its translocation to the nucleus where it binds to target gene promoters. While 

promoter bound ELF I is active, transcription is prevented due to its interaction w ith the 

RB tumour suppressor protein (Wang et al. , 1993). Specifically, the pocket region of RB 

binds to the LxCxE motifw ithin the transactivation domain of ELFl and thereby RB 

inhibits the transcriptional activ ity of ELF I. Interestingly, it was determined that only the 

active (hypophosphorylated) form of RB was able to bind ELF I . 

The RB prote in plays a critical role in cell cycle regulation and as a result exhibits 

cell cycle dependent activity. Due to its association with RB, it has been suggested that 

the transcriptional activ ity of ELF I would a lso be cell cycle dependent. As ELF I appears 
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to be able to activate hPYG02 gene expression in cancer, it is possible that hPYG02 

expression might be linked to the cell cycle. 
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1.5 Goals of thesis 

1.5.1 How is human Pygopus2 expressed during cell cycle progression? 

Hypothesis: 

Obj ectives: 

If human Pygopus2 is induced by £74-like factor I, then it wil l be 
expressed in a cell cycle dependent manner. 

( I ) Obtain cells in each phase of the cell cycle. 
(2) Measure human Pygopus2 mRNA and protein levels at each 
cell cycle phase. 

1. 5. 2: How does 17 ~estradiol affect human Pygopus2 expression in breast cancer? 

Hypothesis: 

Objectives: 

If human Pygopus2 expression is fundamentally linked to cell 
cycle, then 17[3-estradiol will induces it via Estrogen receptor 
alpha. 

( I ) Treat cells with 17[3-estradiol and determine if hPygopus2 
expression increases. 
(2) Determine if Estrogen receptor alpha is required for 17[3-
estradiol induction of human Pygopus2. 

1.5.3 How does infection of cervical cancer cells by human papillomavirus £ 7 induce 

human Pygopus2 expression? 

Hypothesis: 

Objectives: 

If human Pygopus2 is regulated by Retinoblastoma and £74-like 
factor I , then deregulated E7 expression wil l result in human 
Pygopus2 overexpression. 

( I ) Determine if Retinoblastoma and £74-like factor I can 
modulate human Pygopus2 expression. 
(2) Determine if E7 modulation affects human Pygopus2 
expressiOn. 
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2.1 Introduction 

The Wnt/j3-Catenin transcription component, Pygopus, was originally identified 

as a prote in required for Wnt dependent transcriptional activation during embryonic 

development (Jessen et al. , 2008), but is a lso overexpressed in, and required for the 

growth of, a number of cancer cell lines of diverse orig in (Popadi uk et a l. , 2006; Andrews 

et a l. , 2007; Wang et a l. , 20 I 0; Chen et al., 20 II ; Moghbeli et a l. , 20 13). Because of its 

specific utilization by ma lignant cells, hPygopus2 may serve as a cancer-specific 

biomarker of diagnostic, prognostic and/or predictive benefi t. However, a detailed 

characterization of its expression in cancer ce lls, which would likely be t ied to its 

regulation, is lacking. 

An important factor required for hPYG02 expression in breast and cervical 

carcinoma cell lines is the ELF I protein (Andrews et a l. , 2008), an ETS family member. 

ETS facto rs have wel l-established ro les in carcinogenesis, regulating oncogenes and 

tumour suppressors involved in apoptosis, angiogenesis, invas ion and metastasis (Seth 

and Watson, 2005). ELF I itself is overexpressed in several cancers (Bassuk et al., 1998; 

Scott et a l. , 2000; Gavrilov et a l. , 200 I ; Nico l et al. , 2008; Sahin et a l. , 2009) in which its 

expression correlates w ith poor prognosis (Takai et al., 2003b; Yang et a l., 2009; Yang et 

al., 20 I 0) and di rectly activates genes involved in tumourigenesis (Seth and Watson, 

2005). In normal resting T lymphocytes, the pocket region of the Retinoblastoma tumour 

suppressor interacts with the N-terminal LxCxE motif of promoter bound ELF I and 

blocks its transactivation (Wang et a l., 1993). 
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The predominant function of RB is in the cell cycle, where it provides a braking 

mechanism that regulates transition from G I to S. Cell cycle progression requires the 

inactivation of RB in a cell cycle phase specific manner (Lundberg and Weinberg, 1998). 

In Go and during early G I , RB is in its active hypophosphorylated state and interacts with 

promoter bound transcription factors, such as ELF I , to inhibit their activity. Mitogen 

stimulation in late G I activates cyclin-CDK complexes which hyperphosphorylate and 

inactivate RB, causing it to release and allow activation of transcription factors. The cell 

cycle phase specific regulation of ELF I by RB suggests that ELF l activ ity and its abil ity 

to transcribe target genes is cell cycle dependent. Thus, the regu lation of hPYG02 by 

ELF I establishes a direct link between hPYG0 2 and the cell cycle. 

I undertook a general corre lative study to examine if the pattern of expression of 

hPygopus2 varied with different phases of the cell cycle. In this chapter, I wi ll provide 

evidence that both hPygopus2 mRNA and protein exhibit cell cycle dependent expression 

in MCF7 BrCa cells. My data add itionally indicated that the cell cycle dependent 

expression of hPygopus2 is a general phenomenon and is observed in several normal and 

cancer cell lines. I further show that relative prote in levels of hPYG02 between different 

cell cycle phases are inversely proportional to cell cycle length. These data suggest the 

potential for hPYG02 to be developed as a proliferation marker to estimate tumour cell 

growth rate. 
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2.2 Materials and Methods 

2.2.1 Cell line maintenance 

HeLa (cervical adenocarcinoma), HEK293 (human embryonic kidney), MCF7 

(ERa.+ breast adenocarcinoma), MDA-MB-231 (ERa.- breast adenocarcinoma), SKOV-3 

(ovarian adenocarcinoma), LNCaP (androgen sensitive prostate carcinoma) and PC-3 

(androgen insensitive prostate adenocarcinoma) ce lls (American Type Culture 

Collection) were maintained in Dulbecco 's Modified Eagle Medium (DMEM) (Sigma) 

supplemented with I 0% Fetal Bovine Serum (FBS) (Invitrogen) at 37°C with 5% carbon 

dioxide (C02). 

2.2.2 Cell collection 

Cells were washed once with I X Phosphate Buffered Saline (PBS) (Sigma) and 

treated with trypsin (Invitrogen) for 2-4 minutes (m) at 37°C. Trypsin was inactivated by 

the addition of DM EM+ I 0% FBS (referred to as complete media, cDMEM) and 

suspended cells were transferred to 1.7 milliliter (m l) Eppendorftubes. Ce lls were 

pelleted by centrifugation at a g-force of 4600 for 2 m and then washed again with PBS. 

Cells were pelleted by centrifugation and the PBS was aspirated. 

2.2.3 Serum deprivation and release 

He La, HEK293 and MDA-MB-231 cells were seeded at a density of 1.5 X I 05 

cel ls/well while MCF7, PC-3, SKOV-3 and LNCaP cells were seeded at a density of3 X 

I 05 cells/well in six wel l plates and grown for I day (d) in cDMEM. An unsynchronized 
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cell sample was collected at the I d time point. The remainder of the cells were washed 

once with PBS and then incubated in Phenol Red-Free DMEM (PRF-DMEM) without 

FBS for 4 d. A Go phase cell sample was co llected at this time. The remainder of the cells 

were washed once with PBS, incubated in cDMEM and co llected at various time points. 

HeLa, HEK293 and MDA-MB-231 cel ls were col lected at 6 and 12 hours (h) time points 

and then every 3 h for 57 h. MCF7, PC-3, SKOV-3 and LNCaP cel ls were collected at 6, 

12 and 18 h time points and then every 3 h for 3 d. Two samples were collected at each 

time point and used for flow cytometry cell cycle analysis and protein extraction for 

immunoblot analysis. 

It is important to note that after the addition of serum supplemented media, cells 

undergo a recovery period (Pol lack et al. , 1990). This is a time during which cells recover 

from the stress associated with serum deprivation and prepare to enter the cell cycle. The 

length of this period is cell type specific (approximately 12-25 h) but is generally longer 

for slower growing cells and shorter for faster growing cells. 

2. 2. 4 Double thymidine block 

The double thymidine block was used to arrest cells in the S phase. MCF7 cel ls 

were seeded at a density of 3 X I 05 cells/wel l in six well plates and grown for I d in 

cDMEM. After this period, cells were washed once with PBS and incubated in cDMEM 

containing I 0 millimolar (mM) thymidine for 2 1 h. The cells were washed once with 

PBS and cu ltured for an additiona l 8 h in cDMEM. Subsequently, cells were washed with 

PBS and incubated cDMEM containing I 0 mM thym idine for 16 h. After this period cells 

were collected as described earlier (Section 2.2.2). 
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2.2.5 Paclitaxel treatment 

Paclitaxel (taxol) treatment was used to arrest cells in theM phase. MCF7 cells 

were seeded at a density of 3 x I 05 cells/well in six well plates for I d. Cells were washed 

once with PBS and incubated in cDMEM containing 2 f.!M paclitaxel for 2 d. Cells were 

collected as described earlier (Section 2.2 .2). 

2.2.6 Flow cytometry 

Co llected and pelleted cells (Section 2.2.2) were fixed by re-suspens ion with PBS 

containing 2% formaldehyde and incubated for I 0 m at 3 7°C. Fixed cells were placed on 

ice for I m. T hen, cells were pelleted and permeabilized by re-suspended in 90% 

methanol/ I X PBS and incubation for 30m on ice). Subsequently cells were pelleted, 

washed once with PBS and re-suspended in 300-600 microliters (f.!l) of PBS. One 

micro litre often milligrams (mg)/ml propidium iodide and 20 f.!l of I 0 mg/ml RNase 

were added to the cell suspensions, which were then incubated in the dark for 20m at 

37°C. 

A minimum of I 0, 000 cells from each sample were analyzed by flow cytometry 

us ing a BD F ACS Cali bur bench top fl ow cytometer and the Cell Quest Pro operating 

program. T he percentage of cells in each phase (for each sample) was calcu lated and 

graphically displayed (distribution plots) using ModFit analysis software. 

It is important to note that propidium iodide is a fluorescent dye wh ich binds to 

DNA in a linear fashion (no sequence preference). Thus, because this method is based on 

DNA quantity, it cannot distinguish between Go and G I and between G2 and M phases. 
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However, the Go denoted cells are serum deprived, a well-established method for 

arresting cells in this phase (Pollack et al. , 1990). Additionally, both G2 and M phases are 

very short relative to other phases (G I and S) so mRNA and protein levels should not 

change considerably between these two phases. 

2.2. 7 Cell cycle length determination 

The cell cycle phase distribution for each sample was plotted on a line graph. The 

X-axis was time (that sample was collected) and they-axis was percentage of cells. There 

was a line for each phase (G0/G I, Sand G2/M). The time between the twoS phase peaks 

was considered as the approximate cell cycle length. 

2.2.8 RNA extraction and eDNA generation 

Total cellular RNA was isolated from pelleted cells (Section 2.2.2) using the 

nucleospin RNA II kit (Macherey-Nagel) as per the manufacturer's instructions. eDNA 

was generated by reverse transcribing I microgram ().lg) of total RNA using SX First 

strand buffer, I 00 nanograms (ng)/).11 of random hexamers, I 00 mM Dithiothreitol, I 00 

mM deoxtribonucleotides, MgCI2, Moloney murine leukemia virus reverse transcriptase 

and RNA Guard as per Invitrogen ' s protocol. 

2.2.9 Quantitative PCR 

Two micromicroliters of newly synthesized eDNA (Section 2.2.8) was used for 

the quantitative real -time PCR (Q-PCR) reaction. eDNA samples were analyzed by real­

time reverse transcription PCR (ABI Prism 7000 detection System) using SYBR green 
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(Applied Biosystems). Dissociation (melting) curves confirmed a single PC R amplicon in 

all reactions. Results were analyzed using the comparative Ct method (2-MCt) (Livak and 

Schmittgen, 2001; Schmittgen and Livak, 2008). This included normalization ofthe 

genes of interest to the control genes followed by normalization of experimental samples 

to the control samples (ie. hPYG02 normalized to P.Actin, then the unsynchron ized 

sample was set to I and the dH20 , dimethyl sulfoxide (DMSO), G0, G I , S and G2/M 

samples were adjusted accordingly). Primers are listed in appendix Table 6.1 . 

2.2.10 Protein extraction, SDS-PAGE and immunoblotting 

Protein was extracted from pelleted cells (Section 2.2.2) using I X cell culture 

lys is reagent (Promega). Protein samples were quantified by Bradfo rd ' s assay with the 

BIO-RAD protein assay (Biorad). Fifteen to sixty micrograms of each sample was boiled 

in sodium dodecyl sulfate (SDS, Sigma) sample buffer and run on I 0-1 5% sod ium 

dodecyl sulfate po lyacrylamide gel electrophoresis. Protein samples separated according 

to mo lecular weight were transferred to nitrocellulose membranes (GE Healthcare 

Amersham Hybond ECL). These membranes were blocked by incubation with I X tris 

buffered saline with tween 20 (TBS-T) buffer containing 5% non-fat m ilk (block 

solution) for I hat 4°C. Primary antibodies, diluted in block solution, were added to the 

membranes and incubated overnight at 4°C. The next day, membranes were washed 5X 

with TBST and subsequently incubated for I h with either anti-mouse or ant i-rabbit (G E 

Healthcare) horseradish perox idise (HRP)-conjugated secondary antibodies that had been 

di luted in block solution. Protein bands were visualized by the ECL or ECL Plus Western 
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Blotting detection system (GE healthcare Amersham Hyperfilm ECL). Antibody 

information is provided in appendix Table 6.2. 

2.2.11 Image acquisition and densitometry analysis 

Films were scanned at a resolution of 600 dots-per-inch, set to grayscale, cropped 

and used to make figures. No software adjustments were made. Densitometry was 

performed on several exposures of scanned films to quantify relative protein levels using 

lmageJ (National Institute of Health) software. 

2. 2.12 Statistical analysis 

All experiments were performed independently at least three times and 

representative data are presented in the figures. Means and standard deviation were 

calculated. Statistical difference between samples was evaluated with a Student' s t-test. A 

P-value less than 0 .05 was considered to be statistically significant. Other obvious 

increases/decreases were noted but clearly described as not significant. 
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2.3 Results 

2. 3.1 hPygopus2 mRNA and protein is expressed in a cell cycle dependent manner in 

MCF7 cells 

The relative expression levels of hPYG02 in different phases of the cell cyc le 

were assessed by immunoblot in MCF7 BrCa cel ls. MCF7 cells were isolated from a 69 

year old Caucasian patient and established as the first breast adenocarcinoma cell line at 

the Michigan Cancer Foundation in 1973 (Soule et a l. , 1973). It is the most commonly 

used cell line model for endocrine respons ive BrCa. To obtain cells in each phase of the 

cel l cycle I utilized the serum deprivation and release method (Pollack et al. , 1990). 

MCF7 cells cultured in media supplemented with serum were co llected and used as the 

unsynchronized cell samples (two samples collected). Serum deprivation was achieved 

by remov ing the serum supplemented media and growing cel ls in serum free media. Two 

Go-phase cell samples were collected after this period of incubation. At the end of this 

interval, media containing serum was added and cells were grown for 57 h. Throughout 

this period, two cell samples were collected at each of the various time points. One cell 

sample (per time point) was processed and analyzed by flow cytometry, which identified 

the cell cycle phase based on DNA content. This enabled me to determine the cell cycle 

phase distribution within each sample for a ll the time po ints (F igure 2. 1 A). From these 

data I determined that the approximate cell cyc le length of MCF7 cel ls is I d. 

Furthermore, I identified time po ints that contained the highest proportion of cells in each 

cell cycle phase. The 39 h sample had the highest proportion of cells in G I phase 

(60.57%), the 24 h sample had the highest proportion of cells in the S phase (69.47%) 
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and the 33 h time point sample was used to represent cells in the G2/M phase (3 1.85%) 

(Figure 2. 1 B). 

The second cell sample (for each time point) was processed for immunoblot 

analysis. More specifically, I only processed the samples that were identified as 

representative of each phase, based on the flow cytometry analysis. 

hPYG02 protein is detected as two differentially migrating bands, possibly 

identifying two post-translationally modified isoforms. Relative to f3-Actin levels, 

hPYG02 protein levels were highest in the G I phase of the cell cycle, lowest in the Go 

phase and moderate in the Sand G2/M phases of the cell cycle (Figure 2.1 C). The 

protein levels of hPYG02 were slightly, but not s ignificantly higher in the G2/M phase 

relative to the S phase. 

I a lso assessed the protein levels of some well-established cell cycle phase 

specific markers as a positive contro l. The expression of CCND was highest in the G 1 

phase w hich is consistent with previous results (Yang et al., 2006). PCNA has a ro le in 

DNA replication (Bowman et a l., 2004) and is therefore highest in the S phase of the cell 

cycle (Leonardi et al. , 1992), which was what I observed. Histone H3 (HH3) is 

exclusively phosphorylated (pHH3) in metaphase (Hans and Dimitrov, 200 I), which was 

when its expression was highest in my analysis. 

These results suggested that hPYG02 protein exhibi ts a cell cyc le dependent 

pattern of expression. However, one ofthe limitations ofthis approach was that the 

proportion of cells in certain phases was not very high. For example, in a ll my samples 

the highest percentage of cells in G2/M was 3 1.85%. Thi s technical issue also expla ins 
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Figure 2.1 Cell cycle dependent expression of hPYG02 protein in MCF7 cells. 

(A) Percentage of MCF7 cells in each phase of the cell cycle after serum deprivation 

(SO) and at each time point after release. The time points at which the representative 

sample for each phase of the cell cycle (G0, G I, Sand G2/M) was collected are indicated 

with arrowheads. The method by which MCF7 cell cycle length was deduced is 

included. (B) Cell cycle distribution plots of representative samples of each phase of the 

cell cycle. (C) Expression levels of hPYG02 and other cell cycle phase protein markers 

[Cyclin D, Proliferating cell nuclear antigen (PCNA) and phosphor-Histone H3] were 

measured by immunoblot in MCF7 ce lls. 13-Actin was used as a loading control. 

Molecular weight is expressed in kilodaltons (kDa). 
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why hPYG02 protein levels in the unsynchronized and G I samples are almost equal. The 

percentage of cells in G 1 in both samples is almost equal. 

The relatively lower proportion of cells in the Sand G2/M phases, compared to 

the G0 and G I phases, and the necessity to confirm my previous observations prompted 

me to obtain MCF7 cells in these phases by alternate methods. As I obtained high 

proportions of cells in the Go and G I phases by the serum deprivation and release 

method, I elected to use this approach for acquiring cells in these phases. 

To obtain cells in the S phase, I utilized the double thymidine block. As thymidine 

is a modified nitrogenous base, uptake by cells causes a disproportionate amount of one 

type of nucleotide relative to other types (Harper, 2005). The cell senses this imbalance 

during DNA replication and induces cell cycle arrest in the S phase. Treatment with 

paclitaxel was used to obtain cells in metaphase (Harper, 2005). Paclitaxel binds to 

tubulin subunits and hyperstabilizes microtubules, thereby preventing the physical 

separation of cells and arresting them at this phase (Harper, 2005). 

MCF7 cells were subjected to the serum deprivation and release method and cells 

in the Go and G I phases were isolated according to the time point parameters identified in 

the previous section. The double thymine block and paclitaxel (taxol) treatment was used 

to obtain cells in the S and G2/M phases, respectively. These protocols were also 

followed using thymidine and taxol vehicle contro ls (dH20 and DMSO, respectively) . 

Three samples were collected for each phase and used for cell cycle phase confirmation 

by flow cytometry (Figure 2.2 A), RNA extraction and mRNA expression analysis and 
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protein extraction and analysis. Distribution plots for the representative samples 

confirmed cell cycle arrest in the appropriate cell cycle phase (Figure 2.2 A) 

The changes in hPYG02 mRNA expression throughout the cell cycle were 

assessed by Q-PCR. either of the vehicle controls affected hPYG02 mR A levels, as 

they were not significantly different from the unsynchronized cell sample (Figure 2.2 B, 

top). hPYG02 mRNA levels were highest in the G I phase of the cel l cycle (p=0.045) and 

lowest in the Go phase of the cell cycle (p<O.O I ). The mRNA levels of hPYG02 in the S 

and G2/M phases were not significantly different from each other. 

The changes in hPYG02 protein levels closely paralleled the mRNA levels, being 

highest in G I , lowest in Go and approximately equal in S and G2/M phases (Figure 2.2 B, 

bottom). Add itionally, the vehicle controls did not change hPYG02 protein levels to the 

unsynchronized cell sample. 

These results suggested that both hPygopus2 mR A and protein are expressed in 

a cell cycle dependent manner in MCF7 cells and support the results obtained earlier 

(Figure 2.1 A). Furthermore, these findings suggest that hPYG02 may be primarily 

regulated at transcriptional level. 

2.3.2 hPygopus2 protein exhibits cell cycle dependent expression in several eel/ lines 

To determine if the cell cycle dependent expression of hPygopus2 was specific to 

MCF7 ce lls or if it was a general trend exh ibited by several ce ll lines, I subjected five 

different cell lines to the serum deprivation and release method. The cancer cell lines 

included HeLa (cervical), MDA-MB-231 (ERa- breast), SKOV-3 (ovarian), PC-3 
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Figure 2.2 Cell cycle dependent expression of hPYG02 mRNA in MCF7 cells. 

(A) Cell cycle distribution plots of representative samples of each phase ofthe cell cycle 

including the unsynchronized cells, vehicle contro l (dH20 and DMSO) treated cells, 

serum deprivation and release method obtained Go and G I cells, double thymidine block 

S phase arrested cells and taxol treated 02/M arrested cells. (8 , top) Expression levels of 

hPYG02 mRNA as analyzed by Q-PCR in MCF7 cells during different phases of the cell 

cycle. Levels were normalized to [)-Actin, set to I in the unsynchronized sample and 

adjusted accord ing ly in vehicle treated, serum deprived and released, thymidine and 

paclitaxel treated samples. Bars represent standard deviation. Significant changes 

(p<0.05) in expression, re lative to the control/untreated sample (c), are indicated by an 

asterisk(*), while non-s ignificant changes (p>0.05) are indicated by equa lity s ign(=). (8 , 

bottom) Expression levels of hPYG02 protein as analyzed by immunoblot in MCF7 cel ls 

during different phases of the cells cycle. [)-Actin was used as a loading control and 

molecular weight is expressed in kDa. 
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(androgen insensitive prostate) and LNCaP (androgen sensitive prostate) and the normal 

cell line was HEK293 (kidney). HeLa cells were cultivated in 1951 from an African 

American patient suffering from a particularly aggressive form of cervical 

adenocarcinoma (Scherer et al., 1953). MDA-MB-23 1 cells were isolated from a pleural 

effusion of a 51 year old patient with breast adenocarcinoma and are the most widely 

used ERa- BrCa cell line model (Cai lleau et al. , 1974). SKOV-3 cells were derived from 

metastatic ascites from a patient with ovarian adenocarcinoma (ATCC N umber HTB-77). 

PC-3 cells were establi shed in 1979 from the bone metastasis of a 61 year old patient 

with prostate adenocarcinoma (Kaighn et al., 1979). These cells are unresponsive to 

androgen treatment. The LNCaP cell line is androgen sensitive and was estab lished in 

1977 from a lymph node metastasis of a prostate adenocarcinoma patient (Horoszewicz et 

a l. , 1983). HEK293 cells were generated by transformation of normal human embryonic 

neurona l kidney cells with sheared adenovirus 5 DNA (Shaw et al. , 2002). 

These cell lines were processed ident ically to MCF7 cells except that samples for 

HeLa, HEK293 and MDA-MB-231 cell lines were collected for 51 h and samples from 

PC-3, SKOV-3 and LNCaP were collected for 3d. Th is was due to the different cell 

division rates of these cell lines. 

Confirmation of progress ion through the cel l cycle was achieved by flow 

cytometry as described earlier (Section 2.3.1 ). Distribution plots were used to identify 

phase representative samples (appendix Figure 6.1 ) and the approximate cell cycle length 

for each cel l line. Cell samples representative of each cell cycle phase were processed for 

immunoblot ana lysis. 
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Overall , the phase specific variation in expression ofhPYG02 in all ofthe cell 

lines examined was consistent with that observed in the MCF7 cells (Figure 2.3 A-F). 

hPYG02 expression was highest and lowest in the G I and Go phases, respectively. 

hPYG02 protein levels in Sand G2/M phases was not significantly different for all cell 

lines, except for LNCaP cell s in which G2/M protein levels were significantly lower than 

in S. 

Interesting ly, in the relatively faster growing cell lines (HeLa, HEK293 and 

MDA-MB-231 ) there was a high level of hPYG02 protein in the G2/M phase re lative to 

the level in G I. In the relatively slower growing lines (MCF7, PC-3, SKOV -3 and 

LNCaP) the hPYG02 protein level in G2/M was much lower than that in G I . In order to 

determ ine the exact levels of relative expression, I used densitometry to quantify 

hPYG02 protein levels in the G I phase and in the G2/M phase (F igure 2.4). For the fast 

growing cell lines, hPYG02 levels were 5.1-11 .1% lower in G2/M relative toG I . In 

contrast, for the slow growing cell lines, hPYG0 2 levels were 26.2-46% lower in G2/M 

relative toG I and significantly lower than the fast growing cell li nes (p=O.O 13). These 

analyses supported the hypothesis that the percentage of hPYG02 protein in G2/M 

relative to the percentage in G I was inversely proportional to cell cycle length. 

These results suggested that the cell cycle dependent expression pattern of 

hPYG02 is a genera l trend. Additionally, the inverse correlation between cell cycle 

length and percentage of hPYG02 in G2/M re lative toG I suggested that hPYG02 may 

serve as a marker for cell proliferation rate. 
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Figure 2.3 Cell cycle dependent expression of hPYG02 protein in several cell lines. 

Expression levels of hPYG02 protein as measured by immunoblot in He La (A), PC-3 

(B), HEK293 (C), SKOV-3 (D), MDA-MB-231 (E) and LNCaP cells (F) in different 

phases of the cell cycle. 13-Actin was used as a loading control and molecular weight was 

measured in kDa in all cases. 
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Figure 2.4 Inverse correlation between cell cycle length and cell cycle phase relative 

hPYG02 protein levels. 

Express ion levels of hPYG0 2 protein as measured using immunoblots in different cells 

lines aligned with the approximate cell cycle length of each cell line and the level of 

hPYG02 protein in G2/M phase relative toG I phase as determined by densitometry. 
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2.4 Discussion 

The ce ll cycle dependent expression of hPygopus2 mRNA and protein suggested 

that hPYG02 is primarily regulated at the transcriptional level and that the proteins 

responsible for its expression exhibit cell cycle dependent activity. These observations 

are consistent w ith previous results demonstrating ELF I regulation of hPYG02 (Andrews 

et al. , 2008) and the hypothesized involvement of the RB protein. hPygopus2 levels were 

highest in the G I phase which correlates with the inhibition of RB and transcriptional 

activation of ELF I. Furthermore, the observation that hPygopus2 cell cycle dependent 

levels are consistent between normal and cancer cell lines suggested that the RB-ELFI 

pathway may be the predominant mechanism by which hPYG02 is regulated. 

The observation that hPYG02 is highest in G I suggested that it may have a 

functional role during this phase. This is consistent with multiple previous results 

showing that knockdown of hPYG02 protein causes an arrest in the G I phase (Popadiuk 

et al. , 2006; Andrews et al. , 2007; Chen et al. , 20 I 0; Wang et al., 20 I 0 ; Chen et al. , 

20 II). Whether the required function of hPYG02 is in Wnt signal ling (Thompson et al. , 

2002), chromatin remodeling (Jessen et al., 2008), ribosomal DNA transcription 

(Andrews et al. , Accepted) and/or another novel process, it is not unreasonable to think 

that a reduction ofhPYG02 protein levels would inhibit the(se) specific process(es) and 

thereby prevent the G I /S transition. 

All of the above mentioned processes are involved in, or required for, the 

induction of gene expression during the G I phase of the cell cycle. The absence of 
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hPYG02, a transcriptional activator/chromatin remodeler, at such a time, would prevent 

critical genes from being expressed and thus di sable transition through G I /S. 

The cell cycle dependent expression of hPYG02 also sheds light on the 

variability ofhPYG02 protein levels in tumour cells. While overexpression ofhPYG02 

in tumours has clearl y been established, its levels are not di stributed uniformly within and 

between tumours. This could be due to unsynchronized cell populations w ithin tumours 

(Weinberg, 2007d). Cells that exhibit the lowest levels or absence ofhPYG02 may be in 

the Go phase, while cells in which hPYG02 expression is highest may be inG I. Cells 

expressing moderate leve ls ofhPYG02 may be inS or G2/M phases of the cell cycle. 

The second major finding in this study was that the hPYG02 protein levels in the 

G2/M phase relative to its levels in G I are inversely correlated with cell cycle length. 

This finding, in combination with the relatively long half- life of the hPYG0 2 protein 

(approx imately 40 h, data not shown), led to the hypothesis that hPygopus2 is induced 

during the G I phase and its protein is turned over progressively throughout the cel l cycle. 

This could explain why faster growing cell lines (shorter cell cycle length) have more 

hPYG02 in G2/M re lative to that in G I. The relative hPYG02 levels between G I and 

G2/M phases could be utilized to determine tumour cell proliferation rate. 

Tumo ur cell proliferation rate is a combination of the percentage of proliferating 

ce lls within a tumour and their cell cycle length (Steel , 1967). It is a very important 

prognostic and predictive factor (Tubiana, 1989; Kopper, 200 I ) and is used to determ ine 

disease progress ion and to select specific chemotherapy regimens (Tubiana, 1989; Ribba 

et a l. , 2009). In the c linic, determination of tumour cell proliferation rate is based on the 
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percentage of proliferating cells within a specific cell cycle phase (Tubiana, 1989). For 

example, the mitotic index, the current gold standard method to evaluate tumour cell 

growth rate, is a ratio of cells in mitosis relative to the total number of cells (Baak et al. , 

2009). The higher the number of cells in mitosis, the higher the tumour cell proliferation 

rate and the more aggressive the tumour is (Baak et al., 2009). 

The limitation of mitotic index, and other such methods, is that they solely depend 

on the percentage of proliferating cells in one cell cycle phase and therefore do not 

account fo r tumour and host variability factors (for example proportion of proliferating 

cells, ti ssue damage, immune system, c ircadian rhythm) which wi ll skew proliferation 

rate estimates (Kopper, 200 I ). Inaccurate determination of tumour aggress iveness and 

improper prescription of chemotherapeutic agents affects the patient psychologically 

(perception of diagnosis) and phys ically (survival) (Friberg and Mattson, 1997). 

The inverse correlation between relative hPYG02 protein levels and cell cycle 

length could allow hPYG02 to be used as an accurate prognostic proliferation biomarker. 

The advantage of using hPYG02 expression to determine tumour cell proliferation rate is 

that it is a ratio between two phases (doesn' t rely solely on one cell phase) and therefore 

serves as an internal control for every tumour. The higher the level of hPYG02 protein in 

G2/M relative toG I , the shorter the cell cycle length, the faster the proliferation rate and 

thus, the more aggressive the tumour. 

Examination of hPygopus2 expression has an additional advantage because it may 

also identify the proportion of proliferating cells within a tumour. hPygopus2 expression 

is essentia lly non-ex istent in serum deprived cells, which should be equivalent to cells 
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within necrotic and hypoxic regions of the tumour. As hPygopus2 is overexpressed in 

cancer cells, its levels would be much higher in proliferating cells relative to non­

proliferating cells. 

The next step in this study would be to stain tumour sections to evaluate the 

accuracy of using hPYG02 as a proliferation biomarker. This would involve indentifyng 

the tumor cells in G I and G2/M and quantifying relative levels of hPYG02 between 

them. The obvious problem associated with this is the lack of a positive control as current 

methods cannot be used due to lack of accounting for the factors described above. 

Perhaps the best approach would be to generate tumors by xenografting cells in mice. 

This would be advantageous because the approximate time of tumor initiation would be 

known. Alternatively, a retrospective study could be performed by examining hPYG02 

expression on tumours that were established as slow and fast growing. 

Additionally, the cell cycle dependent expression of hPYG02 mR A may also be 

explored as a marker for tumour cell proliferation rate. The use of hPygopus2 mRNA 

versus protein would depend on the cell cycle length. Protein could be used for longer 

cell cycle lengths ' due to its longer half-life and mRNA could be used for shorter cell 

cycle lengths ' due to its shorter half-life. 
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3.1 Introduction: Breast Cancer 

3.1.1 Foreword 

In the previous chapter I characterized the cell cycle dependent expression of 

hPygopus2 mRNA and protein in several cancer cell lines. In particular, my evidence 

pointed to a role for hPYG02 in the G I phase. Identification of factors responsible for 

hPYG02 regulation wou ld not only provide a better understanding of the signalling 

networks at play in cancer, but would also highlight add itional ways by which hPygopus2 

can be therapeutically targeted. Our lab has previously determined that ELF I has a role in 

inducing hPYG02 (Andrews et al., 2008). However, the requirement of hPYG02 during 

the G 1/S transition, its cell cycle dependent expression in several ce ll lines and its 

hypothesized link to RB suggests that hPYG02 may have a more fundamental link to the 

cell cycle. Thus, I decided to test if mitogenic stimulation would cause up regulation of 

hPYG02. I selected to test my hypothesis in MCF7 BrCa cells as hPYG02 has been 

previously examined in these cells and to use 17[3-estradiol as the mitogen as it has a 

predominant ro le in BrCa (and particularly in MCF7 cells). 

3.1.2 The breast and breast cancer 

The human adult mammary gland is comprised of a progressive branching 

gland ular ductal system of 15-25 lobes in a fat pad (Hennighausen and Robinson, 2005) 

(Figure 3. 1 ). Each lobe (also known as terminal duct lobular unit) originates at the nipple 

and is composed of a single term ina I duct which branches to form ductules that are 
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Figure 3.1 Schematic diagram showing the hierarchical structure of the breast. 
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capped off by lobules, where milk is produced. The ducts, ductules and lobu les are lined 

by a single cell thick epithelial layer of low columnar and cuboidal cells (Sgroi , 20 I 0). 

The mammary gland undergoes dramatic changes in size, shape and function 

throughout life (Ali et a l. , 20 II ). The main spurt of growth occurs during puberty and is 

dependent on high leve ls of E2. Post-pubertal development results in cyclical increases of 

extensive ductal branching in the fat pad. Estrogens maintain the ducts and promote the 

dynamic changes in s ide branching that occur during the menstrual cycle (Hennighausen 

and Robinson, 2005). 

While there are several ri sk factors [genetics (ethnicity and family history), 

reproductive factors (breast density, age at menarche, parity and breastfeeding) and 

lifestyle (body mass index, physical activity, a lcohol, smoking)] , excessive estrogen 

exposure, and the resulting increased estrogen s ignalling, is one ofthe most predominant 

factors for the development of BrCa (Nelson et al. , 20 12). Furthermore, at least 70% of 

breast cancers are Estrogen receptor alpha (ERa. or ESRI ) posit ive(+) (Al i et al. , 2011 ) 

and their growth is E2 regulated. Both ERa. overexpression (Khan et a l. , 1998) and 

genomic region amplification (6q25) (Holst et a l., 2007) in the benign breast has been 

associated with an increased BrCa risk. 

The progression from the norma l breast to malignant cancer is a multistep process 

in which the exact cause and cell of origin (suspected to be a stem or progenitor cell) are 

currently unknown. T he general depiction that emerges for the most common BrCa types, 

invas ive ductal carcinoma (up to 80% of all breast cancers) and invas ive lobular 

carcinoma (5- 15%) (Weigelt and Reis-Filho, 2009), is that these cancers a ll originate in 
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the terminal duct lobular unit and progress from an initial hyper-proliferative stage to a 

precancerous, in situ carcinoma stage and then to invasive BrCa (Perou et al. , 2000; 

Weigelt and Reis-Filho, 2009). 

3.1. 3 17 ~estradiol signalling components 

Estrogens are produced by ovaries (and to a lesser extent the adrenal cortex) and 

secreted into the bloodstream, which is how they make their way to target organs. 1713-

estradiol is the most potent of the three estrogens produced in the body (Kuiper et al. , 

1997). 

Even though E2 was identified in the 1920' s (Allen and Daisy, 1983), ERa. was 

not identified until the 1960' s (Toft and Gorski , 1966) and a second ER isoform, ER beta, 

was not discovered until 1996 (Kuiper et al. , 1996). Because the role of ER beta in 

epithelial cancer cells is unclear, the following discussion will focus on and refers to 

ERa.. 

Sequence s imilarity between the DBDs of ERa and the g lucocorticoid receptor 

(Thornton, 200 I) helped to classify this family of transcription factors within the nuclear 

receptor superfamily (Chawla et al., 200 I). In addition to its highly conserved DBD, ERa. 

has five defined functional regions (Herynk and Fuqua, 2004) (Figure 3.2). 

The amino-terminal AlB regions contain an activation function I (AF-1) domain, 

which exhibits ligand-independent functions , and acts as a co-regulatory domain that is 

responsible for the recruitment of coactivators and corepressors. The C region features 
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Figure 3.2 Schematic diagram showing the conserved domains of ERa (generated 

from Akingbemi, 2005). 

The A/8 regions contain the activation function I domain (AF- 1) which exhibits ligand­

independent activation. The C region contains the DNA binding domain (DBD) which 

allows sequence specific DNA binding and homo- or heterodimerization. The D region 

has a flex ible hinge and a nuclear localization sequence. The E/F regions contain the 

ligand binding domain (LBO), within which is the activation fu nction 2 domain (AF-2). 

This portion exhibits different conformations depending on type of bound ligand and 

thereby promotes or hinders transcription activation. 
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the DBD, which is comprised of two non-equivalent cysteine-rich zinc fingers (Green et 

al., 1988; Mader et al., 1989; Ruff et al., 2000). These z inc fingers are not only 

responsible for binding to estrogen response elements (EREs) and DNA tethering through 

other transcription factors, but also for receptor dimerization. The D region contains the 

hinge domain (H) and the nuclear localization sequence. The carboxy-term inal E and F 

regions contain the ligand-binding domain (LBD) - a wedge-shaped structure composed 

of 12 alpha-he lices. Within the conformationally dynamic LBD is a ligand-dependent 

activation function 2 (AF-2) domain. These helices exhibit different orientations 

depending on the nature of the bound ligand and the cell-type specific profile of co­

regulators (Katzenellenbogen et al., 1996; Katzenellenbogen and Katzenellenbogen, 

2002; Norman et al., 2004; Shang, 2006). Additionally, they are responsible for the 

recognition of proteins that link ERa to the components of the general transcriptional 

machinery (Danielian et al., 1992; Wrenn and Katzenellenbogen, 1993; Henttu et al., 

1997; Feng et al., 1998). 

3.1.4 Classical genomic signalling by estrogens 

In normal ce lls, 1713-estradiol binding to the LBD of ERa causes intracytoplasmic 

chaperones (such as heat-shock proteins 70 and 90) to dissociate from the receptor 

molecule (Smith and Toft, 1993) and subsequently leads to the dimerization and nuclear 

translocation (Pace et al., 1997). Within the nucleus, ER dimers bind to sequence-specific 

palindromic EREs (5 '-GGTCAnnnTGACC-3') (Kiein-Hitpass et al. , 1986). In consensus 

(perfect) ERE motifs each ER of the dimer binds to half of the ERE sequence. 
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Once bound to DNA, the E2 stabilized receptors adopt an optimal conformation 

that is efficient for interaction with the steroid receptor coactivators (the three best 

characterized families include nuclear coactivator I, 2 and 3) (Glass and Rosenfeld, 

2000). The multi-protein coactivator complex is fu lly formed after recruitment of co­

regulatory proteins, such as histone acetyltransferases, ubiquitin ligases and chromatin 

remodelers. Recruitment of coactivators serves to enhance receptor/basal transcription 

machinery interactions to efficiently activate transcription (Beato, 1991 ; Horwitz et al. , 

1996; Glass et al. , 1997; McEwan et al. , 1997; Shiama, 1997; Shibata et al. , 1997). 

After the initiation of transcription, post-translationalmodifications, such as 

methylation and acetylation, promote the dissociation of the complex, and the 

simultaneous ubiquitylation of ERs e ither results in further activation of the receptors or 

induces their degradation (Heldring et al. , 2007). The ER and its coactivators have been 

shown to repeatedly cycle on and off several times in a predictable temporal manner 

(Shang et al. , 2000; Meti vier et al., 2003). While E2 stimulates transcription of target 

genes via ERa, TMX and FUL have the opposite effects. 

3.1.5 The mechanism of action for ERa antagonists 

The demonstration that estrogens could promote mammary tumour formation led 

to the proposal that ERa antagonists could be used to treat BrCa. Thus TMX and several 

other related antiestrogens, particularly fulvestrant, were developed and are the first line 

adjuvant agents for the treatment of ERa+ BrCa (A li et al., 20 II ). 
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When four-hydroxytamoxifen (4-0HT), the active metabolite ofTMX, binds to 

the LBO of ER it induces a repressive structural rearrangement that blocks access to the 

ER coactivators (Brzozowski et al., 1997; Shiau et al., 1998; Celik et al., 2007). As a 

further repressive mechanism, 4-0HT also alters the structure of ER such that it 

preferentially interacts with corepressor nuclear receptor boxes (Hu and Lazar, 1999) of 

corepressor proteins including Nuclear corepressor I and 2 (Huang et al., 2002; Horlein 

et al., 1995; Chen and Evans, 1995). These corepressors function as adaptors to recruit 

proteins that possess histone deacetylase activity (Keeton and Brown, 2005) and thereby 

inhibit transcription (Shang et al., 2000). The other ERa antagonist, FU L, has an even 

more potent inhibitory mechanism. 

Following binding to ER, FUL blocks dimerization of the receptor and limits its 

nuclear translocation (Fawell et al. , 1990; Dauvois et al., 1993; Robertson et al., 200 I). 

Furthermore, FUL contains a bulky side chain that occupies the coactivator binding 

pocket and leads to an unstable receptor conformation making it more susceptible to 

degradation (Dauvois et al., 1992; Osborne et al. , 2004). Additionally, FUL blocks the 

recruitment of other coactivators v ia both transactivation domains (AF-1 and AF-2) to 

ER, which are essential for maximum activation and transcription of ER genes (Osborne 

et al. , 1995). It is for these reasons that FUL has no agonist activity and is considered a 

pure antiestrogen. 

Not on ly can ER molecules interact with themselves to produce homodimers, but 

they can also interact with other transcription factors to generate heterodimers (non­

classical genomic s ignalling), adding another level of complexity (Heldring et al. , 2007). 
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Thus it is not surprising that most E2 target genes do not contain an ERE palindrome in 

their promoter but have non-palindromic ERE ha lf-sites through which E2 regulation is 

mediated (Anolik et al. , 1995). ERs common ly form heteromeric complexes with the SP I 

transcription factor (SP I) protein, the uclear factor of kappa light polypeptide gene 

enhancer in B-cell (NFKB) protein, and the activator protein I (AP-I ) complex (Heldring 

et al. , 2007). One recent microarray and RNA interference study suggested that about 

60% of E2 respons ive genes ( induced or repressed) are ERa and SP I protein dependent 

(W u et al. , 2009). 

3.1.6 SPJ transcriptionfactor proteins 

SP I belongs to the Specificity Protein/Kri.ippel-like Factor transcription factor 

family (S uske et al. , 2005). This fami ly is characterized by the highly conserved DBD 

(domain C) which contains three adjacent Cys2His2-type z inc fingers. By uti liz ing their 

DBD, these proteins bind GC-boxes (consensus sequence GGGGCGGGG) (Letovsky 

and Dynan, 1989) in target gene promoters (Suske et al., 2005) . In addition, SP I has an 

-terminal inhibitory domain, two transactivation subdomains (A and B) and a carboxy 

terminal domain (D) which is required for synergistic activation (Suske, 1999) (Figure 

3.3). 

SP I proteins are ubiquitously expressed in mammalian cells and a re especially 

important for diffe rentiation, cell cycle progression and oncogenesis (Davie et al. , 2008). 

The 12,000 GC-boxes in the human genome and their association with genes in virtually 
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Figure 3.3 Schematic diagram showing the conserved domains of SPl (generated 

from Suske et at., 2005) 

TheN-terminal inhibitory domain ( ID) can interact w ith corepressors to inhibit SPI 

transcriptional activity. The A and B domains contain two transactivation subdomains 

(A D). The C domain contains the zinc fingers that enable sequence specific DNA 

binding. The D domain allows homomultimerization which enables synergistic 

activation. 

3- 13 



Tzenov, 20 13 

SP1 

3- 14 

Domain 
(Properties) 



Tzenov, 2013 

a ll cellular processes (Cawley et al., 2004) provides a glimpse of the universality of SPI 

proteins. 

In cancer cells, the protein expression levels of SP I are often greater than in 

normal cells. Specifically, in comparison to normal cells or tissues, SPI levels are higher 

in breast (Zannetti et al. , 2000) and hepatocellular carcinomas and in thyroid (Chiefari et 

al., 2002), pancreatic, colorectal, gastric (Kitadai et al. , 1992; Jiang et al. , 2004) and lung 

cancers (Davie et a l. , 2008; Chuang et al., 2009; Kong et al. , 20 I 0; Kong et al. , 20 II ). 

Abnormally high SPI protein levels are correlated with poor prognosis and the 

stage of cancers (Wang et al. , 2003; Yao et a l. , 2004; Safe and Abdelrahim, 2005). 

Moreover, inhibition or knockdown of SP I to normal cell ular levels decreases tumour 

formation, tumour growth and metastasis (Jiang et al. , 2004; Lou et al. , 2005; Yuan et al. , 

2007). 

Functionally, in cancer, SP I target genes include factors invo lved in cell cycle 

progression and arrest (Sherr and Roberts, 1999; Feng et a l. , 2000; Abdelrahim et a l. , 

2002; Lagger et al. , 2003), both pro- and anti-angiogenic factors (Yuan et al. , 2007), pro­

and anti-apoptotic factors (Kavurma et al., 200 I ; Kavurma et al., 2002; Kavurma and 

Khachigian, 2003), proto-oncogenes and tumour suppressors (DesJardins and Hay, 1993; 

Olofsson et a l., 2007). 

One way of targeting SP I is by using chemotherapy agents that block binding to 

GC-boxes, and therefore, prevent SP I target gene activation . Mithramycin A, curcumin, 

tolfenamic acid and betulinic ac id are all chemotherapeutic agents that have such activity 

(Leask, 20 12). Treatment with betulinic acid and curcumin reduced the expression and 
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activity of SP I and resulted in lowered expression of SP I target genes including 

Epidermal growth factor receptor, Cyclin D I and Vascular endothelial growth factor 

(Wang et al. , 1997; Kang and Chen, 2009; Chadalapaka et al. , 201 0). 

3.1. 7 ERa and SP 1 complex formation, promoter binding and gene activation 

As mentioned, ERa can form complexes with SP 1 to modulate transcription of E2 

responsive genes. While there has been extensive research in this area, there is much 

discrepancy due to the methodology. An overall conclusion is that the binding of ERa to 

SP 1 and the transcriptional effect of this interaction is cell type- (ERa+ or ERa- BrCa or 

other cancerous or normal cells), protein level/type- (endogenous, transiently or stably 

overexpressed and full , partial or engineered sequence), ligand- (E2, 4-0HT and FUL 

have similar activity on naked luciferase vector promoters) and promoter-dependent 

(EREs, ERE half-sites, GC-boxes and/or endogenous promoter segments on labeled 

oligos, reporter vectors and/or endogenous genes). 

The loading of ERa onto E2 responsive promoters may be direct or indirect, 

adding another leve l of complexity. Direct binding involves contact of both factors with 

DNA (Carroll et al., 2006; Menendez et al., 20 I 0), while indirect binding involves the 

tethering of ERa to DNA through SP I (O'Lone et al., 2004). In promoters with a 

consensus EREs or ERE half-sites, ER binding is likely direct. However, for other E2 

responsive promoters (which don't have an EREs or ERE half-sites) ER binding is most 
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likely indirect and through another transcription factor (e.g. SP I , NFKB or AP-I) 

(Carro ll et al., 2005; Lin et al. , 2007). 

Somewhat unexpectedly, there appears to be no consistent pattern regarding the 

relative orientations or pos itions of ERE half-s ites and GC-boxes. In most cases, the 

sequence GGTCA of the half-ERE is on the same strand as the GGCGGG sequence of 

the GC-box. However, the distance between the s ites, as well as the position and 

strandedness of these elements relative to the transcription start s ite, can be completely 

variable (O'Lone et al. , 2004). The general trends that have been observed concerning 

localization, interaction and promoter binding and activation are described below. 

While ERa translocation to the nucleus depends on E2 treatment, SP I is a 

constitutively nuclear protein and its translocation is not affected by E2 treatment (Dong 

et a l., 2006). Due to the relatively low endogenous leve ls of these proteins, nuclear co­

localization is only observed if the proteins are overexpressed. This co-localization is 

increased with E2 treatment (He et al. , 2005; Kim et a l. , 2005). 

The endogenous interaction between ERa and SP I requires E2 and is blocked 

when cells are pretreated with FUL (Dong et al. , 2006). In contrast, overexpression of 

ERa and SPI a llows these proteins to interact in the absence ofE2, but in this case the 

interaction is increased by E2 treatment (Kim et al. , 2005; Kang et a l., 20 II). The ERa 

interaction with SP I doesn 't require DNA binding (Kang et al. , 20 11 ), but is stabilised by 

the presence of DNA. The physical interaction between ERa and SP I proteins is 

mediated by the AF-1 (Sav ille et al. , 2000) or DBD (Kang et a l. , 2011) of ERa and the 

DBD of SP I (Kang et al. , 20 II ). 
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Binding to and activation of promoters by the ERa.-SP I complex depends on a 

combination offactors. Because ofthe different mechanism of action (direct or 

indirect/tethering), there is a requirement for either both the ERE half-site and GC-box or 

just the GC-box. When ERa. and SP I are overexpressed, due to their high levels and 

interaction, there is residual binding to promoters. However, this complex is inactive 

(Sav ille et al. , 2000) and requires E2 treatment for transactivation (He et al., 2005). While 

E2 treatment does not increase SP I promoter binding (Dong et a l. , 2006; Kang et al. , 

20 II ), it does cause nuclear translocation of ERa., which enhances binding of the ERa.­

SP I complex to the promoter (He et al. , 2005) and contributes to coactivator recruitment 

(O'Lone et al. , 2004). The highest level of promoter binding is observed when both ERa. 

and SP I are overexpressed and treated with E2 (Kim et a l. , 2005 ; Dong et a l., 2006). 

3.1.8 ERa target genes 

From the discussion above, it is not surprising that E2-ER regulated 

promoters/enhancers fall in two major categories: those in which ER di rectly binds DNA 

and those in which ER associates with regulatory sequences due to interactions w ith other 

DNA-binding proteins. 

The first category can be further broken down into three subcategories based on 

the contents ofthe promoter: pa lindromic ERE sequences, ERE half-s ites and ERE half­

sites in proximity to GC-boxes. Human genes that contain perfect ERE sequence include 

Estrogen receptor binding antigen 9 (Watanabe et al. , 1998), Trefo il factor I (Berry et al., 
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1989), Tripartite motif containing 25 (Ikeda et al., 2000), Cathepsin D (CTSD) (from -

145 to -I 0 I) (Cavailles et al. , 1993; Krishnan et al. , 1994; Wang et al. , 1997) and 

Telomerase reverse transcriptase (Kyo et al. , 1999). ERE half-sites are found in the 

promoters of ERa (Treilleux et al., 1997) and Prothymosin alpha (Martini and 

Katzenellenbogen, 2001). Direct DNA binding of both ERa-SPI complexes has been 

shown to occur at the Transforming growth factor alpha (TGFA) (EI-Ashry et al., 1996; 

Vyhlidal et a l., 2000), Retino ic acid receptor alpha (RARA) (Rishi et al., 1995) and CTSD 

(from -199 to -165) (Cavailles et al., 1993; Krishnan et al., 1994; Wang et al., 1997) 

promoters. 

The second category, in which promoter binding of SP I alone confers E2 

responsiveness, occurs in CCND (Sabbah et al. , 1999; Castro-Rivera et a l., 2001 ), 

Epidermal growth factor receptor (Salvatori et al. , 2000), FBJ murine osteosarcoma vira l 

oncogene homo logue (FOS) (Duan et al. , 1998), Heat shock binding protein I (Porter et 

al. , 1997) and Adenosine deaminase (Xie et a l. , 1999). 

One of the best characterized E2 target genes in BrCa is CTSD, thus it has been 

commonly used as a positive control in the identification of novel E2 target genes (Xing 

and Archer, 1998). The CTSD gene encodes a ubiquitous lysosomal aspartyl protease 

(Westley and May, 1996). Transcription from the CTSD gene is initiated at five sites but 

E2 stimulates transcription via ERa and SP I in the - 199 to - 165 promoter region 

(Cavailles et al. , 1993). 

It can be hypothesized that while E2 induces the target genes discussed above, 

treatment with E2 antagonists (4-0HT and FUL) will repress these genes. 
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3.1. 9 ERa antagonists induce breast cancer cell death 

TMX has been repeatedly shown to inhibit the growth of ERa-positive and E2-

sensitive BrCa cell lines (Lippman et al. , 1976). This is associated with its ability to 

inhibit the expression of ERa target genes that regulate cell cycle and apoptosis 

(Musgrove and Sutherland, 2009). Specifically, repression ofCyclin 01 , v-Myc 

myelocytomatosis viral oncogene homologue and B-cell CLL/Iymphoma 2 genes and 

reduction of SP l and NFKB activity are among the events that account for the increased 

cell death that is observed in TMX-treated ERa-positive breast cancers (Butt et al., 2005 ; 

Musgrove et al. , 2008; Nehra eta!., 20 I 0). 

3.1.1 0 Nongenomic signalling by E2 and ligand independent activation of ERa 

In addition to the well-studied transcriptional effects of E2 (classical and non­

classical genomic signalling), steroid treated cells can respond by activating nongenomic 

signalling pathways (Checkis et al. , 2007; Ellmann et al. , 2009). These pathways are 

mediated by plasma membrane bound ERa (within other receptor complexes or 

caveolae) or endoplasm ic reticulum membrane bound G-protein coupled receptor 30. 

Ligand binding to these receptors results in the rapid induction of cytoplasmic signalling 

cascades, such as Adenyl cyclase, Mitogen activated protein kinase and 

Phosphatidylinositol 3 kinase. These cascades frequently end with the activation of 

transcription factors that activate target gene transcription. As E2 can activate gene 

expression without ERa , ERa can also activate gene expression without E2. Th is consists 
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of growth factor activated cytoplasmic kinases, such as Protein kinase B, 

Phosphatidylinositol 3 kinase and Mitogen activated protein kinase, phosphorylating 

ERa, thereby translocating it to the nucleus where it can activate transcription. 

3.1.11 Chapter summary 

In chapter two I demonstrated that hPygopus2 expression is highest in the G I 

phase of the cell cycle in several cancer cell lines, including the MCF7 ERa + cell line. I 

hypothesized that if hPYG02 regulation is directly linked to RB, then any mitogenic 

stimulus, which inactivates RB due to CCND expression, would cause the up regulation 

of hPYG02. To test this hypothesis in BrCa cells, I studied the effect of 17(3-estradio l as 

the mitogen due to its predominant role in BrCa. 

Sustained E2 exposure plays a critical role in the initiation and progression of 

BrCa. The best characterized mechanism by which E2 induces BrCa cel l prol iferation is 

through the ERa. The critical ro le of ERa in BrCa is c learly sol id ified by the fact that 

first line BrCa treatments include TMX and FUL, which function by binding to, and 

inhibiting the transcriptional activation abi lit ies of ERa . 

While the ERa commonly exerts its functions as a homodimer, it a lso interacts 

with other transcription factors , such as SP l. SP I is a ubiquitously expressed protein, 

which is overexpressed in numerous cancer ce ll lines and tumour types. It has also been 

shown to be required for several aspects of oncogenesis, just like ERa . There are two 

similar, and thus fairly difficult to distinguish, mechanisms by which ERa-SPI 
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complexes can induce target gene expression. The direct method involves the binding of 

both ERa and SPI to their respective promoter elements, the ERE half-site and the GC­

box, respectively. The indirect method involves the tethering of ERa to DNA bound SP I. 

In this study, I provide evidence for the E2 enhanced expression of hPygopus2 

through the direct binding of the ERa-SPI complex to the hPYG02 promoter. My data 

indicated that even in ERa- BrCa, SPI still plays a role in the regulation of hPYG02 and 

other "ERa-SP I" target genes. The finding that SP I is required for the proliferation of 

ERa- BrCa cells suggests that hPYG02 expression might assist in chemotherapy 

selection in endocrine disruptor unresponsive BrCa cells. 
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3.2 Materials and Methods 

3.2.1 Cell maintenance 

BT-20, BT-474, MDA-MB-157, MDA-MB-231, MDA-MB-468, SK-BR-3, 

MCF7, ZR-75 and T-47D BrCa cells (ATCC) were mainta ined in DMEM at 37°C w ith 

5% C02. 

VC-5 (derived from MDA-MB-231 , ERa-) and MC-2 (derived from MDA-MB-

23 1, wildtype ERa +) cell lines were generous gifts from Dr. Sheila Drover via Dr. V. C. 

Jordan. These cells are cultured in PRF-DMEM containing 5% dtFBS, 0.5 mg/ml 0418, 

6 ng/ml insulin and 20 mM L-glutamine. They were previously generated and 

characterized (Levenson and Jordan, 1994). The results of a preliminary analysis that I 

performed, which is cons istent with previous results (Levenson and Jordan, 1994), is 

found in appendix Figure 6.2. 

3.2.2 Drug treatments 

Thirty thousand MCF7 cells per well were seeded in six well plates in cDMEM 

for I d. After this period, hormone deprivation was achieved by washing once with PBS 

and culturing in PRF-DMEM containing 2% dtFBS for 3d. At the end of this period, the 

cells were washed once with PBS and incubated in PRF-DMEM contain ing 2% dtFBS. 

MC2 and VC5 cells were seeded at a density of 3 X I 05 cells/well in six well plates for I 

d, accord ing to the conditions described in Section 3.2.1. Drug treatments were carried 

out according to the conditions below. 
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For all analyses except luciferase assays, cells were treated with I 0 nanomolar 

(nM) 17j3-estradiol (Sigma) (determined to be the most effective concentration) for the 

following times: 0.25, 0.5 , I , 4, 8 and/or 24 h. For the antiestrogens, I 0 micromolar ().lM) 

of 4-0HT (Sigma) or FUL (Sigma) was used. The same volumes of ethanol (Et) and 

DMSO served as vehicle controls. When 4-0HT and FUL were used in combination with 

E2, cells were pretreated with 4-0HT or FUL, or their vehicle controls, for 6 h. The 

concentration of cycloheximide (CHX) used was 50 ).lglml (Schneider-Poetsch et al., 

20 I 0). For luciferase assays, I 00 nM E2 was used because this is the amount required to 

induce detectable levels of luciferase activity (Miralles et al. , 1994). 

3.2.3 RNA extraction, eDNA generation and Q-PCR 

Performed as described earlier (Sections 2.2.8 and 2.2.9). 

3.2.4 Protein extraction and immunoblotting 

Performed as described earlier (Section 2.2. 1 0). 

3. 2.5 hPygopus2 promoter analysis 

The 1494 base pair (bp) sequence upstream ofthe hPYG02 gene transcriptional 

start s ite was pasted into the box on the Transcription Element Search System website 

(http://www.cbil.upenn.edu/cgi-bin/tess/tess?RQ=WELCOME). The putative binding 

sites identified by this software were examined with a specific focus on ERE 

palindromes, ERE ha lf-sites, GC-boxes, AP-1 sites and NFKB sites. 
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3.2.6 Plasmids 

Luciferase reporter plasmids including pGL3-1494, pGL3-1143, pGL3-829, 

pGL3-531 , pGL3-225 and the empty vector control pGL3-basic were previously 

described (Andrews et al., 2008). The ERa (pcERa) and SP I (pcS P I) expression vectors 

and their empty vector control (pcDNA3.1) were all generous gifts from Dr. Paterno and 

described elsewhere (Ding et al., 2004; McCarthy et al. , 2008). Vectors generated by site 

directed mutagenesis are described below. 

3.2. 7 Site directed mutagenesis 

Luciferase vectors containing mutations in the GC-box at -356 (pGL3-531 

mutGC), the ERE half-site at -331 (pGL3-531 mutERE), or both (pGL3-531 

mutERE+GC) were generated by site-directed mutagenesis (QuickChange Site-Directed 

Muatgenesis kit, Stratagene) according to the sequences in Letovsky et al. , 1989 and 

Krishnan et al., 1994. The ERa (pcERa-DBM) and SPI (pcSPI-DBM) DBD mutants 

were generated by site directed mutagenesis according to the sequences in DeNardo et al. 

(DeNardo et al. , 2007) and information provided in Saegusa et al. (Saegusa et al. , 1997), 

respectively. In both cases, amino acids which are required for the structural integrity of 

the first zinc finger were targeted. Primer sequences are li sted in appendix Table 6.1. 

3.2.8 Transient transfections 

MCF7 cells were seeded and hormone deprived as described earlier (Section 

3.2.2). They were subsequently transfected with combinations of expression vectors 

(empty vector, ERa , SP I or ERa +SPI) and cotransfected with either one of the wildtype 
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hPYG02 reporter constructs or with one of the mutated GC-boxes and/or ERE half-site 

reporter constructs and with a plasmid expressing 13-galactosidase (pRSV -13-gal, 13-gal). 

Cells cultured in six well plates were transfected with I 11g of total DNA. Cells cultured 

in ten centimeter dishes were transfected with 5 f...lg of total DNA. Cel ls were treated with 

E2 (as described in Section 3 .2.2) and cultured for I d. 

3.2.9 Luciferase and ~galatosidase assays 

To measure luciferase activity, cellular protein was extracted using I X cell culture 

lysis reagent (Section 2.2.1 0), combined with room temperature luciferase assay reagent 

(Promega, reconstituted as per the manufacturer's instructions) and read with the 

ana lytical Luminescence Laboratory Monolight 20 I 0 machine. 

13-galactosidase (13-gal) assays were performed by adding extracted cellular 

protein (described above) to 13-gal buffer [100% Z-buffer ( 16 .1 g/1 Na2HP04*7H20, 5.5 

g/1 Na2HP04*H20, 0.75 g/1 KCI and 0.246 g/1 MgS04*7H20 , pH 7), 0.27% 13-

mercaptoethano l (Sigma) and 4 g/1 ortho-Nitrophenyl-(3-galactoside (S igma)], incubating 

at 37°C, stopping the reaction with I molar Tris (pH II) and reading the absorbance ( 415 

nanometers) on a Bio-Rad Model 3550 Microplate Reader. Luciferase activ ity of an 

empty well was subtracted and adjusted luciferase activity was normalized relative 13-gal 

activity. 

3. 2.10 Chromatin immunoprecipitation 

MCF7 cells were seeded and hormone deprived as described earlier (Section 

3.2.2). Cells were transfected with wildtype or mutant hPYG0 2 promoter construct in 
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cases where binding to these reporter constructs was assessed. Otherwise cells were E2, 

4-0HT and/or FUL treated as described in Section 3.2.2 or treated with RNA interference 

(RNAi) as described in the following sections (Section 3.2.11 and 3.2.12). 

Prote in-DNA complexes were cross-linked with 0.75% formaldehyde for 10m. 

Cross-linking was quenched by adding 125 mM glycine and cells were washed with PBS, 

harvested and re-suspended in lysis buffer [20 mM Tris-HCI (pH 8), 85 mM KCI, 0.5% 

Nonidet P-40] containing protease inhibitors and sonicated 8X fo r I 0 second (s) pulses 

(20%) with 20 s breaks. DNA shearing to the correct s ize was confirmed by running 

samples on agarose gels. The soluble chromatin was collected by centrifugation and the 

supernatants were incubated with 50 J..Ll of protein A or protein G slurry (50% slurry pre­

cleared with I mg/ml bovine serum albumin and 0.4 mg/ml herring sperm DNA and re­

suspended in TE buffer with 0.02% azide) under gentle agitation for 1 hat 4°C. The 

supernatant was transferred to a new tube, and 1-2 ~tg of antibody was added and samples 

were incubated overni ght at 4°C ( I 0 Jll aliquots were removed before antibody addition to 

be used as input controls). Thirty micro liters of 50% pre-blocked protein A or G bead 

slurry was added for I h. The pellets were successively washed 2X for I m in I ml low 

salt buffer [20 mM Tris-HCI (pH 8), 150 mM NaCI, 2 mM Ethylenediam inetetraacetic 

ac id (EDTA), 1% Triton X- 100 and 0.1% SDS] , I ml high salt buffer [20 mM Tris-HCI 

(pH 8), 500 mM NaCI, 2 mM EDTA, I% Triton X- 1 00 and 0.1 % SDS], 1 ml LiCI 

buffer [20 mM Tris-HC I (pH 8), 250 mM LiCI, I mM EDT A, 1% Nonidet P-40 and 1% 

Na-deoxycholate] and I ml TE buffer [10 mM Tris-HC I (pH 8) and I mM EDTA]. 

Protein:DNA complexes were eluted in 190 f.d elution TE buffer containing I% SDS for 
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30m, and the cross-links were reversed by overnight incubation at 65°C. Samples were 

equilibrated to room temperature and incubated first with I ).!1 of 10 mg/ml RNaseA for 

15 mat 37°C and then with 8 ).!1 Tris-HCI (pH 6.5), 4 ).!1 EDTA (500 mM) and 1 ).!1 of I 0 

mg/ml Proteinase K for I h at 45°C. DNA was extracted using the DNeasy Tissue Kit 

(250) (Qiagen) and eluted in 50 ).!1 of dH20 . Promoter occupancy was assessed by Q-PCR 

as described in Section 2.2.9. Antibodies used for immunoprecipitation and primer 

sequences for amplification are listed appendix Table 6.2 and appendix Table 6.1 , 

respectively. 

3.2.11 RNA interference 

The ELF-I directed siRNA (siELFI) and the non-target control siRNA (siNTC) 

used were previously described (Andrews et al., 2008). An SPl specific siRNA (siSP1) 

o ligonucleotide was synthesized by Dharmacon according to the sequence in Abdelrahim 

et al. (Abdelrahim et al., 2002). Oligonucleotide sequences are listed in appendix Table 

6.1. 

3. 2.12 siRNA transfections and rescue assays 

Cells were seeded in six well plates and forward transfected with siRNA 

oligonucleotides at final concentrations of 10-25 nM using Lipofectamine RNAiMAX 

(Invitrogen) as per the manufacturer's instructions. 

In rescue assays, cells were additionally transfected with I ).!g per well of the 

pCS2+ or pCS2+ELF I expression vectors I d after the siRNA transfection as described 
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earlier (Section 3 .2.11) using Lipofectamine with Plus Reagent (Invitrogen) as per the 

manufacturer' s instructions. Ce lls were harvested 3d after seeding. 

3. 2.13 Image acquisition and densitometry analysis 

Performed as described earlier (Section 2.2.11 ). 

3. 2.14 Statistical analysis 

Performed as described earlier (Section 2.2.12). 
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3.3 Results 

3.3.1 hPygopus2 protein expression in breast cancer cell lines 

The relative expression of hPYG02 protein in a variety of ERa- and ERa+ BrCa 

cell lines was assessed by immunoblot. The status of the ERa- (BT-20, MDA-MB-157, 

MDA-MB-231 and SK-BR-3) and ERa+ (BT-474, MCF7, ZR-75-1 and T-470) cell 

lines was confirmed by blotting for ERa. hPYG02 protein is detected as two 

differentially migrating bands, possibly identifying two post-translationally modified 

isoform s. Its expression was consistently higher in the ERa+ cells relative to the ERa­

cells (Figure 3.4). The re lative expression of SP I, an important ERa interacting factor, 

was a lso measured. SPI protein leve ls were lowest in MDA-MB- 157 cells, slightly 

higher in MDA-MB-23 1 cells and highest and fairly uniform in the remainder of the cell 

lines. These observations suggested that hPYG02 exhibits higher expression in ERa+ 

relative to ERa- BrCa cells. 

3. 3. 2 17 {3-estradiol induces hPygopus2 in Estrogen receptor alpha positive breast cancer 

cell lines 

The higher levels of hPYG02 observed in ERa + cells suggested that its 

expression may be modulated/enhanced by the ERa ligand, 17(3-estradiol (E2) . The 

effects of E2 on hPygopus2 expression were evaluated in three BrCa cell lines. The 

MCF7 line was utilized as a model for hormone dependent BrCa, given that several E2 
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Figure 3.4 Expression analysis of hPYG02 in ERa+ and ERa- BrCa cell lines. 

Expression levels of hPYG02, ERa and SP I protein as measured by immunoblot in a 

panel of BrCa cell lines. f3-Actin was used as a loading control and molecu lar weight is 

expressed in kDa. 
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responsive target genes were characterized in these cells. The MC2 cell line is derived 

from MDA-MD-231 cells (ERa-) that were stably transfected with wildtype ERa eDNA 

under control of the CMV promoter and therefore constitutively expressed (Levenson and 

Jordan, 1994). I elected to use this cell line so that ERa expression within and between 

treated cells would remain uniform. VC5, the negative control cell line, was generated by 

stably transfecting MDA-MB-231 cells with an empty vector and therefore remains ERa­

. Cell lines generated by the same methodology were extensively characterized 

previously (Levenson and Jordan, 1994). I measured the expression of a selection of 

genes (appendix Figure 6.1) to confirm the authenticity of the MC2 and VC5 cell lines. 

MCF7, MC2 and VC5 cells were grown in the absence of E2 for 3d fo llowed by 

either treatment with Et or I nM E2. mRNA levels of hPYG02 and Cathepsin D (CTSD), 

a well-established E2 responsive gene (Shang et al. , 2000), were measured after 0.5, I, 4, 

8 and 24 h by Q-PCR (Figure 3.5 A, C, E). hPYG02 mRNA expression was slightly 

higher (2.1-3.9 fold, respectively) after 30m of E2 treatment in the ERa+ cell lines, 

relative to cells treated with the Et control (which was set to one) for the same time point. 

hPYG02 mRNA levels peaked (9.3 fold, p<O.OI , in MCF7 and 11.9 fold , p=0.012, in 

MC2) after 4 h and were still higher than Et treated cells after 1 d. The expression of 

CTSD followed the same trend but exhibited a higher overall induction (5 .1 -7.6 fold after 

30m, 18-21 .9 fold at the 4 h point and 2.2-9.2 fold after I d), which is consistent with 

previous observations (Levenson and Jordan, 1994; Krishnan et al. , 1994; Shang et al., 

2000). 
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Figure 3.5 Expression analysis of hPygopus2 in ERa+ and ERa- BrCa cells lines 

after E2 exposure. 

Expression levels of hPYG02 and CTSD mRNA as analyzed by Q-PCR in MCF7 (A), 

VC5 (C) and MC2 (E) cell lines after treatment with either Et or E2 for indicated time 

points. mRNA levels were normalized to ~Actin and set to I in the 30m Et treated 

samples and adjusted accordingly for other time points. Express ion levels of hPYG02, 

CTSD and ERa protein as measured by immunoblot in MCF7 (B), VC5 (D) and MC2 

(F) cell lines after treatment with either Et or E2 for indicated time points. f3-Actin was 

used as a loading control and molecular weight is expressed in kDa. (G) Expression 

levels of hPYG02 mRNA as analyzed by Q-PCR in MDA-MB-231 cells after mock, 

empty vector or ERa expression vector transfection and treatment with e ither Et or E2 for 

I h. mRNA levels were normalized to ~Actin and set to I in the mock Et treated sample 

and adjusted accordingly for other time po ints. (H) Express ion levels of hPYG02 protein 

was measured by immunoblot in MDA-MB-231 cells after mock, empty vector or ERa 

expression vector transfection and treatment with either Et or E2 for 6 h. Bars represent 

standard dev iation. S ignificant changes (p<0.05) in expression, relative to the 

contro l/untreated sample (c), are indicated by an asterisk(*), while non-significant 

changes (p>0.05) are indicated by equal ity sign (=). f3-Actin was used as a loading 

control and molecular weight is expressed in kDa. 
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Changes in hPYG02 protein levels were assessed after I, 4, 8, and 24 h of E2 

treatment by immunoblot (Figure 3.5 B, D, F). In MCF7 cells, there was a 4 fo ld increase 

after 8 h (p=0.036) and a 6 fold increase after I d (p=0.02 1 ). In MC2 cells, there was a 

noticeable increase after 4 h (p=0.043), which was maintained after 8 h (p=0.04l ) and 

peaked after I d (p=0.025). Induction of CTSD prote in followed a similar trend in both 

these cell lines. I specifically focused on the levels of preprocathepsin D because this is 

the only product transcribed and the first product to be translated. 

There was no significant change in hPygopus2 and Cathespin D mRNA and 

protein levels after E2 treatment in VC5 cells, although some minor variability was 

observed. Expression of ERa in the appropriate cells lines was confirmed by immunoblot 

and there was also no change in its expression after any treatment as expected (Shang et 

al., 2000). 

MDA-MB-231 cells transiently transfected with ERa for I d and treated with I 00 

nM E2 for I and 6 h displayed s imilar inductions of hPygopus2 mRNA and protein, 

respectively (Figure 3.5 G and H). These results suggested that hPygopus2 mRNA and 

protein levels are elevated by 17f3-estrad io l in ERa+ BrCa cells. 

3.3.3 17(J-estradiol induction ofhPygopus2 does not require the E74-likefactor I 

The correlation between ERa and hPYG02 expression coupled with the 17f3-

estradiol mediated enhancement of hPygopus2 led me to examine the mechanism of 

ERa- mediated hPygopus2 expression. As we have previously shown the ELF I 
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transcription factor is able to induce hPygopus2 expression (Andrews et al., 2008), I 

examined if E2 induction of hPYG02 required ELF I. E2 could potentially indirectly 

induce hPYG02 through ELF! by transcribing CCND, the translated product of which 

would complex with CDK4/6 to phosphorylate RB and release ELF I. 

To establish that ELF I (specifically) is not required for E2-med iated induction of 

hPYG02, I treated cells with E2 after either ELF! knockdown by RNAi or ELF I 

overexpression by transient transfection. hPYG02 and ELF I prote in expression was 

measured by immunoblot. 

siELF I effectively reduced ELF I and hPYG02 protein levels in MCF7, VC5 and 

MC2 cells lines (Figure 3.6 A, 8, C). In contrast, E2 treatment after ELF I knockdown 

enhanced hPYG02 expression in MCF7 and MC2 cell lines while having no effect on 

hPYG02 expression in VC5 cel ls, relative to the Et control. 

Overexpression of ELF I caused an obvious increase in both ELF I and hPYG02 

expression levels (Figure 3.6 D, E, F). E2 treatment resulted in increased hPYG02 levels 

relative to the Et control in both empty vector and ELF I overexpressed samples in MCF7 

and MC2 cell lines. ELF I overexpression increased hPYG02 protein levels in 

VC5 cells but was not further increased by E2 treatment. 

To assess if E2 induces hPYG02 directly, I treated BrCa cells w ith the protein 

synthesis inhibitor cyclohexamide (CHX) prior to adding E2. CHX treatment prevents the 

translation of any potential intermediate proteins thereby allowing me to determine if 

hPygopus2 expression is an immediate early response to E2. 
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Figure 3.6 The requirement of ELFl in E2-mediated enhancement of hPygopus2 in 

ERa+ and ERa- BrCa cell lines. 

Expression levels of hPYG02 and ELF I protein as measured by immunoblot after 

treatment with Et or E2 and treatment with ELFl directed siRNA or a non-target control 

siRNA in MCF7 (A), VC5 (B) and MC2 (C) cel l lines. Expression levels of hPYG02 and 

ELF I protein as measured by immunoblot after treatment with Et or E2 and 

overexpression of ELF I or an empty vector control in MCF7 (D), VC5 (E) and MC2 (F) 

cell lines. J3-Actin was used as a loading control for the immunoblots and molecular 

weight is expressed in kDa. Expression levels of hPYG02 mRNA as analyzed by Q-PCR 

after I h of Et or E2 treatment after pretreatment with cyclohexamide (CHX) for 2 h in 

MCF7 (G), VC5 (H) and MC2 (I) cell lines. mRNA levels were normalized to ~Actin 

and set to 1 in the Et-Et treated sample and adjusted accordingly for the other samples. 

Bars represent standard deviation. Significant changes (p<0.05) in expression, relative to 

the control/untreated sample (c), are indicated by an asterisk(*), while non-significant 

changes (p>0.05) are indicated by equality sign (=). (J) Schematic displaying potential 

pathways by which E2-ERa can indi rectly and directly induce hPygopus2 expression . 
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The effects of E2 after CHX treatment were assessed by Q-PCR using MCF7, 

VC5 and MC2 BrCa cells (Figure 3.6 G, H, 1). Pretreatment with CHX for 2 h did not 

significantly alter hPYG02 mRNA levels relative to the Et control in any of the cell lines. 

In MCF7 and MC2 cells, I h of E2 treatment increased hPYG02 mRNA by 8.7 fold 

(p<O.O I) and 11.54 fold (p<O.O I), respectively, relative to the control and CHX 

pretreatment did not prevent this increase (8 and 9.7 fold, respectively, p<O.OI for both). 

E2 treatment had no effect on hPYG02 levels in VC5 cells. The induction of hPYG02 by 

E2 in ERa+ cells, despite pretreatment with CHX, suggested that hPYG02 may be a 

direct E2 target gene in these cells. 

The foregoing results demonstrating E2 induction of hPYG02 protein without the 

requirement of translation of an intermediary product or the requirement for ELF I in E2 

responsive cell lines suggested that E2 induction of hPYG02 occurred by a mechanism 

independent of ELF I, potentially involving ERa (Figure 3.6 J). 

3.3.4 Four-hydroxytamoxifen andfulvestrant prevent 17 ~estradiol mediated induction of 

hPygopus2 

As ERa, is the best characterized mechanism by which E2 induces gene 

expression, we examined the requirement of ERa in E2-mediated hPYG02 induction. To 

do this I utilized two ERa antagonists (4-0HT and FUL), both of which compete with E2 

for occupation of the ligand binding site on ERa (FUL additionally induces ERa 
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degradation) and thereby prevent E2 directed gene activation through ERa. Thus, I 

assessed the ability of 4-0HT and FUL to prevent E2-mediated induction of hPYG02. 

MCF7, MC2 and VC5 cells were hormone deprived for 3 d and then pretreated 

with DMSO, 4-0HT and FUL for 6 h. E2 was added to all samples at the 6 h mark and 

hPYG02 and CTSD mRNA level s (as measured by Q-PCR) were measured at 0 (before 

E2 treatment, control), 0.5, I , 4, 8 and 24 h. In the control sample (0 h), 4-0HT and FUL 

treatment did not s ignificantly change hPYG02 and CTSD mRNA levels relative to the 

DMSO pretreatment (which was set to one) (Figure 3.7 A, C, E). For the rema inder of the 

time po ints, E2 induction of hPYG02 and CTSD mRN A in the DMSO pretreated samples 

was s imilar to the E2 induction in MCF7 and MC2 cells observed earlier (Figure 3.5 A 

and C). However, pretreatment with either 4-0HT or FUL effectively prevented E2-

mediated induction of both hPYG02 (p>0.05) and CTSD mRNA, maintaining their levels 

to that of the control (DMSO, time 0). This was observed in both ERa + MCF7 and MC2 

8rCa cell lines. This leve l of CTSD induction in these experiments is consistent with 

observed in previous studies (Levenson and Jordan, 1994 and Krishnan et a l. , 1994 ). 

The effects of 4-0HT and FUL pretreatment on hPYG02 protein levels were also 

evaluated 1, 4, 8, and 24 h after the addition of E2 by immunoblot. In the I h control 

sample, the hPYG02 protein levels were unaffected by any of the treatments (Figure 3 .7 

8 , D, F). The induced expression of hPYG02 protein by E2 in the DMSO pretreated 

samples was similar to the E2 induction observed earlier (Figure 3.5 8 and F). In MCF7 

cells, the E2-mediated induction at 4 and 8 h was effectively inhibited by 4-0 HT and 

3--4 1 



Tzenov,201 3 

Figure 3. 7 Expression analysis of hPygopus2 in ERa+ and ERa- BrCa cells lines 

treated with E2 after pretreatment with 4-0HT and FUL. 

Expression levels of hPYG02 and CTSD mRNA as analyzed by Q-PC R in MCF7 (A), 

VC5 (C) and MC2 (E) cell lines after treatment with either Et, or E2 after pretreatment 

with DM SO, 4-0HT or FUL for indicated time po ints. mRNA levels were norma lized to 

~Actin and set to I in the 30m Et and DMSO treated samples and adjusted accordingly 

for other t ime points. Bars represent standard dev iation. S ignificant changes (p<0.05) in 

expression, re lative to the contro l/untreated sample (c), are indicated by an asterisk(*), 

while non-significant changes (p>0.05) are indicated by equality sign(=). Expression 

levels of hPYG02, CTSD and ERa protein as measured by immunoblot in MCF7 (B), 

VC5 (B) and MC2 (F) cell lines after treatment with either Et or E2 after pretreatment 

with DMSO, 4-0 HT or FUL for indicated time poi nts. 13-Actin was used as a loading 

contro l and molecular weight is expressed in kDa. 
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FUL pretreatment. There was actually a slight decrease in hPYG02 protein levels in the 

I d treated sample. A consistent trend of induction was observed with MC2 cells. 

As a pos itive control, I measured the protein levels of ERa. Consistent with 

previous results (Pink and Jordan, 1996), E2 and 4-0HT treatment did not significantly 

alter the level of ERa. However, as expected (Howell , 2006), FUL treatment resulted in 

lowered ERa levels at the I and 4 h time points and ERa was completely absent after 8 

h. In the MC2 line there was no significant reduction of ERa prote in levels, presumably 

due to its constitutive expression, but there was a reduction of ERa translocation to the 

nucleus (appendix Figure 6.2), as expected (Howell , 2006). 

Consistent with the lack of ERa in the VC5 cell line, ne ither the 4-0HT or FUL 

pretreatment nor the E2 treatment had any effect on hPygopus2 mRNA or protein levels 

in these cells. Together, these results suggest that ERa is required for the E2-mediated 

induction of hPygopus2. 

3.3.5 Four-hydroxytamoxifen andfulvestrant reduce hPygopus2 levels 

The requirement of ERa for E2 induced hPygopus2 expression was tested using 

an alternate method. MCF7, MC2 and VC5 cells were grown in low serum (I% FBS) 

conditions and treated with Et (control , which was set to I 00% for the 30m time point), 

4-0HT or FUL. hPygopus2 mRNA (as measured by Q-PCR) and protein (as measured by 

immunoblot) levels were assessed at various time points (Figure 3.8 A, C, E and B, D, F, 

respectively). Significant reductions in hPYG02 mRNA levels after 4-0HT 
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Figure 3.8 Expression analysis of hPygopus2 in ERa.+ and ERa.- BrCa cells lines 

treated with 4-0HT and FUL. 

Expression levels of hPYG02 and CTSD mRNA as analyzed by Q-PCR in MCF7 (A), 

VC5 (C) and MC2 (E) cell lines after Et, 4-0HT or FUL treatment for indicated time 

points. mRNA levels were normalized to ~Actin and set to I in the 30m Et treated 

samples and adjusted accordingly for other time points. Bars represent standard 

deviation. Significant changes (p<0.05) in expression, relative to the control/untreated 

sample (c), are indicated by an asterisk(*), while non-sign ificant changes (p>0.05) are 

indicated by equality sign(=). Expression levels of hPYG02 protein as measured by 

immunoblot in MCF7 (B), YC5 (B) and MC2 (F) cell lines after treatment with Et, 4-

0HT or FUL for indicated time points. 13-Actin was used as a loading control and 

molecular weight is expressed in kDa. 
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and FUL treatments were observed after 4 h for MCF7 cells and after 8 h for MC2 cells 

(less than 58%, p<O.OI , for 4-0HT and less than 53%, p<O.O I, fo r FU L) relative to the 

control samples at these time points. 

A significant reduction in hPYG02 protein leve ls, relative to the control, was not 

observed until the I d time point after 4-0HT or FUL treatment in the ERa + cell lines. 

This may have been due to the long half-life of hPYG02 (approx imately 40 h, data not 

shown). While there was some variability in hPygopus2 mRNA and protein levels in the 

YC5 cells, there was ne ither a consistent nor a significant reduction in response to 4-0HT 

and FUL. These findings suggested that E2 induction of hPYG02 is mediated by ERa . 

3. 3. 6 The Estrogen receptor alpha and SP 1 transcription factor bind to the hPygopus2 

promoter 

The requirement of ERa in the 17f3-estradiol directed induction of hPYG02 and 

the relatively rapid rate of its transcription suggested that ER induction of hPYG02 

occurs through one of two ways. T hese include ERa stimulation via activation of 

kinases/phosphatases, w hich activate downstream transcription factors, or more directly 

by the binding of ERa to the hPYG02 gene promoter. To initially rule out or inc lude 

ERa as a promoter-binding candidate, I performed an in silica analysis of a 1494 bp 

segment of hPYG02 promoter us ing Transcription Element Search System software. 

Both direct and indirect ERa binding was considered by paying particular attention to 

ERE palindromes, ERE half-sites, GC-boxes (SP I binding sites), AP-I and NFKB 
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binding sites. While there were no putative AP-1 or NFKB binding sites, however, there 

were six ERE half-sites and twenty GC-boxes (Figure 3.9 A). 

Due to the uniform distribution ofthese sites, I decided to narrow the region by 

us ing several previously generated luciferase reporter constructs (Andrews et al. , 2008). 

The largest of these constructs contains the 1494 bp region upstream of the hPYG02 

transcription start site (pGL3-1494) and the rest are progressively smaller by 

approximately 300 bp at a time (pGL3-1143, -829, -531 and -225) (Figure 3.9 A). The 

negative control was a reporter vector that did not contain any promoter DNA (pGL3-

bas ic). I hypothesized that overexpression of these reporter constructs followed by E2 

stimulation would identify the E2 responsive/sensitive region(s) within the hPYG02 

promoter. 

In order to induce any quantifiable E2-mediated promoter activity from a reporter 

construct, ERa. must be coexpressed (Miralles et a l. , 1994). To be thorough, I 

coexpressed di fferent combinations of expression vectors with each reporter construct. 

These combinations included an empty vector contro l, ERa. and SP I alone and ERa. and 

SP I together. 

When the reporter constructs were coexpressed with each combination of 

expression vectors in MCF7 cells, promoter activity was observed for two reporter 

constructs relative to the empty vector control, pGL3-1494 and pGL3-53 1 (Figure 3.9 B). 

In both cases, promoter activity was slightly increased (less than 2.1 fo ld) by 

overexpression of SP I or ERa. alone, relative to the empty vector control. T he highest 

promoter activity was obtained when both ERa. and SPI were coexpressed (4.2 fold , 
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p=0.032) and increased even more when supplemented with £ 2 ( I 0.2 fold , p<O.OI, for 

pGL3-1494 and 4.3 fold, p=0.035 , for pGL3-53 1 ). The level of luciferase activity 

observed here is w ithin the range observed in previous studies (Krishnan et al. , 1994). 

While this experiment excluded the £ 2 non-responsive regions, it did not 

distinguish between the two responsive regions. Furthermore, while it did not 

discriminate between rapid effects or direct ER binding, but it did highl ight the 

importance of SP I in addition to ERa. 

The synergistic induction of hPYG02 promoter activity when ERa and SPI were 

coexpressed, especially in the presence of E2, supported the idea that ERa may bind to 

the hPYG02 promoter in a complex with SP I. I performed ChiP assays to determine the 

presence of ERa and SP I at the hPYG02 promoter. Hormone deprived MCF7 cel ls were 

treated with E2 and processed for ChiP analysis after 45 m (established as time point 

during which ER displays maximal binding) (Shang et al. , 2000). Protein complex cross­

linked DNA samples were immunoprecipitated with Immunoglobulin G (lgG, control 

antibody), ERa or SPI antibodies. DNA isolated from the complexes were subjected to 

Q-PCR to test for amplification of each of the five regions within 1494 bp promoter 

DNA. The lgG control for the -53 1 to -225 segment was set to I for comparative 

purposes. 

Both ERa and SP I displayed promoter occupancy of the -531 to -225 region in £ 2 

treated MCF7 cells (Figure 3.9 C). ERa and SP I bound 9.3 fo ld (p=O.O I) and 18.5 fo ld 

(p<O.O I) higher, respective ly, than the lgG contro l for this region. As a negative control, I 
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Figure 3.9 ERa and SPl binding to the hPYG02 promoter in MCF7 cells. 

(A) Schematic displaying ERE half-sites and GC-boxes in hPYG02 promoter and the 

relati ve lengths of the progressive luciferase constructs. (B) Re lative induction of each 

hPYG02 promoter construct after transfection of ERa and SPI expression vectors and Et 

or E2 treatment for I d. Luciferase activity was normalized to !3-gal activity and displayed 

as fo ld change. (C) ChiP assays measuring ERa and SP I occupancy of different 

hPYG02 promoter regions after E2 treatment for I h. Promoter occupancy was analyzed 

by Q-PC R and norma lized to IgG in the -1494 to -11 43 region and the rest were adjusted 

accordingly. ERa and SPI binding to hPYG02 exonic region and CTSD promoter was 

a lso ana lyzed. Bars represent standard deviation. Significant changes (p<0.05) in 

expression, re lative to the control/untreated sample, are indicated by an asterisk(*), whi le 

non-significant changes (p>0.05) are indicated by equa lity sign (=). 
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confirmed that ERa and SP I binding to a hPYG02 exonic region was not significantly 

higher than the lgG control. As a positive control, I confirmed that the strength of ERa 

and SP I binding to a previously established ERa-SP I target gene, CTSD, (Castro-Rivera 

et al. , 200 I) was within the expected range. 

These findings suggested that 17P-estradiol stimulation of hPygopus2 expression 

occurs as a result of ERa and SP I occupancy of the hPYG02 promoter within the -53 1 to 

-225 region. These results are consistent with the region identified by the luciferase assay 

(Figure 3.9 B) 

3.3. 7 An estrogen response element half-site and a GC-box are required for Estrogen 

receptor alpha and SP I transcription factor binding 

The binding of ERa and SPl to the -53 1 to -225 segment of the hPYG02 

promoter clearly highlighted their importance in 17P-estradiol mediated induction of 

hPYG02. However, there is one ERE half-site and eight GC-boxes within this region. 

Considering that ERa can bind directly or be indirectly tethered to DNA through SP I , 

any of these s ites may be responsible for mediating the interaction. 

To determine which sites are required for ERa and SPl binding to the hPYG02 

promoter, I changed the sequence ofthe only ERE half-site (at the -331 bp location) and 

the highest predicted GC-box (at the -356 bp location) by site-directed mutagenesis. 

These mutations, which have been shown to render these s ites non-functional (Krishnan 

et a l. , 1994), were made in three combinations in the pGL3-53 1 reporter construct (mut-
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ERE, mut-GC, mut-ERE+GC) (Figure 3.10 A). The negative control was the pGL3-basic 

reporter construct (no promoter sequence) and the positive control was the wildtype 

pGL3-531 reporter construct. 

M CF7 cel ls deprived of hormones were co-transfected with both ERa and SP 1 

expression vectors and each of the reporter constructs and then treated with E2 for I d. 

Promoter activity of the wildtype pGL3-531 reporter construct was sim ilar to that 

reported earlier (Figure 3.9 B). Mutation of either the ERE half-site or GC-boxes caused 

comparable and significant reductions in promoter activity. The pGL3-531 mut-ERE 

construct promoter activity was reduced to just over half (54.5%, p<O.Ol ), while the 

pGL3-531 mut-GC construct was reduced to just under half (43 .8%, p<O.O I), relative to 

the wildtype vector (Figure 3.10 B). Interestingly, the resulting reporter activity of the 

pGL3-531 mut-ERE+GC construct was not significantly different from the empty vector 

control (pG L3-basic ). 

These results suggested that both the ERE half-site (at -331) and the GC-box (at -

356) are required for maximal activity of the -531 to -225 segment of hPYG02 promoter 

and that the contribution of each is equal , but not dependent on the other. Add itionally, 

the observation that rendering both sites non-functiona l removes al l E2 responsiveness of 

this region suggested that no other factors (besides ERa and SP I) are involved in the E2 

directed activation of this hPYG0 2 promoter region. This thereby excludes the roles of 

factors that would be activated through E2-mediated nongenom ic signalling. 
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Figure 3.10 Identification of the required ERE half-site and GC-box in the hPYG02 

promoter in MCF7cells. 

(A) Sequence of putative required ERE half-site and GC-box in hPYG02 promoter and 

site directed mutated bases. (B) Relative induction ofwildtype and mutated hPYG02 

pGL3-53 1 reporter constructs after transfection of ERa and SPI expression vectors and I 

d of E2 treatment. Luciferase activity was normalized to J3-gal activity and displayed as 

relative luciferase units. (B) ChiP assays measuring transfected ERa and SPI occupancy 

to the pGL3-531 wildtype and mutated hPYG02 promoter reporter vector after E2 

treatment. Promoter occupancy was analyzed by Q-PCR and normalized to lgG in the 

pGL3-53 1 basic region and the remaining samples were adjusted accordingly. Bars 

represent standard dev iation. Significant changes (p<0.05) in expression, relative to the 

control/untreated sample (c), are indicated by an asterisk(*), while non-s ignificant 

changes (p>0.05) are indicated by equa lity sign (=). 
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The requirement of both the ERE half-site and the GC-box for maximal promoter 

activity and their equal contribution suggested that not only do both ERa and SP I bind 

directly to these DN A sites, but that their binding is independent of one another. 

To assess the requirement of the ERE half-site and the GC-box for the binding of 

ERa and SPI , respective ly, and to determine if the binding of one factor is independent 

of the other, I performed ChiP assays using the site-mutated pGL3-531 reporter 

constructs. Hormone deprived MCF7 cells were cotransfected with one ofthe pGL3-531 

mutated reporters (mut-ERE, mut-GC, mut-ERE+GC) and the expression vectors 

(pcERa, pcSP I or both), treated with E2, processed for ChiP analysis and 

immunoprecipitated with lgG, ERa and SP I antibodies. Specific regions of the isolated 

DNA were amplified and measured by Q-PCR. The negative and positive contro ls were 

the pGL3-basic and pGL3-531 reporter constructs, respectively. 

Binding of ERa and SPI to the pGL3-531 was easily detectable at 16.4 fo ld 

(p=O.O 18) and 26.1 fold (p<0.01 ), respectively, above the lgG control (Figure 3.1 0 C). 

Mutation of the ERE-ha lf site in the hPYG02 promoter resulted in a 6.3 fo ld (p=0.033) 

reduction in ERa promoter occupancy relative to occupancy in the w ildtype vector, 

rendering it not significantly different from the lgG control. The mutation in the pGL3-

mut-ERE reporter construct did not affect SP 1 binding. Site-d irected mutagenesis of the 

GC-box caused an 8.1 fold reduction (p=0.026) in SP I binding relative to that in the 

wildtype construct and made it non-significantly different from the lgG control. ERa 

binding to the pGL3-mut-GC reporter construct, a lthough slightly reduced, was not 

s ignificantly different than ERa binding to the pGL3-53 1 reporter construct. However, 
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when both the ERE half-site and the GC-box were rendered non-functional , the binding 

either of ERa or SPI was not s ignificantly higher than the lgG control. 

These findings suggested that not only do both ERa and SPI bind directly to the-

531 to -225 region of the hPYG02 promoter but also that their binding is specifically and 

solely mediated by the ERE half-s ite at -33 1 and the GC-box at -356. Furthermore, these 

results suggested that binding of ERa is independent of SP I and vice versa. 

3. 3. 8 Inhibition of Estrogen receptor alpha does not prevent SP I transcription factor 

binding to the hPygopus2 promoter and vice versa 

The foregoing results suggested that ERa and SPI binding to the hPYG02 

promoter is not dependent on the binding of the other factor. The specific mechanism of 

ERa and SPI binding (direct or tethering) to a target gene promoter is highly debated and 

difficult to decipher. To gain a better understanding of ERa and SP I dynam ics and 

requirements at the hPYG02 promoter, I specifically targeted each factor and 

subsequently assessed how its promoter binding, and the promoter binding of its partner, 

was affected. 

ERa agonists were used to activate ERa and induce promoter binding whi le 

pretreatment with antagonists was used to inactivate and block the effects of E2. MCF7 

ce lls were pretreated with DMSO, 4-0HT or FUL following growth in hormone free 

media for 3 d. After the 6 h, DMSO pretreated cells were treated with Et or E2 and 4-

0HT and FUL pretreated cells were treated with E2. Cell samples were col lected after 
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various time points, processed for ChiP analysis and the binding of IgG, ERa and SP1 

was quantified on both the hPYG02 and CTSD promoters by Q-PCR. 

The association of ERa with the hPYG02 promoter was unaffected by Et 

(control) and was not significantly different from that of IgG (Figure 3.11 A). E2 

treatment resulted in a significant increase (3.2 fo ld, p=0.029) in ERa binding to the 

hPYG02 promoter after 15 m, re lative to the Et control at the same time point. This 

increase peaked ( I 1.4 fo ld) at 30 m and was not significantly different after 1 or 2 h. As 

expected, pretreatment with 4-0HT resulted in virtually the same induction pattern 

(Shang et al. , 2000). Relative to the Et control samples, ERa binding increased (2.5 fold) 

after 15 m, was highest at 30 m (I 0.4 fo ld, p<O.O 1 )) and not significantly different after 1 

and 2 h. As expected (Shang et al., 2000), pretreatment with FUL caused a slight not 

significant increase (1.3 to 2.1 fo ld) in ERa binding to the hPYG02 promoter after 15 

and 30 m and 2 h. The increase after I h was significant (2.6 fold, p=0.042) but was much 

lower than the E2 and 4-0HT-mediated ERa binding at this time point. 

ERa binding to the promoter of the positive control gene, CTSD, followed a 

s imilar pattern to ERa binding to the hPYG02 promoter, except the overall level of 

binding relative to the Et control was higher (Figure 3.11 A). Et treatment had no effect 

on ERa occupancy of the CTSD promoter relative to lgG levels. E2 treatment and 4-0HT 

pretreatment induced ERa promoter binding with a significant increase (5.3 fold) after 15 

m and a peak (20.7 fo ld) was observed after I h in response to both treatments, in relation 

to the Et treatments at these time points. Pretreatment with FUL also caused a slight non­

significant increase after 15 m and the highest level of binding (2.4 fo ld), which was 
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significant, occurred at 30m and 1 h (3.8 and 4.6 fold , respectively). These results are 

consistent with previous findings (Shang et al., 2000) 

The effect of ERa stimulatory and inhibitory ligands on SP I occupancy of the 

hPYG02 and CTSD promoters was also assessed (Figure 3.11 B). Interestingly, SP1 

binding to hPYG02 promoter in the Et control was 8.6 fold (p<O.O I) higher than the IgG 

control and not significantly different between time points. Thus, SP I occupied this 

promoter even in hormone free conditions. Treatment with E2 and pretreatment with 4-

0HT caused a slight increase (between 11 .2 and 15.6 fold) in SP1 promoter occupancy, 

relative to the Et controls, but this increase was not significant for any of the time points. 

SP I promoter binding after FUL pretreatment did not vary from the Et treated samples 

across all time points, but was lower than the E2 and 4-0HT samples. 

The binding of SP I to the CTSD promoter after agonist and antagonist treatment, 

caused the same pattern of binding as to the hPYG02 promoter, except that SPI binding 

to the CTSD promoter was stronger (Figure 3. 11 B). SP1 promoter occupancy was 

significantly higher (between 21.9 and 25.3 fold) than the IgG control in the Et treated 

samples. Both the E2 treatment and the 4-0HT pretreatment caused an increase (between 

34.7 and 39.6 fold and between 29.3 and 3 1.7 fold , respectively) in SPI promoter 

occupancy, but the only significant increases were for the E2 treated samples (all time 

points). Pretreatment with FUL did not significantly affect SPI occupancy ofthe CTSD 

promoter relative to the Et treated samples. 

Consistent results demonstrating increased ERa binding to the hPYG02 promoter 

after E2 and 4-0HT treatment and reduced ERa binding after FUL treatment were also 
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Figure 3.11 Determination of the ERa requirement for SP1 binding to the hPYG02 

promoter in ERa+ BrCa cell lines. 

ChiP assays measuring ERa (A) and SPI (B) occupancy to the hPYG02 and 

CTSD promoter after treatment with E2 , 4-0HT and/or FUL at different time points in 

MCF7 cells. Binding of ERa and SP I to the hPYG02 promoter in MC2 (C and D, 

respectively) and BT-474 (E and F, respectively) after I h of treatment with E2, 4-0HT 

and/or FUL. In all cases promoter occupancy was analyzed by Q-PCR and norma lized to 

IgG in the DMSO+Et sample and adj usted accord ingly in the remainder of the samples. 

Bars represent standard deviation. Significant changes (p<0.05) in expression, relative to 

the control/untreated sample (c), are indicated by an asterisk (*), whi le non-significant 

changes (p>0.05) are indicated by equa lity sign (=). 
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obtained in MC2 and BT-474 cell lines (Figure 3.11 C and E). Additionally, no 

significant change in SP I binding to the hPYG02 promoter was observed after E2, 4-

0HT and FUL treatments in MC2 and BT-474 cell lines (Figure 3.11 D and F). 

These results suggested that treatment with different ERa ligands significantly 

altered the binding of ERa to the hPYG02 promoter. However, the effects that these 

ligands exhibited on SPI binding to the hPYG02 promoter were not significant. 

Furthermore, these results support earlier findings (Figure 3.10 C) that the binding of 

ERa or SPI to the hPYG02 promoter is not dependent on, or significantly affected by the 

binding of SP1 or ERa, respectively. 

To assess what effects total SP1 protein levels have on the binding ofSPI and 

ERa to the hPYG02 promoter, I knocked down SP I in MCF7 cells us ing RNAi . Samples 

were subsequently processed fo r ChiP analysis. Crosslinked DNA was 

immunoprecipitated with IgG, SPI or ERa antibodies and then subjected to Q-PCR to 

amplify hPYG02 promoter sequence. 

Treatment of MCF7 cells (grown in serum supplemented media) with a 

previously published SPI targeting siRNA (siSP I) (Abdelrahim et at., 2002) caused a 

72.8% (p<O.OI) reduction in SPI occupancy ofthe hPYG02 promoter and a 72.7% 

(p<O.O I) reduction in SP I binding to the CTSD promoter, relative to the non-target 

control s iRNA (s iNTC) (Figure 3.1 2 A). Both ofthese reductions in SPI were sign ificant 

and did not a lter ERa binding to either the hPYG02 or CTSD promoters. Consistent 

results demonstrating the ERa occupancy on the hPYG02 promoter in the absence of 

SP I were a lso obtained in MC2 and BT-474 cells (Figure 3. 12 Band C). 
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Figure 3.12 Determination of the SPl requirement for ERa binding to the hPYG02 

promoter in ERa+ BrCa cell lines. 

MCF7 (A), MC2 (B) and BT-474 (C) cells were treated with SP I directed (siSPI ) or non­

target control siRNA (siNTC) and ChiP assays were performed to measure ERa and SP I 

occupancy at the hPYG02 and CTSD promoters after E2 treatment. In all cases promoter 

occupancy was analyzed by Q-PCR and normalized to IgG in the siNTC sample and 

adjusted accordingly in the remainder of the samples. Bars represent standard deviation. 

Significant changes (p<0.05) in expression, relative to the control/untreated sample (c), 

are indicated by an asterisk(*), while non-significant changes (p>0.05) are ind icated by 

equality sign (=). 
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These findings suggested that SP I binding to the hPYG02 promoter depends 

primarily on total protein levels present within cells. Moreover, these results suggested 

that ERa binding to the hPYG02 promoter is not dependent on, or significantly affected 

by, the presence of SP I , as observed earlier (Figure 3.10 C) 

3.3.9 Estrogen receptor alpha and SPJ transcriptionfactor bind to the hPYG02 

promoter through their respective DNA binding domains 

The independent binding of ERa and SP I to the hPYG02 promoter and the 

requirement of both the ERE half-site and the GC-box suggested that promoter binding 

by these factors is mediated by their respective DBDs. 

To evaluate the requirement of the DBDs for the promoter occupancy of these 

factors, I performed ChiP assays using site-directed mutant ERa and SP I expression 

vectors. The nucleotide (and subsequently amino ac id) changes to ERa and SP 1 eDNA 

sequences were specific and critical to the structural composition and DNA binding 

capacity of the DBDs (Saegusa et al. , 1997; DeNardo et al., 2007). 

MCF7 cells deprived of hormones were transfected with different combinations of 

wildtype and mutant expression vectors. These combinations included: wildtype 

(ERa +SP1), ERa DBD mutant (DBM) (ERa-DBM+SP 1), SP I DBM (ERa +SP 1-DBM) 

and both ERa and SP 1 DBMs (ERa-DBM+SP1-DBM). The DNA binding capacity of 

these expression vectors was measured on pGL3-basic (empty construct negative contro l) 

and on pGL3-531 (constructs containing the wildtype ERE half-s ite and GC-box). After 
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transfection, cells were treated with E2 and processed for ChiP analysis. ChiP assays 

were performed using IgG, ERa and SP 1 antibodies and isolated DNA was quantified by 

Q-PCR. The IgG, ERa and SP1 values for the pcERa + pcSP1 sample in pGL3-basic 

were all set to I for comparative purposes. 

No significant binding relative to the IgG control was observed for any of the 

ERa and SP1 expression vectors on the pGL3-basic reporter construct (Figure 3.13 A). 

Overexpression of ERa and SP I caused an I 0.6 fold (p=O.O 15) increase in ERa binding 

and an 19.7 fold (p<0.01) increase in SPI binding to the pGL3-53 1 reporter construct 

relative to the IgG control and was comparable to the binding strength observed earl ier 

(F igure 3.10 C and 3. 12 A). The overexpression of ERa DBM caused a s ignificant 

reduction (77.3%, p<O.O I) in ERa binding, but didn ' t alter SP I binding levels, relative to 

the IgG control. Overexpression of the SP 1 DBM significantly reduced (9 1 %, p<O.O 1) 

SP I promoter occupancy while not influencing ERa binding. The overexpression of both 

ERa and SP I DBMs completely abolished binding and was not significantly different 

from the IgG control. 

Consistent results demonstrating the requirement of the DBDs of both ERa and 

SP1 for occupancy of the hPYG02 promoter were a lso obtained in ERa - cell lines, VC5 

and MDA-MB-468 (F igure 3. 13 Band C). 

These findings are consistent with earlier results demonstrating the independent 

promoter binding of ERa and SP I to the hPYG02 promoter. Add itional ly, these results 
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Figure 3.13 Requirement of the ERa. and SPl DNA binding domains for hPYG02 

promoter occupancy in ERa.+ and ERa- BrCa cell lines. 

MCF7 (A), VC5 (B) and MDA-MB-468 (C) ce lls were transfected with wildtype or DBD 

mutated ERcx. and SP I expression vectors and the ir binding to the pGL3-53 1 hPYG02 

reporter vector o r an empty vector control (pGL3-basic) was measured by ChiP after I h 

of E2 treatment. In all cases promoter occupancy was ana lyzed by Q-PCR and normalized 

to lgG binding to the pGL3-53 1 reporter vector after transfection w ith wildtype ERcx. and 

SPI and adjusted accordingly in the remainder of the samples. Bars represent standard 

deviation. Significant changes (p<0.05) in expression, relative to the control/untreated 

sample (c), are indicated by an asterisk (*), while non-s ignificant changes (p>0.05) are 

ind icated by equality sign (=). 
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suggested that the mechanism by which ERa and SPI bind to the hPYG02 promoter is 

through their respective DBDs. 

3. 3.10 SP 1 transcription factor requirement for hPygopus2 expression and cell 

proliferation in Estrogen receptor alpha negative breast cancer 

The independent binding of SP I to the hPYG02 promoter coupled with its 

requirement via its binding element (GC-box) for maximal hPYG02 promoter activity 

suggested that SP I may play an important role in hPygopus2 expression in BrCa cells. To 

gain some information about the requirement of SP I for hPygopus2 expression, I 

knocked it down using RNAi in MDA-MB-231 (ERa-) cells in addition to MCF7 

(ERa+) cells. The knockdown in ERa- BrCa cells is particularly important as SP I, like 

hPygopus2, is overexpressed in these cells and may be utilized as a therapeutic target. 

Treatment with siSPI effectively reduced SP I protein levels in both MCF7 and 

VC5 cells compared to the non-target control siRNA (siNTC) (Figure 3. 14 A and B). The 

reduction of SP I was associated with a decrease in hPYG02 protein levels while not 

affecting levels of ERa protein in MCF7 cells (Figure 3.1 4 A). These results suggested 

that SP I does indeed play an important role in hPYG02 expression in both ERa+ and 

ERa- BrCa cells. 

The prevalent requirement of SP I in the absence of ERa for the expression of 

hPYG02, suggested that SPI may similarly exhibit continued regulation of other E2 

responsive "ERa-SP I" target genes in ERa- BrCa cells. 
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To assess the requirement of the SP I transcription factor in the stimulation of 

"ERa -SP I" target genes, I knocked down SP1 in MDA-MB-231 cells using RNAi. 

Genes were selected based on the mechanism by which ERa and/or SP1 bind to their 

promoters and categorized into four groups: SP1 (ERa indirect binding via SP I), ERa­

SP1 (direct binding ofboth ERa and SPI), multiple (combination of both direct and 

indirect binding) and ERa (ERa dimer binding). I also included two cell cycle 

progression genes to understand what effect SP1 protein knock down was having on cell 

proliferation. mRNA was extracted from siRNA treated cells and gene expression was 

analyzed by Q-PCR. 

Treatment of MDA-MB-231 cells with siSPl caused a reduction in three of the 

five SPI group genes (Figure 3.14 C). Cyclin D, Epidermal growth facto r receptor and 

Adenosine deaminase a ll displayed significant reductions in mRNA expression after 

siSP I treatment relative to the s iNTC control. While expression sl ightly decreased for 

Heat shock factor binding protein I due to siSP I treatment, it was not significantly 

different from the control. Unexpectedly FOS mRNA exhibited increased expression. A ll 

the genes in the ERa -SP1 group (RARA) and the multiple group (CTSD and TGFA) were 

sign ificantly reduced by treatment with siSP I. As expected, Telomerase reverse 

transcriptase, the gene in the ERa dimer group was not affected by s iSP I treatment. SP I 

knockdown also caused a significant increase in the mRNA expression of the p 21 

(CDKNJA) and a significant decrease in the mRNA levels ofthe Cel l division cycle 25 

homologue A. 
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Figure 3.14 Requirement of SPl for the expression of ERa target genes and cell 

cycle progression in ERa- BrCa cells. 

Expression leve ls ofhPYG02, SPI and ERa protein as measured by immunoblot in 

MCF7 (A) and VC5 (B) cell lines after treatment with an SPI targeting siRNA or a non­

target control siRNA. 13-Actin was used as a loading control and molecular weight is 

expressed in kDa. (B) Expression levels of SP I and/or ERa target gene (described in 

text) mRNA levels as analyzed by Q-PCR in VC5 after SP I knockdown. mRNA levels 

were normalized to /)-Actin and set to one in siNTC treated cells treated samples and 

adjusted accordingly for other time points. (D) VC5 cells were treated with SP I targeting 

siRNAs or the non-target control s iRNA and processed for cell cycle analysis. 
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These results suggested that SP I modulates the activity of several GC-box 

containing genes, like hPYG02, in ERa- BrCa cells despite the absence of ERa. 

Additionally, the modulation of cell cycle genes like CCND, p21 and cell division cycle 

25 homologue A by siSP 1 suggested that SP I may play a role in proliferation of ERa­

cells like it has been shown to do in MCF7 ERa+ cells (Lu and Archer, 20 I 0). 

The finding that SP I was required for the expression of several cell cycle genes 

and hPygopus2, a protein that has repeatedly been shown to be required for cancer cell 

proliferation (Popadiuk et al. , 2006; Andrews et al. , 2007, Wang et al. , 2010, Chen et al. , 

20 II ; Watanabe et al. , 20 13), suggested that SPI knockdown would result in cell cycle 

arrest ofMDA-MB-231 cells. MDA-MB-231 cells were therefore transfected with siSP1 

and the effects on cell proliferation, relative to siNTC, were analyzed by flow cytometry. 

When transfected with siNTC, the proportion of cells that accumulated in G I was 

61.8%, but appreciably increased to 75.8% after siSP1 treatment (Figure 3.14 D). The 

increase was not significant but consistent with the findings of others in these cells 

(Abdelrahim et al. , 2002). The increase of cells in G 1 was accompanied by a significant 

decrease in the percentage of cells inS-phase (p=0.037).These results suggested that SP1 

protein expression is required for the proliferation of ERa- BrCa cells. 
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3.4 Discussion 

The E2-mediated enhancement ofhPygopus2 through direct binding of the ERa­

SPI complex to the hPYG02 promoter highlights the important ro le ofhPYG02 in BrCa 

pathogenesis. T his builds on our previous findings demonstrating ELF )-mediated 

activation of hPYG02. The activation of hPYG02 by multip le facto rs (ELF I and E2 v ia 

ERa-SP 1) is not that surprising considering its well established overexpression and 

requirement for proliferation of BrCa cells. 

While overexpression of both ERa and SPI and subsequent treatment with E2 led 

to the highest hPYG02 promoter activation and binding and hPygopus2 levels, I found 

that each of these factors could bind independently of each other. This is a novel result as 

ERa and SP I have been shown to bind as a complex at the promoters of other target 

genes, notably CTSD, TGFA and RARA. While unexpected, this individual binding is 

corroborated by several observations obtained in this study. Overexpression of either 

ERa (with E2 treatment) or SPI increased the hPYG02 promoter occupancy of these 

factors and enhanced hPygopus2 expression. Inhibition of ERa or knockdown of SP I did 

not significantly affect the binding of SP I or ERa, respectively. Furthermore, mutating 

the ERE ha lf-site o r the GC-box did not affect promoter occupancy of SP I or ERa , 

respectively. Add it ional ly, mutating the DBDs of either ERa or SP I did not affect 

hPYG02 promoter binding of SP I or ERa , respectively. Lastly, promoter occupancy of 

SP I was persistent in hormone deprived conditions (before E2 treatment) in the absence 
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of ERa . The observed low levels of hPygopus2 expression in this case are most likely 

due to presence of inhibitory cofactors and/or lack of stimulatory cofactors. 

This type of independent binding suggests that while ERa and SPI can both 

recruit the required transcription components to enhance hPygopus2 expression, the 

presence of both is required for maximal synergistic activation via either optimal 

recruitment of cofactors or recruitment of all cofactors. This supports the lower levels of 

hPygopus2 observed in ERa- cells, where SP I still plays a role in hPYG02 induction, 

but not to the levels observed in the presence of both SPI and ERa (ERa+ cells). 

While the specific function of hPYG0 2 in BrCa was not examined, the 

fundamental ro le of Wnt in BrCa init iation and progression is undeniable, thus a role for 

hPYG02 in Wnt signalling is li ke ly. This is supported by a recent study, which showed 

the requirement of hPYG0 2 in augmenting Wnt signalling which contributed to BrCa 

stem-like cell expansion (Chen et al. , 20 I 0). Furthermore, we have shown the interaction 

between hPYG02 and Treacher Collins Franceschetti syndrome 1 in MCF7 BrCa cells 

and demonstrated the importance of this interaction in ribosomal DNA transcription 

(Andrews et a l. , Accepted), which may be an additiona l function of hPYG02 in BrCa 

cells. 

The overexpression and requirement of hPYG02 in ERa - (in addition to ERa +) 

BrCa cells was previous ly highlighted. While it may have been thought that induction of 

hPYG02 in these cells was due to ELF I, I now prov ide evidence that SP I (in addition to 

ELF 1) plays an important ro le. I demonstrated that overexpression of SP I increased 

hPygopus2 leve ls while knockdown of SP1 reduced hPygopus2 leve ls in ERa - BrCa 
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cells. While these findings are novel, they are not surprising considering that SPI doesn' t 

require ERa. to bind to the hPYG02 promoter and induce hPYG02 in ERa.+ cells. 

My second finding that SPI is required for the expression of hPYG02 and several 

other cell cycle progression genes (including "ERa.-SP I" target genes) in ERa.- BrCa is 

particularly important because of the lack of endocrine disruptor therapies for this cancer. 

This is fortunate as several effective drugs that target SPI exist (Betulinic acid, 

Mithramycin A and Tolfenic acid) (Leask, 2012). Thus, SP I may be an important 

predictive biomarker for selecting the type of chemotherapy. This would be particularly 

important for ERa.- BrCa (due to the lack of effective therapies), but could also be used 

for ERa.+ BrCa, e ither in combination with ERa. antagonists and aromatase inh ibitors or, 

alone in cases where traditional therapies don 't work because of intrinsic or acqui red 

resistance. 

In both cases expression of hPygopus2 could serve to confirm that SP 1 is 

correctly inducing its target genes and not dissociated from this process. Thus, hPYG02 

might serve as a pred ictive biomarker for response to SP1 inhibitors in ERa.- BrCa. 

Additionally, if SP I expression is reduced by chemotherapy, hPygopus2 expression 

would a lso decrease and thereby should further prevent cancer cell proliferation. 

The next step in this study would be to examine if hPYG02 and SP 1 protein 

leve ls correlate in ERa.+ and ERa.- breast tumours and to determine if SPl inhibitors 

reduce hPYG02 protein levels. 
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4.1 Introduction: Cervical Cancer 

4.1.1 Foreword 

In the previous chapter, I examined the mechanism of expression of hPygopus2 in 

breast cancer, and provided evidence to suggest that its requirement for growth of breast 

cancer cells was linked to the presence of endogenous hormonal and signalling elements 

that influenced, but did not necessarily cause the malignant phenotype. In this chapter, 1 

present evidence to suggest that hPygopus2 expression is also induced at the earliest 

stages of oncogenesis, using the example of cervical cancer. My data suggested that 

hPygopus2 is an important factor in the progression of this disease, and its expression is 

an early response to the pathogenic agent responsible for cervical cancer, the human 

papillomavirus (HPV). 

4.1.2 The cervix 

The cervix is the lower portion of the uterus. The upper region (c losest to the 

uterine cavity) is lined by a single cell thick layer of columnar (glandular) mucus 

secreting cells and is referred to as the endocervix (Singer and Jordan, 2006) (Figure 4.1 ). 

The lower region (closest to the vaginal canal) is covered by a thick multilayered 

stratified squamous epithe lium and is referred to as the ectocerv ix . The development and 

maintenance of this epithelium occurs by proliferation of the basal cells (the only 

proliferation capable cells within the epithelium). As these cells divide, they push cells 

into the above layers where they undergo a gradual process of differentiation. This 
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includes flattening out and filling their cytoplasm with keratin granu les, while reducing 

the size/number of o rganelles and size of nucleus. 

The boundary between the squamous and columnar epithel ia is called the 

squamocolumnar j unction. Within this area occur all the dynamic, phys iological and 

pathological processes that are found in the human cervix (S inger and Jordan, 2006). 

Thus, this reg ion is referred to as the transformation zone and 90% of precancerous and 

cancerous lesions occur here. 

4.1. 3 Cervical intraepithelial neoplasia 

Progression from the normal cervix to malignant cervical cancer (CxCa) is a 

multistep process that beg ins with HPV infection (Moscicki, 2007). Infection stimulates 

proliferation of cervical cells and results in the formation of cerv ical les ions which are 

referred to as cervical intraepithelial neoplasia (C IN) or dysplasia. C IN has been divided 

into three stages depending on what proportion of the epithe lium contains abnormal cells. 

Low grade lesions (CIN I) will most likely spontaneously regress whereas high grade 

les ions (CIN II , CIN Ill and carcinoma in situ), are true cerv ical cancer precursors 

because they have a high probability of becoming malignant. As mentioned, both types of 

CIN are caused by HPV infection. 

HPV DNA was first isolated from CxCa biopsies almost forty years ago, at which 

time it was suggested that HPVs could be a potential cause of CxCa (zur Hausen, 1977). 

Strong clinical ev idence, such as the detection ofHPV DNA in 99.7% of cervical 

carcinomas worldwide and experimenta l ev idence, the observation that expression of 
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Figure 4.1 Schematic diagram showing endo- and ectocervical portions of the cervix 

and the type of epithelium by which they are covered. 
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high risk HPVs or the E6 and E7 viral oncogenes could immortalize human keratinocytes 

(Hawley-Nelson et al. , 1989), has demonstrated that the high-risk HPVs are the on ly 

required agents of CxCa. 

4.1. 4 Human papillomavirus classification 

According to the Internationa l Agency for Research on Cancer, the HPV fami ly 

of DNA viruses is comprised of over I 00 types (C lifford et a l. , 2005). Thirty-five of these 

are specific for genital and oropharyngeal epithelia and have varying potentials for 

malignant transformation. Of these, twe lve are low-risk types (including 6, I I), which do 

not integrate into the host genome and are on ly associated with lower-grade squamous 

intraepithe lial lesions (LS!Ls) and benign warts. Fifteen HPV types are considered high­

risk types (including 16, 18, 3 1) and are strongly associated with high grade SILs 

(HS ILs) and invasive carcinoma (Munoz et a l. , 2003). To understand how these viruses 

cause disease, we first need to examine their structure and gene composition. 

4.1.5 HPV genome structure 

The e ight kilobase pair double stranded DNA circular HPV genome is contained 

within a spherical protein coat (Baker and Calef, 1996). The viral genome comprises a 

region fo r the six early genes E I- E7, two late genes Ll and L2, and a long non-coding 

control region. 
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The early genes El and E2 enable viral transcription and replication, and E5 and 

the two well established viral oncogenes (E6 and E7) are responsible for the transforming 

characteristics. The late genes L I and L2 code for the vi ra l capsid proteins and the late 

prote in E4 plays a role in release of the newly formed viruses from sloughed off 

epithelial cells. The v iral life cycle begins when the v irus infects a pro liferation capable 

cervical cell. 

4.1.6 HPV mechanism of injection and normal life cycle 

Cell infection and viral replication is characterized very well in the squamous 

epithelium; while the mechanism of infection is currently unknown fo r columnar 

epithelia but is believed to be s imilar. 

For persistent infection to occur, virus particles must penetrate deep w ithin the 

epithe lium through abras ions or other microtrauma and infect basal cells (Moscicki, 

2007) (Figure 4.2). Initially, however, the viruses make contact with heparan sulfate 

proteoglycan receptors on the basement membrane. Binding to these molecules causes a 

structura l shift in the viruses ' protein coat and a llows the viruses to be taken up by cells. 

It is important to note that if the vi ra l contact with these receptors is prevented, then the 

virus will not be able to infect cells. The specific cells that HPV infects are thought to be 

stem ce lls because they are the only proliferation competent cells within the epithelium. 

Furthermore, the highly dynamic nature of the transformation zone makes it prone to 

microabrasions and thus the stem cells with in this area are more susceptible to HPV 

infections. 
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Figure 4.2 Schematic diagram highlighting the mechanism of infection by the 

human papillomavirus in the cervical squamous epithelium (adapted from 

Woodman et al., 2007). 
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Once the vira l genome, which is maintained as an extrachromosomal element 

(episome), enters the nucleus of basal cells it begins to express the early vi ral genes 

(Moscicki, 2007). The virus utilizes host machinery for replication, with the exception of 

the E I viral helicase and the E2 transcription factor which regulates expression of the 

remainder of viral genes (You et a l., 2004). As the virus replicates, it must counteract 

signals for terminal differentiation of the squamous epithelium and force the 

keratinocytes into S phase. This is achieved by viral oncoproteins E6 and E7 w hich have 

numerous targets (and effects) that contribute to the transforming characteristics, most 

notably the T umor protein 53 (p53) and RB tumour suppressors. 

E7 binding to the active (hypophosphorylated) form of RB triggers its 

degradation, wh ich leads to E2F-RB complex dissociation (Masciullo and G iordano, 

2007). Activated E2F initiates the transcription of genes required fo r DNA replication 

and thus inappropriately forces the cell through the restriction po int and past the G liS 

transition into S phase. The continuation ofthis oncogene driven cell division would 

normally be prevented by p53. However, E6 in a complex w ith the E6-associated protein 

binds to and inactivates p53 by targeting it for degradation through the ubiquitin 

proteosome system. This a lleviates the p53 cell cycle arrest induced restrictions on 

cellular DNA synthesis and augments viral replication (Scheffner et al. , 1990). 

The action of these oncogenes (by inducing cell division and DNA replicat ion) 

and the action of E I and E2 (which repl icate the virus during every S phase) permit the 
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infected basal keratinocytes to over-replicate the viral genome as they leave the basement 

membrane and progress through their, now delayed, differentiation (Moscicki, 2007). 

After suffic ient viral replication and terminal differentiation (due to the upward 

migration through the epithelium) of the keratinocytes, the capsid protein L2 and L1 are 

expressed (Moscicki, 2007). They recruit the viral genome and assemble to form 

infectious virions. As the infected squames slough off the epithelial surface the E4 

protein causes them to di sintegrate and release the virion particles. 

4.1. 7 Risk factors for progress ion 

Although more than 99% of all cervical cancers are associated with HPV 

infection, only a fraction of HPY-infected women develop CxCa (Walboomers et al., 

1999). This suggests that HPV infection alone is insufficient for the malignant 

conversion, and that other genetic changes and/or exogenous factors are required for the 

development of CxCa. One of the required genetic changes for progression is the 

integration of the viral genome into the host genome. 

During the normal vi ral life cycle, E6 and E7 proteins are maintained at low 

levels by the transcriptional regu lation of E2 (Masciullo and Giordano, 2007). Viral 

integration disrupts the viral E2 gene (region most susceptible to DNA breaks), thereby 

negating E2-mediated repression of E6 and E7 and triggering their overexpression. 

Derepression of E6 and E7 not only suppresses cell-cycle checkpoints, but also 

exacerbates genom ic instability through aberrant centrosomal duplication and leads to the 

activation of te lomerase. The cause of viral genome integration is unknown, but it is 
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believed that exogenous cell stress inducing factors, such as tobacco, play a ro le not only 

in this event, but in other events required for CxCa development (Fonseca-Moutinho, 

2011). 

4.1.8 Cervical cancer and treatments 

Squamous cell carcinoma (SCC) of the cervix accounts for 80-85% of all CxCa 

and arises from the squamous cells near the transformation zone. The less common (15-

20%) cervical adenocarcinomas are often situated deep within the cervical canal. HPV 16 

and 18 are associated with 70% of all cervical carcinomas worldwide while the remaining 

30% are caused by thirteen other high-risk HPV types. 

While the incidence of squamous cell carcinomas has been greatly reduced (by 

70%) due to screening initiatives, the incidence of adenocarcinoma has doubled over the 

past thirty years. 

Once cervical cancer is diagnosed, depend ing on its status, it can be treated with 

surgery, radiation and chemotherapy. C isplatin chemotherapy is used with radiation 

therapy as the first line treatment in bulky and advanced cervica l cancer (discussed in the 

next chapter). 

4.1. 9 Chapter summary 

In Chapter II , I demonstrated that hPygopus2 mRNA and protein exhibit cell 

cyc le dependent express ion in a broad array of normal and cancerous cell lines. This 
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specific pattern of expression and the potential utilization of hPYG02 as a prognostic 

proliferation marker provided support for the further examination of hPYG02 as a cancer 

biomarker. Specifically, as the cell cycle dependent expression of hPygopus2 correlated 

with its potential regulation by ELF I and RB, this was the mechanism of regulation that I 

chose to pursue. 

Not only is the cause and progression of CxCa very well characterized, and thus 

the exact mechanism by which RB is targeted explicitly known, but ELF I has 

also been previous ly shown to be up regulated in this cancer. 

Paradigmatic of pathogenically mediated RB deregulation is the action of HPV 

E7 protein, a key etiological agent in the initiation of CxCa (Moody and Laimins, 20 I 0). 

E7 is expressed following infection of proliferation-competent cervical cel ls with certain 

high-risk HPV subtypes. Similar to other viral proteins such as papovavirus T antigen and 

adenovirus E l A (Pahel et al. , 1993), E7 is a 98 amino ac id nuclear phospho-oncoprote in, 

which cooperates with the HPV E6 protein to cause immortalization of epithelia l cells 

(Haw ley-Nelson et a l., 1989). E7 induces degradation ofthe RB protein, resulting in the 

activation of several transcriptional regulators such as E2F and ELF I, which promote cell 

cycle progression (Chellappan et al., 1992). 

I was interested in understanding the mechanism of expression and requirement of 

hPygopus2 in CxCa. HPV genome integration in abnorma lly pro liferating cervical cells 

raises the probability that they will progress to malignancy because the HPV E2 genomic 

region is spliced out and the HPV E2 regulatory protein is no longer produced (Schwarz 

et al. , 1985). The loss of E2 causes the constitutive express ion of E6 and E7. E6 recruits 
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the cellular E3 ubiquitin ligase E6-associated protein and forms a trimeric complex with 

p53 (Huibregtse eta!., 1991) leading to proteasomal degradation (Scheffner et al. , 1990), 

and preventing cell cycle arrest and/or apoptosis. The E7 protein, through the LxCxE 

motif, binds to the pocket region of RB and drives its continuous proteolytic degradation 

(Munger eta!., 1989), permitting ELF I to initiate expression of target genes. I 

hypothesized that the increase in hPygopus2 expression required for growth of 

transformed cervical cells may be the result of ELF I activation caused by HPV E7-

mediated attenuation of RB. 

In this chapter, I will provide evidence that hPygopus2 is overexpressed in CxCa 

and is required for growth of transformed HPY -infected human en do- and ectocervical 

cells. My data indicated that hPygopus2 overexpression in CxCa is augmented by 

abrogation of RB function by E7 leading to derepression of ELF I, suggesting a 

mechanistic link between HPV infection and cellular response of the oncogenic hPYG02 

transcription factor. 
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4.2 Materials and Methods 

4.2.1 Tumor microarray, immunohistochemistry and analysis 

Immunohistochemistry was performed on cervical tumour microarrays [Cybridi, 

Lot No. CC10-ll-004 ( 192-194) and US Biomax, Inc. , Cat No. CIN481] using Ventana 

Benchmark Ultra automated clinical immunostainers optimized for the antibodies 

indicated as per manufacturer' s instruction or as indicated in appendix Table 6.2. 

For the Cybridi microarray, three to four representative core samples for each 

stage (per antibody) were selected for quantification of stained cells. Within each core, at 

least I 00 randomly selected cells throughout the thickness of the epithel ium were scored. 

The overall proportion of stained cells for HPV L I was assessed. For hPYG02, PCNA 

and ELFl , the overall proportion of cells was categorized as nuclear, cytoplasmic o r both. 

For the US Biomax microarray, three to four representative core samples for each 

stage (per antibody) were selected for quantification of stained cells. Within each core, at 

least I 00 randomly selected cells throughout the thickness of the epithelium were scored. 

Staining intensity for each antibody (hPYG02, p 161NK4a and MKI67) was classified as 

negative, weak or strong. Information on the statistical analysis is provided in appendix 

Figure 6.4. 

4.2.2 Cell line maintenance 

Normal human endocervical (HEN) (Tsutsumi et al. , 1992) and ectocervical 

(HEC) (Yokoyama et a l., 1994) primary cells and their HPV 16 or 18 and c igarette 

smoke condensate transformed subclones, HEN 16T (Yang et a l. , 1996) and HEC 18T 
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(Nakao et al., 1996), were generous gifts from Dr. A. Pater. Primary cell lines were 

maintained in DMEM supplemented with 2 )..lllml bovine pituitary extract (Gibco) and 

0.06 ).!1/ml epidermal growth factor (Gibco BRL) and cancer cells in DMEM plus 10% 

heat inactivated FBS. Detailed information on cell lines is provided in appendix Table 6.3 

and appendix Figure 6.5. 

4.2.3 RNA extraction, eDNA generation and Q-PCR 

Performed as described earlier (Sections 2.2.8 and 2.2.9) and primer sequences 

are listed in appendix Table 6.1. 

4.2.4 Protein extraction, SDS-PAGE and immunoblotting 

Performed as previously described (Section 2.2. 1 0) and antibody information is 

provided in appendix Table 6.2. 

4. 2. 5 RNA interference 

Four s iRNA o ligonucleotides were synthesized by Dharmacon, including siPy2-X 

(which targets the 3' UTR sequence of endogenous hPYG02 mRNA), siPy2-Z (which 

targets the coding region of hPYG02) and siE7 (Chang et al., 20 I 0). We have previously 

described the ELF I targeting siRNA, siELF I , (Andrews et al. , 2008) and the non-specific 

negative control, siNTC. Oligonucleotide sequences are listed in appendix Table 6.1. 

4.2.6 siRNA transfections and rescue assays 

Thirty thousand cells per well were seeded in six well plates and forward 

transfected as described earlier (Section 3.2. 12). In rescue assays, cells were additionally 
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transfected with pCS2+ or pCS2+hPygo2 and harvested as described earlier (Section 

3.2.12). 

4.2. 7 Flow cytometry 

Performed as described earlier (Section 2.2.6). 

4.2.8 Chromatin immunoprecipitation and DNA extraction 

HEN 16T and HEC 18T cells were seeded in 150-mm dishes at a density of 5 X 

I 06
. After I d , cells were transiently transfected with combinations of PSM-RB, ELF I 

and DA-ELF I and collected 3d later. ChiP assays were performed as described earlie r 

(Section 3.2.1 0). Antibodies used for immunoprecipitation and primers sequences for 

amplification are listed in appendix Table 6.1 and appendix Table 6.2, respectively. 

4.2.9 Plasmids 

pECE-PSM-RB, was provided by Dr. Brenda Gallie (Hamel et al. , 1992). The 

pECE-L1KPN vector control for pECE-PSM-RB was generated by digesting pECE-PSM­

RB with Kpnl andre-ligating to remove the transcriptional start site. pCS2+ ELF l 

(Andrews et a l. , 2008) contains the human ELFJ eDNA and the RB binding deficient 

mutant, DA-ELF I, was generated by site-directed muatgenesis as described earlier 

(Section 3.2.7) according to sequences in (Wang et a l. , 1993). pCS2+ was used as the 

empty vector control for both ELF I plasmids. 

hPYG02 reporter constructs pGL3-1494 antisense, pGL3-1494, pGL3-48 and 

pGL3-basic were previously described (Andrews et al. , 2008). Site-directed mutagenesis 
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was used to generate the EBS mutant pGL3-48 mutEBS according to sequences in (Gory 

et al. , 1998). Plasmids were verified by sequencing. Primer sequences are listed in 

appendix Table 6.1. 

4. 2.10 Transient transfections and luciferase assays 

Cells were seeded I d prior to transfection using Lipofectamine and Plus reagent 

in six well plates (3.0 X I 05 cells/well) using I J.lg of DNA (per well) or in 15 em plates 

(7.5 X I 06 cells) using 5 J.lg of DNA. Three types oftransfections were performed: 1) 2 

expression plasm ids (pECE-PSM-RB, pCS2+DA-ELF I, pCS2+ELF I) and their empty 

plasmid counterparts (0.5 ~tg of each per well); 2) I luciferase reporter plasmid (pGL3-

1494 antisense, pGLJ-1494, pGL3-48, pGL3-48 mutEBS or pGL3-basic) with pRSV-13-

gal (0.5 J.lg of each per well or 2.5 J.lg of each per plate); 3) 2 expression plasm ids (0.25 

~tg of each per well), I luciferase reporter plasmid (0.25 J.lg per well) and pRSV -bgal 

(0.25 J.lg per well). Luciferase assays were performed as described earlier (Section 3.2.9). 

4.2.11 Image acquisition and densitometry analysis 

Performed as described earlier (Section 2.2.11 ). 

4.2.12 Statistical analysis 

Performed as described earlier (Section 2.2.1 2). 
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4.3 Results 

4.3.1 hPygopus2 protein is overexpressed in cervical intraepithelial neoplasia 111 and 

squamous cell carcinoma 

The relative expression of hPYG02 in HPV infected cervical tissues was assessed 

using a microarray of tissue core samples representing various stages of disease 

progression, stained by immunohistochemistry, with antibodies against HPV Ll, 

hPYG02, PCNA and ELF I. Overall proportions of stained cells were assessed for each 

marker, as well as proportions of cells staining nuclei or cytoplasm exclusively or both 

for hPYG02, PCNA and ELF I. 

Consistently, HPV was detected in normal ectocervical cells as well as dysplastic 

and malignant tissue. The staining intensity using this antibody was higher in non­

diseased ectocervical but not in endocervical epithelia (Figure 4.3 A and B) (Balan et al. , 

20 I 0). The proportion of HPV positive cells did not vary significantly. 

hPYG02 protein was detected in both normal and pathologic tissues, w ith the 

intensity of staining appreciably higher in erN Ill and SCC cores. The proportion of 

positively stained cells increased significantly from 7% in normal tissues to 93% in 

severely dysplastic (CIN Ill) and malignant tissues. hPYG02 cellular localization was 

either solely cytoplasmic or both cytoplasmic and nuclear. 

Both the expression and staining intensity of the proliferation marker nuclear 

antigen (PCNA) (Yu and Filipe, 1993), significantly increased with severity of disease, 

rising from approximately 20% in normal epithelia and 4 I .5% in mild dysplasia (CrN I) 
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Figure 4.3 Expression and quantification of HPV, hPYG02, PCNA and ELFl 

proteins in a progressive cervical tumour microarray. 

(A) Representative cores of normal ectocerv ical and endocervical tissues, CIN3 lesions 

and SCC 3 tumours stained with antibodies against HPV L I , hPYG02, PCNA and ELFl 

are displayed. (B) Three or four representative cores per antibody per condition were 

selected. One hundred cells were counted in each core and c lass ified as no staining 

(negative), cytoplasmic sta ining, nuclear staining or both cytoplasmic and nuclear 

staining. The percentages were calcu lated and are displayed. 
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to 81% and 76% in CIN Ill and SCC, respectivel y. In positive cores PCNA protein was 

primarily localized to the nucleus. 

ELF I protein was detected in all tissues and tumours. While staining intensity 

clearly decreased with disease severity, the proportion of positively stained cells 

remained high in all epithelia (above 40%) with the exception of normal endocervical 

cores (24%). As expected, ELF I was localized to both the cytoplasm and nucleus (Nicol 

et a l., 2008). 

The relatively higher levels of hPYG02 specifically in C IN fll and SCC 

promoted further examination. I compared the expression of hPYG02, and two well 

established diagnostic markers for cervical neoplasia (p 16rNK4 and antigen identified by 

monoclonal antibody Ki-67, MKI67) (Gupta et al. , 20 I 0), in a CrN tissue array by 

immunohistochemistry. In this array staining was classified as negative, weak or strong. 

Expression of p 16 was absent from normal and CIN I cores and s lightly increased 

in CrN II (44% of cells), but staining intensity and proportion was s ignificantly higher 

(p<0.02) in C IN Ill and SCC cores (89% and 82% of cells, respectively) (Figure 4.4 A 

and B). The express ion of MKI67 increased progressively ( 14% of cells in normal 

epithelia, 34% of cells in CrN I, approximately 50% of cells in C IN II and Ill) with the 

highest intensity (p<0.02), as measured by the percentage of strongly staining cells, in 

cores representing SCC (78% of cells). Using an ordinal logistic random-effects model 

(appendix Figure 6.4), it was determined that the intensity of hPYG02 antibody staining 

increased s ignificantly with disease progression from C IN II (7% of cells) to CrN Ill and 

sees (69% and 70% of cells, respectively) (p<0.05). 
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Figure 4.4 Expression and quantification of p16INK4, MKI67 and hPYG02 

proteins in a cervical intraepithelial neoplasia tissue microarray. 

(A) Representative cores of normal ectocervica l ti ssues, C IN l, II and III lesions and SCC 

tumours stained with antibodies against pi6INK4, MKI67 and hPYG0 2 are displayed. 

(B) Three representat ive cores per antibody per condition were selected. One hundred 

cells were counted in each core and c lass ified as no staining (negative) or cytoplasmic, 

nuc lear or cytoplasmic and nuc lear staining (positive). The percentages were calculated 

and are displayed. Significant increases in strong sta ining are denoted with an asterisk 

(*). 
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Taken together, these observations suggested that expression ofhPYG02 protein 

was up regulated in many CfN trr les ions and SCC tumours with respect to normal 

cervical tissue. 

4.3.2 hPygopus2 mRNA and protein is overexpressed in cervical cancer cell lines 

The foregoing observations suggested that increased hPygopus2 expression might 

be a response to HPV integration and E7 up regulation (occurring in CIN III and beyond). 

To determine the relationship between hPygopus2 and E7, I performed gene expression 

analyses in a variety of prev iously developed normal and transformed cervical cell lines 

(Tsutsumi et al., 1992; Yokoyama et al. , 1994; Yang et al. , 1996; Nakao et al., 1996). The 

control cell lines included human primary HPV-negative endo- (HEN) and ecto- (HEC) 

cervical cells. The experimenta l cancer cell I ines included HPV -1 6 and H PV -18 

immorta lized cells transformed with cigarette smoke condensate, HEN-16T and HEC-

18T, respectively. All four human cell lines have been extensively characterized 

(appendix Table 6.3 and appendix Figure 6.5). 

hPYG02 mRNA expression was slightly higher in HEC cells (12 fold) re lative to 

HEN cells and significantly increased (by at least an additional 9 fold) in HEN 16T and 

HEC 18T cervical cancer cells (Figure 4.5 A). The expression of PCNA and ELFJ 

fo llowed the same trend yet increased in HEC and cancerous cell lines. As expected, RB 

tumour suppressor levels were lower in the tumourigenic cell lines. hPYG02 is detected 

as two differentially migrating bands on gel electrophoresis, possibly identifying two 

isoforms, which were observed using a variety of antibodies (data not shown). Both 
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\ 

Figure 4.5 Expression analysis of hPygopus2 in CxCa cell lines. 

(A) Expression of hPYG02, PCNA, ELFJ and RB mRNA was ana lyzed by Q-PCR in 

normal (HEN and HEC) and malignant cerv ical cell lines (HEN 16T and HEC 18T). 

mRNA levels were norma lized to /3-Actin and set to 2 in HEN cells, adjusted accordingly 

for the other cell lines and plotted on a logari thmic scale. (B) Expression levels of 

hPYG02, PCNA, ELF! and RB in normal and ma lignant cerv ical cell lines were 

measured using immunoblots. 13-Actin was used as a loading control. Molecular weight is 

expressed in kDa. 

4- 26 



Tzenov, 2013 

A <( 
hPYG02 PCNA ELF1 RB 

z c 
1000 * * 1000 1000 1000 

0::: 0 100 = 100 100 100 E .Ci5 I 
a.> (/) 10 10 10 10 
> ~ c 

:;::;CL 1 m x 
a.> a.> 

0.1 0.1 0.1 0.1 0::: 

Legend: HEN HEC . HEN 16T • HEC 18T 

B " " ~~ 

&&&I/ 
~~~~ 

kDa: If !'3 . IRB 104-
104 

95 ELF1 

49-1 lhPYG02 

31-' II I IPCNA 
49-1 1~-Actin 

4- 27 



Tzenov, 20I3 

forms also paralleled the corresponding mRNA levels of expression. The protein levels of 

ELF I and PCNA closely paralleled mRNA levels (Figure 4.5 B). ELF I is detected as two 

bands representing the two post-translationally modified isoforms; the 80 kDa 

cytoplasmic form and the 98 kDa nuclear promoter-bound form. 

These results suggested that hPygopus2 mRNA and protein are higher in HPV 

transformed cervical cells relative to primary cells and that hPygopus2 expression may be 

regulated at the transcriptional level. 

4. 3. 3 hPygopus2 and E7 4-like factor 1 are required for cervical cancer cell proliferation 

The higher levels of hPygopus2 observed in HPV infected cells and tissues 

suggested that it may, as in other cancers (Thompson et al., 2002; Popadiuk et al. , 2006; 

Andrews et al. , 2007; Wang et al. , 20 I 0; Chen et al. , 20 I I ; Brembeck et al., 20 II; 

Watanabe et al. , 20 13; Moghbeli et al. , 20 13), have an important function in CxCa. HEN 

I 6T cells were, therefore, transfected with two siRNAs directed against hPygopus2, 

siPy2-X, targeting its 3' UTR and siPy2-Z targeting the coding region to determine the 

requirement ofhPYG02. Either siPy2-X or siPy2-Z, significantly reduced both isoforms 

of hPYG02 as compared to the non-target control siRNA (siNTC). When transfected 

with siNTC, the proportion of cells that accumulated in G I was 33%, but was appreciably 

higher at 66% (p<O.O I) after siPy2-X treatment and 55% (p<O.O I) after siPy2-Z 

treatment (Figure 4.6 A). The increase of cells in G I was accompanied by a significant 

decrease in the percentage of cells in S-phase. HEC 18T cells redi stributed in a similar 
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manner after hPYG02 s iRNA treatment with the largest proportion of cells arresting in 

G I (Figure 4.6 B). 

Associated with G 1 dependent cell cycle arrest is the activation of the tumour 

suppressor protein 53 (Waldman et al., 1995). Indeed, higher levels of p53 and its target 

gene p21 coincided with hPYG02 knockdown-mediated, G 1-phase cell cycle arrest in 

HEN 16T and HEC 18T cells (Figure 4.6 C and D). Interestingly, the increase in p53 

levels was reduced to normal levels by transiently co-transfecti ng cells with hPYG02, 

suggesting that the s iRNA was specific for hPygopus2 and that the e levated levels of 

hPYG02 protein are a requirement for the proliferation of HPV transformed HEN 16T 

and HEC 18T cervical cell s. 

Our prev ious work demonstrated that the oncogenic viral-ETS family 

transcription factor ELF 1 bound to the hPYG02 promoter and could promote its 

expression in MCF7 BrCa cells (Andrews et al. , 2008). I therefore used RNA interference 

to determine if ELF I was involved in hPYG02-dependent cervical cancer cell 

proliferation. siELF 1 increased the proportion of HEN 16T cells in G I by 27% (p<0.01) 

relative to siNTC (F igure 4.6 E), which was accompanied by a significant decrease in the 

proportion of cells in S phase. siELF 1 treatment of HEC 18T cells had a simi lar effect, 

increasing the proportion of cells in G I by 34% (p<O.O 1) (Figure 4.6 F). 

In both HEN 16T and HEC 18T cells, the reduction of ELF I protein levels by 

s iELF I paralleled a s ignificant decrease in hPYG02 protein expression (Figure 4 .6 G and 

H). Similar to my results w ith the hPYG02 knockdown, there was an increase in p53 and 

p21 expression upon depletion of ELF I. The siELF )-induced increase in p53 was 
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Figure 4.6 Requirement of hPYG02 and ELFl for the prevention of p53-mediated 

G 1 arrest in CxCa cells. 

(A-B) HEN 16T and HEC 18T cells were treated with either non-targeting control 

(siNTC) or hPYG02 siRNAs. Flow cytometry was performed to show the percentage of 

cells in each phase of the cell cycle. (C-D) HEN 16T and HEC 18T cells were treated 

with either siNTC or hPYG02 siRNA in combination with either pCS2+ or 

pCS2+hPYG02 expression vectors. (E-F) HEN 16T and HEC 18T cells were treated 

with either siNTC or ELF I siRNA (siELF I) and subsequently analyzed by flow 

cytometry. (G-H) HEN 16T and HEC 18T cells were treated with either siNTC or siELF I 

in combination with either pCS2+ or pCS2+hPYG02. Bars represent standard deviation. 

Significant changes (p<0.05) in expression, relative to the control/untreated sample, are 

indicated by an asterisk (*), while non-significant changes (p>0.05) are indicated by 

equality sign(=). 
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attenuated back to control levels by overexpression of hPYG02 (Figure 4.6 G and H), 

suggesting that ELF !-mediated activation of hPYG02 expression was required for cell 

cycle progression in these cells or that overexpression of hPYG02 could somehow 

relieve the p53-induced stress response. 

4.3.4 Retinoblastoma dependent regulation ofhPygopus2 expression via E74-likefactor 

I is deactivated by human papillomavirus E7 protein 

The requirement of ELF I and hPYG02 in CxCa suggested that they are activated 

following HPV integration. A critical effector for HPV pathogenesis is the deregulated 

expression and activity of its E7 viral oncoprotein. Since E7 induces degradation of RB, I 

predicted that up regulation of RB by reducing E7, would be expected to decrease ELF I 

activity, leading to hPYG02 down regulation. 

To assess whether E7 was required for increased ELF I activity and subsequently 

hPygopus2 expression, I knocked down E7 protein using RNAi. Treatment of HEN 16T 

cells with an E7-specific siRNA s iE7 effective ly reduced E7 protein levels compared to 

the non-target contro l si RNA (Figure 4.7 A). The reduction of E7 was associated with a 

decrease in hPYG02, but an increase in RB protein levels, while not affecting levels of 

ELF I. It is possible, therefore, that RB attenuated hPYG02 levels by regulating the 

activity but not the expression or stability of ELF I . 

ELF I is an ETS-re lated transcription factor that binds to a number of target genes 

including the hPYG02 promoter whose expression is augmented in cancer (Scott et al. , 

1994; Zhu et a l. , 2006; Popadiuk et a l. , 2006; Jin et a l. , 2009). In vitro protein interaction 
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Figure 4.7 Requirement ofHPV 16 E7-mediated reduction ofRB to derepress the 

hPYG02 promoter in HEN 16T cells. 

(A) HEN 16T cells were treated with either a non-targeting control (s iNTC) or an E7 

siRNA (s iE7). lmmunoblots were performed to confirm the knockdown of £7 protein and 

levels of RB, ELF I and hPYG02 were determined. 13-Actin was used as a loading 

control. (B-C) Sheared, cross-linked chromatin extracts from HEN 16T cells treated with 

either siNTC or siE7 were subjected to ChiP assays using antibod ies against RB (B) and 

ELF I (C). A rabbit and mouse lgG mixture was used as a negative contro l. Promoter 

regions of hPYG02, HCCSJ and CCNA were amplified by Q-PCR. Sign ificant changes 

(p<0.05) in expression, re lative to the control/untreated sample (c), are indicated by an 

asterisk(*), while non-significant changes (p>0.05) are indicated by equality sign(=). 
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assays demonstrated that RB represses ELF I by binding to its transactivation domain in 

non-dividing cells, attenuating its ability to activate target gene expression (Wang et al., 

1993). Since RB is a major degradation target of HPV-E7, I determined whether 

knockdown of E7 affected its presence, along with ELF I , at the hPYG02 promoter using 

ChiP assays. We previously examined a 1,568 bp (-1 ,494 to +74) segment ofthe 

hPYG02 promoter and demonstrated that ELF I binds to the -48 to -25 region which 

contains an EBS (Andrews et al., 2008). After s iNTC treatment of HEN 16T cells, the 

presence of ELF I and RB was detected at the hPYG02 promoter and at the promoters of 

a known ELF I target gene, HCCSJ (Zhu et al. , 2006) (Figure 4.7 B) and an RB target 

gene, CCNA (Strobeck et al., 2000) (Figure 4.7 C). Treating cells with siE7 did not affect 

ELF I binding to the hPYG02 or HCCSJ promoters. There was, however, a significant 

increase in the presence of RB at both the hPYG02 (56%, p=0.038) and the CCNA 

promoters. Thus, siE7 increased the association of RB at the hPYG02 promoter while not 

affecting ELF I. This finding suggested that activation of hPYG02 by HPV in cervical 

cancer cells was due to derepression of ELF I activity by the repressive action of E7 on 

RB. 

To further analyze the derepression of hPygopus2 by HPV E7 I utilized a gain of 

function mutant of RB (PSM-RB) (Hamel et al. , 1992), a dominant acting RB­

independent mutant of ELF I (DA-ELF I) (Wang et al., 1993) and wildtype ELF I and 

assessed their effect on hPygopus2 expression. The PSM-RB construct has e ight 

phosphorylation sites substituted by alanines, making it refractory to cyclin-CDK 

complexes and thus rendering it constitutively repressive (Hamel et al. , 1992). Protein 
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products synthesized using this construct are sti ll able to bind ELF I . The DA-ELF I 

construct has the three crucial amino ac ids in its LxCxE, which are required for binding 

to RB, substituted with RxRxH, rendering it unable to interact with RB (appendix Figure 

6.6). I hypothes ized that overexpression of PSM-RB would reduce the positive effect of 

E7 on hPygopus2 expression, and in contrast, the DA-ELF I mutant would constitutively 

activate hPygopus2 expression. 

Our previous work indicated that ELF I augmented hPYG02 gene expression by 

binding to the EBS present within the first 48 base pairs of the hPYG02 promoter 

(Andrews et al., 2008). To assess the effect of the RB and ELF I constructs on hPYG02 

gene regulation I overexpressed different combinations of PSM-RB, ELF I and DA-ELF I 

in conjunction with two reporter constructs, both of which included the EBS but differed 

in the length of hPYG02 promoter DNA. These included the minimal hPYG02 promoter 

containing the first 48 base pairs (pGL3-48), a large segment containing 1494 base pairs 

(pGL3-1494) and a negative control with no promoter sequence (pGL3 Basic) (Andrews 

et a l., 2008). 

Overexpression of PSM-RB in HEN 16T cells led to 2.9 fo ld (p=0.037) and 7.1 

fold (p=0.038) decreases in the pGL3-48 and pGL3-1494 samples, respectively, 

compared to the empty vector control (Figure 4.8 A). In contrast, transfection with either 

ELF I or DA-ELF I s ignificantly increased hPYG02 reporter activity compared to the 

control. ELF I over-xpression caused a 17.6 fo ld increase (p=O.O 17) in the minimal 

promoter reporter and a 3.7 fo ld increase (p=0.047) in the large reporter. DA-ELFI 

overexpression increased the minimal reporter activity by 24. 1 fo ld (p<O.O I) and the 
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large reporter activity by 5.3 fold (p=O.O II). When PSM-RB and ELF I were 

overexpressed in combination, neither the minimal promoter reporter plasmid nor the 

large promoter reporter plasmid activity was significantly higher than that of the empty 

vector control. However, when PSM-RB was overexpressed with DA-ELF I there was a 

significant increase in both the minimal reporter activity (7.4 fold , p=0.036) and the large 

reporter activ ity (2.3 fold , p=0.01 2) compared to the control. Overexpression ofthe RB 

and ELF I constructs in HEC 18T cells yielded similar results; RB reduced hPYG02 

promoter activity of both reporters while ELF I increased it and DA-ELFI was able to 

overcome the repressive effects of PSM-RB (Figure 4.8 B). The similar effects of RB and 

ELF I overexpression on both the pGL3-48 and pGL3-1494 reporters suggested that RB 

and ELF I modulated hPYG02 reporter activity through the EBS in its promoter. Thus, 

RB negatively, while ELF I positively modulated hPYG02 reporter activity through its 

EBS. 

To examine if RB and ELF I could modulate endogenous hPygopus2 mRNA and 

protein leve ls, I trans iently transfected cells w ith combinations of PSM-RB, ELF I and 

DA-ELF I expression vectors. Overexpression of PSM-RB in HEN 16T cells resulted in a 

5 fold (p<O.OI) reduction in hPYG02 mRNA leve ls and a 53% decrease in hPYG02 

protein levels (Figure 4.8 C). Both ELF! and DA-ELF I overexpression increased 

hPygopus2 mRNA and protein levels by 6 fold. When PSM-RB and ELF I were co­

transfected, PSM-RB inhibited ELF !-induced hPygopus2 expression resulting in no 

change in hPygopus2 mRNA and protein levels. However, when PSM-RB and DA-
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Figure 4.8 hPygopus2 expression and promoter occupancy analysis after RB and 

ELFl overexpression in CxCa cells. 

(A-B) HEN 16T and HEC 18T cells were transfected with combinations of PSM-RB, 

ELF I and DA-ELF I expression vectors in combination with pGL3-48 and pGL3-1494 

luciferase constructs and a [3-gal expression vector. Empty pCS2+ and pECE expression 

vectors and the promoter DNA absent pGL3-Basic luciferase construct were used as 

negative controls. Luciferase activity was normalized to [3-gal activity. Overexpression of 

RB and ELF! was confirmed by immunoblots. (C-D) HEN 16T and HEC 18T cells were 

transfected with combinations of PSM-RB, ELF I and DA-ELF I expression vectors and 

their effect on endogenous hPygopus2 mRNA and protein levels were assessed by Q­

PCR and immunoblot, respectively. Overexpression of RB and ELF I was confirmed by 

immunoblot. (E-F) HEN 16T cells were transfected with combinations of PSM-RB, 

ELF ! and DA-ELF I expression vectors and sheared, cross-linked chromatin extracts 

were subjected to ChiP assays using antibodies against RB (E) and ELF ! (F). A rabbit 

and mouse lgG mixture was used as a negative control. The promoter regions of 

hPYG02, HCCSJ and CCNA were amplified by Q-PCR. Bars represent standard 

deviation. Significant changes (p<0.05) in expression, relative to the control/untreated 

sample (c), are indicated by an asterisk(*), while non-significant changes (p>0.05) are 

indicated by equality sign (=). (G) A model expla ining how the binding of ELF I , DA­

ELF I and PSM-RB to the hPYG02 promoter affects hPYG02 gene activat ion. 
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ELF I were co-transfected, DA-ELF I overcame the repressive effects of PSM-RB 

resulting in 4.7 fold and 4.2 fold increases in hPygopus2 mRNA and protein levels, 

respectively. Parallel results demonstrating RB inhibition and ELF I induction of 

hPYG02 were obtained in HEC 18T cells (Figure 4.8 D). 

The foregoing findings suggested that RB and ELF I cooperatively modulated 

hPYG02 expression. ChiP assays were performed to determine the presence of RB and 

ELF! at the hPYG02 promoter. Various combinations ofPSM-RB, ELF! and DA-ELFI 

were overexpressed and the presence of RB and ELF I on chromatin located at the 

hPYG02 promoter was measured. Interestingly, while overexpression of PSM-RB 

significantly reduced ELF I dependent hPYG02 promoter activity, it did not alter the 

level of ELF I at the hPYG02 promoter compared to the empty vector control (Figure 4.8 

E). In the remaining cases, in which either ELF I or DA-ELFI was overexpressed there 

was a consistent increase (3 .3 to 4.3 fold) in ELF I at the promoter. This increase in ELF I 

was not significantly affected by the presence of PSM-RB. Similarly, ELF I at the 

HCCSJ gene promoter only increased when it was overexpressed, which was expectedly 

independent of PSM-RB overexpress ion. These results demonstrated that the interaction 

between ELF I and RB is not required for ELF I to bind to the hPYG02 promoter. 

Given that RB did not influence the association of ELF I at the hPYG02 

promoter, I hypothesized that the reciprocal may be true, that its own presence at the 

hPYG02 promoter is dependent on ELF I. While overexpression of PSM-RB resulted in a 

6.5 fold increase (p=0.017) in RB (both endogenous and exogenous) at the promoter 

relative to the control (Figure 4.8 F), the highest levels were achieved when PSM-RB was 
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overexpressed in combination with ELF I (II fold above control, p=0.024 ). As expected, 

when PSM-RB was overexpressed with (RB-independent) DA-ELFI , its presence at the 

hPYG02 promoter was significantly reduced compared to when it was coexpressed with 

wild type ELF I (32% reduction, p=O.O 15). On the other hand, the presence of RB at the 

CCNA promoter increased binding whenever PSM-RB was overexpressed and was not 

affected by DA-ELF I. These results strongly suggested that RB associated specifically 

with chromatin at the hPYG02 promoter through its interaction with ELF I (Figure 4.8 

G). 

I next assessed whether ELF I was required for the presence of RB at the hPYG02 

promoter. Treatment of HEN 16T cells with siELF I effectively reduced ELF I and 

hPYG02 protein levels but without affecting RB protein level s compared to the non­

target control siRNA (Figure 4.9 A). Treatment with the siNTC control did not alter the 

presence of ELF I and RB at the hPYG02 promoter and at the promoters of their target 

genes, HCCSJ and CCNA, respectively (Figure 4.9 Band C). Treating cells with siELF I 

significantly reduced ELF I binding to both hPYG02 (2.5 fold , p=0.024) and HCCSJ (2.4 

fold , p=0.031) promoters. The presence of RB at the hPYG02 promoter was also 

significantly reduced (2.1 fold, p=0.033), but RB binding to CCNA was not affected. 

These results are consistent with aforementioned findings demonstrating specific ELF) ­

dependent association of RB with the hPYG02 gene promoter. 

Given that the presence of the RB-ELF I complex at the hPYG02 promoter 

depended on ELF I , I hypothesized that ELF I may bind to one (or both) of the two 

putative EBSs in the promoter. I used s ite directed mutagenesis to change the sequence of 
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Figure 4.9 Requirement of an intact EBS and ELFl presence for RB binding to the 

hPYG02 promoter in CxCa cells. 

(A) HEN 16T cells were treated with either a non-targeting control (s iNTC) or an ELFl 

siRNA (s iELF l ). lmmunoblots were performed to confirm the knockdown of ELFl 

protein and levels of RB and hPYG02 were determined. [3-Actin was used as a loading 

control. (8-C) HEN 16T cells were processed for ChiP assays and immunoprecipitated 

with anti-ELF I and anti-RB antibodies. A rabbit and mouse lgG mixture was used as a 

nonspecific control. Promoter regions of hPYG02, HCCSJ and CCNA were amplified by 

Q-PCR. HEN 16T cells were transiently transfected with pGL3-1494, pGL3-48 and 

pGL3-48 mutEBS luciferase constructs and a [3-gal expression vector. pGL3-basic was 

used as an empty luciferase plasmid control. Cells were processed for ChiP assays (D) 

and immunoprecipitated w ith anti-ELF I and anti-RB antibodies or a rabbit and mouse 

lgG mixture as a nonspecific control, or assayed for luciferase activity (E), which was 

normalized to [3-gal activity. Bars represent standard dev iation. Significant changes 

(p<O.OS) in expression, relative to the control/untreated sample (c), are indicated by an 

asterisk. 
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both putative EBSs in the pGL3-48 luciferase reporter plasmid thereby generating pGL3-

48 mutEBS. ChiP assays were used to measure the association of RB and ELF I to the 

hPYG02 promoter in each of the reporter plasmids (Figure 4.9 D). ELF I promoter 

occupancy was 74.6 fold higher in pGL3-1494 and 70.9 fold higher in pGL3-48 relative 

to the empty plasmid control. RB binding to the hPYG02 promoters in pGL3-1494 (12.4 

fold) and pGL3-48 ( 13.4 fold) was s ignificantly higher than pGL3-basic. Mutating both 

EBSs completely abolished the association of RB and ELF ! to that of the level of the 

empty vector control. 

To confirm that mutation the EBS in the hPYG02 promoter and subsequent loss 

of ELF I binding resulted in loss of hPYG02 promoter activity, I performed luciferase 

assays with these reporter constructs. HEN 16T cells were transfected with pG L3-basic, 

pG L3-1494, pGL3-48 or pGL3-48 mutEBS and assayed for luciferase activ ity and RB 

and ELF I promoter occupancy in the luciferase plasm ids. Luciferase reporter activity 

levels in the pGL3-1494 and pGL3-48 samples were significantly higher ( 4.5 X I 06 RLU, 

p<O.Ol and 2 X 106 RLU, p<O.Ol) than in the empty vector control, pGL3-basic, (2.2 X 

I 03 RLU) (Figure 4.9 D). The reporter activ ity level of the pGL3-48 mutEBS sample was 

s lightly and non-s ignificantly higher (979 RLU, p=0.061) than pGL3-basic. 
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4.4 Discussion 

The up regulation of hPYG02 in severely dysplastic lesions, cervical cancers and 

cervical cancer cell lines, along with its requirement for proliferation of these cells 

suggests that hPygopus2 plays an important role in CxCa pathogenesis. Activation of the 

Wnt signalling pathway and components of the pathway have been associated with 

cervical carcinoma (Uren et al. , 2005). Thus, it is not unreasonable to suggest that the up 

regulation of hPYG02 in CxCa and in CIN which I report in this study, may be linked to, 

or be a prerequisite for Wnt s ignal transduction, g iven its role as a chromatin modifier 

(Mosimann et al. , 2006). Our recent findings (Andrews et al , Accepted), however, have 

demonstrated an additional but strong requirement for malignant growth-associated 

ribosomal DNA transcription in HeLa cells, a cervical adenocarcinoma derived cell line. 

While these concurrent results do not necessarily preclude a ro le in Wnt signa ll ing in 

cerv ical cancer, the association of hPygopus2 with cell cycle progression genes observed 

in the present study would also support its role in ribosomal DNA transcription. 

My findings are consistent with others showing the overexpression and 

requirement of hPYG02 in a broad range of cancers (Thompson et al. , 2002; Andrews et 

al., 2007; Popadiuk et al. , 2006; Wang et al. , 20 1 0; Chen et al. , 20 I I ; Brembeck et al. , 

20 I I ; Watanabe et a l. , 20 13), but they are novel because they demonstrated that the 

increase in hPYG02 expression begins at a premalignant stage. Because not a ll high­

grade (CIN Ill) lesions progress to cancer, specific and effective prognostic progression 

biomarkers are needed to predict when and ifthis progression wi ll occur. This is 

particularly important because of the limitations with vaccines (low vaccination rates, 
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high costs, unavailability and only limited benefit in sexually active women) and 

screening techniques (lack of sensitivity or specificity) (Wang et al. , 2008). The finding 

that hPygopus2 expression increases specifically in the CIN III precancerous stage 

indicates that hPYG02 may be as effective biomarker to predict the transition from high­

grade dysplasia to cancer. The increase in cytoplasmic hPYG02 protein levels could be a 

result of the cells' inability to translocate these high levels ofhPYG02 to the nucleus at a 

fast enough pace. The increase in nuclear hPYG02 suggest that a significant portion is 

being translocated. None the less, there is an obv ious increase in hPYG02 protein levels 

in CIN III. 

High-grade lesions have an elevated probability for progressing to cancer because 

HPV genome integration results in the loss of the E2 regulatory region and subsequent E7 

oncoprotein up regulation. Because the increase in hPygopus2 expression correlates with 

the HPV integration event, I hypothesized that the two were causally linked. By knocking 

down E7 expression I observed a decrease in hPYG02 protein levels, which correlated 

with an increase in RB binding to the hPYG02 promoter while not affecting ELF I levels 

or promoter binding. hPygopus2 levels were increased in cervical carcinoma because E7 

up regulation caused the degradation of RB. Furthermore, the reduction of p53 by re­

expression of hPygopus2 in ce lls depleted of ELF I, demonstrated a relationship between 

these two genes in deregulated growth during oncogenes is. This molecular interaction 

may be part of an important s ignalling axis for the identification and possible targeting of 

early stage disease. 
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ELF I protein is continuously expressed and localizes to the cytoplasm, w here it 

becomes activated through phosphorylation and glycosylation. These modifications cause 

its trans location to the nucleus, where it binds to target gene promoters and activates gene 

expression. My immunohistochemical analyses of dysplasia core samples revealed 

nuclear ELF I in e rN Ill , suggesting that ELF I is active, which is cons istent with 

previous findings (Nicol et al., 2008). In the nucleus, RB interacts with the LxCxE motif 

of ELF I , inhibiting its transcriptional activity. I propose that fo llowing HPV integration, 

E7 displaces RB from ELF I and results in ELF !-dependent hPYG02 induction. 

Initia lly ELF I was regarded as a lymphoid gene specific transcription factor. 

However, it is also regarded as an important activator or repressor of genes involved in 

several processes such as development (Janknecht et a l. , 1989; Jin et a l. , 2009; Calero­

Nieto et al. , 20 I 0; Choi et al. , 20 II), mitogenesis (Moreau-Gachelin et al. , 1988), 

oncogenesis (Moreau-Gachelin et a l. , 1988; Seth et al. , 1989), and viral gene activation 

(Markovitz et al., 1992; Lei den et al. , 1992; Clark et al. , 1993). The bulk of research 

examining the role of ELF I in cancer has focused on the expression of ELF I in relation 

to other biomarkers, such as Vascular endothelial growth factor and PCNA, or with 

clinical correlates. Detai led studies of ELF I gene targets in cancer include ELF I 

activation of the TEK tyrosine kinase, endothelial gene, and binding to the H CCSJ 

promoter. An efficient way to potentially identify all ELF I gene targets in these cells 

wou ld be to perform a genome wide chromatin association ana lysis and to functionall y 

group these genes to identify in which processes ELF I is involved. 
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Our increased understanding of the molecular events that cause cancer, combined 

with advances in sensitive diagnostic technologies and more efficient therapies with 

reduced side effects has necessitated significant investment in the development of novel 

cancer biomarkers. Pygopus was identified as a Wnt/[3-Catenin transcriptional complex 

and has since been shown to play a more general role in chromatin remodeling (Carrera 

et at., 2008; Wright and Tj ian, 2009; Andrews et at. , 2009 and Chen et at. , 201 0). Human 

Pygopus2 (hPYG02) was demonstrated to be overexpressed in several diverse types of 

tumours (including ovarian, breast, brain, colon and esophageal ), and the cell lines 

derived from these tumours (Popadiuk et al. , 2006; Andrews et al. , 2007; Wang et al., 

20 10; Chen etal. , 2011 and Brembeck etal., 2011; Watanabe et al. , 20 13; Moghbeli et 

al. , 20 13). High levels of hPYG02 were required for tumour growth (Popadiuk et al. , 

2006; Watanabe et at., 20 13) and for the proliferation of cancer cells in culture (Popadiuk 

et a t. , 2006; Andrews et a l., 2007; Wang et al., 2010 and Chen et al., 20 11 ), specifically 

permitting passage through the G 1 IS transition (Chen et at., 20 II ). 

Despite its requirement for the proliferation of cancer cells and its tumour specific 

expression, I ittle has been done to identify factors that promote its expression. Our lab 

previously demonstrated that the £ 74-like factor I (ELF I) is required for the induction of 

hPYG02 in breast cancer (BrCa) (Andrews et a l., 2008). Another potential explanation 

for increased hPYG02 expression is by gene duplication, as demonstrated by Zhang et al. 

in mandibulofacia l dysostos is (Zhang et at., 20 I 0). Based on these earlier findings, my 

research focused on characterizing the cell cycle dependent expression of hPygopus2 and 

identifying novel mechanisms by which it is regulated. Overall , my results suggested that 
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hPYG02 is induced in the Gl phase ofthe cell cycle by factors (E2 via ERa -SPI and RB­

ELF I) that promote cell cycle progression. 

By collecting cells in each phase of the cell cycle I determined that hPygopus2 

mRNA and protein were expressed in a cell cycle dependent manner; with the highest 

and lowest expression in G I and G0, respectively. These results suggested that hPYG02 

expression might be used to distinguish cells in G I phase from non-proliferating cells. 

The cell cycle dependent expression of hPYG02 provided an explanation as to why its 

expression is not uniform in all cells of a tumour. Cells expressing hPYG02 may be 

proliferating (ie. in G I, S, G2 or M phases), while cells lacking hPYG02 expression may 

be non-proliferating (perhaps due to serum deprivation and/or hypoxia). Additionally, I 

found that the expression of hPYG0 2 in the G2/M phases relative to its expression in the 

G I phase was indirectly proportional to cell cycle length. These results suggested that the 

relative expression of hPYG02 might be used to determine tumour ce ll proliferation rate. 

In the remainder of this thes is r examined the mechanisms by which hPYG02 is 

regulated. In Chapter 3, 1 determined that in breast cancer (BrCa) cel ls, 17f3-estradiol (E2) 

enhanced hPygopus2 expression by inducing the formation of the Estrogen receptor alpha 

(ERa)- SPI transcription facto r (SPI) complex at its promoter. l utilized ERa 

antagonists, RNAi and site-directed mutagenesis to show that ERa and SP I require an 

intact estrogen response element half site and GC-box and functional DNA binding 

domains to occupy the hPYG0 2 promoter. Taken together, these results implied that in 

ERa + BrCa cell s, ERa and SP !-mediated the E2 induction of hPYG02. Furthermore, I 

demonstrated that in ERa - BrCa cells, SP I could still activate hPYG0 2 and other genes 

5- 3 



Tzenov,2013 

required for cell proliferation. A potential implication of this work is the utilization of 

hPYG02 expression to assist in chemotherapy selection for endocrine disrupter 

unresponsive BrCa tumours. 

In the final Chapter I demonstrated that hPYG02 overexpression in cervical 

dysplas ia and cancer is due to the up regulation of the Human Papillomavirus (HPV) 

effector E7. HPV -E7 directed proteolysis of RB resulted in the release, and thereby 

activation, of ELF I at the E26 transformation-specific binding site in the hPYG02 

promoter. Furthermore, I found that ELF I-mediated stimulation of hPygopus2 expression 

was required for CxCa cell pro liferation. These results supported the hypothesis that HPV 

integration, and as a result E7 induction, leads to hPYG02 overexpression in high grade 

cervical dysplasia and cancer via ELF I. A potential implication of this research is the 

utilization of hPYG02 expression to predict which dysplas ias will progress to invasive 

cancers . 

The induction of hPYG02 by factors that promote cell cycle progression (ie. 

causative cancer agents) suggests that hPYG02 expression is closely linked to the 

mo lecular mechanisms (E2 via ERa and HPV integration via E7 abrogation of RB) that 

result in cancer. Therefore, these results provide an explanation for the overexpression 

and requirement of hPygopus2 in tumours and support its future development as both a 

diagnostic and therapeutic cancer biomarker. 

Future experiments to gain a better understanding of the role of hPygopus2 in 

cancer s ignalling networks and to further evaluate its uti lization as a biomarker should 

begin with a survey examining hPygopus2 expression levels in an array of tumour types. 
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This analysis is supported because of its direct involvement with RB, which is rendered 

non-functional , and ELF I and SPI , which are highly expressed, in multiple tumour types. 

Examination of coexpression, or lack thereof, between these facto rs and hPYG02 on a 

tumour microarray containing several types of cancer would be a solid preliminary 

approach . 

An insightful method to examine the requirement of hPYG02 in various cancer 

types (initially in cell lines and eventually in mice) would be to use the FDA-approved 

drug Pyrvinium, w hich binds and inhibits Casein kinase I, but a lso promotes degradation 

of hPYG02 (Thorne et al. , 20 I 0). 

A lthough the function of hPygopus2 was not examined, the evidence regarding its 

expression, regulation and requirement, as presented within this thesis, suggests a role for 

hPYG02 in the G liS transition. This hypothesis is consistent w ith all of the previously 

ascribed functi ons of hPYG02 including Wnt signalling, chromatin 

remode ling/transcription and ri bosomal DNA transcription. As proliferating cells are only 

responsive to mitogens in the G I phase, all of the above mentioned processes wou ld be 

most active during this time. The induction and high expression of hPYG02 during G I 

would a llow the unhindered execution and completion of the processes in which 

hPYG02 is involved. This hypothesis is further supported by my resu lts, and those of 

others, demonstrating the requirement of hPYG02 for the transition from G I into S. 

Elucidation of the exact role of hPYG02 during G I could be achieved by performing a 

chromatin immunoprecipitation-sequencing assay to determine which gene promoters 

hPYG02 occupies during this phase. 
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Table 6.1 List of oligonucleotide sequences used in this thesis. 

Forward Reverse 
Gene Primers 
~-ACtin ATC TGG CAC C.lif: ACC TIC TAC AAT GWJ crG CG ATG OCT OGG GTG TTG AAG GTC TC 
ADA GC'C IT(' GAC A.~G CCC AAA u 1 A CTC TGC TGT G1T AGC TGG GAG 

Cl$0 GGT TCC TCT GGA AGC ccr GTA G TCC TGC ACC TGC TCC TCC 

CCHO CCG TCC ATG COO AAG ATC ATG OCC AOC OOG AAG AC 
EBAG9 AliT TCC TAA GCA GAC AGA TGT TG CCC A.IT CCC TCC TIC GAT CIT T.~ 

Elf1 CCA GTC ACC CAT GTC TCC GTC AC CAC AGA TAT ATT TOO CGT AGT GGC TGG GO 
FOS CCG GC-G ATA ace TCT CIT ~.CT CCA GGT CCG TGC AGA AGT C 
GAPDH CCA TCA C:OC CAC. AGT TIC C:C CCA GH CAT CAG CAA TGC C 
HSSP1 ATC TC-G .I;AA .;a;.. ATA TCG CGG AC ITO COT OOC AGG TAT CIT GTT 
IGF6P2 CGA GC-G CAC TTG TGA GAA GCG TGT TCA TGG TGC TGT CM CGT G 
PCtiA GAC CGC AAC crG GCC AT GC:G TTA TCT TCG G.CC CTI AGT 

PAA CTC TGC CTC acA TGA AGA AO CIT TGG TCA CGT COA AGA CIT T 
PYGO'.I GTC CCC CAC TCC ATG Gee GCC TCG TCG CIT CIT TTC TGG ACT CIT C 
RAAA AAG CCC GAG TGC TCT GAG A TIC GTA GTG TAT TIG CCC AGC 

RB G.V.. CAT tGA ATC ATG L.iAJ;. TCC tT AGA GG.t.. CAA GCA OAT TCA AOO TOA T 
SP1 GGT GCC TIT TCA CM GCT C GCT GTT CTCA ITG GGT GAC TC 
TERT GGA GCA AGT TGC AAA GCA TTG TCC CAC GAC GT!l GTC CAT GTT 
TCFA AOO TCC GAA .e..r..c ACT GTG >.GT AOC AAG COO TIC TIC CCT TC 

Promoter Primers 
CCtJA CCC C ~.G CCA GTI TGT TTC T AGT TCA AGT ATC CCG CGA CT 

CTSD TCC AGA CAT CCT CIC TGG M GGA GCG GAG GGT CCA TTC 
HCCS: GAC ACC TGA CGT G.li.C AGG AA GTC AGC CGC TCT GTC AGC 
.7PYG02 (~ I J9.a lo - 114 GGA AGC TIC GGT TTG 00T TGG GAT AA(' AGA GO GTC TAC TGC TIT HA GTC TCA ATG 0: 
nPYG02 (-1 1J3 to -8~) GCA GAT CTG C.'<T TGA GAC TAT AAA GCI< GTA GI<C CTC J,GT CTC GCG GTA AGA GAC C 
nPYG02 (-829 to -533) GCA GAT I:TG GTC TCT TAC COC CAG ACT GAO GOC GTA CAC AA.T AGG CIT CCC AGA AG 

., PYG02 (-533 10 -225) GGA GAT f.'TC TTC TGG GAA GCC TAT TG! GTA COC C CIT GCC GG~. CCG !AC CAT CC 
nPYG02 < -225 to • 7 J ) GGA TGG TAC GGT CCG GCA AG GCA AGC TIC CGA ocr GCA GCA ACe ACA AAG TG 
nPYG02 (-t08 to +74) GCA GAT CTC AGG C<IT AGC GTC TCG TCC GGT C GCA A'X' TTC CGA GCT GCA OCA .,CC ACA AAG TG 

nPYG02 exoruc req1on prlfl'lers are same as me nPYG02 Qene prmers 

Site-Directed Mutagenesis Primer Sets 
RB 6Ul(11ng Srte 1t1 ELF1 (AIRno Ac!O Changes LJ;Cxf > R1;RxtiJ (Ne'-.'1 VettOI r~ame pCS2+ElF 1 > pCS2+DA-ELF1) 

CAT GTC ATT 030 CIC ATG •:AC TCT GGC ACG ACC CM TAG ITA TGC CGG TCG TOC C~.G Arrr GCA 

GGC ~.TA ACT ATT TGA GCC CAJ.. TGA CAT G 
ETS '" nPYG02 Promoter (NucleotiOe Cnomges TTCCgQTTCC > TCTAggTCTA) (Hew Ve<:IOl f~ame pGl3-o~t > p(i,L3-48 mu!ETS) 

G.~T CTC GCO .~CO AGT CTI. GOT CTA GOT TGC TGC CGO COO CAG CAJ.. CCT AGA CCT AOA CTC GTC 

CGC CG GCG AGA T C 

ERE Haff-Sitf' a1 .. 331 In nPYG02 Promoter (UUCieOOOe Cnanges TGCCC '> TATAG) tNe-,¥ Ve<lor rtame pGL3·531 "> p0L3-531 mutERE) 

OCG GOA GCC GA.G CCT ATA Gf'.tG COC CCC AGC' AC JGTG CTG OGG CGC CCT ATA OC.C TCG GCT CCC GC 
CC-SOX at -350 lfl nPYG02 Promoter {NU<Ieo!lde Cnanges CCGCCC > CTGTCCJ (lie>.~· Vet lor rJame pGL3-53 1 > pCL3-531 mutGC) 

CGG GTG GGT CGA GAC AGG AGC CGG GCC GGC CCG G.....~ CCT GTC TCG ACC C AC CCG 

ER.CI. OBO f'.tutant ~:AmooAcKl Cnanges CEGC > CAAC) {Ne\v Ve< tor uame pcErw :. pcER:a. OSt.l) 

GTC Tl'Q TCC Tac GCA ace TGC AAG GCC TTC GAA GGC CIT GCA GGC TGC C.CA GGA CCA GAC 
$P1 080 t.lttranl (Am!nO ACIC cnanges KHIKTHQ > KA!KTAO) (rlE\W Vector Uame pcSP1 > pc.SP1 08M' 

CAC CTG TCA A.;A CAT ATC AAG i-.CC CAC CAG AAT AAG CTT .;TT CTG GTG G&'T CTT GAT ATG TIT TG.'. CAG GTG 

siRNA seauences 
soNTC GG.A CL."G UOO UCA ACC AUG lMJ 

soP¥2-X Gt"~ GAC .~GC UUU AGG GAA L1Al 

srPy2-Z GGA GI.IG AGG IJGA ACG AUG >.W 

soEn-1 GAA AGA GAA CAC uo;.. GAA UU 

soE7 CU.~ GL:C UCU .t..CU 0UU AUG A(}C ~.U U 

S•SP1 AUC ACU CCA UGG AUG AAA UGA W 
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Table 6.2 List of antibodies and conditions used in this thesis. 
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Figure 6.1. Cell cycle distribution plots for the phase representative samples of six 

cell lines. 

Samples from the six cell lines were col lected as they progressed through the cell cycle 

after SO and release. Distribution plots of the representative samples for each cell cycle 

phase and the percentage of cells in the appropriate phases are shown 

U nsynchronized GO G1 s G2/M 

He La 

HEK293 

MDA-MB-231 

PC3 

SK-OV-3 

LNCaP G21M 68.85 
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Figure 6.2 E 2 ind uction of genes in VCS and MC2 BrCa cell lines 

Comparison of E2 induced gene expression between the ERa- parental MDA-MD-231 

cell lines, the ERa constitutively expressing stable transfectant cell line (MC2) and the 

empty vector control cell line (VC5). Genes examined were selected according to a 

review article by the group that generated these cell lines (Levenson and Jordan, 2004). 

E2 induction of Progesterone receptor (PGR), Tumor growth factor alpha (TGFa), 

Insulin-like growth factor binding protein 4 (JGFBP4), Retinoic acid receptor alpha 

(RARa), Cathepsin D (CA TD) and v-myc myelocytomatosis viral oncogene homology 

(MYC) is consistent with the levels in the review. 

c 
25 Legend: 0 ·u; 
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<( co 
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co 
Q) 0 hPygo2 

0::: 

Cell Lines and Treatments 
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Figure 6.3 ERa translocation to cytoplasm from nucleus after treatment with FUL 

Constitutively expressing ERa MC2 cells were treated with ethanol (Et), 1 7~-estradiol 

(E2) or fulvestrant (FUL) and protein leve ls of ERa , ~-Actin and ~-Tubul i n were 

measured by immunoblot in either who le cells (WC) or extracted nuclei (N). 

Et E2 FUL 

p~~u~p~ 
E R a I t I, • p •• I Ut 24 •• I a • I 

l3-Actin 

l3-Tubulin -
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Figure 6.4 Statistical analyses for hPYG02, p16INK4a and MKI67 staining on a 

CIN microarray. 

An Ordinal Logistic Random Effects Model was fit to the data. The response was taken to be the 
stain intensity, (a 0 value corresponding to Negative Staining, a I corresponding to Weak Staining, a 2 
corresponding to Strong Staining). Further, the covariates in the model were the Diag noses (increasing in 
severity from Normal to Cl I, to CIN2, to CIN3, to SCC), the observer doing the counting (KK, PA, and 
YRT), the antigen used to stain (hPYG02, MK167, and p l6) as well as a random effect for the Core 
Sample used ( 18 values). An ANOV A confirmed that the random effect of Core Sample was significant (p 
< I 0' 16

). Moreover, the model was constructed with "difference contrasts" on Diagnoses. That is, our 
contrast matrix has the form: 

Normal 0 0 0 0 
e rN 1 o o o 
CIN 2 0 0 
CIN 3 1 0 
sec 
The interpretatio n of the model coefficients for this contrast matrix is given in the Table. All 

estimates are re lative to the baseline of Observer KK, Antigen hPYG02, and Normal Disease. We see that 
only when we stain samples with Diagnoses of CIN3 or SCC that we have a significant increase in stain 
intensity (p<0.05). We note that a ltho ug h it appears that SCC stains less intensely than CIN3 the difference 
is not significant (p=O. I2). T hat is, Pygopus stains mo re intensely for advanced disease states. 

Cumulative Link Mixed Model fitted with the Laplace approximation 
What is significant to note is the all coefficient estimates for the incremental increase in disease 

status are positive (and significant), implying that stain intensity with Pygopus increases with Disease 
Severity. 

TABLE: p values for staining differences observed for Pygopus with disease progression 

Rando m effects: Core.ID Var: 0.6859 166 

Observer PA 
Observer YT 
change in going from N to CIN I 
change in going from CIN I to CIN2 
change in go ing from CIN2 to CTN3 
change in going_ from CIN3 to SCC 
Difference from antigen MKI67 
Difference from antigen p 16 

No scale coefficients 
Thresho ld coefficients: 
Estimate Std. Error z value 

Oil 0.0087 0.5758 0 .0151 
112 1.8073 0.5759 3 . 1381 

log-likelihood: -25042.57 
AIC: 50 107. 14 

Estimate 
-0.4433 
-0.5053 
0.3655 
0.4883 
1.2559 
0 .9 166 
-1.2371 
-0.4359 

Std.Dev: 0.8282008 

Std . Error z value 
0.0382 -11.6174 
0.0282 -17.8911 
07098 0.5149 
0.6339 0.7703 
0.5874 2. 1379 
0.5877 1.5596 
0.0348 -35 .5348 
0.0315 -13.8379 
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Table 6.3 Generation and cha racterization of HEN, HEC, HEN 16T and HEC 18T 

cell lines. 

Generation 

Isolation HEN cultures were derived from a cervical specimen 

obtained from hysterectomy (donor age, 44 years) 

HEC cultures w ere derived from a cervical specimen 

obtained from hysterectomy (donor age, 36 years) 

Cultunng Serum free DMEM + BPE +EGF 

Serum free DMEM + BPE 

Generation HE cells transfected with HPV16 (integrated) 

of HEN 16T cells and repeatedly treatments with cigarette smoke condensate (CSC) 

Generation HEC cells were transfected wit h HPV18 (integrated) 

of HEC 18T cells and repeatedly treated w ith esc 
Culturing HEN 16T and HEC 18T were grown in DMEM + 10% FBS 

General Characteristics 

HEN HEN 16T HEC HEC 18T 

Immortalized No Yes No Yes 

HPV DNA Absent Integrated Absent Integrated 

Plordy Diploid Aneuploid Diploid Aneuploid 

In vivo Proliferation Characteristics 

Nodule formation No Yes No Yes 

Tumour formation No Yes No Yes 

Epithelium Thin but Thick, aberrant and Differentiated Dysplastic cells 

Structure mulit -layered disorganized, loss st rati fied squamous t hroughout, loss 

of cell arrangement epithelium of different iation 

nucleus Regular Enlarged and N/A N/ A 

hyperchromatic 

invasion No Yes No Yes 

Reminiscent to Mature Severe Squamous Severe 

metaplasia dysplasia epithelium dysplasia 

Gene Expression (mRNA levels/protein levels) 

E6 +++ +++ 

E7 - +++ - +++ 

TERT - ++ ++ 
HRAS + ++ 
CMYC + ++ 
BMYB - ++ 

TP53 -I++ ++/+ 
CDKNlA (p21) ++ ++ 
CDKN2A (p16) -I- ++/++ N/ A 

PCNA -I- ++/ H 
BAKl + ++ 

SAX + + 

BCLl + +++ 

BCLlLl + +++ 

BAGl + ++++ 
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Figure 6.5 Presence of HPV 16 and 18 DNA and £6 and £7 mRNA expression in 

CxCa cell lines. 

(A) HPV 16 and 18 oligonucleotides were used to amplify HPV DNA in two normal 

cervical cell lines (HEN and HEC) and six CxCa cell lines (C33a, HeLa, CaSki, SiHa, 

HEN 16T and HEC 18T) by reverse transcription PCR. Levels were normalized to the 

NHD region of hPYG02. (B) Oligonucleotides pairs were used to amplify HPV 16 E6 

and E7 and HPV 18 E6 and E7 genes in the normal and CxCa cell lines. mRNA levels 

were normalized to ~Actin. 

A 

400 bp-

200 bp-

HPV16 DNA 

- HPV18 DNA 

400 bp- - - - - - - -- hPygo2 NHD DNA 

B 

100 bp-

100 bp-

200 bp-

100 bp-

600bp--- -

-- HPV16 E7 mRNA 

HPV18 E6 mRNA 
HPV18 E7 mRNA 

--- -GAPDH 
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Figure 6.6 Characterization of RB and ELFl binding characteristics in HEN 16T 

cells. 

Immunoprecipitations demonstrating the binding dynamics between phosphorylation site 

mutant (RB PSM-RB) and wildtype ELF1 , dominant active ELF-1 (DA-ELF1) and HPV 

16 E7. 

I I Rb 

~ I - I Etf-1 

E :3 c E7 

I ::3 f3-adjn 
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