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Abstract

In this thesis we consider decompositions of algebras and superalgebras into the
sum of two subalgebras. The sum is understood in a sense of a vector space sum
and not necessarily direct. The structure of these sums has attracted considerable
attention for various types of algebras. Originally, this problem arises in the work
of M. Goto (1963) where he studied the case of nilpotent Lie algebras. In 1969
A. Onishchik classified decompositions of simple complex Lie algebras into the sum
of two reductive subalgebras. In 1999 Y. Bahturin and O. Kegel [1] proved that
no simple associative algebra can be written as the sum of two simple subalgebras
over an algebraically closed field. In the joint paper with M. Tvalavadze [24], we
classify decompositions of simple Jordan algebras over an algebraically closed field
of characteristic not two.

In the case of Lie superalgebras this problem was open until now. The main
result of this thesis is a classification of all such decompositions in the case of basic
non-exceptional Lie superalgebras, up to conjugation, over an algebraically closed
field of characteristic zero. Moreover, we construct precise matrix realizations of
each decomposition.

To prove this result we consider a Lie superalgebra as a module over its even
component which is a Lie algebra. Using techniques of the representation theory
of semisimple Lie algebras we present the precise description of such modules for
each superalgebra in the sum. This research is significantly based on the result from
[26] which extends Onishchik’s Classification Theorem to an arbitrary algebraically

closed field of characteristic zero.
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Chapter 1

Preliminaries

1.1 Decompositions of simple Lie algebras

In this section our main goal is to recall the decompositions of simple Lie algebras
over an algebraically closed field F of zero characteristic as the sum of two reductive
subalgebras.

The classification of simple decompositions over the field of complex numbers

was obtained by A. Onishchik [16]. It is based on the following Lie Theory result.

ML
T

Theorem 1.1.1 Any non-trivial irreducible factorization G = G'G" of a connected

simple compact Lie group G into the product of two connected subgroup G' and G"

is equivalent to one of the following factorizations:
SU,, =Sp,, - SUg,—1, n > 2

SO; = G2 - SOgq,

SO; = Gy - SO,

SOZn = SO2n—1 ’ SUn7 n = 47
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So4n = SO47L*1 : Spn: n 2> 27
8016 - 8015 . Sping,
SOg = SO7 . Spil’l7.

Next we formulate a theorem from [26] which extends Onishchik’s Classifica-
tion theorem for a simple Lie algebra to an arbitrary algebraically closed field of

characteristic zero.

Theorem 1.1.2 Any decomposition of a simple Lie algebra into the sum of two
reductive subalgebras over an algebraically closed field of characteristic zero has up

to conjugation one of the following forms:
sl(2n) = sl(2n — 1) + sp(2n), n > 2

o(2n) =0(2n - 1) +sl(n), n > 4,
o(4n) = o(dn — 1) + sp(2n), n > 2,
o(7) = G + 0(6),

o(7) = G2 + 0o(5).

The following three lemmas produce decompositions of simple Lie algebras as the
sum of simple subalgebras. The matrix forms of these decompositions have been

constructed in [2].

Lemma 1.1.3 There is a basis of F?" such that the decomposition sl(2n) = sl(2n—

1) + sp(2n) takes the following matrix form:

S=N+M, (1.1)
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where S = sl(2n) consists of all matrices of order 2n with zero trace. The first
subalgebra N = sl(2n — 1) consists of matrices:

( w

0

where T' is a matriz of order 2n — 1 with trace zero.

Any element of the second subalgebra M = sp(2n) has the form:

where Coy = —Ct, and Cya, Co1 are symmetric matrices of order n.

Lemma 1.1.4 There is a basis of F2" such that the decomposition o(2n) = o(2n —

1) + sl(n) takes the following matriz form:
S=N+M, (1.2)

where S 2 o(2n) consists of the matrices:

All A12 (1 3)

A21 A22

where Aqz, Ay are skew-symmetric matrices of order n and Ayy, Asa are matrices of

order n such that Ay = — A},



The first subalgebra N = o(2n — 1) consists of the matrices:

( 0 Y1 o Yn—1 0 1 ... Tp_1
z —x1
Al : Al
s e (1.4)
0 |—=y1 -+ —Yno1 0 -1 ... —Tp—1
) —Hh
Ao : A
L\ Yn1 —Yn-1 )

where A, A, are skew-symmetric matrices of order n—1 and A}, Ay, are matrices
1 - st
of order n. — 1 such that Ay, = —A'3;.

Any element of the second subalgebra M = sl(n) has the form:

Al O
0 | A
where Ay, Ay are matrices of order n with zero trace such that Ay = — A%,

Lemma 1.1.5 There is a basis of F*" such that the decomposition o(4n) = o(4n —

1) + sp(2n) takes the following matriz form:
S=N+M, (1.5)

where S = o(4n) consists of the matrices of the form (1.3) where A11, A1z, Ag1, Az
are of the order 2n. The first subalgebra N = o(4n — 1) has the form (1.4), where
Ay, A, Ay and Ay, are of the order 2n — 1. The second subalgebra M = sp(2n)

consists of the matrices:




where Y is of the form:
A|B

C|D

where B, C are symmetric matrices of order 2n and D = —A* of order 2n.

Remark 1.1.1 Let x be an automorphism of gl(2k) such that x(X) = QxXQ}",

where

= " (1.6)

where I is the identity matriz of order k.

We consider the decomposition x(S) = x(N) + x(M) where S, N and M are
from Lemma 1.1.4 (or 1.1.5). Using straightforward calculations we can show that
x(S) consists of all skew-symmetric matrices of order 2k (or 4k). Besides, x(N)
consists of all skew-symmetric matrices of order 2k (or 4k) with the first column

and row zero. In particular x(N) has a nontrivial annihilator in gl(2k) (or gl(4k)).

1.2 Lie superalgebras: basic facts and definitions

In this section we formulate basic properties of Lie superalgebras ([13], [18]).
Let A be an algebra. We say that A is a Z,-graded algebra, if there is a vector

space sum decomposition

A=EPA,

g€lo

such that AjA, C Ay for all g, h € Zy

Definition 1 A Lie superalgebra S over a field F of characteristic zero is a Zs-

graded algebra, that is the direct sum of two vector spaces Sy and Sy, and is equipped



with o Lie superbracket [ , ], such that for any x € Sy, y € Sy and z € S the

following identities hold:

The even subspace, i.e. the set of all even elements of a Lie superalgebra S =
So & Sy is a Lie algebra. Since [Sp, 51] € Sy and by (1.8), which with e =0, 8 =1

and z € S; takes the form
[[‘Tay]? Z] = [Ia [ya Z]] - [y) [I’ ZH,

we observe that the commutator of S makes S into an Sy-module. Furthermore,
the restriction of the commutator to S defines a bilinear symmetric mapping &:
S1 X Sy Sy. Since Sy is the adjoint Sp-module one may speak about the action
of Sy on the bilinear mapping from S; into Sy. Thus the following properties of a

superalgebra S = 5y ® S; hold:
e Sy is a Lie algebra;
e Sy is an Sy-module;
e the bilinear mapping | , | : S; x Sy — Sy is symmetric and Sy-invariant;
o [z,y] = —[y,z] for x € Sy, y € Si.

If A= Ay ® Ay is an associative superalgebra ( Z,-graded associative algebra)
then, introducing a superbracket (supercommutator) on A by the formula
[2,y] = zy — (-1)*yz (1.9)
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with z € A,, y € Ag, one turns A into a Lie superalgebra sometimes denoted by
[A].

We say that T is a homogeneous (or Zs-graded) subspace of S if T can be
represented in the form

T=(TnNS) & (TNS).

If this holds we write Ty = (T'N Sp) and Ty = (T'N S1). In addition, if T is a
subalgebra (or an ideal) of S then we say that T is a subsuperalgebra (or Z,-graded
ideal) of S. The quotient algebra S/T', where T is a Z,-graded ideal, can be naturally

made into a Lie superalgebra if one sets
($/T)a = (Sa+T)/T.

We say that a Lie superalgebra S is simple if S has no Zy-graded ideals except itself
and zero.

The classification of simple Lic superalgebras over an algebraically closed ficld
was obtained by V. Kac in 1975. Among Lie superalgebras appearing in the classi-
fication of simple Lie superalgebras, one distinguishes two families: the classical Lie
superalgebras in which the representation of the even subalgebra on the odd part
is completely reducible, and the Cartan type superalgebras in which this property
is no longer valid. Among the classical superalgebras, one naturally separates the
basic series from strange ones.

The basic Lic superalgebras split into infinite familics denoted by si(m,n) for
m >n > 1 and psi(n,n), n > 2, (special linear series), osp(m,2n), n, m > 1, (or-
thosymplectic series) and three exceptional superalgebras F'(4), G(3) and D(2, 1; a),
the last one being actually a one-parameter family of superalgebras. Two infinite

families denoted by P(n) and Q(n), n > 2, constitute the strange superalgebras.
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The classical Lie superalgebras can be described as matrix superalgebras as
follows. Consider a Zjy-graded vector space V = V, @ V| with dimVy = m and

dim V; = n. Then the algebra End V' acquires naturally a superalgebra structure by
EndV =Endg V& End, V

where

End;V = {¢€EndV | §(V,) C Viy)
The Lie superalgebra gl(m,n), m, n > 0, is defined as the superalgebra End V
supplied with the Lie superbracket (1.9). Clearly, gl(m,n) consists of all matrices

of the form

Al D
M:

cC\D

where A € gl(m), D € gl(n), 3 and C are m x n and n X m rectangular matrices.

Onc defines on gl(m,n) the supertrace function denoted by str:
str (M) = tr (A) — tr (D).

The superalgebra sl(m,n), m > n > 1, consists of all matrices M € gl(m,n)
satisfying the supertrace condition str (M) = 0. The superalgebra sl(n,n) has a
one-dimensional center Z which is contained in the zero component. The simple
algebra psl(n,n), n > 2, is given by psl(n,n) = sl(n,n)/Z.

The orthosymplectic superalgebra osp(m,2n), m > n > 1, is defined as the

superalgebra of all matrices M € gl(m, 2n) satisfying the conditions

At = _A7 DtJn = "—JnDa C = JnBt




The strange superalgebra P(n), n > 2, is defined as the superalgebra of matrices

M € gl(n,n) satisfying the conditions
A= -D, B' = B, C' = -C, tr (A) = 0.

The strange superalgebra Q(n) is defined as the superalgebra of matrices M €

gl(n,n) satisfying the conditions

The superalgebra Q(n) has a one-dimensional center Z which is contained in the

zero component. The simple algebra Q(n), n > 2, is given by Q(n) = Q(n)/Z.

Finally we cite two important lemmas which will be used later.

Lemma 1.2.1 Let either L = sl(m,n) where m # n or I. = psl(n,n). Then
L = Ly ® Ly where Ly is the even part of L, Ly is the odd part of L. The following
conditions hold:

(a) Lo =T & L@ U, where I, = sl(m), Iy = sl(n) and U is either one dimensional
Lie algebra if m = n or zero.

(b) Iy & I,-module Ly is the direct sum of two simple I} @& Iz-modules of dimen-
sion mn with the highest weights (X, u*) and (N\*,u) where A = (1,0,...,0) and
w=1(1,0,...,0).

(¢c) L1, I1] = Lo

(d) [I\, Ly} = Ly and [I2, Li] = L4

(e) Ii-module Ly is the direct sum of 2n simple I;-modules of dimension m and

I>-module Ly is the direct sum of 2m simple I,-modules of dimension n.
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Lemma 1.2.2 Let L = osp(m,2n). Then

(a) Lo = I, & I, where I} = o(m), Iy = sp(2n)

(b) Ly is a simple I & Iy-module of dimension 2mn

(c)L1,14] = Lg

(d) [I1, L1] = Ly and [Iz, L1] = Ly

(e) Ii-module Ly is the direct sum of 2n simple I,-modules of dimension m and

Iy-module Ly is the direct sum of m simple Iy-modules of dimension 2n.

The proof of these lemmas is straightforward (see [13], [18]).

1.3 Description of some modules associated with

decompositions

In this section we introduce three types of Ly-modules which will be repeatedly used
throughout the thesis.

Let either S = sl(m,n) or S = osp(m,n), and S C gl(m,n). We consider
the decomposition S = K + L where K and L are two proper basic simple sub-
superalgebras. If no confusion is likely, we will use the term subalgebra instead of
subsuperalgebra. Since 1. C S C gl(m,n), Ly C gl(m) © gl(n). Hence we have
two natural representations p; and p, of Ly in vector spaces V and W where V' is a
vector column space of dimension m, and W is a vector column space of dimension
n.

To define Ly-module structure on V' and W we consider the following formulas:

zv = p1(z)(v)

10



and
zw = p(x)(w),
forany v € Ly, v eV, weW.
Since Lg is a direct sum of a semi-simple subalgebra and a one-dimensional
center, according to [12], Lo-modules V and W are completely reducible. Let V =
Vie...eV,and W =W, & ... 5 W,, where V;, W, are simple Ly-modules.

In the following definition we introduce three different types of Ly-module W;.

Definition 2 If I, and I, are ideols of Ly defined in Lemmas 1.2.1 and 1.2.2, then
Lo-module W, can be of one of the following types:

Type 1. I acts trivially on W;.

Type 2. Iy acts nontrivially on W; and 11 acts nontrivially on W;.

Type 8. Iy acts nontrivially on W; but Iy acts trivially on W;.

Next we look at the decomposition S = K + L where S C gl(m,n). Hence
Sy =Ko+ Lo C gl(m,n)e and Sy = K1 + Ly C gl(m,n);.

We consider gl(m,n) in the following form: (Ve W)® (V@W)*. Thus gl(m,n)y
takes the form (V @ V*) @ (W ® W*), and gl(m,n); takes the form (V @ W*) ®
(V*@W). As aresult, Lo-module gl(m,n); can be viewed as the direct sum of two

Lo-modules V @ W* and V* ® W such that
(v ® f) = pi(x)(v) ® [ +v & p3(2)(f)

and

z(g ® w) = pi(z)(g) @ w+ g ® pa(z)(w),
for any z € Lo, v € V, w e W, g € V¥, f € W* and pj, p;, are the dual
representations for py, ps.

11



Since V=V ..oV, and W = W, & ... ® Wy where V;, W; are simple
Lo-modules, we can express Lg-module V @ W* as the direct sum of Lg-modules
Vie Wr,

Vewr =@ Vieow;).

1,
We denote the projection of V @ W* onto V; ® W;* by g;;.

1.4 Main result and general properties of decom-
positions

First we formulate the main result of this thesis

Theorem 1.4.1 Any decomposition of a basic non-ezceptional Lie superalgebra into
the sum of two basic non-exceptional Lie subsuperalgebras over an algebraically closed
field of characteristic zero has up to conjugation by a non-degenerate matriz one of
the following forms:

1. sl(2k,n) = sl(2k — 1,n) + osp(n, 2k),

2. sl(n,2k) = sl(n,2k — 1) + osp(n, 2k),

3. osp(4k.2n) = osp(4k — 1,2n) + osp(n, 2k),

4. 0sp(2k,2n) = osp(2k — 1,2n) + sl(k,n) where k > 1, n > 1.

In the case of decompositions of special linear superalgebras, the proof of this
result is based on Theorems 2.1.8, 2.2.1 and 2.3.7. Examples 1 and 2 demonstrate the
existence of these decompositions. The uniqueness of the decompositions was shown
in Theorem 2.4.2. In the case of orthosymplectic superalgebras, the proof of this

result is based on Theorems 3.1.1, 3.2.12 and 3.3.6. Examples 3 and 4 demonstrate
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the existence of these decompositions. Finally the uniqueness of the decompositions
was shown in Theorem 3.4.2.

In both cases we will use the following definitions and lenunas.

Definition 3 An (n+m)-dimensional column vector v is called a vector annihilator

of L in gl(m,n) if v'L = {0} and Lv = {0}.

Lemma 1.4.2 Let S be decomposable into the sum of two superalgebras K and L
where S = sl(m,n) (or osp(m,n)) and S C gl(m,n). Then either K or L has a

trivial vector annihilator in gl(m,n).

Proof.

Let (S) denote the associative enveloping algebra of S. By definition, (5) is
a linear span in Mat,,«,(F) of s,s, 1...8 where s;. ..., s, € S. Since S is an
irreducible subset of Mat,,x,(F), (S} coincides with Mat,,.(IF).

First we show that for any [ € L, the following inclusion holds
HK)Y C(K)+ (L) + (K){L). (1.10)

To prove this formula we use mathematical induction by the number of elements in
the product k. k, 1 ...k where k; € K.
Let n = 1. We are going to prove that lk; € (K) + (L) + (K)(L). By using the

following formula for supercommutator in 5
[, y] = wy — (=1)yz
where z € S;, y € S; and 4,j € {0,1}, we have
by = [l k] + (=1)7kil € S + (K)(L).

13



Next we prove that [(k,k,-1 ... k1) has the form (1.10). We have that
Wkt . 1) = U)ot - Ky = (1 k] + (= 1) kl)bons . 1.
Notice that [I,k,] = k' + 1" where k' € K, l' € L since [I,k,] € S. It follows that
(k) + (D), Dky 1o k= (K + U+ (DY kDkny - Ky
This implies that
(K + 1+ (=) kD kiney . Ky = K Eny o Eoy + Pk ok (= 1)kl . .

Clearly k'k,—1 ...k € (K). By induction, both I'k,_; ...k and lk,_; ...k, are of

the form (1.10). Therefore
(=1)9k, (lkper - - k1) € (K) + (L) + (K){(L)

K((K) + (L) + {K)(L)) € (K) + (L) + (K){L).

Therefore we have proved (1.10).

Further, we want to prove that
(S) = (K) + (L) + (K){(L). (1.11)

To prove this formula we use mathematical induction on the number of elements in
the product s,5,_1...s1.

Ifn=1thens;e S=K+ L.

Next we are going to show that s, (sp—1 ... s1) has the form (K) + (L) + (K)(L).
Let

Sp = kn + ln

14



where k, € K, [, € L and
Spe1...51 =k +1+ Kl
where k, k' € (K) and [, I’ € (L). So we obtain that
Su(Sn1-..81) = (kn + L)k + 1+ K1) = kok + byl + ko KU+ Lk 4 L1+ LET.

As was shown above, both [,k and [, k'l’ have the form (K)+(L)+(K)(L). Therefore
we have proved (1.11).

Finally we prove that either K or L has a trivial vector annihilator in gl(m,n).
Let us assume the contrary, that is, there exists a pair of (n + m)-column-vectors v,
u such that v' K’ = {0} and Lu = {0}. Then v*({K)) = {0} and ((L))u = {0}. This
implies that

v (KY + (L) + (KY(L))u = {0},

On the other hand, (S) coincides with Mat,,xn(F). Thus v*(Mat,,x.(F))u = {0},

which is a contradiction.

In the following lemmas we are going to use notation from Section 1.3

Lemma 1.4.3 Let I be a nontrivial ideal of Ly where L = sl(p,q) (or osp(p.q))
and L C gl(m,n). If I acts trivially on V', and there exists jo € {1,....d} such that
I acts trivially on Wy, then L has a vector annihilator in gl(m.n), namely W;, is

annihilated by L.

Proof.

15



We choose a basis in V © W from elements of subspaces Vi, 1 = 1...7, and W},

j=1...d, respectively. Then Ly takes the form

A0
(1.12)
0D
where
D = diag(Dy, ..., Dy),
D; € M, (F) such that £%_,n; = n. Besides, L, takes the form
0|B
(1.13)
Ccl0
where
B= ( Bl Bd )7
Bi € men,; (IF) and
&
C= ,
Cq

Ci € My, xm(F).
Therefore I takes the form (1.12) where A = 0 and D;, = 0. By Lemmas 1.2.1(d)

and 1.2.2(d), Ly = [I, L1]. In matrix terms this formula takes the form

0}0 O.B 0 | -BD
O‘D C\O A pel o
where
BDz(BlD1 .. BjyDj .. BdDd>v

16



D\C,

DC = D Jo Cjo
DaCq
Since Bj,D;, = 0 and D,,C;, = 0, any vector from W), is annihilated by L. 0

Remark 1.4.1 Similarly, if I acts trivially on W, and there exists ig € {1,....7}

such that I acts trivially on Vi,, then L also has a vector annihilator in gl(m,n),

namely Vi, is annihilated by L.

In this thesis we use the following

Corollary 1.4.4 Let L = osp(m — 1,n) C gl(m,n), and Ly = I, & Iy where I, =

o(m—1), Iy = sp(n). In addition assume I, has the form

Al0
(1.14)

010

where A is an arbitrary skew-symmetric matriz of order m with the first row and

column zero. Then the first row and column of all matrices in L are also zero.

Proof. In Remark 1.4.1, set I = I, and V;, = span(e;).

Lemma 1.4.5 Let L = sl(p,q) (or osp(p,q)), L C gl(m,n). In addition assume
Lo has the form (1.12), and Ly has the form (1.13). If there exists a pair of indices
J1 and ja, 1 # Ja, such that D;, and D,, are not zero for some elements from Lo,

then Ly cannot be of the form (1.13) where By, = AB;, for some fized ) € F.

17



Proof.
Without any loss of generality, j; = 1 and j; = 2. Assume the contrary, that is,
any element from 1,; has the form (1.13) where B; = AD;.

The commutator of two arbitrary elements from I:

0B AB
oo
Cy 0
and
0| B A\B
o
C; 0
has the following form
* 0 0
0|CiB +CiB; MC\B,+C!By) (1.15)

0| CoBy +CyBy MCyBy + CyBy)

We know that there exists z € Ly of the form (1.12) such that D; # 0 and
Dy # 0. Since Lo = [L1,14], x can be represented as a linear combination of
commutators of elements from L,. Hence there exists a commutator of the form
(1.15) such that A(CoBy + C4By) # 0 since Dy # 0. Thus A # 0. Similarly, there
exists a commutator of the form (1.15) such that Cy B} + C{By # 0 since D; # 0.
Therefore \(C1B; + C;B1) # 0. This contradicts the fact that a commutator of two

elements from L belongs to Ly of the form (1.12). O

Lemma 1.4.6 Let Wj,, jo € {1...d} be a nontrivial Ly-module. Then there exist
io € {1...7} such that g;,;,(L1) # {0}.

18



Proof.
There is no loss in generality if we consider only the case where jo = 1. Let
us assume the contrary, that is, for any i € {1...r} we have that g,;,(Li) = {0}.

Hence I,; takes the following matrix form:

0|B
c|o0
where
B=(B, ... Bs)

B; € My, (F) and 13 = 0.
On the other hand, by Lemmas 1.2.1(c) and 1.2.2(c), Lo = [L1, L1]. Therefore

Lo takes the form

where

D = diag(Dx, ..., Dd),

D; € M,,(F) and 1, = 0. This contradicts the fact that W, is a nontrivial .-

module. O

In this thesis we will employ the following construction. Let A, B be simple
Lie algebras and A-module V' (X\) and B-module V' (4) be two simple modules with
the highest weights A and p, respectively. Then one can define A @& B-module

V() ® V(u) in the natural way

(X,Y)vew)=Xw)®w+ v Y(w). (1.16)
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Taking into account this construction we can state the following lemma from [11]

Lemma 1.4.7 If A-module V(\) and B-module V(1) are two simple modules then

A @ B-module V(X)) @ V() is also simple with the highest weight (A, ).
We will use the following simple lemma.

Lemma 1.4.8 Let U be a simple I ® Ir-module such that I (U) # {0} and I(U) #
{0}. Then there exist U', U" C U such that U’ is a simple I,-module and U" is a

simple Iy-module. Moreover, U is isomorphic to U' @ U” as an Iy & I;-module.

Proof.

Let A = (X, \") be the highest weight of an I; () I,-module U where X' and A’
correspond to Iy and I, respectively. Next we can choose an /;-module U; and an
Ir-module U, with the highest weights X and X", respectively, and form an I, & I>-
module U; ® Us as was shown above (1.16). By Lemma 1.4.7, an I; @ I>-module
U, ® Us is simple with the highest weight (X', \") = X. Therefore I; @ I>-modules
U, ® Uy and U are isomorphic. Let 1 be an isomorphism between U; ® U, and
U. Next we choose some non-zero u; € Uy and uy € Us. By (1.16), Uy ® us is an
Ii-module and w; ® Us is an Is-module. Moreover, U/; ® ug is isomorphic to U/; as
an [;-module and u; ® U, is isomorphic to U, as an I,-module. Next, we define
U'= (U ®ug) and U” = ¢(uy ® Us). Since Uy = U’ as an I;-module and U, = U”
as an Jo-module, it follows that U, @ Uy = U’ @ U” as an I; @ I,-module. Therefore

U is isomorphic to U’ ® U"” as an I, ® Ir-module. O

20



Chapter 2

Decompositions of special linear

superalgebras

2.1 Sums of two special linear superalgebras

In this section we consider decompositions of the form S = K + L where S, K and

I, are special linear algebras.

Remark 2.1.1 Since both K and L have the same type, by Lemma 1.4.2, we can

assume that L has a trivial vector annihilator in gl(m,n).

Lemma 2.1.1 Let S = sl(m,n) (or psl(n,n)) be a Lie superalgebra, and S be
decomposed as the sum of two proper special linear subalgebras K and L. Then

K = sl(p,n) (or psl(n,n)) and L = sl(m,l) (or psl(m,m)).

Proof.
By Lemma 1.2.1(a), either Sy = sl(m)@sl(n)®U or Sy = sl(n)®sl(n). We define

two projections m; and w3 of Sy onto the ideals sl(m) and sl(n), m; : So — sl(m) and
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g 1 Sg — sl(n). We have that Ko = sl(p1) @ sl(p2) @ U and Lo = sl(l,) ®sl(l) @ U
since K =2 sl(p1,p2) and L == si(ly,ly). Hence m(Ky), m(Lo), ma(Ky) and ma(Lo)
are reductive Lie algebras as homomorphic images of reductive algebras Ky and L.
Since S = K+, 5 is also decomposable into the sum of two subalgebras Ky and L,
So = Ko + Lg. Therefore, m1(Sy) = m1(Ky) + m1(Lo) and m2(Sp) = ma(Ko) + m2(Lo),
where m,(Sy) = sl(m) and m3(Sy) = sl(n). Thus, we obtain two decompositions of
simple Lie algebras sl(m) and sl(n) into the sum of two reductive subalgebras.

By Theorem 1.1.2, sl(n) cannot be decomposed into the sum of two proper
reductive subalgebras of any of the following types: sl(k), sl(k) ® si(l) or si(k) ®
sl(l) @ U. Hence one of the subalgebras coincides with si(n).

Next we consider the following decomposition: sl(m) = m(So) = m(Ko) +
m1(Lg). Without any loss of generality, we assume that 7y (Lg) coincides with 7 (Sp).
Then 7 (Lg) is isomorphic to sl(m). On the other hand, m;(Lg) is a homomorphic
image of Lo where Ly = sl(ly) ® sl(ly) @ U. Therefore si(l,), si(ly) are the only
possible simple homomorphic images of Ly. Thus either [y = m or [ = m. Set
Il=1ifly =mand [ =1y if [; = m. It follows that L = sl(m,).

Finally we consider the decomposition si(n) = m(So) = mo(Ko) + m2(Lg). We
want to prove that m3(lg) does not coincide with 73(Sp) = sl(n). Assume the
contrary, that is, my(Lo) = sl(n). Let Lo = I, & I, ® U where I; = sl(m) and I =
sl(l). Therefore we obtain that either m = n or | = n since mo(ly @ L ®U) = sl(n).

Let I # n. This implies that m = n. Therefore m(Lg) = sl(m) and ma(Lg) =
sl(m). Since Ly = I} & I, ® U where I} = sl(m), I = sl(l) and | # m, we obtain
that m(I;) = m(Lo) and me(y) = m(Le). However [m(I1),m1([2)] = {0} and
[m2(11), ma(l2)] = {0} since [I1, [,] = {0}. Therefore m(ly) = {0} and mo(/2) = {0},

which is wrong. Thus ! = n and L = sl(m,n). This contradicts the fact that I is a
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proper simple subalgebra of S.

Thus we have proved that ma(Lg) does not coincide with m(Sp) = sl(n).
Therefore mo(Kp) coincides with 7o(Sp). Thus, either p; = n or pa = n since
Ko = sl(py) © sl(p2) G U. Set p=py if pp = n and p = py if p; = p. It follows that

K = sl(p,n). 0

Corollary 2.1.2 Let S = K + L, K = sl(p,n), L = sl(m,l) and I, = sl(m),
Iy = sl(l) be two ideals of Ly. Then Iy acts trivially on V. Moreover I;-module V

is standard.

Proof. The proof follows from the fact that m((/1) = m(Lg) = sl(m) and 7 (I3) =
{0} since [m (1), 1 (Lz)] = {0}. O

Lemma 2.1.3 Let S = K + L where S = sl(m,n), K = sl(p,n) and L = sl(m,l).

Then for any j € {1...d}, Lo-module W} is not of the type 1.

Proof.

Let us assume the contrary, that is, there exists jy such that Ly-module W), is
of the type 1. By Remark 2.1.1, L has a trivial vector annihilator in gl(m,n). By
Corollary 2.1.2, I, acts trivially on V. Moreover I, acts trivially on W}, since Lg-
module W}, is of the type 1. Therefore, by Lemma 1.4.3, L has a vector annihilator

in gl(m,n), which is a contradiction. 0
Lemma 2.1.4 Let S = K + L where S = sl(m,n), K = sl(p,n), L = sl(m,).
Then for any j € {1...d}, Lo-module W; is not of the type 2 .

Proof.

Let us assume the contrary, that is, there exists jo such that Lo-module Wj, is of
the type 2. By Lemma 1.4.8, there exist subspaces W; C W, and W7 C W;; such
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that W  is a simple [;-module, W} is a simple I;-module and W, = W, ® W} as
I; @ I-modules.

First we show that dim W] = m and dim W} = l. We have that W} is
a simple s/(m)-module and W} is a simple s/(/)-module. Hence dim Wj > wn
and dim Wj' > I. Without any loss of generality, we assume that dim Wj > m.
Therefore

n=dimW > dim W, = dim W} dim W} > ml.
On the other hand,
dim L; > dim S; — dim K > 2mn — 2(m — 1)(n) = 2n
since
dim 5; < dim Ky + dim 7.4.

It follows that ml > n since dim L; = 2ml. This contradicts the fact that n > ml.
Therefore dim Wj, = m, dim W} =l and W = Wj,. If we denote W} and W as
W’ and W”, then W = W' @ W”.

Let us fix the following basis for W: {e; ® €]}, where {e;} is a basis of W' and
{ef} is a basis of W”. If we consider W as I;-module then it can be expressed as

the direct sum of I;-modules:
W=Wwoe)d..a6(Wee). (2.1)

The next step is to prove that the projection 7w of 1., onto V & W* is not zero.

Assume that 7(L;) = {0}. Then L, has the following matrix form:

010
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It follows that [L;, L] = {0}. However this contradicts the fact that, by Lemma
1.2.1(c), [L1,L1] = Lo # {0}. Hence m(Ly) # {0}. Let us consider V ® W* as

I-module. From (2.1) we obtain that
VaWwW =Ve(Wee))o...o Ve (W d))

where all V& (W'®Re€])" are also I;-modules. There exists jo such that the projection
of L onto V @ (W' ® e )* is not zero since the projection of L; onto V @ W* is not
zZero.

We consider I;-module V ® (W' ® €7 )*. By Corollary 2.1.2, I;-module V is
standard. Besides, I;-module W' is either standard or dual since dim W' = m.

Next we apply Young tableaux technique (see [10]) to find irreducible submodules
of I;-module (V@ W"™)&cjx. Let o and ¢ be either standard or dual representations
of sl(m). Then the tensor product ¢ ® ¢ is also a representation of si(m). Then
Young tableaux technique shows that it can only contain irreducible subrepresenta-
tions with the highest weights: (2,0,...,0), (0,1,0,...,0), (1.0....,0,1) or a trivial
representation.

Since I;-modules V;, and W’ are either standard or dual, we obtain that I-
module V @ (W'®e] )* can only contain simple submodules with the highest weights
listed above. On the other hand, by Lemma 1.2.1(e) /;-module /,; has only sim-
ple submodules of dimension m with the highest weight (1,0,...,0), which is a

contradiction. 0O

Lemma 2.1.5 Let L = si(s,l) C gl(m,n), and Iy, Iy be ideals of Ly. If I acts
trivially on W, for some jo € {1...d}, I acts trivially on V and Iy acts nontrivially

on W, then Ir-module W, is either standard or dual.
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Proof.

By Lemma 1.4.6, there exists 4y such that g;,;,(L1) # {0}. We consider I ® Ir-
module V;, ®W]?';. By Lemma 1.4.7, I; & I[-module V,L-0®Wj’; is simple since [;-module
V;, and I,-module W), are both simple. Therefore /; () lo-module p;;,(7,1) coincides
with Vi, @ W since gi,5,(L1) # {0}. By Lemma 1.2.1(b), I; ® l,-module L, is the
direct sum of two simple I; & Io-submodules of dimension sl each. Since g;,,(L1)
is a simple I; ® I;-module, the dimension of g;y;,(L1) is sl. On the other hand, we
have

(dim V;,) - (dim Wy, ) = dim (V;, @ W}) = dim ;,5,(L1) = sl.

Since Vj, is a nontrivial sl(s)-module, and W, is a nontrivial si(l)-module,

dimV,, > s and dimW;, > I. Therefore, dimV;, = s and dimW;; = |. Hence

Ir-module W, is either standard or dual. 0O

Lemma 2.1.6 Let S = K + L where S = sl(m,n), K = sl(p,n) and L = sl(m,l).

If Lo-module Wy, jo € {1...d}, is of the type 3 then W, is a standard I,-module.

Proof.

First we are given that I; acts trivially on W;,. By Corollary 2.1.2, I, acts
trivially on V = V. Hence, by Lemma 2.1.5, I,-module W}, is either standard or
dual.

Next we prove that W, is not a dual I>-module. Let us assume the contrary, that
is, Wj, is a dual I-module. Let A = (1,0,...,0) be the highest weight of I;-module
V,and p* = (0,...,0,1) be the highest weight of I-module W;,. Then, by Lemma
1.4.7, I @ Ir-module V ® W} has the highest weight (A, ™) = (A, ).

By Lemma 1.2.1(b), I; & I;-module L, is the direct sum of two simple submodules

with the highest weights (X, u*) and (A*, ). Hence the projection of L; onto V@W;
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is zero since Lo-module Ly contains no submodules with the highest weight (X, p).
This contradicts the fact that, by Lemma 1.4.6, 015, (L1) # {0}. So W}, is a standard

[;-module. O

Lemma 2.1.7 Let S = K + L where S = sl(m,n), K = sl(p,n) and L =2 sl(m,1).
Then Lo-module W contains at most one Lo-submodule W, 7 € {1...d} of the

type 3.

Proof.

Let us assume the contrary, that is, there exist two Lg-submodules Wy and W of
the type 3. By Lemma 2.1.6, W, and W, are standard I>-modules. Hence we can fix
a basis in V @ W of vectors of subspaces V = V; and W, j € {1...d}, respectively,

such that Lo takes the following form

X110
(2.2)
0D
where X € sl(m) and D = diag(D:, ..., Da), D; € M, (F) such that D, = D, =Y,
Y € si(l).

Besides, L; has the following form

0B
(2.3)
cCl0
where
B=(p, ... By)

and B; € My, (IF).
We consider I; @ Ir-modules V; @ W) and V| @ WJ. In matrix terms the first

module consists of all m X [ matrices, and the action of I} & I is given by
I(Bl) = XBl - B1Y (24)
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where x € I} @ I of the form (2.2), and By is an arbitrary m x | matrix. Similarly,

the action of 1 & I, on V; ® W5 is given by
JT(BQ) = XBQ - BQY

where « € I} () I3 is of the form (2.2) and 33 is an arbitrary m x | matrix.

Let I ® I-module o11(L;) be an image of I; @ I,-module L; under the projection
011 onto V ® Wy, Likewise g12([1) is an image of I} @ [r-module L; under the
projection g1 onto V@ W3. By Lemma 1.4.7, I} @ [r>-modules V@ W} and V @ W
are simple. Hence [} ® I-module g);(L;) coincides with V @ W7, and I, @ Ip-
module g;2(L) coincides with V @ W3. Therefore both I & Ir>-modules V & W} and
V @W3 have the same matrix form (2.4). On the other hand, g11(L1) and 012(L1) are
isomorphic as I ¢) [o-modules since they are both simple and homomorphic images
of I} ® Iy-module L;. Hence, by Schur’s Lemma, the only isomorphism between
I; & I,-modules g1,(L1) and g12(Ly) is a scalar mapping. In matrix terms it means
that for any matrices from L; of the form (2.3), B; = ABs, A € F. This contradicts

the fact that, by Lemma 1.4.5, L, cannot be of this form. 0O

Theorem 2.1.8 A Lie superalgebra S = sl(m,n), m > n > 0, cannot be decom-

posed into the sum of two proper special linear superalgebras.

Proof.

Let us assume that this decomposition exists. Then, according to Lemma 2.1.1,
K = sl(p,n) and L = sl(m,l). By Lemma 2.1.7, Lo-module contains at most one
Lo-submodule W;, j € {1...d}, of the type 3.

On the other hand, I, acts nontrivially on W since, by Corollary 2.1.2, I, acts

trivially on V. Therefore W contains at least one Lo-submodule W;,. This implies
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that W), coincides with W. According to Lemma 2.1.6, I-module W, is standard.
Hence [ = n since dim W, = dim W = n. This contradicts the fact that L = sl(m,{)

~

is a proper subalgebra of S = sl(m,n). 0

2.2 Sum of two orthosymplectic superalgebras

In this section we study decompositions of si(m, n) as the sum of two proper simple

orthosymplectic subalgebras.

Theorem 2.2.1 A Lie superalgebra S = sl(m,n), m > n > 0, cannot be decom-

posed into the sum of two proper orthosymplectic subalgebras K and L.

Proof. By Lemma 1.2.1(a), Sy = sl(m) @ sl(n) ® U. As above we define two
projections m; and 7y of Sy onto the ideals sl(m) and sl(n), m : So — sl(m) and
7 1 Sp — sl(n). We have that Ky = o(p) O sp(2¢) and Ly = o(s) O sp(21) since
K = osp(p,2q) and L = osp(s,21). Hence the projections m(Ko), mi (L), m2(Ko)
and m9(Lg) are also reductive as homomorphic images of reductive algebras.

Since S = K+ L, Sy is also decomposable into the sum of two subalgebras Ky and
Lo, So = Ko+Lg. Therefore, m1(Sp) = m1(Ko)+m1(Lo) and ma(Se) = ma( Ko)+ma(Lo),
where 7(Sp) = sl(m) and ma(Sp) = sl(n). We have the decompositions of simple
Lie algebras sl(m) and sl(n) into the sum of two reductive subalgebras.

By Theorem 1.1.2, sl(n) cannot be decomposed into the sum of two subalgebras
of these types. As a result, S = sl(m,n) cannot be decomposed into the sum of

K = 0sp(p,2q) and L = osp(s, 2). O
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2.3 Sum of special linear and orthosymplectic su-

peralgebras

In this section we consider the decomposition S = K + L where S = sl(m,n),

K = sl(p,q) and L = osp(s, 2l).

Lemma 2.3.1 Let S = sl(m,n) be a Lie superalgebra, and S be decomposed into the
sum of a proper special linear subalgebras K and a proper orthosymplectic subalgebras
L. Then only two cases are possible:

1. m =2k, K= sl(2k —1,n) and L = osp(s, 2k).

2.n =2k, K= sl(m,2k —1) and L. = osp(s, 2k).

Proof.

By Lemma 1.2.1(a), Sy = sl(m) @ sl(n) @ U. As usual, we define two projections
m and my of Sy onto the ideals sl(m) and sl(n), 7, : So — sl(m) and 7y : Sy — sl(n).

We have that Ko = sl(p) @ sl(q) ® U and Ly = os) & sp(2l) since K = sl(p,q)
and L = osp(s,2l). Hence m(Ky), m1(Lo), mo(Ko) and me(Lg) are reductive Lie
algebras as homomorphic images of reductive Lie algebras Ky and Lg.

The given decomposition induces the following representations of simple Lie al-

gebras sl(m) and sl(n) as the sum of two reductive subalgebras:
sl(n) = m(So) = m(Ko) + m1(Lo), (2.5)

5l(m) ES 7T2(So) = 71‘2([((]) + 7T2(L0). (26)

By Theorem 1.1.2, the only possible decomposition of sl(n) into the sum of two
proper reductive subalgebras is

sl(2n) = A+ B, (2.7)
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where A = sl(2n — 1), B = sp(2n).

Notice that one of two decompositions (2.5) and (2.6) is nontrivial. Indeed,
if both decompositions are trivial then m(Ky) = m(Ss) = sl(m) and m2(Kp) =
ma(S) = sl(n). Acting in the same manner as in Lemma 2.1.1 we can prove that
p =m, ¢ =n. This contradicts the fact that K = sl(p, q) is a proper subalgebra of
S = sl(m,n).

Therefore two cases are possible:

1. The first decomposition is nontrivial.

2. The second decomposition is nontrivial.

Let us consider the first case. Thus, according to (2.7), m1(Ko) = sl(2k — 1) and
m(Lo) = sp(2k) where m = 2k. 1t follows that p =2k — 1 and | = k.

Further we want to prove that the decomposition (2.6) is trivial. Let us assume
the contrary, that is, (2.6) is nontrivial and has the form (2.7). Thus m(Lg) is
isomorphic to sp(2n). On the other hand, m;(L¢) = sp(2k). This contradicts the
fact that Ly = o(s) @ sp(21). Therefore the decomposition my(Sg) = ma(Ko) + m2(Lo)
is trivial, and mo(Kjp) coincides with mo(Sp) = sl(n). It follows that ¢ = n since
Ko = sl(p) @ sl(q) ®U. Thus K = sl(2k — 1,n) and L = osp(s, 2k).

The second case is similar, and acting as above, we can show that K = si(mn, 2k —

1) and L = osp(s, 2k). 0

From now on, we will consider only the first case in Lemma 2.3.1 since the second

case can be considered in a similar manner.

Corollary 2.3.2 Let S= K + L, S = sl(2k,n), K = sl(2k — 1,n), L = osp(s, 2k)

and I = sp(2k) and I, = o(s) be ideals of Lo. Then I acts trivially on'V. Moreover
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I1-module Vi =V is standard.

Proof. The proof follows from the fact that m (I;) = m(Lg) = sp(2k) and 7, (;) =

{0} since [m1 (1), 71 (12)] = {0}. O

Lemma 2.3.3 Let S = K + L where S = sl(2k,n), K =2 sl(2k — 1,n), L =

osp(s,2k). Then for any j € {1...d}, Lo-module W; is not of the type 1.

Proof.

Let us assume the contrary, that is, there exists jo such that Ly-module W;
is of the type 1. First we prove that K has a nontrivial vector annihilator in
gl{m,n). Let K = J; & Jy where J; = sl(2k — 1) and Jy = sl(n). As was shown
in Lemma 2.3.1, m(Sy) = me(Ko) = sl(n). We are going to show that either
ma(J1) = {0} or ma(J2) = {0}. Indeed, if mo(Jo) # {0} then my(Jy) = m(Ky) = sl(n)
since Jy = sl(n). Howevere [ma(J1),ma(J2)] = {0} since [Ji, o] = {0}. Therefore
m(J1) = {0} since mo(J1) C m(Kp) = me(J2). So we have proved that either
ma(J1) = {0} or ma(J2) = {0}. Let J be either J; or Jp such that mo(J) = {0}.

By Lemma 2.3.1, the decomposition m1(Sp) = m1(Ko) + m1(Lo) has the form
sl(2k) = sl(2k — 1) + sp(2k). Therefore, by Remark 1.1.1, m;(Kjp) has a nontrivial
annihilator in gl(2k). Hence 7, (J) also has a nontrivial annihilator in gl(2k). So we
obtain that J is an ideal of Ky, K C gl(2k,n), and J acts trivially on W and on
one-dimensional subspace of V. Hence, by Lemma 1.4.3, K has a nontrivial vector
annihilator in gl(2k,n).

Therefore, by Lemma 1.4.2, L has a trivial two-sided annihilator in gl(2k,n)
since K has a nontrivial vector annihilator in gl(m.,n). Let us consider Iy C L.

By Corollary 2.3.2, I, acts trivially on V. Moreover I, acts trivially on W, since
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Lo-module Wj, is of the type 1. Therefore, by Lemma 1.4.3, L has a nontrivial

vector annihilator in ¢l(2k,n), which is a contradiction. O

Lemma 2.3.4 Let S = K + L where S = sl(2k,n), K = sl(2k — 1,n), L &

osp(s,2k). Then for any j € {1...d}, Lo-module W; is not of the type 2.

Proof.

Let us assume the contrary, that is, there exists jo such that Ly-module W), is of
the type 2. By Lemma 1.4.7, there exist subspaces W C Wj, and W} C Wj; such
that W} is a simple I-module, W} is a simple I5-module and W, = W @ W/ .

We have that dim VVJf0 > 2k and dim W, J’g > s since ij0 is a simple sp(2k)-module

and W, is a simple o(s)-module. Hence

n=dimW > dim Wj, = dim W; dim W} > 2ks.
On the other hand
dim L; > dim Sy — dim K} > 2nm — 2n(m ~ 1) = 2n

since dim S; < dim K; + dim L. It follows that 2ks > 2n since dim Ly = 2ks. This

contradicts the fact that n > 2ks since s,k > 0. 0

Lemma 2.3.5 Let L = osp(s,2l) C gl(m,n) and Ly = I, & I,. If I acts trivially
on Wj, for some jo € {1...d}, Iz acts trivially on V' and nontrivially on W, then

Ir-module W, is standard.

Proof.

We consider only the case where 7} = o(s) and I, & sp(2l). The case when

I1 = sp(2l) and I = o(s) can be treated in the similar way. Notice that, by Lemma

33



1.4.6, there exists ip such that g;,j,(L1) # {0}. We consider I, ® I-module V;, @ W7 .
By Lemma 1.4.7, I; ® I>--module Vi, @W} is simple since I;-module V;;, and I;-module
W, are both simple.

Therefore /1 © I-module p;,5,(11) coincides with Vi @ W since 045, (11) # {0}.
By Lemma 1.4.2(b), Iy @ I,-module L; is simple, and dim L; = 2sl. Since g;y;,(L1)

is a simple I; @ I,-module, the dimension of g;;,(L) is 2sl. Therefore
(dim V;,) - (dim W) = dim (V;; © W2) = dim 0445, (/1) = 2sl.

On the other hand, dimV;, > s and dim W), > 2[ since V;; is a nontrivial o(s)-
module, and W), is a nontrivial sp(2/)-module. This implies that dimV;, = s and

dim W;, = 2{. Hence Iy>-module W, is standard. O

Lemma 2.3.6 Let S = K + L where S = sl(2k,n), K = sl(2k — 1,n) and L =
osp(s,2k). Then Lo-module W contains at most one Lo-submodule W, j € {1...d}

of the type 3.

Proof.

Let us assume the contrary, that is, there exist two Lg-submodules Wy and W,
of the type 3.

Notice that I; = sp(2k) acts trivially on both Wi, Wa, and Iy = o(s) acts
nontrivially on Wi, Ws. Moreover, by Corollary 2.3.2, I, = o(s) acts trivially on V.
Hence, by Lemma 2.3.5, ls-modules W; and W, arc standard. Hence we can fix a
basis in V @& W from vectors of subspaces V = Vi and W;, j € {1,2}, such that L

takes the following form

(2.8)
0|D
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where A € sp(2k) and D = diag(Dx, ..., D), D; € My, (F) such that Dy = Dy =Y,

Y € o(s). Besides, L; has the following form

0B
(2.9)
Cclo
where
B = ( B By )

and B; € My, (F).

Next we consider I; @ [>-modules Vi ® W}, j € {1,2}. In matrix terms [} @ Io-
modules Vi ® Wj* consist of all 2k x s matrices, and the action of 1 (O I, is given
by

where z € I ® I; of the form (2.9) and B;, j € {1,2}, are arbitrary 2k X s matrices.
Acting in the same manner as in Lemma 2.1.7, we prove that L; has the form (2.8)
where By = AB,, A € F. This contradicts the fact that L, cannot be of this form

(Lemma 1.4.5). 0

Theorem 2.3.7 Let S = sl(m,n), m > n > 0, be decomposed into the sum of a
special linear and orthosymplectic subalgebras. Then only two cases are possible:
L.om =2k, K=sl(2k - 1,n) and L = osp(n, 2k).

2. n =2k, K =sl(m,2k—1) and L = osp(m, 2k).

Proof.
According to Lemma 2.3.1, only two cases are possible:
1. m =2k, K = sl(2k — 1,n) and L = osp(s, 2k).

2. n =2k, K 2 sl(m,2k — 1) and L = osp(s, 2k).



We only consider the first case since the second case can be considered in the
similar manner. Therefore, we only have to prove that s = n.

By Lemma 2.3.6, Lo-module W contains at most one Lg-submodule W;, j €
{1...d} of the type 3. On the other hand, /5 acts nontrivially on W since, by Corol-
lary 2.3.2, I3 acts trivially on V. Therefore W contains at least one Lg-submodule
Wj,. This implies that W,, coincides with W. By Lemma 2.3.5, I = o(s)-module

W, is standard. Hence s = n since dim Wj; = dim W = n. O

Now we want to show that the decompositions as in Theorem 2.3.7 are possible.

Example 1 There exists a decomposition of S = sl(2k,n) of the form S = K + L
where S has the standard matriz realization. The first subalgebra K consists of all

matrices in S of the form:

olo 0 o))
0

o] X
\0 /

where X is a matriz of order (2k+n —1) x (2k+n —1). The second subalgebra L

consists of all matrices of the form:

E F | C
H —E'\D
-DtCt A

where A is a skew-symmetric matriz of order n, H and F are symmetric malrices
of order k x k, F is a matriz of order k X k, and C, D are matrices of order k x n.

In this decomposition, K = sl(2k — 1,n) and L = osp(n, 2k).
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Example 2 There exists a decomposition of S = sl(m,2k) of the form S =K + L
where S has the standard matriz realization. The first subalgebra K consists of all

matrices in S of the form:

4 \
0
X o
4
0
0 0 0/0
7

where X 1s a matriz of order (m+2k—1) x (m+2k — 1) with zero trace. The second

subalgebra L. consists of all matrices of the form:

A|C D
Dt |E F
- /Vt [[ - Et

where A is a skew-symmetric matriz of order m, H and F are symmetric matrices
of order k x k, E is a matriz of order k x k, and C, D are matrices of order m x k.

In this decomposition, K = sl(m, 2k — 1), L = osp(m, 2k).

2.4 Uniqueness of decompositions

Lemma 2.4.1 Let S = osp(m,2n), S C gl(m,2n) and

Al0
Sp = (2.10)
0D

where A € o(m) and D € sp(2n).

Then there exists an inner automorphism 1 of gl(m.2n) of the form

Y(X)=Ccxc! (2.11)
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where

IT’L 0
C =
0 >\]2n

where A € F such that ¢(S) takes the standard matriz form.

Proof.

Let S be a standard realization of osp(m, 2n). Then

Al O
(Sst)o = (2.12)
0|D
where A € o(m), D € sp(2n) and
0|B
(S = (2.13)
Cl0

where ' = J, 3.

Let ¢ be an isomorphism between Sy, and S, ¢(Ss) = S. Then ¢((Ss)o) = So
and p((Ss)1) = S1. Notice that (Ss)o = Sp since Sy is of the form (2.10).

Let 7, be the projection of V@ W &V @ W* onto V ® W™*. We consider Sp-
modules 7(S1) and 7((Sy)1). We have that Sg-module V @ W* is simple as a tensor
product of the simple Ii-module V' and the simple Ir-module W*. Therefore both
So-modules 71(.51) and 71((Ss:)1) coincide with Sp-module V @ W*.

Notice that Sp-module S; has the following matrix form

(2.14)

where B’ € M,,x2,(F) and C’ € Mo,y (F). Hence Sg-module 71(S7) consists of all
1 X 2n matrices under the action of Sy given by
z{(B')=AB'— B'D (2.15)
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where z € Sy is of the form (2.10) and B’ is an arbitrary m x 2n matrix. Likewise,
So-module 71 ((Ss)1) is the set of all m x 2n matrices under the following action of
So:

x(B)=AB—-DBD

where = € Sy = (Sy)o is of the form (2.10) and B is an arbitrary m x 2n matrix.

On the other hand, both Sy-modules 71(S1) and 7;((Ss)1) are isomorphic and
have the same matrix form (2.15). Therefore, by Schur’s Lemma, the only iso-
morphism between Sp-modules 71 (S1) and m((Sst)1) is a scalar mapping. That is,
there exists p; such that for any y € (Sy); of the form (2.13), p(y) € Sy has the
form (2.14) where B’ = py B. Similarly we can prove that there exists py such that
C' = .

Thus S; takes the form

0 ,Ll,lB

MQC 0

Let ¢ be of the form (2.11) where A =, /&+. Then for any X € S,

0 l At B 0|B

CXC™' =
/\MC’ 0 Clo

where 3 = /2. Hence CS1C™! = (Sg)1. Therefore, by an automorphism 1, S

can be brought to the standard matrix form.

Theorem 2.4.2 Let S = K+ L, S = sl(2k,n), K = sl(2k — 1,n) and L =
osp(n, 2k). Then there exists a basis of V & W such that this decomposition takes

the matriz form as in Ezample 1.

Proof.
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First we are going to prove that there exists a basis of V @ W such that in this
basis K consists of all matrices in sl(2k,n) with the first row and column zero.

Let 7y, my denote projections of Sy onto the ideals sl(2k) and sl(n), respec-
tively. These projections induces two decompositions: m;(Sg) = m1(Ko) + 71 (1)
and mo(Sp) = m(Ko) + ma(lo). By Lemma 2.1.1, m(Sg) = m(Ko) + mi(Lg) takes
the form sl(2k) = sl(2k — 1) + sp(2k). Hence, by Lemma 1.1.3, there exists a basis
of V such that this decomposition takes the form (1.1). This implies that K has

the form:

Al 0
(2.16)

0|D

where A € My (TF) with the first row and column zcro, and D € A/, (IF).

Let J;, Jo be ideals of Ky, Ji = sl(2k — 1) and Jy, = sl(n). Notice that
m(Ji) = 7 (Kp) and m(Jy) = m(Ky) since m (Ko) = sl(2k — 1) and mo(Kj) =
sl(2n). Next [m(J1),m(J2)] = {0} and [ma(J1), ma(J2)] = {0} since [Jy, Jo] = {0}.
This implies that m3(J;) = {0} and m (o) = {0} since [m (Ko), m1(J2)] = {0} and
[m2(J1), ma(Ko)] = {0}. Therefore J; consists of all matrices of the form (2.16) where
D =0, and J; consists of all matrices of the form (2.16) where A = 0. By Lemma

1.2.1(d), Ky = [Ky, J1]. This implies that K, takes the matrix form:

0 AB

-CA| D
Thercfore the first vows and colummns of matrices from K arc zero since the first
row and column of A is zero. This implies that K consists of all matrices in S with

the first row and column zero.

On the other hand, by Lemma 2.4.1, there exists an inner automorphism

of gl(2k,n) such that ¥(L) takes the standard matrix form. Clearly ¢¥(K) takes
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the same matrix form as K. Notice that in this basis S = sl(2k,n) since S C
gl(2k,n). Therefore we have proved that there exists a basis of V @ W such that the
decomposition S = K+ L where S = sl(2k,n), K = sl(2k—1,n) and L = osp(n, 2k),

takes the form as in Example 1.
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Chapter 3

Decompositions of

orthosymplectic superalgebras

3.1 Sum of two special linear superalgebras

In this section we study decompositions of osp(m,2n) into the sum of two special

linear superalgebras.

Theorem 3.1.1 A Lie superalgebra S = osp(m,2n), m, n > 0, cannot be decom-

posed into the sum of two proper special linear subalgebras.

Proof. By Lemma 1.2.2(a), Sy = o(m)®sp(2n). As above we define two projections
m and me of Sy onto the ideals o(m) and sp(2n), m : So — o(m) and m @ Sy —
sp(2n). We have that Ko = sl(p) @ sl(q) & U and Lo = sl(s) @ sl(l) & U since
K = sl(p,q) and L = sl(s,1). Hence the projections m(Ky), m1(Lo), m2(Ko) and
ma(Lg) are also reductive as homomorphic images of reductive algebras.

Since S = K+ L, Sy is also decomposable into the sum of two subalgebras Ay and

Ly, Sy = Ko+ Ly. Therefore, m(Sq) = m1(Ko)+m1(Lo) and w3(Sp) = ma(Kg)+m2(Lo),
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where 71(S) = o(m) and m(Sp) = sp(2n). We have the decompositions of simple
Lie algebras o(m) and sp(2n) into the sum of two reductive subalgebras.

By Theorem 1.1.2, sp(2n) and o(m) cannot be decomposed into the sum of two
subalgebras of these types. As a result, S = osp(m,2n) cannot be decomposed into

the sum of K = sl(p,q) and L = sl(s,1). O

3.2 Sum of two orthosymplectic superalgebras

In this section we study decompositions of osp(m,2n) into the sum of two proper

simple subalgebras K = osp(p,2q) and L = osp(s, 21).

Lemma 3.2.1 Let S = osp(m,2n), m, n > 0, be decomposed into the sum of two
proper orthosymplectic subalgebras K and L, respectively. Then only two cases are
possible:

1. m =4k, K = osp(4k — 1,2n), L = osp(s, 2k)

2. K = osp(p,2n), L = osp(m,2l).

Proof.

By Lemma 1.2.2(a), So = o(m) @ sp(2n). We define two projections m; and my of
Sy onto the ideals o(m) and sp(2n) as follows, m; : Sy — o(m) and w5 : Sy — sp(2n).
We have that Ky = o(p) @ sp(2q) and Ly = o(k) @ sp(2l) since K = osp(p,2q)
and L = osp(k,2l). Hence m1(Ko), m1(Lo), m2(Ko) and ma(Lo) are also reductive as
homomorphic images of reductive algebras.

Since S = K + L, Sy is decomposable into the sum of Ky and Lg, Sy = Ko+ Lo.
Therefore, m(Sg) = m(Ko) + m(Lo) and ma(Sy) = ma(Kp) + me(Lg). Moreover,
m1(So) = o(m) and m(Sy) = sp(2n), and we have decompositions of simple Lie al-

gebras of the types o(m) and sp(2n) into the sum of two reductive subalgebras. By
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Theorem 1.1.2, sp(2n) has no decompositions into the sum of two proper reductive
subalgebras of these types. Hence sp(2n) = my(Kyo) + m2(Lo) is a trivial decompo-
sition and either my(Ky) = sp(2n) or ma(Lg) = sp(2n). For clarity, we assume that
ma(Ko) = sp(2n). Hence ¢ =n.

Again, by Theorem 1.1.2, o(m) has only two decompositions into the sum of two
proper reductive subalgebras:

1. If m = 2k then o(2k) = o(2k — 1) + sl(k),

2. If m = 4k then o(4k) = o(4k — 1) + sp(2k).

Notice that o(m) = 7 (Kg) + m1(Lg) cannot be of the first type, because 71 (Ky)
and 7;(Lg) are not isomorphic to sl(k).

Next the two cases occur:

1. o(m) = m(Ky) + m1(Lo) has the second form.

2. o(m) = m(Ky) + m1(Lo) is trivial.

In the first case either m1(Kp) = o(4k — 1) or m(Ky) = sp(2k). Let m(Kp) =
sp(2k). Hence either Ky = sp(2k) @ sp(2n) or Ky = sp(2n) since mo(Ko) = sp(2n).
This contradicts the fact that K¢ = o(p) ®sp(2¢). Therefore m,(Ky) = o(4k—1) and
m(Lo) = sp(2k). This implies that p = 4k — 1 and [ = k since Ky = o(p) ® sp(2q)
and Iy = o(s) O sp(21).

In the second case either m((Kp) = o(m) or m(Lg) = o(m). Let m(Kp) = o(m).
Therefore Ky coincides with Sy since my(Ky) = sp(2n). This contradicts the fact
that K is proper subalgebra of S. Therefore m(Lg) = o(m). It follows that s = m

since Lo = o(s) @ sp(21). O

Corollary 3.2.2 Let S = K + L, K = osp(4dk — 1,2n), L = osp(s,2k) and I, ==

sp(2k), Iy = o(s) be ideals of Ly. Then Iy acts trivially on V. Moreover V. =V ®V,,
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and both I-modules Vi and V, are standard.

Proof. The proof follows from the fact that o(rm) = m(Kp) + m1(lo) has the

form(1.5) and 7, (1) = m (L), m1(I2) = {0} since [ ([1), 71 (I2)] = {0}. O

Corollary 3.2.3 Let S = K+ L and K = osp(p,2n), L = osp(m,2l) and I, =
o(m), I = sp(2l) be ideals of Ly. Then I> acts trivially on V.. Moreover I-module

V is standard.

Proof. The proof follows from the fact that m;(l;) = m(Lg) = o(m) and m1([3) =

{0} since [m1(I1), m(12)] = {0}. O

3.2.1 Sum of osp(p,2q) and osp(m, 21)

In this section we consider the second type of the decomposition from Lemma 3.2.1.

Remark 3.2.1 Since both superalgebras K and L have the same type, by Lemma

1.4.2, we can assume that I, has a trivial vector annihilator in gl(m,2n).

Lemma 3.2.4 Let S = K + L where S = osp(m,2n), K = osp(p,2n), L =

osp(m,2l). Then for any j € {1...d}, Lo-module W; is not of the type 1.

Proof.

Let us assume the contrary, that is, there exists jo such that Lo-module W), is
of the type 1. By Remark 3.2.1, L has a trivial vector annihilator in gl(m, 2n). Let
us consider I, C L. By Corollary 3.2.3, I3 acts trivially on V. Moreover I, acts
trivially on W}, since Ly-module W} is of the type 1. Therefore, by Lemma 1.4.3,

L has a vector annihilator in gl(m, 2n), which is a contradiction. O
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Lemma 3.2.5 Let S = K 4+ L where S = osp(m,2n), K = osp(p,2n) and L =

osp(m,2l). Then for any j € {1...d}, Lo-module W; is not of the type 2.

Proof.

The proof of this lemma is similar to the proof of Lemma 2.1.4.

Lemma 3.2.6 Let S = K + L where S = osp(m,2n), K = osp(p,2n) and L =
osp(m, 2l). Then Lo-module W contains at most one Lo-submodule W;, j € {1...d}

of the type 3.
Proof. The proof of this lemma is similar to proof of Lemma 2.3.6. 0

Lemma 3.2.7 A Lie superalgebra S = osp(m,2n) cannot be decomposed into the
sum of two proper simple subalgebras K and L of the type osp(p,2n) and osp(m,2l),

respectively.

Proof.

Let us assume that this decomposition exists. Then, by Lemma 3.2.6, Lo-module
W contains at most one Lo-submodule W;, j € {1...d} of the type 3.

On the other hand, I, acts nontrivially on W since, by Corollary 3.2.3, I, acts
trivial on V. Therefore W contains at least one Ly-submodule W;,. This implies that
W), coincides with W. By Lemma 2.3.5, I, = sp(2[)-module Wj, is standard. Hence
2l = 2n since dim Wj, = dim W = 2n. This contradicts the fact that L = osp(m, 2l)

is a proper subalgebra of S = osp(m, 2n). 0O

3.2.2 Sum of osp(4k — 1,2q) and osp(s, 2l)

In this section we consider the first type of the decomposition from Lemma 3.2.1
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Lemma 3.2.8 Let S = K + L where S = osp(4k,2n), K = osp(4k — 1,2n), L =

osp(s,2k). Then Lo-module W;, j € {1...d} is not of the type 1.
Proof. The proof of this lemma, is similar to the proof of Lemma 2.3.3.

Lemma 3.2.9 Let S = K + I where S = osp(4k,2n), K = osp(dk — 1,2n), I &

osp(s,2k). Then for any j € {1...d}, Lo-module W; is not of the type 2.

Proof.

Let us assume the contrary, that is, there exists jo such that Lo-module W is of
the type 2. By Lemma 1.4.8, there exist subspaces Wj C Wj, and Wi C W, such
that W7 is a simple [;-module, W is a simple I,-module and W;, = VVJ{O ® WJ’[’]

First we are going to show that dim W} = 2k and dim W} = s. We have that
dim W} > 2k and dim W} > s, respectively, since W} is a simple sp(2k)-module,

and W} is a simple o(s)-module. For clarity, we assume that dim W} > 2k. Hence
2n = dim W > dim W, = (dim W},) - (dim W) > 2ks.
On the other hand,
dim Ly > dim S; — dim K3 > (4k)(2n) — (4k — 1)(2n) = 2n

since dim S; < dim Ky + dim L;. It follows that 2ks > 2n since dim I, = 2ks.
This contradicts the fact that 2n > 2ks. Therefore dim W fo = 2k, dim VVJ’(’J = s and
W =W;,. Let W and W" denote WJfO and W]f;, respectively. Thus 7y () Ir-modules
W and W/ @ W” are isomorphic.

Let us fix the following basis for W: {e; ® €]} where {¢;} is a basis of W’ and
{ef} is a basis of W”. If we consider W as an I;-module then it can be expressed

as the direct sum of [3-modules W’ & ¢:
W=Wwge)o... o(Wwxe). (3.1)
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Clearly the projection of L; onto V @ W* is not zero. Therefore there exists ig €
{1,2} such that the projection of L; onto V;, ® W* is not zero. Let us consider

Vie ® W* as an I1-module. From (3.1) we obtain that
Vi@W =V, @ (Wee))o...a(, (W ge))

where V;,®(W'®e])* are also I;-modules. The projection of L, onto V;,@(W'®e])* is
not zero for some jo since the projection of L; onto V;; ® W is not zero. We consider
this 7;-module Vi @ (W' & ¢j ). By Corollary 3.2.2, I;-module Vj, is standard.
We have already proved that I;-module W’ is standard with the highest weight
(1,0,...,0).

Next we apply generalized Young tableaux technique (see [10]) to find simple
submodules of /;-module (Vi, ® W"™) ® e}*.

If o and ¢ are standard representations of sp(2k) (o(k)) with the same highest
weight (1,0,...,0) then the tensor product ¢ ® ¢ is also a representation of sp(2k)

(o(k)). 1t can be decomposed into the direct sum of irreducible representations:
000 =01® 0D os

where g; has the highest weight (2,0, ...,0), g2 has the highest weight (0, 1,0,...,0)
and g3 is a trivial representation.

Therefore /;-module (V;; ® W"™) ® > contains only submodules with the highest
weights (2,0,...,0) and (0,1,0,...,0). This contradicts the fact that, by Lemma
1.2.2(e), I;-module L, has only simple submodules of dimension 2k with the highest

weight (1,0,...,0). -

Lemma 3.2.10 Let S = K + L where S = osp(4k,2n), K = osp(4dk — 1,2n),

L = osp(s,2k). Then Lo-module W' contains at most two Lo-submodules W;.
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Proof.

We have already proved that for any j € {1...d} Lo-module W; is of the type
3. Let us assume the contrary, that is, there exist three Ly-submodules of the type
3. Let Wi, Wy and W3y stand for these Lg-submodules.

Next we restrict our attention only to these submodules of W. By Lemma 2.3.5,
Wy, W and W3 are standard o(s)-modules, and Vi, V; are standard sp(2k)-modules.

Hence there exists a basis of W such that Ly takes the following form

Al 0
(3.2)

0D
where A = diag(X, X), X € sp(2k) and D = diag(Y,Y,Y), Y € o(s). This result
follows from the fact that any automorphism of sp(2k) and o(s) is inner. Besides,

L1 has the following form
0B
(3.3)
(/V 0
where B = (B;;), i € {1,2}, j € {1,2,3}.
Next we consider /1 (b [-modules V; @ W7, i € {1,2}, j € {1,2,3}. In matrix

terms [; & [-modules V; ® W} consist of all 2k x s matrices and the action of I @ I

is given by the following formula:
x(M)=XM—-MY

where « € I} & I, is of the form (3.2), and M is an arbitrary 2k x s matrix. Next we
consider I; @ Iy-modules Qij(Vi®W;‘). Acting in the same manner as in Lemma 2.1.7,
we can prove that Iy @ Iy-modules g;;(V; ® W]?*) are simple and homomorphic images
of I} ® I,-module L;. Hence, by Schur’s Lemma, the only isonmorphism between

these I} ® Ir>-modules is a scalar mapping. This implies that for any matrix in L
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of the form (3.3) we have that Bj; = w;j;M where M € Matyxs(F) and w;; € F,

ie{1,2},j€{1,2,3}.

By
Let B; denote . By Lemma 1.4.5, L; cannot be of the form (3.3) where

ng
) _ W12 - w13 .
By =vBs, v € F. Therefore vectors @y, = and w3 = are linearly
Wag Wa3
. p— wll . . . —_
independent. Thus we can represent w; = as a linear combination of @y
W21

and @3, i.c. W1 = Ay + pws. It follows that for any element from /,; of the form
(3.3), we obtain that By = ABy + j133.

Next we consider a commutator of two arbitrary elements from L; of the form

0|B, By Bs
Cy

Cs 0

Cs

and

0|B, B, B,
Cy

c 0

Cs

In turn their commutator takes the following form
Al O
0D
where D = (Dy;) and Dy = Cy B} + C{By, i € {1,2}, j € {1,2,3}.
We have that By = ABs 4+ uBs and B} = AB) + pBj;. Therefore Dy = C1B] +
C1By = Ci(ABy + uBj) + C{(ABy + uB3) = AM(C1 By + C{Bs) + p(C1 By + C1 Bs) =
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ADy; + pDys. Since [Ly, Ly} € Lo has the form (3.2), D2 = 0 and Dy3 = 0. Thus
DU =0.
On the other hand, Lo-module W is not trivial. Therefore there exists an element

from I of the form (3.2) such that Dy; # 0, which is a contradiction.

The following technical lemma will be used in our later discussion.

Lemma 3.2.11 The Lie algebra S = sp(2n), n > 0, does not contain a subalgebra
K =~ o(2n).
Proof.

Let us fix an arbitrary basis in V, dimV = 2n. Then S can be represented
as the following set S = {X : CXC™' = — X" where C = C', C € M;,(F)}. In
this basis K can be represented as follows: K = {X : DXD™! = - X* where D =
—D! D € M,,(F)}. This implies that CXC ' = DXD"! for any X € K. Thus
XC'D=C"'DX for any X € K. Since K = 0(2n), K is an irreducible subset of
gl(2n). Tt follows that C™*D = X, and C = AD, X € F. However, C is symmetric
and D is skew-symmetric. Thus sp(2n) does not contain a Lie subalgebra of the

type o(2n). 0

Theorem 3.2.12 Let S = osp(4k,2n), m, n > 0, be decomposed into the sum of
two proper simple subalgebras K and L. of the types osp(4k — 1,2n) and osp(s,2k),

respectively. Then s = n.

Proof.
Let us consider Lo-modules W = W, ®...@W,. For any j € {1...d} Lo-module

W; is of the type 3. Moreover, by Lemma 2.3.5, I,-module W; has dimension s.
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Hence m(12) # 0, mo(12) C sp(2n) and I = o(s). It follows that, by Lemma 3.2.11,
s < 2n. Therefore

dimW; = s < 2n = dim W,
and W contains at least two Lo-modules W and W5 of type 3.

Next, by Lemma 3.2.10, d = 2. It follows that s = dimW; =dimW/2 = n. o

Example 3 There exists a decomposition of S = osp(4k,2n) into the sum of two
simple subalgebras K and L of the types osp(4k —1,2n) and osp(n, 2k), respectively.

Moreover, in this decomposition S is considered in the standard matriz realization
Al B

C|D

where A € o(4k) and D € sp(2n) and C = J,B', J, given by

The first subalgebra K = osp(4k — 1,2n) has the form:

)
0lo 0 0
0
o] X
0
\ /

where X is any (4k + 2n — 1) x (4k + 2n — 1) orthosymplectic matriz.

The second subalgebra L = osp(n,2k) consists of all matrices of the form:

3\

A-A" —i(A+AHY | P Q!

i(A+ At A=At P =it

( ) (3.4
Q —iQ D 0

—pt — Pt 0 D )



where A € sp(2k), D € o(n) and P is a matriz of order 2k x n, Q = P'J.
Then S = K + L is a decomposition of a simple Lie superalgebra into the sum

of two simple subalgebras.

Proof.
First we prove that the set of matrices (3.4) is actually a subalgebra of the type

osp(n, 2k). The standard matrix realization of osp(n, 2k) is
AP
Q|D
where A € sp(2k), D € o(n) and P is a matrix of order 2k x n, Q = P'J. It is easy

to see that osp(n,2k) has another matrix realization:

It follows that L' = osp(n, 2k) can be imbedded into gl(4k,2n) as follows:

( A
A 0P 0
0 —~A'l0 @
Q 0 |D 0
\o -Pjo -D

Let ¥ be an automorphism of gl(4k, 2n) of the form

X(X)=QXxQ™ (3.5)
where
- Qa | O
0 IZn

where Qqy, has a form (1.6).
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Using straightforward calculations we can show that x(L') has the form (3.4).
Denote @(L') as L. Therefore the set of matrices of the form (3.4) forms osp(n, 2k).
Clearly L = osp(4k — 1,2n).

Next we will prove that the sum of two vector spaces K and I. coincides with S.

Set
PP

Then

Qt =—J, =

Since P is an arbitrary matrix from My, (F), the first rows of matrices from L are
arbitrary. Similarly the first column of matrices from L is also arbitrary. Therefore

LSY:K+I/ Od

3.3 Sum of special linear and orthosymplectic su-

peralgebras

Here we consider decompositions of the form S = K + L where S = osp(m,2n),

K = osp(p,2q) and L = sl(s,1).

Lemma 3.3.1 Let S = osp(m,2n) be a Lie superalgebra, and S be decomposed into
the sum of a proper orthosymplectic subalgebra K and o special linear subalgebra L.

Then m is even, m = 2k, K = 0osp(2k — 1,2n) and L = sl(k,l).

Proof. By Lemma 1.2.2(a), So = o(m)®sp(2n). Let m and m, denote projections of

So onto the ideals o(m) and sp(2n), respectively. Since K is isomorphic to osp(p, 2q),
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K is isomorphic to o(p) © sp(2¢). By Lemma 1.2.1(a), Lo is isomorphic to sl(l,) ®
sl(lyy ® U. Since Ky and Lo are reductive subalgebras, the projections m(K),
m1(Lo), ma(Ky) and ma(Lg) are also reductive.

As usual, § = K + [, induces the decomposition of Sy of the form Sy = Ky + L.
Therefore, 7,(Sy) = 7 (Ko) + m1(Lo) and 72(Sg) = me(Ko) + ma(Lg) where m1(Sp) =
o(m) and m2(Sy) = sp(2n). By Theorem 1.1.2, sp(2n) cannot be decomposed into the
sum of two proper reductive subalgebras. Hence sp(2n) = w2 (Ko)+ma(Lo) is a trivial
decomposition and 7 Ko) = sp(2n). It follows that ¢ = n since Ky = o(p) ® sp(2q).

Again, by Theorem 1.1.2, o(m) only has the following nontrivial decompositions
into the sum of two proper reductive subalgebras:

1. If m = 2k then o(2k) = o(2k — 1) + si(k),

2. If m = 4k then o(4k) = o(4k — 1) + sp(2k).

Notice that o(m) = m(Ko) + m1(Lg) cannot be trivial. Indeed, assume that

~

this decomposition is trivial. Hence m(Kp) = m1(Sp) = o(m) and p = m. Thus
K = osp(p, 2n) coincides with S = osp(m,2n), which is a contradiction. Moreover
o(m) = m(Ky) + m1(Lg) cannot be of the second type, because m (L) is not of the
type sp(2k). Therefore o(m) = m1(Ko) + m1(Lg) is a decomposition of the first type
and m = 2k, m(Ko) = 0(2k—1), m(Lo) = sl(k). This implies that p = 2k—~1, ¢ = n,
and either [y = k or Iy = k, since Ky = o(p) ® sp(2q) and Lo = si(l) ® sl(l2) @ U.

Set either | =1, if I, = k or [ = Iy if ; = k. Therefore L = sl(k,1). 0O

Corollary 3.3.2 Let S = K+ L, K = 0sp(2k — 1,2n), L = sl(k,1) and I, = si(k),
I, = sl(l) be ideals of Ly. Then Iy acts trivially on V. Moreover V =V, &V, where

I -module Vi 1is standard, and I,-module V, is dual.
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Lemma 3.3.3 Let S = K + L where S = osp(2k,2n), K = osp(2k — 1,2n), L =

sl(k,l). Then for any j € {1...d}, Lo-module W; is not of the type 1.

Proof.

Let us assume the contrary, that is, there exists j, such that Ly-module W, is of
the type 1. First we prove that K has a nontrivial vector annihilator in gl(m,n). Let
K = J, ® Jy where J; = o(2k — 1) and Jo = sp(2n). As was shown in Lemma 3.3.1,
ma(So) = ma(Ko) = sp(2n). Therefore mo(Jo) = ma(Ko) = sp(2n) since Jo = sp(2n).
However [my(J;), ma(J2)] = {0} since [Ji, Jo] = {0}. Therefore, my(J;) = {0} since
mo(J1) € ma(Ko) = mo(J2).

By Lemma 3.3.1, m, (Sy) = 71 (Ko)+m1(Lg) has the form o(2k) = o(2k—1)+sl(k).
Therefore, by Remark 1.1.1, 7 (K,) has a nontrivial annihilator in gl(m). Hence
m1(J1) also has a nontrivial annihilator in gl(m). So we obtain that J; is an ideal of
Ky, K C gl(m,2n), and J; acts trivially on W and on a one-dimensional subspace
of V. Hence, by Lemma 1.4.3, K has a nontrivial vector annihilator in gl(m,n).

By Lemma 1.4.2, . has a trivial vector annihilator in gl(m,n). Let us consider
Iy C L. By Corollary 3.3.2, I, acts trivially on V. Moreover I, acts trivially on Wy,
since Lo-module W), is of the type 1. Therefore, by Lemma 1.4.3, L has a nontrivial

vector annihilator in gl(m,n), which is a contradiction. O

Lemma 3.3.4 Let S = K + L where S = osp(2k,2n), K = osp(2k — 1,2n), L =

sl(k,1). Then for any j € {1...d}, Lo-module W; is not of the type 2 .
Proof. The proof of this lemma is similar to the proof of Lemma 2.1.4.

Lemma 3.3.5 Let S = K + L where S = osp(2k,2n), K = osp(2k — 1,2n), L =
sl(k,l). Then for any pairwise different ji,jo € {1...d}, Iy-module Wj, is not
isomorphic to Iy-module W, .
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Proof.

Let us assume the contrary, that is, Lo-modules W;, and W, are isomorphic.
Any Lg-module W;, j € {1...d}, is of the type 3. Moreover, by Lemma 2.1.5,
I,-module W is either standard or dual.

There is no loss in generality if we consider the case when Ir-module W, is
standard. Hence Lo-module W, is also standard.

Let A =(1,0,...,0) be the highest weight of I;-module V, and y = (1,0,...,0)
be the highest weight of I>-modules W; and Wj,. Then, by Lemma 1.4.7, the
following statements hold true:

1. I; & Ir,-modules V; ® W;‘l and Vi ® W/]-*2 have the same highest weight (A, u*),

where p* = (1,0,...,0).

2. Iy ® I-modules Vo ® W}, and Vo ® W}, have the same highest weight (A", u*),
where A* = (0,...,0,1).

By Lemma 1.2.1(b), I;® I,-module L is the direct sum of two simple submodules
with the highest weights (A, p*) and (\*, p). Hence the projections of Ly onto V, ®
W]"l and V, ® W’j"z are zero since Lg-module L; contains no submodules with the
highest weight (A", u*).

Next we fix a basis in V ¢ W of vectors of subspaces V;, i € {1,2}, and W,

j € {1...d} such that L, takes the following form

AlO

0|D
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where A = diag(X, —X"), X € sl(k) and D = diag(Dy, ..., Da), D; € M, (F) such

that Dy = Dy =Y, Y € sl(l). Besides, L; has the following form

0|B
(3.7)

cC|0
where B = (B;;), 1€ {1,2}, j € {1...d} and By; € Moy, (F),
Next we look at a pair of I} @ Ir-modules V; @ W} and V| ® W5. The matrix
realization of the first module consists of all k£ x [ matrices, and the action of I1 ® I

is given by the following formula:
1‘(811) = XBH - BHY (38)

where z € I} @ I, of the form (3.6) and By, is an arbitrary k& x | matrix. Similarly,

the second module is the set of all k x | matrices under the following action:
$(Bx2) = X By — BY

where z € I} @ I, of the form (3.6), and By, is an arbitrary k x [ matrix.

Let I; ® Iy-module g11(L;) be the projection of I} & Ir-module L, onto V} @ W},
and p12(L;) be the projection of I; @ Ir-module L; onto V; ® W;5. By Lemma
1.4.7, I © I,-modules V} @ Wy and V; ® Wy are simple. Hence I; @& I,-module
011(L1) coincides with Vi @ W}, and I; @ Ir-module g12(L1) coincides with Vi @ W,
Therefore I; & I-modules Vi ® Wi and V; ® W5 have the same matrix form (3.8).
On the other hand, g11(L1) and p12(L1) are isomorphic as I; @ I-modules since they
are both simple and homomorphic images of [} @ I,-module L;. Hence, by Schur’s
Lemma, any isomorphism between I @& I,-modules p11(Ly) and g15(L;) is a scalar
mapping. In matrix terms this implies that for any matrices from L, of the form

(37), Bll - >\3127 )\ € ]F
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On the other hand, we have already proved that the projections of L; onto
Vo @ W and Vo ® W} are zero. Therefore for any matrices from [ of the form
(3.7), we have that By = DBy = 0. However, by Lemma 1.4.5, L; cannot be of this

form, a contradiction. O

Theorem 3.3.6 Let S = osp(m,2n), m, n > 0, be decomposed into the sum of two
proper simple subalgebras K and L of the type osp(p,2q) and sl(s,l), respectively.

Then m is even, m = 2k, K = osp(2k — 1,2n) and L = sl(k,n)

Proof.

By Lemma 3.3.1, m = 2k and K = osp(2k — 1,2n), L = sl(k.l). Hence it
remains to prove that [ = n. Let us consider Ly-modules W =W, & ... & W,. By
Lemmas 3.3.3 and 3.3.4, for any j € {1...d} Lo-module W; is not of the type 1 and
2. Hence any Lg-module W is of the type 3. Moreover, by Lemma 2.1.5, I;-module
W; has dimension /.

Therefore my(lo) # 0 and ma(lh) C sp(2n) where Iy = si(l). It follows that
[ < 2n. Hence dimW,; =1 < 2n = dimW. Therefore W contains at least two
Lo-modules Wy and W; of type 3.

Next we show that d = 2. Let us assume the contrary, that is, there exists
Lo-module Ws5. Since Lg-module W3 is of the type 3, it follows that Ly-module
W3 is either standard or dual. By Lemma 3.3.5, Lg-modules W; and W, are not
isomorphic. Therefore Lg-module W; is isomorphic to either Lg-module Wy or -
module Ws. However, this conflicts with Lemma 3.3.5. This implies that d = 2 and

| =dim W, = (dim W) /2 = n. Therefore L = si(k, n). 0

Corollary 3.3.7 Let Iy and I, be ideals of Ly defined above. Then I, acts trivially

on W, and Iy acts trivially on V. Moreover V.= V; @ Vo where I;-module V; s
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standard, I,-module V3 is dual, and W = W, & Wy where I,-module W, is standard,

Iy-module Wy is dual.
Now we want to show that the decompositions as in Theorem 3.3.6 are possible.

Example 4 There exists a decomposition of S = osp(2k,2n) into the sum of two
simple subalgebras K and L of the types osp(2k — 1,2n) and sl(k,n), respectively.

Moreover, in this decomposition S is considered in the standard matriz realization

Al B

C\|D

where A € o(2k) and D € sp(2n), C = J, B, J, is given by

K is taken in the form:

(o]0 0 o
0
o] X
0

where X is any (2k + 2n — 1) x (2k + 2n — 1) orthosymplectic matriz.

The second subalgebra L = sl(k,n) consists of all matrices of the form:

( )
E -F|P

F E [iP —iQ
Q -iQ|D ©
—Pt —iPt| 0 —D
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where F is a skewsymmetric matriz of order k, F is a symmetric matriz of order
k, P is a matriz of order k x n, Q is a matriz of order n x k and D is a matriz of
order n with zero trace.

Then S = K 4 L is a decomposition of a simple Lie superalgebra as the sum of

two simple subalgebras.

Proof.
First we prove that the set of matrices (3.9) is actually a subalgebra of the type
sl(k,n). The standard matrix realization of sl(k,n) is the following:
X P
QY
where X € sl(k), Y € sl(n) and P is a matrix of order k X n, @ is a matrix of order

n X k. Hence there is another matrix realization of sl(k,n):

~Xt| @

_Pt __Yt

It follows that L' = sl(k,n) can be imbedded into gl(2k, 2n) as follows:

((x o |P o \]
O—XtOQt>
Q 0 [y o

(\o -Plo vt )]

Let ¥ be an automorphism of ¢l(2k,2m) of the form

X(X) =QXQ™ (3.10)

where



where @y has a form (1.6). The direct calculation gives us that ¥(L’) has the form
(3.9) where E = A — A*, F = i(A+ A"). Therefore the set of matrices (3.9) forms
sl(k,n).

Next we prove that the sum of two vector spaces K and I. = (1) coincides

with S. Set

Then

C=JB"=

We set Bjy = P and Byz = QY. Then B}, = Q and —B!;, = —P*. Since P and Q
are arbitrary matrices of order k£ x n and n X k, respectively, the set of the first rows
of matrices from /. coincides with that of matrices from S. The same is true for the

sct of the first columns of matrices from L. Hence, S = K + L. 0

3.4 Uniqueness of decompositions
First we prove the following technical lemma

Lemma 3.4.1 Let S 2 sp(2n), S C gl(2n), and for any X € si(n),

Then S has the form

Al B

(3.11)
C|-aA

where BB, C' are symmetric matrices of order n.
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Proof.
Let L be the set of all matrices of the form
X 0
0| —X¢
where X € sl(n). Clearly, L C S and L & sl(n).

We are given that gl(V) = V@ V* where V = V; ® V5 and both Vi, V, are vector
column spaces of dimension n. Clearly, Vi and V; are simple L-modules with the
highest weights A = (1,0,...,0) and A* = (0,...,0,1), respectively.

Next we consider L-module V ® V*. Since V =V, @V, and V* = V* © V', we

can express [-module V @ V* as the direct sum of L-modules V; ® V7,

2

VeV =P Vo))

J
1,
According to [11], a tensor product of two standard si(n)-modules is isomorphic to
the direct sum of symmetric and skew-symmetric sl(n)-modules. That is, sl(n)-

module V(\) ® V(A*) is isomorphic to the direct sum of two si(n)-modules V(A1)

and V{(\2) where

and
A =(1,1,0,...,0).
L-module V' is standard since it has the highest weight A** = X. Hence we obtain
that a tensor product of two standard L-modules Vj and V5 is isomorphic to L-
module
Vi Vy =2V oV(A).
On the other hand, a tensor product of two dual si{(n)-modules V(A*) and V(A*) is

isomorphic to the direct sum of two si(n)-modules V(A}) and V(A}). Therefore a
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tensor product of two dual L-modules V;* and V; is isomorphic to L-module
V'@V = V(A e V(M)

Acting in the same manner we obtain that a tensor product of a standard si(n)-
module V; and a dual sl(n)-module V}* is isomorphic to the direct sum of an adjoint

sl(n)-module V(X3) and a trivial s{(n)-module I(V}),
Via V=2 V(x) e I(V1)

where A3 = (1,0,...,0,1).
Similarly a tensor product of a dual sl(n)-module V, and a standard si(n)-module
V5 is also isomorphic to the direct sum of an adjoint sl(n)-module V(A3) and a trivial
sl(n)-module I(V3)
Vo Vi 2 V() @ (V).
Let us denote (Vi@ V"), (Va®@Vy), (Vi®Vy) and (Vi @ Va) as Uy, Uy, Us and Uy,
respectively. Let U stand for U; @ Us. Since L-modules U, Uz and Uy have pairwise

different highest weights, any L-submodule M of U () Us (b Uy can be represented in

the following form:
M= (MNOU)®(MNUs) O (MNUy).

Next we consider S as an L-submodule of L-module V@ V* = U ¢ Us & Uy and
prove that L-module S does not contain two adjoint L-submodules.
Let us assume the contrary, that is, L-module S contains two adjoint L-

submodules. Hence S contains a subspace T' of the following form:

X110

0|Y
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where X € sl(n), Y € sl(n).

Notice that T is a Lie subalgebra of S, T = T; @ Tz = sl(n) & sl(n).

We know that Ti-module V) and Ty-module V; are simple with the highest weight
A =(1,0,...,0). Hence T-module Vi ® V' is simple as a tensor product of simple
Ti-module V; and T,-module V*. Thus, by Lemma 1.4.7, T-module V; ® V5 has the
highest weight (A, A*). Acting in the same way, we obtain that the highest weight
of T-module V;f ® V; is (A*, A). Therefore U; = Vi ® V5" and Uy = V;* ® V; are not
isomorphic as T-modules.

Since the projections of S on Uz and Uy are not zero, T-modules S N Us and
S N Us are nontrivial. Thus T-module S N Us coincides with Us, and T-module

S N Uy coincides with U,. We have that
dim S =dim (SNU) @ dim (S N Usz) @ dim (S N Uy)
since S = (SNU) & (SNU;) @ (SNUy). Therefore
dim S > 2(n® — 1) +n® +n? =4n? - 2.

On the other hand, dim S = 2n? + n since S = sp(2n). This contradicts the fact
that n > 1 (L = sl(n)). Therefore L-module S does not contain two adjoint L-
submodules.

Further the following cases are possible:

Case 1. L-module S contains two L-submodules isomorphic to V (\;) and V(A3),
respectively.

Let us prove that this case is not possible. Notice that both U; and Uy are direct
sums of two sl(n)-modules of skew-symunetric and symplectic matrices. Since L-

submodule S contains two L-submodules of skew-symmetric matrices, we have that
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SN (Us ® Uy) contains subspace L of the following form:

0|B

clo

where B, C' are skewsymmetric matrices of order n. It is easy to check that L + L
forms a Lie subalgebra in S isomorphic to o(2n).

On the other hand, by Lemma 3.2.11, sp(2n) does not contain a Lie subalgebra of
the type o(2n). This contradict the fact that L-module S contains two L-submodules
isomorphic to V(A2) and V(A5).

Case 2. [-module S contains two L-submodules isomorphic to V(A1) and V(A}),
respectively.

Notice that S M (Us & Uy) contains subspace L of the following form:

0B

cl1o

where B, C are symmetric matrices of order n. It is easily seen that L + L forms a
Lie subalgebra in S isomorphic to sp(2n). This implies that S has the form (3.11).
Hence the lemma is proved for this case.

Case 3. Both statements (1) and (2) are not true.

Let us prove that this case does not hold. We have that the dimension of L-
modules V(A1) and V(X}) is equal to n(n + 1)/2, and the dimension of L-modules
V(X)) and V(A}) is equal to n(n — 1)/2. Since L-module S does not contain both
V(A1), V(A;), and L-module S does not contain both V();) and V(A}), we obtain

the following inequality

dim (SN Us) + dim (SN Uy) < n(n+1)/2+n(n - 1)/2 = n’.
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Since L-module S N U contains only one adjoint L-submodule, we have that
dim (SNU) <dimV(X3) +dim (V1) +dim I(V,) < (n* = 1) + 1+ 1=n"+ 1.
This implies that
dim S =dim (SNU) @ dim (SNU;) © dim (SNUy) < n® +1+n® =2n" + 1.

On the other hand, dim S = 2n? + n since S = sp(2n). This contradicts the fact

that n > 1 (L = sl(n)).

Lemma 3.4.2 Let S = K+ L, S = osp(2k,2n), K = osp(2k — 1,2n) and
L = sl(k,n). Then there exists an automorphism ¢ of gl(2k,2n) such that

0(S) = o(K) + ¢(L) has the form as in Ezample (4).

Proof. First we consider L = sl(k,n). By Corollary 3.3.7, there exists a homoge-

neous basis of V @ W such that Ly takes the form

( 3

X 0 {0 0
0 —X'[0 0
\ (3.12)
0 0 |Y 0
(A0 o0 [0 -V
bV

where X € sl(k) and Y € sl(n).

Let my, 72 denote projections of Sy onto the ideals o(2k) and sp(2n), respec-
tively. These projections induce two decompositions: m(Sy) = m(Kyo) + m(Lg)
and my(S) = ma(Ko) + m2(Lo). By Lemma 3.3.1, we have that m,(Sy) = o(2k),
m(Ko) = 0o(2k — 1) and m(Lg) = sl(k). By Lemma 1.1.4, there exist bases of V

such that the decomposition m,(Sg) = m1(Kp) + m1(Lo) takes the form (1.2). Thus
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m1(Sp) consists of all skew-symmetric matrices of order 2k, i.e m(So) = 0(2k). Be-

sides, m1(Lo) takes the form

where X € si(k).

~

Next we consider mo(Sy) = sp(2n). We are given that m(Lg) C m2(Sp), and

ma(Lo) has the form:
Y| 0

0 |-y

where Y € si(n). Then, by Lemma 3.4.1, m2(.S) takes the form

Al B

C|-A

where B, (' are symmetric matrices.
By Lemma 2.4.1, there exists an automorphisms ¢ of the form (2.11) such that

H(S) takes the standard form. Thus

0B
Y(S) = (3.13)
Cl|o0
where
By | Big
B =
By | By
and

We are going to show that S uniquely defines L. Let A = (1,0,...,0) be the

highest weight of I;-module Vi, and p = (1,0,...,0) be the highest weight of Ir-
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module Wi. Then I @ I,-module V; ® W5 has the highest weight (A, 1) and 1) @ I-
module Vo ® W has the highest weight (X\*, u*).

On the other hand, by Lemma 1.2.1(b), [, & I;-module L; is the direct sum
of two simple submodules with the highest weights (A, ;1*) and (A\*, ). Hence the
projections of L; onto Vi @ W3 and V, ® W are zero since Ly-module L, contains
no submodules with the highest weights (A, u) and (A*, p*). Thus L, C S is the
subspace of the set of matrices of the form (3.13) where B, = 0 and By; = 0. The
dimension of this set is 2kn. Hence the dimension of L is less than or equal to
2kn. On the other hand, the dimension of L, is 2kn since Ly = sl(k,n). Thus L,
coincides with the set of matrices of the form (3.13) where By, = 0 and By = 0.
Therefore we have proved that S uniquely defines 7.

Finally we show that S uniquely defines K.

As was shown above, the decomposition m(Sy) = 71(Kp) + m1(Lg) has the form
(1.2). We consider the automorphisms  of the form (3.10). Let us denote S" = x(5),
K' = x(K) and L' = Y(L). According to Remark 1.1.1, 7 (K{) consists of all skew-
symmetric matrices of order 2k with the first column and row zero. Therefore, by
Remark 1.4.4, the first row and colummn of all matrices from K’ are zero. Hence S’
uniquely defines K’ since K’ consists of all matrices in S” with the first row and

column zero. This implies that S = ¥71(S’) uniquely defines K =y H(K')).
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