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Abstract 

In this thesis we consider decompositions of algebras and superalgebras into the 

sum of two subalgebras. The sum is understood in a sense of a vector space sum 

and not necessarily direct. The structure of these sums has attracted considerable 

attention for various types of algebras. Originally, this problem arises in the work 

of M. Goto (1963) where he studied the case of nilpotent Lie algebras. In 1969 

A. Onishchik classified decompositions of simple complex Lie algebras into the sum 

of two reductive subalgebras. In 1999 Y. Bahturin and 0. Kegel [1] proved that 

no simple associative algebra can be written as the sum of two simple subalgebras 

over an algebraically closed field. In the joint paper with M. Tvalavadzc [24], we 

classify decompositions of simple .Jordan algebras over an algebraically dosed field 

of characteristic not two. 

In the case of Lie superalgebras this problem was open until now. The main 

result of this thesis is a classification of all such decompositions in the case of basic 

non-exceptional Li8 superalgebras, up to conjugation, over an algebraically closed 

field of characteristic zero. Moreover, we construct precise matrix realizations of 

each decomposition. 

To prove this result we consider a Lie superalgebra as a module over its even 

component which is a Lie algebra. Using techniques of the representation theory 

of semisimple Lie algebras we present the precise description of such modules for 

each superalgebra in the sum. This research is significantly based on the result from 

[26] which extends Onishchik's Classification Theorem to an arbitrary algebraically 

closed field of characteristic 7:ero. 
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Chapter 1 

Preliminaries 

1.1 Decompositions of simple Lie algebras 

In this section our main goal is to recall the decompositions of simple Lie algebras 

over an algebraically closed field lF of zero characteristic as the sum of two reductive 

subalgebras. 

The classification of simple decompositions over the field of complex numbers 

was obtained by A. Onishchik [16]. It is based on the following Lie Theory result. 

Theorem 1.1.1 Any non-trivial irreducible factorization G = G'G" of a connected 

simple compact Lie group G into the product of two connected subgroup G' and G" 

is equivalent to one of the following factorizations: 

S02n = S02n-l · SUn, n 2 4, 
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so16 = S015 . Spin9 , 

SOs = S01 · Spin7 . 

Next we formulate a theorem from [26] which extends Onishchik's Classifica­

tion theorem for a simple Lie algebra to an arbitrary algebraically closed field of 

characterit~tic zero. 

Theorem 1.1.2 Any decomposition of a simple Lie algebra into the sum of two 

reductive subalgebras over an algebraically closed field of characteristic zero has up 

to conjugation one of the following forms: 

sl(2n) = sl(2n- 1) + sp(2n), n 2: 2 

o(2n) = o(2n- 1) + sl(n), n 2: 4, 

o(4n) = o(4n- 1) + sp(2n), n 2: 2, 

o(7) = G2 + o(6), 

o(7) = G2 + o(5). 

The following three lemmas produce decompositions of simple Lie algebrat~ at~ the 

sum of simple subalgebras. The matrix forms of these decompositiont~ have been 

cont~tructed in [2]. 

Lemma 1.1.3 There is a basis of lF 2
n such that the decomposition sl(2n) = sl(2n-

1) + sp(2n) ta.kes the following ma.trix form: 

S= N +M, 

2 
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where S ~ sl (2n) consists of all matrices of order 2n with zero trace. The first 

subalgebra N ~ sl(2n- 1) consists of matrices: 

0 0 ... 0 

0 

T 

0 

where T is a matrix of order 2n - 1 with trace zero. 

Any element of the second subalgebra M ~ sp(2n) has the form: 

where C22 = -Cf1 and C12 , C21 are symmetric matrices of order n. 

Lemma 1.1.4 There is a basis of IF 2
n such that the decomposition o(2n) = o(2n-

1) + sl ( n) takes the following matrix form: 

S= N +M, (1.2) 

where S ~ o(2n) consists of the matrices: 

(1.3) 

where A12 , A21 are skew-symmetric matrices of order n and A11 , A22 are matrices of 

order n such that A22 = - Ai1 . 
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The first subalgebra N ~ o(2n- 1) consists of the matrices: 

\ 

0 Y1 . . . Yn-1 0 x1 ... Xn-1 

X1 -x1 

A~1 A~2 

Xn-1 -Xn-1 
(1.4) 

0 -y1 ... -Yn-1 0 -x1 . .. -Xn-1 

!/1 -y1 

;1~1 ;1~2 

Yn-1 -Yn-1 

where A~2 , A~ 1 are skew-symmetric matrices of order n -1 and A~ 1 , A;2 are matrices 

of order n - 1 such that A;2 = - A'i 1 . 

Any element of the second subalgebra M ~ sl(n) has the form: 

where 11 1 , /\ 2 are matrices of order n with zero trace such that !12 = -Ai. 

Lemma 1.1.5 There is a basis of IF 4n such that the decomposition o( 4n) = o( 4n-

1) + sp(2n) takes the following matrix form: 

8= N +M, (1.5) 

where S ~ o(4n) consists of the matrices of the form {1.3) where A11, A12, A21, A22 

are of the order 2n. The first s·ubalgebra N ~ o(4n- 1) has the form {1.4), wheTe 

11~ 1 , /\~ 2 , 11;1 and A;2 are of the order 2n- 1. The second subalgebra M ~ sp(2n) 

consists of the matrices: 
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where Y is of the form: 

where B, C are symmetric matrices of order 2n and D =-At of order 2n. 

Remark 1.1.1 Let x be an automorphism of gl(2k) such that x(X) = QkXQJ; 1
, 

where 

(1.6) 

where h is the idmtity matrix of order k. 

We consider the decomposition x(S) = x(N) + x(M) where S, N and A1 are 

from Lemma 1.1.4 (or 1.1.5). Using straightforward calculations we can show that 

x(S) consists of all skew-symmetric matrices of order 2k (or 4k). Besides, x(N) 

consists of all skew-symmetric matrices of order 2k (or 4k) with the first column 

and row zero. In particular x(N) has a nontrivial annihilator in gl(2k) (or gl(4k)). 

1.2 Lie superalgebras: basic facts and definitions 

In this section we formulate basic properties of Lie superalgebras ( [13], [18]). 

Let !\ be an algebra. We say that II is a Z2-graded algebra, if there is a vector 

space sum decomposition 

such that AgAh C Agh for all g, hE Z2 

Definition 1 A Lie superalgebra S over a field lF of characteristic zero is a Z2 -

graded algebra, that is the direct sum of two vector spaces 50 and 5 1 , and is equipped 
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with a Lie superbracket [ , ] , such that for any x E Sn, y E S 11 and z E S the 

following identities hold: 

[x,y] = -(-l)af3[y,x] 

[[x, y], z] = [x, [y, z]]- ( -l)<>f3[y, [x, z]]. 

(1. 7) 

(1.8) 

The even subspace, i.e. the set of all even elements of a Lie superalgebra S = 

S0 E8 S1 is a Lie algebra. Since [S0 , S1] s;:; S1 and by (1.8), which with a= 0, f3 = 1 

and z E S1 takes the form 

[[x, y]. z] = [x, [y, z]]- [y, [x, z]], 

we observe that the commutator of S makes S1 into an S0-module. Furthermore, 

the restriction of the commutator to S1 defines a bilinear symmetric mapping <I>: 

sl X sl f-+ So. Since So is the adjoint So-module one may speak about the action 

of S0 on the bilinear mapping from S1 into S0 . Thus the following properties of a 

superalgebra S = So ED S1 hold: 

• S0 is a Lie algebra; 

• S1 is an S0-module; 

• the bilinear mapping [ ' l : sl X sl f-+ So is symmetric and So-invariant; 

• [x, y] = -[y, x] for X E So, y E sl. 

If A = A0 E8 A1 is an associative superalgebra ( ZTgraded associative algebra) 

then, introducing a superbracket (supercommutator) on A by the formula 

[x,y] = xy- (-l)"f1yx 

6 
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with x E A,, y E Af!, one turns A into a Lie superalgebra sometimes denoted by 

[A]. 

We say that T is a homogeneous (or 2 2-graded) subspace of S if T can be 

represented in the form 

T = (T n So) EB (T n S1). 

If this holds we write T0 = (T n 50 ) and T1 = (T n 5 1). In addition, if T is a 

subalgebra (or an ideal) of S then we say that Tis a subsuperalgebra (or 2 2-graded 

ideal) of S'. The quotient algebra S'jT, where Tis a 2 2-graded ideal, can be naturally 

made into a Lie superalgebra if one sets 

(S'/T)a =(Sa+ T)jT. 

We Bay that a Lie superalgebra Sis simple if S has no 2 2-graded ideals except itself 

and zero. 

The classification of simple Lie superalgebras over an algebraically dosed field 

was obtained by V. Kac in 1975. Among Lie superalgebras appearing in the classi­

fication of simple Lie superalgebras, one distinguishes two families: the classical Lie 

superalgebras in which the representation of the even subalgebra on the odd part 

is completely reducible, and the Cartan type superalgebras in which this property 

is no longer valid. Among the classical superalgebras, one naturally separates the 

basic series from strange ones. 

The basic Lie superalgebras split into infinite families denoted by .~l(m., n) for 

m > n 2 1 and psl(n, n), n 2 2, (special linear series), osr{rn, 2n), n, n1. 2 1, (or­

thosymplectic series) and three exceptional superalgebras F(4), G(3) and D(2, 1; a), 

the last one being actually a one-parameter family of superalgebras. Two infinite 

families denoted by P(n) and Q(n), n 2 2, constitute the strange Buperalgebras. 
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The classical Lie superalgebras can be described as matrix superalgebras as 

follows. Consider a Z2-graded vector space V = Vo @ V1 with dim Vo = m and 

dim V1 = n. Then the algebra End V acquires naturally a superalgebra structure by 

End V = Endo V E8 End1 V 

where 

The Lie superalgebra gl(m, n), m, n > 0, is defined as the superalgebra End V 

supplied with the Lie superbracket (1.9). Clearly, gl(m, n) consists of all matrices 

of the form 

where /\ E gl(rn), /) E gl(n), TJ and Care rn x n and n x rn rectangular matrices. 

One defineR on gl(m, n) the supertrace function denoted by str: 

str (M) = tr(A)- tr (D). 

The superalgebra sl(m, n), m > n 2: 1, consists of all matrices M E gl(rn, n) 

satisfying the supertrace condition str (M) = 0. The superalgebra sl(n, n) has a 

one-dimensional center Z which is contained in the zero component. The simple 

algebra psl(n, n), n 2': 2, is given by psl(n, n) = sl(n, n)/Z. 

The orthosymplectic superalgebra osp(m, 2n), 'rn > n 2': 1, is defined as th<~ 

superalgebra of all matrices M E gl(m, 2n) satisfying the conditions 

where t denotes the usual transpose, and the matrix In is given by 
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The strange superalgebra P(n), n 2::: 2, is defined as the superalgebra of matrices 

M E gl ( n, n) satisfying the conditions 

Bt = B, ct = -c, tr (A) = 0. 

The strange superalgebra Q(n) is defined as the superalgebra of matrices M E 

gl ( n, n) satisfying the conditions 

A=D, B=C, tr (B) = 0. 

The superalgebra Q(n) has a one-dimensional center Z which is contained in the 

zero component. The simple algebra Q(n), n 2::: 2, is given by Q(n) = Q(n)/Z. 

Finally we cite two important lemmas which will be used later. 

Lemma 1.2.1 Let either TJ ~ sl(m., n) where m =f n or [; ~ psl(n, n). Then 

L = L0 EB 1 1 where L0 is the even part of L, 1 1 is the odd part of L. The following 

conditions hold: 

(a) L0 = 11 EB 12 EB U, where It~ sl(m), h ~ sl(n) and U is either one dimensional 

Lie algebra if m = n or zero. 

(b) h EB !2-module L1 is the direct sum of two simple 11 EB 12 -modules of dimen­

sion mn with the highest weights (A,/1*) and (.\*,/1) where)..= (1,0, ... ,0) and 

Jl = (1, 0, ... '0). 

(c) [L1, LI] = Lo 

(d) [h, L1] = L1 and [!2, L1] = L1 

(e) h -module 1 1 is the direct sum of 2n simple 11 -modules of dimension m and 

12 -module 1 1 is the direct sum of 2m simple !2-modules of dimension n. 
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Lemma 1.2.2 Let L ~ osp(m, 2n). Then 

(a) Lo = 11 E9 12, where 11 ~ o(m), h ~ sp(2n) 

(b) L1 is a simple 11 E9 [2 -module of dimension 2mn 

(c) [IJ1, L1] = Lo 

(d) [!1, L1] = L1 and [h L1] = L1 

(e) !1-module L1 is the direct sum of 2n simple 11-modules of dimension m and 

12 -module L1 is the direct sum of m simple h-modules of dimension 2n. 

The proof of th~se lemmas is straightforward (see [13], [18]). 

1.3 Description of some modules associated with 

decompositions 

In this section we introduce three types of L0-modules which will be repeatedly used 

throughout the thesis. 

Let either S ~ sl(m, n) or S ~ osp(m, n), and S 5;;; gl(m, n). We consider 

the decomposition S = K + L where K and L are two proper basic simple sub­

superalgebras. If no confusion is likely, we will use the term subalgebra instead of 

subsuperalgebra. Since T) C S' 5;;; gl(rn, n), L0 C gl(rn) (!) gl(n). Hence we have 

two natural repres8ntations p1 and p2 of L0 in vector spaces V and W where V is a 

vector column space of dimension m, and W is a vector column space of dimension 

n. 

To define L0-module structure on V and W we consider the following formulas: 

xv = Pl(x)(v) 
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and 

xw = P2(x)(w), 

for any :r: E !"0 , v E V, w E W. 

Since L 0 is a direct sum of a semi-simple subalgebra and a one-dimensional 

center, according to [12], £ 0-modules V and W are completely reducible. Let V = 

V1 EB ... EB Vr and W = W1 EB ... EB Wd, where V;, WJ are simple Lo-modules. 

In the following definition we introduce three different types of £ 0-module W1. 

Definition 2 If I 1 and ! 2 are ideals of L0 defined in Lemmas 1. 2.1 and 1. 2. 2, then 

L0 -module WJ can be of one of the following types: 

Type 1. !2 acts trivially on W1. 

Type 2. !2 acts nontrivially on W1 and !1 acts nontrivially on W1. 

Type 3. I 2 acts nontrivially on W1 but h acts trivially on WJ. 

Next we look at the decomposition S = K + L where S C gl(m., n). Hence 

S0 = Ko + L 0 c gl(m, n)o and S1 = K1 + £1 c gl(m, n)I. 

We consider gl(m, n) in the following form: (V EB W) 0 (V EB W)*. Thus gl(m, n) 0 

takes the form (V ® V*) EB (W 0 W*), and gl(m, n) 1 takes the form (V 0 W*) EB 

(V* 0 W). As a result, £ 0-module gl(m, n) 1 can be viewed as the direct sum of two 

£ 0-modules V ® W* and V* ® W such that 

x(v ®f)= Pl(x)(v) ® f + v ® p;(x)(f) 

and 

x(g 0 w) = p~(x)(g) 0 w + g 0 P2(x)(w), 

for any x E £ 0 , v E V, w E W, g E V*, f E W*, and pi, p;, are the dual 

representations for P1, P2. 
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Since V = V1 EB ... EB V,. and W = W1 EB ... EB W,z where V;, Wi are simple 

Lo-modules, we can express Lo-module V @ W* as the direct sum of L0-modules 

i,j 

We denote the projection of V 0 W* onto V;@ W/ by Qij· 

1.4 Main result and general properties of decom-

positions 

First we formulate the main result of this thesis 

Theorem 1.4.1 Any decomposition of a basic non-exceptional Lie superalgebra into 

the sum of two basic non-exceptional Lie subsuperalgebras over an algebraically closed 

field of character·istic zero has 'UP to conjugation by a non-degenerate matrix one of 

the following forms: 

1. sl(2k, n) = sl(2k- 1, n) + osp(n. 2k), 

2. sl(n, 2k) = sl(n, 2k- 1) + osp(n, 2k), 

3. osp(4k. 2n) = osp(4k- 1, 2n) + osp(n, 2k), 

4. osp(2k, 2n) = osp(2k- 1, 2n) + sl(k, n) where k 2: 1, n 2: 1. 

In the case of decompositions of special linear superalgebras, the proof of this 

result is based on Theorems 2.1.8, 2.2.1 and 2.3.7. Examples 1 and 2 demonstrate the 

existence of these decompositions. The uniqueness of the decompositions was shown 

in Theorem 2.4.2. In the case of orthosymplectic superalgebras, the proof of this 

result is based on Theorems 3.1.1, 3.2.12 and 3.3.6. Examples 3 and 4 demonstrate 
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the existence of these decompositions. Finally the uniqueness of the decompositions 

was shown in Theorem 3.4.2. 

In both cases we will use the following definitioui-i aud lemmas. 

Definition 3 An (n+m)-dimensional column vectorv is called a vector annihilator 

of L in gl(m, n) if vt L = {0} and Lv = {0}. 

Lemma 1.4.2 Let S be decomposable into the sum of two superalgebras K and L 

where S' ~ sl ( rn, n) (or osp(tn, n)) and S <:;;; gl (tn, n). Then either K or {, has a 

trivial vector annihilator in gl ( m, n). 

Proof. 

Let (S) denote the associative enveloping algebra of S. By definition, (S) is 

a linear span in 1\fatrnxn(lF) of SnSn-I ... s1 where s1 .... , sn E S. Since Sis an 

irreducible subset of M atrnxn(lF), (S) coincides with M atrnxn(lF). 

First we show that for any l E L, the following inclusion holds 

l(K) <:;;; (K) + (L) + (K)(L). (1.10) 

To prove this formula we use mathematical induction by the number of elements in 

the product knkn-l ... k1 where ki E K. 

Let n = 1. We are going to prove that lk1 E (K) + (L) + (K)(L). By using the 

following formula for supercommutator in S: 

where x E Si, y E Sj and i,j E {0, 1}, we have 
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Next we prove that l(knkn-1 ... k1) has the form (1.10). We have that 

Notice that [Z, kn] = k' + l' where k' E K, l' E L since [l, kn] E S. It follows that 

This implies that 

Clearly k' kn-1 ... k1 E ( K). By induction, both l' k,_ 1 ... k1 and l kn-l ... k1 are of 

the form (1.10). Therefore 

since 

K((K) + (L) + (K)(L)) ~ (K) + (L) + (K)(L). 

Therefore we have proved (1.10). 

Further, we want to prove that 

(S) = (K) + (L) + (K)(L). (1.11) 

To prove this formula we use mathematical induction on the number of elements in 

the product SnSn-l ... s1. 

If n = 1 then s 1 E S = K + L. 

Next we are going to show that sn(sn-l ... s 1 ) has the form (K) + (L) + (K)(I,). 

Let 

14 



where kn E K, ln E L and 

Sn-1 ... s1 = k + l + k'l' 

where k, k' E (K) and l, l' E (L). So we obtain that 

As was shown above, both lnk and lnk'l' have the form (K)+(L)+(K)(L). Therefore 

we have proved (1.11). 

Finally we prove that either I< or Lhasa trivial vector annihilator in gl(m, n). 

Let us assume the contrary, that is, there exists a pair of (n + m)-column-vectors v, 

u such that vt ]( = {0} and Lu = {0}. Then vt( (K)) = {0} and ( (L) )u = {0}. This 

implies that 

On the other hand, (S) coincides with Mafmxn(IF). Thus 't/(Matmxr.CJF))n = {0}, 

which is a contradiction. 

In the following lemmas we are going to use notation from Section 1.3 

Lemma 1.4.3 Let I be a nontrivial ideal of L0 where L ~ sl (p, q) (or osp(p. q)) 

and L ~ gl ( m, n). If I acts trivially on 1/, and there exists j 0 E { 1, .... d} such that 

I acts trivially on Wjo, then L has a vector annihilator in gl ( m. n), namely Wj0 is 

annihilated by L. 

Proof. 
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We choose a basis in V 8 W from elements of subspaces \!i, i = 1 ... T, and Wj, 

j = 1 ... d, respectively. Then L0 takes the form 

{($)} (1.12) 

where 

{(*)} (1.13) 

where 

Bi E Mrnxni (IF) and 

C= 

C; E 1\ fni xm. (IF)· 

Therefore I takes the form (1.12) where A= 0 and Dja = 0. By Lemmas 1.2.1(d) 

and 1.2.2(d), L1 = [J, L1]. In matrix terms this formula takes the form 

where 
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DC= DC Jo ]o 

Since B10 D10 = 0 and D10 CJo = 0, any vector from W10 is annihilated by L. 0 

Remark 1.4.1 Similarly, if I acts trivially on W, and there exists ia E { 1, .... r} 

such that I acts trivially on 1/i0 , then L also has a vector annihilator in gl ( m, n), 

namely 1/i0 is annihilated by L. 

In this thesis we use the following 

Corollary 1.4.4 Let L ~ osp(m- 1, n) ~ gl(m, n), and La = I1 E9 I2 where I1 ~ 

o(m- 1), I2 ~ sp(n). In addition assume It has the form 

{(f)} (1.14) 

where A is an arb7.trary skew-symmetric matrix of order m with the first row and 

column zero. Then the first row and column of all matrices in L are also zero. 

Proof. In Remark 1.4.1, set I= I2 and 1/i0 = span(el). 

Lemma 1.4.5 Let L ~ sl(p, q) (or osp(p, q)), L ~ gl(m, n). In addition assume 

La has the form (1.12), and L 1 has the form (1.13). If there exists a pair of indices 

J1 and ]2, J1 :1 ]2, such that D11 and D12 are not zero for some elements from La, 

then L1 cannot be of the form (1.13) where H;1 = /..B; 2 for some fixed).. E: lF. 
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Proof. 

Without any loss of generality, j 1 = 1 and j 1 = 2. Assume the contrary, that is, 

any element from L1 has the form (1.13) where B2 = >.B1 . 

The commutator of two arbitrary elements from L1 : 

0 B1 >.B1 

c1 0 

C2 0 

and 

0 B' 1 >.B~ 

('' /1 0 

C' 2 0 

has the following form 

* 0 0 

(1.15) 

We know that there exists x E La of the form (1.12) such that D1 -1- 0 and 

TJ2 -1- 0. Since La = [ T/1 , L1], :1: can be represented as a linear combination of 

commutators of elements from L1 . Hence there exists a commutator of the form 

(1.15) such that >.(C2 B~ + qB1) -1- 0 since D2 -1- 0. Thus). -1- 0. Similarly, there 

exists a commutator of the form (1.15) such that C1 B~ + C~ B1 -1- 0 since D1 -1- 0. 

Therefore >.( C1 B~ + q BI) -1- 0. This contradicts the fact that a commutator of two 

elements from L1 belongs to La of the form (1.12). 0 

Lemma 1.4.6 Let Wj0 , )a E {1 ... d} be a nontrivial La-module. Then there exist 

ia E {1 ... r} such that Q;0 j 0 (L1) -1- {0}. 
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Proof. 

There is no loss in generality if we consider only the case where j 0 = 1. Let 

us assume the contrary, that is, for any i E { 1 ... r} we have that Qijo ( L1 ) = { 0}. 

Hence L1 takes the following matrix form: 

{(*)} 
where 

B = ( B1 ... Br1 ), 

ni E Mrnxni (IF) and H1 = 0. 

On the other hand, by Lemmas 1.2.1(c) and 1.2.2(c), L 0 = [L1 , L1]. Therefore 

L 0 takes the form 

{($)} 
where 

[)i E Mn;(IF) and lh = 0. This contradicts the fact that W1 is a nontrivial {;0 -

module. 0 

In this thesis we will employ the following construction. Let A, B be simple 

Lie algebras and A-module V(>.) and B-module V(tL) be two simple modules with 

the highest weights ,\ and fL, respectively. Then one can define A EB B-module 

V(.A) 0 V(p,) in the natural way 

(X, Y)(v ® w) = X(v) ® w + v ® Y(w). 
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Taking into account this construction we can state the following lemma from [11] 

Lemma 1.4.7 If A-module V(.X) and B-module V(p,) are two simple modules then 

A EBB-module V(.X) ® V(p,) is also simple with the highest weight (A,JL). 

We will use the following simple lemma. 

Lemma 1.4.8 Let U be a simple / 1 EB 12 -module such that h (U) =/= {0} and h(U) =/= 

{0}. Then there exist U', U" ~ U such that U' is a simple ! 1-module and U" is a 

simple h-module. Moreover, U is isomorphic to U' ® U" as an 11 EB 12 -module. 

Proof. 

Let A= (X, X') be the highest weight of an !1 CIJ !2-module U where X and .A" 

correspond to / 1 and /2, respectively. Next we can choose an 11-module U1 and an 

/ 2-module U2 with the highest weights X and X', respectively, and form an / 1 EB /2-

module U1 ® U2 at> was shown above (1.16). By Lemma 1.4.7, an h EB /2-module 

U1 ® U2 is simple with the highest weight (X, X') = .A. Therefore h EB 12-modulet-> 

U1 ® U2 and U are isomorphic. Let 'if; be an isomorphit>m between U1 ® U2 and 

U. Next we choot>e some non-zero u1 E U1 and u2 E U2 . By (1.16), U1 ® u2 is an 

11-module and u1 ® [h is an 12-module. Moreover, [h ® u2 is isomorphic to [h as 

an 11-module and u1 ® U2 is isomorphic to U2 as an 12-module. Next, we define 

U' = '1j;(U1 ® u2 ) and U" ='if;( u1 ® U2 ). Since U1 ~ U' as an / 1-module and U2 ~ U" 

as an ! 2-module, it follows that U1 ® U2 ~ U' ® U" as an / 1 EB / 2-module. Therefore 

U is isomorphic to U' ® U" as an 11 EB 12-module. D 
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Chapter 2 

Decompositions of special linear 

superalgebras 

2.1 Sums of two special linear superalgebras 

In this section we consider decompositions of the form S = K + L where S, K and 

L are special linear algebras. 

Remark 2.1.1 Since both K and L have the same type, by Lemma 1.4.2, we can 

assume that L has a trivial vector annihilator in gl ( m, n). 

Lemma 2.1.1 Let 8 = sl(m.,n) (or psl(n,n)) be a Lie superalgebra, and,'-,' be 

decomposed as the sum of two proper special linear subalgebras K and L. Then 

K ~ sl(p, n) (or psl(n, n)) and L ~ sl(m, l) (or psl(m, m)). 

Proof. 

By Lemma 1.2.1(a), either S0 = sl(m)ffisl(n)CDU or S0 = sl(n)ffisl(n). We define 

two projections n1 and n2 of 8 0 onto the ideals sl(m) and sl(n), n1 : So-+ sl(m) and 
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1r2 : S0 -----* sl(n). We have that K0 ~ sl(p!) E8 sl(p2 ) E8 U and Lo ~ sl(ll) E8 sl(lz) 8 U 

since K ~ sl(pt,Pz) and L ~ sl(lt, lz). Hence 7rt(Ko), 7rt(Lo), 1r2(Ko) and 7rz(Lo) 

are reductive Lie algebras as homomorphic images of reductive algebras K 0 and L0 • 

Since S' = K + L, S'0 is also decomposable into the sum of two subalgebras K0 and L0 , 

So= Ko +La. Therefore, 7rt(So) = 7rt(Ko) + 7rt(Lo) and 7rz(So) = 7rz(Ko) + 7rz(Lo), 

where 1ft(S0 ) = sl(m) and 1r2 (80 ) = sl(n). Thus, we obtain two decompositions of 

simple Lie algebras sl(m) and sl(n) into the sum of two reductive subalgebras. 

By Theorem 1.1.2, sl(n) cannot be decomposed into the sum of two proper 

reductive subalgebras of any of the following types: sl(k), sl(k) E8 sl(l) or sl(k) E8 

sl(l) E8 U. Hence one of the subalgebras coincides with sl(n). 

Next we consider the following decomposition: sl(rn) = 1ft (,','0 ) = 1r1 ( K0 ) + 

1r1(L0 ). Without any loss of generality, we assume that 7rt(L0 ) coincides with 1r1 (80 ). 

Then 1ft(L0 ) is isomorphic to sl(m). On the other hand, 1ft(L0 ) is a homomorphic 

image of L0 where L0 ~ sl(lt) E8 sl(l2 ) E8 U. Therefore sl(Zt), sl(l2 ) are the only 

possible simple homomorphic images of L0 . Thus either it = m or lz = m. Set 

l = lt if l2 = m and l = l2 if lt = m. It follows that L ~ sl(m, l). 

Finally we consider the decomposition sl(n) = 7rz(S'o) = 7rz(Ko) + 7rz(Lo). We 

want to prove that 7r2 (T,0 ) does not coincide with 1r2 (S'0 ) = sl(n). Assume the 

contrary, that is, 1r2 (L0 ) = sl(n). Let L0 = It E8/z E8 U where It ~ sl(m) and /2 ~ 

sl(l). Therefore we obtain that either m =nor l = n since 1r2 (ft E8/z E8 U) = sl(n). 

Let l -1- n. Thi:3 implies that m = n. Therefore 1r1(L0 ) ~ sl(m) and 1r2 (L0 ) ~ 

sl(m). Since L0 ~ It E8 / 2 E8 U where It ~ sl(m), [z ~ sl(l) and l -1-m, we obtain 

that 7rt(/l) = 7rt(Lo) and 7rz(ft) = 7rz(Lo). However h(I1),7rt(/z)] = {0} and 

[Jr2(T1), 1r2(I2)] = {0} since [l1,Iz] = {0}. Therefore 1r1(l2) = {0} and 7rz(/z) = {0}, 

which is wrong. Thus l = n and J, ~ sl(m., n). This contradicts the fact that J, is a 
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proper simple subalgebra of S. 

Thus we have proved that 1r2 (L0 ) does not coincide with 1r2 (S0 ) = sl(n). 

Therefore 1r2 (K0 ) coincides with 1r2 (S0 ). Thus, either p1 = n or p2 = n since 

Ko ~ sl(pl) CD sl(p2) CD U. Set p = P1 if P2 = n and p = P2 if P1 = p. It follows that 

K ~ sl(p, n). o 

Corollary 2.1.2 Let S = K + L, K ~ sl(p, n), L ~ sl(rn, l) and 11 ~ sl(rn), 

h ~ sl(l) be two ideals of L0 . Then 12 acts trivially on V. Moreover h-module V 

is standard. 

Proof. The proof follows from the fact that 1r1(J1) = 1r1(L0 ) = sl(rn) and 1r1(J2) = 

{0} since [1r1(h), 1r1(!2)] = {0}. o 

Lemma 2.1.3 LetS= K + L where S ~ sl(rn, n), K ~ sl(p, n) and L ~ sl(rn, l). 

Then for any j E {1 ... d}, L0 -module vvj is not of the type 1. 

Proof. 

Let us assume the contrary, that is, there exists j 0 such that L0-module Wio is 

of the type 1. By Remark 2.1.1, Lhasa trivial vector annihilator in gl(rn, n). By 

Corollary 2.1.2, / 2 acts trivially on V. Moreover / 2 acts trivially on Wio since £ 0-

module Wio is of the type 1. Therefore, by Lemma 1.4.3, L has a vector annihilator 

in gl(rn, n), which is a contradiction. D 

Lemma 2.1.4 Let S = K + L where S ~ sl(rn, n), K ~ sl(p, n), L ~ sl(rn, l). 

Then for any j E {1 ... d}, L0 -module Wi is not of the type 2 . 

Proof. 

Let us assume the contrary, that is, there exists j 0 such that £ 0-module Wio is of 

the type 2. By Lemma 1.4.8, there exist subspaces Wj
0 
~ W10 and Wj~ ~ Wio such 
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that Wj
0 

is a simple h-module, Wj~ is a simple h-module and W10 ~ Wj
0 

0 Hlj~ as 

!1 EB h-modules. 

First we show that dim Wj
0 

= rn and dim Wj~ = l. We have that Wj
0 

is 

a simple sl(m,)-module and Wj~ is a simple sl(l)-module. Hence dim Wj
0 

> m. 

and dim Wj~ 2 l. Without any loss of generality, we assume that dim Wj
0 

> m. 

Therefore 

n =dim w 2 dim wjo =dim w;o dim w;~ > ml. 

On the other hand, 

dim L1 2 dim S1 - dim K1 2 2mn- 2(m- l)(n) = 2n 

since 

dim 81 :<:;dim K1 +dim T1 1 . 

It follows that m.l 2 n since dim L1 = 2rnl. This contradicts the fact that n > m.l. 

Therefore dim Wjo = m, dim Wj~ = l and W = Wia· If we denote Wj
0 

and Wj~ as 

vV' and vF", then W ~ W' 0 H-.-". 

Let us fix the following basis for W: { e; 0 ej}, where { e;} is a basis of VV' and 

{ ej} is a basis of W". If we consider W as h-module then it can be expressed as 

the direct sum of h-modules: 

Hf - (W' ") (W' ") v1 - 0 e1 EB ... EB ® e1 • (2.1) 

The next step is to prove that the projection 1r of L1 onto V IX) W* is not zero. 

Assume that n(Lt) = {0}. Then L1 has the following matrix form: 
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It follows that [ L1, L1] = { 0}. However this contradicts the fact that, by Lemma 

1.2.1( c), [L1, L1] = L0 =/=- {0}. Hence 1r(L1) =/=- {0}. Let us consider V ® W* as 

!1-module. From (2.1) we obtain that 

V ® W* = (V ® (W' ® e~)*) EEl ..• EEl (V ® (W' ® e;')*) 

where all V ® (W' ®ej)* are also 11-modules. There exists j 0 such that the projection 

of L1 onto V ® (W' ® ej
0
)* is not zero since the projection of L1 onto V ® W* is not 

zero. 

We consider 11-module V ® (W' ® ej
0
)*. By Corollary 2.1.2, h-module V is 

standard. Besides, 11-module W' is either standard or dual since dim W' = m. 

Next we apply Young tableaux technique (see [10]) to fiud irreducible submodules 

of 11-module (V 00 W'*) 00 e'j;. Let Q and Q1 be either standard or dual representations 

of sl(m). Then the tensor product (} ® (]1 is also a representation of sl(rn). Then 

Young tableaux technique shows that it can only contain irreducible subrepresenta­

tions with the highest weights: (2, 0, ... , 0), (0, 1, 0, .... 0), (1. 0 .... , 0, 1) or a trivial 

representation. 

Since 11-modules \li0 and TV' are either standard or dual, we obtain that 11-

module V ® (W' ® ej
0 
)* can only contain simple submodules with the highest weights 

listed above. On the other hand, by Lemma 1.2.1(e) 11-module l1 1 has only sim­

ple submodules of dimension m with the highest weight (1, 0, ... , 0), which is a 

contradiction. 0 

Lemma 2.1.5 Let L ~ sl(s, l) ~ gl(m, n), and 11, 12 be ideals of Lo. ff 11 acts 

trivially on Wio .for some j 0 E { 1 ... d}, h acts trivially on V and 12 acts nontrivially 

On W)O! then 12-module Wj0 iS either Standard Or dual. 
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Proof. 

By Lemma 1.4.6, there exists i 0 such that QiaJa(L1) # {0}. We consider hEEl I2-

module Via ::>9 wj:. By Lemma 1.4. 7, h EElh-module Via Q9 wj: is simple since 11-module 

Via and /2-module WJa are both simple. Therefore /1 W /2-module {!iaJa (JJI) coincides 

with Via Q9 WJ*a since QiaJa(L1) =/= {0}. By Lemma 1.2.1(b), I1 EEl I2-module L1 is the 

direct sum of two simple I 1 E9 I 2-submodules of dimension sl each. Since Qia]a ( L 1) 

is a simple h EB Iz-module, the dimension of Qiaja(LI) is sl. On the other hand, we 

have 

(dim \!i0 ) ·(dim WJa) =dim (Via® WJ~) =dim QioJa(LI) = sl. 

Since Via is a nontrivial sl(s)-module, and W1a is a nontrivial sl(l)-module, 

dim Via :2: s and dim Wjo :2: l. Therefore, dim Yio = s and dim W]a = l. Hence 

I2-module vvja is either standard or dual. D 

Lemma 2.1.6 LetS= K + L where S ~ sl(m, n), K ~ sl(p, n) and L ~ sl(m, l). 

If Lo-module w]O! Jo E {1 ... d}, is of the type 3 then wja is a standard h-module. 

Proof. 

First we are given that 11 acts trivially on WJo. By Corollary 2.1.2, h acts 

trivially on V = V1. Hence, by Lemma 2.1.5, Iz-module Wja is either standard or 

dual. 

Next we prove that WJa is not a dual h-module. Let us assume the contrary, that 

is, Wjo is a dual I2-module. Let..\= (1, 0, ... , 0) be the highest weight of I1-module 

V, and,,.= (0, ... ,0, 1) be the highest weight of 12-module WJa· Then, by Lemma 

1.4.7, I1 EEl Iz-module v@ wj: has the highest weight (..\, p,**) = (..\, p,). 

By Lemma 1.2.1(b), I1 EElh-module L1 is the direct sum of two simple submodules 

with the highest weights (A, p,*) and(..\*, p,). Hence the projection of L 1 onto V Q9 wj: 
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is zero since L0-module L1 contains no submodules with the highest weight (>., p,). 

This contradicts the fact that, by Lemma 1.4.6, (!ljo(Li) -=f- {0}. So WJo is a standard 

D 

Lemma 2.1.7 LetS= K + L where S ~ sl(m, n), K ~ sl(p, n) and L ~ sl(m, l). 

Then {,0 -module W contains at most one f,o-submodule Wj, j E {1 ... d} of the 

type 3. 

Proof. 

Let us assume the contrary, that is, there exist two L0-submodules W1 and W2 of 

the type 3. By Lemma 2.1.6, W1 and W2 are standard 12-modules. Hence we can fix 

a basis in V EB W of vectors of subspaces V = V1 and Wj, j E {1 ... d}, respectively, 

such that L 0 takes the following form 

{(-$-)} (2.2) 

where X E sl(m) and D = diag(D1, ... , Dd), D1 E MnJ(IF) such that D1 = Dz = Y, 

Y E sl(l). 

Besides, L1 has the following form 

{(*)} (2.3) 

where 

B = ( lh . . . nd ) 

and BJ E Mrnxn
1 
(IF). 

We consider 11 EB fz-modules V1 ® W{ and V1 ® W5. In matrix terms the first 

module consists of all m x l matrices, and the action of ! 1 EB ! 2 is given by 

(2.4) 
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where x E h EB h of the form (2.2), and B1 is an arbitrary m x l matrix. Similarly, 

the action of Jl EB J2 on vl ® Wi is given by 

where :r: E It (I) !2 is of the form (2.2) and U2 is an arbitrary rn x l matrix. 

Let 11 EB 12-module Qn (Lt) be an image of It EB 12-module Lt under the projection 

Qn onto V ® w;. Likewise Qt2(Lt) is an image of It EB 12-module Lt under the 

projection Qt2 onto V 0 W{. By Lemma 1.4.7, It EB I2-modules V ® Wt and';® W2 

are simple. Hence It EB I2-module Qn(Lt) coincides with V ® Wt, and It EB I2-

module Q12 (Lt) coincides with V ® W{. Therefore both It EB h-modules V gJ w; and 

V®W{ have the same matrix form (2.4). On the other hand, Q11 (Lt) and Q12 (Lt) are 

isomorphic as It Cl) !2-modules since they are both simple and homomorphic images 

of It EB I2-module Lt. Hence, by Schur's Lemma, the only isomorphism between 

It EB I2-modules Q11 (Lt) and Qt2(Lt) is a scalar mapping. In matrix terms it means 

that for any matrices from Lt of the form (2.3), Bt = >-.B2 , >-. E IF. This contradicts 

the fact that, by Lemma 1.4.5, Lt cannot be of this form. D 

Theorem 2.1.8 A Lie superalgebra S ~ sl(m, n), m > n > 0, cannot be decom­

posed into the sum of two proper special linear superalgebras. 

Proof. 

Let us assume that this decomposition exists. Then, according to Lemma 2.1.1, 

K ~ sl(p, n) and L ~ sl(m, l). By Lemma 2.1.7, L0-module contains at most one 

L0-submodule Wj, j E {1 ... d}, of the type 3. 

On the other hand, I2 acts nontrivially on W since, by Corollary 2.1.2, ! 2 ads 

trivially on V. Therefore W contains at least one L0-submodule Wj0 • This implies 
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that Wio coincides with W. According to Lemma 2.1.6, / 2-module Wjo is standard. 

Hence l = n since dim W10 =dim W = n. This contradicts the fact that L ~ sl(m, l) 

is a proper subalgebra of S ~ sl ( m, n). 0 

2.2 Sum of two orthosymplectic superalgebras 

In this section we study decompositions of sl(rn, n) as the sum of two proper simple 

orthosymplectic subalgebras. 

Theorem 2.2.1 A Lie superalgebra S ~ sl(m, n), m > n > 0, cannot be decom­

posed into the sum of two proper orthosymplectic subalgebras I< and L. 

Proof. By Lemma 1.2.1(a), S0 = sl(m) EB sl(n) EB U. As above we define two 

projections n1 and n2 of S0 onto the ideals sl(m.) and sl(n), 1T1 : So ---+ sl(m) and 

n2 : 80 ---+ sl(n). We have that K 0 ~ o(p) Cll sp(2q) and L0 ~ o(s) Cll sp(2l) since 

K ~ osp(p, 2q) and L ~ osp(s, 2l). Hence the projections 7TI(Ko), 7TI(Lo), n2(Ko) 

and n2(L0 ) are also reductive as homomorphic images of reductive algebras. 

Since S = K + L, S0 is also decomposable into the sum of two subalgebras 1<0 and 

La, So= I<o+Lo. Therefore, nl(So) = 7TI(I<o)+ni(Lo) andn2(So) = n2(Ko)+n2(Lo), 

where n 1(S0 ) = sl(rn) and n2 (S0 ) = sl(n). We have the decompositions of simple 

Lie algebras sl(m) and sl(n) into the sum of two reductive subalgebras. 

By Theorem 1.1.2, sl(n) cannot be decomposed into the sum of two subalgebras 

of these types. As a result, S ~ sl(rn, n) cannot be decomposed into the sum of 

K ~ osp(p, 2q) and L ~ osp(s, 2l). 0 
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2.3 Sum of special linear and orthosymplectic su­

peralgebras 

In this section we consider the decomposition S = K + L where S ~ sl ( m, n), 

K ~ sl(p, q) and L ~ osp(s, 2l). 

Lemma 2.3.1 LetS= sl(m, n) be a Lie super-algebra, and S be decomposed into the 

sum of a proper special linear subalgebms K and a proper orthosymplectic subalgebms 

L. Then only two cases are possible: 

1. m = 2k, K ~ sl(2k- 1, n) and L ~ osp(s, 2k). 

2. n = 2k, K ~ sl(Tn, 2k- 1) and L ~ osp(s, 2k:). 

Proof. 

By Lemma 1.2.1(a), S0 = sl(Tn) EB sl(n) EB U. As usmtl, we define two projections 

n1 and n2 of S 0 onto the ideals sl(m) and sl(n), n1 : S 0 -+ sl(m) and 1r2: So-+ sl(n). 

We have that K 0 ~ sl(p) EB sl(q) EB U and L0 ~ o(s) EB sp(2l) since K ~ sl(p,q) 

and L ~ osp(s, 21). Hence n1(K0 ), n1(Lo), 7r2(Ko) and 7r2(Lo) are reductive Lie 

algebras as homomorphic images of reductive Lie algebras /(0 and L0 . 

The given decomposition induces the following representations of simple Lie al­

gebras .'-il(Tn) and sl(n) as the sum of two reductive subalgebras: 

sl(n) = nl(So) = 1r1(Ko) + 7rl(Lo), 

sl(m) = 7r2(So) = 1r2(J<o) + 7r2(Lo). 

(2.5) 

(2.6) 

By Theorem 1.1.2, the only possible decomposition of sl(n) into the sum of two 

proper reductive subalgcbras is 

sl(2n) =A+ B, 
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where A~ sl(2n- 1), B ~ sp(2n). 

Notice that one of two decompositions (2.5) and (2.6) is nontrivial. Indeed, 

if both decompositions are trivial then 7r1 (Ka) = 7r1 (Sa) ~ sl(m) and 7r2 (Ka) = 

7r2 (Sa) ~ sl(n). Acting in the same manner as in Lemma 2.1.1 we can prove that 

p = m, q = n. This contradicts the fact that K ~ sl(p, q) is a proper subalgebra of 

S ~ sl(m, n). 

Therefore two cases are possible: 

1. The first decomposition is nontrivial. 

2. The second decomposition is nontrivial. 

Let us consider the first case. Thus, according to (2.7), 7r1 (Ka) ~ sl(2k- 1) and 

1r1 (!,a) ~ sp(2k:) where m = 2k:. It follows that p = 2k: - 1 and l = k. 

Further we want to prove that the decomposition (2.6) is trivial. Let us assume 

the contrary, that is, (2.6) is nontrivial and has the form (2.7). Thus 7r2 (La) is 

isomorphic to sp(2n). On the other hand, 7r1 (La) ~ sp(2k). This contradicts the 

fact that La~ o(s) EBsp(2l). Therefore the decomposition 7r2 (Sa) = 7r2 (Ka) +7r2 (La) 

is trivial, and 7r2 (Ka) coincides with 7r2 (8a) = sl(n). It follows that q = n since 

Ka ~ sl(p) EEl sl(q) EEl U. Thus K ~ sl(2k- 1, n) and L ~ osp(s, 2k). 

The second case is similar, and acting as above, we can show that K ~ sl(m, 2k-

1) and L ~ osp(s, 2k). D 

From now on, we will consider only the first case in Lemma 2.3.1 since the second 

case can be considered in a similar manner. 

Corollary 2.3.2 LetS= K + L, S = sl(2k, n), K ~ sl(2k- 1, n), L ~ osp(s, 2k) 

and h ~ sp(2k) and ! 2 ~ o(s) be ideals of La. Then ! 2 acts trivially on V. Moreover-
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h -module vl = v is standard. 

Proof. The prooffollows from the fact that n1(h) = n1(L0) = sp(2k) and n1(!2) = 

{0} since [n1 (It), 1r1 (h)] = {0}. o 

Lemma 2.3.3 Let 8 = K + L where S' ~ sl(2k:, n), K ~ sl(2k: - 1, n), !1 c::= 

osp(s, 2k:). Then for any j E {1 ... d}, L0 -module WJ is not of the type 1. 

Proof. 

Let us assume the contrary, that is, there exists j 0 such that L0-module WJo 

is of the type 1. First we prove that K has a nontrivial vector annihilator in 

gl(m, n). Let K = J 1 EB J2 where J 1 ~ sl(2k- 1) and J2 ~ sl(n). As was shown 

in Lemma 2.3.1, n2 (S0 ) = n2 (K0 ) ~ sl(n). We are going to show that either 

1r2(Jt) = {0} or 1r2(J2) = {0}. Indeed, if 1r2(J2) I= {0} then 1r2(J2) = n2(Ko) = sl(n) 

since .!2 ~ sl(n). Howevere [n2 (.lt), n2 (.h)] = {0} since [.11, .h] = {0}. Therefore 

n2(Jt) = {0} since n2(Jt) ~ n2(K0) = n2(J2). So we have proved that either 

n2(.Jt) = {0} or n2(J2) = {0}. Let J be either .!1 or J2 such that n2(J) = {0}. 

By Lemma 2.3.1, the decomposition n1(S0) = n1(K0) + n1(L0) has the form 

sl(2k) = sl(2k- 1) + sp(2k). Therefore, by Remark 1.1.1, n1(K0 ) has a nontrivial 

annihilator in gl(2k). Hence n1(J) also has a nontrivial annihilator in gl(2k). So we 

obtain that J is an ideal of K0 , K ~ gl(2k, n), and J acts trivially on W and on 

one-dimensional subspace of V. Hence, by Lemma 1.4.3, K has a nontrivial vector 

annihilator in gl(2k, n). 

Therefore, by Lemma 1.4.2, L has a trivial two-sided annihilator in gl(2k, n) 

since K has a nontrivial vector annihilator in gl(m.n). Let us consider / 2 ~ L. 

By Corollary 2.3.2, / 2 acts trivially on V. Moreover fz acts trivially on Wjo since 
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Lo-module WJo is of the type 1. Therefore, by Lemma 1.4.3, L has a nontrivial 

vector annihilator in gl(2k, n), which is a contradiction. 0 

Lemma 2.3.4 Let S = K + L where S ~ sl(2k, n), K ~ sl(2k - 1, n), L ~ 

osp(s, 2k). Then for any j E {1 ... d}, f~o-module WJ is not of the type 2. 

Proof. 

Let us assume the contrary, that is, there exists j 0 such that L0-module WJo is of 

the type 2. By Lemma 1.4.7, there exist subspaces Wj
0 
~ WJo and Wj~ ~ WJo such 

that vVj
0 

is a simple / 1-module, Wj~ is a simple / 2-module and W10 ~ Wj
0 

181 vVj~. 

We have that dim Wj
0 

2: 2k and dim Wj~ 2: s since Wj
0 

is a simple .sp(2k)-module 

and WJ~ is a simple o(.s)-module. Hence 

n =dim w 2: dim wjo =dim w;o dim w;~ 2: 2ks. 

On the other hand 

dimL1 2: dimS1 - dimK1 2: 2nm- 2n(m -1) = 2n 

since dim S1 ::::; dim K 1 +dim L1 . It follows that 2ks 2: 2n since dim L 1 = 2ks. This 

contradictt> the fact that n 2: 2ks since s, k > 0. 0 

Lemma 2.3.5 Let L ~ osp(s, 2l) ~ gl(m, n) and L0 = h EB h If h acts trivially 

on l~j0 for some j 0 E {1 ... d}, /2 acts trivially on V and nontrivially on ~j0 then 

h -module wjo is standard. 

Proof. 

We consider only the case where T1 ~ o(s) and T2 ~ sp(2l). The ease whPn 

11 ~ sp(2l) and 12 ~ o(s) can be treated in the similar way. Notice that, by Lemma 
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1.4.6, there exists io such that f.!iojo (LI) f. {0}. We consider h EB /2-module Y; 0 0 Wj~. 

By Lemma 1.4. 7, h EBh-module Vio 0 WJ*o is simple since /1-module Vio and /2-module 

wjo are both simple. 

Therefore f1 (!) !2-module QioJo(r,I) coincides with Via 1!9 WJo since QioJo(T,1) f. {0}. 

By Lemma 1.4.2(b), / 1 EB /2-module L1 is simple, and dimL1 = 2sl. Since Q·io)o(LI) 

is a simple / 1 EB 12-module, the dimension of Qio.io(L1) is 2sl. Therefore 

On the other hand, dim 11;0 2: s and dim W.io 2: 2l since Via is a nontrivial o( s )­

module, and Wj0 is a nontrivial sp(2l)-module. This implies that dim Via = s and 

dim W]o = 2l. Hence h-module Wjo is standard. 0 

Lemma 2.3.6 Let S = K + L where S ~ sl(2k, n), K ~ sl(2k- 1, n) and L ~ 

osp(s, 2k:). Then L0 -module W contains at most one L0 -submodule Wj, j E {1 ... d} 

of the type 3. 

Proof. 

Let us assume the contrary, that is, there exist two L0-submodules W1 and W2 

of the type 3. 

Notice that h ~ sp(2k) acts trivially on both W1 , W2 , and / 2 ~ o(s) acts 

nontrivially on W1, W2 . Moreover, by Corollary 2.3.2, I2 ~ o(s) acts trivially on V. 

Hence, by Lemma 2.3.5, !2-modules W1 and W2 arc standard. Hence we can fix a 

basis in V EB W from vectors of subspaces V = V1 and Wj, j E {1, 2}, such that L0 

takes the following form 

{($-)} (2.8) 
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where A E sp(2k) and D = diag(D1, ... , Dk), Dj E MnJ (JF) such that D1 = D2 = Y, 

Y E o( s). Besides, L1 has the following form 

{(*)} (2.9) 

where 

B = ( B1 ... Br1 ) 

and B1 E Mrnxnj (JF). 

Next we consider I1 EB I2-modules V1 ::>9 W], j E {1,2}. In matrix terms l1 EB l2-

modules V1 Q\J W1* consist of all 2k x s matrices, and the action of 11 Cl) T2 is given 

by 

x(B1) = XB1 - B1Y 

where x E I1 EEl I2 of the form (2.9) and B1, j E {1, 2}, are arbitrary 2k x s matrices. 

Acting in the same manner as in Lemma 2.1.7, we prove that L1 has the form (2.8) 

where B1 = >.B2 , A E lF. This contradicts the fact that L1 cannot be of this form 

(Lemma 1.4.5). D 

Theorem 2.3. 7 Let S = sl ( m, n), m > n > 0, be decomposed into the sum of a 

special linear and orthosymplectic subalgebras. Then only two cases are possible: 

1. m = 2k, K ~ sl(2k- 1, n) and L ~ osp(n, 2k). 

2. n = 2k, K ~ sl(m, 2k- 1) and L ~ osp(m, 2k). 

Proof. 

According to Lemma 2.3.1, only two cases are possible: 

1. m = 2k, K ~ sl(2k- 1, n) and L = osp(s, '2k). 

2. n = 2k, K = .sl(m, 2k- I) and L ~ o.sp(.s, 2k). 
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We only consider the first case since the second case can be considered in the 

similar manner. Therefore, we only have to prove that s = n. 

By Lemma 2.3.6, £ 0-module W contains at most one £ 0-submodule vV1, j E 

{1 ... d} of the type 3. On the other hand, [2 acts nontrivially on W since, by Corol­

lary 2.3.2, ! 2 acts trivially on V. Therefore W contains at least one £0-submodule 

WJo· This implies that WJo coincides with W. By Lemma 2.3.5, ! 2 ~ o(s)-module 

"Wj0 is standard. Hence s = n since dim W10 =dim W = n. 0 

Now we want to show that the decompositions as in Theorem 2.3.7 are possible. 

Example 1 There exists a decomposition of S ~ sl(2k, n) of the formS= K + L 

where S has the standard matrix realization. The first subalgebra K consists of all 

matrices in S of the form: 

0 0 0 0 

0 

o X 
0 

where X is a matrix of order (2k + n - 1) x (2k + n - 1). The second subalgebra L 

consists of all matrices of the form: 

E F C 

H -Et D 

- nt ct A 

where A is a skew-symmetric matrix of order n, H and F are symmetric matrices 

of order k x k, E is a matrix of order k x k, and C, D are matrices of order k x n. 

In this decomposition, K ~ sl(2k- 1, n) and L ~ osp(n, 2k). 
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Example 2 There exists a decomposition of S ~ sl(m, 2k) of the formS= J( + L 

where S has the standard matrix realization. The first subalgebm K consists of all 

matrices in S of the form: 

0 

X o 

0 

0 0 0 0 

where X is a matrix of order ( m + 2k- 1) x ( m + 2k- 1) with zero trace. The second 

subalgebm L consists of all matrices of the form: 

A C D 

Dt E F 

where A is a skew-symmetric matrix of order m, H and F are symmetric matrices 

of order k x k, E is a matrix of order k x k, and C, D are matrices of order m x k. 

In this decomposition, K ~ sl(m, 2k- 1), L ~ osp(m, 2k). 

2.4 Uniqueness of decompositions 

Lemma 2.4.1 LetS'~ o:·q{m, 2n), h' ~ gl(m, 2n) and 

where A E o(m) and D E sp(2n). 

Then there exists an inner automorphism 1/J of ,ql(m. 2n) of the form 

1/J(X) = cxc- 1 
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where 

( 
Jm 0 ) C= 
0 ).J2n 

where A E lF such that 7/J(S) takes the standard matrix form. 

Proof. 

Let Sst be a standard realization of osp(m, 2n). Then 

(2.12) 

where A E o(m), DE sp(2n) and 

(2.13) 

where C = .lnHt. 

Let cp be an isomorphism between S .• t and S, cp(Sst) = S. Then cp((Sst)o) = S0 

and cp((Ssth) = S1. Notice that (Sst)o = S0 since S0 is of the form (2.10). 

Let 1r1 be the projection of V* 0 W EB V 0 W* onto V 0 W*. We consider S0-

modules 1r(Sl) and 7r((Ssth). We have that S0-module V 0 H1* is simple as a tensor 

product of the simple / 1-module V and the simple h-module W*. Therefore both 

S0-modules 1r1(S1) and Jr1((Ssth) coincide with S0-module V 0 W*. 

Notice that 80-module S\ has the following matrix form 

{(*)} (2.14) 

where B' E Mrnx2n(lF) and C' E M2nxm(lF). Hence So-module 1r1(Sl) consists of all 

'II~ x 2n m<Ltricet; under the action of 5 0 given by 

x(B') = AB'- B' D (2.15) 
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where x E So is of the form (2.10) and B' is an arbitrary m x 2n matrix. Likewise, 

So-module 1fi((S,t)l) is the set of all m x 2n matrices under the following action of 

So: 

.T(H) = A/3- J] f) 

where x E So = (Sst)o is of the form (2.10) and B is an arbitrary m X 2n matrix. 

On the other hand, both S0-modules 1r1 (S1) and 1r1 ((Sst h) are isomorphic and 

have the same matrix form (2.15). Therefore, by Schur's Lemma, the only iso­

morphism between S0-modules 1r1 (SI) and 1f1 ((S,t)I) is a scalar mapping. That is, 

there exists J.l.l such that for any y E (Ssth of the form (2.13), tp(y) E S1 has the 

form (2.14) where B' = J.L1B. Similarly we can prove that there exists J.L2 such that 

Thus S1 takes the form 

Let 1/J be of the form (2.11) where,\= ffi;· Then for any X E S1 

cxc-' ~ C:,c A-'::,B) ~ ~ (;I:) 
where j3 = y!Jilii2. Hence CS1C-1 = (Ssth· Therefore, by an automorphism 1/J, S 

can be brought to the standard matrix form. 

Theorem 2.4.2 Let S = K + L, S ~ sl(2k, n), K ~ sl(2k - 1, n) and L ~ 

osp(n, 2k). Then there exists a basis of V E9 W such that this decomposition takes 

thP matrix form a8 in ExamplP .1. 

Proof. 
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FirtJt we are going to prove that there exists a basis of V ED W such that in this 

basis K consists of all matrices in sl(2k, n) with the first row and column zero. 

Let n1 , n2 denote projections of S0 onto the ideals sl(2k) and sl(n), respec-

tively. These projections induces two decompositions: n1(80 ) = n1(K0 ) + n1(L0 ) 

and n2(So) = 7r2(Ko) + 7r2(Lo). By Lemma 2.1.1, 7r1(So) = 1r1(Ko) + 1r1(Lo) takes 

the form sl(2k) = sl(2k- 1) + sp(2k). Hence, by Lemma 1.1.3, there exists a basis 

of V such that this decomposition takes the form (1.1). This implies that K 0 has 

the form: 

{(*)} (2.16) 

where J1 E M2k(JF) with the first row and column 1\Cro, and DE llfn(JF). 

Let 11, 12 be ideals of K0 , 11 ~ sl(2k - 1) and 12 ~ sl(n). Notice that 

n1(11) = n1(K0) and n2(12) = n2(K0) since n1(Ko) ~ sl(2k- 1) and 7r2(Ko) ~ 

sl(2n). Next [n1(11), n1(J2)] = {0} and [n2(11), n2(12)] = {0} since [11, 12] = {0}. 

This implies that 1'"2(11) = {0} and n1(12) = {0} since [n1(J<o),n1(12)] = {0} and 

[n2(1t), n2 (K0 )] = {0}. Therefore 11 consists of all matrices of the form (2.16) where 

D = 0, and 12 consists of all matrices of the form (2.16) where A = 0. By Lemma 

1.2.1(d), K1 = [ K1, .11]. This implies that K1 takes the matrix form: 

Therefore the first rows and columns of matrices from K1 arc zero since the first 

row and column of A is zero. This implies that K consists of all matrices in S with 

the first row and column zero. 

On the other hand, by Lemma 2.4.1, there exists an inner automorphitlm 1/J 

of gl(2k, n) such that 1/J(L) takes the standard matrix form. Clearly 1/J(K) takes 
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the same matrix form as K. Notice that in this basis S = sl(2k, n) since S <;;;; 

gl(2k, n). Therefore we have proved that there exists a basis of V EB W such that the 

decompositionS= K+L where S ~ sl(2k,n), K ~ sl(2k-l,n) and L ~ osp(n,2k), 

takes the form as in Example 1. 

41 



Chapter 3 

Decompositions of 

orthosymplectic superalgebras 

3.1 Sum of two special linear superalgebras 

In this section we study decompositions of asp( m, 2n) into the sum of two special 

linear superalgebras. 

Theorem 3.1.1 A Lie superalgebra S ~ osp(m, 2n), m, n > 0, cannot be decom­

posed into the sum of two proper special linear subalgebras. 

Proof. By Lemma 1.2.2(a), S0 = o(m)EBsp(2n). As above we define two projections 

1r1 and 1r2 of S0 onto the ideals o( m) and sp(2n), 1r1 : So ----> o( m) and 1r2 : So ----> 

sp(2n). We have that Ko ~ sl(p) EB sl(q) EB U and L0 ~ sl(s) EB sl(l) EB U since 

K ~ sl(p, q) and L ~ 8l(s, 1). Hence the projections 1r1 (K0 ), 1r1(L0 ), 1r2 (K0 ) and 

1r2 (L0) are also reductive as homomorphic images of reductive algebras. 

Since S = K + L, S0 is also decomposable into the sum of two subalgebras K0 and 

Lo, So= Ko+Lo. Therefore, 7rl(So) = 7rl(Ko)+7rl(Lo) and 7r2(So) = 1r2(Ko)+1r2(Lo), 
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where 1r1(So) = o(m) and 1r2(So) = sp(2n). We have the decompositions of simple 

Lie algebras o( m) and sp(2n) into the sum of two reductive subalgebras. 

By Theorem 1.1.2, sp(2n) and o(m) cannot be decomposed into the sum of two 

subalgebras of these types. As a result, ,',' ~ osp(rn, 2rr) cannot be decomposed into 

the sum of K ~ sl(p, q) and L ~ sl(s, l). D 

3.2 Sum of two orthosymplectic superalgebras 

In this section we study decompositions of asp( m, 2n) into the sum of two proper 

simple subalgebras K ~ osp(p, 2q) and L ~ osp(s, 2l). 

Lemma 3.2.1 LetS~ osp(m, 2n), m, n > 0, be decomposed into the sum of two 

proper orthosymplectic subalgebras K and L, respectively. Then only two cases are 

possible: 

1. m = 4k, K ~ osp(4k- 1, 2n), L ~ osp(s, 2k) 

2. K ~ osp(p, 2n), L ~ osp(m, 2l). 

Proof. 

By Lemma 1.2.:2(a), S0 = o(m) ffisp(2n). We define two projections 1r1 and 1r2 of 

S0 onto the ideals o(m) and sp(2n) as follows, 1r1 : S0 ---+ o(rn) and 1r2: So--+ sp(2n). 

We have that K 0 ~ o(p) E8 sp(2q) and L0 ~ o(k) E8 sp(2l) since K ~ osp(p, 2q) 

and L ~ osp(k, 2l). Hence 1r1(K0 ), 1r1(L0 ), 1r2(Ko) and 7r2(Lo) are also reductive as 

homomorphic images of reductive algebras. 

Since S = K + L, S0 is decomposable into the sum of K0 and L0 , S0 = K0 + L0 . 

Therefore, 1r1(So) = 1r1(Ko) + 1r1(Lo) and 7r2(So) = 7r2(Ko) + 7r2(Lo). Moreover, 

1r1(S0 ) = o(m) and 1r2 (S0 ) = sp(2n), and we have decompositions of simple Lie al-

gebras of the types o(m) and sp(2n) into the sum of two reductive subalgebras. By 
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Theorem 1.1.2, sp(2n) has no decompositions into the sum of two proper reductive 

subalgebras of these types. Hence sp(2n) = n2 (K0 ) + n2 (L0 ) is a trivial decompo­

sition and either n2 (K0 ) = sp(2n) or 7rz(Lo) = sp(2n). For clarity, we assume that 

7rz(Ko) = sp(2n). Hence q = n. 

Again, by Theorem 1.1.2, o(m) has only two decompositions into the sum of two 

proper reductive subalgebras: 

1. If m = 2k then o(2k) = o(2k- 1) + sl(k), 

2. If m = 4k then o(4k) = o(4k- 1) + sp(2k). 

Notice that o(m) = Jr1 (Ko) + 1fl(Lo) cannot be of the first type, because 1ft(Ko) 

and n 1 (L0 ) are not isomorphic to sl(k). 

Next the two cases occur: 

1. o(m) = 1ft(K0 ) + 1r1 (L0 ) has the second form. 

2. o(m) = Jr1 (Ko) + 1r1 (L0 ) is trivial. 

In the first case either 1r1(K0 ) ~ o(4k- 1) or 1r1(K0 ) ~ sp(2k). Let 7rt(K0 ) ~ 

sp(2k). Hence either 1<0 ~ sp(2k) EB sp(2n) or 1<0 ~ sp(2n) since n2 (/(0 ) = sp(2n). 

This contradicts the fact that K0 ~ o(p)ffisp(2q). Therefore n 1 (K0 ) ~ o(4k-1) and 

n 1 (L0 ) ~ sp(2k). This implies that p = 4k- 1 and l = k since K0 ~ o(p) EB sp(2q) 

and f,o ~ o(s) CD sp(2l). 

In the second case either 1r1 (K0 ) = o(m) or 1r1(L0 ) = o(m). Let 1f1 (Ko) = o(m). 

Therefore K0 coincides with S0 since n2 (K0 ) = sp(2n). This contradicts the fact 

that K is proper subalgebra of S. Therefore n1(L0 ) = o(m). It follows that s = m 

since Lo ~ o(s) EB sp(2l). o 

Corollary 3.2.2 LPi 8 = T< + L, K ~ osp(4k- 1, 2n), L ~ osp(s, 2k) and ! 1 ~ 

sp(2k), h ~ o(s) be ideals of L0 . Then ! 2 acts trivially on V. Moreover V = V1 EB V2, 
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and both h -modules vl and v2 are standard. 

Proof. The proof follows from the fact that o(n1,) = n1 (K0 ) + n1 (L0 ) has the 

form(1.5) and 7rt(h) = 7rt(Lo), 7rt(h) = {0} since [nt(It), 7rt(h)] = {0}. o 

Corollary 3.2.3 Let S = K + L and K ~ osp(p, 2n), L ~ osp(m, 2l) and ! 1 ~ 

o(m), /2 ~ sp(2l) be ideals of L0 . Then /2 acts trivially on V. Moreover ! 1-module 

V is standard. 

Proof. The proof follows from the fact that n1(h) = n1(L0 ) = o(m) and n1(/z) = 

{0} since [nt(h), n1(I2)] = {0}. o 

3.2.1 Sum of osp(p, 2q) and osp(m, 2l) 

In this section we consider the second type of the decomposition from Lemma 3.2.1. 

Remark 3.2.1 Since both superalgebras K and L have the same type, by Lemma 

1.4.2, we can assume that[; has a trivial vector annihilator in gl(m., 2n). 

Lemma 3.2.4 Let S = K + L where S ~ osp(m, 2n), K ~ osp(p, 2n), L ~ 

osp(m, 2l). Then for any j E {1 ... d}, L0 -module Wi is not of the type 1. 

Proof. 

Let us assume the contrary, that is, there exists )0 such that L0-module Wio is 

of the type 1. By Remark 3.2.1, Lhasa trivial vector annihilator in gl(m, 2n). Let 

us consider / 2 c;;;; L. By Corollary 3.2.3, / 2 acts trivially on V. Moreover / 2 acts 

trivially on l-tj0 since L0-module Wio is of the type 1. Therefore, by Lemma 1.4.3, 

L has a vector annihilator in gl ( m, 2n), which is a contradiction. D 
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Lemma 3.2.5 Let S = I<+ L where S ~ osp(m, 2n), I< ~ osp(p, 2n) and L ~ 

osp(m, 21). Then for any j E {1 ... d}, L0 -modu1e W1 is not of the type 2. 

Proof. 

The proof of this lemma is similar to the proof of Lemma 2.1.4. 

Lemma 3.2.6 Let S = I<+ L where S ~ osp(Tn, 2n), I< ~ osp(p, 2n) and L ~ 

osp(m, 21). Then L0 -modu1e W contains at most one L0 -submodule W1, j E {1 ... d} 

of the type 3. 

Proof. The proof of this lemma is similar to proof of Lemma 2.3.6. 0 

Lemma 3.2. 7 A Lie superalgebra S ~ asp( m, 2n) cannot be decomposed into the 

sum of two proper simple subalgebras I< and L of the type osp(p, 2n) and asp( m, 2l), 

respectively. 

Proof. 

Let us assume that this decomposition exists. Then, by Lemma 3.2.6, T-0-module 

W contains at most one L0-submodule W1, j E {1 ... d} of the type 3. 

On the other hand, h acts nontrivially on W since, by Corollary 3.2.3, / 2 acts 

trivial on V. Therefore W contains at least one L0-submodule W10 . This implies that 

"\llij0 coincides with W. By Lemma 2.3.5, h ~ sp(21)-module "\llij0 is standard. Hence 

2l = 2n since dim W10 =dim W = 2n. This contradicts the fact that L ~ osp(m, 2l) 

is a proper subalgebra of S ~ osp(m, 2n). 0 

3.2.2 Sum of o8p(4k- 1, 2q) and osp(s, 21) 

In this section we consider the first type of the decomposition from Lemma 3.2.1 
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Lemma 3.2.8 LetS= J( + L where S ~ osp(4k, 2n), K ~ osp(4k- 1, 2n), L ~ 

osp(s, 2k). Then L0 -module W1, j E {1 ... d} is not of the type 1. 

Proof. The proof of this lemma is similar to the proof of Lemma 2.3.3. 

Lemma 3.2.9 LetS'= K +I~ where.'-,' ~ osp(4k, 2n), K ~ osp(4k- 1, 2n), {, ~ 

osp(s, 2k). Then for any j E {1 ... d}, L0 -module W1 is not of the type 2. 

Proof. 

Let us assume the contrary, that is, there existr:; j 0 such that L0-module T¥10 ir:; of 

the type 2. By Lemma 1.4.8, there exist subspaces Wj0 ~ W10 and Wj~ ~ W10 such 

that vVjo is a simple /1-module, Wj~ is a simple /2-module and W10 ~ H'jo ® Wj~. 

First we are going to show that dim Wjo = 2k and dim Wj~ = s. We have that 

dim w;o 2: 2k and dim w;~ 2: s, respectively, since w;o is a simple sp(2k)-module, 

and WJ~ is a simpk o(s )-module. For clarity, we assume that dim Wj
0 

> 2k. Hence 

2n =dim W 2: dim W10 =(dim Wj0) ·(dim Wj~) > 2ks. 

On the other hand, 

dimL1 2: dim 51 - dimK1 2: (4k)(2n)- (4k -1)(2n) = 2n 

since dim 51 :::;; dim K1 + dim L1. It follows that 2ks 2: 2n r:;ince dim L1 = 2ks. 

This contradicts the fact that 2n > 2ks. Therefore dim Wj
0 

= 2k, dim Wj~ = s and 

W = Wio· Let W' and W" denote Wj
0 

and Wj~, respectively. Thus !1m T2-moduler:; 

W and W' ® W" are isomorphic. 

Let us fix the following basis for W: { e; ® ej} where { e;} it> a basir:; of W' and 

{ ej} ir:; a basis of W". If we consider W as an Irmodule then it can be expressed 

as the direct sum vf ! 1-modules VV' ® ej: 

TXT - (W' ") (W' ") n - ® el E8 ... E8 ® es . 
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Clearly the projection of L1 onto V@ W* is not zero. Therefore there exists i 0 E 

{1, 2} such that the projection of L1 onto \li0 @ W* is not zero. Let us consider 

\li0 @ W* as an h-module. From (3.1) we obtain that 

\li0 ® W* = (\li 0 ® (W' ® e~)*) EB ... EB (\li 0 ® (W'@ e~)*) 

where \li0 129(W'®ej)* are also It-modules. The projection of Lt onto \li0 ®(W'®ej)* is 

not zero for some j 0 since the projection of Lt onto ~~ ® VV is not zero. We consider 

this It-module ~~ ® (W' ® ej
0

). By Corollary 3.2.2, It-module \/;0 is standard. 

We have already proved that It-module W' is standard with the highest weight 

(1,0, ... ,0). 

Next we apply generalized Young tableaux technique (see [10]) to find simple 

submodules of Icmodule (\li 0 ® W'*) ® e'j;. 

If Q and Q
1 are standard representations of sp(2k) ( o(k)) with the same highest 

weight (1, 0, ... , 0) then the tensor product Q ® Q1 is also a representation of sp(2k) 

(o(k:)). It can be decomposed into the direct sum of irreducible repm.;entations: 

where Q1 has the highest weight (2, 0, ... , 0), Q2 has the highest weight (0, 1, 0, ... , 0) 

and u3 is a trivial representation. 

Therefore It-module (\/;0 ® W'*) ® ej; contains only submodules with the highest 

weights (2, 0, ... , 0) and (0, 1, 0, ... , 0). This contradicts the fact that, by Lemma 

1.2.2(e), It-module Lt has only simple submodules of dimension 2k with the highest 

weight (1, 0, ... , 0). o 

Lemma 3.2.10 Let S = K + L where S ~ osp(4k, 2n), K ~ osp(4k- 1, 2n), 

L ~ osp(s, 2k). Then L0 -module W contains at most two L0 -submodules Wj. 
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Proof. 

We have already proved that for any j E {1 ... d} L0-module WJ is of the type 

3. Let us assume the contrary, that is, there exist three L0-submodules of the type 

3. Let W1 , W2 and W3 stand for these L0-submodules. 

Next we restrict our attention only to these submodules of W. By Lemma 2.3.5, 

wl, w2 and w3 are standard o(s)-modules, and vl, v2 are standard sp(2k)-modules. 

Hence there exists a basis of W such that L0 takes the following form 

{($)} (3.2) 

where A = diag(X, X), X E sp(2k) and D = diag(Y, Y, Y), Y E o(s). This result 

follows from the fact that any automorphism of sp(2k) and o( s) is inner. Besides, 

L 1 has the following form 

{(*)} (3.3) 

where B = (Bij), i E {1, 2}, j E {1, 2, 3}. 

Next we consider 11 C[) 12-modules Vi IXl Wj, i E {1,2}, j E {1,2,3}. In matrix 

terms ! 1 EEl ! 2-modules Vi 0 WJ* consist of all 2k x s matrices and the action of It EB 12 

is given by the following formula: 

x(M) = XM- MY 

where :r: E ! 1 EB I2 is of the form (3.2), and M is an arbitrary 2k x s matrix. Next we 

consider I 1 EB h-modules Qij (Vi 0 W1*). Acting in the same manner as in Lemma 2 .1. 7, 

we can prove that ! 1 EB ! 2-modules Q;j(\li 0 wn are simple and homomorphic images 

of ! 1 EB 12-module L1 . Hence, by Schur's Lemma, the only isomorphism beLween 

these It ED h-modules is a scalar mapping. This implies that for any matrix in L1 
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of the form (3.3) we have that Bij = WijM where M E Matkx 8 (lF) and Wij E lF, 

i E {1,2}, j E {1,2,3}. 

( 
B1·) Let Bj denote 

1 
. By Lemma 1.4.5, £ 1 cannot be of the form (3.3) where 

Bzj 

( 

W12 ) ( W13 ) Bz = v B3, v E lF. Therefore vectorr:-; Wz = and w3 = are linearly 
Wzz Wz3 

( 
Wu) independent. Thus we can represent w1 = as a linear combination of w2 

Wzl 

and w3 , i.e. w1 = >.w2 + JLW3 . It follows that for any element from !11 of the form 

(3.3), we obtain that B1 = >.Bz + pB3. 

Next we consider a commutator of two arbitrary elements from £ 1 of the form 

0 B1 B2 B3 

c1 

Cz 0 

c3 

and 

0 B' 1 B' 2 B' 3 

C{ 

q 0 

q 
In turn their commutator takes the following form 

(*) 
where D = (Dij) and Dij = CiBj + ClBj, i E {1, 2}, j E {1, 2, 3}. 

We have that B1 = >.B2 + JLB3 and B{ = >.B~ + JLB~. Therefore D11 = G1H1 + 
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)..D1z + p,D13 . Since [L1, L1] ~ L0 has the form (3.2), D12 = 0 and D13 = 0. Thus 

D11 = 0. 

On the other hand, L0-module V\"11 is not trivial. Therefore there exists an element 

from !"0 of the form (3.2) such that D11 -=1- 0, which is a contradiction. 

0 

The following technical lemma will be used in our later discussion. 

Lemma 3.2.11 The Lie algebraS= sp(2n), n > 0, does not contain a subalgebra 

J( ~ o(2n). 

Proof. 

Let us fix an arbitrary basis in V, dim V = 2n. Then S can be represented 

as the following set S = {X: cxc- 1 = -Xt where C = Ct, C E M2n(IF)}. In 

this basis K can be represented as follows: K = {X : /J X n-1 = - Xt where IJ = 

-Dt, DE M 2n(IF)}. This implies that cxc- 1 = DXD- 1 for any X E K. Thus 

xc- 1 D = c- 1 DX for any X E K. Since J( ~ o(2n), K is an irreducible subset of 

gl(2n). It follows that c-1 D = )../" and C = )..D, ).. E IF. However, Cis symmetric 

and D is skew-symmetric. Thus sp(2n) does not contain a Lie subalgebra of the 

type o(2n). o 

Theorem 3.2.12 LetS = osp(4k, 2n), m, n > 0, be decomposed into the sum of 

two proper simple subalgebras K and L of the types osp(4k- 1, 2n) and osp(s, 2k), 

respectively. Then s = n. 

Proof. 

Let us consider L0-modules W = W1 E9 ... E9 Wd. For any j E { 1 ... d} La-module 

vvj is of the type 3. Moreover, by Lemma 2.3.5, / 2-module Wj has dimension s. 
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Hence 1r2(I2) =I 0, 1r2(h) ~ sp(2n) and /2 ~ o(s). It follows that, by Lemma 3.2.11, 

s < 2n. Therefore 

dim Wj = s < 2n = dim W, 

and W contains at least two L0-modules W1 and W2 of type 3. 

Next, by Lemma 3.2.10, d = 2. It follows that s =dim W1 =dim VV/2 = n. 0 

Example 3 There exists a decomposition of S ~ asp( 4k, 2n) into the sum of two 

simple subalgebras I< and L of the types osp(4k -1, 2n) and osp(n, 2k), respectively. 

Moreover, in this decomposition S is considered in the standard matrix realization 

{(*)} 
where A E o( 4k) and D E sp(2n) and C = InBt, In given by 

-(*!") In-
-Jn 0 

The first subalgebra I< ~ asp( 4k - 1, 2n) has the form: 

0 0 0 0 

0 

o X 
0 

where X is any ( 4k + 2n - 1) x ( 4k + 2n - 1) orthosymplectic matrix. 

The second subalgebra L ~ osp(n, 2k) consists of all matrices of the form: 

A-At -i(A +At) p Qt 

i(ll + N) II- At if> -i(l 
(3.4) 

Q -iQ D 0 

_pt -iPt 0 D 
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where A E sp(2k), DE o(n) and P is a matrix of order 2k x n, Q = P 1 J. 

Then S = K + L is a decomposition of a simple Lie supemlgebm into the sum 

of two simple subalgebms. 

Proof. 

First we prove that the set of matrices (3.4) is actually a subalgebra of the type 

osp(n, 2k). The standard matrix realization of o:;p(n, 2k) is 

{($)} 
where A E sp(2k), DE o(n) and Pis a matrix of order 2k x n, Q = P1 J. It is easy 

to see that asp( n, 2k) has another matrix realization: 

It follows that L' ~ osp(n, 2k) can be imbedded into gl(4k, 2n) as follows: 

A 0 p 0 

0 -At 0 Qt 

Q 0 D 0 

0 _pt 0 -Dt 

Let x be an automorphism of gl ( 4k, 2n) of the form 

x(X) = QXQ-1 (3.5) 

where 

where Q2k has a form (1.6). 
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Using straightforward calculations we can show that x(L') has the form (3.4). 

Denote r.p(L') as L. Therefore the set of matrices of the form (3.4) forms osp(n, 2k). 

Clearly L ~ osp(4k- 1, 2n). 

Next we will prove that the sum of two vector spaces K and L coincides with,<-,'. 

Set 

Then 

Since P is an arbitrary matrix from Mk,n(lF), the first rows of matrices from L are 

arbitrary. Similarly the first column of matrices from L is also arbitrary. Therefore 

D 

3.3 Sum of special linear and orthosymplectic su-

per algebras 

Here we consider decompositions of the form S = K + L where S ~ osp(m, 2n), 

K ~ osp(p, 2q) and L ~ sl(s, l). 

Lemma 3.3.1 LetS'= osp(m, 2n) be a Lie super-algebra, and i-,' be decomposed into 

the sum of a proper orthosymplectic subalgebm K and a special linear subalgebm L. 

Then m is even, m = 2k, K ~ osp(2k- 1, 2n) and L ~ sl(k, l). 

Proof. By Lemma 1.2.2(a), 80 = o(m)Efl.sp(2n). Let 1r1 and 1r2 denote projections of 

5 0 onto the ideals o( m) and sp(2n), respectively. Since K is isomorphic to osp(p, 2q), 
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K0 is isomorphic to o(p) E9 sp(2q). By Lemma 1.2.1(a), L0 is isomorphic to sl(ll) E9 

sl(l2 ) EB U. Since Ka and La are reductive subalgebras, the projections n1 (K0 ), 

n1(L0 ), nz(Ko) and nz(Lo) are also reductive. 

As usual, 8 = K + L induces the decomposition of 80 of the form ,'-,'0 = K0 + L0 . 

Therefore, nl(So) = nl(Ko) + nl(Lo) and 1f2(So) = n2(Ko) + n2(Lo) where nl(So) = 

o(m) and n2 (S0 ) = sp(2n). By Theorem 1.1.2, sp(2n) cannot be decomposed into the 

sum of two proper reductive subalgebras. Hence sp(2n) = n2 (K0 )+n2 (L0 ) is a trivial 

decomposition and n2 (Ko) = sp(2n). It follows that q = n since Ko = o(p) E9 sp(2q). 

Again, by Theorem 1.1.2, o(m) only has the following nontrivial decompositions 

into the sum of two proper reductive subalgebras: 

1. If rn = 2k then o(2k) = o(2k- 1) + sl(k), 

2. If m = 4k then o(4k) = o(4k- 1) + sp(2k). 

Notice that o(m) = n1(Ka) + n1(La) cannot be trivial. Indeed, assume that 

this decomposition is trivial. Hence n1 (Ka) = n1 (Sa) ~ o(m) and p = m. Thus 

/( ~ osp(p, 2n) coin.cides with S = osp(m, 2n), which is a contradiction. Moreover 

o(m) = n1 (Ka) + n1(L0 ) cannot be of the second type, because n1(Lo) is not of the 

type sp(2k). Therefore o(m) = n1(K0 ) +n1(L0 ) is a decomposition of the first type 

and m = 2k:, n 1 ( Ka) ~ o(2k:-1 ), n 1 (!"0 ) ~ sl(k). This implies that p = 2k:-1, q = n, 

and either l 1 = k or l2 = k, since Ka ~ o(p) E9 sp(2q) and La ~ sl(l1) E9 sl(l2) E9 U. 

Set either l = l1 if l2 = k: or l = l2 if 11 = k. Therefore L ~ sl(k:, l). 0 

Corollary 3.3.2 LetS= J( + L, /( ~ osp(2k -1, 2n), L ~ sl(k, l) and 11 ~ sl(k), 

!2 ~ sl(l) be ideals of La. Then 12 acts trivially on V. Moreover V = V1 E9 V2 where 

h -module V1 is standard, and 11 -module \12 is dual. 
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Lemma 3.3.3 LetS= K + L where S ~ osp(2k, 2n), J( ~ osp(2k- 1, 2n), L ~ 

sl(k, l). Then for any j E {1 ... d}, Lo-module W1 is not of the type 1. 

Proof. 

Let us assume the contrary, that is, there exists j 0 such that L0-module lVJo is of 

the type 1. First we prove that J( has a nontrivial vector annihilator in gl(m, n). Let 

K = 11 EEl 12 where 11 ~ o(2k -1) and 12 ~ sp(2n). As was shown in Lemma 3.3.1, 

1f2(So) = n2(Ko) ~ sp(2n). Therefore 1r2(J2) = 1r2(Ko) ~ sp(2n) since J2 ~ sp(2n). 

However [n2(.J1 ), n2(.J2)] = {0} since [.h, .h] = {0}. Therefore, n2(.JI) = {0} since 

n2(J1) ~ n2(Ko) = n2(J2). 

By Lemma 3.3.1, n1 (S0) = n1 (K0)+n1(L0) has the form o(2k) = o(2k-1)+sl(k). 

Therefore, by Remark 1.1.1, n1 (K0 ) has a nontrivial annihilator in gl(m). Hence 

n1(JI) also has a nontrivial annihilator in gl(m). So we obtain that 11 is an ideal of 

K 0 , I< ~ gl(m, 2n), and 11 acts trivially on W and on a one-dimensional subspace 

of V. Hence, by Lemma 1.4.3, K has a nontrivial vector annihilator in gl(m, n). 

By Lemma 1.4.2, L has a trivial vector annihilator in gl(rn, n). Let us consider 

h ~ L. By Corollary 3.3.2, 12 acts trivially on V. Moreover 12 acts trivially on WJo 

since L0-module WJo is of the type 1. Therefore, by Lemma 1.4.3, Lhasa nontrivial 

vector annihilator in gl ( m, n), which is a contradiction. D 

Lemma 3.3.4 LetS'= K + L where S' ~ o8p(2k, 2n), K ~ o8p(2k- 1, 2n), L ~ 

8l(k, l). Then for any j E {1 ... d}, L0 -module Wj is not of the type 2. 

Proof. The proof of this lemma is similar to the proof of Lemma 2.1.4. 

Lemma 3.3.5 LetS= K + L where S ~ osp(2k, 2n), I< ~ osp(2k- 1. 2n), L ~ 

sl(k: l). Then for any pairwise different j 1,j2 E {1 ... d}, 12-module Wj1 is nol 

isomorphic to 12 -module Wj2 • 
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Proof. 

Let us assume the contrary, that is, L0-modules Wj 1 and vVj2 are isomorphic. 

Any Lo-module Wj, j E {1 ... d}, is of the type 3. Moreover, by Lemma 2.1.5, 

!2-module wj is either standard or dual. 

There is no loss in generality if we consider the case when !2-module Wh is 

standard. Hence L0-module Wj 2 is also standard. 

Let A= (1, 0, ... , 0) be the highest weight of !1-module V, and 1-1 = (1. 0 .... , 0) 

be the highest weight of !2-modules Wj 1 and Wj2 • Then, by Lemma 1.4.7, the 

following statements hold true: 

1. I1 EB I2-modules V1 Q9 Wj*
1 

and h Q9 Wj*
2 

have the same highest weight (.A., /-1*), 

where 11: = (1, 0, ... , 0). 

2. h EB !2-modules V2 Q9 Wj*
1 

and V2 Q9 WJ*
2 

have the same highest weight (.A.*, !-1*), 

where .A.* = (0, ... , 0, 1). 

By Lemma 1.2.1(b), !1 EBI2-module L1 is the direct sum of two simple submodules 

with the highest weights (.A., 1-1*) and (.A.*, !-1)· Hence the projections of L1 onto V2 Q9 

l-tj*
1 

and V2 Q9 H'7
2 

are zero since L0 -module L1 contains no submodules with the 

highest weight (A*, 1-1 *). 

Next we fix a basis in V (f) W of vectors of subspaces V;, E {1, 2}, and Wj, 

j E { 1 ... d} such that L 0 takes the following form 

{($-)} (3.6) 
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where A= diag(X, -Xt), X E sl(k) and D = diag(D1 , ... , Dd), Dj E Mnj(IF) such 

that D1 = D2 = Y, Y E sl(l). Besides, £ 1 has the following form 

{(*)} (3.7) 

where B = (Bij), i E {1, 2}, j E {1 ... d} and Bij E Jlf2k,n1 (IF), 

Next we look at a pair of / 1 EB / 2-modules V1 0 Wt and V1 0 W2. The matrix 

realization of the first module consists of all k x l matrices, and the action of / 1 EB / 2 

is given by the following formula: 

x(Bn) =X Bn- Bn Y (3.8) 

where x E 11 EB 12 of the form (3.6) and Bn is an arbitrary k x l matrix. Similarly, 

the second module is the set of all k x l matrices under the following action: 

where x E /1 EB h of the form (3.6), and B12 is an arbitrary k x l matrix. 

Let h EB 12-module Qn (£1) be the projection of 11 EB 1Tmodule £1 onto V1 0 Wt, 

and Q12(L1) be the projection of / 1 EB /2-module £ 1 onto V1 0 W2. By Lemma 

1.4.7, h EB /2-modules V1 0 Wt and V1 ® W2 are simple. Hence /1 EB /2-module 

Qn(LI) coincides with V1 0 W{, and /1 EB 12-module Q12(L1) coincides with V1 0 H'2. 

Therefore h EB 12-modules V1 0 Wt and V1 0 W2 have the same matrix form (3.8). 

On the other hand, [In ( L1) and [.112 ( LI) are isomorphic as / 1 EB [2-modules since they 

are both simple and homomorphic images of 11 EB h-module L1. Hence, by Schur's 

Lemma, any isomorphism between / 1 EB / 2-modules Q11 (LI) and Q12 (LI) is a scalar 

mapping. In matrix terms this implies that for any matrices from L1 of the form 

(3.7), Bn = >..B12, >.. E IF. 
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On the other hand, we have already proved that the projections of L1 onto 

V2 ® Wj
1 

and V2 ® W1~ are zero. Therefore for any matrices from L1 of the form 

(3.7), we have that B21 = B22 = 0. However, by Lemma 1.4.5, L1 cannot be of this 

form, a contradiction. D 

Theorem 3.3.6 LetS= osp(m, 2n), m, n > 0, be decomposed into the sum of two 

proper simple subalgebras K and L of the type osp(p, 2q) and sl(s, l), respectively. 

Then m is even, m = 2k, K ~ osp(2k- 1, 2n) and L ~ sl(k, n) 

Proof. 

By Lemma 3.3.1, m = 2k and K ~ osp(2k - 1, 2n), L ~ sl(k.l). Hence it 

remains to prove that l = n. Let us consider La-modules W = l¥1 EB ... EB Wd. By 

Lemmas 3.3.3 and 3.3.4, for any j E {1 ... d} La-module W1 is not of the type 1 and 

2. Hence any La-module W1 is of the type 3. Moreover, by Lemma 2.1.5, 12-module 

wj has dimension l. 

Therefore n2(12) =/= 0 and n2(12) ~ sp(2n) where 12 ~ sl(l). It follows that 

< 2n. Hence dim W1 = l < 2n = dim W. Therefore W contains at least two 

La-modules W1 and W2 of type 3. 

Next we show that d = 2. Let us assume the contrary, that is, there exists 

La-module W3 . Since La-module W3 is of the type 3, it follows that La-module 

W3 is either standard or dual. By Lemma 3.3.5, La-modules W1 and W2 are not 

isomorphic. Therefore !)a-module W3 is isomorphic to either !)a-module W1 or La­

module W2. However, this conflicts with Lemma 3.3.5. This implies that d = 2 and 

l =dim W1 =(dim W)/2 = n. Therefore L ~ sl(k, n). D 

Corollary 3.3. 7 Let h and h be ideals of La defined above. Then 11 acts trivially 

on W, and 12 acts trivially on V. Moreover V = V1 EB V2 where !1 -module V1 is 
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standard, 11-module 112 is dual, and W = W1 EB W2 where h-module W1 is standard, 

h -module w2 is dual. 

Now we want to show that the decompositions as in Theorem 3.3.6 are possible. 

Example 4 There exists a decomposition of S' ~ osp(2k:, 2n) into the sum of two 

simple subalgebras K and L of the types osp(2k:- 1, 2n) and sl(k:, n), respectively. 

Moreover, in this decomposition S is considered in the standard matrix realization 

where A E o(2k) and DE sp(2n), C = JnBt, Jn is given by 

K is taken in the form: 

0 0 0 0 

0 

o X 

0 

where X is any (2k + 2n- 1) x (2k + 2n- 1) orthosymplectic matrix. 

The second subalgebra L ~ sl(k, n) consists of all matrices of the form: 

E -F p Qt 

F E iP 'Qt -~ 

(3.9) 

Q -iQ D 0 

_pt -iPt 0 -Dt 
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where E is a skew.'iymmetric matrix of order k, F is a symmetric matrix of order 

k, P is a matrix of order k x n, Q is a matrix of order n x k and D is a matrix of 

order n with zero trace. 

Then ,C,' = K + [, is a decomposition of a simple Lie supemlgebm as the sum of 

two simple subalgebms. 

Proof. 

First we prove that the set of matrices (3.9) is actually a subalgebra of the type 

sl(k, n). The standard matrix realization of sl(k, n) is the following: 

where X E sl(k), Y E sl(n) and Pis a matrix of order k x n, Q is a matrix of order 

n x k. Hence there is another matrix realization of sl(k, n): 

{($)} 
It follows that L' ~ sl(k, n) can be imbedded into gl(2k, 2n) as follows: 

Q 0 y 0 

0 _pt 0 _yt 

Let x be an automorphism of gl(2k, 2rn) of the form 

x(X) = QxQ-l (3.10) 

where 
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where Qk has a form (1.6). The direct calculation gives us that x(L') has the form 

(3.9) where E = A- At, F = i(A +At). Therefore the set of matrices (3.9) forms 

:;l(k, n). 

Next we prove that the sum of two vector spaces K and J, = x( !/) coincides 

with S. Set 

Then 

We set B11 = P and B12 =Qt. Then Biz= Q and -BL = -Pt. Since P and Q 

are arbitrary matrices of order k x n and n x k, respectively, the set of the first rows 

of matrices from J, coincides with that of matrices from ,'-,'. The same is true for the 

set of the first columns of matrices from L. Hence, S = K + L. D 

3.4 Uniqueness of decompositions 

First we prove the following technical lemma 

Lemma 3.4.1 LetS~ sp(2n), S ~ gl(2n), and for any X E sl(n), 

($)ES. 
Then S has the form 

{($)} (3.11) 

where U, C are symmetric matrices of order n. 
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Proof. 

Let L be the set of all matrices of the form 

{($)} 
where X E sl(n). Clearly, L c Sand L ~ sl(n). 

We are given that gl(V) = v ® V* where v = vl EB v2 and both VI, v2 are vector 

column spaces of dimension n. Clearly, V1 and V2 are simple £-modules with the 

highest weights A= (1, 0, ... , 0) and A*= (0, ... , 0, 1), respectively. 

Next we consider £-module V ® V*. Since V = V1 EB V2 and V* = Vt EB V2*, we 

can express £-module V ® V* as the direct sum of £-modules Vi® Vj*, 
2 

V 00 V* = E9 (Vi C>0 Vj*). 
i,j 

According to [11], a tensor product of two standard sl(n)-modules is isomorphic to 

the direct sum of symmetric and skew-symmetric sl(n)-modules. That is, sl(n)-

module V(A)@ V(A*) is isomorphic to the direct sum of two sl(n)-modules V(AI) 

and V(A2 ) where 

AI = (2, 0, ... '0) 

and 

A2 = (1, 1,0, ... ,0). 

L-module V2* is standard since it has the highest weight A** = A. Hence we obtain 

that a tensor product of two standard £-modules V1 and V2* is isomorphic to L-

module 

On the other hand, a tensor product of two dual sl(n)-modules V(A*) and V(,X.*) is 

isomorphic to the direct sum of two sl(n)-modules V(Ai) and V(A~). Therefore a 

63 



tensor product of two dual £-modules Vt and V2 is isomorphic to L-module 

Acting in the same manner we obtain that a tensor product of a standard sl(n)­

module V1 and a dual sl(n)-module Vt is isomorphic to the direct sum of an adjoint 

sl(n)-module V(>..3) and a trivial sl(n)-module !(VI), 

where >..3 = (1, 0, ... , 0, 1). 

Similarly a tensor product of a dual sl(n)-module V2 and a standard sl(n)-module 

V2* is also isomorphic to the direct sum of an adjoint sl(n)-module V(>..3) and a trivial 

i-il(n)-module I(Vz) 

Vz 0 V2* ~ V(>..3) ED l(V2). 

Let us denote (V1 0 Vt), (V2 0 V2*), (V1 0 \!;*)and (Vt ~ V2) as U1, U2, U3 and U4, 

respectively. Let U stand for U1 ED U2 . Since L-modules U, U3 and U4 have pairwise 

different highe:,;t weights, any L-submodule M of U (I) U3 CD U4 can be represented in 

the following form: 

M = (M n U) Cl) (M n lh) C1! (1\l n U4). 

Next we considerS as an L-submodule of L-module V 0 V* = U EB U3 EB U4 and 

prove that L-module S does not contain two adjoint L-submodules. 

Let us assume the contrary, that is, L-module S contains two adjoint L­

submodules. Hence S contains a subspace T of the following form: 

{(-$-)} 
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where X E .sl(n), Y E .sl(n). 

Notice that T is a Lie subalgebra of S, T = T1 EEl T2 ~ .sl ( n) EEl .sl ( n). 

We know that T1-module V1 and T2-module V2 are simple with the highest weight 

>.. = (1, 0, ... , 0). Hence T-module V1 IXl V2* is simple as a tensor product of simple 

T1-module V1 and T2-module Vt. Thus, by Lemma 1.4.7, T-module V1 ® V2* has the 

highest weight (A,,\*). Acting in the same way, we obtain that the highest weight 

ofT-module V2* Q9 V1 is(>..*,>..). Therefore U3 = V1 ®\!;*and U4 = \!;* ® V1 are not 

isomorphic as T-modules. 

Since the projections of S on U3 and U4 are not zero, T-modules S n U3 and 

S n U3 are nontrivial. Thus T-module S n U3 coincides with U3 , and T-module 

,',' n U4 coincides with [h We have that 

dimS= dim (S n U) EEl dim (S n U3 ) EEl dim (S n U4) 

since S = (S n U) EEl (S n U3 ) EEl (S n U4 ). Therefore 

On the other hand, dimS= 2n2 + n since S ~ .sp(2n). This contradicts the fact 

that n > 1 (L ~ .sl(n)). Therefore L-module S does not contain two adjoint L­

submodules. 

Further the following cases are possible: 

Case 1. L-module S contains two L-submodules isomorphic to V(>..2 ) and V(>..;), 

respectively. 

Let us prove that this case is not possible. Notice that both U3 and U4 are direct 

sums of two .sl(n)-modules of skew-syrnmeLric and t:JymplecLic matrices. Since L­

submodule S contains two L-submodules of skew-symmetric matrices, we have that 
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S n (U3 EB U4 ) contains subspace L of the following form: 

{(*)} 
where B, C are skewsymmetric matrices of order n. It is easy to check that L + L 

forms a Lie subalgebra inS isomorphic to o(2n). 

On the other hand, by Lemma 3.2.11, sp(2n) does not contain a Lie subalgebra of 

the type o(2n). This contradict the fact that L-module S contains two L-submodules 

isomorphic to V ( >.2 ) and V ( >.;). 

Case 2. L-module S contains two L-submodules isomorphic to V(.\1) and V(>.i), 

respectively. 

Notice that 5 n (U3 EB U4) contains subspace L of the following form: 

where B, C are symmetric matrices of order n. It is easily seen that L + L forms a 

Lie subalgebra in 5 isomorphic to sp(2n). This implies that 5 has the form (3.11). 

Hence the lemma is proved for this case. 

Case 3. Both statements (1) and (2) are not true. 

Let us prove that this case does not hold. We have that the dimension of L­

modules V(.\1 ) and V(>.i) is equal to n(n + 1)/2, and the dimension of L-modules 

V(.\2 ) and V(.\2) is equal to n(n- 1)/2. Since L-module 5 does not contain both 

V(>.l), V(>.;), and L-module S does not contain both V(.\1) and V(>.i), we obtain 

the following inequality 

dim (5 n U3 ) +dim (5 n U4 ) ::; n(n + 1)/2 + n(n- 1)/2 = n2
. 
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Since L-module S n U contains only one adjoint L-submodule, we have that 

This implies that 

On the other hand, dimS = 2n2 + n since S ~ sp(2n). This contradicts the fact 

that n > 1 (L ~ sl(n)). 

Lemma 3.4.2 Let S = K + L, S ~ osp(2k, 2n), K ~ osp(2k - 1, 2n) and 

L ~ sl(k, n). Then there exists an automorphism tp of gl(2k, 2n) such that 

rp(S) = rp(K) + rp(L) has the form as in Example (4). 

Proof. First we consider L ~ sl(k, n). By Corollary 3.3.7, there exists a homoge­

neous basis of V EB W such that L0 takes the form 

X 0 0 0 

o -xt o o 
(3.12) 

0 0 y 0 

0 0 0 _yt 

where X E sl(k) andY E sl(n). 

Let n1, n2 denote projections of S'0 onto the ideals o(2k) and sp(2n), respec­

tively. These projections induce two decompositions: n1 (So) = n1 (K0 ) + n1 (Lo) 

and n2 (S0) = n2 (K0 ) + n2 (L0). By Lemma 3.3.1, we have that nl(So) ~ o(2k), 

n1(K0 ) ~ o(2k- 1) and n1(L0 ) ~ sl(k). By Lemma 1.1.4, there exist bases of V 

such that the decomposition n1 (So) = n1 (K0 ) + n1 (Lo) takes the form (1.2). Thus 
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1r1(So) consists of all skew-symmetric matrices of order 2k, i.e 1r1(S0 ) = o(2k). Be­

sides, 1r1(L0 ) takes the form 

{($)} 
where X E sl(k). 

Next we consider 7r2(So) ~ sp(2n). We are given that 1r2(L0 ) C 1r2 (S0 ), and 

1r2(L0 ) has the form: 

where Y E sl(n). Then, by Lemma 3.4.1, 1r2 (S0 ) takes the form 

where B, C are symmetric matrices. 

By Lemma 2.4.1, there exists an automorphisms 1/J of the form (2.11) such that 

't/;(8) takes the standard form. Thus 

(3.13) 

where 

and 

C = ( B~: Bi: ) . 
-B21 -En 

We are going to show that S uniquely defines L. Let A = (1, 0, ... , 0) be the 

highest weight of / 1-module VL, and J.L = (1, 0, ... , 0) be the highest weight of IT 
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module W1. Then h EB h-module V1 ®WI has the highest weight (A, ft) and / 1 EB h­

module V2 ® Wt has the highest weight (>.*, ~t*). 

On the other hand, by Lemma 1.2.1(b), / 1 EB h-module £ 1 is the direct sum 

of two simple submodules with the highest weights (A,Jl.*) and (>.*,fl.). Hence the 

projections of £ 1 onto V1 ®WI and V2 ® Wt are zero since £ 0-module £ 1 contains 

no submodules with the highest weights (>., ~t) and (>.*, ~t*). Thus £ 1 c S1 is the 

subspace of the set of matrices of the form (3.13) where B 12 = 0 and B 21 = 0. The 

dimension of this set is 2kn. Hence the dimension of £ 1 is less than or equal to 

2kn. On the other hand, the dimension of £ 1 is 2kn since £ 1 ~ sl(k,n). Thus £ 1 

coincides with the set of matrices of the form (3.13) where B 12 = 0 and B2 1 = 0. 

Therefore we have proved that S' uniquely defines T). 

Finally we show that S uniquely defines K. 

As was shown above, the decomposition n1(S0 ) = n1(K0 ) + n1(L0 ) has the form 

(1.2). We consider the automorphisms x of the form (3.10). Let us denoteS'= x(S), 

K' = x(K) and L' = x(L). According to Remark 1.1.1, n1(Kb) consists of all skew­

symmetric matrices of order 2k with the first column and row zero. Therefore, by 

Rerrmrk 1.4.4, the first row and column of all matrices from K' are zero. Hence S' 

uniquely defines K' since K' consists of all matrices in cS'' with the fir::>t row aud 

column zero. This implies that S = x- 1 (S') uniquely defines K = x- 1(K')). 
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