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Abstract 

In 1952 E. Dynkin classified semisimplc subalg;ehras of semisimplc Lie alg;cbrFts over 

an algebraically closed field F' of zero characteristic. Until now there was no clas

sification of simple (scmisimple) subalgebras of simple finite-dimensional Jordan 

algebras. As a consequence the first problem of this thesis is a description of simple 

subalg;ebras in finite-dimensional special simple Jordan algebras over an algebraically 

closed field F' of characteristic not 2. Using a slightly generalized version of Mal

cev's Theorem, Racine's classification of maximal subalgebras and other techniques 

developed in the thesis we can show that each r:limple r:iubalgebra of a simple Jordan 

algebra can be reduced to an appropriate canonical form. Besides we formulate 

necessary and sufficient conditions for conjugacy of simple subalgebras of simple 

special Jordan algebra J. Therefore, in Jacobson'r:i terminology we describe orbits 

of the algebra of symmetric matrices under O(n) (the orthogonal group), orbitr:i of 

the algebra of symplectic matrices under Sp(n) (the symplectic group) and orbits 

of full matrix algebra under G L( n) (the general linear group). 

The other problem considered in this thesis is the classification of simple decom

positions that occur in simple Jordan superalgebras with semisimple even part over 

an algebraically dosed field F' of characteristic not 2. By a simple (sernisirnple) 

decomposition of any algebra J (not necessarily simple) we understand any repre

sentation of J as vector sum space of two proper simple (semisimple) subalgebras. 

In general, the sum in this decomposition ir:i not necer:lr:iarily direct, and the t:mbalgc-

bras may not be ideals. The problem of finding simple decompositions has drawn 



researchers' interest in late 60's after the pioneering works of O.Kegel, A. Onishchik 

ancl others. Given J = A+ B, the sum of two proper simple subalgebras A and B, 

what abstract properties of A and B does J inherit? In addition, information about 

the structure of simple subalgebras can be used to describe the lattice properties 

of simple algebras. In this thesis we determined the conjugacy classes of simple 

decompositions of simple matrix Jordan superalgebras with semisirnple even part 

over an algebraical~y closed field F of characteristic not 2. 
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Chapter 1 

Basic facts and definitions 

Let us begin with the following 

Definition 1.0.1. A Jordan algebra :J = (V, p) oucT an aTIJ'itnL'I'Y field F of charac

teristic not two consists of a vector space V over F equipped with a bilinear pmrluct 

p: V x V ---+ V (usually abbreviated p(x, y) = x o y) satisfying the Commutative 

Law and the Jordan identity: 

1. :r o y = y o :r ( Commutative Law) 

2. (x2 o y) ox = x2 o (yo x) (Jordan Identity) 

Let U be an associative algebra over F and ab the associative product com

position of U. Then the vector space U is a Jordan algebra U(t) relative to the 

composition a o b =c H ab + ba), that is, this composition satisfies the defining iden

tities 1 and 2. Next we ddiuc a special Jordan algebra to be a subspace :J of an 

associative algebra over F o[ characterit>Uc uoL 2 which is clu::;cu umlcr Lhc emu

position a o b = Hab + ba). Jordan algebras which are not special will be called 
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exceptional. 

Further, let (U, J) be a pair consisting of an associative algebra U and an invo-

lution J. Then H(U, J) denotes the set of all elements of U symmetric with respect 

to J. It is easily seen that H(U, J) is always a subalgebra of U(+l. 

Next we will consider a class of algebras g, called composition alge!Jras over 

au arbitrary field F of characteristic not two. I3y definition g is not necessarily 

associative. It always has a unit 1, and 9 is the vector space direct sum: 9 = F ffi 90 

where 90 is a subspace such that if x in 90 , then x 2 = N(x) is in F. Here, N(:r) 

is a quadratic form on 90 whose associated symmetric bilinear form is non-singular. 

Moreover, the quadratic form N (a) dcfincd for cvcry a of 90 permits compo::Jition, 

that is, N(ab) = N(a)N(b) where ab i::J the product in Q. Composition algc!Jras are 

alternative quadratic algebras. They have diment>ions 1, 2, 4 and 8, and a canonical 

involution: a____, a such that N(a) = aa. 

When n = 1 we know that g =F. When n = 2 we u::Je the notation F[u] for 9 

where u is a non-zero element of 90 and u2 = p i- 0. If a = o: + (3u, o:, (3 in F, then 

a = o: - ;3u and 

2 2 N(a) = o; - f3 p. 

When n = 4 we will write g = Q, a (generalized) quatemion alge!Jra. We can 

write Q = F[u] EB F[u]v where F[u] is a quadratic subalgebra of dimension two 

containing F, and the product in Q is given by 

(a+ hv)(r + dv) = (n.c + rrbd) +(ad+ br)v, 

for all a, b, c, d in F[u] with v2 = J i- 0 in F. The involution in Q is q = a+ bv ____, 
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q =a- bv, and 

N(q) = N(u)- aN(b). 

The algebra Q is associative but not commutative. 

The composition algebras of dimension eight are the (generalized) octonion al

gebras 0. Such an algebra is generated by a quaternion subalgebra containing P, 

and an element w such that 0 = Q E9 Qw with multiplication in 0 defined by 

(q + nv)(s + tw) = (qs + Ttr) + (tq + rs)w 

for q, r, s, tin Q. Thus w 2 = T f 0 in F and this element together with Q determines 

the algebra 0. The involution in 0 is :r = q + rw ---7 :1: = 1j- rw, and 

N(x) = N(q)- TN(r). 

Any composition algebra is either a division algebra or has a divisor of ?;m'O. It 

is easy to see that g is a division algebra if and only if N(:r) f 0 for :r: f 0. If g with 

N ( x) contains divisors of zero, then we will call g a split cornpo::lition algebra. For 

a fixed F and a fixed dimension there is a unique split cornpositiou algebra: F m P, 

F2 , Zorn vector matrices. 

Now let gn be the algebra of all n x n matrices with elements in a composition 

algebra Q. Then every element of gn is a matrix X = (x,J) with elements X;.J in g 

fori, j = 1, ... , n, and we write 

J(X) = j(t = (y;j), Y]i = X;j (i,j = 1, ... , n) 

The mapping J(X) = X 1 is an involution in 9n called a slundaTd involution. If g 

is an associative algebra, then H (Qn, J) is a special Jordan algebra of dimension 
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(n";n) d + n where d = dim g. If g = 0, then H( 0 11 , J) is a .Jordan algebra only if 

n :::; 3. If n = 3, then H(03 , J) is an exceptional .Jordan algebra (Albert algebra). 

When no confusion is likely, we will omit .! and write H Wn) int>tead. 

Next let V be a finite-dimensional vector space equipped with a non-singular 

symmetric bilinear form f : V x V ----; F. Consider the direct sum of F1 and V, 

:J = F1 EEl V where 1 is the identity element, and determine multiplication according 

to 

(a1 + v)(/31 + w) = (a/3 + J(v, w))1 + (nw + f3v). 

Then :J it> a .Jordan algebra of the type J(V, f). 

In the classification of finite-dimensional simple .J onlan algebras, composition 

algehraH play an important role. According to Albert's classification (19~0), if :J 

is a simple finite-dimensional Jordan algebra over an algebraically closed field F of 

characteristic not 2, then we have the following possibilities for :J: (1) :J = F; (2) 

:J = F Cl) V the Jordan algebra of a non-singular symmetric bilinear form f in a 

finite-dimensional vector space V such that dim V > 1, (3) H(gn. J), n 2': 3, where g 

is a composition algebra of dimension 1,2, or 4 if n 2': 4 and of dimensions 1,2,4, and 

8 if n = 3, and J is the standard involution. Therefore, we can conclude that the 

Albert algebra is the only exceptional simple Jordan algebra over algebraically closed 

F, char F =f 2 in the sense of having no relizations in an associative algebra. In 1983 

E. Zelnmnov classified all possible simple Jordan algebras in arbitrary dimeusious 

(Zelmanov 's Simplcity Theorem). It appears that in arbitrary dimensions simple 

Jordan algebras abo fall into quadratic, hermitian and Alber-t types as above. 
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Notice that the Jordan algebras H(F[u].,) and H(Qn) also have other isomorphic 

realizations denoted as F,~ +) and H ( F2n, j) where j is a symplectic involution in F211 

[9]. Further, we will frequently use these realizations in order to define canonical 

forms of simple subalgebras of H(Qn) and H(F[u]n)· 

If .J is a special Jordan algebra, then the concept of the universal algebra for 

the special representations has been defined in [9]. According to [9] the special 

universal associative algebra of .J is the difference algebra U(.J) = :F /R-' where 

:F is the free associative algebra based on the vector space .], and 1?.--' is the ideal 

generated by a x b + b x a - ab (' x' the product in :F). The special universal 

associative algebras of li(F~,) and TJ(F2n,j), n > 2, are nothing but the matrix 

algebras F, with the canonical embedding as the set of symmetric matrices and F2, 

with the canonical embedding as the set of symplectic matrices. For F,\ 1 
) , the special 

universal associative algebra is Fn EEl Fr~ where F,~ is the opposite algebra. Next we 

introducr, onr, morr, ddinition. Let .J be a Jordan subalgebra of A(-1 l where A is an 

associative algebra. Then S(.J) stands for the associative subalgebra generated by 

.]. 

Since the description of simple subalgebn:ts significantly relics on Racine's clas

sification of maximal subalgebras [28, 29], we recall certain well-known classical 

theorems that we will use later. Before we state these theorems, we introduce some 

notation we arc going to use in these theorems. Let A be a finite-dimensional central 

simple associative algebra of degree n. Then, we denote by A0 the opposite algebra 

of A. Since we always deal with an algebraically closed basic field F, we formulate 
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simplified versions of Racine's Theorems. 

Theorem (Racine)Let A be a finite-dimensional central associative algebr·a of 

dcgnx g'fwtcT than OT cq·ual to 3 ovcT a field F of characteTistic not two. Any 

maximal subalgebra of A(+)~ H(AEBA0
, *) (*is the exchange involution) is of the 

foTm 

(1) J(V, !), 

(2) B(+) ~ TT(B (I) B0 , *), B a maximal subalgebra of A, OT 

(S) H(A,-) ~ H(A ,33 A 0
, *) n {(a, a) Ia E A} wheTe- denotes f-'itheT the tmns-

pose involution oT the symplectic involution. 

A has maximal subalgebms of type (1) if and only ~f 

wheTe Qi is a qualeTnion algebra, m = 2 OT rn odd, in which case dim J(V, f) = 

2(m+l). 

Theorem (Racine) Let (A,*) be a finite-dimensional centml simple associative 

algebm with involution oveT F a .field of chararteTistic not 2, A central simple of 

degree n. If the degTee of H (A, *) 2 3 then maximal subalgebms of H (A, *) an: of 

the foTm 

{1) J(V, !), OT 

{2) H(B, *), B a maximal subalgebm of (A,*). 

H(A, *)has maximal s·ubalgebms of type (1) if and onf:y 'if(A. *) i8 i8ornorphic t.o 

a ClijjoTd algebm with the canonical involution. If* is of the first kind then n = 2m 

6 



and J ( V, f) C H (A, *) is maximal if and only if dim J ( V, f) = 2m + 1 for m odd, 

2(m + 1) form even. 
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Chapter 2 

Subalgebras 

The main focus of this chapter is a description of simple subalgcbras in fi11itc-

dimensional special simple Jordan algebras over an algebraically closed field F of 

characteristic not two. The problem of finding semisimple subalgebras in sernisirnpk 

Lie algebras was fully solved by Dynkin [6]. A similar question for Jordan algcbmt> 

arose in Jacobson't:> ret:>earch. Namely, in [9] at:> an application of the general represen

tation theory, he studied semisimple subalgebras of an arbitrary finite-dimensional 

Jordan algebra of characteristic zero. In this connection he obtained an analogouc of 

the results of Malcev and Harish-Chandra in the theory of the Levi decompot:>iLions 

of a Lie algebra [14, 7]. Then, in 1987 N. Jacobson determined the orbits under 

the orthogonal group O(n) of the subalgebras of the Jordan algebra of n x n real 

symmetric matrices [8]. 

The description of simple subalgcbras of simple Jordan algebras significantly 

relies on the classification of maximal subalgebras of finite-dimensional special simple 
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Jordan algebrat:l obt;ained by M. Racine in 1974 ([28]). Three yeart:l later M. Racine 

publit:lhcd hit:l paper [29] which cornpldet:l the dat:lt:lifieatiou of lllctximal t:lubalg;ebntt:l 

in all types of simple finite-dimensional Jordan algebras. 

The algebrat:l we consider in this chapter will be at:lsumed to be finitc-diment:lional 

special over an algebraically closed field F of characterit:ltic not 2. We will give a full 

clat:lt:lification of t:limple t:lubalgebntt:l in t:limple t:lpecial Jordan algebras. Notice that 

the t:limple subalgebras of J(V, f) have been studied in [33]. 

2.1 Matrix subalgebras 

Let :J be a t:limple Jordan algebra of the type F~+) where n is even. Then, according 
2 

to [8] it can always be pret:lented as a subalgebra of H( Fn) as followt:l 

(1) 

where A it:l any t:lymmetric matrix of order ~, and B is any t:lkewsymrnetric matrix 

of order ~-

The following lemma gives us an idea of the structure of the automorphit:lm group 

of (1). 

Lemma 2.1.1. Any a'utornorphism of a Jordan algebra of the form (1) is iruhu:ed 

by an automorphism of H(Fn)· 

Froo.{ Fin:>L, uccordiug Lo [9] mq uutornorphic;nr of J can b<~ cxL<mdcd to an au-

tomorphit:lm or antiautomorphit:lm of a special univert:lal enveloping algebra U(J) 
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which if:i if:iomorphic to F"' EB F"'. Notice that in thif:i particular ca::-;e the asf:iociative 
2 2 

enveloping algebra S(J) is isomorphic to U(J) becau::-;e from the explicit form (1) 

S(J) consif:itf:i of all matrice::-; of the form: 

{(_: :)} 
where X and Y are any matrices of order ~. Since any automorphif:irn of Ffr EB Ffr 

either inducef:i non-trivial automorphif:ims of thef:ie ideals or f:iendf:i one ideal onto 

another, it can be lifted up to an inner automorphif:irn of the entire matrix algebra F11 • 

Conf:iequently, for any antiautomorphif:im ofF~ EBF~ we can choof:ie an autornorphif:im 

(not necef:if:iarily non-trivial) of F~ EB F~ t>uch that their compof:iition induce::-; non-

trivial antiautomorphif:ims of simple ideals. Therefore, any (Jordan) automorphism 

of J can be written af:i follows: 

cp(X) = Q- 1 XQ 

or 

(2) 

for some non-singular matrix Q. 

The next f:itep if:i to prove that :p is orthogonal. In other wordf:i, all we have to 

show is that for any automorphism cp of J, we can choose Q such that (2) holds and 

QtQ =I where I it> the identity matrix. Since J if:i a subalgebra of H(F11 ), for each 

11 = CJCl. Next we are going to show that H is actually a scalar multiple of the 
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identity matrix. We are given that BX = X B where X it> any matrix of the form 

(1). Let Uti write Bas follows: 

where Bi are matrices of order i· By performing the matrix multiplication, we obtain 

B2 = B3 = 0, and B1 = B4 = o:I, for some non-zero o:. Since the ground field F 

is algebraically closed, we can choose (3 E F such that o: = (32 • Set Q' = (3- 1 Q. 

Obviout:>ly, Q' determinen the name automorphinm an Q doet:>, and QnQ' = I. The 

lemma it:> proved. 0 

In the next lemma we state that subalgebras of H(F,) that have the type F~+) 
2 

(n even) are conjugate under an appropriate automorphism of H(F,,). 

Lemma 2.1.2. Let J ~ Fi+) be a subalgebra of H(F,). Then, by an appropriate 
2 

automorphism of H(F,), J can always be reduced to the form {1). 

Pmo.f. At first we consider the enveloping algebra S(J) of J. It in known that S(J) 

is either a simple associative algebra of degree ~ or a direct num of two isomorphic 

nimple ideals of degree ~. Hence, acting by an appropriate automorphism of !'~,, 

S(J) can be reduced to the following form: 

{ (: :) } 
where X, Y are rnatricet:> of order ~. H follows LlmL J abo Lakct> Lhc alJuvc block-

diagonal form since J <:;;; S(J). If S(J) is t:>imple, then we can asHume that X = Y. 
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If S(:J) is non-simple semisimple, then :J can be brought to the form: 

{ (: ~')} (3) 

In the case when S(:J) is simple, :J is an associative subalgebra of F, that lies 

inside H(K). According to [32], this is not possible. Then(, i~ is ei:sily)seen that 

the automorphism of the form FJ(Y) = s- 1YS, where S = I is the 
~I -u , 

identity matrix, i 2 = -1, sends each element of the form (3) into the algebra of the 

form ( 1). Therefore, by x = FJ o cp we can bring :J to the form ( 1). 

Next we will show that x is actually an orthogonal automorphism. Notice that 

x sends H(Fn) onto a Jordan subalgebra of F,~+) which consists of all matrices 

symmetric with respect to the following involution: j' = X o t o x- 1 where t is the 

standard transpose involution. This involution can be rewritten as follows j' (X) = 

c- 1 )(tC for some !lOll-Singular symmetric matrix C of order n. lt follOWS from the 

above considerations that any matrix of the form (1) is symmetric with respect to 

j'. Equivalently, for any Y of the form (1), c-1 yte = Y, Y 1C = CY, YC' = 

CY because Y is symmetric. As was proved in the previous lemma, C = oJ for 

some non-zero a. Therefore, j' = t, and x(H(F,)) = H(F,), and xis actually an 

automorphism of H(Fn)· Hence, the lemma is proved. D 

In [16] K. McCrimmon proves the following result: if A is a unital Jordan algebra 

over a field of characteristic not two with Wcddcrburu splitting A = S (I) R for a 

solvable ideal R and S ~ A/R a separable :m!Jalge!Jra, then any uLher ::;cpura!Jlc 

subalgebra C of A is conjugate under a generalized inner automorphi:-m1 T of A to 
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some subalgebra of S, T(C) C S. Here, we are going to use the following consequence 

of McCrimmon's Theorem. 

Lemma 2.1.3. Lr::t A be a special simple matrix Jordan algebra, and .J be a pmpcT 

simple subalgebra of A. Denote a maximal subalgebm which contains .J as M. Ncxl, 

consider a Wedderburn splitting M = S (I) R where S is a semisimple algebra, R is 

the radical. Then, there exists an automorphism cp of A such that cp(.J) r;;; 8. 

Pmo.f. Let 1 be the identity element of A, and 1 E .J. According to [16], if .J 

is special and the degree of .J is not divisible by the characteristic, then .J is 

conjugate under an inner automorphism T of M to some subalgebra of S, and T 

is a composition of the standard automorphism::; Tr,y that can be represented in 

associative terms as follows 

(4) 

where t = u-~ (1- xy)(1 + yx), u = (1- xy)(1 + y:r)(1 + xy)(1- yx), J:, y E M. 

Let :r, y be symmetric with respect to an involution j of A: j(:r:) = :r:, j(y) = y. 

Then, it is obvious that 

j(u) = u, and j(t) = C 1
. (5) 

If A = F,~ 1 ), then from the explicit form ( 4) Tr,y is easily extendable to A. If 

A= H(Fn), then, because of (5), Tx,y is orthogonal, therefore, extendable to A. If 

A= TJ(F2n,j), then, because of (5), Tx,y is symplectic, therefore, extendable to A. 

If .J is special and the degree of .:J is divisible by dmractcrisLic, Lhcu T i::; a 

generalized inner automorphism [16], that is, T is a composition of automorphisrm; 
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Tq, ... ,:En,m of the fonn 

where v, X; E M, m En. In associative terms quadratic operators take the form: 

Uv(a) = vav, 

Hence, if all x;, m and a are symmetric with respect to an involution of A, then 

j(TE 1 , ••• ,x,,rn(a)) = 'f:~: 1 , ... ,xn,m(a). Therefore, 'f:~: 1 , .•. ,:~:,,m as well as Tis extendable to 

A. The lemma is proved. 0 

The next lemma is an analogue of Lemma 2.1.2 for the case of symplectic ma

trices. 

Lemma 2.1.4. Let J ~ F,~+) be a subalgebra of H(F2n,j). Then, by an appropriate 

automorphism of ll(F2n,j), J can always be redv,ced to the following .form 

(G) 

Proof First of all, J of type F,~+) has only two non-equivalent irreducible represen

tations in an n-dimensional vector space [9]. By an appropriate automorphism r.p 

of F;.,;), J can be brought to the form (6). Notice that r.p sends If ( F2.,, j) onto a 

Jordan subalgebra of r~,; l which consists of all matrices t-~yuuueLric with ret~pect Lo 

the following involution: j' = r.p o j o r.p- 1 . This involution can be rewritten as follows 
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j'(Y) = c- 1 Y 1C for some non-singular skew-symmetric matrix C of order 2n. It 

follows from the above considerations that any matrix of the form ( 6) is symmetric 

with respect toj'. Equivalently, for any Yoftheform (6), c-tytc = Y, Y 1C = CY. 

( 

0 [,. ) Acting in the same manner as above, we can show that C = a for 

-I, 0 

some non-zero a, where In denotes the identity matrix of order n. Therefore, 

cp(II(F2n,j)) = H(F2n,j), and cp is an automorphism of H(F2n,j). Hence, the 

lemma is proved. 0 

Definition 2.1.5. Subalgebras J 1 and J 2 of a Jordan algebra A arc said lo be 

equivalent if there exists an automorphism cp of A such that J1 = cp(J2). 

Definition 2.1.6. Let J be a subalgebra of A. Then the set C(J) of alls·ubalgcbras 

equivalent to J in A is said to be a conjugacy class of J. 

2.1.1 Canonical realizations of simple subalgebras 

Let A be a simple Jordan algebra, and J be a simple subalgebra of A. All reali1m-

tions listed below we will call canonical. 

1. Let A= Fr\+l 

Type 1. J ~ F,>,+-l, J = {diag(X, ... ,x,xt, ... ,X1.0, ... ,0)} where X 1s any 
'-v--" ~ '--v--' 

k l 8 

matrix of order rn, n = km + lm + s. 

Type 2. J ~ H(f~n), J = {diag(X, ... ,X,O, ... ,O)} where X is <my ::;yuuucLric 
'-v--" '--v--' 

k l 

matrix of order m, n = km + l. 
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Type 3. :J ~ H(F2m, j), :J = { diag(X, ... , X, 0, ... , 0)} where X is any symplectic 
~..._____.,. . 

k l 

matrix of order 2m, 2mk + l = n. 

2. Let A= H(F,) 

Type 4- :J ~ Fr~~)' :J = {diag(X, ... ,X,O ... ,O)} where Xi::; of the form (1) m 
~'--v---' 

k l 

which A and Bare of order m, n = km + l. 

T.vpe 5. :J ~ H(Frn), :J = {diag(X, .... X,O, ... ,O)} where X is any symmetric 
' ~'-v--' . 

k l 

matrix of order m, n = km + l. 

Type 6. :J~ TT(F'z.rn,.J), :!= {diag(X, ... ,X,O ... ,O)} 
~'--v---' 

k l 

!I -H ( ' -' [) 

B A D c 
X= 

C D A -B 

D -C B A 

where A is a symmetric matrix of order m, B, C, D are skcw-:,;ymmetric mat. rices 

of order m, n = 4mk + l. 

3. Let A= H(F2n,j) 

T 7 '7 rv p(+) ype . J = m , 

:J = {diag(X, ... , x. xt, ... ,xt, o, ... ,o, xt, ... , xt, x, ... , x,o, ... ,o)} 
~'---.r---"...____. ~ ~ ..._____.,. 

k l k l s 

where km + lm + s = n, Xi::; any matrix of order m. 

Type 8 . .:J ~ II (P,), .:J = { diag(X .... , X, 0, ... , 0, X, . .. , X, 0, ... , 0)} wh•m~ krn+ 
' ~..._____.,. ~ ..._____.,. 

k l k l 

l = n, X is any symmetric matrix of order m. 
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Type 9. :7 ~ H(F2rn,j), 

where A= diag(X, ... , X, X, ... , X, 0, ... , 0) and X= ...___.,. ...___.,. .._,_., 
k l (: :,} 

B = diag(Y, ... , Y, 0, ... , 0), C = diag(Z, ... , Z, 0 ... , 0) for any X of order m and 
'--v--" .._,_., '--v--" '-v--' 

k lm+s k lm-f s 

skew-symmetric Y,Z of order m, km + lm + s = n. 

Definition 2.1.7. Let :J and :J' be two proper subalgebras of A, and :J' be given in 

the canonical realization. If :7 is equivalent to :7', then :J' is said to be lhe canonical 

form of .J. 

Definition 2.1.8. Let .J ~ Pr>t) be a subalgebm of A~ P,\+), and p stand for the 

natural representation of .J in pn, m < n. Obviously, p induces ihe representation 

of S(.J) in pn. If S(.J) is a non-simple semisimple associative algebra, that, is, 

S(.J) = I 1 EB I2 where I 1, I 2 are isomorphic simple ideals, then p = {h ED P2 where 

Pi is a representation of Ii in the corresponding invariant subspace of P". Then 

Definition 2.1.9. Let :7 of the type F,~~) be a subalgebra of A= H(F2.,,.J). Then, :7 

can be covered by a subalgebra S of the type F,\+-). By Lemma 2.1. 4 all subalgebms of 

the type F,\ +) are conjugate under an automorphism of !I ( F2,, j) and can be redv.ced 

to (6). Hence P2" =VI mv2 where Vi is invariant under the act·ion ofS, dim v; = n. 

Let p denote the naluml representation of S in F 2
". Since S is con:fugale to (6), 
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p is completely reducible, and p = P1 CB P2 where p; is a representat?:on of S in v;. 

Definition 2.1.10. Let J of the type H(F2m,j) be a subalgebra of A= H(F2n,j). 

Then, we can always choose a subalgebra B of H ( F2m, j) of the type FSt) and define 

Theorem 2.1.11. Let A be a simple matrix Jordan algebra. Then, any simple 

matrix subalgebra of A has a unique canonical form as above. 

Proof. Let J be any proper ::;imple matrix ::;ubalgebra of A. In particular, the degree 

of J 2: 3. Denote the identity of A a::; 1. 

The proof of the theorem con::;i::;t::; of three ca::;e::;. 

Case 1 A= Fr~+) 

1.1 Let J be of the type F,>t) for ::;ome m < n. Due to [9] any Jordan algebra of 

thi~ type ha~ preci~ely two non-equivalent irreducible repre~entations both of which 

have degree m. Hence J is equivalent to the subalgebra in the canonical realization 

of type 1. If 1 E J, then the last zeros in canonical form of type 1 are omitted. 

Since kA(J) is invariant for J, the canonical form of J is uuiqucly dcfiucd. 

1.2 Let J be of the type H(Fm) for some m <::: n. Then, it follows from the 

uniqueness of the irreducible repre::;entation of H(F,,) [9] that J is equivalent to Lhe 

::;ubalgebra in the canonical realization of type 2. If 1 E J, then the last zeros in 

canonical form of type 2 are omitted. 

1.3 The proof uf the case when J ==' H(F2m,J), 2m< n, i::; cxacLly Chc ::;amc 

as the previous proof. In particular, J of the type H ( F2rn, j) i::; equivalent to the 
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subalgebra in the canonical realization of type 3. Obviously, the canonical form is 

unique. 

Case 2 A= H(F~,) 

Here, our main goal is to determine the canonical form of any simple matrix 

Jordan subalgebra of H(Fn)· Let M be a maximal subalgebra of H(F,). According 

to [28], M is isomorphic to one of the following: 

1. TT(Fk) CD TT(F[), k + l = n, 

2. F~+l EB H(F1) EB R, 2k + l = n, R is the radical (if l = 0, then M ~ Fi+l EB R) 
2 

3. J(V, f) only if n = 2"' and either dim J(V, f) = 2(rn + 1), rn is even, or 

dim J(V, f) =2m+ 1, m is odd. 

First, assume that .:J is a simple matrix subalgebra of TT ( F,) such that 1 E .:J. 

There exists a maximal subalgebra M such that .:J C M. Since deg .:J ~ 3, M 

cannot be of the type 3. If M contains a non-zero radical, that is, M = S ED R, 

where Sa semisimple algebra, R the radical, then by Lemma 2.1.3 we can assume 

that .:J c::; S. If S = S1 G S2 where S; non-trivial simple ideals, according to [29] we 

can choose three orthogonal idempotents: c, et' f ft' 1 = e + et + rr such that 

(7) 

Since f f 1 is an element of H(Fn), by an automorphism 'P of ET(F11 ), it can be 

reduced to the following form: 

(

It 0) 
!fJ(ff) = 0 0 
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where lz is the identity matrix of order l. Since e and et are orthogonal to J f', they 

take the forms: 

IP(e) = ( 

0 0 
) , IP((n = ( 

0 0 
) . 

0 J( 0 J(t 

where J( is a matrix of order n - l. Therefore, according to (7), 

(8) 

where X is any symmetric matrix of order l, Y is a symmetric matrix of order 

2k = n - l which is also an element of a subalgebra of the type Ft). 

In the case when M is semisimple, that is, M = S = S1 8 S2 , there exist two 

orthogonal idempotents such that 

S = e!I(Fn)e + f H(F,)J, c + f = 1. 

Acting in the same manner as above we can reduceS to (8). 

Therefore, we cau define two homomorphisms 1r1 , 1r2 as projections on St and 

S 2 , respectively. Since 1 E J, 1r1(J) ol {0}, 1r2 (J) # {0}. This implies that 

J ~ 1r1(J) ~ H(Fz), l < n, and J ~ 1r2(J) ~ H(F2k), 2k < n. Therefore, we can 

reduce the problerr:. of finding the canonical form of J to the case of all symmetric 

matrices of order less than n. However, the above reduction does not work in the 

case when S is simple, that is, M = F~ 1 ) ED R, T :::; n. Hence we can conclude that 
2 

as soon as the given simple subalgebra J is in the maximal subalgebra M which 
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hat> a non-t>imple t>emit>imple factor S, the problem can be reduced to the case of 

symmetric matrices of a lower order. This process t>tops only if at some t>tep either 

Hi(J) ~ M ~ FV' ffiR, or ni(:J) coincidet> with Si. Without any lot>::> of generality, 
2 

we can assume that r = n, that is, :J ~ M ~ F~ +) ffi R. 
2 

All we need to reach our goal it> to determine the canonical form of :J which 

is covered by a maximal subalgebra of the type F~ +) Cl) R. Notice that there i:,; an 

bommphic imbedding 0 of Ft) inlo H(f~) such :haL O(A +iii) ~ ( -AR : ) , 

where A is a symmetric matrix of order R, B it> a skew-t>ymmetric matrix of order 

2.1. Let u:,; assume that :J hat> the type Fr~,f-) where n = 2mJ. We know that 

by an appropriate automorphism ?j; ofF~+), we can reduce e- 1(:!) to the canonical 
2 

form: ?jJ(e- 1(:!)) = {diag(X, ... ,X,Xt, ... ,Xt)} where X is any matrix of order 

m. Then, X can be written as A + iB for an appropriate symmetric A and skew-

symmetric U. Therefore, fJ(t/;(e- 1 (:!))) hat> the following representation in !!(F,): 

where S = diag(A ... , A), T = diag(B, .... B, -B, ... , -B). By Lemma 2.1.1, 

eo ?jJ o e-1 (an automorphism of the algebra of the form (1)) can be extended to an 

automorphism of H ( Fn)· Finally, by interchanging the k-th and ( ~ + k )-th column:,;, 

and k-th and (¥ + h:)-th rowH, 1 :::; k: :::; ¥, and the columns and rowH in:,;ide the 

block (if necetosary), we can achieve the following block-diagonal canonical form of 

type 4. As a ret>ult any subalgebra of H(F,) of the type Fr~•'r-) can be brought to the 
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canonical form of type 4. This canonical form is obviously unique. 

2.2. Let J be of the type H(Frn)· Acting in the same manner as before, J can 

be brought to the unique canonical form: 8(7./J(e- 1 (:7))) = {diag(X, .... X)} where 

X is a symmetric matrix of order rn. 

2.3. Let J be of the type H(F2rn, j), n = 4rnl. Like in the previous cases, by an 

appropriate automorphism l/J of Pi+), e-1 ( J) can be brought to the following block-
2 

diagonal form: ?j;( e- 1 (J)) = { diag(X, ... , X)}, where X is a symplectic matrix of 

order 2m. If we represent X as the sum of symmetric and skew-symmetric matrices 

as follows: 

X= ( A -B) + ( -C 
B A -D 

-D) 
c 

where all matrices have order rn; A is symmetric, B, C,D are skew-symmetric, then 

() induces the following representation of J in H ( F,) 

where S = diag(X, ... , X), T = diag(Y, .. , Y,- Y, ... ,-Y) and 

X=(/\ -JJ), Y=(-C -!J)· 
B A -D C 

Similarly, by Lemma 2.1.1, () o 7./J o e- 1 (an automorphism of the algebra of the form 

(1)) can be extended to an automorphism of H(F11 ). 

By interchanging appropriate blocks, we can reduce it to the canonical form 

of type 6. From the explicit form of type o, the canonical form of J of Lhc Lypc 

H ( F2m. j) is uniquely determined. 
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If 1 ¢ J, then rk (e)= k < n where e is the identity element of J and it is quite 

obvious that J can be covered by a subalgebra of H(Fn) of the type H(Fk)· As was 

already shown, J can be reduced to the unique canonical form in H(Fk), hence, in 

Case 3 A= H(Fzn,j) 

Since the proof of this case is not much different from the proof of the case of 

TT ( Fn), we will omit some details. According to [29], any maximal subalgebra M in 

H ( F2n, j) is isomorphic to one of the following: 

1. H(F2k,j) EB H(Fzz.j), k + l = n, 

2. H(F2k,j) EB F?) EB R, k + l = n. If k = 0, then M = F,\+) 8 R, R is the 

radical 

3. J(V, f) only if n = 2m and either dim J(V, f) 

dim J(V, f)= 2m+ 1, m is odd. 

2(rn + 1), m is even, or 

First we assume that J is a simple matrix subalgebra of H ( F2n, j) such that 

1 E J. Let M = S EB R be a maximal subalgebra which contains J, J <::: M. 

By Lemma 2.1.3, J C S. If Sis a non-simple semisimple algebra, then J can be 

projected into the simple components of S. Hence, the problem will be reduced 

to the case of symplectic matrices of order less than 2n. This reduction stops only 

when either the image of J can be covered by the maximal subalgebra with a simple 

Wedderburn factor S or the image of J coincides with one of the simple components 

of S. 

Next we look into the case when J C M, where M has a simple Wedderburn 
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factorS. There is no loss in generality if we assume that M = S 0 R, S ~ F,\+). l3y 

Lemma 2.1.4, S can be brought to the form (6). Notice that any automorphism of 

F,~ +) of the form IP( X) = c-t XC can be extended to an automorphism of H ( F211 , j) 

in a natural way: 

cp(X) = c-1 XC, (9) 

3.1 If .:J ~ H(Fm), m :s; n, then acting by some automorphism of the form (9), 

it can be reduced to canonical form of type 8. This canonical form is obviously 

uniquely determined. 

3.2 If .:J ~ F~>tl, m :s; n, then by an automorphism of the form (9) it can be 

brought to { diag (X, ... , X, X 1
, ... , X 1

)} where X is an arbitrary matrix of order m. 

This is the canonical form of type 7. With some efiort it can be shown that in this 

case the canonical form is also unique. Namely all we have to show is that any two 

canonical forms .:It and .:J2 of the same type with kA(.:Jt) # kA(.:J2 ) are not conjugate 

under symplectic automorphism, or, equivalently, automorphism of H(F2,, j). For 

clarity, let .:lt = diag {X, ... , X, X 1
, ... , X 1

, X 1
, ... , X 1

, X, ... , X}, rm + srn = n, 
. '-v----' '-v---"' '-v---"' '-v----' 

r s r s 

and .:J2 = diag{Y, ... , Y, Y 1
, ... , Y 1

, Y\ ... , Y 1
, Y, ... , Y}, pm + qm = r1, p > r, 

~~~~ 
p q 1' IJ 

where X andY are any matrices of order m, kA(.:lt) # kA(.:J2 ). Next we as::;ume the 

contrary, i.e. there exists a symplectic automorphism if such that IP(.:l1) = .:J2. Let 

S stand for the subalgebra of H( F2n,j) of the form (6). Obviously, .:J1 ~ S, .:J2 ~ S. 

Next we are going to show that for any automorphism <p of H(F2n· .n t-mch that 

ip(.:Jt) = .:J2 we can always find a symplectic automorphism ·1/J that can be restricted 
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to Sand lfli.JI = 7f;l..r1 . Let C be a non-singular matrix that determines lfl· Then, for 

any A E 3 1 there exists B E 32 such that 

(10) 

Set C = ( C;j )i,j= 1,, where C;j is a square matrix of order m. By performing a matrix 

multiplication in (10) we obtain a series of equations: 

where (i, j), (k.l) E I x /, I = {1, ... , s }. Since X andY can be any matrices of order 

the matrix (} = diag { cij' Ckt' ... 'C;j' ( CL )- 1
' ( Ckt)- 1

' ... ' ( c;y )- 1
} determines an 

n 
automorphism 1/J of II(P2n,.j) such that lfll..r1 = t/JI..r1 . In addition, if' can be restricted 

to S, thereby inducing an automorphism of a subalgebra of the type F,\+). However 

we have already shown (case 1.1) that the two canonical forms in F,\+l with kA(JJ) =f 

3.3 If J ~ JJ(P2.,,j), m. 'S n, then it can be reduced to canonical form of type 

9. Next we are going to show that any two canonical forms 3 1 and 32 of the sarm~ 

type with kA(J1 ) =f kA(J2 ) are not conjugate under an automorphism of H(F2,,_j). 

Assume the contrary, that is, there exists an automorphism :;; of H ( F2n, j) such that 

2.1.4 there exists 1jJ : J2 --? J2, ?j!(lfJ(Sl)) = S2. From the explicit form of .:h, t/' 

can be extended to an automorphism 1/J o 1fJ : Jl(F2m,j) --7 H(F2·m,.J). It follows 
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that 5 1 and 5 2 have the same canonical forms, in particular, kA(S1) = kA(S2 ), a 

contradiction. 

If 1 ~ :J, then in order to find the canonical form of :J we use the same approach 

as in the case of H ( F,,). The theorem is proved. 

0 

Before we state the following theorem we introduce one more notation. Let :J 

be a simple Jordan subalgebra of A= F,~+), H(Fn) or H(F2.,,j), and c be the 

identity of :J. Then e can be decomposed into the sum of idempotent::; minimal in 

A, e = e1 + ... + ek. Then k = degA:J· 

Theorem 2.1.12. Let A be a Jordan algebra of any of the .following lype.s: F,~'), 

TT(F,) or TT(F2n,,j), n 2 3, and :J, :J' be proper simple matrix subalgebms of A. ff' 

:J' has the same type as :J, then :J' E C(:J) 'if and only if degA:J = degA:J' in all 

cases except for A~ H(F2n, .J), :J ~ F,>t), H(F2m, .J) and A~ F,\+), :J ~ FStl. In 

these cases it is additionally required kA(J) = kA(:J'). 

Proof. First it should be noted that the degree of :J 2 3. The case of :J of the degree 

2 will be considered later in the text. Notice that in matrix terms degA:J = clegA:J' 

is equivalent to rk (e) = rk (e') where e, e' are the identity of :J, :J'. 

The case ofF,\+) 

In this case we assume that :J and :J' are subalgebras of F,\ 1
) which is as usual 

the set of all matrices of order n under Jordan multiplication. This case breaks into 

the following subcases. 
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(1) Let .] be of the type F~t) for t>ome m < n. Firt>t we assume that 8(.1) is a 

simple algebra. Equivalently, kA(.J) = rk(e). Let .J' be at> given in the hypothesis 

of the theorem. If .J' E C(.J), then there exit>tt> an automorphism r.p of F,\ 4
) which 

mapt> .J' onto .] . It follows that rp( e') = e, therefore, rk ( e') = rk (e). Besides, 

rp(S(.J')) = 5(.1). Hence, 5(.1') is alt>o t>imple, kA(.J') = rk(e'). It follows that 

kA(.J') = rk (c') = rk (c)= kA(.J). 

Conversely, if rk(e') = rk(e) and kA(.J) = kA(.J'), then kA(.J') = kA(.J) = 

rk(e) = rk(e'), because kA(.J) = rk(e). Therefore, kA(.J') = rk(e'), that is, S(.J') is 

also simple, and.], .J' have the same canonical forms. This implies that .J' E C(.J). 

Now we assume that ,'-,'(.]) it> a non-t>imple t>emisimple subalgebra. Let .J' be 

another subalgebra which satisfies the hypothesis of the theorem. If .J' E C(.J), then 

there existt> an automorphism r.p ofF,~+) which maps .J' onto .]. Therefore, .J' and 

.] have equivalent representations in F", and so do 5(.1') and S(.J). Consequently, 

either degpt(I1) = degp1(ID and degp2(I2) = degp2(I~) or degpt(It) = degp:l(I~) 

and degp2(I2) = degpt(ID. Equivalently, idegpt(It)- degp2(I2)I = idegpt(ID

degp2(I~)I, that is, kA(.J) = kA(.J'). 

Conversely, if rk(e') = rk(e) and kA(.J) = kA(.J'), then .J and.]' have the same 

canonical forms. Therefore, these t>ubalgebras are conjugate under some automor

phism of F,~ 1 l, and .J' E C(.J). 

(2) Let .] be of the type H(Frn) for some m ~ n. Suppose that .J' is another 

subalgebra of F~\+) which has the type H(Fm)· If .J' is conjugate to.] under some 

automorphism r.p ofF,~+) then rp(e') = e and rk(e') = rk(e). In other words, the 
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canonical form of ]' is exactly the same as that of :J. Conversely, if rk( tc') = rk( e), 

then :J and J' have the same canonical forms. Therefore, :J' E C(J). 

(3) Let :J be of the type H(F2m,j) for some m:::; n. The proof of this case is 

exactly the same as the previous proof. 

The case of H(Fn) 

Suppose that :J and J' are two subalgebras of ll ( Fn) that satisfy the hypothesis 

of the theorem. 

(1) Let :J as well as J' be of the type F,>tl. Assume that :J' E C(:J). It 

follows that there exists an automorphism of H(F,J such that <p(J') =:f. Hence, 

rk(c') = rk(c). Conversely, if rk(c') = rk(e), then :J and J' have the same canonical 

form. Therefore, :J' E C(J). 

(2) Now let both :J and J' have the type H(Frn) (or H(F2m,j)). If J' E C(J), 

then there exists an automorphism :.p of H(Fn) that sends :J' onto :J, cp(:J') =:f. 

Consequently, rk( c') = rk( c). 

Conversely, if rk( e') = rk( e), then they have the same canonical form. Therefore, 

:J' E C(J). 

The case of H(F2,,j) 

Suppose that :J and :J' are two subalgebras of H( F2n, j) that satisfy the condi

tions of the theorem. 

( 1) Let :J as well as J' be of the type Fr\t), m < n. Assume that :J' E C ( J). 

It follows that there exists an automorphism of H(Fzn,j) such that cp(J') = :J. 

Hence, rk(c') = rk(c). Since :J' and :J are conjugate in ll(T"zn,j), they have the 
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same canonical forms in H(F2n, j). Therefore, kA(J) = kA(J'). 

Conversely, if all conditions hold true, then J and J' have the same canonical 

forms. Therefore, J' E C(J). 

(2) Now let both J and J' have the type H(Fm), m < n. If J' E C(J), 

then there exists an automorphism of H(F2n, j) that sends J' onto J, :;:(J') = J. 

Consequently, rk(c') = rk(c). 

Conversely, if rk( e') = rk( e), then they have the same canonical forms. Therefore, 

J' E C(J). 

(3) Now let both J and J' have the type H(F2m, j), m < n. If J' E C(J), 

then there exists an automorphism of TT(F2.,,j) that sends J' onto J, :;:(J') = J. 

Consequently, rk(e') = rk(e), kA(J) = kA(J'). 

Conversely, if rk(e') = rk(e) and kA(J) 

canonical forms. Therefore, J' E C ( J) 

The theorem is proved. 

kA(J'), then they have the same 

0 

Corollary 2.1.13. If m is any number such that m :::; n, and n = mk + T, 0 :::; 

r < m, lhen there exist subalgebras of Fr~+) of the type H(F,). Moreover, there are 

precisely k conjugacy classes corresponding to H(F,). ff2m:::; n, and n = 2mk+r, 

0 :::; T < 2m then F,\+) has subalgebras of the type II ( F2m, j), and the number of 

confugacy classe.'i cor"Tesponding to H(F2rn,j) is equal to k. Finally, {f m < n, and 

n - Tnk + r, 0 ~ r < m thPn thPrP Pxist snbn,/,_qP:bm8 of F,\ 1 
) of the type FS,' ) , and, 

moreover, the number of conjugacy classes is g·iven by 2:::~= 1 [ ~ ]. 
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Corollary 2.1.14. ff m is any number such that m < n, and n = mk + T, 0::; 1· < 

m, then there exist subalgebras of H(Fn) of the type H(Frn)· Moreover, there are 

precisely k conjugacy classes corresponding to H ( Fm). rt 2m ::; n, and n = 2mk + T' 

0 ::; r < m then H ( Fn) has subalgebras of the type Fr~t l, and the number of conJugacy 

classes corresponding to Fr~tl is equal to k. Finally, if 4m ::; n, and n = 4mk + 1·, 

0 ::; r < 4Tn then there exist subalgebras of l!(Fn) of the type TT(F'2,,,j), and, 

moreover, the nmnber of conjv.gacy classes is k. 

Corollary 2.1.15. ff m is any number such that m::; n, and n = mk + r, 0::; 1· < 

m, then there exist s·ubalgebras of ll(F'2n,.i) of the type l!(Frn)· Moreover, then: aTP 

precisely k conjugacy classes corresponding to H(Frn)· If m ::; n, and n = mk + r, 

0 ::; r < m then H ( F2n, j) has S'Ubalgebras of the type F,~;tl, and the n·umber of 

cmzjugacy classes corresponding to F,~tl is equal to 2:::~= 1 [~]. Finally, ~lm < n, and 

n = m.k+r, 0::; r < m. then there exist snbalgebras of l!(Fn,.f) of the type ll(F'rn,j), 

and, moreover, the number of conjugacy classes is 2:::;'=1 [~ ]. 

2.2 Subalgebras of the type J(V, f) 

First we recall a few facts from [29] coucernmg Clifford algebras over a field of 

characteristic not 2. Let J = Fl El.l V where V = span(x1 , ... ,.T2w), ancl fa 

non-degenerate symmetric bilinear form on V. Then, C(V, f) is a central sim

ple associative algebra with a uuiquc canonical involution '-' that fixes clcuwuts 

from V. In this case the imbedding of J into C: ( V, I)< 1 l we will call canoni

cal of the first type. Next, let J = Fl El.l V where V = span(:r 1 , .... :r2m+ 1), 
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and VfJ = span(x1, ... , x2m)· Then, C(V, f) is isomorphic to a tensor product of 

C(Vo, f) and the two-dimensional center E of C(V, f). Moreover, E = F[z] where 

z = x1x2 ... X2m+l· In other words, C(V, f) = I1 EB I2, Ii ~ C(Vo. f). Note that 

F1 ED V ~ J + I;/Ii ~ C(V, f)/Ii ~ C(V0 , f)(+l. This imbedding of J = F1 Ef-) V 

into C(Vo, f)(+) we will call canonical of the second type. 

Let A be a simple matrix Jordan algebra, and J be a subalgebra of A of the 

type J(V, f). According to [29], J of the type J(V, f) is maximal in A if and only 

if one of the following cases holds 

1. A= (C(V0 , f),-), J = F1 EB V where dim V =2m+ 1 and m is odd. 

2. A= H( C(V0 , f),-), J = F1 EB V where dim V =2m+ 1, m is even. 

3. A= ll(C(V, I),-), J = P1 CD V where dim V =2m 

Next we recall that if dim V 2m, and m 0, 1(mod 4) then 

dim H(C(V,f),-) = 2m- 1 (2m + 1). If dim V =2m and m = 2.3(mod4) then 

dim H(C(V, f),-) = 2m- 1(2"'- 1). If dim V = 2m+ 1 and m = O(mocl4) then 

dim H(C(Vo, f),-) = 2m-1 (2m + 1). If dim V =2m+ 1 and rn = 2(mod4) then 

dim JJ(C(V0 , f),-)= 2m-l(2m- 1). 

2.2.1 Canonical realizations of J(V, f) 

Let A be a simple matrix Jordan algebra, and J = P1 (I) V be a subalgcbra of A. 

Then all realizations of J in A listed below we will call canonical. 
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Type 10. A= Fr~ c), n = 2mz + r, dim V =2m, 

~ = {diag()(, ... ,)(,0, . .. ,0)} 
~ 

l 

where )( is a matrix of order 2rrt, and if 7r; denotes the projection on the ith non-zero 

block, then n;(~) ~ F~,;,) is a canonical imbedding of the first type. 

Type 11. A= F,~+), n = 2"'l + r, dim V = 2Tn + 1, 

~ = {diag()(, ... ,)(,0, ... ,0)} 
~ 

l 

where)( is a matrix of order 2"', and n;(~) ~ F~;;:) is a canonical imbedding of the 

second type. 

T,vpe 12. A= F,~+l, n = 2rnz + r, dim V =2m+ 1, 

~ = {diag()(, ... ,)(,)(t, ... ,)(t,o, ... ,o)} 
'----v--' "----v----' 

k 

where s + k = l, X is a matrix of order 2m, and n;(~) ~ ['~,;,) is a canonical 

imbedding of the second type. 

T:iJpe 13. A= H(Fn), n = 2"'l + r, dim V =2m, 

~ = {diag()(, ... ,)(,0, ... ,0)} 
~ 

l 

where )( is a symmetric matrix of order 2m, and n;(~) C F~,;,) is a canonical 

imbedding of the first type. 

T:iJpe 14. A= H(Fn), n = 2rn+1z + r, dim V =2m, 

~ = {diag(X, ... ,X,O, ... ,0)} 
~ 

l 
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where X is of the form ( 1) in which A and B are of order 2"'. If S denotes the 

algebra of the form (1), then n;(J) ~Sis a canonical imbedding of the first type. 

Type 15. A= H(Fn), n = 2m+lz + r, dim V =2m+ 1, 

:1 = {diag(X, ... , X, 0, ... , 0)} 
'----v---" 

l 

where X is of the form (1) in which A and B are of order 2rn. If S denote8 the entire 

algebra of the form (1), then ni(J) ~Sis a canonical imbedding ofthe second type. 

Type 16. A= TT(Fn), n = 2mz + T, dim V =2m.+ 1, 

:1 = {diag(X, ... ,X,O, ... ,O)} 
'----v---" 

l 

where X is a 8ymmetric matrix, and ni(J) c:;;; F~,~) is a canonical imbedding of the 

second type. 

Type 17. A= J-I(F2n,j), n = 2mz + r, dim V =2m, 

J = {diag(X, ... ,X,O, ... ,O,X, ... ,X,O, ... ,0),} 
'----v---" ..___.,_,. '----v---" '----v---' 

l k l k 

where k + Z2m = n, X is a symmetric matrix of order 2m, and n;(J) C F~,;,) is a 

canonical imbedding of the first type. 

Type 18. A = H(F211 ,j), n = 2mz + r, dim V = 2·m, :T has a canonica.l form 

(3.3), and if 7ri denote8 the projection of J into 'ith simple component (of the type 

H(F2,,j)) of (3.3), then 7r;(J) c:;;; H(F2m,j) is a canonical imbedding of the first 

type. 

1);pe 19. A= H(F211 ,j), n = 2"'l + r, dim V =2m+ 1, J lm::; a canonical form 

(3.3) where 7r;(J) c:;;; H(F2m,j) is a canonical imbedding of the second type. 



Type 20. A= H(F2n,j), n = 2ml + r, dim V =2m+ 1, 

:J = { diag(X, ... , x, X 1
, . ... xt o, ... , o, xt, ... , xt, x, ... , x, o, ... , o)} 

~~ '---v----"~ 
k k 

where s + k = l, X is a matrix of order 2m, and 1r; ( .J) <:;;; FJ,;, l is a canonical 

imbedding of the second type. 

Theorem 2.2.1. Let A be a simple matrix Jordan algebra, and :1 be a subalgebra 

of A of the type J(V, f). Then, :J has a unique canon'ical form as above. 

Proof. Let .J = F1 Cll V. Then the following cases occur. 

C A F (+) ase = n 

1.1 Let dim V = 2m. Then U(J) ~ C(V, f) is a simple algebra. In particular, 

S(J) ~ U(J). 

If S ( :J) = A, then n = 2m, A ~ U ( .J). Therefore, the imbedding of :J into A is 

equivalent to the imbedding of Fl EB V into C ( V, f) ( + l. Therefore, this is a canonical 

imbedding of the first type. 

If 8(:1) c A, then S(:J) is a proper simple associative subalgebra of P~~.. There-

fore, S(:J) can be reduced to 

{diag(Y, ... , Y,O, ... ,0)} 
"--v--" 

(11) 

where Lhe order of Y is 2m, and n = 2rnl + r. As a result, :1 also takes the canonical 

forrn of type 10. 

1.2 Let dim V = 2m+ 1. Then U(J) ~ C:(V, I), and U(J) = I 1 w I-2 , Ii == 

C(\10 . f). Hence S(:J) is isomorphic to either C(V, f) or C(V0 , f). 
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If S(.J) =A, then the imbedding of .J into A is canonical of the t:>econd type. 

If S(.J) ~ Ii, and S(J) C A, then S(J) it:> a proper simple at:>sociative subalgebra 

ofF;,. Therefore, S(J) can be reduced to (11). As a result, J takes the canonical 

form of type 11. 

Finally, if S(J) = I 1 EB I 2 , then .J takes the canonical form of type 12. 

Case A= TT(Fn) 

Let M be the maximal subalgebra of H(Fn) such that .J s;; M s;; H(F,,). Then, 

the following cases occur. 

1. M = 5 EB R. where 5 == 51 ED 52 a seminimple factor, R the radical. Then, 

we reduce the problem to the cane of nymmetric matricen of a lower dimension (sec 

r:;cction 2.1). 

2. M = 5 where 5 = 5 1 EB 52 • Like in the previous case we can reduce the 

problem to the cat:>e of symmetric matrices of a lower dimennion. 

3. M =58 R where 5 ~ Fi+), R the radical. 
2 

4. M = F1 EB VI' where W is a finite-dimensional vector space. 

After a scrier:; of redudionr:; of the form 1 and 2, the image of J becomet:> a 

subalgebra of 
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0 

0 

where A; ~ !I (l'~,J. Let n; be the projection of J into A;. To simplify our notation 

we denote n;(J) as J', and the maximal subalgebra of A; which covers J' as M;, 

Case 1. Let dim V = 2m and m = 0, 1 (mod 4). Then we have the following 

cases: 

(a) Let M; = F1 E8 W. If S(J') = Fn;' then n; = 2"', Fn; ~ C(V, f), and the 

imbedding of J' into F,~~) is equivalent to the imbedding of F1 E8 V into C(V, f)(+l, 

that is, canonical of the first type. If S(J') C F"i' then H(S(J')) ~ H(Fn;) i:o a 

proper simple subalgebra of H(FnJ· Hence, n; = 2m1 + r, and H(S(J')) can be 

reduced to (11) in which X denotes a symmetric matrix of order 2m. Then, J' takes 

the canonical form of type 13. 

(b) Let M; = S EB R where S ~ F~t l. By using 8-isomorphism defined iu the 
2 

proof of Theorem 2.1.11 we obtain that e- 1(J') ~ F,\;l. If S(e- 1(J')) = F~;'l, then 
2 2 

n; = 2"'+1 and the imbedding of e- 1(J') into F0;:l is the canonical imbedding of the 
2 

first type. In particular, e- 1(J') ~ H(F%)· As a result J' takes the canonical form 

of type 13 in which l = 2 and there are no zeros. If ,'J'(J') c__ vtl, Lheu S(0- 1 (J')) is 
2 

a proper simple subalgebra of F 7l:i, therefore, takes the form ( 11) and n; = 2"' + 11 + r. 
2 



Hence .J takes the canonical form 2.1. 

Case 2 Let dim V =2m, m = 2, 3(mod4). 

(a) Let M; = Fl EB W. If S(.J') = Fni' then n; = 2m, F~,i ~ C(V, f), .J' c 

H(F,J. Hence we have the following commutative diagram: 

.J' = Fl CD V ~ .J' = Fl (f) V 

U(.J') 

where a = <p o TJ· Therefore, a(.J') = <p(TJ(.J')) is symmetric with respect to the 

canonical involution "----" which is symplectic in this particular case. On the other 

hand, a(.J') is also symmetric with respect to j' = ;p o /, o <p- 1. By the uniqueness of 

"-'', j' equals to "-". However this is not possible because dim H ( C(V, f), -) = 

2
"'(

2
;"-l) I- 2

m(
2;'+l) = dim H(C(V, j),j'). If S(.J') c F"i' then H(S(.J')) ~ 

H(PnJ is a proper subalgebra of H(FnJ· Hence n; = 2mz + 1·, and ll(S'(.J')) 

can be reduced to (11) where X denotes a symmetric matrix of order 2111
• Let 7r;j 

denote the projection on jth non-zero block of (11). Then the imbedding 7r;.i(.J') ~ 

7r;j(H(S(.J'))) is similar to the above imbedding, which is not possible. 

(b) Let M; = SEBR where S ~ Ff:l. Then e- 1(.1') ~ Ff,:l. Since S'(e- 1(.1')) ~ 
2 2 

U(.J'), then n; = 2m 11 l + r, and S(e- 1(.1')) can be reduced to (11) in which X is 

any matrix of order 2m. Hence 7r;j(e-1 (.J')) c Fd,~l is a canonical imbedding of the 

first type, and .J has the canonical form of type 14. 

Case 3 Let dim V = '2'rn + 1 where rn is odd. 

(a) Let M; = Fl EB W. If S(.J') = Fni' then n; =2m, Fni ~ C(\1(1, f). There-
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fore, the imbedding of J' into F,~;) it> equivalent to the imbedding of F1 (!) V into 

C(Vrh j)(+) which is a canonical imbedding of the second type. Since m it> odd, 

J' it> a maximal t>ubalgebra in Fr~;). However, J' ~ H(F,J, hence, J' cannot be 

maximal. Thit> cat>e it> not pot>sible. If S(J') ~ Fni' then H(S(J')) ~ H(F11 ,) it> 

a proper t>ubalgebra of H(FnJ, and, therefore, can be reduced to (11). However, 

the imbedding of 1riJ(J') into Fi::) is as t>hown above. Hence thit> cat>e it> alt>o not 

pot>t>ible. 

(b )Let M; = S ffi R where S ~ F~). Acting in the t>ame manner at> in cat>e 2(b) 
2 

we will come to the canonical form of type 15. 

Case 4. Let dim V =2m+ 1 and rn = O(mod4). Acting in the t>ame manner 

at> in previout> cat>et> we will reduce J' to the canonical form of type 16. 

Case 5. Let dim V =2m+ 1 and m = 2(mocl4). Acting in the t>arne manner 

at> in previout> cat>et> we will reduce J' to the canonical form of type 15. 

Case A= H(F2n,.i) 

Let M be the maximalt>ubalgebra of H(F2n,j) t>uch that J ~ M ~ H(F211 ,j). 

Then, the following cat>et> occur. 

1. M = S ffi R where S = S1 ffi S2 a t>emit>imple factor, R the radical. Then, 

we reduce the problem to the cat>e of t>ymplectic matricet> of a lower climent>ion (t>cc 

section 2.1). 

2. M = S where S = S1 8 S2 . Like in the previout> cat>e we can reduce the 

problem to the cat>e of t>ymplectic matricet> of a lower dirnent>ion. 

3. M = S EB R where S ~ Fr~ +), R the radical. 
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4. M = F1 EB H' where W is a finite-dimensional vector space. 

After a series of reductions of the form 1 and 2, the image of J becomes a 

subalgebra of the algebra in the canonical form of type 9 in which the ith component 

has order 2n;. Let Jri denote the projection of J into the ith simple component of 

canonical form of type 9. 

Case 1. Let dim V = 2rn and m :=== 0, 1(mod4). 

(a) Let Mi = F1 EB W. If S(J') = F2n;, F2n, ~ C(V, f), 2n; = 2"'. Acting in 

the same manner as in case 2(a), we can show that this situation is not possible. 

Likewise if S(J') C F2n; then we can reduce this case to the case just considered. 

Therefore, it also never occurs. 

(b) Let M; = S 8 R where S ~ Fr~7). Then J' C F,\7), therefore, S(J') can 

be brought to (11), and 7rij(J') C F~;;;) is the canonical imbedding of the first type. 

Finally the original subalgebra takes the form of type 17. 

Case 2 Let dim V =2m., m. :=== 2, 3(mod4). 

(a) Let M; = F1 ED vV. If S(J') = F2,.,, then 2n; = 2m, F2n, ~ C(V f), 

J' r;;; FJ~l is the canonical imbedding of the first type. If S(J') C F2n,, then 

H(S(J'), j) r;;; H(f2n;> j) is a proper subalgebra of H( F2n;, j), that is, ni = 2ml + r, 

and H(S(J'), j) can be reduced to canonical form of type 9 in which each component 

has order 2m. Then, J takes the canonical form of type 18. 

(b) Let Mi = S 0 R where S ~ Fr~7). This case also leads us to the canonical 

form of type 18. 

Case 3 Let dim V = 2m + 1 where rn is odd. 
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(a) Let M;. = F1 (]) W. If S(J') = F2n,, then 2n; = 2"', Fzn, ~ C(Vo, f). 

Therefore, the imbedding of J' into FJ,;) is equivalent to the imbedding of F1 G.l V ,, 

into C(V0 , J)C+) which is canonical imbedding of the second type. Since m is odd, 

J' it> a maximal t:>ubalgebra in F§~}. However, J' ~ H(F2n;,j), hence, J' cannot be 

maximal. Thin cane it> not pot:>sible. If S(J') C F2np then H(S(J'),j) C H(Fz""j) 

it> a proper t:>ubalgebra of TT(P2ni,j), therefore, can be reduced to canonical form 

of type 9. Let 7r;j denote the projection of J' into the jth t>imple component of 

canonical form of type 9. However, the imbedding of 7r;j(J') into Fj,;,l it> at> t:>hown 

above. Hence thit:> cat:>e it> also not post>ible. 

(b) Let M; = S c1: R where S' ~ Pr~7). Then J' C P,\7), therefore, S'(J') can be 

brought to (11), and 1r;J(J') C FJ;;,l it> the canonical imbedding of the t:>econd type. 

Finally the original t:>ubalgebra takes the form of type 20 

Case 4. Let dim V =2m+ 1 and m = O(mod4). Acting in the t:>arnc manner 

as in previout> cat:>et:> we will reduce :1' to the canonical form of type 17. 

Case 5. Let dim V =2m+ 1 and m = 2(mod4). Acting in the name manner 

at> in previout> cat>et:> we will reduce J' to the canonical form of type 18. 

Corollary 2.2.2. Let A be a Jordan algebra of either type H(Fn) or ll(F211 .j), and 

:J be of type J(J, 1), dim J = r. If22+1~1 ~ n, then J can be imbedded in A of t:IJpe 

H(F,). Ij2Hm <::; n, then :J can be imbedded in A of type H(F2,,j). 

0 
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Chapter 3 

Simple decompositions of simple 

Jordan superalgebras with 

semisimple even part 

Jonlau supemlgebras were first studied by V.Kac [10] aud I.Kapbusky ]1:3]. Iu [ 1:3[ 

V.Kac classified simple finite dimensional Jordan superalgebras over an algebraically 

closed field of zero characteristic. Let us introduce the definition of a Jordan :::;uper

algebra. 

Definition 3.0.3. A Jordan superalgebra is a Z2 -graded algebra of the form: J = 

Jo + J 1 thai satisfies s·uperwmnmtativity 

where aa E :Ia, o:, (3 E Z2 and R denotes multiplication on the right, and the lin-
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earized Jordan identity in operator form 

Definition 3.0.4. A supeT'invol,ution of an associative supemlgebra B 'is a gmded 

lineaT map * : B -7 B such that 

a** =a, (a b)*= (-l)"f!b*a* a fJ ,6 a· 

Finite-dimensional simple Jordan superalgebras with semi::;imple even part over a 

field of characteristic not two have been classified by J\I.L. Racine and EJ. Zelmanov 

[27]. To begin we briefly recall this clasc;ifieatiou. If .J is a silllple finite-dimensional 

Jordan superalgebra with semisimple even part over an algebraically closed field F 

of characteristic not 2, then .J is isomorphic to one of the following ::;uperalgebras: 

( 1) Mn,m (F) (-I ) , the set of all mat rice::; of order n + m. Let 

M,,m(F)~+) ~ { (: :) ,A E M,(F), BE M,(F)} 
and 
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Then M 11,m(F)(+) becomes a Jordan supcralgebra with respect to the above Z2-

grading under the Jordan supermultiplication; 

(2) osp(n, rn), the set of all matrices of order n + 2m symmetric with re-

n. 

(5) Let V = V0 + V1 be a ZTgraded vector space with a non-singular symmetric 

bilinear superform f : V x V -+ F. Consider the direct sum of Fl and V, J = FlEB V 

where 1 is the identity element, and determine multiplication according to 

(o:l + v)(;Jl + w) = (o:;Jl + J(v, w)) + (o:w + ;Jv). 

Then J becomes a Jordan superalgebra of the type J(V, I) with ret>pect to the 

following Z2-grading: Jo = F + Vo, J1 = V1. 

(6) The 3-dirnent>ional Kaplansky superalgebra K3 , (K3 ) 0 =Fe, (K:3) 1 = Vr + 

Fy, the multiplication r2 = e, e · x = 4x, e · :y = 4y, [x, y] = e. 

(7) The !-parametric family of 4-dimensional superalgebras Dt. D 1 = ( D1) 0 + 
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e; · x = ~x, e; · y = ~y, [x, y] = e1 + te2 , i = 1, 2. A superalgebra. Dt is simple only 

if t "I 0. If t = -1, then D_ 1 isomorphic J\!1,1 (F). 

(8) K 10 , the Kac superalgebra: 

where 

1 

Jo = (Kc + L Kv;) CB Kf, 
lS:iS:4 

J1 = L (Kx; + Ky;), 
i=1,2 

P · Xj = 2Xj. ;1/1 · v1 = :z:2, Y2 · v1 = -xl. x1 · v2 = -y2, x2 · v2 = Yt· 

1 
c·yj=2yj, x2·v3=x1, Y1·v3=y2, .T1·V4=x2, Y2·v4=y1, 

and every other product is zero or obtained by the symmetry or skew-symmetry of 

one of the above products. If the characteristic of F is not 3, then K 10 is simple. 

If the characteristic of F is 3, it possesses a simple subsuperalgebra of dimension 9 

spanned bye, v;, 1 :::; i :::; 4, x;, YJ, 1 :::; j :::; 2. We denote this superalgebra by K9 

and refer to it as the degenerate Kac superalgebra. 

(9) Denote by Hn(F) and Sn(F) the symmetric and skew-symmetric n x n 

matrices. For Fa field of characteristic 3, let A= H 3 (F) and M = 03 (F) ill S;3(F), 
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two isomorphic copies of S3 (F). To extend the Jordan algebra structure on A and 

A-bimodule structure on M to a Jordan structure on J = A+ /v[ oue defines 

and for any a, bE S3 (F), 

[a, b] = ab + ba. 

(10) Let B = B0 + B1 with B0 = llfz(F), B1 = Fn1 1 + Fn1.2 where F is a field 

of characteristic 3. If we define a B0-bimodule structure on B 1 by 

and a multiplication from lh x lh to 150 by 

then B is a superalternative algebra with superinvolution (a+ m)* =a.- m, where 

- is the symplectic involution of B0 . Then H3 (B), the symmetric matrices with 

respect to the *-transpose superinvolution, forms a simple Jordan superalgebra. 

Let J = A + B be the sum of two proper simple subalgehras .A and B. The 

structure of these sums has first attracted the considerable attention in the cases 

of Lie and associative algebras. The first case arises in Onichshik's paper [23]. If 
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one considers a compact connected Lie group G acting transitively on the manifold 

G jG" where G" is a closed subgroup of G. A connected closed subgroup G' C G 

acts transitively on G j G" if and only if G = G' G". The triple ( G, G', G") is called 

a decomposition and it entails a Lie algebra decomposition, L = L' + L" where 

L, L', L" are Lie algebras of G, G', G", respectively. Using topological methods 

Onishchik has determined all decompositions [, = !/+!/'where L, !/, T/' are real 

or complex finite-dimensional semisimple Lie algebras. 

For associative matrix algebras over an arbitrary field Y.Bahturin and O.Kegel 

[4] proved that a matrix algebra of finite order cannot be written as a sum of two 

proper subalgebras which are also matrix algebras. 

It is worth noting that the problem of finding simple decompositions has seen 

some interest from researches in the case of simple Lie superalgebras and .Jordan 

algebras. In the joint paper with T .Tvalavadze [32] we obtained complete classifica

tion of simple decompositions for special simple Jordan algebras over an algebraically 

closed field F of characteristic not two. Besides, in [36] the case of a simple Lie su

peralgebra of the type sl(n, rn) was considered by T.Tvalavadze. In [31] A. Sudarkin 

classified simple decompositions Lie supcralgcbras of the types P( n) and Q( n). 

In [32] we com;;dercd special simple finite-dimensional .Jordan algebras decom

posable as the sum of two proper simple subalgebras over an algebraically closed 

field of characteristic not 2. The main result in [32] is the following. 

Theorem. Let J be a finite-dimensional special simple Jordan algebra m>er· an 

algcbmically closed field P of characteristic not two. The only possible dccomposi-
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lions of .J as the sum of two simple subalgebras .11 and .Jz are the following: 

spaces . 

.11 ~ H(Fn) and 3 2 is isomorphic to one of the following algebras: H(F, 1), H(F,) 

F (+) 
or n-1· 

Notice that the above theorem describes all simple decompositions in simple 

Jordan algebras in terms of the types of simple subalgebras. Our purpose here is to 

obtain a classification of conjugacy classes of simple decompositions of simple Jmdan 

matrix supcralgcbras with scmisimplc cvcu part over an algebraically closed field of 

characteristic not 2. Let .J = A+ B and .J = A'+ B' be two simple decompositions 

of .J. These decompositions are said to be conjugate if there exists an automorphism 

of 3 such that IP(A) = A', IP(B) = B'. In this chapter we will look at conjugacy 

classes of simple decompositions in all types of simple matrix Jordan superalgebras 

with semisimple even part. 

Let 3 = .Jo + .11 be a Jordan superalgcbra. Then .J is said to be nordrivial if 

3 1 f {0}. All superalgebras considered in this paper are supposed to be nontrivial. 

Next we cite some important lemmas and theorems from [32] which will be 

repeatedly used later. 

Lemma 3.0.5. Let a Jordan algebra 3 of the type H (D;,) be a pTopeT su/Jalyclnn 

of H(Vn) such that the identity of H(Vn) is an element of this subalgebra. If either 
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1. V' = F and V = F, or 

2. V' = F[q], or Q, and V = F[q], 

then m::; ~· 

Lemma 3.0.6. Let V be a finite-dimensional vrxtor space with a non-singular sym.

metric bilinear form f, and vo a fixed non- trivial vector in V. Let S be the set of 

all linear operators which are symmetric with respect to f. Then, Su0 = V. 

Theorem 3.0.7. Let J be a simple Jordan algebra of the type JI(F,), and A, B 

proper simple Jordan subalgebras of J. Then J fA+ B. 

Lemma 3.0.8. Let "IN' be the nat·ural 2m-dimensional module for 1-l ( Qrn), and v be 

an arbitrary non-zero vector in VV. Then, dimH(Qm)v =2m -1. 

3.1 Decompositions of superalgebras of the type 

Mn,m(F)(+) 

Our main goal is to prove the following. 

Theorem 3.1.1. Let A be a superalgebra of the type AI,,m(F)(+) where n, 111 > 

0 over an algebraically closed field of characteristic not 2. If both n. m are odd, 

( n, m) f ( 1, 1), then A has no decompositions into the sum of two proper rwnlr"ivial 

simple subsupemlgebras. If one of the indices, for example m, is an even number and 

lhe olher is odd, lhen there are lwo conjugacy classes of simple drcornpos·il:ion of the 

form: A= B+C where B and C have types osp(n. ~) and Mn~l,m(F)(+), respectively. 
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If both indices are even, then A admits two types of .simple decompositions of the 

following forms: 

1. A=B1 +C1 whereB1 andC1 have typesosp(n.~) andM.,_ 1,rn(F)<4 l, 

2. A= B2+C2 where B2 andC2 have types osp(m, ~)and M.,_ 1,n(F)C+l. Be.sides 

there are exactly two conjugacy classes of simple decompositions corresponding lo 

each type. 

Remark 1 ff (n, m) = (1, 1), then M1,1(F)C+l is a 4-dimensional supemlgebm of a 

bilinear super.form. Its decompositions w'ill be considered later ·in Section 3.4. 

Before the discussion of various properties of 1\I,,.,(F)C+) we recall a defiuition 

of the universal associative enveloping superalgebra of a Jordan supcralgcbra which 

will be frequently used later [9]. 

An associative specialization u : .:! --+ U(.:J) where U(.:J) is an associative su

peralgebra is said to be universal if U(.:J) is generated by u(.:J), and for any other 

specialization i.fJ : .:! --+ A where A is an associative superalgebra there exists a 

homomorphism ·t/J : U(.:J) --+A such that the following diagram is commutative: 

.:J ~ A 

l id T 1/J 

.:! ~ U(.:J) 

Then U (.:!) is called a universal associative enveloping superalgebra of .:J. It is 

worth noting that an associative superalgebra can be considered as an associative 

algebra. The following theorem [19] plays a key role in the later clincunnion. 
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Theorem 3.1.2. Let U(:J) denote a universal associative enveloping s·nperalgebra 

for a Jordan supemlgebm :J. Then U(M~;)) ~ Mk,z(F) EB Mk,z( F) where (k, l) f 

(1, 1); U(Q(k)) ~ Q(k) EB Q(k), k 2: 2; U(osp(m,n)) ~ Mm,2n(F), (m,n) f (1, 1); 

U(P(n)) ~ Mn,n(F), n 2: 3. 

Remark 2 In the case when :J ~ M1,1(F)C+l, /'(2), osp(1,1), K 3 or !J1 lhe 

universal enveloping supemlgebras have more complicaled strudure. Indeed, the v.ni

versal associative enveloping superalgebras of the above Jordan super-algebras arc no 

more finite-dimensional. Also we note that if the characteristic of the base field F 

eqnals zero, then K 3 has no non-zero .finite-dimensional associative specializations. 

[19] 

Now we look at the case when :J ~ J(V, f). Let V = 11(1 + V1 be a Z2-graded 

vector space, dim Vrt = m, dim vl = 2n. Let f : v X v -+ F be a supersyrnrnetric 

bilinear form on V. The universal associative enveloping algebra of the Jordan 

algebra Fl CB V0 is the Clifford algebra C(V0 , f)= (1, e1 , ... , em[e;ei + eiei = 0, i =1-

j, e7 = 1). In V1 we can find a basis v1, w1, ... , v~~.. w, such that .[(1>;, u1i) = 6;j, 

J(v;,vj) = f(wi,Wj) = 0. Consider the Weyl algebra vVn = (1,v;,W;,1::; i::; 

n, [vi, IL'j] = 6;j, [v.;, v1] = [wi, wj] = 0). According to [19], the universal associative 

enveloping algebra of F1 EB V0 is isomorphic to the (super )tensor product C(V0 , f)()<) F 

Wn. We will utilize this fact in the following lemma. 

Lemma 3.1.3. There arc no nontrivial subsuperalgebras of the type J(V f) in A( 1 l, 

where A is a finite-dimensional associative super-algebra. 
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Proof We assume the contrary. Let B of the type J(V, f) be a subsuperalgebra of 

A(+l. ForB, we consider the universal associative enveloping superalgebra U(B). As 

was mentioned above, U(B) = C(V0 , f) @p Wn where C(V0 , f) is a Clifford algebra 

for V0 , f is a bilinear form on Vo, Wn is a Weyl algebra, n = ~dim V1. Let tp denote 

the embedding of B in A, i.e. tp(x) = x for any .T E B. If follows from universal 

properties of U (B) , i.p can be uniquely extended to a homouwrphism ljJ : lf (B) -+ A. 

Since !f(x) = tp(x) = :r; for X E vl, !Ji(Vl) -=1 0. However, since vl generates W/1, 

!f(lVn) -:1 0. It follows from simplicity of Wn that !f(W,) ~ W 11 • Therefore, A has 

an infinite-dimensional subsuperalgebra. This contradicts our assumptions. 0 

Lemma 3.1.4. Neither K 3 nor Dt can be imbedded into llf2,2 (F)(+). 

Proof. Let A of the type K 3 be a subsuperalgebra of M2,2 (F)( 1 l. We may asHume 

that A has a basis e, x, y satisfying (i) e · x = ~x, (ii) e · y = h, (iii) [:r, y] = e, (iv) 

e2 =e. Since e is an idempotent, it can be reduced to one of the following forms: (1) 

diag(l, 0, 0, 0), (2) diag(l, 1, 0, 0), (3) diag(l, 1, 1, 0), (4) diag(l, 1, 1, 1). Because of 

(i) and (ii), case (4) is not possible. In the first and third cases, directly performing 

the multiplications in (i), (ii) and (iii), we can show that there are no such :r and 

yin M2,2(F). Finally we rumumc thai e ~ (: : ) where I io the 2 x 2 idcnt.it.y 

matrix. Then x = (Bo A
0

),y-- (Do Co'), for some A, B, C, D, and (iii) 

can be rewritten DB followH: AD- C:R = r, and RC:- {)A= 0. Adding theHe two 

equations gives us [A, D] + [B, C] =I. The trace-zero matrix on the left-hand t->idc 
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is equal to the identity matrix on the right-hand side, which is a contradiction. 

Let A of the type Dt be a subsuperalgebra of M 2 ,2 (F)(+l. We may assume that 

A has a basis e1, e2, x, y satisfying (i) ei ·x = ~x, (ii) ei ·y = ~y, (iii) [:c, y] = e 1 +le2 , 

(iv) c¥ = ei. Set e = e1 + e2 . Since e is an idempotent of rank 2': 2, c can be reduced 

to 

(1) cliag(1, 1, 0, 0), (2) diag(1, 1, 1, 0), (3) diag(1, L 1, 1). In the second and third 

cases, by performing direct multiplications we can show that these cases are not 

possible. If e = ( 
1 0 

) where I is the 2 x 2 identity matrix, then the same 
() () 

argument as in case A~ K 3 works for A~ Dt· The lemma i:s proved. 

0 

Corollary 3.1.5. Neither K 3 nor Dt can be imbedded into M 1,1 (F)(+), /\12 ,1 (F)('), 

osp(1, 1), o.sp(2, 1), P(2) and Q(2)(+). 

Proof. The proof is a direct consequence of the fact that there are subsuperalge-

bras of the types M1,1(F)(+l, li/2,1 (F)(+), osp(1, 1), o.sp(2, 1), P(2) and Q(2)(+) in 

l\h,2(P)(-1). 0 

Lemma 3.1.6. Let Mn,m(F)(-1) = A+B where n, m > 0, and A, B be propeT 8irnple 

subsupemlgebras of 11In,rn(F)( 1 ) . Then neitheT A nor B ha8 any o.f the .following 

Pmof. First of all, we note that if one of the subsuperalgebras, for example A, ha:s 

any of the types listed above, then either Ao ~ Fe or A 0 ~ FeL El:l Fe2 where c, 
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e1 , e2 are idempotents. Next we assume the contrary, i.e. 1\!I,,m(F)(+-) = A+ B, 

and A has one of the types listed in the hypothesis of the lemma. If we define a 

pair of homomorphisms denoted as 1r1 , 1r2 which are the projections on the ideals of 

Mn,m (F)~ f), then the decomposition can be rewritten as follows: 

Any proper simple subalgebra of Fr\+) (or Fr>t)) has dimension let->t-> than or equal 

to (n -1? (or (m -1) 2). Any proper non-simple semisimple subalgebra of FS f) (or 

Fr>t)) has a dimension less than or equal to (n-1) 2 + 1 = n2 - 2n+2 (or 'f/1,
2

- 2nr+2). 

If 1r 1 (B0 ) is a proper semisimple, then dim Fr\+) = n 2 S: 2 + n 2 
- 2n + 2, n S: 2. 

Similarly, if 1r2 (B0 ) is a proper semisimple subalgebra, then m S: 2. Since both 

projections cannot be improper simultaneously, one of them, say 1r1 (B0 ), is proper, 

hence, n S: 2. If 7r2(Bo) = Fr~-)' then Bo ~ F{+) EB FSt) while M.,,m(F) = III2,m(F). 

However, in this case dim F2 > dim F1 + 2. 

Next we are going to consider two remaining cases. 

1. M2,1(F)(+) =A+ B. This decomposition induces the following: 

F~ +- l = 1r 1 ( Ao) + 1r 1 ( Bo) , 

Fl(+) = 7r2(Ao) + 7r2(Bo). 

Notice that 1r1 (Bo) is necessarily proper, otherwise either B = !112 ,1 ( F')( 1
) (an im

proper subsuperalgebra) or B = M2 (F)(+-) (a trivial superalgebra). U 1r1(Bo) is 

simple, then 1r1 (B0 ) ~ F (a one-dimensional algebra). If 1r1 (B0 ) is semisirnple, then 
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n 1 (.B0 ) ~ Fe~ EB Fe; where e~, e; are idempotents. Besides, 1r2(B0 ) is either F 

or {0}. Hence .B0 is either For Fe~ EB Fe;. Therefore, 5 = dimM2,1(F)6+) < 

dim Ao + dim.B0 ::; 4, a contradiction. 

2. M2,2 (F)(+) =A+ B. The same argument as in case 1 works for fll2 ,2 (F)C+l, 

i.e. dim Ao ::; 2 and dim B0 ::; 5 while dim FJ +) CB FJ +) = 8. This proves our lemma. 

D 

Next taking into account all previous lemmas we list simple decompositions that 

might exist in Mn,m(F)(+). Let A and l3 stand for simple non-trivial .Jordan ::;ubsu-

peralgcbras of Mn,rn(F)C+l. Then, Mn,m(F)C+l might be expressed as the sum of A 

and l3 where 

A l3 

1 Mk:,z(F)C+l llfp,q(F)C+l 

2 Mk:,z(F)C+l P(q) 

3 Mk:,z(F)C+l Q(p)C+l 

4 P(k) Q(l)C+l 

5 P(k) P(l) 

6 Q(k)C+l Q(l)C+l 

7 osp(k, l) l\l (F)C+l p,q 

8 osp(k,l) Q(p)C+l 

9 08p(k, l) P(q) 

10 osp(k,l) osp(p,q) 
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Let S(A) and S(B) denote associative subalgebras generated by A and B in 

Mn+m(F). Any decomposition of the form 1\In,rn( F)(+) =A+ B produces a new one 

of the form Mn+m (F) = S (A) + S (B). Note that 8 (A) is a homomorphic image of 

U(A). As a direct consequence of Theorem 3.1.2, U(A) is either a simple associa

tive algebra or a direct sum of two or more simple pairwise isomorphic associative 

algebras. 

Lemma 3.1. 7. Let 111,~~), = A+ B where A, B are two proper non-trivial simple ::mb

superalgebras in M,,m(F)(+) where n, m > 0. Then S(A) coincides urith M111 m( F) 

~l and only if one of the following conditions holds 

(1) Either A~ osp(p, q), p + 2q = n + m, or 

(2) A~ P(n) for the case when n = m .. 

Proof. First, we note that if conditions (1) and (2) an~ met, then S(A) = M,, 111 (F). 

Let S(A) = Mn,rn(F). First we show that A cannot be of the type either llh,t(F)(+) 

or CJ(p)(+)_ If A has the type Mk,z(F)(+), then k + l < n + m because A i::; a proper 

subsuperalgebra. By Theorem 3.1.2, S(A) is either a simple subalgebra of the type 

Mk, t-l (F) or a non-simple semisimple subalgebra of the type Mk+z (F) 8 11 h 11 (F). In 

both cases, S(A) =f Mn+m(F). 

If A~ Q(k)(+l, then its associative enveloping algebra i::; alway::; a non-simple 

semisimple subalgebra which is a direct sum of at least two simple ideal::; of the type 

Mk(F). Therefore, 8(A) =f Mn+m(F). 

For the other cases, A can either have the type osp(p, q) or P(k). If A~ usp(p, q), 

then S(A) ~ Mp+2q(F). Hence S(A) = Mn+m(F) if and only if p + 2q = n + m. 

55 



This yields ( 1). 

Next we continue our proof by assuming that n of m. For clarity, let n < m, 

and A ~ P(k). Since U(A) ~ S(A) ~ Mk,k(F), S(A) = Mn+m(F) implies that 

k = n~m. In turn Ao ~ F~+) C (Mn,m(F)(+))o ~ F,\+) EEl F,~~) implies that n~m S n 

and n~rn S m, that is, n = m. However, this contradicts our assumption. 

In conclusion, it remains to consider the case when n = 'm and A ~ !)(n). 

However, it is obvious that S(A) ~ M2k(F), and S(A) = llhn(F) if and only if 

k = n. This completes our proof. D 

Lemma 3.1.8. Let M,,rn(F)(+) = A+B, n, m > 0. Then one of the s'ubsuperalgebrm 

in the given decomposition has either the type osp(p, q) where p + 2q = n + rn or

P(n) (only if n = m.). 

Proof. Let us assume the contrary, that is, neither A nor B is a subsuperalgebra 

of any of the above types. Then, by Lemma 3.1.7, S(A) and S(B) are proper 

associative subalgebras in Mn+rn(F). Theorem 3.1.2 states that both S(A) and 

S(B) are either simple associative algebras or non-simple semisimple ast>ociative 

algebras decomposable into the sum of at least two pairwise isomorphic simple ideals. 

Therefore, dim S(A) S k("tm )2 where k is the number of simple ideals, k 2: 1. If one 

of the subsuperalgebras in the decomposition of Mn+rn (F) has a non-zero annihilator 

then hy Proposition 1 in [4] no such decomposition exists. Therefore, both S(A) and 

S(B) contain the identity element of the whole superalgebra. Hence S(A) n ,C..,'(B) 

contains the identity element as well. If S (A) (or S ( !3)) it> t>imple, then dim S (A) ::; 

(n+:n)
2 

If S(A) (or S(B)) is non-simple semisimple, dim S(A) S (n+;n)
2

• 
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Thus, dim (S(A) + S(B)) < dim S(A) +dim S(B) ::; (n + m?. Therefore, 

Mn+m(F) -=/ S(A) + S(B). This implies that our assumption was wrong. The 

lemma is proved. D 

Lemma 3.1.9. Let Mn,m(F)(+) =A+ B, n, m > 0, (n, m) -=/ (1, 1). ff m 'is even, 

and n is odd, then one of the subsuperalgebras 'is of the type asp( n, !Jj), and the other 

of the type Mk,t(F)(+) where either k = n- 1, n or l = m. On the contrar-y, if m is 

odd, and n is even, then one of the subsuperalgebras is of the type osp(rn, ¥), and 

the other of the type /Vh,z(F)(+) where either k = m- 1, m aT l = n. 

Proof. Since the proof remains the same for both cases, we consider only the first 

case. First, let n -=/ m. In view of Lemma 3.1.8, one of the subsuperalgebms in 

Mn,m( F)( f) =A+ B, for example A, is isomorphic to osp(p, q) where 

fi + 2q =' n + m. (1) 

The decomposition of Aln,m(F)(+) given above induces the following representation 

of the even component 11In,m(F)~+) = Ao + Bo where 11In,m(F)6+) = F,\~) EB F,\,~l, 

Ao ~ H(Fp)ffiH(Qq)· If for some i, n;(Ao) ~ H(Fp)EBH(Qq), then either p+2q::; 71 

or p + 2q ::; m. However the::;e inequalities confiict with condition ( 1). Hence either 

possibility holds true, then 

1. F,~ 1 l = nl(Ao) + n1(Bo), nl(Ao) ~ H(Fp), p S n, 

2. Fr~tl = n2(Ao) + n2(Bo), n2(Ao) ~ TT(Qq), q S !Jj. 

Since p ::=; n, q ::; !J} and p + 2q = n + m, it follows LhaL p = n and q = ~- Clearly, 

A has the type osp(n, !Jj ). If the second possibility holds true, then acting in the 
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~arne manner, we can show that p = m, q = ~· However, we a~~umed that n is odd. 

Hence it remains to ~how that B ~ Mk,z( F)(+) where a pair of indices k, l ~atisfics 

the hypothe~is of the lemma. To prove this, we con~ider all po~~ible ca~e~ for B in 

a ~tep-by-step manner. 

If B ~ P(k), then the decompo~ition induces the following repre~entation of 

the odd part: llf,,m(P)l+) = A 1 + B1 where dimA1 = nm, dimB1 = k 2
, that is, 

2nm ::; nm + k 2
, nm ::; k 2

. Conversely, k ::; n, k :::;; m since both projection~ n 1 (B0 ), 

n2 (B0 ) are non-zero. Moreover, one of the inequalities should be strict since n # nL. 

Therefore, k2 < nm, which is a contradiction. 

If B ~ Q(k)(+l, then, acting in the same manner as in the previous case, we can 

prove that llfn,rn(F)(+) #A+ B. 

If B ~ osp(p, q), then 2mn = dim (Mn,m(F)(+))I ::; dimA1 +dim B1 :S: 2mn 

since p ::; n, 2q ::; m. Hence, dim B1 = nm. It follows that p = n, q = !fj-. The 

original decomposition induces the representation of F,>t) as the sum of two proper 

subalgebra~ one of which has the type H(Qm), which is not possible [32]. 

Overall, it remains to consider the ca~e when A~ osp(n, !fj- ), B ~ lvh,z(F)( +l. 

Again the decompo~ition of Mn,m (F) ( +) induce~ that of Mn,m ( F)6 +) as follow~: 

M.,,.,(F)~+) = Ao+Bo. Moreover, llfn,m(F)~+) = F,~+)ffiFr~t), Ao ~ H(F,)ffill(Q!!j-), 

B0 ~ F~f) EB Fz(+l. If both n 1(B0 ) and n2(B0 ) are non-~imple semi~imple, that i~, 

1r 1 ( Bo) ~ Bo and 1r2 ( Bo) ~ B0 , then we have the following restrictions: k + l :::; n and 

k+l ::; m. For clarity, let n < rn. Hence the dimension of 1ri(B0 ), i = 1, 2, is le~s than 

n 2 
- 2n + 2. Without any loss of generality n 1 (B0 ) ~ B0 that dim B0 ::; n 2 - 2n + 2. 
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A , , ltd' M (F)(+)_ 2+ 2<n(n+ll+m(m-1)+,2_ 2 + 2 , m(mil) < s a resu , 1m n,rn 0 -~ n 1n _ 
2 2 

n n , so 
2 

_ 

n(n+l) 2 2 h' h · Th c l 1 'b'l' · . h - 2- + - n, w 1c 1s wrong. erewre, we mve on y two poss1 1 1tles: e1L er 

n1(B0 ) or n2(B0 ) is a simple algebra. According to [32], in the first case, k = n- 1, 

or n and, in the second case, l = rn. Thus the lemma is proved for the case when 

n -f. rn. 

To complete our proof we consider the case when n = rn. First, we assume that 

neither A nor B has the type P(n). By Lemma 3.1.8 one of the subsuperalgebras, 

for example A, if:l if:lomorphic to osp(p, q), p + 2q = 2n, that if:l, p = n, q = }· Then, 

we obtain two decompositions of the form 

For some i, let ni(B0) be a non-simple semisimple subalgebra, then 

Therefore, dim n.;(B0 ) and dim B0 ::; n2 - 2n + 2. However dim M,,,( F)~ 1) < 

dim Ao +dim B0 , 2n2 ::; n2 - 2n + 2 + n(r~+l) + n(u~-l) = 2n2 - 2n + 2, that if:l, n ::; 1, 

and we assumed that (n, m) -f. (1. 1). Hence both n 1(B0 ) and n2(B0 ) are simph It 

Next we let A be of the type P(n). Then B can be isomorphic to any of the 

following ::;upcralgcbra::;: P(k), Q(k)(+), asp(/.;, l), Ah,t(P), for ::;omc intcgcrf:l 7.: and 

l. 
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1. B ~ P( k), hence dim B = 2k2
, k ::; n. From dim M11 ,n (F)(+) ::; dim A +dim B, 

it is clear that k = n, and the sum in the decomposition is direct. However since 

both subsuperalgebras have the type P(n), they contain the identity of M 11 ,,(F)(+l, 

a contradiction. 

2. B ~ Q(k)(t l. In this case the proof is the same as in previous case. 

3. B ~ osp(k, l). Since 2n2 = dim (Mn,n(F))o ::; dim A 0 +dim B0 ::; n2 + 

n(r~+tl + n(r~- 1 ) = 2n2 , it follows that k = n, l = ~· However, in the decomposition 

of (M,,n(F))o both subalgebras contain the identity element 1, a contradiction. 

4. B ~ Mk,z(F)(+), k+l < 2n. The even part of 1\In,n(F)(+), that is, Mn,n(F)6+) is 

the sum of two orthogonal ideals denoted as 11 and 12 , and both ideals are isomorphic 

to F,~+l. By the dimension argument, dimM.,,.,(F)(-+) ::; 2n2 + (h: + l) 2 , 4n2 ::; 

2n2 + (k+l)2
, so k+l2: J2n. 

If 1 E B, then 1 E B0 . Notice that B0 is the sum of two orthogonal ideals denoted 

as .11 and .h where ./1 ~ F~+) and .!2 ~ }~(+). Since k + l 2: v'2n, .!1 C l1, .h C /2, 

and both ideals contain the identity elements of h and / 2 , respectively. By Lemma 

3.0.15, k ::; ~, l ::; ~, and k + l ::; n, a contradiction. 

It follows that 1 ~ B. Equivalently, B has a non-zero two-sided annihilator. 

Let v = Vo + v1 be ZTgraded vector space where dim Vo = n and dim VI = 

n. Let p stand for the natural representation of Mn,n(F)(+) in V. Then there 

exists v0 E V0 annihilated by p(B). Since M,,n(F)(+) =A+ B, p(Mn,n(F)( f))1!o = 

p(A)v0 . According to the structure theory, A = A0 + A1 where A1 is the sum 

of two irreducible unital A0-bimodules: the skew-symmetric matrices M1 and the 

60 



Hence, p(A)uo = p(Ao)uo + p(Al)vo = p(Ao)vo + p(Ml)uo. Since l\!1 consists of 

skew-symmetric matricet>, dim (p(MI)v0 ) = n - 1. It followt> that dim p(A)v0 

n + n - 1 < 2n, a contradiction. The lemma it> proved. D 

Example 1. A Jordan superalgebra of the type M,,m(F)(+) where m is even can be 

repr·esented as the sum of two proper simple subsuperalgebras A and B which have 

types osp(n, !fj-) and Mn-l,m(F)(+), respectively. 

Proof. To prove, we consider the first subsuperalgebra in the standard realization: 

:::: :~:,: s:;::.::i:, r::::,i~' r~ "(": :, : i' ::::~l:t::c::::::,::l:: :::l:: 
!fj-. The t>econd subalgebra can be viewed in the following form: 

{(; :)} ( 1') 

where A of order n x n has the last two columns equal and the last row zero; B 

of order n x m has the last row zero; C of order m x n has the last two columns 

equal and, finally, D of order m x m it> arbitrary. By straightforward calculations 

dirn(A1 + B!) = dirnA1 + dimB1- dirn(A1 n BI) = mn + 2m(n- 1)- m(n- 2) = 

2rnn. D 

Example 2. A Jordan superalgebra of the type Mn,m(F)C 1 l where n is even can also 

be decomposed into the sum ofA andB where A~ osp(m, ~) andB ~ Mm-l,n(F)C+l. 
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Proof. As above we consider the first subsuperalgebra in the standard realization: 

{(~)} 
:l:: :~:r~x s::o:::::;: m~>:;~9 o~ "(~) 

1
nr, ~ ll) ;, :,:::1 ;];::::::::; :,::,::':~: ~·:]: 

i. The second subalgebra. can be viewed in the following form: 

{(; :)} 
where A of order m x m has the last two columns equal and the last row zero; B of 

order m x n has the last row zero; C of order n x m has the last two columns equal 

and, finally, D of order n x n is arbitrary. 

By straightforward calculations dim(A1 +B1) =dim A 1 +dim B1 -clim(AtnBJ) = 

mn + 2n(m- 1)- n(m- 2) = 2mn. 

0 

Proposition 3.1.1. In terms of the types of simple subsuperalgebras Examples 1 

and 2 ar-e the only possible simple decompositions of Mn,m ( F)C +), n, 111 > 0 for-

appmpr"iaie val'ues of n, m. 

Proof As usual, we assume the contrary, that is, there exist other types of simple 

decompositions of Mn,rn (F) ( +) different from ones in Examples 1 and 2. l3y Lemma 

3.1.9, this decomposition takes the following form: 

1 If. ·. th M (F)C+l-A-f-B A'="' ( '!.':.) B'="' ~,1 (F")Ctl 1,, . m 1s even, en n,m - , - osp n, 2 , - 11 l,k w 1crc 

either l = n- 1, or n or k = m. 
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2. If n it1 even, then Mn,rn(F)(+) =A+ B, A~ osp(rn, ~ ), l3 ~ Ah,1(F)( 1 l where 

either k = m- 1, or m or l = n. 

Then Mn,m(F)t =At+ B1. It followti that dimMn,m(F) 1 :::; dimA 1 + dirnl31 , 

that is, 2nm::; nrn + 2lk, nrn ::; 2lk. Hence, for even rn, l ;:::- ~' in the cat1e k = m, 

and k ;:::- !f}, in the case l = n- 1 or n. Likewise, if n is even, then k ;:::- !ff, in the cat1e 

l = n, and l 2" ~, in the cat1e k = m.- 1 or rr1. For clarity, we consider the case when 

rn is even, and l = n - 1 because the proof remains the same for all other caset1. 

Let V = V0 + V] denote a Z2-graded vector space where dim Vo =nand dim V1 = 

m. Fixing any homogenout1 bat1is of V, we get an isomorphism between End V and 

Mn,m (F) as ZTgraded algebras. Then let p stand for the natural representation of 

l3 = l30 + B1 in V. It follows from the definition of this action that p( l30 ) ( V(1) c;: V0 , 

p(l30 )(Vt) c;: V1 , p(l31)(V0 ) c;: V1 , p(Bt)(Vt) c;: V0 . Since l30 is a non-simple scmisimplc 

Jordan algebra it acts completely reducibly in V. Next we describe this action in 

more details. For thit1, we identify V with a Z2-graded vector tipace of the form 

W = ( v0 ) CB (V~ ® pr+ 1 ) EB V{, r 2" 1 where v0 is a vector in V0 annihilated by B0 ( in 

the case l = n we omit this vector), V~ is an invariant complementary subspace of 

(vo), p(Bo)lv~ ~ Fr~~L V{ is an invariant subspace of Vt such that p(Bo)lv; ~ Fh(tl. 

Moreover, Wo = (vo) EB v~ 0 eo, wl = v~ 0 (el' ... 'e,.}@ V{ where (eo, Ct, .... e,.) is 

a basis for pr+l. Then, p(Bo) = p(Bo)l(vo) EB p(Bo)lv~ ® ld,+t ED p(Bo)lv;. Note that 

p(Bo)l(vo) = 0. In other words, by choosing an appropriate basis in Vo and Vt, p(Bo) 

cau be written iu a block-cliagonal form iu which the fir8t block of orclcr 1 i8 z;cro, 

the la8t block ha8 order k, and the other blocks have order r + 1. Next we consider 
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the representation of B1. For this, we choose any a E B0 such that 

p(a)(V~ ~ pr-+l) = 0, p(a)(V{) i= 0. (2) 

All such elements form an ideal of B0 isomorphic to F~ + l. Then we choose 

any non-zero x in B1 . Let e denote the identity of B, e E B0 . If 8 denotes the 

Jordan multiplication in Mn,m(F)(+), then p(x)vo = p(x 8 e)vo = p(x"ie"')vo = 

~(p(:r)p(c)v0 + p(c)p(:r)v0 ) = ~r!(:r)v0 , that is, p(:r)v0 = 0, for any r E B1• Next 

we find the representation of a 8 x E B1 . As was mentioned above, p(a 8 x)(v0 ) = 

0. Besides, 2p(a 8 x)(V~ Q9 e0 ) = p(a)p(x)(Vr{@ e0 ) + p(x)p(a)(V~ ® e0 ) <;;; "'{, 

p(a 8 x)(V~ ~ (e1, ... , e7.)) = 0, p(a 8 x)(v;') <;;; Vc{ Q9 eo. Clearly, we can find c E Bo 

whose action satisfic:s the following formula: 

p(c)(V~ ® pr+l) i= 0, p(c)(V{) = 0. (3) 

Now we need to determine the action of 

c8(x8a). (4) 

Since 2p(c 8 (a 8 x)) = p(c)p(a 8 x) + p(a 8 x)p(c), we have the following: p(c G) 

(a 8 x)) ( v0 ) = 0, p( c 8 (a 8 x)) (V~ Q9 (e1, ... , er)) = 0. Besides, 

p(c C:l (x 8 a))(V~ ®eo)= p(c)p(x)p(a)(V~ ®eo)+ p(x)p(c)p(a)(Vc{ ®co)+ 

p(a)p(c)p(:r)(v; IX> c0 ) + p(a)p(:1:)p(c)(V; IX> e0 ) = 

Similarly, 

p(a)p(x)p(c)(V~ ® e0 ) <;;; V{. 

p(c 8 (x 8 a))(V{) = p(c)p(x)p(a)(V{) + p(x)p(c)p(a)(V{)+ 
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p(a)p(c)p(x)(V{) + p(a)p(x)p(c)(V;) = 

p(c)p(x)p(a)(V{) c::: v~ Q9 Co. (6) 

Ar:;r:;ume that p(x)(V{) f 0, p(x)(Vd Q9 eo) f O(mod Vd Q9 (e1, ... , e.,.)). Then p(c 8 

( x 8 a)) rer:;tricted to V{ reprer:;ents all linear tranr:;formations from V{ to V~ C>9 e0 , and 

p( C (·) (X 8 a)) rer:;tricted to V~ ~ eo reprer:;entr:; all linear tranr:;formation from V~ ® eo 

to V{. Next we choor:;e any y E B1. We have r:;een that there exir:;tr:; an element y of 

form ( 4) r:;uch that either p(y- a 8 (x 8 c))(V{) = 0 or p(y- a 8 (x 8 c))(Vd 0 e0 ) = 

O(mod ~{ 181 (e1, .... e.,.)). Suppor:;e that one of the above equationr:; doer:; not hold. 

Without any lor:;r:; of generality we let p(y')(V~ 18ie0 ) f O(mod V~ 181 (et, ... , e,) ), where 

y' = y - a C·) (:r :.) c). Multiplying y' by the elementr:; of the form (2) and then (3) 

we obtain a' 8 (y' 8 c') E B1 and p(a' 8 (y' 8 c'))(Vd ~ pr+l) = 0, p(a' 8 (y' 8 

c'))V{ = p(a')p(y')p(c')V( C::: Vd ® e0 . Moreover, p(a' 8 (y' 8 c')) : V{ -----+ V~ ® e0 

reprer:;entr:; all linear transformationr:; from k-dimenr:;ional vector r:;pace into (n - 1 )

dirnenr:;ional vector r:;pace. Ber:;ider:;, all r:;uch elementr:; are linearly independent from 

all the elementr:; of the form (4). Therefore, we found 2(n -l)k linearly independent 

elementr:; of B1, (dimB1 = 2(n- l)k). If there is at least one element fj E B1 r:;uch 

that either p(y)(V~ ® e0 ) f O(modV{) or p(y)(V~ 181 (c1, ... , e.,.)) f 0, then it will abo 

be linearly independent with all above elementr:;. Hence, by dimenr:;ion argumentr:;, 

there is no fj r:;atir:;fying the above conditionr:;. Conr:;equently, for all elements in A1, 

the following p(Y)(V~) = O(modV{), p(y)(V~ 181 (el, ... 'e,)) = 0, p(fj)(V/) ~ v~ Q<l Co 

hold true. Hence, the odd part cont>it>t::; of all linear tran::;formation::; rp :-mch that 

tp(V~ 181 eo) = V{, tp(V~ 181 (el, ... 'e.,.)) = 0, tp(V{) = v~ ®Co. Then it followt> from 
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B1 8 B1 ~ Bo that B1 = 0, a contradiction. 

We henceforth assume that the equations p(y- a. 8 (:r 8 c))(V{) = 0 and p(y

a 8 (x 8 c))(V~ ~eo) = 0 (mod v~ 0 (el, 0 0 0 'Cr)) hold true simultaneously. Then 

multiplying y- a. C) (x 8 c) by the elements (4), we obtain some elements of 8 0 which 

act on V{ and V~ 0 (e1, ... , e,.) non-invariantly. Hence, y- a() (x8c) = 0. Thercfon), 

the odd component of A 1 has form (7). As proved before, this is not possible. 

Next we assume that p(x)(V~ ®eo)= O(modV~ ® (e1 , ... , e,.)), for all.r E B1 , and 

for at least one element x' E 8 1 , p(x')(V{) f 0. 

Acting in the same manner as before, we obtain a' 8 (.r' 8 c') E 8 1 which actH 

trivially on all subspaces except for V{, which it carries into V~ IXl c0 . Considering 

the difference between an arbitrary element y E B1 and a corresponding element 

a" 8 (x" 8 c"), we can show that p(y -a" ~~ (x" C r:"))(Vc{ ® e0 ) = O(mod V~ ® 

(e1, ... , e,.) EB V{), p(y- a" 8 (x" 8 c"))(V{) = 0. Again multiplying a'(:) (:c' (:) c') 

andy- a" 8 (:~:" 8 c"), we obtain some elements from 8 0 acting on V{ non-trivially. 

Then we conclude that 8 1 consists of all elements which act on V~ ® e0 trivially and 

carry the other subspaces into V~ 0 e0 . Hence B1 8 8 1 = 0, a contradiction. 

Finally, if p(x)(V{) = 0, p(x)(V~ ® e0 ) = O(mod (V~ ® F'+ 1 
)), then it follows that 

B1 0 B0 = 0, which is clearly a wrong f:ltatement. The propof:lition is proved. 0 

Now we are ready to explicitly describe all conjugacy classef:l of simple clecom

pof:litions of M,,m(F)(+). We start with the following lemma. 

Lemma 3.1.10. Let F,i 1
) =A+ B where A~ F,~~i, B ~ H(f~,). Then there are 

precisely two conjugacy classes corresponding to the above decomposition. 
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Proof. Let V be a n-dimen~ional vector space with a non-~ingular ~ymmctric bilinear 

form f. Next we consider the set £ con~i~ting of all i.p E End V ~uch that i.p o :.p0 = 

i.po o i.p = 0 for some non-7,ero fixed i.po E End V. Further we will be intere~ted only 

in i.po ~uch that 'P6 = i.po and dim ~.p0 (\1) = 1, and £ is a ~imple algebra of the type 

Fn- 1 . Let i.po(V) = ~pan(x) where x E V. Let { e1 , ... , en} be a ba~i~ orthonormal 

with re~pect to f. Next the proof i~ divided into two ca~e~. 

Case 1. Let f(x, x) -j. 0. Therefore, we can normalize i.po in ~uch a way that 

f(x, x) = J2. Hence, there exi~t~ an orthogonal linear mapping ljJ that ~end~ 

x to e71 - e71 _ 1 (Witt'~ Theorem [5]). Denote i.p;1 = 7/J o i.po o 7/J- 1
. Notice that 

cp~(V) = ~pan(cn - c.,_ 1). Then, in an appropriate ba~i~ £' = t/JL4J- 1 take~ the 

form: 

y 
(8') 

.r.11,l .rn,n-2 ,r.n,n-1 ;r:n,n-1 

where Y = (yj;), j = 1, ... , n -1, i = 1, ... , n- 2, z i~ a (n -1 )-dimen~ional column, 

"'"'n-1 . 1 2 "'"'n-1 f l\ ,1 ( 1) 
Xn,i = Dj=1 CijYji, z = , ... , n- , Xn,n-1 = Dj=I C'ijZj or ~on1e o:;. 1v. orcovcr, 8 

ha~ the identity element of the form: 

e= 

0 

r.q 0'2 

However, it i~ easily ~een that e2 = e if and only if a 1 = ... = a,_ 1 = 0. It follows 
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that Xn,1 = ... = Xn,n-1 = 0. Hence, £' takes the form: 

(8) 

where Y is any matrix of order (n- 1) x (n- 2), z is a (n- 1)-dimensional column. 

Case 2. Let f(:r, :r) = 0. It is easily seen that in this case :r can be mapped to 

en_1 + ien, i 2 = -1, by some orthogonal linear mapping 1/J (Witt's Theorem, [5]). 

Like in case 1, we denote <p~ = 1/J o <po o 1/J-- 1
. Notice that :p~(V) = span (en_ 1 + icn). 

Then, in an appropriate basis £' = 7jJ£1j!- 1 takes the form: 

y jz 

(9') 

:r.11,l :::cn,n--2 .Tn,n-1 Lr.n,n-1 

where Y = (YJi), .7 = 1, _ .. , n-1, i = 1, ... , n-2, z is a (n-1)-dimensional column, 

"\""n-1 - 1 2 '\""n-1 f J'vl (9') Xn,i = ~i=1 O!JYJi, 7 = , ... , n- , Xn,n-1 = ~J= 1 O!JZJ or some O!i- oreover, 

has the identity element of the form: 

0 

e= 

0 

However, it is easily seen that e2 = e if and only if cr 1 = ... = cr11 _ 1 = 0. It follows 

that Xn, 1 = ... = :r:n,n-1 = 0. It follows that in an appropriate basis £' = V'LV,- 1 

takes the form: 

{ (" (9) 
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where Y is any matrix of order ( n - 1) x (n - 2), z is a (n - 1 )-dimensional 

column. 

Finally, according to above considerations any simple decomposition of F~~+) into 

A~ F,~~i and B ~ JJ(Fn) takes one of the following forms: 

(1) F,~+) = A 1 + B where A 1 has the form (8), and B is taken in the canonical 

form, i.e. the set of all matrices symmetric with respect to the involution generated 

by f. 

(2) F,~+) = A 2 + B where A 2 has the form (9), and B is taken in the canonical 

form as in (1). 

Assume that there exists an automorphism <p of F,\+) such that zp(A 1) = A2 

and zp(B) = B. The latter implies that <p can be restricted to the set of all matrices 

symmetric under the ordinary transpose involution. Let V be an-dimensional vector 

column space, and f be a non-singular symmetric bilinear form that generates the 

ordinary transpose involution. Then <p is induced by an orthogonal linear mapping 

1/J of 1/. Recall that A 1 annihilates the one-dimensional subspace (x1 ) C V and 

f(x1, xi) i= 0. Then A 2 also annihilates the one-dimensional subspace (:c2 ) C V and 

f(x2, x2 ) = 0. Since zp(A1) = A 2, 1/J(x!) = o:x2 where a E F, 1/J is orthogonal, a 

contradiction. Therefore these decompositions cannot be conjugate. The lemma is 

proved. 

0 

Now we are able to determine conjugacy classes of simple decompositions of 

Afn,m(F)(+). Recall that in terms of the types of simple subalgebras only the follow-
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ing decompot>itiont> are pot>sible: 

1. If m it> even, then Mn,rn(F)(+) 

B ~ o.sp(n, ~). 

2. If n is even, then 111n,m(F)(+) 

B ~ o.sp(rn, ~). 

A+ B where A ~ lvl,_ 1,m(F)(I) and 

A+ B, where A ~ Mm-l,n(F)(+) and 

If both n, m are even, then both decompot>itiont> are pot>t>ible. Notice that t>ince 

the at>t>ociative univert>al enveloping superalgebra of any t>uperalgebra of the type 

o.sp(k, l) is Mk,zz(F), any isomorphism between two suhsuperalgebras of Mk, 21 (F) of 

the type o.sp(k, l) can be extended to an automorphism of Mk, 21 (F). Therefore the 

second subsuperalgebra in decompositions 1 and 2 can be considered in the canonical 

form. 

Examples 1 and 2 show us how the simple decomposition that occurs in the first 

case of Lemma 3.1.10 can be lifted up to the decompositiont> of 1\I.,,m(F)(+l. Next 

we are going to show that the simple decomposition in the second case of Lemma 

3.1.10 can also be extended to the decompositions of M.,,,(F)(+l. 

Example 3. There exists a simple decomposition of Mn,m(F)(+) (rn is even) of the 

form !II,,m(F)(+) = A+ B where A is taken in the canonical .form, and B has lhe 

following realization: 

A X i:l: H 

(9") 0 0 0 0 
------+--+-----+-------~ 

c D 
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where A and C are any matrices of orders (n - 1) x (n - 2) and m x (n - 2), 

respectively, x and y are (n - 1) -dimensional and m-d·imensional columns, B, D 

are matrices of orders ( n - 1) X rn and rn x rn, respectively. In this decomposition 

A~ osp(n, !!}) and B ~ 111n-l,rn(F)(+l. 

Example 4. There exists a simple decomposition of Mn,m(F)(+) (n is even) of the 

form Mn,m (F) ( +) = A + B where A is taken in the canonical form, and B has the 

following realization: 

A B 

0 0 0 

c y ?,y D 

whae A and C are any matrices of orders (rn- 1) x (m- 2) and n x (m- 2), 

respectively, x and y are ( rn - 1) -dimensional and n-dimensional columns, B, D 

are matrices of orders ( rn - 1) x n and n x n, respectively. In this decornpos'it:ion 

A~ osp(m., ¥) and B ~ Mm-l,n(P)(+)_ 

Lemma 3.1.11. Let !I fn,m( P)(+) = A+B where A~ Ain-l,m( F)(+), B ~ osp(n, !fJ). 

Then there are precisely two conjugacy classes corresponding to this decomposdion. 

Proo.f In order to reach our goal we first show that the decompositions in Example 

1 and 3 are not conjugate under an automorphism of Mn,m(F)(+l. Assume the 

contrary, i.e. M,,m(P)(+) = A 1 + B1 =A~+ B~, where A 1 as in Example 1, A'1 as 

in Example 3, and boLh B 1 and Bi have Lhe sLandanl reali~aLious, and Lhere cxic>Lc> 

an automorphism ~f) of Mn,m (F)(+) such that so(Al) = A'1 and so(B1) = B~. 
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Since :p is an automorphism of superalgebras, :p = :p0 + :p1 where :p0 : 

an automorphism of the even part. Hence, :Po((AI)o) = (A~)o, :Po((Bl)o) = (B;)o. 

As a consequence, Mn,m(F)6+) = (A1)o + (BI)o = (A~)o + (BDo· Notice that 

(M (F) (+)) -I I I ~ D(+) I ~ p(+) If . ]\,f (F)(+) 111 (F)( I) . ' n,m 0 - 1 EB 2, 1 - rn , 2 - rn · I.(Jo • n,m o _____, n,m o lS 

an automorphism, then either :po(II) = h, :po(/2) = !2 or :Po(h) = !2, :po(/2) = !1. 

Therefore, Fr~+) = .ft + T1 = .!~ + T{ and these decompositions are conjugate, 

which is a contradiction (see Lemma 3.1.10). 

non-isomorphic, a contradiction. 

Next we will prove that any simple decomposition of the form M,,,(F)(+) 

A+ B where A~ Mn-l,m(F)(+), B ~ osp(n, If]-) is conjugate to the decomposi-

tion in either Example 1 or Example 3. In terms of the types of simple subsu-

peralgebras there is only one decomposition, that is, 11In,m(F)(+) = A+ B where 
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A-==- Mn--l,m(F)(+), B-==- osp(n, !f]-). Moreover, B can be taken in the canonical form. 

As usual, the original decomposition induces the following decompositions of [1 and 

where 1r1 (A0 ) -==- F,~"t 1r2(A0 ) -==- Fr~tl. Since all conjugacy classes of a decomposition 

of F,~+) into the sum of H(Fn) and F,:~i are found, there exists an orthogonal 

automorphism tp of Fn of the form tp(X) = c- 1 XC that reduces the first subalgebra 

to the form either (8) or (9). Then, acting by an automorphism IJ' of Mn,m(F) of the 

fonn I' (Y) ~ C'- ' Y C' whew C' ~ ( : ~ ) we ean bring A to eitludonn ( I') m 

(9") while B does not change. Hence we can reduce the decomposition to either the 

first form or the second form. The lemma is proved. 

D 

Based on all above lemmas and Proposition 3.1.1, we conclude that Theorem 

3.1.1 is true. 

3.2 Decompositions of superalgebras of the type 

osp(n, m) 

In this section we study simple decompositions of asp( n, 111) where n, m > 0. Actu-

ally, we will show that there are no such decompositions over an algebraically closed 
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field F of characteristic not 2. Our main purpose is to prove the following. 

Theorem 3.2.1. Let :J be a superalgebra of the type osp(n, m) where n, rn > 0. 

Then :J cannot be written as the sum of two proper nontrivial simple sub.'i'Upcralge

bras. 

The proof of this theorem is based on the following lemmas. 

Lemma 3.2.2. Let :J be a s·uperalgebra of type osp(n, m) wheTe n, m. > 0, and A, 

B be two proper simple subsuperalgebras none of which has an:IJ of the types K:l OT 

D1 • Then :J cannot be TepTesented as the sum of A and B. 

Proof. First we identify :J with asp( n, m) that can be considered in the canonical 

form. Next we assume the contrary, that is, 

osp(n, m) =A+ B. (8) 

The decomposition (8) generates the following decomposition of the associative en

veloping algebra in~o the sum of three non-zero subspaces. 

11In+2rn(F) = S(osp(n, m)) = S(A) + S(B) + S(A)S(B), (9) 

where S(A), S(B) denote the associative enveloping algebras of A, B, respectively. 

Let 1 denote the identity of osp( n, m). Then we consider the following cases. 

Case 1. Let 1 ~ A, 1 ~ B. This implies that there exist non-zero ao and bo 

in Ann(A) and Ann(B), respectively. Then multiplying every term of (9) by o0 on 

the left and b0 on the right, the following equation a0 Mn+ 2m ( F)IJ0 = U takes place, 

which is clearly wrong. 
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Case 2. 1 E A, 1 E B. The following six cases arise: 

(a) A ~ llfk,z(F)(+), B ~ Mp,q(F)(+l. The given decomposition induces the 

decomposition of the even part osp(n, m)0 = Ao + B0 which in turn can be written 

as 

H(Fn) = 7TI(Ao) + 7TI(Bo), 

H(Qm) = 1T2(Ao) + 7T2(Bo). 

By Theorem 3.0.7, one of the projections in decomposition H(F,) must be non

simple semisimple, for example, 7T1 (A0) ~ Fk(+) ® Fz(+). By Lemma 3.0.15, k + l :S: ~

On the other hand, since A is proper, S(A) is isomorphic to either Nh,z(F) or 

l\!h,z (F) Ci! l'vh,z (F). Besides, S'( Mk,l (F)) contains the identity 1. This implies that. 

r(k+l) = n+2m where r ~ 2. Similarly, since S(B) is isomorphic to either Mp,q(F) 

or l'Vlp,q(F) E8 Mp,q(F) s(p + q) = n +2m where s ~ 2. Then, dim osp(n, m) = 

n(r~+l) + m(2m- 1) + 2nm :S: (p + q) 2 + (k + l) 2
. Let k + l = "+2

2m and p + q = "\2"'. 

Then the above inequality is equivalent to :fun2 + ~·1112 + ~ + ~nm. :S: rn. Consequently, 

~m2 :S: m, m :S: 1. However if m = 1, then this inequality does not hold no matter 

what non-zero value n takes. It follows that the inequality is true only if both 

k + l and p + q are equal to n+:jrn = ~ + m. However, we know that k + l :S: ~, a 

contradiction. 

(b) A~ Nh,z(F)(+l, B ~ P(q) or Q(q)(+) (q > 1). The proof of this case is 

similar to (a). 

(c) A, B ~ P(q) or Q(q)(+l. Then the dl)Composition leads t.o the d(,composit.ion 

of H(Fn) into the sum of two proper simple subalgebras, which does not exist (sec 
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Theorem 3.0.7). 

(d) A ~ osp(k, l), B ~ Mv,q( F)(+). Since S(A) ~ Mk+ 2t( F) containt> the iden

tity of the whole superalgebra, k + 2l ~ n+
2
2rn. Similarly, p + q ~ "+2

2"'. Since 

dimosp(n,m) ~ dimA +climB, "
2i" + rn(2rn- 1) + 2nrn :::;; k

2:i" + l(2l- 1) + 

2kl + (n+~m)
2

• Since k + 2l ~ n+:jm, dim osp(k, l) ~ (n+~m)
2 

+ n+}'". By straightfor-

ward calculations we obtain '~ + ~ + rn2 + nrn ~ 3m, which is true if and only if 

rn = n = 1. Obviously, osp(1, 1) has no simple decompositions. 

(e) A~ osp(k,l), B ~ P(q). Then, we have k + 2l ~ n+gm, 2q ~ " 1}m. 

Therefore, dim B = 2q2 ~ 2( n+
4
2m )2

. Again, by the dimension argument, this de

composition it> not pot>sible. 

(f) A ~ osp(k, l), B ~ osp(p, q). Then k + 2l ~ n+2
2
"', p + 2q ~ "+2

2
"'. Hence 

dim A, dim B ~ (n+~rn)
2 

+ n+
4
2
"'. Comparing dim osp(n, rn) with dim A+ dim B we 

have '~
2 

+2nrn+2rn2 ~ 4rn, a contradiction. Therefore, in this case dim osp(n, m) > 

dim A+ dim B. 

Case 3 Let 1 E A, 1 tj:_ B. As mentioned above, the given decompot>ition induces 

the following decompositiont> of the ideals of the even component: 

H(Fn) = 1r1(Ao) + 7rl(Bo), 

H(Qm) = 7r2(Ao) + 7r2(Bo). 

(10) 

(11) 

If either 1r1 (A0 ), 7r2 (Bo) or 1r1 (Bo), 1r2(A0 ) are non-simple semisimple, then dim Ao = 

dim 1r 1 ( A0 ) < dim Tl ( F,), dim B0 = dim 1r2 ( B0 ) < dim ll ( Q.,). This implies that 

dimA0+dimB0 < dirn(H(Fn)ffiH(Qm)), which is wrong. Likewit>e we have a contra

diction in the second case. Therefore, there is a simple algebra in each pair:(1r1(A0 ), 
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1f2(Bo)), (7ri(Bo), 1f2(Ao)). Since 1 is not an element of B, B har,; a non-zero two-sided 

annihilator, and so does B0 . It follows that one of 1r1 (B0 ), 1r2 (B0 ) has a non-zero 

two-sided annihilator. Let us assume the first possibility. Then 1r1 (B0 ) can be ern-

bedded in a simple subalgebra which also has a non-zero annihilator. Since H ( F,) 

cannot be written as the sum of two proper simple subalgebras, 1r1 (Ao) should be 

either a non-simple semisimple algebra or the whole algebra li(F,). If 1r1 (Ao) is 

non-simple semisimple, then 

or p( + l m p( I l k: CD l (12) 

In other words, we represent ll ( Fn) as the sum of a non-simple semisimple subalge-

bra of form (12) and a subalgebra which has a non-zero two-sided annihilator. Let V 

denote the n-dimensional vector space with vectors written as columns. Then, there 

exists a non-zero vector v E V annihilated by the second subalgebra. By Lemma 

3.0.6, dim H(F,)v = n. It follows from (10) that dim 1r1 (A0 )u = n. 

If 1r1 (A0 ) ~ H(Fk) ED H(Q1), then by an automorphism of F, it can be re-

duced to the following form: { diag (X, ... , X, Y ... , Y)} where X is a symmetric 

matrix of order k, Y is a symplectic matrix of order 2l. Next we represent v as 

(vn, ... , v1k:" v21, ... , v21,) 1 where v;1 is a vector of dimension k, i = 1, ... , k1, v2j 

is a vector of dimension 2l, j = 1, ... , h. Since 1r1 (Ao) contains 1, kk1 + 2lll = n. 

Then, dim{Xvhl X E H(Fk:)} = k, dim{Yv2jl Y E H(Qt)} = 2[- 1 (see Lemma 

3.0.8). Therefore, dim 1r1 (A0 )v = kk:1 + (21 - 1)11 < n, a contradiction. If 

1r1 (Ao) ~ Fh< 1
) EB F/ 1

), then by some automorphism of F, iL cau lJc reduced Lu 

T = {diag (X, ... , X, Xt, ... , Xt, Y, ... , Y, Yt .... , Y1
)} where X andY are any ma-
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trices of orden:; k and l, respectively. Then dimension of Tv is less than n [32]. If 

1r1 (Ao) = H(Fn), then (10) becomes a trivial decomposition, and A~ usp(n, s) for 

some integer s. Then S(A) ~ M,, 28 (F), sr = m, T 2:: 2, is a subsuperalgebra of 

Mn, 2m (F), which is not possible (Proposition 3.1.1), a contradiction. 

Hence, the second possibility holds, that is, n2 (!30 ) has a non-trivial two-sided 

annihilator, that is, can be embedded in the simple algebra with a non-zero an

nihilator. Therefore, n2 (A0 ) is non-simple semisimple because H(Qm) cannot be 

written as the sum of two proper simple subalgebras one of which has a non-zero 

two-8ided annihilator [32]. As a result, we have the decompo8ition of the form: 

ff(Qrn) = n2 (A0 ) + n2 (!30 ) which in turn induce8 the following (the detailed proof 

of this fact can be found in [32]) 

in which the first subalgebra clearly has a non-zero two-sided annihilator, and the 

second is non-simple sernisimple. According to [4], such decomposition cannot exist. 

The lemma i8 proved. D 

Lemma 3.2.3. A supemlgebm :J of the type usp(n, m) where n, m > 0 r:annol be 

decomposed intu the sum of two pruper simple subsupemlgebms one of which hw; 

either the type /(3 or Dt. 

Pruuf Firf:lt we identify :J with osp(n, m). A88ume that osp(n, m) =A+ I3 where, 

for example, A i8 either of the type K3 or /)t· Then, the above decomposition 

induces the following: 

H(Fn) = n1 (Ao) + n1 (Bo), 

78 



Let us note that dim Jr1 (80 ) :::; n(r';l) if it is a simple subalgebra and 

dim Jr1 (80 ) :::; "
2

-~n+2 + 2 if it is a non-simple semisimple subalgebra. This im-

plies that dim H(Fn) n(r~+l) :::; 2 + '~
2 

--
3
;' + 3, so 2n :::; 5 and n :::; 2. 

Similarly, dim 1r2 (B0 ) < 2m2 
- 5m + 3 if 1r2 (B0 ) is a simple subalgebra, and 

dim 1r2 (B0 ) :::; 2m2 
- 5m + 4 if 1r2 (B0 ) is a non-simple semisimple subalgcbra. Thus 

dim TT(Qm) = 2rn2
- tn :::; 2 + 2nl,2

- 5m + 4, so 4nl :::; 6 and rn :::; ~· Therefore, 

either J ~ osp(1, 1) or J ~ osp(2, 1). By Corollary 3.1.5, these decompositions arc 

not possible. The lemma is proved. D 

3.3 Decompositions of superalgebras of types 

Q(n)(+) and P(n) 

In several steps, we will prove that no Jordan superalgcbra of the type either P( n) 

or Q(n)(+) can be represented as the sum of two proper simple subsuperalgebra~o>. 

Lemma 3.3.1. Let A of the type osp(p, q) be a proper subsuperalgebra of J which 

has the type either P(n) or Q(n)(+). Then dim A:::; " 2in. 

Proof. Let Ao ~ H(Fp)@ H(Qq) be a proper subalgebra of Jo which is isomorphic 

to F,~+). Therefore, p + 2q:::; n, p, q > 0. Hence, dim A= P2iP + q(2q- 1) + 2pq = 

~(p + 2q) 2 + P-;2q < ~(p + 2q)2 + Pi2q :::; n
2;t'. The lemma is proved. D 

Lemma 3.3.2. Let A of the type Mk,,l(F)(+) where k.l > 0 be a prnper subsuperal

gebra of J of the type either P(n) or Q(n)(+). Then dim A:::; n 2 • 
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Proof. Since A is proper, k + l :S n, hence (k + l) 2 :S n2
• D 

Lemma 3.3.3. A superalgebra J of the type either P(n) or Q(n)( 1 
), n > 1, cannot 

be represented as the sum of two proper nontrivial subsuperalgebms one of which has 

either the type K 3 or Dt. 

Proof. Let A be of the type either K 3 or Dt· The given decomposition of J induces 

that of the form: Jo = Ao + Bo where either A 0 = Fe or Ao = Fc 1 E8 Fc2, where e, 

c1 and e2 are idempotents. Next we estimate the dimension of B0 . If B0 is simple, 

then dim B0 :S n 2
- 2n+ 1. If B0 is non-simple semisimple, then dim B0 :S n 2- 2n+2. 

As a result, dim .:J0 = n2 :S 2 + n 2 
- 2n + 2, son :S 2. The only case that remains 

to be proven is the case n = 2. By Corollary 3.1.5, these decompositions are not 

possible. The lemma is proved. D 

Lemma 3.3.4. Let J of the type either P(n) or Q(n)(+) be represented as the 

sum of two proper non-trivial subsuperalgebms A and B whose even components are 

semisimple Jordan algebras such that (A0), (Bo) are proper, and one of them has a 

non-zero two-sided annihilator. Then J f A+ B. 

Proof. Let J =A+ B, and Ao have a non-zero two-sided annihilator. Then .:Jo = 

Ao + B0 where A 0 , B0 are semisimple Jordan subalgebras, AnnA0 # {0}. Since 

Jo ~ Fr~+), S(Jo) = Fn- Obviously, Fn = (Ao) + (Bo) where (Ao) and (Bo) denote 

associative enveloping algebras for Ao and B0 , respectively. This implies that F11 can 

be written as the sum of two semisimple subalgebras (Ao) and (Bo) one of which has 

a non-zero two-sided annihilator. This contradicts Proposition 1 in [4]. The lemma. 

is proved. D 
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The following table summarizes all the information obtained above. 

A III a:r: dim 

1 Mk,z(F)(+) n2 

2 osp(p,q) n 2+n -2-

3 Q(k)(+) 2(n- 1)2 

4 P(k) 2(n- 1)2 

In the second column we list all possible types that subsuperalgebras of P(n) 

and Q ( n) ( + l can have. In the third column we point out the maximal dimension 

corresponding to each subsuperalgera. 

Theorem 3.3.5. Let J have the type either Q(n)(+) or P(n), where n > 1. Then J 

cannot be represented as the sum of two proper simple non-trivial subsuperalgebras. 

Proof. Let J =A+ B. Then the following cases occur. 

dim B :::; n2
, therefore, J = A E!.l B. In particular, Jo = Ao E!.l Bo. As a consc-

quence, one of the subalgebras, for example A0 , does not contain the identity of the 

whole superalgebra or, equivalently,(Ao) has a non-trivial two-sided annihilator. By 

Lemma 3.3.4, no such decomposition exists. 

Case 2. A ~ osp(p, q), B ~ osp(k, l), Mk,z(F)(+), Q(k)(+) or P(k). Taking 

into account Lemma 3.3.1, we can conclude that no decomposition into the sum of 

two subsuperalgebras of the type asp is possible. Assume that B ~ Mk,t( F)< 1
). By 

Lemmas 3.3.1 and 3.3.2, dim A:::; "2.t" and dim B:::; n 2
, respectively. Hence, by the 
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dimension argument, no such decompositions exist. Finally, if B ~ P(k) or Q(k)( 1 l, 

then Bo ~ F~+). By Lemma 3.3.4, 1 E B0 . By Lemma 3.0.5, dim B0 ::; 1~2 • However, 

dim(A +B) ::; n
2

~~n + '~
2 

< 2n2
, a contradiction. 

Case 3. A~ Mk,z(F)(+), B ~ P(q), or Q(q)(+l. This decomposition induces 

Jo = Ao + Bo, Ao ~ F~ 1 ) EEl F?l, Bo ~ pJ+l. By Lemma 3.3.4, 1 E B0 . By Lemma 

3.0.5, dim B0 ::; 
7~
2

. However, dim( A+ B) ::; "
2

2
1

" + 7~2 < 2n2
, a contradiction. 

Case 4. A~ P(k), B ~ Q(l)(+), k, l < n. As above, this decomposition induces 

the decomposition of the even part into the sum of two subalgebras of the types 

F~ +) and F/ +), respectively. However it follows from the classification of simple 

decompositions of simple Jordan algebras [32] that no such decomposition exists. 

The theorem is pruved. D 

3.4 Decompositions of superalgebras of the types 

J(V, f), K3, Dt, H3(F) EB S3(F) EB S3(F), Kw, J(g, 

H3(B) 

Theorem 3.4.1. Let J = (F1 + V0 ) + V1 where V1 # {0}, and A, B be proper 

simple non-tr-ivial sub.mperalgebras of J. Then J =A+ B if and only if one of lhe 

following cases holds: 

(1) A= (F1+Wo)+VI1t, B = (F1+Mo)+MJ where Vo = Vlro+Mo, V1 = W1 +M1, 

flwo, f!w11 f!M0 , ./ I111J ar-e non-s'ing·ular. 

(2) A= (F1 + W0 ) + W1 , B = (~ + v) + M1 where F1 + V0 = W0 6::1 (~ + v), 
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V1 = H'1 + M1, ffw0 , ffwu ffM1 are non-singular, J(v,v) = ~· 

{3) A= (~+v) + W1, B = (~ -v) +M1, F1+ Vo = (~ +v) + (~ -v) ,V1 = W1 +AT,, 

ffwu JIM1 are non-singular, f(v, v) = i· 

Proof. Given that J = (Fl + V0 ) + V1 where Jo = Fl + V0 , J 1 = V1. Notice 

that J 1 · J 1 = F1, where 1 denotes the identity of J. In particular, for any 

subsuperalgebra A of J, A1 · A1 ~ Fl. Note that the idempotents in Jo have 

the form: either 1 or ~ + v where J(v, v) = ~' v E V0 . In particular, if v1 and 

'112 are pairwise orthogonal idempotents in J 0 , then c1 = ~ + u, c2 = ~ - t' where 

v E V0 . For any simple subsuperalgebra A of J, A0 is a semisimple subalgebra of 

Jo = Fl + V0 . Hence, from Racine-Zelmanov classification, either Ao = J(V', J') 

or Ao = J(V', J') EB Fe where e is an idempotent of Jo. Since J(V', f') and Fe are 

orthogonal, e = ~ + v, v E V0 , and for any a+ wE J(V', f'): (~ + v) · (n + w) = 0, 

w = -2av. As a consequence, dim J(V', J') = 1 and Ao = Fe 1 G) Fe 2 where c1 , 

c2 are pairwise orthogonal idempotents. On the other hand, according to Racine

Zclmauov classification, if Ao ~ J(V', f') EB Fe, then A is isomorphic to one of 

the following: osp2 ,2 (F), M2,J (F)(+-l, Kw, osp 1,4(F). However, for any of the::;c 

::;uperalgebra::; the dimen::;ion of the even part is greater than 2. Let Ao = J(V'. f'). 

It follows from Racine-Zelmanov classification that 

(i) A is a tmperalgebra of a bilinear superform. 

(ii) A~ Q(2). 

(iii) A~ P(2). 

However, for (ii) and (iii) the inclusion A1 · A1 C Fl does not hold. Hence, 
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if A is a simple subsuperalgebra of .J, then A has the type J(V', f'). Further, if 

1 E A, 1 E B, then A= F1 + W0 + W1, B = F1 + M0 + M1. Hence, V0 = W0 + Af0 , 

V1 = W1 + M1. If 1 E A, 1 ¢ B, then A= F1 + W0 + Wt, B = (~ + v) +lift. If 

1 ¢ A, 1 ¢ B, then A0 = (~ + v), 80 = (~ - v) [33]. The fact that (1),(2),(3) are 

decompositions is obvious. The theorem is proved. D 

Decompositions of K 3 

Let A be a proper subsuperalgebra of K 3 . Then we have the following restric

tions: dim A < 3 and deg Ao = 1. Considering all cases one after another, we obtain 

the following. 

Theorem 3.4.2. A Jordan superalgebra of the type k:3 has no decompositions into 

the 8urn of two proper 8irnple non-trivial 8V,b8uperalgebra8. 

Decompositions of Dt 

Let .J be of the type Dt. Since deg .J = 2, dim .J = 4, any proper simple 

subsuperalgebra of .J has either the type K3 or J(V, f). Let A ~ K3 be a sub

superalgebra of.]. Then A 1 = (.J)t, and Ao = (e) where e2 = e, e E (.1) 0 . If 

(Dt)o = Fe 1 + Fe2 , then either e = ei, i == 1. 2, ore= e1 + e2 . In the last case, we 

have e(o:x + (3y) = (et + e2)(o:x + f3y) = (o:x + lJy) # (crx~;Jv). Hence e = e;, i = 1, 2. 

On the other hand, [(ax+ (3y ), (a' x + (3'y )] = ( o:;J'- ;Jo:')( e1 + te2 ) # e = c;, i = 1, 2. 

Thio irnplieo that A of the type K3 cannot be a oubouperalgebra of .J. 

Let A~ J(V, f) be a subsuperalgebra of .J. Then A 0 <::;; (.J)o = (e 1 , e2), At ~ 

(.1)1 = (x, y). Let e be the identity of A, e E .]0 , e = e1 +e2. If dimAo > 1, then we 
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can always choose some element of the form a:e 1 + ;3e2 which is linearly independent 

with e1 + e2, and (cte1 + ;3e2)2 is proportionate to e1 + e2. This implies that n = j} 

and dimAo = 1. However if .:J =A+ B where A~ J(V1 , h), B ~ J(V2 , h), then 

Ao = Bo = \e1 + e2), that is, (.:J)o =J Ao + Ba. 

Theorem 3.4.3. A Jordan superalgebra of the type Dt has no simple decompositions 

into the sum of two proper simple non-trivial subsuperalgebras. 

Decompositions of fh (F) EB S3 (F) EB S::1 (F) 

Actually we are going to prove that there are no simple decompositions of .:J of 

the type 113 ( F) (I) S'3 ( F) Cl) Tl3 ( F). Assume the contrary that .:J = A+ B where A 

and Bare proper simple subsuperalgebras. Then, .:lo = A 0 + B0 where .:Jo ~ JT(F;,). 

It follows from Theorem 3.0.7 that either Ao (or 80 ) coincides with .:Jo or Ao (or B0 ) 

is nou-sirnple semisimple. According to Racine-Zelmauov dassificatiou if Ao (or 8 0 ) 

ir:; .:lo than A (or B) is .:J, a contradiction. Let A be non-r:;imple r:;emir:;imple. Then 

either Ao ~ H EB Ft, k + l :::; 3 or Ao ~ H(H) EB H(Qt), k + 2l:::; 3. If A0 ~FA ffi Ft, 

then by Lemma 3.0.5 k + l:::; ~'so k + l == 1. If Ao ~ H(Fk) EB El(Qt), then k = 1, 

l = 1. By dimension argument no such decompor:;ition exists. 

Theorem 3.4.4. A Jordan superalgebra of the type lh(F) !JJ S 3 (F) 8 g~;( F) has no 

simple decompositions into the sum of two proper simple non-trivial subsuperalgebras. 

Decompositions of K 10 and K 9 

If characteristic of F ir:; 3, then K 10 is not r:;imple and por:;sesses a r:;imple r:;ubal-

gebra K 9 . The even part of /(9 ir:; of the type J(V f), and the odd part of Kn is the 
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same as the odd part of K 10 . Since only these two properties will be primarily used, 

we consider only the case of K 10 . Notice that the identity [w, w] = 0 holds for any 

w E :11 . On the other hand, for v · v = f( v, v )e', v E A1. Since fiA 1 is non-singular, 

there exists v' E A1 such that f( v', v') =i 0. However, it conflicts with the above 

identity. Therefore, there are no subsuperalgebras of the type J(V, f) in :J. 

Let J = A+ B where J ~ K10 . Then Jo = Ao + B0 . Recall that Jo = 

[1 E8 / 2 where 11 = Fe + 2:: 1::;;::;4 Fv;, lz = F f. Hence, we can introduce the 

projecLion n 1 onto 11. Thi::; projection induce::; the ::;imple decompo::;ition::; of 11 , 

!1 = n1 (Ao) + n1 (Bo). 

Since ll is an algebra of a bilinear form, it follows from [32] that it can be 

decompm:;ed only into the sum of simple subalgebras of bilinear forms. Hence, 

nl(Ao) ~ J(V1, h) and 7r1(Bo) ~ J(V2, h). According to Racine-Zelmanov 

clatisitication there are only the following possibilities for A and B: A, B ~ 

osp2,2 (F), lvh,1(F), osp1,4 (F), P(2), Q(2). 

dimem,;ion even part odd part total 

ospz,2( F) 4 4 8 

M2,1(F) 5 4 9 

P(2) 4 4 8 

Q(2) 4 4 8 

O.'if'l,4 ( P) 7 4 11 

The fifth case is obviously not possible since dim osp1,4 (F) > dim J. In Lhe 

first four cases, dim(osp2,2 (F)) 1 = dim(M2,1(F)) 1 = dim(P(2))1 = clim(Q(2))L = 
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dim J 1 . From the multiplication table for J we can choose a basis {1:1 , y1 , :r2 • y2 } of 

JI tmch that [x.;, yt] = e ~ 3f, [xi, x2] = v1, h, Y2] = V3, [:.c2, Yl] = v4, [y1, Y2J = v2. 

Hence Ao (or 13o) contains e ~ 3f, vi, v2, v:l, v4. Bm.;ides, v1 · v2 = 2e. Since 

[J1. JI] = Jo], Ao = Jo, hence, A= J, a contradiction. 

Theorem 3.4.5. A Jordan superalgebra of the type K 10 has no simple decomposi

tions into the sum of two proper simple non-trivial subsuperalgebras. 

Decompositions of H3 (B) 

Let J be of the type H3 (B). To find simple decompositions of J we notice 

that Jo ~ H(Q3 ) and dim J = 21. Let J = A+ 13. Hence Jo = Ao + 130 . H 

is known that H ( Q3 ) can be decomposed only into the sum of subalgebras of the 

type Fi+) [32]) Notice that if Ao (or 130 ) coincides with Jo, then A (or 13) coincides 

with J. It follows from [32] that either Ao and 130 are isomorphic to F;~ 1 ) or one 

of them is non-simple semisimple. If Ao and 130 are isomorphic to Pi 1
), than it 

follows from Racine-Zelmanov classification that A and 13 have the type either P(3) 

or Q(3). However dim (P(3))I = dim (Q(3))I = 9 > dim H3 (B) 1 = 6. Hence, a 

subsuperalgebra of the type ?(3) or Q(3) cannot be imbedded into H 3 (B). If one of 

subalgebras, for example Ao is non-simple semisimple, than either A0 ~ PA( 
1 

) Cl) F;( 1 
) , 

k + l :::; 3 or A 0 ~ H ( Fk) ffi H ( Ql), k + l :::; 3. Again by dimension argument no such 

decomposition exists. 

Theorem 3.4.6. A Jordan snpPmlgPbra of thP typp H:~(R) has no sirnplP dPcompo

sitions into the sum of two proper simple non-trivial subsuperalgebras. 
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