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Abstract

In 1952 E. Dynkin classified semisimple subalgebras of semisimple Lic algebras over
an algebraically closed field F' of zero characteristic. Until now there was no clas-
sification of simple (semisimple) subalgebras of simple finite-dimensional Jordan
algebras. As a consequence the first problem of this thesis is a description of simple
subalgebras in finite-dimensional special simple Jordan algebras over an algebraically
closed field F' of characteristic not 2. Using a slightly generalized version of Mal-
cev's Theorem, Racine’s classification of maximal subalgebras and other techniques
developed in the thesis we can show that each simple subalgebra of a simple Jordan
algebra can be reduced to an appropriate canonical form. Besides we formulate
necessary and sufficient conditions for conjugacy of simple subalgebras of simple
special Jordan algebra 7. Therefore, in Jacobson’s terminology we describe orbits
of the algebra of symmetric matrices under O(n) (the orthogonal group), orbits of
the algebra of symplectic matrices under Sp(n) ( the symplectic group) and orbits
of full matrix algebra under GL(n) (the general linear group).

The other problem considered in this thesis is the classification of simple decom-
positions that occur in simple Jordan superalgebras with semisimple even part over
an algebraically closed field F of characteristic not 2. By a simple (semisimple)
decomposition of any algebra J (not necessarily simple) we understand any repre-
sentation of J as vector sum space of two proper simple (semisimple) subalgebras.
In general, the sum in this decomposition is not necessarily dircect, and the subalge-

bras may not be ideals. The problem of finding simple decompositions has drawn



researchers’ interest in late 60’s after the pioneering works of O.Kegel, A. Onishchik
and others. Given J = A + B, the sum of two proper simple subalgebras A and B,
what abstract properties of A and B does J inherit? In addition, information about
the structure of simple subalgebras can be used to describe the lattice properties
of simple algebras. In this thesis we determined the conjugacy classes of simple
decompositions of simple matrix Jordan superalgebras with semisimple even part

over an algebraically closed field F' of characteristic not 2.
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Chapter 1

Basic facts and definitions

Let us begin with the following

Definition 1.0.1. A Jordan algebra J = (V,p) over an arbitrary ficld I' of charac-
teristic not two consists of a vector space V' over F' equipped with o bilinear product
p: VXV =V (usually abbreviated p(z,y) = x o y) salisfying the Commutative
Law and the Jordan identity:

1. xoy=youx ( Commutative Law)

2. (x*oy)ox =z?0(yox) (Jordan Identity)

Let U be an associative algebra over F' and ab the associative product com-

position of Y. Then the vector space U is a Jordan algebra U) relative to the

L

5(ab =+ ba), that is, this composition satisfies the defining iden-

composition a o b =
tities 1 and 2. Next we define a special Jordan algebra to be a subspace J of an

associative algebra over F ol characteristic not 2 which is closed under the com-

(ab + ba). Jordan algebras which are not special will be called

position a o b = 3



exceptional.

Further, let (U, J) be a pair consisting of an associative algebra U and an invo-
lution J. Then H(U, J) denotes the set of all elements of U symmetric with respect
to J. It is easily seen that H (U, J) is always a subalgebra of U+,

Next we will consider a class of algebras G, called composition algebras over
an arbitrary ficld /' of characteristic not two. By definition ¢ is not necessarily
associative. It always has a unit 1, and G is the vector space direct sum: G = F' Gy
where Gy is a subspace such that if x in Gy, then 22 = N(z) is in F. Here, N(x)
is a quadratic form on G, whose associated symmetric bilinear form is non-singular.
Moreover, the quadratic form N(a) defined for cvery a of Gy permits composition,
that is, N(ab) = N(a)N(b) where ab is the product in G. Composition algebras are
alternative quadratic algebras. They have dimensions 1, 2, 4 and 8, and a canonical
involution: @ — @ such that N(a) = aa.

When n = 1 we know that G = F. When n = 2 we use the notation F[u] for G
where v is a non-zero element of Gy and u?> = p # 0. If a = a + fu, a, § in F, then
a =« — Pu and

N(a) = o? — 3%p.

When n = 4 we will write G = Q, a (generalized) quaternion algebra. We can
write @ = Flu] @& FluJv where Flu] is a quadratic subalgebra of dimension two
containing F', and the product in Q is given by

(a + bv)(e+ dv) = (ac+ obd) + (ad + be)v,

for all a,b,c,d in Flu] with v?2 = ¢ # 0 in F. The involution in Q is ¢ = a + bv —
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g=a—bv, and
N(g) = N(a) = oN(b).
The algebra @ is associative but not commutative.
The composition algebras of dimension eight are the (generalized) octonion al-
gebras (0. Such an algebra is generated by a quaternion subalgebra containing F,

and an element w such that O = @ & Qw with multiplication in O defined by
(g + rw)(s + tw) = (gs + 7ir) + (lg + r5)w

for g, 7.s,tin Q. Thus w? = 7 # 0 in F and this element together with Q determines

the algebra O. The involution in O is x = ¢ +rw — & = q — rw, and
N(z) = N(q) — 7N(r).

Any composition algebra is either a division algebra or has a divisor of zero. It
is easy to see that G is a division algebra if and only if N(x) # 0 for x: # 0. If G with
N(z) contains divisors of zero, then we will call G a split composition algebra. For
a fixed F and a fixed dimension there is a unique split composition algebra: F' @ F,
Iy, Zorn vector matrices.

Now let G, be the algebra of all n x n matrices with elements in a composition
algebra G. Then every element of G, is a matrix X = (z;;) with elements z;; in G

fori,7=1,...,n, and we write

J(X):th(yij), yj,;:fij (i,j:L...,?l)
The mapping J(X) = X" is an involution in G, called a standard involution. 1If G
is an associative algebra, then H(G,,J) is a special Jordan algebra of dimension

3



%—'ﬁd +n where d = dim G. If G = O, then H(O,, J) is a Jordan algebra only if
n < 3. If n = 3, then H(Os,J) is an exceptional Jordan algebra (Albert algebra).
When no confusion is likely, we will omit .J and write H(G,,) instead.

Next let V be a finite-dimensional vector space equipped with a non-singular
symmetric bilinear form f : V x V — F. Consider the direct sum of F1 and V,
J = F1®V where 1 is the identity element, and determine multiplication according

to

(al+v)(B1 4+ w) = (af + f(v,w))]1 + (ew + Pv).

Then J is a Jordan algebra of the type J(V, f).

In the classification of finite-dinensional simple Jordan algebras, composition
algebras play an important role. According to Albert’s classification (1930), if J
is a simple finite-dimensional Jordan algebra over an algebraically closed field ' of
characteristic not 2, then we have the following possibilities for J: (1) J = F; (2)
J = F 0V the Jordan algebra of a non-singular symmetric bilincar form [ in a
finite-dimensional vector space V such that dim V' > 1, (3) H(G,., /), n > 3, where G
is a composition algebra of dimension 1,2, or 4 if n > 4 and of dimensions 1,2,4, and
8 if n = 3, and J is the standard involution. Therefore, we can conclude that the
Albert algebra is the only exceptional simple Jordan algebra over algebraically closed
F', char F # 2 in the sense of having no relizations in an associative algebra. In 1983
E. Zelmanov classified all possible simple Jordan algebras in arbitrary dimeusions
(Zelmanov’s Simpleity Theorem). [t appears that in arbitrary dimensions simple

Jordan algebras also fall into quadratic, hermitian and Albert types as above.



Notice that the Jordan algebras H(F|ul,) and H(Q,,) also have other isomorphic
realizations denoted as {7 and H (Fb,, j) where j is a symplectic involution in I,
[9]. Further, we will frequently use these realizations in order to define canonical
forms of simple subalgebras of H(Q,) and H(F[u],).

If J is a special Jordan algebra, then the concept of the universal algebra for
the special representations has been defined in [9]. According to [9] the special
unwersal associative algebra of J is the difference algebra U(J) = F/R* where
F is the free associative algebra based on the vector space J, and R? is the ideal
generated by a X b+ b x a — ab (‘x’ the product in F). The special universal
associative algebras of I/(F,) and II(Fy,,j), n > 2, are nothing but the matrix
algebras F,, with the canonical embedding as the sel of symmetric matrices and Fy,,
with the canonical embedding as the set of symplectic matrices. For F,,S"’), the special
universal associative algebra is F}, & > where [° is the opposite algebra. Next we
introduce one more definition. Let J be a Jordan subalgebra of A1) where A is an
associative algebra. Then S(J) stands for the associative subalgebra generated by
J.

Since the description of simple subalgebras significantly relics on Racine’s clas-
sification of maximal subalgebras (28, 29|, we recall certain well-known classical
theorems that we will use later. Before we state these theorems, we introduce some
notation we are going to use in these theorems. Let A be a finite-dimensional central
simple associative algebra of degree n. Then, we denote by A° the opposite algebra

of A. Since we always deal with an algebraically closed basic field F, we formulate



simplified versions of Racine’s Theorems.

Theorem (Racine)Let A be a finite-dimensional central associative algebra of
degree greater than or cqual to 3 over a field F of characteristic not two. Any
mazimal subalgebra of A = H(A® A°, %) ( * is the exchange involution) is of the
form

(1) J(V, f),

(2) B 2= [1(B ) BY, %), B a mazimal subalgebra of A, or

(3) HA )= HA® A, x)N{(a,a)|a € A} where — denotes either the trans-
pose involution or the symplectic involution.

A has mazimal subalgebras of type (1) if and only if

A= O,

where Q; s a quaternion algebra, m = 2 or m odd, in which case dim J(V, [) =
2(m+1).

Theorem (Racine)Let (A, *) be a finite-dimensional central simple associative
algebra with involution over I a field of characteristic not 2, A central simple of
degree n. If the degree of H(A,x) > 3 then mazimal subalgebras of H(A, *) are of
the form

(1) J(V. f), or

(2) H(B,*), B a mazimal subalgebra of (A, *).

H(A, %) has mazimal subalgebras of type (1) if and only if (A. *) is isomorplic to
a Clifford algebra with the canonical involution. If x is of the first kind then n = 2™
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and J(V, f) C H(A, %) is mazimal if and only if dim J(V, f) = 2m + 1 for m odd,

2(m+ 1) for m even.



Chapter 2

Subalgebras

The main focus of this chapter is a description of simple subalgebras in finite-
dimensional special simple Jordan algebras over an algebraically closed field F* of
characteristic not two. The problem of finding semisimple subalgebras in semisimple
Lie algebras was fully solved by Dynkin [6]. A similar question for Jordan algebras
arose in Jacobson’s research. Namely, in [9] as an application of the general represen-
tation theory, he studied semisimple subalgebras of an arbitrary finite-dimensional
Jordan algebra of characteristic zero. In this connection he obtained an analogoue of
the results of Malcev and Harish-Chandra in the theory of the Levi decompositions
of a Lie algebra [14, 7]. Then, in 1987 N. Jacobson determined the orbits under
the orthogonal group O(n) of the subalgebras of the Jordan algebra of n x n real
symmetric matrices [8].

The description of simple subalgebras of simple Jordan algebras significantly

relies on the classification of maximal subalgebras of finite-dimensional special simple



Jordan algebras obtained by M. Racine in 1974 ([28]). Three years later M. Racine
published his paper [29] which completes the classification of maximal subalgebras
in all types of simple finite-dimensional Jordan algebras.

The algebras we consider in this chapter will be assumed to be finite-dimensional
special over an algebraically closed field F' of characteristic not 2. We will give a full
classification of simple subalgebras in sinmiple special Jordan algebras. Notice that

the simple subalgebras of J(V, f) have been studied in [33].

2.1 Matrix subalgebras

Let J be a simple Jordan algebra of the type Fﬁﬂ where n is even. Then, according
2

to [8] it can always be presented as a subalgebra of H(F,) as follows

A B
: (1)
-B A

where A is any symmetric matrix of order 7, and B is any skewsymmetric matrix
of order 7.
The following lemma gives us an idea of the structure of the automorphism group

of (1).

Lemma 2.1.1. Any automorphism of a Jordan algebra of the form (1) is induced

by an automorphism of H(F,).

Proof. First, according to [9] any automorphism of J can be extended 1o an an-

tomorphism or antiautomorphism of a special universal enveloping algebra U(J)



which is isomorphic to Fz @ Fa. Notice that in this particular case the associative
enveloping algebra S(J) is isomorphic to U(J) because from the explicit form (1)

S(J) consists of all matrices of the form:

X Y

-Y X
where X and Y are any matrices of order . Since any automorphism of Fo®Fn
either induces non-trivial automorphisms of these ideals or sends one ideal onto
another, it can be lifted up to an inner automorphism of the entire matrix algebra F,,.
Consequently, for any antiautomorphism of I 2 Iy we can choose an automorphism
(not necessarily non-trivial) of F' = @ Fz such that their composition induces non-

trivial antiautomorphisms of simple ideals. Therefore, any (Jordan) automorphism

of J can be written as follows:

p(X)=Q7'XQ

or
p(X) = Q' X'Q, (2)
for some non-singular matrix Q.

The next step is to prove that ¢ is orthogonal. In other words, all we have to
show is that for any automorphism ¢ of 7, we can choose ) such that (2) holds and
Q'Q = I where I is the identity matrix. Since [J is a subalgebra of H(F,,), for each
X in J, (Q7'XQY = Q7'XQ. O*X(Q™1Y) = Q7'XQ, QQ'X = XQQ'. Denote

I3 = Q@' Next we are going to show that /3 is actually a scalar multiple of the

10



identity matrix. We are given that BX = X B where X is any matrix of the form

(1). Let us write B as follows:

By By
B =
By By
where B; are matrices of order 5. By performing the matrix multiplication, we obtain
By = By = 0, and By = By = al, for some non-zero . Since the ground ficld F
is algebraically closed, we can choose 3 € F such that a = 3% Set Q' = 37'Q.

Obviously, Q" determines the same automorphism as @ does, and Q"*Q)" = I. The

lernma is proved. |

In the next lemma we state that subalgebras of H(F,) that have the type F ﬁ”
2

(n even) are conjugate under an appropriate automorphism of H(F,).

Lemma 2.1.2. Let J = F\ be a subalgebra of H(F,). Then, by an appropriale
2

automorphism of H(F,), J can always be reduced to the form (1).

Proof. At first we consider the enveloping algebra S(7) of J. It is known that S(J)

is either a simple associative algebra of degree 5 or a direct sum of two isomorphic

simple ideals of degree §. Hence, acting by an appropriate automorphism of 75,

S(J) can be reduced to the following form:

X 0

0 Y

17

where X, Y are matrices of order g It follows that J also takes the above block-

diagonal form since J C S(J). If S(J) is simple, then we can assume that X =Y.

11



If S(J) is non-simple semisimple, then J can be brought to the form:
X 0

(3)
0 X!

In the case when S(J) is simple, J is an associative subalgebra of F,, that lies

inside H(F,). According to [32], this is not possible. Then, it is easily seen that

JY

the automorphism of the form 6(Y) = S~'Y'S, where S = , I is the
Lrp &
2 2

2 = —1, sends each element of the form (3) into the algebra of the

identity matrix, ¢
form (1). Therefore, by x = 0 o ¢ we can bring J to the form (1).

Next we will show that y is actually an orthogonal automorphism. Notice that
x sends H(F,) onto a Jordan subalgebra of F{Y which consists of all matrices
symmetric with respect to the following involution: j* = x ot o x ! where ¢ is the
standard transpose involution. This involution can be rewritten as follows j'(X) =
C~tX'C for some non-singular symmetric matrix C of order n. It follows from the
above considerations that any matrix of the form (1) is symmetric with respect to
j. Equivalently, for any Y of the form (1), C~'Y'C' =Y, YO = CY, YU =
C'Y because Y is symmetric. As was proved in the previous lemma, C' = «l for
some non-zero «. Therefore, j' = ¢, and x(H(F,)) = H(F,), and x is actually an

automorphism of H(F,). Hence, the lemma is proved. O

In [16] K. McCrimmon proves the following result: if A is a unital Jordan algebra
over a ficld of characteristic not two with Wedderburn splitting A = S O R for a
solvable ideal R and & = A/R a separable subalgebra, then any other scparable
subalgebra C of A is conjugate under a generalized inner automorphism 7' of A to

12



some subalgebra of S, T(C) C S. Here, we are going to use the following consequence

of McCrimmon’s Theorem.

Lemma 2.1.3. Let A be a special simple matrixz Jordan algebra, and J be a proper
simple subalgebra of A. Denote a maximal subalgebra which contains J as M. Nexl,
consider a Wedderburn splitting M = 8 O'R where § is a semisimple algebra, R is

the radical. Then, there exists an automorphism ¢ of A such that o(J) C S.

Proof. Let 1 be the identity element of A, and 1 € J. According to [16], if J
is special and the degree of J is not divisible by the characteristic, then 7 is
conjugate under an inner automorphism T of M to some subalgebra of S, and T
is a composition of the standard automorphisms T, , that can be represented in
agsociative terms as follows
T.y(a) = tat™", (4)
where t = u~2 (1 — zy)(1+ yz), u = (1 — zy)(1 + yz)(1 + zy)(1 — yz), 2,y € M.
Let x, y be symmetric with respect to an involution j of A: j(x) =, j(y) = .

Then, it is obvious that

jw) =u, and j(t)=1t"" (5)

If A= F\", then from the explicit form (4) T,y is easily extendable to A. If

A = H(F,), then, because of (5), T, is orthogonal, therefore, extendable to A. If
A = II(Fy,, j), then, because of (5), T, is symplectic, therefore, extendable to A.
If 7 is special and the degree of J is divisible by characteristic, then 77 is a
generalized inner automorphism [16], that is, T" is a composition of automorphisms

13



T

Tlyerstn,

m of the form

T'cl,u.,:nn,m = UJl([ + V;'l L, 710 + le s an Ufm)(] + %n,wn...,:rl + Um,U:L:,, B Uat;)

.....

where v,2; € M, m € R. In associative terms quadratic operators take the form:
Uy(a) = vav,

U, (a) = x;ax;,

21
Viroaman(@) = 21 .. xyma+ amz,, ... xy.

Hence, if all z;, m and a are symmetric with respect to an involution of A, then
F(Teyon (@) = Ty, wnm(a). Therefore, T\, . as well as T is extendable to

A. The lemma is proved. O

The next lemma is an analogue of Lemma 2.1.2 for the case of symplectic ma-

trices.

Lemma 2.1.4. Let J = FP be a subalgebra of H(Fy,,j). Then, by an appropriate

automorphism of 11(I,,,7), J can always be reduced to the following form

X 0
(6)
0 X'
Proof. First of all, 7 of type F{Y has only two non-equivalent irreducible represen-

tations in an n-dimensional vector space [9]. By an appropriate automorphism ¢

of F{Y. 7 can be brought to the form (6). Notice that ¢ sends [/(F,, j) onto a

2n 1
Jordan subalgebra ol Fg(,i) which consists of all matrices syninetric with respect to

the following involution: j' = o jow~!. This involution can be rewritten as follows

14



7 (Y) = C7'Y*'C for some non-singular skew-symmetric matrix C of order 2n. It
follows from the above considerations that any matrix of the form (6) is symmetric

with respect to j'. Equivalently, for any Y of the form (6), C"'Y'C =Y, Y'C = CY.

0 I,
Acting in the same manner as above, we can show that C = « for

-1, O

some non-zero «, where [, denotes the identity matrix of order n. Therclore,
O(H(Fy,, 7)) = H(Fy,j), and ¢ is an automorphism of H(F,,,j). Hence, the

lemma is proved. O

Definition 2.1.5. Subalgebras Ji and Jy of a Jordan algebra A are said lo be

equivalent if there exists an automorphism ¢ of A such that Jy = @(J2).

Definition 2.1.6. Let J be a subalgebra of A. Then the set C(J) of all subalgebras

equivalent to J in A is said to be a conjugacy class of J .

2.1.1 Canonical realizations of simple subalgebras

Let A be a simple Jordan algebra, and J be a simple subalgebra of A. All realiza-

tions listed below we will call canonical.
1. Let A= F{"

Type 1. J = F,(,'LH, J = {diag(X, ..., X, X" ..., X"0,...,0)} where X is any
e e e e’

k 1 s
matrix of order m, n = km +Ilm + s.

Type 2. J = H(FE,), J = {diag(X,..., X,0,...,0)} where X is any sywmmetric
p (Fm) {diag( : )} y sy

k 1
matrix of order m, n = km + L.



Type 3. T = H(Fy, §), J = {diag(X,.... X,0,... 0)} where X is any symplecti
ype 3. J (Fom, 7), J = {diag( )} where X is any symplectic

k 1
matrix of order 2m, 2mk +1 = n.

2. Let A= H(F,)

Type 4. T = FSP J = {diag(X,...,X,0...,0)} where X is of the form (1) i
ype 4. T J = {diag( )} where X is e form (1) in

k !
which A and B are of order m, n = km + [.

Type 5. J = H(F,,), J = {diag(X,.... X,0,...,0)} where X is any symmetric
k !
matrix of order m, n = km +[.

Type 6. F =2 11{FYy,,,5), J = {diag(X,..., X,0...,0
ype 6. J = 11(Fy, j), T = {diag( k ;T_)}

A =B -C D
B A D C

¢ D A -B

D -C B A
where A is a symmetric matrix of order m, B, C, D are skew-symmetric matrices

of order m, n = 4mk + 1.
3. Let A= H(F,,j)

Type 7. J = Fr(rjr),

J = {diag(X,..., X, X', ..., X",0,...,0, X" ... X' X, ... X,0,...,0)}

where km + lm + s = n, X is any matrix of order m.

Type 8. J = 1(F,), J = {diag(X....,X,0,...,0, X,..., X.0,..., 0)} where km+
e N’ e e
k ! k !
[ =n, X is any symmetric matrix of order m.

16



Ty])€ 9. j = ]{(F‘Zm;j)u

A B
T =
C A
- _ _ X Y
where A =diag(X,..., X, X,..., X,0,...,0) and X = ,
N—— —— '
k ! 5 Zz Xt
B =diag(Y,...,Y,0,...,0), C =diag(Z,...,Z,0...,0) for any X of order m and
A N S e e’ N e’

k lm-+s k lm-ts
skew-symmetric Y,Z of order m, km +Im+ s =n.

Definition 2.1.7. Let J and J' be two proper subalgebras of A, and J' be given in

the canonical realization. If J is equivalent to J', then J' is said to be the canonical

form of J.

Definition 2.1.8. Let J = F be a subalgebra of A =2 F,E,H, and p stand for the
natural representation of J in F™, m < n. Obviously, p induces the representation
of S(J) i F*. If S(J) is a non-simple semisimple associative algebra, that is,
S(J) =T, ® I, where I,, I, are isomorphic simple ideals, then p = p1 @ py where

pi 1 a representation of T; in the corresponding invariant subspace of F". Then

ka(T) = |degpi(Ty) — deg pa(Zs)|. Otherwise, ka(J) = 0.

Definition 2.1.9. Let J of the type FSD be a subalgebra of A = H(Fy,, j). Then, J
can be covered by o subalgebra S of the type M, By Lemma 2.1.4 oll subalgebras of
the type F,(LH are conjugate under an automorphism of H(Fy,, j) and can be reduced
to (6). Hence I = V)V, where V; is invariant under the action of §, dim V; = n.

Let p denote the natural representation of S in F*". Since S is conjugate to (6),
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p 15 completely reducible, and p = p1 ® pa where p; is a representation of S in V.
Then ka(J) = kpy(s)(01(T))-

Definition 2.1.10. Let J of the type H(I%,,, j) be a subalgebra of A = H(Fy,, 7).

Then, we can always choose a subalgebra B of H(Fyyy,, ) of the type FWY and define

Theorem 2.1.11. Let A be a simple matriz Jordan algebra. Then, any simple

matrixz subalgebra of A has a unique canonical form as above.

Proof. Let J be any proper simple matrix subalgebra of A. In particular, the degree
of J > 3. Denote the identity of A as 1.

The proof of the theorem consists of three cases.

Case 1 A= F\"

1.1 Let J be of the type FLY for some m < n. Due to [9] any Jordan algebra of
this type has precisely two non-equivalent irreducible representations both of which
have degree m. Hence [ is equivalent to the subalgebra in the canonical realization
of type 1. If 1 € J, then the last zeros in canonical form of type 1 are omitted.
Since k4(J) is invariant for 7, the canonical form of J is uniquely defined.

1.2 Let J be of the type H(F,,) for some m < n. Then, it follows from the
uniqueness of the irreducible representation of H(F,,) [9] that J is equivalent to the
subalgebra in the canonical realization of type 2. If 1 € J, then the last zeros in
canonical form of type 2 are omitted.

1.3 The proof of the case when J = H(Fyp,j), 2m < n, is cxactly the same
as the previous proof. In particular, J of the type H(Fy,,,J) is equivalent to the
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subalgebra in the canonical realization of type 3. Obviously, the canonical form is

unique.

Case 2 A= H(F,)

Here, our main goal is to determine the canonical form of any simple matrix
Jordan subalgebra of H(F,). Let M be a maximal subalgebra of H(F,). According
to [28], M is isomorphic to one of the following:

LH(F) o H(R), k+1=mn,

2. V& H(F) &R, 2k+1=n, R is the radical (if { = 0, then M = Fi" 9 R)

3. J(V,f) only if n = 2™ and either dim J(V, f) = 2(m + 1), m is even, or
dim J(V, f) = 2m + 1, m is odd.

First, assume that J is a simple matrix subalgebra of /1(F,) such that 1 € 7.
There exists a maximal subalgebra M such that 7 € M. Since deg J > 3, M
cannot be of the type 3. If M contains a non-zero radical, that is, M = S® R,
where S a semisimple algebra, R the radical, then by Lemma 2.1.3 we can assume
that 7 C S. If S = & © Sy where S; non-trivial simple ideals, according to [29] we

can choose three orthogonal idempotents: e, e', ff*, 1 =e + e’ + ff' such that
Sy = ffAH(E)fff, Sy=cF,e+e'Fle (7)

Since ff" is an element of H(F,), by an automorphism ¢ of H(F,), it can be

reduced to the following form:
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where [; is the identity matrix of order [. Since ¢ and €' are orthogonal to [ f*, they

take the forms:

0 0 . 0 0
w(e) = () =
0 K 0 Kt

where K is a matrix of order n — [. Therefore, according to (7),

X 0 X 0
p(S) = ,0(S1) = ) (8)
0 Y 0 0
0 0
90(52): )
0Y

where X is any symmetric matrix of order [, Y is a symmetric matrix of order
2k = n — [ which is also an element of a subalgebra of the type Fk(f).
In the case when M is semisimple, that is, M =8 = &, & &;, there exist two

orthogonal idempotents such that
S=cl(F)e+ fH(F,)f, ec¢+f=1

Acting in the same manner as above we can reduce S to (8).

Thercfore, we can define two homomorphisins 7y, 72 as projections on 8§ and
Sy, respectively. Since 1 € J, mi(J) # {0}, m(J) # {0}. This implies that
J=Z2m(J)C H(F), l <n,and J = m(J) € H(Fy), 2k < n. Therefore, we can
reduce the problen: of finding the canonical form of 7 to the case of all symmetric
matrices of order less than n. However, the above reduction does not work in the
case when S is simple, that is, M = Fé') DR, r < n. Hence we can couclude that
as soon as the given simple subalgebra J is in the maximal subalgebra M which
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has a non-simple semisimple factor &, the problem can be reduced to the case of
symmetric matrices of a lower order. This process stops only if at some step either
m(J) S M=F .lEH @R, or m(J) coincides with S;. Without any loss of generality,
we can assume that r = n, that is, 7 C M = Féﬂ O R.

All we need to reach our goal is to determine the canonical form of J which

is covered by a maximal subalgebra of the type F' 5” (O R. Notice that there is an
2

A DB
isomorphic imbedding 6 of F gf') into H(F,) such that (A +i3) = ,
2

-B A

where A is a symmetric matrix of order 2, B is a skew-symmetric matrix of order
. 2 )

2.1. Let us assume that J has the type FY where n = 2mnl. We know that
by an appropriate automorphism v of Féﬂ, we can reduce 6~ (J) to the canonical
form: p(674(7T)) = {diag(X,..., X, X", ..., X*)} where X is any matrix of order
m. Then, X can be written as A + iB for an appropriate symmetric A and skew-

symmetric /3. Therefore, 0(¢»(071(J))) has the following representation in /T(F,):

S T
0(p(0~1(T))) =
-T S
where S = diag(A,..., A), T = diag(B,....B,—B,...,—B). By Lemma 2.1.1,

0 oo~ (an automorphism of the algebra of the form (1)) can be extended to an
automorphism of H(F,). Finally, by interchanging the k-th and (5 +k)-th columns,
and A-th and (§ + k)-th rows, 1 < k < §, and the columns and rows inside the
block (if necessary), we can achieve the following block-diagonal canonical form of

type 4. As a result any subalgebra of H(F,) of the type F7 can be brought to the
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canonical form of type 4. This canonical form is obviously unique.

2.2. Let J be of the type H(F},). Acting in the same manner as before, J can
be brought to the unique canonical form: 6(y(6~(J))) = {diag(X,.... X)} where
X i8 a symmetric matrix of order m.

2.3. Let J be of the type H(Fb, j), n = 4ml. Like in the previous cases, by an
appropriate automorphism ) of I éﬂ, 0~1(J) can be brought to the following block-
diagonal form: ¢(671( 7)) = {diag(X, ..., X)}, where X is a symplectic matrix of
order 2m. If we represent X as the sum of symmetric and skew-symmetric matrices
as follows:

A -B ~C -D
X = +

B A -D C

where all matrices have order m; A is symmetric, B, C,D are skew-symmetric, then

6 induces the following representation of J in H(F),)

) S T
0(yp(67(T))) =
-T S
where S = diag(X, ..., X), T =diag(¥,...,Y,-Y,...,—Y) and
A =B - =D
X: s Y:
B A -D C

Similarly, by Lemma 2.1.1, § o9y 0 7% (an automorphism of the algebra of the form
(1)) can be extended to an automorphism of H(F,).

By interchanging appropriate blocks, we can reduce it to the canonical form
of type 6. From the explicit form of type 6, the canonical form of 7 of the type
H(F5,,.7) is uniquely determined.
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If1 ¢ 7, then rk (e) = k < n where e is the identity element of 7 and it is quite
obvious that J can be covered by a subalgebra of H(F),) of the type H(F}). As was
already shown, J can be reduced to the unique canonical form in H(F}), hence, in

H(F,).

Case 3 A= H(Fy,,j)

Since the proof of this case is not much different from the proof of the case of
TI1(F,.), we will omit some details. According to [29], any maximal subalgebra M in
H(F5,,j) is isomorphic to one of the following:

1. H(Fy,j)® H(Fy.j), k+1=n,

2. H(Fou, /) ® FV @R, k+1=n. If k=0, then M = F\" & R, R is the
radical

3. J(V,f) only if n = 2™ and either dim J(V, f) = 2(m + 1), m is even, or
dim J(V, f) = 2m + 1, m is odd.

First we assume that J is a simple matrix subalgebra of H(Fs,,j) such that
1 e J. Let M =8@R be a maximal subalgebra which contains 7, J € M.
By Lemma 2.1.3, J C S§. If S is a non-simple semisimple algebra, then 7 can be
projected into the simple components of S. Hence, the problem will be reduced
to the case of symplectic matrices of order less than 2n. This reduction stops only
when either the image of J can be covered by the maximal subalgebra with a simple
Wedderburn factor S or the image of 7 coincides with one of the simple components
of S.

Next we look into the case when J C M, where M has a simple Wedderburn
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factor S. There is no loss in generality if we assume that M =SaR, S = Y. By
Lemma 2.1.4, S can be brought to the form (6). Notice that any automorphism of
F{™ of the form 0(X) = C7'XC can be extended to an automorphism of H(F,, j)

in a natural way:

p(X)=C"'XC, C= 9)

3.11f J = H(F,,), m <n, then acting by some automorphism of the form (9),
it can be reduced to canonical form of type 8. This canonical form is obviously
uniquely determined.

321 7 = F,(,f >, m < n, then by an automorphism of the form (9) it can be
brought to {diag (X, ..., X, X* ..., X*)} where X is an arbitrary matrix of order m.
This is the canonical form of type 7. With some effort it can be shown that in this
case the canonical form is also unique. Namely all we have to show is that any two
canonical forms J; and J» of the same type with k4(J1) # ka(Jz) are not conjugate

under symplectic automorphism, or, equivalently, automorphism of H(Fy,,, j). For

clarity, let J; = diag{X,..., X, X",..., X" X" ... X" X,.... X}, rim+ sm = n,
N—— ~— N—

r

and Jp = diag{Y,..., Y, Y' . Y YL VLY, Y pme g =, p > o1,
N—— ~— N—

14 q P q
where X and Y are any matrices of order m, ka(J1) # ka(J2). Next we assume the

contrary, i.e. there exists a symplectic automorphism ¢ such that o(J;) = J. Let
S stand for the subalgebra of H(Fy,, j) of the form (6). Obviously, J, C S, J» C S.
Next we are going to show that for any automorphism ¢ of H(F5,.j) such that

o(J1) = Ja we can always find a symplectic automorphism 1 that can be restricted

24



to § and ¢|7 = ¥|g,. Let C be a non-singular matrix that determines . Then, for

any A € J; there exists B € J5 such that
C'AC =B, AC=CB. (10)

Set C' = (Cy;)i j=1,s where Cj; is a square matrix of order m. By performing a matrix

multiplication in (10) we obtain a series of equations:
XCZJ - CL']'Y, XtC’kl == Yle

where (i, 7), (k1) € IxI, I ={1,..., s}. Since X and Y can be any matrices of order
m, C,;; cannot be degenerate. Therefore, Y = CY{J‘ilX Cijy Y = C;;i]1X'tCA:z~ Hence,
the matrix ¢ = diag {Cyj, Cui; ..., Ciy, (CH) ™ (Ch) ™Y, - (CL) 71} determines an
automorphism v of I7(Fy,, j) s?mh that ¢|7 = |z . In addition, 1) can be restricted
to 8, thereby inducing an automorphism of a subalgebra of the type F{Y. However
we have already shown (case 1.1) that the two canonical forms in F{Y with k A(T) #
ka(J2) are not conjugate.

3.3 J = II(Fyy, §), m < n, then it can be reduced to canonical form of type
9. Next we are going to show that any two canonical forms J, and J5 of the same
type with ka(J1) # ka(J2) are not conjugate under an automorphism of H(F,,, 7).
Assume the contrary, that is, there exists an automorphism ¢ of H(F5,, j) such that
o(J1) = J2. Next we can choose S; C J;, S = F,(,f) such that k4(S1) = ka(J1).
Similarly, we can select So € Jo, Sy =2 FSY such that k A(S2) = ka(J2). By Lemma
2.1.4 there exists ¢ : Jo — J2, ¥(©(S1)) = S2. From the explicit [orm of Jo, ¢
can be extended to an automorphism o ¢ : H(Fy,,j) — H(Fy,, ). It follows
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that &) and S; have the same canonical forms, in particular, k4(S1) = ka(Sz), a
contradiction.

If1¢ 7, then in order to find the canonical form of J we use the same approach
as in the case of H(F,,). The theorem is proved.

O

Before we state the following theorem we introduce one more notation. Let J
be a simple Jordan subalgebra of A = F,(f), H(F,) or H(Fs,,j), and e be the
identity of J. Then e can be decomposed into the sum of idempotents minimal in

A, e=e+ ...+ e, Then k =degyJ.

Theorem 2.1.12. Let A be a Jordan algebra of any of the following types: F,(L"),
IT(F,) or I1{(Fy,,,7), n >3, and T, J' be proper simple matriz subalgebras of A. If
J' has the same type as J, then J' € C(J) if and only if deg,J = deg,J' in all
cases except for A= H(Fy,§), J = FS H(Fom,j) and A2 B, 72 FD . I

these cases it is additionally required ka(J) = ka(J").

Proof. First it should be noted that the degree of 7 > 3. The case of J of the degree
2 will be considered later in the text. Notice that in matrix terms deg 47 = deg,J’
is equivalent to rk (e) = rk (¢’) where e, ¢ are the identity of 7, J'.

The case of F"

In this case we assume that J and J' are subalgebras of F.,(L“‘) which is as usual
the set of all matrices of order n under Jordan multiplication. This case breaks into

the following subcases.
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(1) Let J be of the type FS for some m < n. First we assume that S(T) is a
simple algebra. Equivalently, k4(J) = rk(e). Let J’ be as given in the hypothesis
of the theorem. If 7" € C(J), then there exists an automorphism ¢ of F,E*) which
maps J' onto J. It follows that p(e') = e, therefore, rk(e’) = rk(e). Besides,
o(S(T")) = S(J). Hence, S(J') is also simple, k4(J") = rk(e'). It follows that
ka(J") = tk(¢) =1k (¢) = ka(T).

Conversely, if rk(e') = rk(e) and ka(J) = ka(J’), then ka(J") = ka(J) =
rk(e) = rk(e’), because ka(J) = rk(e). Therefore, ka(J') = rk(€'), that is, S(J’) is
also simple, and J, J' have the same canonical forms. This implies that 7’ € C(J).

Now we assume that S(J) is a non-simple semisimple subalgebra. Let J' be
another subalgebra which satisfies the hypothesis of the theorem. If 7' € C(J), then
there exists an automorphism ¢ of F,(LJr) which maps J’ onto J. Therefore, J' and
J have equivalent representations in F, and so do S(J') and S(J). Consequently,

either deg p1(Z;) = deg py(Z]) and deg p2(Z2) = deg p2(Z5) or deg py (Z,) = deg pa(L))

and deg p2(Zs) = degpi(Z]). Equivalently, [degpi(Zy) — degpy(T2)| = |degpi(Z}) —
degps(Z3)], that is, ka(J) = ka(J").

Conversely, if tk(e’) = rk(e) and k4(J) = ka(J’), then J and J' have the same
canonical forms. Therefore, these subalgebras are conjugate under some automor-
phism of F,(L’*'), and J' € C(J).

(2) Let J be of the type H(F,,) for some m < n. Suppose that J’ is another
subalgebra, of ESY) which has the type H(F,,). If J is conjugate to J under some

automorphism ¢ of F{" then o(e') = e and rk(e') = rk(e). In other words, the
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canonical form of 7' is exactly the same as that of J. Conversely, if rk(e’) = rk(e),
then J and J’ have the same canonical forms. Therefore, J' € C(J).

(3) Let J be of the type H([Y,,, ) for some m < n. The proof of this case is
exactly the same as the previous proof.

The case of H(F,)

Suppose that J and J’ are two subalgebras of 11(14,) that satisfy the hypothesis
of the theorem.

(1) Let J as well as J' be of the type F,(,f). Assume that J' € C(J). It
follows that there exists an automorphism of H(F,,) such that o(J') = J. Hence,
rk(¢’) = rk(e). Conversely, if rk(¢') = rk(e), then J and 7’ have the same canonical
form. Therefore, J' € C(J).

(2) Now let both 7 and J' have the type H(F,,) (or H(Fy,,,7)). If 7' € C(J),
then there exists an automorphism ¢ of H(F),) that sends J’ onto J, o(J') = J.
Consequently, rk(¢') = rk(e).

Conversely, if rk(e’) = rk(e), then they have the same canonical form. Therefore,

J eC(T).

The case of H(F5,, j)

Suppose that J and J' are two subalgebras of H(Fy,,, j) that satisfy the condi-
tions of the theorem.

(1) Let J as well as J' be of the type FY m < n. Assume that J' € C(J).
It follows thal there exists an automorphism of H(Fy,,j) such that o(J") = J.

Hence, rk(¢/) = rk(¢). Since J’' and J are conjugate in I1(Fy,, j), they have the
Jug
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same canonical forms in H(Fy,, j). Therefore, ka(J) = ka(J').

Conversely, if all conditions hold true, then J and J' have the same canonical
forms. Therefore, 7' € C(T).

(2) Now let both J and J’ have the type H(F,), m < n. If J" € C(J),
then there exists an automorphism of H(Fy,,j) that sends J’ onto J, ¢(J’') = J.
Consequently, rk(¢) = rk(e).

Conversely, if rk(¢’) = rk(e), then they have the same canonical forms. Therefore,
J' € C(T).

(3) Now let both J and J’ have the type H(Fy,,,j), m < n. If J' € C(J),
then there exists an automorphism of 17(Fy,,, j) that sends J' onto 7, o(J') = TJ.
Consequently, rk(e’) = rk(e), ka(J) = ka(J").

Conversely, if rk(e¢') = rk(e) and ka(J) = ka(J’), then they have the same
canonical forms. Therefore, J' € C(J)

The theorem is proved.

o

Corollary 2.1.13. If m is any number such that m < n, and n = mk +r, 0 <
r < m, then there exist subalgebras of s of the type H(F,,). Moreover, there are
precisely k conjugacy classes corresponding to H(F,,). If 2m <n, and n = 2mk+r,
0 <7 < 2m then Y has subalgebras of the type (o, J), and the number of
conjugacy classes corresponding to H(Fyy,, j) is equal to k. Finally, if m < n, and
n—mk4r, 0 < r < m then there exist subalgebras of F,(, h of the type F,(,,,"), and,

moreover, the number of conjugacy classes is given by Zf:l[é]
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Corollary 2.1.14. If m is any number such that m < n, andn =mk+r, 0 <r <
, then there exist subalgebras of H(F,) of the type H(F,,). Moreover, there are
precisely k conjugacy classes corresponding to H(F,,}. If 2m < n, andn = 2mk+r,
0 <r < m then H(F,) has subalgebras of the lype Jolne , and the number of conjugacy
classes corresponding to FiP s equal to k. Finally, if 4m < n, and n = 4mk + r,
0 < 1 < 4m then there exist subalgebras of 11(F,) of the type I1(Fy,, ), and,

moreover, the number of conjugacy classes is k.

Corollary 2.1.15. If m is any number such that m < n, andn=mk+r, 0 <r <
m, then there exist subalgebras of 11(Fy,, 5) of the type 11(F,,). Moreover, there are
precisely k conjugacy classes corresponding to H(F,,). If m <n, and n = mk +r,

0 < r < m then H(Fs,,j) has subalgebras of the type F,(,{H, and the number of
conjugacy classes corresponding to Fy) is equal to Zk (2], Finally, if m < n, and
n=mk+r, 0 <1 <m then there exist subalgebras of 1I(F,, ) of the type I1(I,,, j),

. . k i
and, moreover, the number of conjugacy classes is > _;_,[].

2.2 Subalgebras of the type J(V, f)

First we recall a few facts from [29] concerning Clifford algebras over a field of
characteristic not 2. Let J = F1 &V where V = span{z;....,z9,), and [ a
non-degenerate symmetric bilinear form on V. Then, C(V, f) is a central sim-
ple associative algebra with a unique canonical involution ‘— that fixes clements
from V. In this case the imbedding of 7 into C'(V, /)" we will call cunori-
cal of the first type. Next, let J = F1 ® V where V = span{x),.... 2o 1),
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and Vo = span(zy,...,Ton). Then, C(V, f) is isomorphic to a tensor product of
C(Vp, f) and the two-dimensional center E of C(V, f). Moreover, F = F[z] where
Z = I1%y...Toymy1. In other words, C(V, f) = 1), @ I,, T; = C(Vy, f). Note that
FloV = J+1.)T, C C(V, f)/T; = C(Vy, f)*). This imbedding of J = F1 &V
into C(Vg, f)) we will call canonical of the second type.

Let A be a simple matrix Jordan algebra, and J be a subalgebra of A of the
type J(V, f). According to [29], J of the type J(V, f) is maximal in A if and only

if one of the following cases holds

1. A=(CW, f),-), T =F1®V where dimV = 2m + 1 and m is odd.
2. A=H(C(Vo, f),—), T = F1®V where dimV = 2m + 1, m is even.

3. A=11{C(V,[), =), J = F1® V where dim V = 2m

Next we recall that if dimV = 2m, and m = 0,1(mod4) then
dim H(C(V, f),—) = 212"+ 1). If dim V = 2m and m = 2.3(mod 4) then
dim H(C(V, f),—) = 2" }2™ —1). If dim V = 2m + 1 and m = 0(mod 4) then
dim H(C(Vp, f),—) = 2" 1(2™ + 1). If dim V = 2m + 1 and m = 2(mod 4) then

dim H(C(Vy, f), ) = 271 (2™ — 1).

2.2.1 Canonical realizations of J(V, f)

Let A be a simple matrix Jordan algebra, and J = F'1 () V be a subalgebra of A.

Then all realizations of J in A listed below we will call canonical.
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Type 10. A = F{Y n=2m+r dim V = 2m,

= {diag(X, ..., X,0,...,0
\7 {lag(alaav 7)}

where X is a matrix of order 2™, and if 7; denotes the projection on the ith non-zero

block, then m;(J) C FQ(;E) is a canonical imbedding of the first type.
Type 11. A= F,(L+), n=2"+r dimV = 2m + 1,

= {diag(X, ..., X,0,...,0
J = {diag(X, 2 )}

where X is a matrix of order 2™, and m;(J) C Fg;i[) is a canonical imbedding of the

second type.

Type 12. A= F,EH, n=2"+r, dimV =2m + 1,

= {diag(X,.... X, X" ..., X"0,...,0
T = {dia( L X500}

s k

where s + k = I, X is a matrix of order 2™, and m;(J) C FZ(I) is a canonical

imbedding of the second type.

Type 18. A= H(F,), n=2"+r, dim V = 2m,

= {diag(X,...,X,0,...,0
J = {diag( 717 )}

. . . +) . .
where X is a symmetric matrix of order 2™, and m(J) C Fz() is a canonical

imbedding of the first type.

Type 14. A= H(F,), n=2""+r dim V = 2m,

= {diag(X, ..., X,0,...,0
J = {diag( l )}
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where X is of the form (1) in which A and B are of order 2. If S denotes the

algebra of the form (1), then m;(J) C S is a canonical imbedding of the first type.
Type 15. A= H(F,),n=2""+r dim V =2m + 1,

= {diag(X,...,X,0,...,0
J = {diag( l )}

where X is of the form (1) in which A and B are of order 2. If § denotes the entire

algebra of the form (1), then m;(J) C S is a canonical imbedding of the second type.
Type 16. A=11(F,),n=2"+r, dim V = 2m + 1,

= {diag(X, ..., X,0,...,0
J = {diag( )}

!

where X is a symmetric matrix, and m;(J) C Fz(f ) is a canonical imbedding ol the

second type.

Type 17. A= H(Fa,,7), n=2"14r, dim V = 2m,

J = {diag(X,...,X,0,...,0,X,..., X,0,...,0),}
! K [ k

where k + 2™ = n, X is a symmetric matrix of order 2, and m;(J) C Fil' is a

canonical imbedding of the first type.

Type 18. A = H(Fy,,j), n = 2™l + v, dim V = 2m, J has a canonical form
(3.3), and if m; denotes the projection of J into ith simple component (of the type
H(Fym, 7)) of (3.3), then m;(J) C H(Fym,j) is a canonical imbedding of the first
type.

Type 19. A = H(Fy,,7), n=2"1+r, dimV = 2m + 1, J has a canonical form
(3.3) where m,(J) C H(Fy=,j) is a canonical imbedding of the second type.
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Type 20. A= H(Fy,,7), n=2"14r, dim V = 2m + 1,

J = {diag(X,..., X, X" ... X'0,...,0, X" ... X' X,...,X,0,...,0)}
N i’ ~ AN P
s k s k

where s + k = [, X is a matrix of order 2", and m(J) C Fi) is a canonical

imbedding of the second type.

Theorem 2.2.1. Let A be a simple matriz Jordan algebra, and J be a subalgebra

of A of the type J(V, f). Then, J has a unique canonical form as above.

Proof. Let J = I'1 () V. Then the following cases occur.

Case A = F,,([*')

1.1 Let dim V = 2m. Then U(J) = C(V, f) is a simple algebra. In particular,
S(T)=U(T).

If S(J) = A, then n = 2", A= U(J). Therefore, the imbedding of J into A is
equivalent to the imbedding of F1@®V into C(V, f)tH). Therefore, this is a canonical
imbedding of the first type.

If S(J) C A, then S(J) is a proper simple associative subalgebra of F,,. There-
fore, S(J) can be reduced to

diag(Y,...,Y,0,...,0 11
{diag( | )} (11)

where the order of Y is 2, and n = 2™[+r. As aresult, J also takes the canonical

form of type 10.
1.2 Let dim V =2m + 1. Then U(J) = C(V,)), and U(T) = Iy b Ly, I; =
C(Vy. f). Hence S(J) is isomorphic to either C(V, f) or C'(Vq, f).
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If S(J) = A, then the imbedding of J into A is canonical of the second type.

IfS(J)=1;,and S(J) C A, then S(J) is a proper simple associative subalgebra,
of F,,. Therefore, S(.J) can be reduced to (11). As a result, 7 takes the canonical
form of type 11.

Finally, if S(J) = Z; @ I,, then J takes the canonical form of type 12.

Case A =T1I(I,)

Let M be the maximal subalgebra of H(F,,) such that J C M C H(F,). Then,
the following cases occur.

I. M =8®R where S = & ® Sy a semisimple factor, R the radical. Then,
we reduce the problem to the case of symmetric matrices of a lower dimension (see
section 2.1).

2. M =& where S = & & 8,. Like in the previous case we can reduce the
problem to the case of symmetric matrices of a lower dimension.

3 M=85R where § = Féﬂ, R the radical.

4. M = F1 @& W where W is a finite-dimensional vector space.

After a scries of reductions of the form 1 and 2, the image of J becomes a

subalgebra of

W
(g



A 0

0 Ay
where A; = 11(I4,,). Let 7; be the projection of J into A;. To simplify our notation
we denote m;,(J) as J', and the maximal subalgebra of A; which covers J' as M,
J’ CM;CA :H(Fni)'

Case 1. Let dim V = 2m and m = 0,1(mod 4). Then we have the following
cases:

(a) Let M; = Fl@W. If S(J') = F,,, then n; = 2™, F,, = C(V, f), aud the
imbedding of J' into E.,” is equivalent to the imbedding of F1® V into C(V, HH,
that is, canounical of the first type. If S(J’) C F,,, then H(S(J")) € H(F,,) is a
proper simple subalgebra of H(F,,). Hence, n; = 2™ + r, and H(S(J')) can be
reduced to (11) in which X denotes a symmetric matrix of order 2. Then, J' takes
the canonical form of type 13.

(b) Let M; =8 & R where S = F g) By using #-isomorphism defined in the
proof of Theorem 2.1.11 we obtain that 6~ 1(7') C Fi7. 1 8(6°1(F") = Fg’), then

k3
n; = 2! and the imbedding of 6=1(J’) into F° Sj ) is the canonical imbedding of the
2
first type. In particular, 0~'(J') € H(Fz). As a result J' takes the canonical form
of type 13 in which [ = 2 and there are no zeros. 1f 5(J’) C I'nr”, then S(0-"(J")) is
2

a proper simple subalgebra of F LS therefore, takes the form (11) and n; = 2™+ 7.
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Hence J takes the canonical form 2.1.
Case 2 Let dim V = 2m, m = 2,3(mod 4).
(a) Let M; = FleW. If S(J') = F,,, thenn;, =2" F, = CWV,f), J C

H(F,,). Hence we have the following commutative diagram:

id

J =MooV — J=F1pV

Lo L
Uy FiP
where ¢ = ¢ o 1. Therefore, o(J') = @(n(J’)) is symmetric with respect to the

»

canonical involution "—” which is symplectic in this particular case. On the other

hand, o(J') is also symmetric with respect to j = ¢ olop~™!. By the uniqueness of

" 4§’ equals to "—". However this is not possible because dim H(C(V, f), —) =

e o ZED — qim H(C(V, f), ). If S(J') € F,, then H(S(J") C

2 2

H(F,.) is a proper subalgebra of H(F,,). Hence n, = 2™ + », and H(S(J"))
can be reduced to (11) where X denotes a symmetric matrix of order 2. Let 7;;
denote the projection on jth non-zero block of (11). Then the imbedding 7;;(J") C
mi;(H(S(J'))) is similar to the above imbedding, which is not possible.

(b) Let M; = S®R where § 22 F{. Then 6-1(J") C FL). Since S(6-1(J")) =

2 2

U(J"), then n; = 2" + . and S(0-1(J")) can be reduced to (11) in which X is
any matrix of order 2. Hence m;;(0~1(J")) C F. (i)is a canonical imbedding of the
first type, and J has the canonical form of type 14.

Case 3 Let dim V = 2m + | where m is odd.

(a) Let M; = Fle W. If S(J') = F,,, then n;, = 2™, F,. = C(Vq, f). There-



fore, the imbedding of J' into F,(L:r) is equivalent to the imbedding of F'1 ¢ V into
C(Vy, f)) which is a canonical imbedding of the second type. Since m is odd,
J' is a maximal subalgebra in Fr(L:r). However, J' C H(F,,), hence, J' cannot be
maximal. This case is not possible. If S(J') C F,,, then H(S(J')) € H(F,,) is
a proper subalgebra of H(F,,), and, therefore, can be reduced to (11). However,
the imbedding of m;;(J’) into Fz(:{) is as shown above. Hence this case is also not
possible.

(b)Let M; = S®&R where S = Féf). Acting in the same manner as in case 2(b)
we will come to the canonical form of type 15.

Case 4. Let dim V = 2m + 1 and m = 0(mod 4). Acting in the same manner
as in previous cases we will reduce J' to the canonical form of type 16.

Case 5. Let dim V = 2m + 1 and m = 2(mod 4). Acting in the same manner
as in previous cases we will reduce J' to the canonical form of type 15.

Case A = H(Fy,, j)

Let M be the maximal subalgebra of H(F3,,j) such that 7 C M C H(F,,,j).
Then, the following cases occur.

1. M =8®R where § = §1 & S, a semisimple factor, R the radical. Then,
we reduce the problem to the case of symplectic matrices of a lower dimension (sec
section 2.1).

2. M =8 where S = & © 8. Like in the previous case we can reduce the

problem to the case of symplectic matrices of a lower dimension.

3. M =8 3®R where § = F,(LH, R the radical.
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4. M = F1® W where W is a finite-dimensional vector space.

After a series of reductions of the form 1 and 2, the image of 7 becomes a
subalgebra of the algebra in the canonical form of type 9 in which the ith component
has order 2n;. Let 7; denote the projection of J into the ith simple component of
canonical form of type 9.

Case 1. Let dim V = 2m and m = 0, 1(mod 4).

(a) Let M; = FleW. If S(J') = Fop,, Fon, = C(V, f), 2n; = 2. Acting in
the same manner as in case 2(a), we can show that this situation is not possible.
Likewise if S(J') C Fy,, then we can reduce this case to the case just considered.
Therefore, it also never occurs.

(b) Let M; =S ® R where S = F,(L:r). Then J' C F,,ﬁj), therefore, S(J') can
be brought to (11), and 7;;(J") C Fz(I) is the canonical imbedding of the first type.
Finally the original subalgebra takes the form of type 17.

Case 2 Let dim V = 2m, m = 2,3(mod 4).

(a) Let M; = Flo W. If S(J') = Fy,, then 2n; = 2™ F,, = C(V.f),
J C FQ(:;) is the canonical imbedding of the first type. If S(J') C F,,,, then
H(S(J"),j) € H(Fa,,j) is a proper subalgebra of H(Fy,,, j), that is, n; = 2™l 47,
and H(S(J'), j) can be reduced to canonical form of type 9 in which each component
has order 2. Then, J takes the canonical form of type 18.

(b) Let M; = & © R where § = F,(L:r). This case also leads us to the canonical
form of type 18.

Case 3 Let dim V = 2m + 1 where m is odd.
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(a) Let M; = Flo W. If S(J') = F,,, then 2n; = 2™, F,, = C(W, f).
Therefore, the imbedding of 7' into FQ(:) is equivalent to the imbedding of F1 @V
into C(Vp, f)) which is canonical imbedding of the second type. Since m is odd,
J' is a maximal subalgebra in FZ(,,Z). However, J' C H(Fy,,,j), hence, J' cannot be
maximal. This case is not possible. If S(J') C F,,, then H(S(J'),j) C H(Fs,,,j)
is a proper subalgebra of I1(F,,,j), therefore, can be reduced to canonical form
of type 9. Let 7;; denote the projection of J' into the jth simple component of
canonical form of type 9. However, the imbedding of m;;(J") into F‘z(:) is as shown
above. Hence this case is also not possible.

(b) Let M; =S > R where § = FSP . Then J' C F\", therefore, 5(7') can be
brought to (11), and m;(J") C FQ(I) is the canonical imbedding of the second type.
Finally the original subalgebra takes the form of type 20

Case 4. Let dim V = 2m + 1 and m = 0(mod 4). Acting in the same manner
as in previous cases we will reduce J' to the canonical form of type 17.

Case 5. Let dim V = 2m + 1 and m = 2(mod 4). Acting in the same manner

as in previous cases we will reduce J’ to the canonical form of type 18.

Corollary 2.2.2. Let A be a Jordan algebra of either type H(F,,)) or H(Fx,.J), and
J be of type J(f,1), dim J = r. If2*5 <n, then J can be imbedded in A of type

H(F,). If 2415 < n, then J can be imbedded in A of type H(Fa,, j).
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Chapter 3

Simple decompositions of simple
Jordan superalgebras with

semisimple even part

Jordan supcralgebras were first studied by V.Kac [10] and I.Kaplansky [13]. Tn [13]
V.Kac classified simple finite dimensional Jordan superalgebras over an algebraically
closed field of zero characteristic. Let us introduce the definition of a Jordan super-

algebra.

Definition 3.0.3. A Jordan superalgebra is o Zy-graded algebra of the form: J =

Jo + J1 that satisfies supercommutativity
aoszﬂ = ('_1)(y»ib/iRaa
where a, € Ju, a, B € Zy and R denotes multiplication on the right, and the lin-
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earized Jordan identity in operator form
Roy Roy Re, + (=) R, Ry, Roy + (=1)"" Riggee

= Ragpy Re, + (1) Roe, By + (—1)*PT Ry R,
= (—1jaf’Rbﬁ RooRe, + (=1)*""' R, Roy Ry, + Raqvyen)
= (=1)*""R, Rop, + (=1)*? Ry, Rope, + Rap Rope, s
where a, € Jo, bg € Jp and ¢y € 7.

Definition 3.0.4. A superinvolution of an associative superalgebra B is a graded

linear map * : B — B such that
a” = a, (anbp)" = (—1)byar,.

Finite-dimensional simple Jordan superalgebras with semisimple even part over a
field of characteristic not two have been classified by M.L. Racine and E.I. Zelmanov
[27]. To begin we bricfly recall this classification. If J is a simple finite-dimensional
Jordan superalgebra with semisimple even part over an algebraically closed field F'

of characteristic not 2, then J is isomorphic to one of the following superalgebras:

(1) My (F)) the set of all matrices of order n + m. Let

A0
M (F)SY = A€ M,(F). B € M,y(F)
0 B
and
" 0 D ,
Mn,'m(F)i - ,C S A[HLX’H,(F)7 D e ]\[nxm(F‘)
cC 0
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Then M, (F )(H becomes a Jordan superalgebra with respect to the above Z,-
grading under the Jordan supermultiplication;
(2) osp(n,m), the set of all matrices of order n + 2m symmetric with re-

spect to the orthosymplectic superinvolution. The superalgebra consists of matrices

A B
where A* = A, D is symplectic, B is any n x 2m matrix,
STB' D
0 I7n,
S = ;
—['m 0
A B
(3) P(n) = ,A€e M,(F),B"=B,C"=—-C e M,(F) »;
Cc A
B
(4) Q)™ = where A and B are any square matrices of order
B A

(5) Let V = V;+ V) be a Zy-graded vector space with a non-singular symmetric
bilinear superform f : VxV — F. Consider the direct sum of Fland V, 7 = F1®V

where 1 is the identity element, and determine multiplication according to

(al+v)(Bl+ w) = (afl + f(v,w)) + (acw + Pv).

Then J becomes a Jordan superalgebra of the type J(V, f) with respect to the
following Zo-grading: Jo = F + Vo, J1 = V1.
(6) The 3-dimensional Kaplansky superalgebra K3, (K3)o = Fe, (K3), = Fa +
2

Fy, the multiplication e = ¢, e - 2 = %l', ey = %l/a [z, y] = e

(7) The 1-parametric family of 4-dimensional superalgebras D;, D, = (D)o +
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(Dy)y, where (D,)g = Fey + Fey, (D;), = Fr + Fy, where €7 = ¢;, e - ¢a = 0,
€ &L= %ZL', ey = %y, [,y] = e1 +tea, i = 1,2. A superalgebra D, is simple only

if t #0. If t = —1, then D_, isomorphic A, ;(F).

(8) Ko, the Kac superalgebra:

Jo=(Ke+ Y Kuv)®Kf,

1<i<4

Ji = Z(sz + Ky;),

i=1,2
where
2 _ 0y, — .
e =e, e-U =V, U1V =2e =13 Uy,
1 1
2 _ np. o=
=1/ f'l’j~§$j~ f'yjfﬁyj,
1
P,'Ij:§17j. Y1 - U = Tg, Yo Uy = —X7. Ty * Vo = —Yo, T - Vg = Yi.
1

€ Yj :§Qj7 T2 V3 =21, Y1 V3=yY2, X1 Vg=1DX2, Y2 -V4=1Yi,
[Iuyi} =e—3f, [Il,l‘z] = V1, [1'1,3/2] = U3, [332,1/1} =1y, [l/l,yz] = Uy

and every other product is zero or obtained by the symmetry or skew-symmetry of
one of the above products. If the characteristic of F' is not 3, then Ky is simple.
If the characteristic of F' is 3, it possesses a simple subsuperalgebra of dimension 9
spanned by e, v;, 1 <1 <4, x;, y;, 1 < j < 2. We denote this superalgebra by Ky

and refer to it as the degenerate Kac superalgebra.

(9) Denote by H,(F) and S,(F) the symmetric and skew-symmetric n x n

matrices. For F a field of characteristic 3, let A = H3(F) and M = 53(F) & S3(F),
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two isomorphic copies of S3(F). To extend the Jordan algebra structure on A and

A-bimodule structure on M to a Jordan structure on J = A + M one defines
[S3(F), S3(F)] = [S5(F), Ss(F)] = {0},

and for any a,b € S5(F),

la,b] = ab + ba.

(10) Let B = By + B, with By = My(F), By = Fmy + F'my where F is a ficld

of characteristic 3. If we define a By-bimodule structure on B; by
C11My = My, €22M = 0, €121 = Mg, €211 — (),

myey = 0, Mi€oa = My, M1€12 = —TN2, TM1€21 — 0;
ciimg = 0, egemy = my, ejamy = 0, ea1my = my;
MoC11 = Mg, Mo€oy = 0, Mo€1o = U,WL2621 = —my,

and a multiplication from 13 x 13 to I3 by
2 _ 2 _ _ e —
my = —€a1, My = €12, M1M2 = €11, TNy = —EC2,

then B is a superalternative algebra with superinvolution (a +m)* = a — m, where
— is the symplectic involution of By. Then H3z(B), the symmetric matrices with

respect to the x-transpose superinvolution, forms a simple Jordan superalgebra.

Let J = A+ B be the sum of two proper simple subalgebras A and B. The
structure of these sums has first attracted the considerable attention in the cases
of Lie and associative algebras. The first case arises in Onichshik’s paper [23]. If
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one considers a compact connected Lie group G acting transitively on the manifold
G/G" where G” is a closed subgroup of G. A connected closed subgroup G/ € G
acts transitively on G/G” if and only if G = G'G". The triple (G, G’,G") is called
a decomposition and it entails a Lie algebra decomposition, I = L' + I” where
L, L', L" are Lie algebras of G, G', G”, respectively. Using topological methods
Onishchik has determined all decompositions I = I/ + I where L, I, 1" are rcal
or complex finite-dimensional semisimple Lie algebras.

For associative matrix algebras over an arbitrary field Y.Bahturin and O.Kegel
[4] proved that a matrix algebra of finite order cannot be written as a sum of two
proper subalgebras which are also matrix algebras.

It is worth noting that the problem of finding simple decompositions has scen
some interest from researches in the case of simple Lie superalgebras and Jordan
algebras. In the joint paper with T.Tvalavadze [32] we obtained complete classifica-
tion of simple decompositions for special simple Jordan algebras over an algebraically
closed field I of characteristic not two. Besides, in [36] the case of a simple Lie su-
peralgebra of the type sl(n, m) was considered by T.Tvalavadze. In [31] A. Sudarkin
classificd siiple decompositions Lic supceralgebras of the types P(n) and Q(n).

In [32] we considered special simple finite-dimensional Jordan algebras decom-
posable as the sum of two proper simple subalgebras over an algebraically closed

field of characteristic not 2. The main result in [32] is the following.

Theorem. Let J be a finite-dimensional special simple Jordan algebra over an

algebraically closed ficld I of characteristic not two. The only possible decomposi-
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trons of J as the sum of two simple subalgebras Jy and Jo are the following:

1. JE2FRV and ZhEFLO VY, Jo = F1laVa, where V, Vi, Vo are vector
spaces.

2. Bither 7 = F\7 and 7, @ HF), o 2 F1®V, or J = F{Y, n > 3,
Jy = H(F,) and J, is isomorphic to one of the following algebras: H(F,, ), H(F,)
or F,,Eﬂ.

3. J = 1(Q,) and Jr, Jo = FLD.

Notice that the above theorem describes all simple decompositions in simple
Jordan algebras in terms of the types of simple subalgebras. Our purpose here is o
obtain a classification of conjugacy classes of simple decompositions of simple Jordan
matrix supcralgebras with scmisimiple even part over an algebraically closed field of
characteristic not 2. Let J = A+ B and J = A’ + B’ be two simple decompositions
of J. These decompositions are said to be conjugate if there exists an automorphism
of J such that p(A) = A, ¢(B) = B'. In this chapter we will look at conjugacy
classes of simple decompositions in all types of simple matrix Jordan superalgebras
with semisimple even part.

Let J = Jo + Ji be a Jordan superalgebra. Then J is said to be nontrivial il
J1 # {0}. All superalgebras considered in this paper are supposed to be nontrivial.

Next we cite some important lemmas and theorems from [32] which will be

repeatedly used later.

Lemma 3.0.5. Let a Jordan algebra J of the type H(D,,) be a proper subulychra
of H(D,,) such that the identity of H(D,,) is an element of this subalgebra. If either
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1.D"=F and D=F, or
2. D = Flg], or Q, and D = Flq|,

then m < 3.

Lemma 3.0.6. Let V be a finite-dimensional vector space with a non-singular sym-
metric bilinear form f, and vy a fized non-trivial vector in V. Let S be the set of

all linear operators which are symmetric with respect to f. Then, Svy = V.

Theorem 3.0.7. Let J be a simple Jordan algebra of the type H(F,), and A, B

proper simple Jordan subalgebras of J. Then J # A+ B.

Lemma 3.0.8. Let W be the natural 2m-dimensional module for H(Q,,), and v be

an arbitrary non-zero vector in W. Then, dim H(Q,,)v = 2m — 1.

3.1 Decompositions of superalgebras of the type
Mrl,,71‘1,(F)(+)

Our main goal is to prove the following.

Theorem 3.1.1. Let A be a superalgebra of the type M, ,.(F)™) where n,m >
0 over an algebraically closed field of characteristic not 2. If both n,m are odd,
(n,m) # (1,1), then A has no decompositions into the sum of two proper nontrivial
simple subsuperalgebras. If one of the indices, for example m, is an even number and
the other is odd, then there are two congugacy classes of simple decomposilion of the

form: A = B+C where B and C have types osp(n, %) and M,,_1,,(F)™), respectively.
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If both indices are even, then A admits two types of simple decomposilions of the
following forms:

1. A= B, +C, where By and Cy have types osp(n.3) and M,,L_l,m(F)“ )

2. A= By+Cy where By and Cy have types osp(m, §) and My 12 (FYH) . Besides
there are exactly two conjugacy classes of simple decompositions corresponding to

each type.

Remark 1 If (n,m) = (1,1), then My ,(F)™) is a j-dimensional superalgebra of a
bilinear superform. Its decompositions will be considered later in Section 3.4.

Before the discussion of various properties of AL, ,,(F )(H we recall a definition
of the universal associative enveloping superalgebra of a Jordan superalgebra which
will be frequently used later [9].

An associative specialization v : J — U(J) where U(J) is an associative su-
peralgebra is said to be universal if U(J) is generated by u(J), and for any other
specialization ¢ : J — A where A is an associative superalgebra there exists a

homomorphism ) : U(J) — A such that the following diagram is commutative:

- A
Led T -
J = UWT)

Then U(J) is called a universal associative enveloping superalgebra of J. It is
worth noting that an associative superalgebra can be considered as an associative

algebra. The following theorem [19] plays a key role in the later discussion.

49



Theorem 3.1.2. Let U(J) denote a universal associative enveloping superalgebra
for a Jordan superalgebra J. Then U(M,EJ;)) = My (F) @ My, (F) where (k1) #
(1.1); U(Q(K)) = Q(k) & Q(k), k = 2; U(osp(m,n)) & My2,(F), (m,n) # (1,1);

U(P(n)) =2 M, .(F), n>3.

Remark 2 In the case when J = My (IYM), P(2), osp(1,1), Ky or D, the
universal enveloping superalgebras have more complicaled structure. Indeed, the uni-
versal associative enveloping superalgebras of the above Jordan superalgebras are no
more finile-dimensional. Also we note that if the characteristic of the base field F
equals zero, then Ky has no non-zero finite-dimensional associative specializations.
[19]

Now we look at the case when J =2 J(V, f). Let V = Vi + V| be a Zy-graded
vector space, dim Vo =m, dim V| = 2n. Let [ : V x V — F be a supersymmetric
bilinear form on V. The universal associative enveloping algebra of the Jordan
algebra F'1 ® Vj is the Clifford algebra C(Vo, f) = (1,e1,. .., emleie; + ¢je; = 0,1 #
j.e = 1). In Vi we can find a basis v, wy,...,v,. w, such that f(v;,w;) = &,
f(vi,v5) = f(w,w;) = 0. Consider the Weyl algebra W, = (1,v;,w;,1 <1 <
n, [0, w5) = 04, (05, v;] = [wy, w;] = 0). According to [19], the universal associative
enveloping algebra of F'1&Vj is isomorphic to the (super)tensor product C'(Vy, f)®p

W,.. We will utilize this fact in the following lemma.

Lemma 3.1.3. There are no nontrivial subsuperalgebras of the type J(V. f) in A(H),

where A is a finite-dimensional associative superalgebra.

50



Proof. We assume the contrary. Let B of the type J(V, f) be a subsuperalgebra of
A For B, we consider the universal associative enveloping superalgebra U (B). As
was mentioned above, U(B) = C(Vy, f) @ W,, where C(V;, f) is a Clifford algebra
for Vg, f is a bilinear form on V5, W, is a Weyl algebra, n = % dim V. Let ¢ denote
the embedding of B in A, i.e. ¢(z) = z for any = € B. If follows from universal
properties of U(B) , ¢ can be uniquely extended to a homomorphism ¢ @ U(B) — A.
Since @(z) = ¢(z) = z for z € Vi, (Vi) # 0. However, since V) generates W,,,
@(W,,) # 0. Tt follows from simplicity of W,, that g(W,,) = W,,. Therefore, A has

an infinite-dimensional subsuperalgebra. This contradicts our assumptions. 0

Lemma 3.1.4. Neither K3 nor Dy can be imbedded into My F)F).

Proof. Let A of the type K be a subsuperalgebra of Mys(F)™). We may assume

that A has a basis e, x, y satisfying (i) e-z = 3z, (ii) e-y = 1y, (iii) [z,y] =€, (iv)
e? = e. Since e is an idempotent, it can be reduced to one of the following forms: (1)
diag(1,0,0,0), (2) diag(1,1,0,0), (3) diag(1,1,1,0), (4) diag(1,1,1,1). Because of

(i) and (ii), case (4) is not possible. In the first and third cases, directly performing

the multiplications in (i), (ii) and (iii), we can show that there are no such x and

I 0
y in Mao(F). Finally we assume that e = where [ is the 2 x 2 identity
0 0
0 A 0 C
matrix. Then z = LY = , for some A, B, C, D, and (iii)
B 0 D 0

can be rewritten as follows: AD — CB =T, and BC — DA = 0. Adding these two

equations gives us [A, D] + [B,C| = I. The trace-zero matrix on the left-hand side



is equal to the identity matrix on the right-hand side, which is a contradiction.
Let A of the type D; be a subsuperalgebra of My o(F)™). We may assume that

A has a basis ey, ez, z, y satislying (i) ¢;-z = %a:, (il) €;-y = %y, (iii) [z, y] = e1 + e,

(iv) €2 = e;. Set e = e; + e,. Since e is an idempotent of rank > 2, e can be reduced

to
(1) diag(1,1,0,0), (2) diag(1,1,1,0), (3) diag(1,1,1,1). In the second and third

cases, by performing direct multiplications we can show that these cases are not

I
possible. If e = where I is the 2 x 2 identity matrix, then the same

00

argument as in case A 22 K3 works for A = D,. The lemma is proved.

O

Corollary 3.1.5. Neither K3 nor D, can be imbedded into A, (F)), My (F)(H,

osp(1,1), 0sp(2,1), P(2) and Q(2)(*).

Proof. The proof is a direct consequence of the fact that there are subsuperalge-
bras of the types My (F)®), My (F)Y®), 0sp(1,1), 0sp(2,1), P(2) and Q(2)*) in

Moo (F)H). O

Lemma 3.1.6. Let M, ,,(F)) = A+B where n,m > 0, and A, B be proper simple
subsuperalgebras of M, ,,(F)™) . Then neither A nor B has any of the following

types: Ks, Dy, Ml,l(F)(H, osp(1,1).

Proof. First of all, we note that if one of the subsuperalgebras, for example A, has

any of the types listed above, then either Ay = Fe or Ay = Fe, @ Fey where ¢,



e1, ez are idempotents. Next we assume the contrary, i.e. M, . (F)" = A+ B,
and A has one of the types listed in the hypothesis of the lenma. If we define a
pair of homomorphisms denoted as 7, my which are the projections on the ideals of

M,Lﬁ,,,L(F)(() }’), then the decomposition can be rewritten as follows:
F{Y = m(Ao) + mi(By),

FH = ma(Ao) + ma(Bo).

Any proper simple subalgebra of F,E,H (or E(,:r )) has dimension less than or equal
to (n—1)% (or (m — 1)%). Any proper non-simple semisimple subalgebra of P (or
F47) has a dimension less than or equal to (n—1)2+1 = n2 —2n+2 (or m? —2m+2).
If m(By) is a proper semisimple, then dim FP=n?<2+n2—2n+2,n<2
Similarly, if mo(By) is a proper semisimple subalgebra, then m < 2. Since both
projections cannot be improper simultaneously, one of them, say m (By), is proper,
hence, n < 2. If my(By) = F,(,f), then By = Flm D F,(,ﬁ while M, . (F) = My, (F).
However, in this case dim Fy > dim F; + 2.

Next we are going to consider two remaining cases.

1. My (F)Y) = A+ B. This decomposition induces the following:
Fyt = m () + m(Bo),

FO = my(Ag) + ma(By).

Notice that m,(By) is necessarily proper, otherwise either B = My (F)(") (an im-
proper subsuperalgebra) or B = My(F)") (a trivial superalgebra). 1f 71(By) is
simple, then 7 (By) = F (a one-dimensional algebra). If m(Bp) is semisimple, then

=
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m(By) = Fe| ® Fel, where ¢,

e, are idempotents. Besides, m(5y) is either F

or {0}. Hence By is either F or Fej @ Fel,. Therefore,

dim Ag + dim By < 4, a contradiction.

2. Myo(F)) = A+ B. The same argument as in case 1 works for My o(F)(H),

ie. dim Ay < 2 and dim By < 5 while dim FQ(H @ FQ(J’) = 8. This proves our lemma.

Next taking into account all previous lemmas we list simple decompositions that
might exist in M,,,,(F)™). Let A and B stand for simple non-trivial Jordan subsu-

peralgebras of Mn)m(F)(*). Then, M, ,(F)™" might be expressed as the sum of A

and B where

A B
1| Myy(F)® | M, (F)®)
2 | My (FYD | P(g)
3 | Mia(F) | Q(p)™
4l P QU™
5| Pk P(l)
6| Q™ | Q™
T osplk,1) | Myy(F)
8 | osp(k,1) | Q(p)+
9 | osp(k,1) r(q)
10| osp(k,1) | osp(p,q)
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Let S(A) and S(B) denote associative subalgebras generated by A and B in
M, 1 (F). Any decomposition of the form A7, ,,(F Y+ = A+ B produces a new one
of the form M, ,,,(F) = S(A) + S(B). Note that S(A) is a homomorphic image of
U(A). As a direct consequence of Theorem 3.1.2, U(.A) is either a simple associa-
tive algebra or a direct sum of two or more simple pairwise isomorphic associative

algebras.

Lemma 3.1.7. Let ]\[,(Lﬁ,)L = A+ B where A, B are two proper non-lrivial simple sub-
superalgebras in M, ,,(F)*) where n,m > 0. Then S(A) coincides with M, ,,(F)
if and only if one of the following conditions holds

(1) FEither A = osp(p,q), p+ 29 =n+m, or

(2) A= P(n) for the case when n = m.

Proof. First, we note that if conditions (1) and (2) are met, then S(A) = M,,..(F).
Let S(A) = M,,,.(F). First we show that A cannot be of the type either My (F)(H)
or Q(p)). If A has the type My, (F)), then k +1 < n +m because A is a proper
subsuperalgebra. By Theorem 3.1.2, S(A) is either a simple subalgebra of the type
M,.+1(F) or a non-simple semisimple subalgebra of the type My (F) @ My (F). In
both cases, S(A) # M, m(F).

If A= Q(k)*), then its associative enveloping algebra is always a non-simple
semisimple subalgebra which is a direct sum of at least two simple ideals of the type
M (F"). Therefore, S(A) # M, 1., (F).

For the other cases, A can either have the type osp(p, q) or P(k). I .A == osp(p, q),
then S(A) 2 M,,,(F'). Hence S(A) = M,;,,,(F) if and only if p+ 2¢ = n + m.
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This yields (1).

Next we continue our proof by assuming that n # m. For clarity, let n < n,
and A = P(k). Since U(A) = S(A) = Myi(F), S(A) = M, ,,(F) implies that
k=2m In turn Ay = FISH C (M,LJ,L(F)(J“))O ~ g g implies that 5" < n

and f% < m, that is, n = m. However, this contradicts our assumption.
In conclusion, it remains to consider the case when n = m and A = ’(n).

However, it is obvious that S(A) = My (F), and S(A) = M, (F) if and only if

k = n. This completes our proof. O

Lemma 3.1.8. Let M, ,,(F)") = A+B, n,m > 0. Then one of the subsuperalgebras
in the given decomposition has either the type osp(p,q) where p +2q = n+ m or

P(n) (only if n =m).

Proof. Let us assume the contrary, that is, neither A nor B is a subsuperalgebra
of any of the above types. Then, by Lemma 3.1.7, S(A) and S(B) are proper
associative subalgebras in M,,,,,,(F). Theorem 3.1.2 states that both S(A) and
S(B) are either simple associative algebras or non-simple semisimple associative
algebras decomposable into the sum of at least two pairwise isomorphic simple ideals.
Therefore, dim S(A) < k(242)? where k is the number of simple ideals, & > 1. If one
of the subsuperalgebras in the decomposition of A, ,,,,(F') has a non-zero annihilator
then by Proposition 1 in [4] no such decomposition exists. Therefore, both S(A) and
S(B) contain the identity element of the whole superalgebra. Hence S(A) N S(B)
contains the identity element as well. If S(.A) (or S(B)) is simple, then dim S(A) <
("—JZ”X. If S(A) (or S(B)) is non-simple semisimple, dim S(A) < (Lg'"—)z
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Thus, dim (S(A) + S(B)) < dim S(A) + dim S(B) < (n + m)% Therefore,
M, m(F) # S(A) + S(B). This implies that our assumption was wrong. The
lemma. is proved. O

Lemma 3.1.9. Let M, ,,(F)Y) = A+ B, n,m > 0, (n,m) # (1,1). If m is even,
and n is odd, then one of the subsuperalgebras is of the type osp(n, %), and the other
of the type My (F)YY) where either k = n — 1,n or | =m. On the contrary, if m is

odd, and n is even, then one of the subsuperalgebras is of the type osp(m, %), and

the other of the type My (F)™") where either k =m — 1,m or | =n.

Proof. Since the proof remains the same for both cases, we consider only the first
case. First, let n # m. In view of Lemma 3.1.8, one of the subsuperalgebras in
M, (F)H) = A+ B, for example A, is isomorphic to osp(p, q) where
p+2q=n+m. (1)
The decomposition of M, ,,(F)™) given above induces the following representation
of the even component Af, ,,,(F )gﬂ = Ay + By where A, ,,(F )E,Jr) = Vg F,(,,,”,
Ao = H(F,)® H(Q,). If for some i, 7;(Ag) = H(F,)® H(Q,), then either p+2¢ < n
or p+ 2q < m. Howcever these inequalitics conflict with condition (1). Hence cither
mi(Ag) = H(F,), ma(Ag) =2 H(Q,) or m(Ag) = H(Q,), ma(Ag) = H(F,). If the first

possibility holds true, then

I

1. BV = m(A) + m(Bo), m(A) = H(F,), p<n,

2. B = my(Ao) + ma(Bo), ma(Ao) 2 11(Q,), ¢ <.

e

Since p < n, ¢ < % and p+ 2q = n + m, it follows that p = n and g = . Clearly,

A has the type osp(n,3). If the second possibility holds true, then acting in the

e
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same manner, we can show that p =m, ¢ = 5. However, we assunied that 7 is odd.
Hence it remains to show that B =2 M, ;(F)™*) where a pair of indices &, satisfics
the hypothesis of the lemma. To prove this, we consider all possible cases for B in
a step-by-step manner.

If B = P(k), then the decomposition induces the following representation of
the odd part: /\'I,L,,,,L(F)EH = A; + By where dim A, = nm, dim B, = k2, that is,
2nm < nm+k* nm < k% Conversely, k < n, k < m since both projections 7, (Bj),
ma(Bp) are non-zero. Moreover, one of the inequalities should be strict since n # m.
Therefore, k* < nm, which is a contradiction.

IfB= Q(k:)(’”, then, acting in the same manner as in the previous case, we can
prove that M,,,(F)*) £ A+ B.

If B = osp(p,q), then 2mn = dim (M,,,.,(F)"?); < dim A, + dim B, < 2num
since p < n, 2q < m. Hence, dimB; = nm. It follows that p = n, ¢ = 3. The
original decomposition induces the representation of F,(,:r ) as the sum of two proper
subalgebras one of which has the type H(Q,,), which is not possible [32].

Overall, it remains to consider the case when A 2 osp(n, %), B = My (F)).

Again the decomposition of M,, ,,(F)*) induces that of M, ,,(F )(()H as follows:
My (F)ST = A+ By. Moreover, M, (F)sY = RSV GFRS | Ay = H(F,)®H(Qu),
By = Fk(f” & FZ(H. If both m1(By) and m(By) are non-simple semisimple, that is,
m (Bo) 2 By and mo(By) = By, then we have the following restrictions: k+1 < n and
k+1 < m. For clarity, let n < m. Hence the dimension of 7;(By), 7 = 1,2, is less than

n? — 2n+ 2. Without any loss of generality m;(By) = By that dim By < n? — 2n 4+ 2.
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Asa result7 dim MTL,T!L(F)6+) = n2 + ]n2 S ”("'2’{' b + L{l) +7'l2 -+ 2’ S0 ”"("’2’/§ 1) <

% + 2 — 2n, which is wrong. Therefore, we have only two possibilities: either
m1(By) or ma(By) is a simple algebra. According to [32], in the first case, k =n — 1,
or n and, in the second case, [ = m. Thus the lemma is proved for the case when
n # m.

To complete our proof we consider the case when n = m. First, we assume that
neither A nor B has the type P(n). By Lemma 3.1.8 one of the subsuperalgebras,

for example A, is isomorphic to osp(p, ¢), p+2¢ = 2n, that is, p = n, ¢ = §. Then,

we obtain two decompositions of the form
F{Y = m(Ag) + m(Bo), mi(Ao) = H(F,),

F(|> = 7['2(./40) + 7T2(B()), TI'Q(.A()) = H(Q%)

T
For some 1, let m;(BBy) be a non-simple semisimple subalgebra, then

F,SH ® Ff”, kE+1<n or
mi(Bo)

(1

IH(F) O H(Qy), k+21 <n

Therefore, dimm;(By) and dim By < n? — 2n + 2. However dim M,,,,(F )(()') <
dim Ay +dim By, 2n? <n? —2n+ 2+ w + w =2n% — 2n + 2, that is, n < 1,
and we assumed that (n,m) # (1,1). Hence both 7 (By) and m2(By) are simple. It
follows that m, (Bo) = FU1, mo(Bo) = B, that is, By = M,,_y.(F).

Next we let A be of the type P(n). Then B can be isomorphic to any of the

following superalgebras: P(k), Q(k)H), osp(k,1), M (F), for some integers k and

L.
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1. B = P(k), hence dim B = 2k* k < n. From dim M,,,,,,,,(F)(” < dim A-+dim B,
it is clear that &k = n, and the sum in the decomposition is direct. However since
both subsuperalgebras have the type P(n), they contain the identity of M, ,,(F)™*),
a contradiction.

2. B2 Q(k)™). In this case the proof is the same as in previous case.

3. B = osp(k,l). Since 2n* = dim (M, ,,(F))y < dim Ay + dim By < n? +
"(LQH) + % = 2n?, it follows that k = n, [ = 5. However, in the decomposition
of (M,,,(F'))o both subalgebras contain the identity element 1, a contradiction.

4. B2 My (F)™), k+1 < 2n. The even part of M, ,(F)" | that is, M,,,.(F){" is
the sum of two orthogonal ideals denoted as I, and [, and both ideals are isomorphic
to FLF. By the dimension argument, dim M, ,,(F)*) < 2n2 + (k + 1)?, 4n? <
2n? + (k+1)? s0 k+1>+2n.

If 1 € B, then 1 € By. Notice that By is the sum of two orthogonal ideals denoted
as J; and Jy where J; = FISH and Jy, = Fl(+). Since k+1>V2n, Jy C 1y, Jo C 1,
and both ideals contain the identity elements of I; and I, respectively. By Lemma
3.0.15, k< 3,1 < 5, and k+1 <n, a contradiction.

It follows that 1 ¢ B. Equivalently, B has a non-zero two-sided annihilator.
Let V = Vj + V) be Z,-graded vector space where dim Vy = n and dim V|, =
n. Let p stand for the natural representation of M, (F)*) in V. Then there
exists vy € V; annihilated by p(B). Since M, ,(F)*) = A+ B, p(M,, ,,(F)!")uy =
p(A)vg. According to the structure theory, A = Ay + A1 where A, is the sum

of two irreducible unital 4g-bimodules: the skew-symmetric matrices A/} and the
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symmetric matrices My. Besides, p(My ® M)(Vo + Vi) = p(M)Vy + p(M2) V).
Hence, p(A)vg = p(Ao)ve + p(Ai)vg = p(Ao)ve + p(Mi)vg. Since My consists of
skew-symmetric matrices, dim (p(M;)vg) = n — 1. Tt follows that dim p(A)vy =

n+n —1 < 2n, a contradiction. The lemma is proved. O

Example 1. A Jordan superalgebra of the type M,, ,,(F)™) where m is even can be
represented as the sum of two proper simple subsuperalgebras A and B which have

types osp(n,2) and M,_1 ,,(F)™, respectively.

Proof. To prove, we consider the first subsuperalgebra in the standard realization:

where A is a symmetric matrix of order n, B is a symplectic matrix of order m,

is any matrix of order n x m, § = where [ is identity matrix of order
-1 0

% . The second subalgebra can be viewed in the following form:
A B

(1)
C D

where A of order n x n has the last two columns equal and the last row zero; B
of order n x m has the last row zero; C of order m x n has the last two columns
equal and, finally, D of order m x m is arbitrary. By straightforward calculations
dim(A; + By) = dim A; +dim By — dim(A; N By) =mn+2m(n—1) —m(n —2) =
2min. ([
Example 2. A Jordan superalgebra of the type M, .,(F)") where n is even can also
be decomposed into the sum of A and B where A = osp(m, §) and B = My, 1 W (F)H.
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Proof. As above we consider the first subsuperalgebra in the standard realization:
A | C
S~ict| B
where A is a symmetric matrix of order m, B is a symplectic matrix of order n, ¢

0o T
is any matrix of order m x n, § = where [ is identity matrix of order

-1 0

5. The second subalgebra can be viewed in the following form:

A B

¢ D

where A of order m x m has the last two columns equal and the last row zero; B of
order m X n has the last row zero; C of order n X m has the last two columns equal
and, finally, D of order n x n is arbitrary.

By straightforward calculations dim(4;+B;) = dim A, +dim B, —dim(.A;NB,;) =
mn + 2n(m — 1) — n(m — 2) = 2mn.

O

Proposition 3.1.1. In terms of the types of simple subsuperalgebras Framples 1
and 2 are the only possible simple decompositions of My, (F) ), nym > 0 for
appropriate values of n, m.
Proof. As usual, we agsume the contrary, that is, there exist other types of simple
decompositions of M,, ,,(F )(+) different from ones in Examples 1 and 2. By Lemma
3.1.9, this decomposition takes the following form:

L. If m is even, then M,,,,(F)") = A+ B, A= osp(n. %), B = M;,(F)"") where
either [=n—1,0or nor k=m.
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2. If n is even, then My, ,,(F)™) = A+ B, A= osp(m, %), B2 My (F)*) where
either k=m — 1, or morl =n.
Then M, .(F), = Ay + By. It follows that dim M,,,,(F); < dim A, + dim B,

that is, 2nm < nm + 2lk, nm < 2lk. Hence, for even m, [ > %, in the case k = m,

m

and k > 7, in the case | = n—1 or n. Likewise, if n is even, then £ > %, in the case
I'=mn,and [ > %, in the case k = 1 — 1 or m. For clarity, we consider the case when
m is even, and [ = n — 1 because the proof remains the same for all other cases.
Let V = Vy+ V] denote a Zy-graded vector space where dim Vg = n and dim V| =
m. Fixing any homogenous basis of V, we get an isomorphism between End V' and
M, (I7) as Zo-graded algebras. Then let p stand for the natural representation of
B = By+ By in V. It follows from the definition of this action that p(By)(Vy) C Vi,
p(Bo)(Vi) C Vi, p(B1) (Vo) C Vi, p(B1)(V1) C Vp. Since By is a non-simple semisimple
Jordan algebra it acts completely reducibly in V. Next we describe this action in
more details. For this, we identify V with a Z,-graded vector space of the form
W = (vg) ®(Vy® F"™Y @ V/, r > 1 where vg is a vector in Vj annihilated by By (in
the case | = n we omit this vector), Vj is an invariant complementary subspace of
(vo), p(Bo)lvy = F Vs an invariant subspace of V; such that p(Bo)ly; = F,\(:i).
Moreover, Wy = (vg) ® Vj ® €y, Wy = Vi ® {ey, ..., e,.) & V] where (eg,¢),....¢,) is
a basis for F"*'. Then, p(Bo) = p(Bo)lwo) @ p(Bo)lvy ® Id,i1 @ p(By)lys. Note that
p(Bo)| oy = 0. In other words, by choosing an appropriate basis in Vi and Vi, p(By)
catl be written in a block-diagonal forn in which the first block of order 1 is zero,

the last block has order k, and the other blocks have order r + 1. Next we consider
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the representation of By. For this, we choose any a € By such that
P@)(Vi© P =0, p()(V]) £0. @)
All such elements form an ideal of By isomorphic to Fk(ﬂ. Then we choose
any non-zero r in B;. Let e denote the identity of B, e € By. If © denotes the
Jordan multiplication in M, .(F)™), then p(z)ve = p(z © e)vg = p(XL<)vy =
LHp(x)ple)vo + p(e)plx)ve) = $p(a)vo, that is, p(ax)vg = 0, for any = € By. Next
we find the representation of a ® x € B;. As was mentioned above, p(a ® z)(vy) =
0. Besides, 2p(a © 2)(V @ ) = p(@)p(@)(V§ © ) + pla)p(a) (V] & ew) € Vi,
pla®z)(Vy & (er,...,e.)) =0, pla®x)(V]) C Vy ®ep. Clearly, we can find ¢ € By
whosc action satisfics the following formula:
p(O(Vg& FT) #0,  p(e)(V) =0. (3)
Now we need to determine the action of
co(z0a) (4)
Since 2p(c © (a ©® z)) = p(c)p(a ® x) + p(a ® z)p(c), we have the following: p(c ©®
(a®x))(vg) =0, ple®(a®x))(Vy ® (e1,...,e)) = 0. Besides,
ple ® (z © a))(Vy ® e0) = p(c)p(z)p(a)(Vy ® eo) + plx)p(c)p(a)(Vy © eo)+
A )V & o) + pla)pla ) (V]  co) =
pla)p(z)p(e)(Vg ® eo) C V. (5)
Similarly,

ple® (z © a))(Vi) = plc)p(z)p(a) (Vi) + pz)p(c)p(a)(Vi)+
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pla)p(c)p(z)(V) + pla)p(z)p(c)(V) =
p(c)p(x)p(a)(V)) C V5 & eo. (6)

Assume that p(z)(V)) # 0, p(z)(Vy ® eg) # 0(mod Vy ® {e1,...,¢,)). Then p(c ®
(x ®a)) restricted to V] represents all linear transformations from V{ to Vj ®eg, and
plc® (x ® a)) restricted to Vy & eg represents all linear transformation from Vj & e
to V/. Next we choose any y € B;. We have seen that there exists an clement y of
form (4) such that either p(y —a® (z @ c))(V]) =0o0r ply —a® (z 0 c))(Vy Re) =
O(mod Vy ® {ey,....e.)). Suppose that one of the above equations does not hold.
Without any loss of generality we let p(y')(Vy ®ep) # O(mod Vi@ (ey, ..., e,)), where
y =y —a® (x ). Multiplying 4 by the elements of the form (2) and then (3)
we obtain o © (y ©¢) € By and p(d © (y © NV & F') =0, pld © (y ©
WL = pla)py ) WVi C Vi ® eq. Moreover, pla’ © (ff © ) : Vi — Vi ® eq
represents all linear transformations from k-dimensional vector space into (n — 1)-
dimensional vector space. Besides, all such elements are linearly independent from
all the elements of the form (4). Therefore, we found 2(n — 1)k linearly independent
elements of By, (dim B; = 2(n — 1)k). If there is at least one element § € B, such
that either p(7)(Vy @ eg) # 0(modV)) or p(5)(Vy @ (e1,...,€.)) # 0, then it will also
be linearly indeperdent with all above elements. Hence, by dimension arguments,
there is no j satisfying the above conditions. Consequently, for all elements in A,
the following p(7)(V¢) = 0(modVy), p()(Vi © (o1, . en)) = 0, p(@)(V}) S Vi & ¢
hold truc. Hence, the odd part consists of all lincar transformations ¢ such that

(Vi ®ep) = V], o(Vi® (e1,...,e)) =0, (V) = Vj ® eg. Then it follows from
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By ® By, C By that By = 0, a contradiction.

We henceforth assume that the equations p(y — a © (x @ ¢))(V{) = 0 and p(y —
a®(x o) (Vy&e) =0(modVy ® (e1,...,e,)) hold true simultaneously. Then
multiplying y —a® (z © ¢) by the elements (4), we obtain some elements of By which
act on V{ and V{® ey, ..., e,) non-invariantly. Hence, y—a®(z®¢) = 0. Therefore,
the odd component of A; has form (7). As proved before, this is not possible.

Next we assume that p(z)(Vy ®eg) = 0(modVy ® (e1,...,€e,)), for all z € By, and
for at least one element ' € By, p(«/)(V]) # 0.

Acting in the same manner as before, we obtain o/ ©® (¢’ © ¢) € By which acts
trivially on all subspaces except for V/, which it carries into Vj ® ¢y. Considering
the difference between an arbitrary element y € B; and a corresponding element
a’” © (2" © "), we can show that p(y —a” ® (2" © ) (Vs ® e) = O(mod Vy ®
(e1,...,e)y ®V]), ply —a" ® (2" © ")) (V]) = 0. Again multiplying o’ ® (z/ © )
and y —a” © (2" © "), we obtain some elements from By acting on V{ non-trivially.
Then we conclude that B; consists of all elements which act on Vj ® ¢, trivially and
carry the other subspaces into Vj ® ep. Hence By @ By = 0, a contradiction.

Finally, if p(z)(V}) = 0, p(z)(Vy ® ep) = O(mod (Vg @ F"t1)), then it follows that

By @ By = 0, which is clearly a wrong statement. The proposition is proved. )

Now we are ready to explicitly describe all conjugacy classes of simple decom-

positions of M, ,(F)™). We start with the following lemma.

Lemma 3.1.10. Let F\") = A+ B where A= F\") B = H(F,). Then there are

7

precisely two conjugacy classes corresponding to the above decomposition.
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Proof. Let V be a n-dimensional vector space with a non-singular symmetric bilinear
form f. Next we consider the set £ consisting of all ¢ € End V such that po gy =
wo © p = 0 for some non-zero fixed ¢y € End V. Further we will be interested only
in g such that p2 = ¢y and dim @o(V) = 1, and £ is a simple algebra of the type
Fo-1. Let ¢o(V) = span(z) where x € V. Let {e,...,e,} be a basis orthonormal
with respect to [. Next the proof is divided into two cases.

Case 1. Let f(x,xz) # 0. Therefore, we can normalize g in such a way that
f(z,z) = V2. Hence, there exists an orthogonal linear mapping ¢ that sends
T to e, — e,1 (Witt’s Theorem [5]). Denote @, = ¥ o ¢y o ¥t Notice that
wy(V) = span{e,, — ¢,—1). Then, in an appropriate basis £’ = Ly " takes the

form:

Y z z (8,)

Tn,l - Tpn-2 | Tnn-1 | Prna-1

/

where Y = (y;), j=1,...,n—1,i=1,...,n—2, zis a (n—1)-dimensional column,

n—1 . -1
Tng = Y50y Qs = 1,..., 0 = 2, Tpn1 = Y-, a;z; for some «y;. Moreover, (8')
has the identity element of the form:
1 0 0o 0
Q 1 0 [}
e = :
0 [} 1 1
231 oy [e27 ] p—1
However, it is easily seen that €2 = ¢ if and only if a; = ... = a,,_; = 0. It follows

67



that z,,1 = ... = x,,-1 = 0. Hence, £’ takes the form:

(8)

o ... 0|U|O

where Y is any matrix of order (n — 1) x (n —2), z is a (n — 1)-dimensional column.

Case 2. Let f(x,2) = 0. 1t is easily seen that in this case x can be mapped to
€n1 + i€y, i = —1, by some orthogonal linear mapping ¢ (Witt’s Theorem, [5]).
Like in case 1, we denote @, = 1 0 @g o™ *. Notice that ¢h(V) = span (e, | +ic,).

Then, in an appropriate basis £ = wLy ' takes the form:

(9)

ELPE T Tpn-2 | Tnn-1 | Tn n_1
where Y = (y;:), 7 =1,...,n—1,i=1,... ,n—2, zis a (n— 1)-dimensional column,

n—1

n—1 )
Tpi = 9 iy Qi 0= 1,000, m =2, Ty = Y, 2z for some . Moreover, (9)
J )

has the identity element of the form:

1 0 4] 0
0 1 Q o
e ==
0 0 - 1 i
a1 a2 ... QGpop dapo
However, it is easily seen that e = e if and only if a; = ... = o,y = 0. It follows
that ,1 = ... = z,n_1 = 0. It follows that in an appropriate basis £ = YLyt
takes the form:
Y z iz
(9)
) o | o ’ 0



where Y is any matrix of order (n — 1) x (n — 2), z is a (n — 1)-dimensional
column.

Finally, according to above considerations any simple decomposition of Jaise

into
Az P and B2 H (F,) takes one of the following forms:

(1) F{Y) = A, + B where A; has the form (8), and B is taken in the canonical
form, i.e. the set of all matrices symmetric with respect to the involution generated
by f.

(2) F{") = A, + B where A, has the form (9), and B is taken in the canonical
form as in (1).

Assume that there exists an automorphism ¢ of P such that w(A) = Ay
and p(B) = B. The latter implies that ¢ can be restricted to the set of all matrices
symmetric under the ordinary transpose involution. Let V be a n-dimensional vector
column space, and f be a non-singular symmetric bilinear form that generates the
ordinary transpose involution. Then ¢ is induced by an orthogonal linear mapping
¥ of V. Recall that A; annihilates the one-dimensional subspace (z;) C V and
f(z1,21) # 0. Then A also annihilates the one-dimensional subspace (z,) C V and
J(z2,22) = 0. Since p(A) = As, ¥(x1) = axs where a € F, ¢ is orthogonal, a
contradiction. Therefore these decompositions cannot be conjugate. The lemma is
proved.

o

Now we are able to determine conjugacy classes of simple decompositions of

M,

ThIT

(F)). Recall that in terms of the types of simple subalgebras only the follow-
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ing decompositions are possible:

1. If m is even, then M,,,(F)*) = A+ B where A & M, ,,(F)*) and
B = osp(n, %).

2. If n is even, then Mn,,,,L(F)(*) = A+ B, where A & M,,_,,(F)*) and
B = osp(m, %).

If both n, m are even, then both decompositions are possible. Notice that since
the associative universal enveloping superalgebra of any superalgebra of the type
osp(k, 1) is My o/ (F), any isomorphism between two subsuperalgebras of M;, o/(F) of
the type osp(k,l) can be extended to an automorphism of My o(F). Therefore the
second subsuperalgebra in decompositions 1 and 2 can be considered in the canonical
form.

Examples 1 and 2 show us how the simple decomposition that occurs in the first
case of Lemma 3.1.10 can be lifted up to the decompositions of M, (F )(”. Next
we are going to show that the simple decomposition in the second case of Lemma

3.1.10 can also be extended to the decompositions of M, ,,(F)*).

Example 3. There exists a simple decomposition of M, .,(F)™ (m is even) of the
form M, ., (F Y = A+ B where A is taken in the canonical form, and B has the

following realization:

A x| i B
Q . o 0 0 8] . 0 (9”)
C y iy D
/
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where A and C are any matrices of orders (n — 1) x (n — 2) and m x (n — 2),
respectively, x and y are (n — 1)-dimensional and m-dimensional columns, B, D
are matrices of orders (n — 1) x m and m X m, respectively. In this decomposition

A= osp(n, %) and B = M,y ,,(F)().

2
Example 4. There exists a simple decomposition of M, ,,(F)*) (n is even) of the
form M, (F)*) = A+ B where A is taken in the canonical form, and B has the

following realization:

A T ix B
0 4] 0 4] 0 0
C y | iy D

\
where A and C are any matrices of orders (m — 1) x (m — 2) and n x (m — 2),

respectively, = and y are (m — 1)-dimensional and n-dimensional columns, B, D
are matrices of orders (m — 1) X n and n X n, respectively. In this decomposilion

A= osp(m, 2) and B My, 1,(F)®).

12
Lemma 3.1.11. Let M, , () = A+ B where A =2 M,y ,(F)P), B 22 osp(n, w).

Then there are precisely two conjugacy classes corresponding to this decomposition.

Proof. In order to reach our goal we first show that the decompositions in Example
1 and 3 are not conjugate under an automorphism of M, ,,(F )(*). Assume the
contrary, i.e. M, .(FY*) = A + By = A, + B, where A; as in Example 1, A} as
in Example 3, and both By and B] have the standard realizations, and there oxists
an automorphism ¢ of M, ,,(F)™) such that w(A4,) = A} and ¢(B,) = Bj.
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Notice that (Ai)o = 1 @ Jo, J1 = F 0y = D and (By)o = Ty @ T,
Ty = H(F,), T, = H(Qy). Similarly, (4)o = Ji @ Jj, J; = F\5, Jy = FSY| and
(By)o=T{®T;, T] = H(F,), T, = H(Qn).

Since ¢ is an automorphism of superalgebras, ¢ = ¢y + @1 where g
M,L’,,I,(F)SH — M,”,,,(F)(()H, Y1 M,L,,,,L(F)gﬂ — M,L,,,,L(F)(ﬁ). In particular, ¢q is
an automorphism of the even part. Hence, wo((A;)e) = (Ao, wo((B1)o) = (B))o.
As a consequence, Mn,,,,L(F)(()H = (Ai)o + (Bi)o = (Ao + (Bi)o. Notice that
(M (FY D)o =L@ I, I 2 FSOL Ly 22 FSD L IE g 2 My (F)S — M, () s
an automorphism, then either po(lh) = I, wo(l2) = Iy or wo(Iy) = Iy, wo(l2) = 1.
Notice that 7y C [, J; C 11, To C 1y, Jo C Iy, Similarly, 7Y C 1y, J{ C 1, T, C I,
Ty C I I oo(1) = I, wol(la) = Iy, then wo(Jy @ Jo) = wo(J)) @ ol Ja) = J. @ J5.
Besides, @o(J1) C I and ¢o(J2) C I. Hence ¢o(J)) = J{, wo(J2) = Jj. Similarly,
po(Ty) =Ti, po(Ta) = T;.

Therefore, Fﬁ) = J1 + 11 = J] + 1| and these decompositions are conjugate,
which is a contradiction (see Lemma 3.1.10).

If wo(lh) = I, po(l2) = I, then @o(Ty @ T) = o(T)) © o(Tz) = T{ & Ty.
Since (Th) C I, o(T2) C L, p(Th) = T3, ©(13) = T|. However, T\ and Tj are
non-isomorphic, a contradiction.

Next we will prove that any simple decomposition of the form A, ,,(F)™) =
A+ B where A = M,_1,,(F)", B = osp(n,2) is conjugate to the decomposi-
tion in either Example 1 or Example 3. In terms of the types of simple subsu-

peralgebras there is only one decomposition, that is, M, .(F)") = A + B where

72



A M, 1, (F), B2 osp(n, ). Moreover, B can be taken in the canonical form.
As usual, the original decomposition induces the following decompositions of I} and
]27

Il = 71'1(./4()) + WI(BO)*
I = m(Ap) + ma(By),

where m; (Ag) = F,Ef)l, ma(Ag) = F4Y. Since all conjugacy classes of a decomposition
of F{") into the sum of H (F,) and F,,(:)l are found, there exists an orthogonal

automorphism ¢ of F,, of the form (X ) = C~! X C that reduces the first subalgebra

to the form either (8) or (9). Then, acting by an automorphism v of M,,,,(F) of the

C 0
form (V) = C"Y C" where ' = we can bring A to either form (1') or

0 1

(9”) while B does not change. Hence we can reduce the decomposition to either the

first form or the second form. The lemma is proved.

O

Based on all above lemmas and Proposition 3.1.1, we conclude that Theorem

3.1.1 is true.

3.2 Decompositions of superalgebras of the type
osp(n, m)

In this section we study simple decompositions of osp(n, m) where n,m > 0. Actu-

ally, we will show that there are no such decompositions over an algebraically closed
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field F' of characteristic not 2. Our main purpose is to prove the following.

Theorem 3.2.1. Let J be a superalgebra of the type osp(n,m) where n,m > 0.
Then J cannot be written as the sum of two proper nontrivial simple subsuperalge-

bras.
The proof of this theorem is based on the following lemmas.

Lemma 3.2.2. Let J be a superalgebra of type osp(n,m) where n,m > 0, and A,
B be two proper simple subsuperalgebras none of which has any of the types Ky or

D,. Then J cannot be represented as the sum of A and B.

Proof. First we identify J with osp(n,m) that can be considered in the canonical

form. Next we assume the contrary, that is,

osp(n,m) = A+ B. (8)

The decomposition (8) generates the following decomposition of the associative en-

veloping algebra into the sum of three non-zero subspaces.

M, om(F) = S(osp(n,m)) = S(A) + S(B) + S(A)S(B). (9)

where S(A), S(B) denote the associative enveloping algebras of A, B, respectively.
Let 1 denote the identity of osp(n,m). Then we consider the following cases.

Case 1. Let 1 ¢ A, 1 ¢ B. This implies that there exist non-zero ap and by
in Ann(A) and Ann(B), respectively. Then multiplying every term of (9) by ag on
the left and by on the right, the following equation agM, 12, (F )by = 0 takes place,
which is clearly wrong.
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Case 2. 1 € A, 1 € B. The following six cases arise:

(a) A = My (F)YP, B = M, (F)*). The given decomposition induces the
decomposition of the even part osp(n,m)q = Ag + By which in turn can be written
as

f](Fn) = M (.A()) + 7T1(BQ),
,H(Qm) = 7T2(.A()) -+ WQ(BO).

By Theorem 3.0.7, one of the projections in decomposition H(F),) must be non-
simple semisimple, for example, m1(Ag) = F/EH D EH). By Lemmia 3.0.15, k+1 < 2.
On the other hand, since A is proper, S(A) is isomorphic to either M ,(F) or
M (I7) @ My (F'). Besides, S(My,(F)) contains the identity 1. This implies that
r(k+1) = n+2m where r > 2. Similarly, since S(B) is isomorphic to either M, ,(F)

or M

mq

(F)& M, ,(F) s(p+4q) = n+2m where s > 2. Then, dim osp(n,m) =
"(i;—l—)—%—m(Zm— )+ 2nm < (p+9¢)*+ (k+1)% Let k41 =22 and p+q = =22,
Then the above inequality is equivalent to ;’—671,2-%— gm?—k%—l— gnm < m. Consequently,
ng < m, m < 1. However if m = 1, then this inequality does not hold no matter
what non-zero value n takes. It follows that the inequality is true only if both

k + 1 and p + g are equal to %ﬂ = % + m. However, we know that k + [ <

7

2.a
contradiction.

(b) A = M, (F)®), B = P(g) or Q)Y (¢ > 1). The proof of this case is
similar to (a).

(c) A, B2 P(q) or Q(q)*). Then the decomposition leads to the decomposition

of H(F,) into the sum of two proper simple subalgebras, which does not exist (sec
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Theorem 3.0.7).

(d) A = osp(k,1), B2 M, ,(F)). Since S(A) = My (F) contains the iden-
tity of the whole superalgebra, k& + 2] < %Z’” Similarly, p + g < 1%2—’—” Since
dimosp(n,m) < dim.4 + dim B, # +m(2m — 1) + 2nm < EQL" +120-1)+

2kl + 22 Since k+ 20 < 220 dim osp(k, ) < @S 4 wi2m By giraightfor-

ward calculations we obtain % + 5+ m? + nm < 3m, which is true if and only if
m = n = 1. Obviously, osp(1, 1) has no simple decompositions.

(e) A 22 osp(k,l), B = P(q). Then, we have k + 21 < M2 24 < mi2n
Therefore, dim B = 2¢* < 2(*2)2. Again, by the dimension argument, this de-
composition is not possible.

(£) A = osp(k,1), B = osp(p,q). Then k+ 21 < =2 p 4 2¢ < 2422 Hence
dim A, dim B < (itg"i + %ﬂ. Comparing dim osp(n, m) with dim A + dim B we
have % +2nm+2m? < 4m, a contradiction. Therefore, in this case dim osp(n, m) >
dim A + dim B.

Case 3 Let 1 € A, 1 ¢ B. As mentioned above, the given decomposition induces

the following decompositions of the ideals of the even component:
H(F,) = m(Ao) + m1(Bo), (10)

H(Q,,) = m(Ag) + m2(By). (11)
If either 7y (Ayg), m2(Bo) or m1(By), m2(Ap) are non-simple semisimple, then dim Ay =
dimm (Ay) < dim I1(F,), dim By = dimm(By) < dim /1(Q,,). This implies that
dim Ag+dim By < dim(H (F,)DH(Q,,)), which is wrong. Likewise we have a contra-
diction in the second case. Therefore, there is a simple algebra in each pair:(7; (Ay),
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m2(Bo)), (71(Bg), m2(Ap)). Since 1 is not an element of B, B has a non-zero two-sided
annihilator, and so does By. It follows that one of m1(By), m2(By) has a non-zero
two-sided annihilator. Let us assume the first possibility. Then 7(By) can be em-
bedded in a simple subalgebra which also has a non-zero annihilator. Since H(F,,)
cannot be written as the sum of two proper simple subalgebras, m(Ag) should be
either a non-simple semisimple algebra or the whole algebra I1(F,). If m (Aq) is

non-simple semisimple, then
m(A) 2 H(F) ® H(Q), or FaqE!" (12)

In other words, we represent /7(F,) as the sum of a non-simple semisimple subalge-
bra of form (12) and a subalgebra which has a non-zero two-sided annihilator. Let V
denote the n-dimensional vector space with vectors written as columns. Then, there
exists a non-zero vector v € V annihilated by the second subalgebra. By Lemma
3.0.6, dim H(F,)v = n. It follows from (10) that dim m (Ay)v = n.

If m(Ag) & H(Fy) & H(Q;), then by an automorphism of F, it can be re-
duced to the following form: {diag(X,...,X,Y ..., Y)} where X is a symmetric
matrix of order k, Y is a symplectic matrix of order 2. Next we represent v as
(11, -+, U1k V21, - - -, Vay, ) where ;1 is a vector of dimension k, i = 1,... k|, vy;
is a vector of dimension 2, j = 1,...,l;. Since m(Ag) contains 1, kky + 2ll, = n.
Then, dim{Xvy,;| X € H(Fy)} =k, dim{Ywy;|Y € H(Q;)} = 2l — 1 (see Lemma
3.0.8). Therefore, dimm (Ag)v = kki + (21 — 1)l < n, a contradiction. If
m1(Ag) = F,‘f') &) Fl< ! ), then by some automorphism of I, it can be reduced to
T ={diag (X,..., X, X' ... XVY, ...V, Y. ... Y} where X and Y are any ma-
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trices of orders k and [, respectively. Then dimension of 7v is less than n [32]. If
m(Ag) = H(F,), then (10) becomes a trivial decomposition, and A = osp(n, s) for
some integer s. Then S(A) = M, o,(F), sr = m, r > 2, is a subsuperalgebra of
M, 2, (F), which is not possible (Proposition 3.1.1), a contradiction.

Hence, the second possibility holds, that is, me(By) has a non-trivial two-sided
annihilator, that is, can be embedded in the simple algebra with a non-zero an-
nihilator. Therefore, m2(Ag) is non-simple semisimple because H(Q,,) cannot be
written as the sum of two proper simple subalgebras one of which has a non-zero
two-sided annihilator [32]. As a result, we have the decomposition of the form:
11(9,,) = ma(Ap) + m2(By) which in turn induces the following (the detailed proof

of this fact can be found in [32])
FQm = FQm—l + <7T2(./4())>,

in which the first subalgebra clearly has a non-zero two-sided annihilator, and the
second is non-simple semisimple. According to [4], such decomposition cannot exist.

The lemma is proved. O

Lemma 3.2.3. A superalgebra J of the type osp(n, m) where n,m > 0 cannol be
decomposed into the sum of two proper simple subsuperalgebras one of which has
either the type K5 or D,.
Proof. First we identify J with osp(n,m). Assume that osp(n,m) = A+ B where,
for example, A is either of the type K3 or /);. Then, the above decomposition
induces the following:

H(FE,) = m(Ay) + m(Bo).
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H(Qyn) = m2(Ao) -+ ma(Bo).

Let us note that dimm (By) < W if it is a simple subalgebra and

dimm (By) < ﬁl;id—g + 2 if it is a non-simple semisimple subalgebra. This im-

plies that dim H(F,,) = @ < 2+ % — % +3, 50 2n < 5and n < 2.
Similarly, dimmy(By) < 2m? — 5m + 3 if my(By) is a simple subalgebra, and
dimmy(By) < 2m? — 5m + 4 if m(By) is a non-simple semisimple subalgebra. Thus

dim 11(Q,,) = 2m? —m < 2+ 2m? —5m + 4, so dm < 6 and m < Therefore,

3
5-
either 7 = osp(1,1) or J = osp(2,1). By Corollary 3.1.5, these decompositions are

not, possible. The lemma is proved. O

3.3 Decompositions of superalgebras of types
Q(n)*) and P(n)

In several steps, we will prove that no Jordan superalgebra of the type either P(n)

or Q(n)™) can be represented as the sum of two proper simple subsuperalgebras.

Lemma 3.3.1. Let A of the type osp(p,q) be a proper subsuperalgebra of J which
has the type either P(n) or Q(n)*). Then dim A < %

Proof. Let Ay = H(F,) ® H(Q,) be a proper subalgebra of [J; which is isomorphic
to F\". Therefore, p+2q <n, p,q>0. Hence, dim A = @ +q(2¢— 1)+ 2pg =
Hp+29)7%+ % < 3(p+29)°+ %2" < ZL—Z—}—’—L The lemma is proved. O
Lemma 3.3.2. Let A of the type My (F)™ where k.1 > 0 be a proper subsuperal-
gebra of J of the type cither P(n) or Q(n)™). Then dim A < n?,
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Proof. Since A is proper, k+ [ < n, hence (k +1)* < n? O

Lemma 3.3.3. A superalgebra J of the type either P(n) or Q(n)*), n > 1, cannot
be represented as the sum of two proper nontrivial subsuperalgebras one of which has

either the type K5 or D;.

Proof. Let A be of the type either K3 or D;. The given decomposition of 7 induces
that of the form: Jy = Ag + By where either Ay = Fe or Ay = Fe; & Fey, where e,
e; and e are idempotents. Next we estimate the dimension of By. If By is simple,
then dim By < n?—2n+1. If By is non-simple semisimple, then dim By < n? —2n+2.
As a result, dim Jy = n? < 2+ n? —2n + 2, so n < 2. The only case that remains
to be proven is the case n = 2. By Corollary 3.1.5, these decompositions are not

possible. The lemma is proved. O

Lemma 3.3.4. Let J of the type either I’(n) or Q(n)™) be represented as the
sum of two proper non-trivial subsuperalgebras A and B whose even components are
semisimple Jordan algebras such that (Ag), (By) are proper, and one of them has a

non-zero two-sided annihilator. Then J #+ A+ B.

Proof. Let J = A+ B, and Ap have a non-zero two-sided annihilator. Then Jy =
Ao + By where Ay, By are semisimple Jordan subalgebras, Ann Ay # {0}. Since
Jo = 7, 8(J) = F. Obviously, F, = (Ag) + (By) where (Ag) and (By) denote
associative enveloping algebras for Ay and By, respectively. This implies that F,, can
be written as the sum of two semisimple subalgebras (Ag) and (By) one of which has
a non-zero two-sided annihilator. This contradicts Proposition 1 in [4]. The lenima
is proved. O
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The following table summarizes all the information obtained above.

A Max dim

1| My (F)) n?
n%4n

2| osp(p.q) o

31 QUM | 2(n—1)

4l PR |on -1y

In the second column we list all possible types that subsuperalgebras of £(n)
and Q(n)*) can have. In the third column we point out the maximal dimension

corresponding to each subsuperalgera.

Theorem 3.3.5. Let J have the type either Q(n)™M) or P(n), wheren > 1. Then J

cannot be represented as the sum of two proper simple non-trivial subsuperalgebras.

Proof. Let J = A+ B. Then the following cases occur.

Case 1. A = Mk’l(F)(*), B = ]\fs,t(F)(*). By Lemma 3.3.2, dim A < n?,
dim B < n?, therefore, J = A ® B. In particular, Jy = Ag @ Bo. As a consc-
quence, one of the subalgebras, for example A4y, does not contain the identity of the
whole superalgebra or, equivalently,(Ao) has a non-trivial two-sided annihilator. By
Lemma 3.3.4, no such decomposition exists.

Case 2. A = osp(p,q), B = osp(k,1), My, (FYP), Q(k)*) or P(k). Taking
into account Lemma 3.3.1, we can conclude that no decomposition into the sum of
two subsuperalgebras of the type osp is possible. Assume that B = M (F')("). By
Lemmas 3.3.1 and 3.3.2, dim A < ﬁ;—" and dim B < n?, respectively. Hence, by the

81



dimension argument, no such decompositions exist. Finally, if B = P(k) or Q(k)),
then By = F{"). By Lemma 3.3.4, 1 € By. By Lemma 3.0.5, dim By < . However,
dim(A+ B) < %@ 4 %2 < 2n?, a contradiction.

Case 3. A = M,,(F)Y), B = P(g), or Q(q)*). This decomposition induces
Jo = Ag + By, Ag & F,g"’) P FI(H7 By = F,,(Jr'). By Lemma 3.3.4, 1 € By. By Lemma
3.0.5, dim B, < % However, dim(.A + B) < % + § < 2n?, a contradiction.

Case 4. A= P(k), B= QD)™ k,1 < n. As above, this decomposition induces
the decomposition of the even part into the sum of two subalgebras of the types
Fk(,” and FZH"), respectively. However it follows from the classification of simple
decompositions of simple Jordan algebras [32] that no such decomposition exists.

The theorem is proved. O

3.4 Decompositions of superalgebras of the types
J(V, f)s K3y Dy, H3(F)® S3(F) @ S3(F), Ko, Ko,
H;(B)

Theorem 3.4.1. Let J = (F1 + Vo) + Vi where Vi # {0}, and A, B be proper
simple non-trivial subsuperalgebras of J. Then J = A+ B if and only if one of lhe
following cases holds:

(1) A= (F14+Wp)+ Wy, B = (F1+M)+M, where Vo = Wo+My, Vi = W +M,,
Jwos Slwas Slaes Jlar, are non-singular.

(2) A= (F1L+Wy) + W, B= <% +v) + My where F1 4+ Vo = Wy & <% + v),
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Vi =W+ My, flwe, flwys fluy are non-singular, f(v,v) = i
(3) A= (S 4o) 1+ Wy, B= (3 —v)+ M, F14+Vy = (3 +v)+ (L —v),Vi = Wi+ M,

flwis [l are non-singular, f(v,v) = 1.

Proof. Given that J = (F'1 4+ Vo) + Vi where Jy = F1+ V, Ji = Vi. Notice
that J, - Ji1 = F1, where 1 denotes the identity of 7. In particular, for any
subsuperalgebra A of J, A; - A; € F1. Note that the idempotents in J, have
the form: either 1 or 5 + v where f(v,v) = 1, v € V. In particular, if v; and
vy are pairwise orthogonal idempotents in Jy, then ¢; = % 4+, g = % — 1 where
v € V. For any simple subsuperalgebra A of 7, Ay is a semisimple subalgebra of
Jo = F1+ Vi. Hence, from Racine-Zelmanov classification, either Ay = J(V', f')
or Ag = J(V', f') @ Fe where e is an idempotent of Jy. Since J(V', f') and Fe are
orthogonal, e = 2 + v, v € Vy, and for any a+w € J(V', f'): (3 +v) - (e +w) =0,
w = —2av. As a consequence, dim J(V', f') = 1 and Ay = Fe, @ Fey where ¢,
eq are pairwise orthogonal idempotents. On the other hand, according to Racine-
Zehnanov classification, if Ay = J(V', f') @ Fe, then A is isomorphic to one of
the following: osppo(F), Ma;(FYM), Ky, ospi4(F). However, for any of thesc
superalgebras the dimension of the even part is greater than 2. Let A = J(V'. [7).
It follows from Racine-Zelmanov classification that

(i) A is a superalgebra of a bilinear superform.

(i) A= Q(2).

(iii) A= P(2).

However, for (i7) and (7it) the inclusion A; - A} € F1 does not hold. Hence,
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if A is a simple subsuperalgebra of J, then A has the type J(V', f"). Further, if
le A, 1 ¢ B, then A= F1+Wy+ Wy, B=F1+ My+ M,. Hence, Vy = Wy + My,
Vi=Wiy+ M. Ifl1e A 1¢B then A=FL+Wo+ Wy, B=(5+v)+ M. If
1¢ A 1¢B, then Ay = (3 +v), By = (3 — v) [33]. The fact that (1),(2),(3) are

decompositions is obvious. The theorem is proved. |

Decompositions of K3
Let A be a proper subsuperalgebra of K3. Then we have the following restric-
tions: dim A < 3 and deg Ag = 1. Considering all cases one after another, we obtain

the following.

Theorem 3.4.2. A Jordan superalgebra of the type K3 has no decompositions into

the sum of two proper simple non-trivial subsuperalgebras.

Decompositions of 1),

Let 7 be of the type D;. Since degJ = 2, dim J = 4, any proper simple
subsuperalgebra of J has either the type K3 or J(V, f). Let A = K3 be a sub-
superalgebra of 7. Then A, = (J);, and Ay = (e) where e = ¢, ¢ € (J)o. If
(Dy)o = Fey + Fey, then either e = ¢;, 1 = 1.2, or e = €, + e5. In the last case, we
have e(ax + By) = (€1 + ) (ax + By) = (ax+ By) # (“—z;—@ Hence e = ¢;, 1= 1,2.
On the other hand, [(ax+ By), (x4 F'y)] = (af' — B/ )(e1 +tex) # e =¢;, 1 =1,2.
This implies that A of the type K3 cannot be a subsuperalgebra of J.

Let A = J(V, f) be a subsuperalgebra of J. Then Aq C (7)o = (e1,€2), A C
(J)1 = (x,y). Let e be the identity of A, e € Jy, e = e1 +eo. If dim Ay > 1, then we
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can always choose some element of the form wey 4 ges which is linearly independent
with €1 + ez, and (ceg + Bez)? is proportionate to e + ey, This implies that « = 3
and dim Ay = 1. However if J = A+ B where A = J(Vy, f1), B = J(V,, f2), then

Ap = By = (e1 + e3), that is, (J)o # Ao + By.

Theorem 3.4.3. A Jordan superalgebra of the type D; has no simple decompositions

into the sum of two proper simple non-trivial subsuperalgebras.

Decompositions of Hz(F) @ S3(F) @ S3(F)

Actually we are going to prove that there are no simple decompositions of J of
the type I13(F) O S3(F) © S3(F). Assume the contrary that J = A+ B where A
and B are proper simple subsuperalgebras. Then, J, = A + By where Jy = H(F}y).
It follows from Theorem 3.0.7 that either A, (or By) coincides with J, or Ay (or By)
is non-simple semisimple. According to Racine-Zelmanov classification if Aq (or Bp)
is Jp than A (or B) is J, a contradiction. Let A be non-simple semisimple. Then
either Ag =@ FL,® Fj, k+1<3or Ag =2 H(F,) @H(Q)), k+20 <3. If Ay = F,® I,
then by Lemma 3.0.5 k£ +1 < %, sok+1=1 1f Ay = H(F},) & H(Q,), then k =1,

[ = 1. By dimension argument no such decomposition exists.

Theorem 3.4.4. A Jordan superalgebra of the type H3(F) ® S5(F) < S3(F) has no

simple decompositions into the sum of two proper simple non-trivial subsuperalgebras.

Decompositions of K and Ky
If characteristic of F' is 3, then Ky is not simple and possesses a simple subal-
gebra Ky. The even part of Ky is of the type J(V, f), and the odd part of Ky is the
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same as the odd part of Ky. Since only these two properties will be primarily used,
we consider only the case of K9. Notice that the identity [w, w] = 0 holds for any
w € Jp. On the other hand, for v-v = f(v,v)e/, v € A;. Since f|4, is non-singular,
there exists v/ € A; such that f(v/,v") # 0. However, it conflicts with the above
identity. Therefore, there are no subsuperalgebras of the type J(V, f) in J.

Let J = A+ B where J = Kig. Then Jy = Ay + By. Recall that Jy =
L @ Iy where I} = Fe + 21954 Fuv;, Iy = Ff. Hence, we can introduce the
projection m onto I{. This projection induces the simple decompositions of I,
Iy = m(Ag) + m1(By).

Since 7 is an algebra of a bilinear form, it follows from [32] that it can be
decomposed only into the sum of simple subalgebras of bilinear forms. Hence,
m(Ag) = J(Vi, f1) and m(By) = J(Va, f2). According to Racine-Zelmanov
classification there are only the following possibilities for A and B: A,B =

()'*’1)2,2(F)7 ]\/IQ,I(F)u 05[’1,4(]7)7 P(Z), Q(Q)-

dimension | even part | odd part | total
0spea(F) 4 4 8
Mo (F) 5 4 9
P(2) 4 4 8
Q(2) 4 4 8
ospra(F) 7 4 11

The fifth casc is obviously not possible since dim ospy 4(#7) > dim J. In the
first four cases, dim (0spy2(F)); = dim (M3 (F)); = dim (P(2)); = dim (Q(2)), =
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dim J;. From the multiplication table for J we can choose a basis {z, y1, Z2, y2} of
Jh such that [z, ;] = ¢ — 3f, [x1, x2] = v1, [21, y2] = va, [2, y1] = va, [y, y2] = va.
Hence Ay (or By) contains e — 3f, vy, va, vs, vy. Besides, vy - vy = 2¢. Since

[(Ti. J1] = Jol, Ao = Jo, hence, A = 7, a contradiction.

Theorem 3.4.5. A Jordan superalgebra of the type Ky has no simple decomposi-

tions inlo the sum of two proper simple non-trivial subsuperalgebras.

Decompositions of H;(B)

Let J be of the type H3(B). To find simple decompositions of J we notice
that Jo = H(Q3) and dim J = 21. Let J = A+ B. Hence Jy = Ay + By. It
is known that H(Qs) can be decomposed only into the sum of subalgebras of the
type Fi) [32)) Notice that if Ay (or By) coincides with Jo, then A (or B) coincides
with 7. Tt follows from [32] that either A and By are isomorphic to Fy' or one
of them is non-simple semisimple. If Ay and By are isomorphic to Fé'), than it
follows from Racine-Zelmanov classification that A and B have the type either P(3)
or Q(3). However dim (P(3)); = dim(Q(3)); = 9 > dim H3(B); = 6. Hence, a
subsuperalgebra of the type P(3) or Q(3) cannot be imbedded into H3(B). If one of
subalgebras, for example Ag is non-simple semisimple, than either Ay = I, A( D Fl( ! ),
k+l<3or Ay = H(F,)®H(Q,), k+1 < 3. Again by dimension argument no such

decomposition exists.

Theorem 3.4.6. A Jordan superalgebra of the type Hy(B) has no simple decompo-

sitions into the sum of two proper simple non-trivial subsuperalgebras.
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