

1+1 Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de !'edition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre reference
ISBN: 978-0-494-33454-6
Our file Notre reference
ISBN: 978-0-494-33454-6

L'auteur a accorde une licence non exclusive
permettant a Ia Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I' Internet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

L'auteur conserve Ia propriete du droit d'auteur
et des droits meraux qui protege cette these.
Ni Ia these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

Compiling Parallel Applications
to

Coarse-Grained Reconfigurable Architectures

by

© Mohammed Ashraful Alam Tuhin

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

M.Sc.

Department of Computer Science

Memorial University of Newfoundland

July 2007

St. John's Newfoundland and Labrador

ii

Abstract

Reconfigurable computing has been an active field of research for the past two

decades. Coarse-Grained Reconfigurable Architectures (CGRAs) are gaining inter­

est for embedded systems and multimedia applications, which demand a flexible but

highly efficient platform. A CGRA comprises a network of simple programmable

processing elements (PEs). CG RAs exploit the inherent parallelism and repetitive

computations found in these applications and can adapt themselves to diverse compu­

tations by dynamically changing configurations. Although CGRAs have the potential

to exploit both hardware like efficiency and software like extensibility, the absence of

proper compilation approaches is an obstacle to their widespread use.

In this thesis a novel approach for compiling parallel applications to a target

CGRA will be presented. The application will be written in HARPO/L, a parallel

object oriented language suitable for hardware. HARPO /L is first compiled to a

Data Flow Graph (DFG) representation. The remaining compilation steps are a

combination of three tasks: scheduling, placement and routing. For compiling cyclic

portions of the application, we have adapted a modulo scheduling algorithm: modulo

scheduling with integrated register spilling, which incorporates register spilling with

instruction scheduling. For scheduling, the nodes of the DFG are ordered using the

hypernode reduction modulo scheduling (HRMS) method. The placement and routing

is done using the neighborhood relations of the PEs.

iii

Acknowledgments

First of all I would like to express my deep and sincere gratitude to the almighty

ALLAH who showed me the way throughout this thesis.

It is my immense pleasure to thank all those people who helped in various ways

in preparation of this thesis.

I would like to thank my supervisor, Dr. Theodore S. Norvell, whose guidance,

support, ideas, stimulating suggestions and encouragement helped me in all the time

of research and for writing this thesis.

I am grateful to the administrative staffs and instructional staffs of the Department

of Computer Science for assisting me in many different ways.

This work was supported by the Natural Sciences and Engineering Research Coun­

cil of Canada (NSERC). Thanks to NSERC for providing the funding for this project.

Finally, I wish to express my love and gratitude to all my family and friends.

I am grateful to my friends, Rajibul Huq and Momotaz Begum, for their encour­

agement and continuous support.

Especially, I would like to give my special thanks to my wife, Isheeta Nargis, for

her endless love and encouragement. Without whom I would have struggled to find

the inspiration and motivation needed to complete this work.

Lastly, and most importantly, I wish to thank my parents, Abdul khaleque Bhuiyan

and Meherun N ahar. They bore me, raised me, supported me, taught me, and loved

me. To them I dedicate this thesis.

Contents

Abstract

Acknowledgments

List of Tables

List of Figures

List of Acronyms

1 Introduction

1.1 Reconfigurable Computing

1.2 Field Programmable Gate Arrays (FPGAs) .

1.3 Coarse-Grained Reconfigurable Architectures (CG RAs)

1.4 Compilation Techniques for CGRAs .

1.5 Motivation of this thesis ..

1.6 Contribution of this Thesis .

1. 7 Organization of this Thesis .

2 Background

iv

ii

iii

v

VI

vii

1

1

2

3

4

5

6

7

8

CONTENTS v

2.1 Introduction . 0 •••••••••• 0 • 0 • 0 • 0 0 • 0 0 0 8

2.2 Coarse-Grained Reconfigurable Architectures Overview 9

2.3 Selected Overview of Some CG RAs 10

2.3.1 PipeRench . 10

2.3.2 MorphoSys 11

2.3.3 AD RES 12

2.3.4 RAW. 13

2.3.5 RaPiD 14

2.3.6 KressArray 14

2.4 Compilation Techniques for CGRA Overview. 15

2.4.1 Compilation Techniques 17

2.4.1.1 PipeRench 18

2.4.1.2 MorphoSys 19

2.4.1.3 AD RES 19

2.4.1.4 RAW 20

2.4.1.5 RaPiD. 20

2.4.1.6 KressArray 21

2.4.2 Scheduling 21

2.4.2.1 As-Soon-As-Possible (ASAP) or As-Late-As-Possible

(ALAP) Scheduling . 23

2.4.2.2 List Scheduling . 23

2.4.2.3 Trace Scheduling 24

2.4.2.4 Superblock Scheduling 24

2.4.2.5 Hyperblock Scheduling . 24

CONTENTS VI

2.4.2.6 Forced Directed List Scheduling . 25

2.4.3 Software Pipelining 25

2.4.3.1 Modulo Scheduling 29

3 Related Work 33

3.1 DRESC Compiler 33

3.1.1 Target Architecture . 34

3.1.2 Structure of DRESC Compiler . 35

3.1.3 Modulo Routing Resource Graph 36

3.1.4 Modulo Scheduling Algorithm . 38

3.1.4.1 Problem Formulation . 38

3.1.5 Algorithm Description 38

3.1.6 Limitations 40

3.2 Compilation Using Modulo Graph Embedding 40

3.2.1 Target Architecture 41

3.2.2 Modulo Graph Embedding . 41

3.2.3 The Algorithm Description . 43

3.2.4 Advantages 46

3.3 Compilation Using Graph Covering Algorithm 46

3.3.1 Target Architecture 47

3.3.2 Control Data Flow Graph 48

3.3.3 Structure of the Compiler 48

3.3.3.1 Translation 49

3.3.3.2 Clustering . 49

CONTENTS

3.3.3.3 Scheduling

3.3.3.4 Resource Allocation

3.3.4 Limitations

4 Executable DFG from Source Language

4.1 Introduction

4.2 Source Language Description.

4.2.1 Overview

4.2.2 Language Syntax

4.2.2.1 Classes and Objects

4.2.2.2 Threads . .

4.2.2.3 Genericity .

4.2.3 Some Examples . . .

4.3 Intermediate Representation : Input of compilation

4.3.1 Static Single Assignment Form

4.3.2 Concurrent Static Single Assignment Form

4.3.3 Dependence Flow Graphs . . .

4.3.4 Static Single Information Form

4.3.5 Static Token Form

4.3.6 Static Token for Parallel Programs

4.3.7 Executable DFGs: The Input ...

5 Target Architecture and Compilation Framework

5.1 Target Architecture Description

5.1.1 Architecture Overview

Vll

51

52

53

54

54

55

55

56

56

57

57

58

62

63

64

66

66

67

68

72

73

73

73

CONTENTS

5.1.1.1 Size

5.1.1.2 Component Functionality

5.1.1.3 Topology

5.1.1.4 Memory Requirements

5.1.1.5 Register File

5.1.2 Framework of Target Architecture .

5.1.3 Our Sample Target Architecture ..

5.1.4 Transformation of Architecture Description .

5.2 Traditional Compilation Approach

5.3 Framework of Overall Compilation Approach .

5.4 Overview of our Compilation flow

5.4.1

5.4.2

5.4.3

5.4.4

6 Scheduling

Some Definitions

Compilation Problem Formulation.

Partitioning DFG . . .

Mapping Nested Loops

6.1 Introduction .

6.2 Motivating Example

6.3 Scheduling for Cyclic Parts .

6.3.1 Some Definitions and Concepts

6.3.2

6.3.3

Necessity of considering register usage

Calculation of Minimum Initiation Interval (MII)

6.3.3.1 Calculating ResMII

Vlll

74

74

74

75

75

76

80

87

90

90

92

96

97

98

100

101

102

103

106

107

113

115

115

CONTENTS

6.3.3.2 Calculating RecMII .

6.3.4 Ordering Using HRMS Method

6.3.5 Schedule_Place_Route ...

6.3.6 Force__And_Eject Heuristic

6.3. 7 Check_and__lnsert_Spill Heuristic .

6.3.8 RestarLSchedule Heuristic

6.3.9 Improved MIRS for Compilation on CGRA.

6.4 Scheduling for Acyclic Parts

7 Placement and Routing

7.1 Introduction .

7.2 Idea ...

7.3 Placement

7.4 Necessity of considering routing during placement

7.5 Routing

7.6 Placement and Routing Method

7. 7 Cost Evaluation

8 Conclusion and Future Work

8.1 Summary . .

8.2 Future Work .

8.3 Comparison with Related Work

A HARPO/L Syntax

A.1 Classes and Objects.

IX

116

118

123

125

126

131

132

135

137

137

138

139

140

144

144

146

149

149

150

151

154

155

CONTENTS X

A.1.1 Programs 155

A.1.2 Types 155

A.1.3 Objects 156

A.1.4 Classes . 157

A.1.5 Class Members 158

A.2 Threads • 0 •• 0 0 •• 159

A.2.1 Statements and Blocks 159

A.3 Genericity 162

List of Tables

6.1 Variables used in the IMIRS Algorithm. 108

Xl

List of Figures

1.1 Bridging the gap

2.1 The Kress Array Architecture [Hartenstein and Kress 1995].

2.2 Software Pipelining Example for loops with no dependency ..

2

16

27

2.3 Software Pipelining Example for loops with dependency. 28

2.4 Modulo Scheduling Example. 32

3.1 An Example of the organization of a FU and RF in DRESC target

architecture [Mei et al. 2002]. 34

3.2 Compilation Flow of the DRESC Compiler [Mei et al. 2005]. 35

3.3 MRRG Representation of DRESC architecture part [Mei et al. 2002]. 37

3.4 Modulo Scheduling Algorithm for CGRA [Mei et al. 2003b]. 39

3.5 A target CGRA configuration with dedicated register files [Park et al. 2006]. 41

3.6 Variations of CGRA skewing spaces (a) Normal scheduling Space, (b)

Variations of skewed scheduling space [Park et al. 2006]. 43

3. 7 Overview of the Modulo Graph Embedding Approach. [Park et al. 2006]. 44

3.8 Modulo Graph Embedding for operations at each successive depen-

dence height [Park et al. 2006]. 45

xii

LIST OF FIGURES

3.9 A MONTIUM tile [Guo et al. 2005b]

3.10 A small CDFG and its two templates [Guo et al. 2005b].

3.11 The Scheduling approach [Guo 2006]

4.1 A simple program (a) and its single assignment version (b) ..

4.2 Concurrent Data Flow Nodes [Teifel and Manohar 2004].

4.3 Single Static Information form.

4.4 Data flow Graph using Static Token form.

5.1 A simple target architecture.

5.2 Another simple target architecture.

5.3 Another simple target architecture.

5.4 Another simple target architecture.

Xlll

47

50

51

64

69

70

71

79

80

81

82

5.5 Organization of our target architecture for experimental purposes. 85

5.6 A detailed view of a Processing Element (PE).

5. 7 A sample Routing Resource Graph.

5.8 General Structure of Compilation flow for CGRA.

5.9 Overall framework of our Compilation approach ..

86

89

91

93

5.10 Overview of our Compilation flow. 95

5.11 Subdivision of Graphs: (a) An edge, (b) Subdivision of the edge. . 96

5.12 Sample of Cyclic and Acyclic Portions in an application. 99

LIST OF FIGURES

6.1 A motivating example for the Modulo Scheduling approach. (a) A

simple data flow graph. (b) A table showing the properties of each node

of the DFG. (c) Scheduling for an iteration. (d) Modulo Scheduling of

the kernel.

6.2 Four iterations of the loop.

XIV

104

105

6.3 Phases of the IMIRS algorithm. 109

6.4 Example illustrating dependent distance and latency. 111

6.5 A simple DFG for illustrating the calculation of Mil. 117

6.6 Illustration of HRMS method for DFG without cycles. (a) Input DFG.

(b) Ordered list and DFG after iteration 1. 121

6.7 Illustration of HRMS method for DFG without cycles. (a) Ordered list

and DFG after iteration 2. (b) Ordered list and DFG after iteration 3. 122

6.8 Scheduling Phase of the IMIRS algorithm. 124

6.9 A sample DFG illustrating the lifetime and producer-consumer rela-

tions of a variable. 128

6.10 Examples illustrating the spilling of variables. 129

6.11 Examples illustrating the spilling of uses. . . . 130

6.12 Improved MIRS algorithm for Compilation on CGRA. 133

6.13 Scheduling algorithm for acyclic Parts of an application. 136

7.1 Example of a part of a DFG and the sample target architecture. 140

7.2 Placing the operations at cycle 0. 141

7.3 Placing the operations at cycle 2 that will induce a delay later. . 142

7.4 Routing needed for executing Op7. 142

LIST OF FIGURES xv

7.5 Placing the operations at cycle 2 that will induce no delay later. 143

7.6 Placing the operations at cycle 3. 143

7.7 Algorithm for Mapping from DFG to RRG. 147

7.8 Algorithm for Mapping from DFG to RRG (Contd.). 148

LIST OF FIGURES

Abbreviation

ASICs

GPPs

FPGAs

CGRAs

RAW

DReAM

AD RES

DFG

List of Acronyms

Meaning

application specific integrated circuits

general-purpose processors

Field Programmable Gate Arrays

Coarse-Grained Reconfigurable Architectures

Reconfigurable Architecture Workstation

Dynamically Reconfigurable Architecture for Mobile

Systems

Architecture for Dynamically Reconfigurable Embedded

Systems

Data Flow Graphs

xvi

Chapter 1

Introduction

1.1 Reconfigurable Computing

Reconfigurable computing has been an active field of research for the past two decades.

The main concept of reconfigurable computing is to avoid the von Neumann bot­

tleneck (the bandwidth limitation between processor and memory) through direct

mapping of a portion of an application into hardware to exploit the implicit data par­

allelism in the application. These systems are also capable of dynamically changing

the hardware logic, which they implement. Thus, an application can be partitioned

for execution on the hardware which enables it to execute designs which are larger

than the available physical resources.

Reconfigurable computing has the potential to become a vital component in the

next generation of computation devices. Reconfigurable architectures bridge the gap

between application specific integrated circuits (ASICs) and general-purpose proces­

sors (GPPs) as seen in Figure 1.1. They achieve better performance by combining the

1

CHAPTER 1. INTRODUCTION 2

cost and power efficiency of customized hardware like ASICs with the extensibility of

microprocessors.

t'
:.= Reconfigurable
1
~ Computing

Perfonnance

Figure 1.1: Bridging the gap.

1.2 Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs), which are the most widely used reconfig-

urable architectures, are more capable of exploiting the parallelism than traditional

processors. So naturally some applications on FPGA-based reconfigurable architec-

tures perform much better than processor-based alternatives. However, for applica-

tions where the data path is coarse-grained (8 bit or more), the performance and

power consumption on FPGAs are inefficient. Also the compilation time and the

reconfiguration time on FPGAs are long. Standard arithmetic computation is less

efficient on FPGAs. FPGAs have the following inherent disadvantages:

CHAPTER 1. INTRODUCTION 3

• Logic granularity: FPGAs are designed for logic replacement. As a result,

applications with coarse-grained data path perform inefficiently.

• Compilation time: Compiling applications (typically written in a hardware

description language like VHDL or Verilog) to FPGA consists of logic synthesis,

technology mapping, placing and routing. These process requires a long time

for some applications.

1.3 Coarse-Grained Reconfigurable Architectures

(CGRAs)

To overcome the disadvantages of FPGAs, many coarse-grained or ALU-based recon­

figurable architectures have been proposed as an alternative between FPGA-based

systems and fixed logic CPUs. Due to the coarse granularity of CGRAs, they sub­

stantially reduce the overhead for configurability at the cost of reduced flexibility.

Coarse-grained reconfigurable architectures (CGRAs) provide massive parallelism,

high computational capability and they can be configured dynamically, making them

attractive in the years to come especially in embedded system design. They also

have such advantages as flexible topology, predictable timing, small instruction stor­

age space, etc. Since CGRAs have more computation resources than other pro­

grammable devices such as RISC and VLIW processors, higher performance or bet­

ter performance/energy efficiency is demanded from them and they are ready to

deliver it. Due to the partial connectivity of CGRAs, they are scalable, yet cost­

and power-efficient unlike coarse-grained VLIW. Examples of some CGRAs are the

CHAPTER 1. INTRODUCTION 4

KressArray [Hartenstein and Kress 1995], RaPiD [Ebeling et al. 1997], MorphoSys

[Singh et al. 2000], CHESS [Marshall et al. 1999], PipeRench [Goldstein et al. 2000],

REMARC [Miyamori and Olukotun 1998], Reconfigurable Architecture Workstation

(RAW) [Waingold et al. 1997], Matrix [Mirsky and DeHon 1996], Dynamically Reco­

nfigurable Architecture for Mobile Systems (DReAM) [Alsolaim et al. 2000], Archite­

cture for Dynamically Reconfigurable Embedded Systems (ADRES) [Mei et al. 2003a],

Chameleon Systems [Cha], MathStar [Mat], etc.

1.4 Compilation Techniques for CGRAs

For programming coarse-grained reconfigurable architectures, diverse tools and pro­

gramming approaches have been used. However, due to the familiarity of developers

with traditional programming languages, compiler-based approaches have been pop­

ular over the years. Compiling applications written in a high-level language to hybrid

systems containing coarse-grained reconfigurable platforms has been an active field

of research in the recent past. The work in this domain is mostly highly dependent

on the target architecture.

Although CGRAs have the potential to exploit both hardware like efficiency and

software like flexibility, the absence of proper compilation approaches is an obstacle

to their widespread use. There has not been much work on compiling applications

directly on to systems containing only coarse-grained reconfigurable architectures.

Although there is extensive research and even commercial tools for FPGAs, the tech­

niques developed for them are not directly applicable to CGRAs, because of the

substantial differences in PEs and interconnection architectures among others.

CHAPTER 1. INTRODUCTION 5

The compiler plays a critical role in the success of a coarse-grained reconfigurable

architecture (CGRA). The compiler must carefully schedule code to make the best

use of the multiple resources available in a CGRA. Compiling applications to CGRA,

after the source code of the target application has been transformed and optimized

to a suitable intermediate representation, is a combination of three tasks: scheduling,

placement, and routing. Scheduling assigns time cycles to the operations for execu­

tion. Placement places these scheduled operation executions on specific processing

elements. Routing finds routes to data from producer PE to consumer PE using

the interconnect structure of the target architecture. Our goal is to compile parallel

applications to a given target architecture with near optimal execution time.

1.5 Motivation of this thesis

Computationally intensive applications demand a great deal of performance and flex­

ibility. These applications such as image recognition and processing, streaming video,

and highly interactive services are asking more of the processing components. These

applications have some code segments that need most of the time required for the

whole application. Moreover, there is a high degree of parallelism in those code seg­

ments, enabling concurrent execution of operations. On the other hand, decreases

in power consumption, cost, and the time-to-market of the processing components

are demanded by these applications. Fulfilling all these demands has posed a new

challenge in the area of embedded system and multimedia applications. CGRAs can

accept the challenge and promise to meet all the demands by combining the benefits

of ASICs, DSPs, and Microprocessors. Moreover, CGRAs are equipped with abun-

CHAPTER 1. INTRODUCTION 6

dant computational resources to exploit the concurrency in those applications. But

the absence of proper automatic compilation techniques is a significant obstacle in

accepting this challenge.

This motivates us in designing an automatic compilation approach that can achieve

high performance.

1.6 Contribution of this Thesis

The main contribution of this thesis is to propose a compilation approach for a fam­

ily of CG RAs. The target architecture will be specified by the user. The intended

application will be written in HARPO /L [Norvell 2006], a parallel, object-oriented,

multithreaded programming language. The input of the compilation is the interme­

diate representation of the target application in the form of a Data Flow Graphs

(DFG) and a description of the target architecture; the output will be executable

code. HARPO/L is first compiled to a Data Flow Graph (DFG) representation

[Zhang 2007]. The remaining compilation steps are a combination of three tasks:

scheduling, placement and routing. For compiling cyclic portions of the application,

we have adapted a modulo scheduling algorithm: modulo scheduling with integrated

register spilling (MIRS) [Zalamea et al. 2001a], which incorporates register spilling

with instruction scheduling. We have also simplified the MIRS method for acyclic

portions of the given application. For scheduling, the nodes of the DFG are or­

dered using the hypernode reduction modulo scheduling (HRMS) [Llosa et al. 1995]

method. The placement and routing is done using the neighborhood relations of the

processing elements (PEs).

CHAPTER 1. INTRODUCTION 7

1. 7 Organization of this Thesis

The rest of the thesis is organized as follows:

Chapter 2 gives background on coarse-grained reconfigurable architectures. First

an overview of development of CG RA will be outlined by briefly describing several

academic and commercial CGRAs. Then the compilation techniques adopted in some

of those CGRAs will be discussed. After that some traditional scheduling methods,

which are useful during compilation, are discussed.

Chapter 3 gives an overview of the related work of compilation of applications to

coarse-grained reconfigurable architectures that are in line with our work.

Chapter 4 discusses how the input application will be presented to the compila­

tion process. The input application is written using an explicitly parallel language

HARPO /L and then after some transformation and optimization the intermediate

representation is obtained in the form of executable data flow graph.

Chapter 5 first describes our target architecture. Then an overview of our compi­

lation process is presented.

Chapter 6 describes the modulo scheduling algorithm for cyclic portions of the

target application that is the central part of the compiler.

Chapter 7 describes the placement and routing steps performed during mapping

from the input DFG to the input target architecture.

Chapter 8 gives a summary of the thesis, presents some final conclusions with

possible future work.

Chapter 2

Background

This chapter gives background on coarse-grained reconfigurable architectures. First

an overview of development of CG RA will be outlined by briefly describing several

academic and commercial CGRAs. Then the compilation techniques adopted in some

of those CGRAs will be discussed. After that some traditional scheduling methods,

which are useful during compilation, are discussed.

2.1 Introduction

Over the last one and a half decade, the rapid development of circuit densities and

speed of VLSI systems has brought about a radical growth in both computer archi­

tectures and microprocessors. Some computation-intensive applications, previously

feasible only on supercomputers, are presently feasible on workstations and PCs.

Similarly, the use of reconfigurable architectures has also widened during the past

decade or two. The principle attributes of these reconfigurable architectures are the

capability of dynamic mapping of a portion of a program to the hardware to exploit

8

CHAPTER 2. BACKGROUND 9

the implicit data parallelism in the program.

2.2 Coarse-Grained Reconfigurable Architectures

Overview

Coarse-Grained Reconfigurable Architectures (CGRAs) are the most promising among

reconfigurable architectures. CG RAs are gaining interest for embedded systems and

multimedia applications, which demands flexible but highly efficient architecture plat­

forms. An important characteristics of CGRAs is that they do not support as many

different instructions as a general purpose processor does. So the instructions in the

target applications for the target architecture should be as regular as possible. That

is, these architectures demand to have the same instruction being repeated for many

times instead of having many different instructions being used once. CGRAs can

enhance the performance of these applications by exploiting the inherent parallelism

and repetitive computations found in these applications and adapting themselves

to diverse computations by dynamically changing configurations of its internal pro­

cessing elements (PEs) and their interconnections. They can achieve close to the

performance of DSPs or ASICs, mostly used for embedded systems and multimedia

applications, due to their abundant parallelism, high computational density, and flex­

ibility of runtime reconfiguration. They can outperform DSPs on many applications

owing to greater parallelism. CGRAs can not compete with ASICs on performance,

but rather on time-to-market and flexibility.

CHAPTER2. BACKGROUND 10

2.3 Selected Overview of Some CGRAs

In the past one and a half decades, different types of CGRAs with different granular­

ity, fabrics, and compilation techniques, and intended for different applications have

been developed. They have identical processing elements (PEs), even though wide

variation exists in the number and functionality of components and the interconnec­

tions between them. These architectures often consists of tens to hundreds of PEs

intended to execute word-level operations as opposed to the bit-level ones common

in FPGAs. The coarse granularity of CGRAs drastically reduces the power, area,

delay, and configuration time compared with FPGAs, at the expense of flexibility. As

a result, we have seen the emergence of a wide range of CGRAs over recent years.

Hartenstein [Hartenstein 2001] has surveyed the development in the field of Recon­

figurable Computing. He first briefly outlined the major aspects of various types of

reconfigurable architectures and then demonstrated possible methods for program­

ming them.

2.3.1 PipeRench

PipeRench [Goldstein et al. 2000] is a coprocessor, which acts as an accelerator for

pipelined applications. PipeRench provides a virtual hardware of several reconfig­

urable pipeline stages and relies highly on fast partial dynamic pipeline reconfigura­

tion as well as runtime scheduling of both configuration streams and data streams.

The architecture comprises a 256 by 1024 bit configuration memory, a state memory,

an address translation table (ATT), four data controllers, a memory bus controller

and a configuration controller. The state memory stores the current register contents

CHAPTER 2. BACKGROUND 11

of a stripe. The ATT stores the address in the state memory for the state of a given

stripe. All the controllers are used for data I/0. The data controller generates ad­

dress sequences for both input and output data streams. The configuration controller

interfaces the fabric to the host, maps configuration to the hardware, does runtime

scheduling and manages the configuration memory.

The reconfigurable fabric allows the configuration of a pipeline stage in every

cycle, while executing all other stages simultaneously. The fabric comprises several

horizontal stripes, each stripe consisting of interconnect and processing elements with

registers and AL Us.

The interconnect network of PipeRench has local interconnect inside a stripe as

well as local and global buses. The global interconnect input and output data to and

from the pipeline. The local interconnect facilitates each PE to have outputs from

the previous stripe and from any other PE in the same stripe.

2.3.2 MorphoSys

The MorphoSys [Singh et al. 2000] architecture consists of a core processor, a frame

buffer, a DMA controller, context memory, and a 8 by 8 reconfigurable cell (RC)

array. The execution of an application is split into the two part: the core processor

and the reconfigurable part. The core processor executes the sequential part while

the RC array, capable of multithreading, takes care of any embedded parallelism.

The core processor is a Tiny RISC processor with special instructions for controlling

the DMA controller and the RC array. The DMA controller uses DMA instructions

for transferring data between the main memory and the frame buffer and for loading

CHAPTER 2. BACKGROUND 12

configuration from the main memory to the context memory. The context memory

stores the configuration for the RC array.

The frame buffer works like a data cache by storing blocks of intermediate results.

The frame buffer is logically divided into two sets, by using the two sets independently,

load and store can be overlapped. Each set has two banks of 128 16-bit words. A

horizontal bus of 128 bit connects the frame buffer to the RC array, allowing all cells

of a row to share a 16-bit segment of the frame buffer.

Each cell of the RC array features an ALU-multiplier, a shifter, two input multi­

plexers, a register file with 16 4-bit registers and a 32 bit context register. The ALU

multiplier has four inputs, two from the input multiplexers, one from the output reg­

ister and one from the context register. The ALU-multiplier is capable of performing

the standard arithmetic and logical operations, as well as a multiply-accumulate op­

eration in a single cycle. The input multiplexers select inputs from any neighbor cell,

from the data bus, from the frame buffer, or from the register file.

The RC array has a 3-layer interconnection network. In the first layer all the cells

are connected to the nearest neighbors. In the second layer, the cells are connected

to cells in the same row or column in the same quadrant. In the third layer, the cells

are connected to cells in the same row or column of the neighbor quadrant.

2.3.3 ADRES

Architecture for Dynamically Reconfigurable Embedded Systems (ADRES)

(Mei et al. 2003a] is a power-efficient flexible architecture template that combines

a very long instruction word (VLIW) processor with a coarse-grained array. This

CHAPTER 2. BACKGROUND 13

architecture has such advantages as high performance, low communication overhead

and ease of programming. The array, containing many functional units, accelerates

data-flow loops by exploiting high degrees of loop-level parallelism. The VLIW DSP

efficiently executes the part of the code which can't achieve so large parallelism.

The VLIW and the array are coupled and communicate by a shared VLIW register

file. The architectural flexibility of ADRES, combined with the design flow from the

application written in C, allows a designer to rapidly explore architectural options

for an application domain. The architecture template allows designers to specify the

interconnection, the type and the number of functional units.

2.3.4 RAW

The RAW (Reconfigurable Architecture Workstation) micro-architecture

[Waingold et al. 1997] consists of an array of inter-connected tiles, each of which re­

sembles a RISC processor. Each tile contains an AL U, register file of 32 general

purpose and 16 floating point registers, data memory, and instruction memory, con­

figurable logic (CL) and a programmable switch that can support both static and

dynamic routing.

The RAW architecture provides both a static and a dynamic network. The pro­

cessors lack hardware for register renaming, dynamic instruction issuing or caching

(which is found in current super scalar processors). As a result, the compiler generates

statically scheduled instruction streams and it is the responsibility of the software to

handle all the dynamic issues. If the compiler fails to find a static schedule, there is

a backup dynamic support in the form of possible flow control.

CHAPTER 2. BACKGROUND

2.3.5 RaPiD

14

The RaPiD architecture [Green and Franklin 1996] is a linear array of data path

units (DPUs) which is configured to form a mostly linear pipeline. The linear array is

divided into identical cells which are replicated to construct the whole array. Each cell

consists of an integer multiplier, three integer ALUs, six general purpose data path

registers and three local 32 word memories. Each memory has a specialized data

path registers having an incrementing feedback path. The routing and configuration

structure of RaPiD consists of several parallel segmented 16 bit buses, which span the

length of the data path. The bus segments in different tracks have different lengths.

The interconnections are used most efficiently using this feature. In some tracks,

adjacent bus segments can be joined together by configurable bus connectors.

For propagation of I/0 streams, RaPiD provides a stream generator which con­

tains address generators. Address generators are optimized for nested loop structure,

associated with FIFOs. The address sequences for the generators are determined at

compile time. The cells of the linear array are interconnected and controlled using a

combination of static and dynamic control.

2.3.6 KressArray

KressArray (also known as rDPA) can be considered as the first actual CGRA as it

has a 32 bit wide data path [Hartenstein and Kress 1995]. It is a generalization of

the systolic array. It is basically a regular array of reconfigurable processing elements,

known as reconfigurable Data Path Units (rDPUs).

CHAPTER 2. BACKGROUND 15

Figure 2.1 shows the KressArray architecture. Each rDPU has two inputs and

two outputs. Each rDPU consists of an ALU with a data path of 32 bits wide.

One important characteristics of rDPU is that they are data-driven. So, an rDPU

computes an operation whenever all its inputs are available. The rALU controller

attached to the rDPU mesh controls the communication of data streams to and from

the array and the configuration.

The KressArray has a global bus for longer connection. Although the topology

of its local interconnect is static, global interconnection may be dynamic. The local

interconnects follow a unidirectional approach that provides efficiency in area man­

agement. The global data bus is used for data 1/0 to the array and for propagation

of intermediate values to other rDPUs or between the rDPU array and the register

file in the controller.

2.4 Compilation Techniques for CGRA Overview

For programming coarse-grained reconfigurable architectures diverse tools and pro­

gramming approaches have been used. However, due to the familiarity of developers

with traditional programming languages, compiler-based approaches have been pop­

ular over the years. Compiling applications written in a high-level language to hybrid

systems containing coarse-grained reconfigurable platforms has been an active field

of research in the recent past. The work in this domain is mostly highly dependent

on the target architecture.

Although CGRAs have the potential to exploit both hardware like efficiency and

software like flexibility, the absence of proper compilation approaches is an obstacle

CHAPTER 2. BACKGROUND

external Bus to Host and Main Memory

rOPA
address

register
file

rOPA
control

unit

Figure 2.1: The Kress Array Architecture [Hartenstein and Kress 1995].

16

CHAPTER 2. BACKGROUND 17

to their widespread use. There has not been much work on compiling applications

directly on to systems containing only coarse-grained reconfigurable architectures.

Although there is extensive research and even commercial tools for FPGAs, the tech­

niques developed for them are not directly applicable to CG RAs, because of the

substantial differences in PEs and interconnection architectures among others. This

section investigates various mapping and scheduling approaches that are needed dur­

ing compilation of applications for different CGRAs.

2.4.1 Compilation Techniques

The compiler plays a critical role in the success of a coarse-grained reconfigurable

architecture (CGRA). The compiler must carefully schedule code to make the best

use of the multiple resources available in a CGRA. Compiling applications to CGRAs,

after the source code of the target application has been transformed and optimized

to a suitable intermediate representation, is a combination of three tasks: scheduling,

placement, and routing. Scheduling assigns time cycles to the operations for execu­

tion. Placement places these scheduled operation executions on specific processing

elements. Routing plans the movement of data from producer PE to consumer PE

using the interconnect structure of the target architecture.

We will give an overview on the scheduling methods found in the literature in the

next section.

The placement of operations onto the processing elements is largely dependent

on the target coarse-grained reconfigurable architecture. The placement problem is

an NP-hard problem. As a result different heuristic approaches have been used over

CHAPTER 2. BACKGROUND 18

time for approximating an optimal placement. Some of the approaches taken are:

• Partitioning

• Simulation

• Analytic

Out of the above, simulation based placement is the most widely used approach.

Simulated annealing, force-directed placement, and genetic algorithms are three ap­

proaches for simulation. Instead of using any one of the above approaches, combining

two or more to have the benefit of them often leads to better performance.

We will now give an overview of the compilation approach taken by the CGRAs

outlined in the previous section.

2.4.1.1 PipeRench

The approach taken for compilation of applications on PipeRench is to analyze the

application's virtual pipeline, which is mapped onto physical pipe stages to maximize

execution throughput [Goldstein et al. 2000].

The compiler uses a greedy place-and-route algorithm to map these pipe stages

onto the reconfigurable fabric. PipeRench uses a technique called pipeline reconfigu­

ration to improve compilation time, reconfiguration time, and forward compatibility.

A reconfigurable system partitions computations between the fabric and the system's

other execution units. The fabric does reconfigurable computations whereas the pro­

cessor does system computations. The system performs reconfigurable computations

by configuring the fabric to implement a circuit customized for each particular re-

CHAPTER2. BACKGROUND 19

configurable computation. The compiler embeds computations in a single static con­

figuration rather than an instruction sequence, reducing instruction bandwidth and

control overhead. However, their technique is limited to very specific architectures,

and thus cannot be applied to other coarse-grained reconfigurable architectures.

2.4.1.2 MorphoSys

MorphoSys [Singh et al. 2000] aims at applications which have inherent data-parallelism,

high regularity, and high throughput requirements. Venkataramani et al. Presented

a compiler framework for mapping loops to the MorphoSys architecture

[Venkataramani et al. 2001]. Application are written using SA-C, which is an expres­

sion oriented single assignment language.

2.4.1.3 ADRES

For compiling applications on the ADRES architecture template [Mei et al. 2003a],

the Inter-university Microelectronics Center (IMEC) of Belgium has designed a com­

piler framework DRESC (Dynamically Reconfigurable Embedded System Compiler).

The DRESC [Mei et al. 2002] retargetable C compiler targets both the VLIW proces­

sor and the array. Application source code can therefore be compiled directly onto the

coarse-grained reconfigurable processor. DRESC [Mei et al. 2002] framework uses a

novel modulo scheduling algorithm, which is capable of pipelining a loop onto the par­

tially interconnected array to achieve high parallelism. The task of modulo scheduling

is to map the program graph to the architecture graph and try to achieve optimal

performance while respecting all dependencies.

We will briefly describe DRESC in the next chapter as DRESC is quite similar

CHAPTER2. BACKGROUND 20

with what we are trying to design and implement.

2.4.1.4 It~~

The RAW compiler uses the SUIF compiler infrastructure [Waingold et al. 1997).

The compiler partitions the program into multiple, coarse-grained parallel threads,

each of which is then mapped onto a set of tiles. The RAW compiler views the set of

N tiles in a RAW machine as a collection of functional units for exploiting ILP. The

compiler can generate unoptimized code for a small set of programs.

2.4.1.5 RaPiD

RaPiD has a linear data path that is a different approach compared with 2-dimensional

meshes of processing elements (PEs). Its Functional Units (FUs) communicate in

nearest-neighbor fashion. This constraint simplifies application mapping but restricts

the design space dramatically.

The VLIW compiler front-end is used to transform programs written in a high­

level language like C or Java to a control/data flow graph that is then scheduled to

the configurable data path. The programmer has to explicitly specify the parallelism,

the data movement, and partitioning using special constructs like signal-wait for

synchronization and conditions for identifying the first or last iteration of a loop.

For nested loops, the outer loops are translated into sequential code handled by the

address generators. The innermost loops are transformed into structured code which

are handled by the RaPiD architecture. The compilation procedure is composed of

four steps: netlist generation for the structured code, dynamic control extraction,

instruction stream generation for the programmed controller, and I/0 configuration

CHAPTER 2. BACKGROUND 21

data generation for the stream units. The scheduling problem is formulated as a

place and route problem that maps data flow graphs from the program control/ data

flow graph to a computing substrate comprising multiple instances of the data path

unrolled in time. The placement is done using a simulated annealing algorithm,

considering the routing simultaneously.

2.4.1.6 KressArray

In KressArray, the data path synthesis system (DPSS) [Hartenstein and Kress 1995)

maps statements of a high level language description onto the reconfigurable Data

Path Architecture (rDPA). Configuring the rDPA is composed of logic optimization

and technology mapping, placement and routing, and 1/0 scheduling. DPSS uses

simulated annealing to simultaneously solve the placement and routing sub-problems.

However, it does not support multiple configurations for one loop. The routing is

restricted to direct neighbor connections and neighbors connections with a delay of

one cycle. Global buses are used for routing all other connections.

2.4.2 Scheduling

Scheduling is a well defined and studied problem in the research area of high-level

synthesis. It is actually an optimization problem. Scheduling rearranges instructions

by filling the gap created by the delay due to dependence between instructions. If

other instructions were not scheduled in this gap, the processor would stall and waste

cycles. Scheduling is normally applied after machine independent optimizations, and

either before or after register allocation.

The objective of scheduling is to create an optimal schedule, a schedule with the

CHAPTER 2. BACKGROUND 22

shortest length. Schedule length is measured as the total execution time in cycles.

Moreover, this optimal schedule must be obtained in a reasonable amount of time.

Scheduling algorithms must satisfy both resource and dependence constraints when

producing a schedule. Two instructions are dependent on each other if one uses an

operand defined by another. If a schedule obeys the resource constraints, it will require

resources that will be supported by the available resources of the target architecture.

Scheduling algorithms generally use a resource reservation table. A resource reser­

vation table has columns equal to the number of resources, and rows equal to the cycles

of the schedule. Placing an instructions in an entry of the table (suppose < c, r >)

indicates that the instruction will use that resource (r) in that cycle (c).

Scheduling may be broadly classified into three main categories depending on the

constraints:

• Unconstrained Scheduling: it do not consider timing or resource usage dur­

ing scheduling.

• Time-Constrained Scheduling: it minimizes the number of required re­

sources when the number of clock cycles is fixed.

• Resource-Constrained Scheduling: it minimizes the number of clock cycles

when the number of resources is given.

Scheduling is often classified into three categories in terms of basic blocks it schedules:

Local Scheduling, Global Scheduling, and Cyclic Scheduling. Local scheduling

deals with single basic blocks, regions of straight line code with a single entry and

exit. Global scheduling deals with multiple basic blocks having acyclic control flow.

Cyclic scheduling deals with single or multiple basic blocks with cyclic control flow.

CHAPTER2. BACKGROUND 23

Since local scheduling handles only single basic blocks, which are generally not

so large, it has some limitations. It can obtain optimal schedules locally, but the

global schedule might not be optimal. Global scheduling, on the other hand, handles

multiple basic blocks and can overlap execution of instructions from different basic

blocks.

Most scheduling problems are NP-hard problems. Over the years, to solve schedul­

ing problems, exact algorithms (capable of giving optimal solutions), or heuristic al­

gorithms (capable of giving feasible and suboptimal solutions) have been applied.

Some of the commonly used scheduling algorithms are briefly described below.

2.4.2.1 As-Soon-As-Possible (ASAP) or As-Late-As-Possible (ALAP)

Scheduling

The ASAP algorithm schedules each node on the earliest possible clock cycle. The

ALAP scheduling is similar, but it schedules each node to the latest possible clock

cycle. ASAP and ALAP algorithms are used for solving the unconstrained scheduling

problem [Walker and Chaudhuri 1995].

2.4.2.2 List Scheduling

The List scheduling is the most commonly used scheduling algorithm for resource­

constrained scheduling problems [Pangrle and Gajski 1987]. It falls in the category

of local scheduling. List scheduling schedules instructions starting at cycle 0, until all

the instructions have been scheduled. A Conventional list based algorithm maintains

a candidate list of candidate nodes, i.e., nodes whose predecessors have already been

scheduled and which have no resource conflicts. The candidate list is sorted according

CHAPTER 2. BACKGROUND 24

to a priority function of these nodes. In each iteration nodes with higher priority are

scheduled first and lower priority nodes are deferred to a later clock cycle. Scheduling

a node within a clock cycle may make its successor nodes candidates. ASAP, ALAP,

mobility, height-based priority, etc. are used as the priority functions. In a dynamic

list scheduling algorithm, the list changes every clock cycle. In a static list scheduling,

a single large list is constructed statically only once before starting scheduling. The

complexity is decreased by fixing the candidate list.

2.4.2.3 Trace Scheduling

Trace scheduling, a global scheduling algorithm, locates frequently executed traces

(paths) in the program and treats the path as an extended basic block. This extended

basic block is then scheduled using a list scheduling approach.

2.4.2.4 Superblock Scheduling

Superblock scheduling is a branch of global scheduling algorithms. Superblocks are

basically a subset of traces having a single entry and multiple exits. Superblocks are

scheduled using list scheduling approach.

2.4.2.5 Hyperblock Scheduling

Hyperblock scheduling, a global scheduling techniques, removes excessive control flow

to simplify scheduling. It eliminates conditional branches using a technique known

as If-Conversion [Allen et al. 1983].

CHAPTER2. BACKGROUND 25

2.4.2.6 Forced Directed List Scheduling

This is the common choice for solving the time-constrained scheduling problem. It

minimizes the resource for a given time by balancing the concurrency of operations,

the value to be stored, and data transfers [Paulin and Knight 1989a]

[Paulin and Knight 1989b].

2.4.3 Software Pipelining

Software pipelining is a family of global cyclic scheduling algorithms. It is an in­

struction scheduling technique that exploits the instruction level parallelism (ILP)

available in loops by overlapping operations from various successive iterations and

executing them in parallel. The idea is to look for a pattern of operations (often

termed as the kernel) so that when repeatedly iterating over this pattern, it produces

the effect that an iteration is initiated at fixed intervals, termed as initiation interval

(II), before the preceding ones are finished. This way multiple iterations of a loop can

be in execution simultaneously, each iteration in different stages of their computation.

After the schedule is obtained, the loop is reconstructed into a prologue, a kernel,

and an epilogue. The prologue consists of code from first few iterations. Once a

steady state is reached, a new iteration of the kernel is initiated every II cycles. An

interesting feature of the steady state is that an iteration of the kernel consists of

instructions from multiple iterations of the original loop. This feature is the central

idea of software pipelining. The last few iterations, after the steady state, constitute

the epilogue. Generally the majority portion of a loop is spent while executing in the

kernel.

CHAPTER2. BACKGROUND 26

The objective of software pipelining is to minimize the II. As a result, we can

perform more iterations using software pipelining in the same amount of time during

which the original loop is scheduled than without software pipelining.

Figure 2.2 shows an example illustrating software pipelining of a loop with no

intra-iteration dependency. The body of the loop loads a value from memory, incre­

ments the value by a constant, and stores the value back to memory again. Here

each iteration takes 4 time cycles to execute, add requiring two cycles. If there is no

inter-iteration dependency a new iteration can be initiated each time cycle, i.e., II =

1, then 7 iterations of the loop will take only 10 cycles instead of 28 cycles if there was

no software pipelining. The execution of the software pipelined loop in time cycle 4 is

termed the kernel, while from time cycle 0 to 3 is termed the prologue, and time cycle

8 to 10 as the epilogue. The execution from time cycle 4 to 7 is known as the steady

state. During this state, after every II time cycles an iteration finishes its execution

and the execution of a new•iteration is initiated.

Figure 2.3 shows another example illustrating software pipelining of a loop with

intra-iteration dependency. The body of the loop loads a value from previous it­

eration, increments the value by a constant, multiplies the added value by another

constant, and stores the value back to memory again. The multiplied value is loaded

in the first instruction of the loop body. In this case each iteration also takes 4 time

cycles to execute, each instruction requiring one cycle. Due to the inter-iteration de­

pendency between the first and the third instructions, a new iteration can be initiated

every three time cycles, i.e., II = 3, then 7 iterations of the loop will take 22 cycles

instead of 28 cycles if there was no software pipelining. The execution of the software

pipelined loop from time cycle 4 to 6 is termed the kernel, while from time cycle 0

CHAPTER2. BACKGROUND

r--- tn = 1 Load

time
Add Load tn

0 Add Load tn
Sue l Add Load

Sue 2 Add

Sue 3
Sue

tn Kernel
Load tn
Add Load tn

4 Add Load

Sue 5 Add

Sue 6
Sue .______

l Prologue

I Steady
state

l Epilogue

Figure 2.2: Software Pipelining Example for loops with no dependency.

27

CHAPTER2. BACKGROUND

,...----
Load

r-----
II=3 Add

time r-----
Mul

Store Load

Add II -
Mul

Store Load

Add II
-
Mul

Store Load

Add
r-----
Mul

Store

!Kernel

II

Load

Add II r-----
Mul

Store Load

Add II
r-----
Mul

Store Load

Add
r-----
Mul
1---
Store
'---

I Prologue

Steady
state

I Epilogue

Figure 2.3: Software Pipelining Example for loops with dependency.

28

CHAPTER2. BACKGROUND 29

to 3 is termed the prologue, and time cycle 20 to 22 as the epilogue. The execution

from time cycle 4 to 19 is known as the steady state.

There are two ways of software pipelining: move-then-schedule and schedule­

then-move.

In the "move-then-schedule" (also known as code motion) approach, operations of

a loop are moved, one by one, across the back edge of the loop, in either the forward

or the backward direction [Moon and Ebcioglu 1992][Jain 1991]. But the difficulty

with this approach is the determination of operations, direction, and frequency of

move around the back edge to obtain the best performance.

In the "schedule-then-move" approach, schedules are constructed to maximize

performance and then moves are done as needed [Codina et al. 2002]. There are

two ways for this approach. In the first, "unroll-while-schedule" [Aiken et al. 1995],

the loops are unrolled and scheduled simultaneously, until the schedule becomes a

repetition of an existing schedule. The partial schedule must have some parameters

that should be the same if one would consider the total schedule. Among these

parameters are: the number of iterations in execution, and for each iteration: the

operations that have been scheduled, the time of the availability of their output,

resources that will be consumed by them until completion, and the allocated register

for each output. This approach often leads to high time complexity. The second is

"modulo scheduling", which is outlined in the next subsection.

2.4.3.1 Modulo Scheduling

Modulo scheduling is the most popular approach for software pipelining

[Rau and Glaeser 1981][Dani 1998][Llosa 1996][Llosa et al. 1995][Rau 1994]. It sim-

CHAPTER2. BACKGROUND 30

plifies the process of software pipelining by using the same schedule for all iterations.

It is used in ILP processors such as VLIW to improve parallelism by executing different

loop iterations in parallel. It uses a modulo technique (instead of maximal unrolling)

to place operations in the schedule such that when iterations are overlapped there are

no resources or data conflict.

The objective of modulo scheduling is to generate a schedule for an iteration of the

loop such that this same schedule is repeated at constant intervals without violating

intra- and inter-iteration dependency and without arising any resource uses conflict

between operations of either the same or distinct iterations. The schedule for an

iteration is divided into stages so that the execution of consecutive iterations, each

one in a different stage, overlaps. The number of stages in one iteration is named

stage count (SC), and the number of cycles per stage is termed the initiation interval

(II). II, basically, reflects the performance of the scheduled loop. The lower the II, the

higher the amount of parallelism existing in a loop is exploited. Modulo scheduling

attempts to reduce the II associated with a loop.

Modulo scheduling take as input the loop to be scheduled, represented by its data

dependence graph, and a description of the architecture, and produce a schedule for

this loop. The II is constrained either by recurrences in the dependence graph, i.e.,

cycles created by loop-carried dependences (RecMII) or by resource constraints of the

architecture (ResMII). ResMII is calculated from the resource usage requirements of

the computation, while RecMII is obtained from the latency associated with the cycles

in the dependence graph of the loop body. The lower bound on the II is known as

the Minimum Initiation Interval (Mil) and it is computed as Mil = max(RecMII,

ResMII). The scheduling starts with Mil as the II. If an optimal schedule cannot be

CHAPTER 2. BACKGROUND 31

obtained, II is increased and the algorithm tries to produce the schedule again. This

process is repeated until a valid schedule is obtained or the algorithm gives up (when

II reaches a value greater than the original loop's length in cycle).

Figure 2.4 shows an example illustrating software pipelining of a loop using modulo

scheduling. Suppose each iteration takes 6 time cycles to execute. If the dependencies

of the operations for the loop are such that a new iteration can be initiated after every

two time cycles, i.e., II = 2, then 5 iterations of the loop will take only 14 cycles

instead of 30 cycles if there was no software pipelining. The execution of the software

pipelined loop from time cycle 4 to 6 is termed the kernel, while from time cycle 0

to 4 is termed the prologue, and time cycle 10 to 14 as the epilogue. The execution

from time cycle 4 to 10 is known as the steady state.

Modulo schedules are constructed with two different approaches. The first is to

find a global optimal solution using Integer linear programming. It is implemented

using a mathematical formulation of the scheduling objectives and the constraints.

But the problem with this approach is its time complexity, since scheduling, in general,

is an NP-hard problem.

Another approach is based on heuristics, but they may not always give the optimal

solution. But due to its time complexity with respect to the other approach, this has

been adopted in many existing compilers.

Some heuristic based modulo scheduling algorithms are Iterative Modulo Schedul­

ing [Rau 1994], Enhanced Modulo Scheduling [Warter et al. 1992], Integrated Regis­

ter Sensitive Iterative Software Pipelining [Dani 1998], Hypernode Reduction Modulo

Scheduling [Llosa et al. 1995], Modulo scheduling with integrated register spilling

[Zalamea et al. 2001a], Slack Modulo Scheduling [Llosa et al. 2001], etc.

CHAPTER 2. BACKGROUND

II=2
time 0 0 II

l II Kern
6 2 II

l 3

4

12

2

l

3

24

4

3

Figure 2.4: Modulo Scheduling Example.

el

Prologue

Stea:Jy

state

[Epilogue

32

Chapter 3

Related Work

This chapter gives an overview of the related work of compilation of applications to

coarse-grained reconfigurable architectures.

3.1 DRESC Compiler

In [Mei et al. 2002] DRESC (Dynamically Reconfigurable Embedded Systems Com­

piler), a retargetable compiler for a family of coarse-grained reconfigurable architec­

ture ADRES [Mei et al. 2003a] has been proposed. Modulo scheduling algorithm,

which exploits loop level parallelism (LLP), is the main driver of DRESC. It can

solve the placement, scheduling, and routing of operations simultaneously in a mod­

ulo constraint 3D space. DRESC is capable of parsing, analyzing, transforming, and

scheduling any application written inC to a family of CGRAs. Their work is a combi­

nation of FPGA placement and routing, and modulo scheduling used for compilation

for VLIW.

33

CHAPTER 3. RELATED WORK

3.1.1 Target Architecture

34

Since DRESC is a retargetable compiler, the target architecture is a family of CGRAs

[Mei et al. 2002]. There is flexibility as to the number of functional units (FUs), the

number ofregister files (RFs), and the interconnection topology. Actually, in DRESC

the architecture is an array of FUs and RFs. An FU can have inputs from neighboring

nodes and outputs are saved to register. Each FU is supported with configuration

RAM for storing multiple configurations locally. The configuration RAM provides

control signals for the FUs, MUXes and RFs. The FU can handle more than one

operation and the operations can be heterogeneous among different FU s. RF acts

both as local storage and routing resource. Figure 3.1 shows an example of FU and

RF of DRESC compiler.

outl out2

RF

inl

Figure 3.1: An Example of the organization of a FU and RF in DRESC target

architecture [Mei et al. 2002].

CHAPTER 3. RELATED WORK 35

3.1.2 Structure of DRESC Compiler

Figure 3.2 shows the overall compilation flow of the DRESC compiler [Mei et al. 2005].

It uses IMPACT compiler framework as the front end. The output is lcode, an inter-

mediate representation. The architecture parser transforms the target architecture

description into an architecture abstraction, which produces a modulo routing re-

source graph (MRRG). The modulo scheduling algorithm uses this MRRG for the

compilation. The analysis and transformation phase generates a data flow graph for

loop pipelining during scheduling taking lcode as the input. In the program anal-

-·------------ ------ -------- --------------------------------·---·-·-·--·---------,

Architecture
description

inXML

Architecture parser

Architecture
abstraction

Cosimulator

Figure 3.2: Compilation Flow of the DRESC Compiler [Mei et al. 2005].

CHAPTER 3. RELATED WORK 36

ysis and transformation phase, several steps are performed such as identification of

pipelinable loops, construction of the data dependence graph, transformation to a

normalized static single assignment (SSA) form (SSA form will be discussed in chap­

ter 4), etc. In normalized SSA form, unlike SSA form, each </>-function has two inputs

and predicate analysis produces the signal for selection. Live-in and live-out variables

are detected in the live-in and live-out analysis step. This step reduces the communi­

cation overhead on the register file. Prologue and epilogue, generated by pipelining,

are removed. Mil, which is the larger of resource-constrained Mil, ResMil, and the

recurrence-constrained Mil, RecMil, is computed like iterative modulo scheduling

[Rau 1994]. Moreover, ASAP (As-Soon-As-Possible), ALAP (As-Late-As-Possible),

and mobility are computed for scheduling, and operation ordering operations are

ordered following some priority. For example, operations on the critical path are as­

signed higher priority. To exploit spatial locality, operations are placed close to both

its producer and consumer during routing.

3.1.3 Modulo Routing Resource Graph

DRESC uses modulo routing, therefore, to enforce modulo constraints, a modulo

reservation table for software pipelining is required [Mei et al. 2002]. When target­

ing the CGRA, in the DRESC compiler, a graph named the modulo routing resource

graph (MRRG) is introduced. MRRG transforms the target architecture to be used

for the modulo scheduling algorithm. According to [Mei et al. 2002], an MRRG is

defined as a directed graph G = (V, E, I I), which is a three-dimensional architecture

graph representation generated by replicating the two-dimensional spatial architec-

CHAPTER 3. RELATED WORK 37

ture across time. V is the set of nodes representing ports (input, output) or wires

(bus) or two artificially created nodes (source, sink). A time t is associated with

each node v E V. E is the set of edges {(Vi, Vj) I tV; S: tv;} representing the switches

connecting the nodes in V. In other words, MRRG is a graphical representation of

the scheduling space, where nodes represent routing resources, and edges describe the

connectivity among these resources.

There are two asymmetric aspects of MRRG indicated by the following two prop-

erties [Mei et al. 2002]. First, if an operation is scheduled using node R at time T,

then all the nodes that have the same [(T mod I I), R] are also used, where I I is

the modulo time representing initiation interval. Second, if (tvi > tvj), then there

must not be a route from Vi to Vj. Figure 3.3 shows the MRRG for some part of the

DRESC architecture.

a)

..... in2

i~·ink
~_:::{)•ource

outl oue2

7.:
c)

l!l!!!!!
bus

d)

Figure 3.3: MRRG Representation of DRESC architecture part [Mei et al. 2002].

CHAPTER 3. RELATED WORK 38

3.1.4 Modulo Scheduling Algorithm

3.1.4.1 Problem Formulation

For CGRAs, scheduling is a placement and routing problem in a modulo-constraint 3D

space [Mei et al. 2002]. The reason is we have to determine the time, the place, and

the connection of the operations. The scheduling problem is formulated as a mapping

one from the data flow graph G1 = (V, E) to the MRRG graph G2 = (V, E, I I). There

are some constraints such as all MRRG nodes can not be used more than once, the

exception is for source and sink nodes, all the edges E of G1 have to be routed on G2

without violating any resource constraint.

3.1.5 Algorithm Description

Figure 3.4 shows the modulo scheduling algorithm for CGRA [Mei et al. 2002). Ini­

tially all the operations are ordered using the technique of [Llosa et al. 2001]. The

algorithm starts with a minimal II and the outermost loop increments this II by 1

until a valid schedule is found. The Mil is calculated as in [Rau 1994]. For each

II, the algorithm creates an initial schedule respecting all dependency constraints.

But this schedule may place more than one operation onto a single FU at the same

cycle. The inner loop reduces this resource overuse iteratively and searches for a valid

schedule. In each iteration an operation is removed from the existing schedule and

placed randomly. The necessary routing is done simultaneously. The new placement

and routing is evaluated by a cost function. A simulated annealing algorithm chooses

whether the new placement and routing is taken or not. If the cost of the new place­

ment and routing is smaller than the previous one, the operation will be placed in the

CHAPTER 3. RELATED WORK

SortOps();
II := MII(DDG);

while not scheduled do
InitMrrg (II) i

InitTemperature{);
InitPlaceAndRoute{);

while not scheduled do
for each op in sorted operation list

RipUpOp();

for i := 1 to random_pos_to_try do
pos := GenRandomPos();
success :• PlaceAndRouteOp(pos);

if success then
new cost :• Computecost(opl;
accepted:= EvaluateNewPos();
if accepted then

break;
else

continue;
end if

endfor

if not accepted then
RestoreOp();

else
Commi tOp () ;

if get a valid schedule than
return scheduled;

endfor

if run out of time budget then
break;

UpdateOverusePenalty();
UpdateTemperature();

endwhile
II++;

endwhile

Figure 3.4: Modulo Scheduling Algorithm for CGRA [Mei et al. 2003b].

39

CHAPTER 3. RELATED WORK 40

new location. The new location is still chosen if the new cost is larger depending on

temperature, which is decreased gradually. Thus local minimas are avoided. The cost

function is comprised of overused resources. The weights of the overused resources

are increased each iteration.

This process is repeated until a valid schedule is found. Otherwise the II is in­

creased and the whole process is restarted with the new II. The objective of the

algorithm is to schedule more than one operation using as few resources as possible.

When each resource has at most one operation bound to it, a valid schedule is found.

3.1.6 Limitations

The modulo scheduling algorithm of the DRESC compiler has some limitations

[Park et al. 2006]. It is time consuming due to the use of simulated annealing ap­

proach and has long convergence time for loops with large loop bodies. The algorithm

do not use any information from the structure of the DFG in taking scheduling deci­

sions. It does not scale well with respect to the size of the D FGs. Moreover, if there is

sparse interconnection among the FU s, the algorithm converges with low probability.

The algorithm only considers the innermost loop of a nested loop construct. Due to

these limitations, the overall performance of an application is greatly affected.

3.2 Compilation Using Modulo Graph Embedding

Park et al. uses a graph theoretic technique, Modulo Graph Embedding, for compil­

ing applications to CGRAs [Park et al. 2006]. One of the advantages of using this

technique is that it utilizes the information about the structure of the DFG during

CHAPTER 3. RELATED WORK 41

scheduling. Moreover, the technique is scalable with the size of the DFG. Modulo

Graph Embedding is also adaptable to various CGRA configurations like sparse con-

nectivity and register files configurations. So their technique takes care of most of

the limitations found in the DRESC compiler [Mei et al. 2002].

3.2.1 Target Architecture

Modulo Graph Embedding uses a target architecture which is 16 homogeneous FUs

arranged in a 4x4 CGRA in a mesh interconnection network as shown in Figure 3.5.

In this design we can see that each FU has a dedicated register files. There is no

register file sharing and there is no central register file.

Figure 3.5: A target CGRA configuration with dedicated register files

[Park et al. 2006].

3.2.2 Modulo Graph Embedding

Like [Rau 1994] Modulo Graph Embedding(MGE) uses a Modulo Reservation Table

(MRT), having II time slots. Like [Mei et al. 2002], MGE also have a Modulo Routing

Resource Graph (MRRG). But the approach for MRRG construction was simplified.

CHAPTER 3. RELATED WORK 42

There are nodes for each FU and RF, but there is no node for ports for FUs and

RFs. Moreover, an MRT is associated with each node of the modified MRRG. For

efficient register usage, modulo graph embedding approach keeps an MRT for each

register file. Register allocation and assignment is done during modulo scheduling.

Registers keep the same value for up to II cycles. If the life is more than II, the

register value is saved to another register in the same or different register file. Unlike

[Mei et al. 2002], the original architecture description is replicated across time for II

cycles with wraparound edges resembling a toroidal topology.

For minimizing routing cost [Park et al. 2006] uses two techniques. One is height­

based where operations with larger height are scheduled before smaller height opera­

tions. Operations with the same height are treated together for better performance.

The other is affinity-based, in which an affinity graph is constructed using the affinity

information. The nodes of this graph are the operations and the edges are the affinity

value between the corresponding operation pair.

Graph Embedding is done for each height level of the DFG, scheduling one level

at one time. The overall layout is obtained iteratively. Partial layout makes the

remaining layout construction easier and quicker as the available resources are reduced

at every step.

One of the important characteristics of modulo scheduling is backtracking. But

applying backtracking affects the performance of compiling to CGRAs significantly.

The reason is the need for routing from producer to consumer(s) in CGRA. If back­

tracking is applied during scheduling, operations have to be routed to both its con­

sumers and from its producers. For solving this problem MGE does clustering of the

CGRA dynamically. The clusters span from left to right of the FU array. Leftmost

CHAPTER 3. RELATED WORK 43

available FUs are given highest priority, whereas rightmost available FUs are given

lowest priority. A skewed scheduling space is used to implement dynamic clustering.

Each FU has an original start time equal to the time cycle in which it is placed. The

start time of unused FUs at a particular time cycle is increased, the same is done for

all the FUs located right and later time cycles. We can see examples of some skewed

scheduling space in Figure 3.6. In modulo graph embedding operation at the same

....

(o)

Figure 3.6: Variations of CGRA skewing spaces (a) Normal scheduling Space, (b)

Variations of skewed scheduling space [Park et al. 2006].

height are considered together to obtain an optimal layout. Therefore, the parallelism

in an application in a particular height determines the shape of the skewed scheduling

space.

3.2.3 The Algorithm Description

Figure 3. 7 outlines the framework of modulo graph embedding with an example.

Initially some preprocessing is performed to analyze the DFG and to construct the

skewed scheduling space. The DFG analysis computes the heights of all operations,

CHAPTER 3. RELATED WORK 44

Figure 3.7: Overview of the Modulo Graph Embedding Approach. [Park et al. 2006].

i.e. the distance from the terminating operation. Scheduling uses this height and

the live range of the intermediate values are estimated from the height difference of

the producer and the consumer. The basic scheduling is done by considering the

operations of all the levels, placing all the operation at a particular height using

modulo graph embedding. Scheduling is formulated as a graph embedding problem.

The graph embedding problem is treated as an optimization problem. Optimization

is done by minimizing a discrete cost function of a layout. This cost function is

computed by summing the cost of all node pairs. Simulated Annealing is used for

this purpose. The affinity graph is mapped to the skewed scheduling space.

According to [Park et al. 2006], scheduling is done for achieving the following

objectives.

• Placing operations with a common consumer close to each other.

• Minimization of the routing cost for values from producers.

• Ensure the routability of values to consumers.

The cost function is computed from three factors: routing cost, affinity cost, and

CHAPTER 3. RELATED WORK 45

position cost. The variable num_cons(A, B, d) indicates the number of common con-

sumers of A and B whose distance from A and B is the DFG is d.

The af finity(A, B) between two operations A and B is computed as follows:

max_dist

af finity(A, B)= L 2max_dist-d X num_cons(A, B, d)
d=l

The overall grid layout cost is computed as follows:

routing_cost(A) = #FU s used for routing values from producers to A

af finity_cost(A, B) = distance(FU(A), FU(B)) x af finity(A, B)

position_cost(A) =column# of FU(A) x BASE_COST

layouLcost = L (routing_cost(A)+position_cost(A))+ L af finity_cost(A, B)
AEops A,BEops

The scheduling process for operations at each successive dependence height is

carried out as shown as Figure 3.8. From the experiment done by [Park et al. 2006],

grid layout

exhaustive layout

Figure 3.8: Modulo Graph Embedding for operations at each successive dependence

height [Park et al. 2006].

CHAPTER 3. RELATED WORK 46

it can be seen that register file plays an important role in the quality of the schedule.

Register files with a central register file achieves highest quality. Moreover, shared

register file design can give more utilization than dedicated register file design. The

reason behind the discrepancy of utilization among various designs is that FUs having

shared register file can use them as routing resource, so more routing opportunity is

created.

3.2.4 Advantages

The modulo graph embedding method achieves 56% overall utilization and a max­

imum utilization of 69% [Park et al. 2006]. The average utilization is similar to

DRESC compiler [Mei et al. 2002]. So it can be concluded that modulo graph embed­

ding approach is cost-effective, as it uses dedicated register files and sparser network

connectivity compared to the central register file and denser connectivity of the tar­

get architecture of DRESC. Modulo graph embedding deploys systematic placement

decisions based on producer-consumer and uses a skewed scheduling space to achieve

better convergence and faster compilation times, as the search space is limited only

to the operations residing at the same height.

3.3 Compilation Using Graph Covering Algorithm

Guo et al. [Guo et al. 2005b] presented a mapping and scheduling technique for a

coarse-grained reconfigurable processor tile, MONTIUM. The compilation method

consists of four steps: transformation, clustering, scheduling, and allocation. These

steps are applied to the control data flow graph (CDFG), which is translated from

CHAPTER 3. RELATED WORK 47

the source code of a given application. The compilation method exploits maximum

parallelism and locality of reference to achieve high performance and low power con­

sumption. The main objective of their work is to compile DSP applications, written

in a high level programming languages like C, to a MONTIUM tile with maximum

throughput. Code efficiency and power consumption are the major concerns of the

compiler.

3.3.1 Target Architecture

The target architecture [Guo et al. 2005b] used is a part of a heterogeneous system of

the CHAMELEON/GECKO project. The coarse-grained reconfigurable part of the

whole system containing several MONTIUM processing tiles is the target architecture

of their work. The MONTIUM tiles take care of the highly regular computational

intensive DSP kernels. Figure 3.9 shows a MONTIUM processor tile. Within each

Figure 3.9: A MONTIUM tile [Guo et al. 2005bj.

tile there are 5 ALUs, 10 local memories, a communication and configuration unit

(CCV), a sequencer, and local and global interconnections. The ALUs can improve

CHAPTER 3. RELATED WORK 48

performance by using spatial concurrency. Each ALU has four 16-bit inputs and two

16-bit outputs. Each input is associated with an input register file, storage capacity of

which is four operands. The CCU communicates with outside the tile. The sequencer

controls everything except the CCU inside a tile. The memory is also used as a lookup

table to compute complex functions, which the AL U is not capable of.

3.3.2 Control Data Flow Graph

Guo et al. modeled the directed acyclic CDFGs, which includes both the control

and data flow information, as hydra-graphs [Guo et al. 2005b]. A hydra-graph is

represented by G = (Nc, Pc, Ac), where Nc is a finite non-empty set of nodes, Pc

is a finite non-empty set of ports, and Ac is a set of hydra-arcs. A hydra-arc a =

(ta, Ha) has one tail ta E Na U Pa and a non-empty set of heads HaC Nc U Pa. Guo

et al. represented the operations of the CDFG by Nc, the inputs and outputs of the

CDFG by Pc, while the hydra-arc (ta, Ha) either indicate that an input is used by

an operation (if ta E Pc), or that the output of the operation ta E Pc is the input of

the operation, Ha, or that this output is merely an output of the CDFG (if a port of

Pc is contained by Ha)·

An important characteristics of a CDFG is that in CDFG an "if then else" con­

struct is represented by a multiplexer and iterations are modeled by recursions. Loops

are modeled as subgraphs of a CDFG with a multiplexer and a recursion. This sim­

plicity of CDFG allow more flexibility to the mapping approach.

CHAPTER 3. RELATED WORK 49

3.3.3 Structure of the Compiler

The compiler in [Guo et al. 2005b] is divided into four phases, namely translation,

clustering, scheduling, and resource allocation. These four phases are performed

in a sequential manner. But to negate any overhead due to this sequential nature,

each phase considers the requirements of the later phases. Each of these phase is

briefly described below:

3.3.3.1 Translation

This is the intermediate representation generation phase. The main task of this phase

is to translate the target C application into a control data flow graph (CDFG). This

phase is mostly independent of the target architecture. Since CDFGs may be cyclic,

first the CDFG is partitioned into acyclic and cyclic blocks. The compilation process

is only concerned with the acyclic portion. The cyclic portion is handled by the

sequencer of the MONTIUM. Some other behavior-preserving transformations such

as hierarchy expansion and optimizations are performed on the CDFG to extract

information needed for the compilation phase.

3.3.3.2 Clustering

The transformed and optimized CDFG is partitioned into clusters in this phase.

Clustering is done to minimize the number of ALUs, distinct ALU configurations,

and length of the critical path of the CDFG. A cluster on a clustered graph is repre­

sented by an AL U configuration. The distinct templates are represented by distinct

configurations and the distinct matches are represented by clusters. Figure 3.10 shows

CHAPTER 3. RELATED WORK 50

an example CDFG and its two templates [Guo et al. 2005b]. These clusters are then

e10 e11

Figure 3.10: A small CDFG and its two templates [Guo et al. 2005b].

mapped to the ALUs.

A graph covering algorithm is used for clustering the nodes of the CDFG

[Guo et al. 2003]. During clustering a cover of the CDFG is obtained. The clustering

phases is composed of two steps: template generation and template selection.

In the template generation step the DFG is analyzed to extract functionally equiv-

alent structures (templates). Here all the possible non-isomorphic templates and their

corresponding matches are generated.

In the template selection step an optimal cover of the given CDFG is obtained such

that the number of distinct templates and that matches are minimized. Templates

are generated such that they represent one-ALU configuration. Templates actually

model portions of a given application. The objective of template generation is to

CHAPTER 3. RELATED WORK 51

generate a small number of larger templates, that can be mapped to an AL U and a

small number of matches that partitions the nodes of the DFG. Templates should be

smaller in number since the smaller the number of templates, the higher the execution

rate of compilation. During generation of non-isomorphic templates, the nodes are

labeled to minimize necessary calculations. For the template selection approach, Guo

et al. adopted a heuristic based on maximum independent set, and then applied it to

a conflict graph related to their problem.

3.3.3.3 Scheduling

The output graph of the clustering phase is scheduled in this phase. The objective is

to obtain an optimal number of distinct configurations of ALUs of a tile. The task of

scheduling is to order and schedule the clusters and allocate physical ALUs for each

cluster such that the execution time is as small as possible. The scheduling phase also

considers the constraints and limitations of the target architecture. So the output

of this phase is two values for each cluster, a clock cycle and an ALU. These values

determine in which clock cycle a particular cluster will be executed by which AL U.

Guo et al. used three algorithms for scheduling: the multi-pattern scheduling algo­

rithm [Guo et al. 2005a], the column arrangement algorithm [Guo et al. 2006a] and

the pattern selection algorithm [Guo et al. 2006b]. Figure 3.11 shows their mapping

approach [Guo 2006]. The pattern selection algorithm selects a set of non-ordered

patterns from the DFG. The column arrangement algorithm minimizes the number

of configurations for each ALU. The multi-pattern scheduling algorithm schedules the

DFG using the patterns selected by the other two algorithms. The algorithms use

heuristics based on height-based priority functions.

CHAPTER 3. RELATED WORK

Csegln···-·l
··-~·· L

l

r Select p non-ordered J"

patterns , . ---r-·- ...
l, Arrangement columns of ·--.[

the P selected patterns

Multi-pattem scheduling

Figure 3.11: The Scheduling approach [Guo 2006].

3.3.3.4 Resource Allocation

52

In this phase, resources other than ALUs are allocated for the clusters and data

moves are scheduled considering the constraints of resource limitations (such as read-

ing/writing ports of memories, number of registers, crossbar, size etc.). This is the

last step before generating code and it handles the inputs and outputs of the clusters.

During this allocation, locality of reference is exploited to achieve high performance

and low power consumption. The output of this phase is the executable assembly

code.

In the allocation phase each intermediate value is assigned to appropriate mem-

ories or registers. Crossbars, address generators are arranged so that the outputs of

the ALUs are stored in the proper registers and memories and resources are arranged

CHAPTER 3. RELATED WORK 53

such that the inputs of ALUs are positioned in the appropriate register for the next

cluster that will be executed on that AL U. A heuristic allocation algorithm is used for

all these purposes [Guo et al. 2005b]. Data movements are performed for preparing

inputs for and storing outputs of clusters. Resource constraints might increase the

clock cycles needed for the schedule to achieve this.

There are several sub-steps of this phase like variable allocation, memory allo­

cation, register allocation, scheduling data moves, and crossbar allocation. Each

sub-step is performed one by one, considering the requirements of the later sub-steps.

In this way an overall optimization is tried to be achieved.

3.3.4 Limitations

The limitation of this work is inherent in the limitation of the CDFG [Guo 2006].

For example, in CDFGs, one can not easily identify loops. Also the there is no clear

specification of the number of iterations of a loop in the CDFG. Another limitation

of this work is that it does not consider the cyclic parts of an application during

compilation.

Chapter 4

Executable DFG from Source

Language

This chapter will show how the input application will be presented to the back end

of the compilation process. The input application is written using an explicitly par­

allel language HARPO /L and then after some transformation and optimization the

intermediate representation is obtained in the form of executable data flow graph.

4.1 Introduction

The target application must be presented to a suitable target Coarse-Grained Re­

configurable Architecture (CGRA) for execution. That means, the application must

be transformed into some form that is suitable for configuring to the CGRA. First

the application must be written in some programming language. Then after compiler

optimization we will have the intermediate representation in the form of data flow

graph. This chapter gives an overall picture of this transformation.

54

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE

4.2 Source Language Description

55

To implement any given application on a CGRA, the first step is to write it using a

programming language. Various standard and modified programming languages have

been used for that purpose. But almost every one of them has one problem or another.

Some are not object-oriented, some are complex in structure, many of them do not

have provision for concurrent execution [Norvell 2005]. In [Norvell 2006] a language

named HARPO/L (HARdware Parallel Objects Language) has been designed that

targets CGRAs as well as microprocessors. HARPO /L is a structured language with

a co/co construct used to express parallelism. It is a parallel, object-oriented, multi­

threaded programming language. The language design allows explicit parallelism. It

also enables the compiler to extract inherent parallelism.

4.2.1 Overview

HARPO /L facilitates both object-orientation and parallelism. Both processes (threads)

and shared resources can be expressed using objects. HARPO /L is more suited than

either C++ or JAVA, both of which are object-oriented languages, to hardware im­

plementation. It also facilitates concurrency for explicitly parallel programming. One

of the differences with JAVA is that JAVA is mostly dynamic, whereas HARPO/L

is purely static. In JAVA, objects are created and destroyed during runtime. Only

classes are available at compile time. In HARPO /L both classes and objects are

available at compile time. HARPO /L does not allow dynamic object creation. There

is no use of pointers in HARPO /L.

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE

4.2.2 Language Syntax

56

This section briefly summarizes HARPO /L according to [Norvell 2006]. The syntax

of HARPO/L is given in Appendix A.

4.2.2.1 Classes and Objects

In HARPO /La program is a set of classes, interfaces, and objects. Objects are named

instances of types where type may be any of the following:

• Primitive types: The basic types in any programming languages fall in this

category. Examples are int8, int16, int32, int64, int, real16, real32, real64, real,

bool etc.

• Classes: Classes are used to generate objects.

• Interfaces: Interfaces are Classes without implementation.

• Arrays: Arrays of primitive types or arrays of objects are allowed.

• Generic Types: Instantiated generic types may be used.

In summary types are names of classes, array types or generic types.

Initialization of an object is in the form of an expression or an array initialization.

A class defines a type. Classes are either generic (having one or more generic pa­

rameters etc.) or nongeneric. Class members can be fields (objects within objects),

methods and threads. Method declarations only declare the method, not its imple­

mentation. The implementation of a method must be embedded within a thread.

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE 57

4.2.2.2 Threads

Threads are blocks of code whose execution is triggered by object creation. Each

object can have zero or more threads within it. The programmer must manage the

coordination of the threads within the same object. If there are multiple threads in

a class, concurrency must be maintained within that object. The threads share the

same address space and execute concurrently with each other.

A block is a sequence of statements where each statement may be an assignment

statement, a local variable declaration, a method call statement, a sequential control

flow statement, a parallel statement, or a method implementation statement, etc.

In parallel statements, blocks of statements are separated from one another by 11-

Multiple threads are synchronized and communicate using rendezvous construct using

'accept'.

Sequential consistency, an important correctness criteria for concurrent execution

of a program, is implemented by atomic statements. The idea is that any two state­

ments labeled 'atomic' within the same object cannot execute at the same time, unless

they can not interfere with each other.

4.2.2.3 Genericity

Like JAVA's generic class or C++'s template class, HARPO/L allows classes and

interfaces to be parameterized by generic parameters. They may be parameterized

by other classes and interfaces, values of primitive types or objects. In general generic

parameters may be nongeneric types, nongeneric classes, objects, or values.

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE

4.2.3 Some Examples

58

In this section some examples illustrating the strength of HARPO /1 are given. The

example given below, taken from [Norvell 2006], implements the producer-consumer

relation in a FIFO.

(class FIFO [in capacity : int, type T extends primitive]

public proc deposit(in value : T)

public proc fetch(out value : T)

private obj a : T(capacity)

private obj front := 0

private obj size := 0

(thread

(wh true

(accept

deposit(in value : T) when size < capacity

a((front + size) % capacity) := value

size :=size+ 1

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE

class)

fetch(out value : T) when size > 0

value := a(front)

accept)

wh)

thread)

front := (front + 1) % capacity

size := size - 1

59

Below is an example Finite Impulse Response(FIR) Filter. The code is first written

in C, and then using HARPO fL.

void FIR(int maxlnput, int Taps) {

for (i=O; i < maxlnput; i++) {

y[i) := 0;

for (j=O; j < Taps; j++)

y[i) := y[i) + x[i+j) * w[j);

}

}

(class FIR [in maxlnput: int, in Taps: int, obj x: real(), obj y: real(), obj w: real()]

public proc run()

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE

(thread

class)

(wh true

wh)

thread)

(accept run()

(for i : maxlnput

y(i) := 0

(fori : Taps

for)

for)

accept)

y(i) := y(i) + x(i+j) * w(j)

60

We will now give another example of Infinite Impulse Response(IIR) Filter. First

we give the pseudocode and then we write the code using HARPO fL.

proc IIR() {

for i=l to 100 do

for j=l to 80 do

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE 61

}

sum= 0

for k=1 to 10 do

sum = sum + a[i,k)*y[i,j-k-1)

end for

y[i)[j) = x[i,O) * x[i,i) - sum

end for

end for

(class IIR [obj a : real(), obj x: real(), obj y: real())

public proc run()

(thread

(wh true

(accept run()

(fori : 100

(for j : 80

sum:= 0

(for k : 10

sum := sum + a(i,k) * y(i,j-k-1)

for)

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE

y(i,j) := x(i,O) * x(i,j) -sum

for)

accept)

wh)

thread)

class)

for)

62

4.3 Intermediate Representation : Input of com­

pilation

The target applications will first be written in HARPO /L, which is a parallel, object­

oriented language. We are targeting parallel applications. For that our intermediate

representation will be in the form of Data Flow Graph (DFG). This will be the input

of our compilation and must have capability to express parallelism and concurrency.

Some well known representation of intermediate program representation are Con­

trol Flow Graphs (CFG) [Aho et al. 1986], def-use chains [Aho et al. 1986], Program

Dependence Graphs [Ferrante et al. 1987), Dependence Flow Graphs [Pingali et al. 1991),

Static Single Assignment [Cytron et al. 1989), etc. Of these SSA has been popular

over the last decade or two. We will first give a brief overview of SSA.

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE

4.3.1 Static Single Assignment Form

63

For sequential programs, Static Single Assignment (SSA) form has been an estab­

lished and efficient intermediate representation [Cytron et al. 1991]. In SSA form

each variable has exactly one definition point during its lifetime which can reach its

uses. Multiple reaching definitions are combined into a single definition by using

4>-functions at the merge points of the program flow. Moreover, each defintion of

a variable is renamed and the appropriate change is carried out at the uses of the

variable to reflect the appropriate (single) reaching definition.

Conversion of a sequential program into SSA from uses the Control Flow Graph

(CFG) of the program. After conversion of a program into SSA representation, the

resulting program exhibits two important characteristics:

• Every use of any variable in the program has exactly one reaching definition.

This removes unrelated uses of the same variable name from the original source

code and

• Merge functions known as 4>-functions are inserted at appropriate confluence

points in the CFG. A 4>-function for a variable combines the values of the vari­

able from distinct incoming control flow paths at control flow merge points, thus

preserving the property that each variable has a unique definition site. A 4>­

function has the form V' =¢(vi, ... , vn) where V', vi, v2, ... , Vn are variables and n

is the number of incoming control flow edges for the node where the 4>-function

is placed.

Figure 4.1 shows the SSA form of the simple program on the left.

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE 64

~~--=~·5···1

a :=2

f ..

1 :r:o := 5
~:=2

r---·~-'--- f"'' •'"• ••''••H•-~

IYo := xo * 2
i

! Y1 := xo/2
'

I

.l~_,_

I Y2 := ¢(Yo, Y1)
1 zo := xo + Y2

Figure 4.1: A simple program (a) and its single assignment version (b).

4.3.2 Concurrent Static Single Assignment Form

Since we are dealing with Parallel Programs, SSA will not meet our needs. Concur-

rent Static Single Assignment (CSSA) for was built for that purpose [Lee et al. 1997,

Lee et al. 1999]. Like SSA, every use of a variable has exactly one definition in CSSA.

The Concurrent Control Flow Graph (CCFG), which is the parallel counterpart of

the control flow graph of a sequential program, is used as the intermediate repre-

sentation for explicitly parallel programs in order to convert them into CSSA form.

CCFG contains information about conflicting statements along with control flow and

synchronization information.

The CSSA form has three confluence functions: ¢, 1r, 'lj;. They, according to

[Lee et al. 1997, Lee et al. 1999], are defined as follows: ¢-function in CSSA is similar

to that in SSA. The ¢-function merges all the control reaching definitions to create

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE 65

a new definition for the variable. It distinguishes values of variables coming from

distinct incoming control flow edges.

A </>-function has the form ¢(v1 , v2 , ... , vn), where n is the number of incoming

control flow edges of the node where it is placed. The value of¢(v1 , v2 , ... , vn) is one

of the v~s and the selection depends on the control flow path followed by the program.

The 1r-function distinguishes values of variables coming from incoming control

flow edges and distinct conflict edges labeled DU. It summarizes the interleaving of

defining assignments of shared variables in Cobegin/Coend and parallel do constructs

from different threads. They are placed at the point where there is a use of a shared

variable with DU conflict edges.

A 1r-function for a shared variable v has the form 1r(v1,v2 , ... ,vn), where n is the

number of reaching definitions to the use of v through the incoming control flow edges

and incoming conflict DU edges. The value of 1r(v1 , v2 , ..• , vn) is one of the v~s and

the selection is dependent on the interleaving of statements in the threads computing

~-functions, on the other hand, are placed at such confluence points as Coend

and Endpdo nodes. They are basically introduced by Cobegin/Coend and parallel

do constructs.

A ~-function for a shared variable v has the form ~(v1 ,v2 , ... ,vn), where n is the

number of threads merging at a Coend node or an Endpdo node where the ~-function

is placed. The value of ~(v1 , v2 , ••. , vn) is one of the v~s and the selection depends on

the interleaving of statements in the threads merging at the node.

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE

4.3.3 Dependence Flow Graphs

66

We can not use intermediate representation like control flow in the form of CSSA in

parallelizing compilers for execution on CGRA. Rather data flow graphs serves this

purpose. The reason is data flow graphs act as an executable intermediate represen­

tation in parallelizing compilers [Beck et al. 1991]. Beck et al. 's work shows how to

translate control flow into data flow. Their idea for the transformation was to use

tokens along the flow path. A variable definition and its use points are termed as

a token producers and token consumers respectively. They implement the def-use

chain in the CFG by flow of tokens from producer to consumer. They proposed an

executable Dependence Flow Graph.

4.3.4 Static Single Information Form

Static Single Information [Ananian 1999], a generalization of SSA form, is another

intermediate program representation. SSI extends SSA without adding unnecessary

complexity to allow efficient predicate analysis and backward data flow analysis. SSI

form improves backward flow analysis. In SSI form, if the definition of a variable at

program point x reaches two uses of the same variable at program points y and z,

then either all paths from x to y contain z or all paths from x to z contain y. To

satisfy this SSI condition, statements of the form x0 , x1 := ¢-1(x) are used in the

transformed program to create multiple copies of a single variable.

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE

4.3.5 Static Token Form

67

Static Token (ST) [Teifel and Manohar 2004] form is an intermediate representation,

which extends the SSI form. ST is used for for converting sequential programs to

concurrent data flow graphs. Teifel and Manohar present a compiler framework that

automates this synthesis method and also showed how it can be used to synthesize

logic for pipelined asynchronous FPGAs.

The ¢ and the a = ¢-1 functions of SSI are also present in ST form. But ST

form re-interprets their execution. For example, the statement x := ¢(x0 , ... , Xn_ 1) in

SSI form will be x := ¢
9
(x0 , ... , Xn_ 1) in ST form where g is an integer depending on

whose value ¢function is executed. A statement x0 , x1 := ¢;1(x) generates one of

two possible copies of a variable x using the condition g - one when the guard is false

and the other when the guard is true.

In static token form, variables are transformed into tokens and the pipelining

of asynchronous computations is simplified following the data flow graphs. As in

[Beck et al. 1991], variable definitions are treated as data token producers and vari­

able uses as data token consumers. It is the responsibility of the compiler to connect

token producers and token consumers to correctly represent the original sequential

program. After the transformation, each data flow graph node represents a concurrent

asynchronous pipeline stage and is one of seven simple process types: copy, function,

split, merge, source, sink, and initializer.

Their seven types of concurrent data flow nodes are shown in Figure 4.2 and their

functionality in CHP is given below. The CHP notation used by Teifel and Monohar

is based on Hoare's CSP [Hoare 1978]. A short and informal description of CSP is

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE 68

given in [Teifel and Manohar 2004].

Copy - *[A?a; Zo!a, ... , Zn-l!a]

Function = *[Ao ?ao, ... , An-l ?an-I; Z!f(ao, ... , an-I)]

Split - *[C?c, A?a; [c = 0 --+ Zo!a 1--·1 c = n- 1 --+ Zn-l!a]]

Merge *[C?c; [c = 0 --+ Ao!a I··· I c = n- 1 --+ An-l!a]; Za]

Source *[Z!" constant"]

Sink _ *[A?a]

Initializer = a :="constant"; Z0 !a, ... , Zn_ 1!a; *[A?a; Z0 !a, ... , Zn_1!a]

Now we will show an example of a control flow graph (expressed in SSI) and its

corresponding data flow. Figure 4.4 shows a HARPO /L statement on the left and its

data flow graph on the right. Its SSI form is shown in Figure 4.3.

4.3.6 Static Token for Parallel Programs

We cannot directly apply the static token approach, since static token deals with se­

quential form, and we are dealing with parallel concurrent forms. Zhang [Zhang 2007]

extends the work of Teifel and Monohar [Teifel and Manohar 2004] so that static to­

ken form works for parallel programs also. According to him the parallel program

must first be analyzed for synchronization. Multiple threads running in a parallel

program need this synchronization during execution in order to maintain sequential

consistency. Sequential consistency according to Lamport [Lamport 1979] is defined

as follows:

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE 69

'
Za-1~

C? A?

A?

~
---·sink

Ao? Ao-1 ~
.. l ~///

Fuucti,QD

·r
z~

C?

·~ .. ",, ' , J}

J..le:rge

l
z~ A?

l.
Init.

tl//··r

Zo!
..

'7 r
L.an.-1·

Figure 4.2: Concurrent Data Flow Nodes [Teifel and Manohar 2004].

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE 70

xo := tl
(. ·= 0 .. .

XJ := tPc(xo, x~3)
e := p(xl)
X2, X4 := q)~ 1 (xl)

T

.---·--·· .. . ' ·-

y := f(x2)
z := g(j')
x3 := l1(z)

w := k(x4}1
l

'··--~·····-·---r--· .. --------·-·-- i

'
Figure 4.3: Single Static Information form.

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE 71

x :=a;
(whp(x) = 1

y := f(x);
z := g(y);
x := h(z);

wh)
w := k(x);

a

I
~_,' 0 ---- 0 1

'-.._'\'\,/.,./

p '

0 I \
/~~ \x~

__ ,_
k

h
,,.---

Figure 4.4: Data flow Graph using Static Token form.

CHAPTER 4. EXECUTABLE DFG FROM SOURCE LANGUAGE 72

A result of an execution of a parallel program P is sequentially consistent if it is

the same as the result of an execution where all operations were executed in some

sequential order, and the operations of each individual thread occur in this sequence

in the order specified by P.

Zhang also implements the 'lj;, 1r functions and introduced a new function (for

procedural coordination.

4.3. 7 Executable DFGs: The Input

We will use the executable data flow graphs, represented by static token form for par-

allel program [Zhang 2007), as input for scheduling, placement and routing. We can

represent our input executable data flow graph as a Graph D FG = (N, E, op, inRole, out Role)

such that:

• N is the set of nodes.

• E is set of edges labeled by roles. e._ represents the source of an edge, while

e__. represents the target of that edge. inRole is a function E ---t roles, while

outRole is a function E ---t roles.

• op is a function: N ---t operations, which labels nodes with operations.

Chapter 5

Target Architecture and

Compilation Framework

In this chapter we first describe our target architecture and then we will present

an overview of our compilation process. We will also outline some issues during

compilation.

5.1 Target Architecture Description

5.1.1 Architecture Overview

Our aim is to design and implement a retargetable compiler in such a way that it

is compatible with a large range of target architectures. The user is responsible for

providing a description of the target architecture that will be used as an input to the

compiler. The compiler should be flexible enough to cope with the target architecture

given by the user. But what the compiler demands from the architecture describer is

73

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK74

some architectural parameters and characteristics in the target architecture descrip­

tion. The user will be given a guideline by following which he/she can define the

target architecture. Among those parameters and characteristics are size, topology,

component functionality, memory requirements for each component, register file, etc.

We will briefly describe each of them below.

5.1.1.1 Size

By size we mean total number of processing components. Size can be any number

that the user wishes with respect to the overall cost of the architecture. By overall

cost here we mean the total cost for each node, the interconnection cost, and the

memory cost.

5.1.1.2 Component Functionality

It is up to the user to choose different types of components with different functionality.

The simplest will be regular (i.e., homogeneous) where all the processing components

do the same computation. In other words, the functionality of each processing com­

ponent can be homogeneous or heterogeneous. Though from a practical point of view,

heterogeneity is better, it makes the mapping process more challenging. For example,

a processing component can be a single functional unit (e.g., adder or subtracter), an

ALU, a complete processor, etc.

5.1.1.3 Topology

This is one of the most important factors of target architecture description. The

reason is if every processing component is connected with every other, then routing is

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK75

trivial. Otherwise, we need to consider routing of values from producers to consumers.

The fewer the number of connections, the harder mapping is. The reason for it

is that with fewer connections, the possibility of finding unoccupied connections is

less. Although with larger number of connections, a choice between several alternate

routes has to be made. This process may be time consuming. Topology of the target

architecture can be anything like mesh based, star shaped, crossbar, linear, array,

hexagonal (like CHESS [Marshall et al. 1999]).

5.1.1.4 Memory Requirements

Memory serves as the storage location for variables, arrays, etc. A PE fetches its

input from memory and stores its output into memory. So the amount of memory

specified by the architecture definer plays an important role for mapping. The reason

is: if there is less storage than needed in a particular clock cycle, then the execution

time will be increase for the overall application.

5.1.1.5 Register File

Register files are another important component of a target architecture. The perfor­

mance of compilation is affected greatly by its amount and its availability. Register

files may be embedded in a target architecture in different ways. In one approach,

each functional unit (FU) may have a register file attached with it. In another ap­

proach there may be sharing of register files among some number of FUs. From

performance point of view, the first approach is efficient, but it also is expensive with

respect to cost. In another approach, there may be a central register file along with

the shared ones (like VLIW). But that approach has a bottleneck due to a limited

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK76

number of memory ports. A register file can have variable number of registers and

read/write ports.

5.1.2 Framework of Target Architecture

This section gives some overview of the sample target architecture. Our goal is to

design and implement a retargetable compiler for any target architecture. What will

be the description of the target architecture depends on the architecture designer.

But there should be a framework following which he/she will describe it. We now

describe the framework of Target Architecture.

Number of Type of different functional units (t)

Type1

Type2

Typet

Number of functional units (f)

FU1[: Type]

FU2[: Type]

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK77

FU1[: Type]

Number of registers (r)

Total number of interconnections among functional units (c)

JC1: FUx- FUy

JC2: FUx- FUy

ICc: FUx- FUy

Total number of interconnections between functional units and registers (k)

IC1: FUx- Regy

JC2: FUx- Regy

!Ck: FUx- Regy

Number of Central Register File(CRF)

If there is only one type of functional unit, then specifying the type of each FU

is optional. The interconnection is usually bidirectional. That means, if there is a

connection between two FU s from one to the other, then this information is specified

by giving the FU-pair once. This follows from the fact that if there are a total n FUs,

and each FU is connected with each other, then the total number of interconnections

will be n(n;l), not n2 . Unidirectional interconnections can also be incorporated. If

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK78

the total number of registers is equal to the total number of functional units, then

one can easily conclude that there are dedicated register files and there is no sharing

of register files. Otherwise, by looking at f one can determine how many FUs share

a register file. For central register file, CRF will be specified by 0 in the architec­

ture description if there is no central register file present. For example following this

framework one might describe a possible target architecture as follows:

1

ALU

4

FU1

FU2

FU3

FU4

JC1: FU1- FU2

IC2: FU1- FU3

IC3: FU2- FU4

IC4: FU3- FU4

0

0

A pictorial view of the given target architecture is shown in Figure 5.1. There

is no register or central register file. In this way the target coarse-grained reconfig­

urable architecture can be described. For more clarity, we conclude this section with

some more representative target architectures as shown in Figure 5.2, Figure 5.3,

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK79

Figure 5.1: A simple target architecture.

Figure 5.4. The description of the target architecture of Figure 5.2 is given below.

1

ALU

5

FU1

FU2

FU3

FU4

FUs

IC1: FU1- FU2

IC2: FU1- FU3

IC3: FU1- FUs

IC4: FU2- FU4

IC5 : FU2- FUs

IC6: FU3- FU4

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK80

IC1: FU3- FU5

ICs: FU4- FU5

0

0

The descriptions of the target architecture of Figure 5.3 and Figure 5.4 are similar.

The characteristics of these target architecture is that the functional units are

the same, i.e., they are homogeneous, although there may be heterogeneous PEs in a

given target architecture.

PE PE

PE

PE PE

Figure 5.2: Another simple target architecture.

5.1.3 Our Sample Target Architecture

To compare our work and demonstrate the proposed compilation technique, we are

considering 16 processing elements (PEs) arranged in a 4x4 design and each PE has

connection with its four neighboring PEs as shown in Figure 5.5. The description of

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK81

Figure 5.3: Another simple target architecture.

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK82

Figure 5.4: Another simple target architecture.

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK83

our target architecture is given below:

PE1s

PE16

IC1: PE1- PE2

IC2 : PE2- PE3

IC3: PE3- PE4

JC4: PE1- PE4

ICs: PE1- PEs

IC6: PE2- PE6

IC1: PE3- PE1

ICs: PE4- PEs

IC9 : PE1- PE13

IC10: PE2- PE14

ICu: PE3- PE1s

IC12: PE4- PE16

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK84

IC3o: PE14- PE1s

JC31: PE1s- PE16

JC32: PE13- PE16

0

0

Figure 5.6 shows a detailed view of one PE. Each PE has a functional unit (FU),

a register file, an output register, a configuration RAM, and some MUXes (MUlti­

pleXers). For the sake of simplicity we are assuming homogeneous functional units

(FUs) although the proposed algorithms can easily be generalized for heterogeneous

FUs. MUXes serve as the selection of inputs from various sources such as neighboring

PEs. The inputs of a PE can come from neighbor PEs or its own register file. Output

of a FU is saved temporarily to the output register from where it can either go to

a neighbor PE or be saved to the register file of the same PE. Each PE uses input

values generated in earlier cycles, possibly by other PEs. It outputs a new value that

is routed to the places where it is needed. Configuration memory are used to provide

control signal for the FUs and the MUXes. There is a dedicated register file for each

PE, but there is no central register file or register file sharing. The reason is central

register files increase the cost of a target architecture. Moreover, if our compilation

techniques can be applied without a central register file, it can also be adapted for a

target architecture having a central register file. Besides performing operations, each

PE is responsible for routing values whenever needed, although a PE cannot do both

at the same time.

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK85

Figure 5.5: Organization of our target architecture for experimental purposes.

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK86

From Neighbor PEs

~ l __ _L7
I

Jt ',f .

,---]~' J/
:;
<
0:: \fnt • '• ftlr; I

c /

I
Registt>r File I ~ FU

.: .. = Outo

1 :e ·-T· c
c
u

~ I Registt'lj

PE

To Neighbor PEs

Figure 5.6: A detailed view of a Processing Element (PE).

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK87

5.1.4 Transformation of Architecture Description

The target architecture designer will describe various aspects of the target architec­

ture. But that description cannot be used directly for compiling applications. We

need to somehow transform the description into a form that is compatible with other

input of the compilation, the executable data flow graph transformed form the target

application written in HARPO /L. [Mei et al. 2002] introduced Modulo Routing Re­

source Graph (MRRG) for their compiler and [Park et al. 2006] slightly simplified it.

But MRRG can be used when only considering the loop body. Since we are target­

ing the whole application, we cannot use MRRG directly. But we can consider the

transformation of the target architecture into MRRG whenever we consider only a

particular loop portion of the application. We can represent the target architecture

specified by the architecture designer by a graph TA = (C, R), such that:

• C = FU U RF is the set of functional units and registers.

• R is the set of interconnections where r,__, r_. E C for each r E R.

For compilation purposes we have modeled our target architecture with routing re­

source graph (RRG). RRG is basically obtained by replicating the target architecture

graph TA an infinite number of times and giving necessary interconnections across

time cycles.

An RRG is a directed graph RRG = (C x N,AUBUD). AU BUD is the set

of interconnections in a time cycle and across time cycles in a forward direction. Here

C x N is the vertices of the graph, i.e., resources of the target architecture replicated

across time.

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK88

The set A, B, and D and the interconnection relations for their edges can be

expressed as follows:

• A= {(i, r)Jr-- E FU, i EN}

(i, r)._ = (r._, i), for all (i, r) E A

(i, r)-- = (r--, i), for all (i, r) E A

• B = {(i, r)Jr-- E RF, i EN}

(i, r)._ = (r._, i), for all (i, r) E B

(i,r)-- = (r--,i + 1), for all (i,r) E B

• D = {(i,f)Jf E RF,i EN}

(i,f)._ = (f._,i), for all (i,f) ED

(i, !)__, = (!--, i + 1), for all (i, f) ED

In the above, set B represents information being stored, while set D represents in­

formation being retained. So overall, a functional unit may be connected to another

functional unit of the same time cycle. It is also connected to a register file of the

next cycle. A register file may be connected to a functional unit of the same cycle.

A register file is also connected to a register file of the next cycle.

Figure 5. 7 illustrates the routing resource graph (on the right) for the sample tar­

get architecture (on the left). We can see from this figure that the target architecture

graph has been replicated four times and the corresponding connections has been in­

corporated to model the flow of information across time cycles. Here the dashed lines

mean connections in the same time cycle, whereas the solid lines mean connections

across time cycles.

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK89

FU --------------------- FU

t __________ l
I

,----------'
I

RF

FU --------- --------• FU

r:::::::~--------------------~
'-----------, ,----------'

8
It_ _________ '

I

• ,----------'
I

RF

FU --------- --------• FU

t __________ l
I

, _________ _!
I

RF

8--------- -------8
, ________ [:] ________ ,

Figure 5. 7: A sample Routing Resource Graph.

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK90

5.2 Traditional Compilation Approach

Compilation of applications onto CGRAs is highly dependent on the target architec­

ture. Since there are some similarities among all the CGRAs, there must be some

similarities among the compilation approach also. Initially the given application is

written in a high level programming language. Then the source code is analyzed,

transformed and optimized to obtain the desired intermediate representation (IR) in

the form of data flow graphs. During IR steps possible parallelism is extracted. This

process is beneficial because the more parallelism we can extract from the source

code, the better will be the performance of compilation. After the DFG is available,

it is analyzed during the clustering phase to extract a set of clusters with respect to

the target architecture. Then these clusters are mapped to the target architecture

during the mapping phase. The scheduling phase determines which cluster will be

executed in which clock cycles. During this phase the available resources and memory

are utilized properly to extract maximum benefit. During the routing phase operand

values are routed using the available interconnection network from producer PE to

consumer PE. After this phase the desired code is generated and converted to binary

form for execution. The overall compiler flow of a traditional compiler for CGRA is

shown in Figure 5.8.

5.3 Framework of Overall Compilation Approach

Our objective is to compile applications that have parallelism onto coarse-grained

reconfigurable architectures (CGRAs). For that the target application is first written

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK91

Target Architecture

Conversion to Binary

Executable Code)

Figure 5.8: General Structure of Compilation flow for CGRA.

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK92

in HARPO /1, a parallel object-oriented concurrent programming language suitable

for CGRAs. Then the source code is transformed and optimized to get the interme­

diate representation in the form of an executable data flow graph. Here we have used

the static token form for parallel programs. This executable DFG and the target

architecture in the form of RRG are the two inputs of the back end of our compila­

tion procedure. The output of compilation will be the executable code for the given

CG RA and the given application.

Figure 5.9 shows the framework of our overall compilation approach.

5.4 Overview of our Compilation flow

The compiler plays a critical role in the success of a coarse-grained reconfigurable ar­

chitecture (CGRA). The compiler must carefully schedule code to make the best use

of the abundant resources available in a CGRA. Compiling applications to CGRAs,

after the source code of the target application has been transformed and optimized

to a suitable intermediate representation, is a combination of three tasks: scheduling,

placement, and routing. Scheduling assigns time cycles to the operations for execu­

tion. Placement assigns these scheduled operation executions to specific processing

elements. Routing plans the movement of data from producer PE to consumer PE

using the interconnect structure of the target architecture.

Our target is to compile parallel applications to a given target architecture with

near optimal execution time. After target architecture transformation and intermedi­

ate representation of the target application (written in HARPO /1 [Norvell 2006]) we

have two input graphs, an RRG and an executable DFG. Now our tasks is to map the

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK93

Target Application

HARPOfL

Source Code

lntennediate Transformation and Optimization

Executable Data Flow Graph Target Architecture

Executable Code

Figure 5.9: Overall framework of our Compilation approach.

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK94

DFG onto the RRG as efficiently as possible so that the number of execution clock

cycles is as small as possible. We can consider the RRG as the source graph and the

DFG as the target graph.

We will now give an overview of our compilation process. Our idea is to first ana­

lyze the DFG to extract some information that may be useful in the later phases. We

are assuming here that the DFG given as input using static token form for parallel

programs [Zhang 2007] has been optimized using various common optimization tech­

niques. The DFG is transformed by removing conditional branches and thus control

dependences. For doing this we adopted the if-conversion method using predicates of

Park and Schlansker [Park and Schlansker 1991] as is done in [Warter et al. 1992]. In

If-conversion control dependences are converted to data dependences by computing a

condition for executing each operation.

Since the input DFG can be cyclic, we need some approach for partitioning the

cyclic and acyclic parts from the DFG. Then we will apply mapping (from DFG to

RRG) for both the parts separately and integrate them for mapping as a whole.

For mapping acyclic parts we will use the most commonly used list scheduling

algorithm for resource constrained scheduling problems, which will be discussed in

the next chapter. In the list scheduling algorithm, instead of using the conventional

priority functions, we will use the hypernode reduction modulo scheduling approach

[Llosa et al. 1995].

Cyclic parts will be mapped using a register-constrained modulo scheduling method,

improved modulo scheduling with integrated register spilling (MIRS) algorithm

[Zalamea et al. 2001a], which will be discussed in the next chapter. MIRS is a simul­

taneous instruction scheduling and register spilling modulo scheduling method. So

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK95

MIRS does scheduling considering the number of registers available at a particular

clock cycle. For both the cyclic and acyclic parts, the nodes of the DFG will be

mapped to the processing elements of the target architecture and necessary routing

is done accordingly. The placement and routing phase will be discussed in chapter 7.

So we can represent our compilation flow as shown in Figure 5.10.

[Input Executable DFG

j If Conversion

I DFG without Branching I
l

j l
Acyclic Part Cyclic Part

l Ordering Using HRMS j Ordering Using HRMS

Ust Scheduling IMIRS

J Placement and Routing J Placement and Routing

Compilation for Acydic Part Compilation for Cyclic Part

I I

1
Merged Compilation for DFG

j Reverse-If Conversion

Final Compilation for DFG l
Figure 5.10: Overview of our Compilation flow.

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK96

5.4.1 Some Definitions

A subgraph homeomorphism between two directed graphs G1 and G2 is a pair of

one-to-one mapping (!1 , h), where f 1 is from the vertices of G1 to the vertices of G2 ,

and his from the edges of G1 to simple paths of G2 [LaPaugh and Rivest 1978]. For

each edge (x, y) in G1 h(x, y) should be a path in G2 from vertex JI(x) to vertex

f 1(y). This homeomorphism is node disjoint, if the image of the edges of G1 is a set

of paths that are node disjoint up to endpoints.

A subdivision of a graph G is a graph constructed by subdividing the edges in

G [Wik 2007]. The subdivision of an edge e with endpoints u, v yields a graph con-

taining one new vertex w, with an edge set formed by replacing e by two new edges

(u, w) and (w, v). For example, the edge in Figure 5.11(a) with endpoints (u, v) can

be subdivided into two edges, e1 and e2 , connecting to a new vertex w (shown in

Figure 5.11(b)). Each node disjoint subgraph homeomorphism from G1 to G2 corre-

e
'U v

(a)

el e.') u .,.. .,..v
w

(b)

Figure 5.11: Subdivision of Graphs: (a) An edge, (b) Subdivision of the edge.

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK97

sponds to an isomorphism between a subdivision of G1 and a subgraph of G2 .

5.4.2 Compilation Problem Formulation

Assuming each operation has latency of 1 clock cycle, we can formulate the scheduling,

placement, and routing problem as one of finding a node disjoint subgraph homeo­

morphism (!1 , h) between the input executable DFG = (N, E, op, inRole, outRole)

and the RRG, modeled from the input target architecture, such that:

• JI(n) = (k, t) Here k is the resource (functional unit) which will execute n's

operation. t is the execution time of n. fi (n) must be capable of executing n's

operation, for all nodes n E N. For any two nodes u, v E V, !I (u) =I !I (v), if u#

v.

• h(e) = h(n0 , n 1) = P, such that start(P) = (k0 , t 0) and end(P) = (k1 , ti).

h(e) must be capable of carrying e's information, for all edges e E E. For

any two edges e0 , e1 E E, h(e0) is disjoint from h(ei) apart from endpoints, if

eo =I e1.

But an operation can have latency greater than 1. So we need to generalize the

above formulation. We can formulate our scheduling, placement, and routing problem

as one of finding a pair of functions (!I, h) between the input executable D FG and

the RRG such that:

• JI(n) = {(k, t), (k, t + 1), ... , (k, t +An- 1),} Here k is the processing element

which will execute n's operation. t is the start time when n will start executing

and An is the latency of n's operation. JI(n) must be capable of executing n's

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK98

operation, for all nodes n EN. For any two nodes u, v E V, f 1(u) n fi(v) = ¢,

if u =I= v.

• h(e) = h(no, n1) = P, such that start(P) = (ko, to+ An0 - 1) and end(P) =

(k~, t 1). f 2 (e) must be capable of carrying e's information, for all edges e E E.

For any two edges e0 , e1 E E, h(e0) is disjoint from h(e1) apart from endpoints,

if e0 =/= e1.

Our formulated compilation problem has the following desired properties:

• n must be scheduled to be processed on a unique processing element f(n) =

c E C x N starting at a unique time.

• A processing element k can process at most one node's operation at a given

timet.

• If a node n 1 E N is a predecessor of another node n2 E N, then n 1 must

complete its operation's execution before n2 's operation starts.

5.4.3 Partitioning DFG

In general any DFG, as a whole, can be considered acyclic unless there is a cycle

between the start node and the end node. A DFG having both acyclic and cyclic

parts can be considered as a combination of zero or more of both parts and they may

be interleaved. Moreover, cyclic parts may be nested, i.e., there may be one or more

level of nesting cyclic parts in a outer cyclic part. Figure 5.12 shows an example of

this cyclic-acyclic part of a program. Here we can see that the whole program has

more than one of both cyclic and acyclic parts and also a cyclic part contains another

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORK99

Acyclic Portion (AC1)

Cyclic Portion (C1)

Acyclic Portion (A.C2)

Cyclic Portion (C2)

Cyclic Portion (C3)

Cyclic Portion (C3t)

Cyclic Portion (C3u)

Acyelic Portion (.AC3)

A<~ydic Portion (.AC4)
.__ -

Figure 5.12: Sample of Cyclic and Acyclic Portions in an application.

CHAPTER 5. TARGET ARCHITECTURE AND COMPILATION FRAMEWORKlOO

cyclic part which contains even another. Also a cyclic portion may have two other

cyclic portions one after the other inside it.

5.4.4 Mapping Nested Loops

We will apply modulo scheduling to a nested loop structure using a hierarchical

fashion similar to the method proposed by [Lam 1988]. We can represent all the loops

in a program using a tree. The root of the tree will the outermost loop. The leaves will

be the innermost loops. The loops will be scheduled in a bottom-up fashion. When

at a particular level more than one loop will be merged to be scheduled, resource

requirements of each of them will be considered during scheduling the merged loops.

Chapter 6

Scheduling

The most critical part of compiling parallel applications for CGRAs is scheduling,

placement, and routing, which maps software implementations of the applications,

especially the compute-intensive loops, onto the target architecture and onto time.

Traditional schedulers are not sufficient for this purpose since they do not consider

the routability of operand values. They just assign a resource (Functional Unit (FU)

or register) and time to every operation in the program. There must be an explicit

routing of operand values from producing FU to consuming FU. In VLIWs routing

is not needed because the intermediate values are stored in the central register file,

and routing is thus implicitly ensured. So scheduling does not imply only binding

operations to time slots and resources, but also the explicit routing of operands from

producers to consumers.

101

CHAPTER 6. SCHEDULING

6.1 Introduction

102

The scheduling problem is concerned with associating nodes and edges of the DFG to

resources and clock cycles such that certain conditions are met. The operations are

scheduled on the processing elements of the target coarse-grained reconfigurable archi­

tecture. During the scheduling phase, we have to take the constraints and limitations

of the architecture resources (memory, registers, ALUs, etc.) into consideration. Also

we need to consider the organization of the data flow graph. In this phase the opera­

tions are assigned to designated processing components and operations are scheduled

as required. This phase determines the relative execution order of the operations and

determines which portion of the target architecture will execute which operations.

The objectives of scheduling are:

• To generate a valid schedule so that each operation has a resource to execute

it and a time cycle, in which that resource and corresponding routing resources

are not otherwise occupied.

• To minimize the execution time of the whole application by using the available

resources efficiently.

The following properties are maintained during scheduling:

• If an operation (say oi) is dependent on another operation (say o2), then o2

must be scheduled in a time cycle prior to that of o1 .

• Operations that are independent can be scheduled to be executed in parallel.

• Operations without any dependency can be scheduled as early as possible pro­

viding resource availability.

CHAPTER 6. SCHEDULING 103

The output of the scheduling phase will be the pair of mappings JI, h described in

chapter 5. The first assigns a resource and a block of times to each DFG operation.

The second assigns a route to each DFG edge.

In this chapter first the scheduling for cyclic part (loop) will be shown. We

start with a motivating example to illustrate scheduling (section 6.2). Then some

definitions and concepts are introduced that will be used in the subsequent algorithms

(subsection 6.3.1). Then all the phases of the scheduling algorithm for the cyclic part

will be described (subsections 6.3.3 to 6.3.8). Next we present the complete algorithm

(subsection 6.3.9). Finally we present the scheduling algorithm for the acyclic part

of an application (section 6.4).

6.2 Motivating Example

We will first present the modulo scheduling approach for cyclic parts using a moti­

vating example. Figure 6.1(a) shows a sample input data flow graph representing a

loop body. The DFG consists of five different nodes. The operations performed by

each node, the latency of each operation, and the earliest time in which a node can

be scheduled (ASAP) is shown in Figure 6.1(b). We schedule the nodes following the

order of increasing ASAP values. This ordering is actually the same as the HRMS

ordering (to be discussed in subsection 6.3.4) for this example DFG. The schedule

for an iteration is divided into several stages. The schedule will be such that the

execution of consecutive iterations overlaps and each iteration will be in a different

stage. The number of stages in one iteration is named the stage count (SC), and the

number of time cycles per stage is termed the initiation interval (II). Figure 6.1 (c)

CHAPTER 6. SCHEDULING

(a)

(b)

node operations

nt load

n2 mul

n3 div

n4 sub

ns store

0

1

n1[0] n4[l]

2

3

ns[l] n2[0]

(d)

Latency

2

2

2

2

2

n3[0]

ASAP

0

2

2

4

6

0

2

3

4

5

6

7

104

nl

stage 0
n2 n3

R1

stage 1

ns

(c)

Figure 6.1: A motivating example for the Modulo Scheduling approach. (a) A simple

data flow graph. (b) A table showing the properties of each node of the DFG. (c)

Scheduling for an iteration. (d) Modulo Scheduling of the kernel.

CHAPTER 6. SCHEDULING 105

shows the scheduling for one iteration of the DFG assuming the value of II as 4. The

length of the schedule is 8. We can see from Figure 6.1 (c) that the stage count of

the schedule, which is the ratio of the schedule length to the initiation interval, is

2. Figure 6.1(d) shows the modulo scheduling of the kernel of the loop. Here the

number inside the bracket indicates stage number. Figure 6.2 shows four iterations

of the loop. The determination of stages in Figure 6.1 (c) is obvious from Figure 6.2.

time

0

I

2

3

4

5

Iteration 0

7l[
l

j

I
n2 ! 7l3

I
!
!

'
7l4 I

I
ns ' ! 6

7

8

9

10

I

12

13

14

15

16

17

18

19

!
' i

'72[

-·----

n-
"

Initiation Interval (II)

Iteration I

I 4
I

l_- --------- ~ odulo Reservation Table (MRT)

'122 7l3 II

Iteration 2

n4 7lt I
_________ ___] I

n2 ln3
I I Iteration 3

II

n4 I '72[

I
n;; I 7l2 7l3

I
I

7l4
------- --··-··· ·····-·· -··--··----

I
n:s I

I

Figure 6.2: Four iterations of the loop.

CHAPTER 6. SCHEDULING 106

Modulo Scheduling algorithms generally use a modulo reservation table. A modulo

reservation table has columns equal to the number of resources, and rows equal to

the cycles per stage (II). Placing an instruction in an entry of the table (suppose

< c, r >) indicates that the instruction will initiate on that resource (r) in that cycle

(c). Figure 6.2 shows the state of the modulo reservation table during the steady

state. Actually this table reflects the usage of resources of the target architecture in

each time slot of the steady state of the modulo scheduling algorithm.

6.3 Scheduling for Cyclic Parts

In this section we will discuss how to schedule, map and route cyclic parts, especially

loops of an application. We will adapt a register constrained modulo scheduling tech­

nique, Modulo Scheduling with Integrated Register Spilling (MIRS) [Zalamea et al. 2001a].

MIRS is a software scheduling method that is capable of instruction scheduling with

reduced register requirements, register allocation and register spilling in a single

phase, unlike many other modulo scheduling techniques that schedule instructions

and allocate registers in two phases. But MIRS alone cannot do the required compi­

lation for our problem. The reason is that MIRS does only scheduling and placement,

it does not consider routing. As with FPGA placement and routing, we need to do

routing during placement. The reason is as follows. During placement a cost function

is computed to evaluate the quality of placement. While calculating that cost func­

tion, we need to incorporate routing cost. So we have modified the MIRS algorithm

to incorporate this feature, that is, to consider routing and its associated cost. MIRS

has been applied to clustered VLIW architectures [Zalamea et al. 2001b]. Because of

CHAPTER 6. SCHEDULING 107

the presence of central register file, routing is not necessary in VLIW.

Another factor that we have incorporated into the MIRS algorithm is the con­

sideration of loops with conditional branches. For doing this we have adapted the

if-conversion and reverse-if-conversion idea from [Park and Schlansker 1991] that was

used in Enhanced Modulo Scheduling [Warter et al. 1992].

The input of the algorithm will be an executable data flow graph (DFG) repre­

senting the cyclic part (loop body) and the routing resource graph (RRG) (introduced

in chapter 5) representing the target architecture replicated across time. There are

two outputs of the algorithm. One is the initiation interval (II) (defined in chapter

2). Another is a schedule of the nodes of the DFG, which is the pair of functions h

and h described in chapter 5. This schedule will enable each node of the DFG to

execute at its time cycle in its resource.

The steps followed in the improved modulo scheduling with integrated register

spilling algorithm are shown in Figure 6.3 for a quick overview. Table 6.1 explains

the variables used in the algorithm. In the next subsections we will introduce some

definitions and concepts useful for the scheduling of cyclic parts (subsection 6.3.1).

Then all the phases of the scheduling algorithm for cyclic parts will be described

with suitable examples (subsections 6.3.3 to 6.3.8). Finally we present the complete

algorithm (subsection 6.3.9).

6.3.1 Some Definitions and Concepts

In this section we define some terms that will be used for our algorithm (improved

from MIRS).

CHAPTER 6. SCHEDULING 108

II Variables I Meaning
II

II Initiation Interval initialized to Mil

fl A Partial function that maps each node of the DFG

scheduled so far to a set of a pair of values: a time cycle

and a resource

f2 A partial function that maps each edge of the DFG to

a path in the RRG

Priority _List List of nodes of the D FG ordered by the HRMS method

Budget Number of times the algorithm will try to schedule with

the current II. It is initialized to Budget_Ratio times the

number of nodes of the D FG

u Next node from the Priority _List, which will be sched-

uled

Start A time cycle for a node starting from which a node can

be scheduled

End A time cycle for a node up to which a node can be

scheduled

Table 6.1: Variables used in the IMIRS Algorithm.

CHAPTER 6. SCHEDULING 109

1. Initialize II with MII and the partial schedule (fl, !2) to be empty.

2. Order the nodes of the DFG using HRMS method and initialize the

Priority_List with these ordered nodes.

3. Initialize Budget to BudgeLRatio times the number of nodes of the

DFG.

4. Select and remove a node u with the highest priority from the

Priority_List

5. Place u in a unoccupied processing element i such that a valid route

exists from its previously placed predecessors or successors.

6. Determine a time cycle for node u.

7. If a valid cycle cannot be found, force u in a particular time cycle

and eject some nodes if necessary.

8. Check the numbers of available and required registers and spill values

to memory if required. Update the DFG and Priority..List accordingly.

9. If the Budget is 0 or the memory cannot support memory traffic:

• Initialize the partial schedule (fl, !2) to be empty.

• Initialize the Priority ..List with the ordered nodes of the DFG.

• Go to step 4 with II := II + 1.

10. If all the nodes are scheduled, placed, and routed then go to step 11,

otherwise, decrease Budget by 1 and go to step 4.

11. Allocate registers and generate the CGRA configuration with !1, !2 and

II.

Figure 6.3: Phases of the IMIRS algorithm.

CHAPTER 6. SCHEDULING 110

• Dependent Distance: b(u,v) is a value p between nodes v and u, if the execu­

tion of v in iteration i depends on the execution of u in iteration (i - p). If there

is no dependency between u and v, then b(u,v) will be 0. If u and v are in the

same iteration then the value of b(u,v) will be 0 (intra-iteration dependency). If

p > 0 then it is called a loop-carried dependency.

• Latency: Au is the delay associated with each operation u of the DFG. An

operation takes this number of time cycle to produce a result.

Figure 6.4 illustrates dependent distance and latency, Figure 6.4(a) shows a

simple loop. We assume that load, mul and store have latencies of 1, 4, and 1

respectively. Figure 6.4(b) shows two iterations of the loop in a graph. Each

edge of the graph is labeled with the latency of the operation located at the

tail of that edge. Since each iteration uses the output of the previous itera­

tion as its input, there is a labeled edge between the corresponding operations.

Figure 6.4(c) shows another graph for the loop with each edge being labeled

with a < b(u,v), Au > pair. We can see from this figure that any operation that

depends on another operation of the same iteration has a dependent distance

of 0 (intra-iteration dependency). An edge from an operation of the immediate

previous iteration to an operation of the current iteration has a dependent dis­

tance of 1 (loop-carried dependency). Figure 6.4(d) shows another simple loop

with dependent distance of 2 as shown in the Figure 6.4(e)-(f).

• tv is the time-cycle in which a node v in !I has been scheduled.

• PSP(u): It is the set of predecessors of u that have been scheduled. A node v

is a predecessor of u if u is reachable from v. The set of predecessors of a node u

CHAPTER 6. SCHEDULING

(fori: n
x(i) := x(i-3) * 5

for)
(d) (fori: n

x(i) := x(i-1) * 5
for)

iteration 1
(a) Q

~1>
Y<0,4>

<1,1>

9
"-.._)

(c)

~
8

(b)

iteration 1

<3, 1
~ e
9

iteration 2

8
1J

e 8 <0,1>

J <.0, 4>

(e)

iteration 3

~
~

(f)
8

Figure 6.4: Example illustrating dependent distance and latency.

111

CHAPTER 6. SCHEDULING 112

is represented by Pred(u) such that Pred(u) = {vlv E V and (v,u) E E}. Here

Vis the vertex set and E is the edge set. So PSP(u) = domain(!I) n Pred(u).

• PSS(u): It is the set of successors of u that have been scheduled. A node v

is a successor of u if v is reachable from u. The set of successors of a node u

is represented by Succ(u) such that Succ(u) = { v lv E V and (u, v) E E}. So

PSS(u) = domain(!I) n Succ(u).

• Early Start: The Early Start for a node u is the earliest time at which it can

be scheduled so that all the scheduled predecessors of u have completed their

execution [Rau 1994]. It is calculated as follows:

Early_Startu = maxvEPSP(u)(tv + Av- O(v,u) X II)

• Late Start: The Late Start for a node u is the latest time at which it can

be scheduled so that it can complete its execution before all the scheduled

successors of u have started their execution [Llosa et al. 1995]. It is calculated

as follows:

Late_Startu = minvEPSS(u)(tv- Au+ O(u,v) X II)

• ASAP: ASAP for a node u is the earliest time in which it can be scheduled. It

is calculated as follows:

ASAPu = maxvEPSP(u)(ASAPv + Av- O(v,u) X MII)

• Life Time: The life time (LT) of a variable r is from the beginning of the

definition of r (producer FU) to the beginning of the last use of r (last consumer

CHAPTER 6. SCHEDULING 113

FU). When considering a cycle, i.e., loops, variables may be of two kinds: loop­

variant and loop-invariant. Each loop-invariant variable has a single value for

all iterations of a loop. Loop-variant variables have separate lifetimes for each

iteration. They are called loop-variant because a variable may be initialized to

different values at each iteration of the loop.

• Max:Live: MaxLive is the maximum number of simultaneously live variables.

If we consider the lifetime of each variable of the DFG then the number of

variables spanning in a particular clock cycle can be termed as the live values

of that clock cycle. It is a relatively accurate approximation of the number of

registers that are required for the schedule of a loop

• Critical Cycle: The Critical Cycle is the scheduling cycle in which the number

of live values is equal to MaxLive.

6.3.2 Necessity of considering register usage

Registers act as intermediate locations for values when compiling applications

onto coarse-grained reconfigurable architectures. During compilation, a soft­

ware pipelining technique in the form of iterative modulo scheduling is applied

to the cyclic parts of an application, such as loops. Overlapping of loop itera­

tions imposes high register requirements. While finding the optimal schedule is

the main objective, scheduling must also be aware of the potential increase of

register pressure by reordering operations. Register pressure is the maximum

number of live values at any point in the program. A live range is the range

CHAPTER6. SCHEDULING 114

from when a value is defined to its final use in the program. A value is live at

a given point if the last use of that value has not occurred. Because CGRAs

have limited registers, the number of live values at a particular point should not

exceed the total number of registers available in the CGRA. A schedule that

uses at most the number of registers available in a CGRA is considered valid.

When a schedule requires more registers than available, the register pressure

must be reduced for the execution of the loop. Possible ways to do this are to

reschedule the loop with a larger II, to spill some values to memory, or to split

the loop into several smaller loops (each one with fewer operations than the

original one).

Register pressure is, in a sense, proportional to the number of simultaneously

executed iterations. An increase in II decreases the stage count (SC); thus the

number of concurrently executed overlapping instructions is decreased. Thus

an increase in II reduces register pressure at the expense of execution time.

In register spilling, some values are spilled from the registers to memory and

loaded again when needed, although these loads and stores will incur some cost.

The scheduler first determines the spilling candidates and orders them. Then

the necessary number of nodes are selected and necessary loads and/ or stores

are added. Selection is based on priorities of the spilling candidates. Either the

life time of the candidate or the ratio of life time to the memory traffic caused

due to spilling is used. The second heuristic produces better spilling candidates.

In register spilling, the loop is scheduled with the same II, unlike the previous

method.

CHAPTER 6. SCHEDULING 115

6.3.3 Calculation of Minimum Initiation Interval (Mil)

The minimum Initiation Interval (MII) is a lower bound on the minimum num­

ber of cycles required between initiations of successive iterations of a loop. The

Initiation Interval (II) of the modulo scheduling algorithm is constrained by the

most heavily utilized resource and the worst-case recurrence for the loop. The

minimum II (MII) is the maximum of the lower bounds for both of these con­

straints. Mil is thus a lower bound on the II. If there are not enough resources

available, instructions will be delayed from issuing until the required resources

are free. If there are dependence constraints, instructions cannot complete until

all their operand values are available. IMIRS uses the Mil as the starting value

for II when generating a schedule, which is the lowest value that can be achieved

given the resource and recurrence constraints.

6.3.3.1 Calculating ResMII

ResMII is computed by taking the summation of the resource usage required for

one iteration of the loop. This resource usage patterns for each cycle during one

iteration of a loop is represented by a reservation table [Rau 1994]. There are II

rows and one column per resource in this table. The exact ResMII is obtained

by performing a bin-packing of the reservation table for all instructions. This

method often leads to exponential complexity as bin-packing is an NP-hard

problem [Rau 1994]. So ResMII is typically approximated in modulo scheduling

algorithms.

ResMII is approximated from the most heavily used resource count along any

CHAPTER 6. SCHEDULING 116

execution path and total usage count for each resource. If an execution path p

uses a resource r for Cpr cycles and there are nr copies of this resource, then

ResMII is calculated as follows:

where P is the set of all execution paths and R is the set of all resources.

6.3.3.2 Calculating RecMII

Inter-iteration dependences can induce recurrences that causes a maximum de-

lay for the operations on the recurrence path or dependence cycle. Memory

operations (load/ store) are mostly the cause of a recurrence. These loop-carried

dependences have a distance property, which is equal to the number of iterations

separating the two instructions involved. If a dependence edge, e, in a cycle has

latency le and connects operations that are at a distance of de iterations, then

RecM I I, the minimum II for recurrence constraints is calculated as follows:

R Mil r
L:eEEc le l ec = maxcEC "' d ,
L..;eEEc e

where C is the set of all dependence cycles and Ec is the set of edges in depen-

dence cycle c.

After calculating ResM I I and RecM I I, Mil is calculated as the maximum

of these two values. For example, Figure 6.5 shows a DFG. We assume all

the operations require 2 cycles, except store, which requires 1 cycle. Also the

target architecture has two load/store units, a multiplication unit and an add

unit. Since the DFG has no recurrence circuits, its Mil is constrained only by

CHAPTER 6. SCHEDULING 117

Figure 6.5: A simple DFG for illustrating the calculation of MIL

CHAPTER 6. SCHEDULING 118

the available resources in the target architecture. In this case multiplication is

the most heavily used resource class, which limits the ResM I I. The value of

ResMII is f = 4. Therefore, Mil= max(ResMII,RecMII) = max(4,0) =

4.

6.3.4 Ordering Using HRMS Method

All the nodes of the DFG are ordered following a bidirectional approach, Hyper­

node Reduction Modulo Scheduling (HRMS), described in [Llosa et al. 1995].

The nodes are scheduled one by one following this order. The objective of this

ordering is to obtain a schedule that uses minimum II and minimum number of

registers. For that operations on the critical path are given priority so that the

cycle is executed in as few clock cycles as possible.

The ordering phase guarantees that when a node is scheduled, the node will have

only its predecessors or its successors in the partial schedule, but not both. The

only exception is when the node to be scheduled is the first or the last node of

the cycle. This ordering is done only once, even if II increases later on.

During the scheduling phase, the nodes are scheduled as soon as possible (as

late as possible) if predecessors (successors) have been scheduled already. The

idea of HRMS is, first, to decrease the lifetime (LT) of loop variant variables

by ordering the nodes so that each operation to be scheduled has a previously

ordered reference point (predecessors or successors) and second, to decrease the

schedule length. The ordering phase is an iterative algorithm. At first a node

is selected as the hypernode. A hypernode is a single node that represents a

CHAPTER 6. SCHEDULING 119

single node or a subgraph of the DFG. In each iteration, the neighbors of the

hypernode are ordered, and the neighbors, along with the new hypernode, are

reduced to a new hypernode.

For a given DFG without cycles, the first node or any other node may be chosen

as the initial hypernode. The predecessors and the successors of a hypernode

are alternatively ordered following the steps given below:

1. The nodes on all paths between the predecessors/successors are collected.

2. The predecessor/successor nodes of step 1 and the current hypernode are

transformed into a new hypernode.

3. A topological sort is performed on the subgraph represented by the nodes

obtained in step 1. The resulting sorted node list is appended to the final

ordered list.

4. Step 1-3 are repeated until the DFG is reduced to a single hypernode.

In HRMS strategy for a given DFG with cycles, the cycles are processed first

before considering the nodes not in the cycles. In this case no single node is

chosen as the initial hypernode. The objective is to order all the nodes of all

the cycles and reduce them to a single hypernode. After that the resulting DFG

is acyclic with a hypernode. So the ordering for the rest of the nodes is like

the ordering for DFG without cycles. All the cycles are first sorted according

to their RecMII, with the highest RecMII having highest priority. This results

in a list of sets of nodes, where each set is a cycle. If two cycles share a back

CHAPTER6. SCHEDULING 120

edge, the corresponding node sets are combined into the one with the highest

priority. If more than one set has a node, that node is included into the cycle

with the highest RecMII, and excluded from the rests. Unlike DFG without

cycles where predecessors and successors are ordered alternatively, the ordering

phase for DFG with cycles follow the steps given below starting with the first

cycle of the list:

1. All the nodes from the current cycle to the next in the list is obtained.

All the back edges are removed for avoiding cycles in this process.

2. The current cycle, the nodes obtained from step 1 and the current hyper­

node (if one exists) are reduced to a new hypernode.

3. A topological sort is performed on the subgraph represented by the current

cycle and the nodes obtained from step 1. The resulting sorted node list

is appended to the final ordered list.

4. Step 1-3 are repeated until the DFG is reduced to a single hypernode.

An example is shown in figures 6.6 and 6. 7, illustrating the HRMS method for

DFG without cycles. Figure 6.6(a) shows the input DFG. Figure 6.6(b) shows

the state of the DFG after one iteration. Only the node VI is consumed as the

hypernode and vi is the first node of the priority list to be scheduled. Next

the predecessors/successors are ordered. Since vi has no predecessor, only its

successors are ordered using a topological sort and appended to the priority list.

Figure 6. 7 shows the remaining steps of the HRMS ordering. The final output

CHAPTER 6. SCHEDULING 121

Figure 6.6: Illustration of HRMS method for DFG without cycles. (a) Input DFG.

(b) Ordered list and D FG after iteration 1.

CHAPTER 6. SCHEDULING 122

< 1'1 't'? vr- 'V3 vn > ' . -? Vl ' l I

(b)

< Vl, V2, VG, 1'3, V7, V5, Vg, Vn, V10, V.,l, V8, 1'12 >

(c)

Figure 6.7: Illustration of HRMS method for DFG without cycles. (a) Ordered list

and DFG after iteration 2. (b) Ordered list and DFG after iteration 3.

CHAPTER 6. SCHEDULING 123

of the ordered list is < v1 , v2 , v6, v3, v7, v5, v9, v11 , v 10 , v4, v8 , v12 >. The nodes of

the input DFG will be scheduled, mapped, and routed using this order.

6.3.5 Schedule_Flace_Route

Figure 6.8 shows the actual scheduling, placement, and routing step of the

IMIRS algorithm. In this phase a node is scheduled starting from a particular

clock cycle in one or more resource(s) (functional unit(s) and/or register(s)). It

first calculates the Early_Startu and Late_Startu of the node u to be sched­

uled, which produces a time frame in which that node can be scheduled legally.

Suppose the Start and End defines this time frame. For scheduling node u,

Mapping() (to be discussed in chapter 7) determines one or more resources in

the RRG within this time frame starting from Start that produces optimal cost.

During this checks are done so that there are valid routes from/to the prede­

cessors/successors of u to u. Checks are also done so that there is no violation

of dependence or no resource conflict. If such free resources are found, u is

scheduled to the time cycles indicated from the position of the resource(s) in

the RRG. Necessary updates are made to the partial schedule, resources, and

registers. However, if no valid cycle is found, then the Force_and_Eject heuristic

is applied.

The partial schedule is scanned forwards or backwards depending on the values

of Early_Start, Late_Start, II, and whether predecessors or successors of the

node to be scheduled are already placed in the partial schedule. The partial

schedule is explored according to the following rules [Llosa et al. 1995]:

CHAPTER 6. SCHEDULING

Procedure Schedule_Place_Route(DFG, RRG, j 1 , j 2 , u) {

var Start, End;

}

if (Pred(u) is in Partial Schedule) {

Start = Early_Startu;

End = Early_Startu +I I - 1;

}

else if (Succ(u) is in Partial Schedule) {

Start = Late_Startu ;

End = Late_Startu - I I + 1;

}

else if (both Pred(u) and Succ(u) are in Partial Schedule) {

Start = Early_Startu;

End= min(Late_Startu, Early_Startu +I I- 1);

}

else {

}

Start = ASAPu;

End= ASAPu +II -1;

if (not Mapping (DFG, RRG, j 1 , f2, u, Start, End))

Force_And...Ej ect (i, u) ;

Figure 6.8: Scheduling Phase of the IMIRS algorithm.

124

CHAPTER 6. SCHEDULING 125

1. If a node u of the DFG has only predecessors in the partial schedule JI,

then HRMS strategy maps u to the resources of RRG as soon as possible

to reduce the lifetime of any associated loop-variant variable. For doing

that the cycle search range for node u is starting from Early_Startu to

Early_Startu + I I - 1. If a legal cycle is not found in this range due to

resource conflicts, it is impossible to find one outside this range. So it

is not necessary to consider more than II contiguous cycles starting from

Early_Start.

2. If a node u of the DFG has only successors in the partial schedule JI,

then HRMS strategy maps u to the resources of RRG as late as possible

to reduce the lifetime of any associated loop-variant variable. For doing

that the cycle search range for node u is starting from Late_Startu to

Late_Startu - I I + 1.

3. If node u has both predecessor(s) and successors(s) in the partial sched­

ule JI, then a potential cycle is searched for starting at Early_Startu to

min(Late_Startu, Early_Startu + II- 1).

4. If node u has no predecessor or successors in the partial schedule !I, then

potential cycle is searched for starting at ASAPu to (ASAPu + II- 1).

6.3.6 Force_And_Eject Heuristic

While scheduling a node in a particular cycle, if a resource conflict occurs,

then the scheduler makes two decisions. First, a cycle is chosen to force the

schedule of that node, and one or more nodes are chosen to be ejected from

CHAPTER 6. SCHEDULING 126

the current partial schedule. The nodes to be ejected is the node or set of

nodes which caused the node to be scheduled to violate a dependence relation

or make resource conflicts. The cycle in which the node in question is forced is

calculated such that there is a forward progress in the schedule. If Early_Start

is less than the cycle in the last previous partial schedule, then the node is forced

at Early_Start. Otherwise, it is forced one cycle later than it was previously

scheduled. If the node is forced in the cycle Forced_Cycle then it is calculated

as follows [Zalamea et al. 2001a]:

Forced_Cycle = max(Early_Start, (Prev_Cycle(i) + 1)),

if the search is made from Early_Start to Late_Start. If the search is made in

the opposite direction (from Late_Start to Early_Start) then

Forced_Cycle = min(Late_Start, (Prev_Cycle(i)- 1)).

In each case Prev_Cycle(i) is the cycle in which the node in question was

scheduled in the last previous partial schedule (before a possible ejection).

When ejecting, the algorithm ejects only one node, unlike [Rau 1994] which

ejects all the nodes causing resource conflicts with the forced node. According

to [Zalamea et al. 2001a], the node to be ejected is the one that was placed first

in the partial schedule. Besides, for forcing the node in a particular clock cycle,

there might be some more resource conflicts. The Force..And_Eject heuristics

ejects all the successors and predecessors that violate the dependence constraint

for the placement of that forced node. The ejected nodes are all inserted into

the Priority _List to be considered for rescheduling, perhaps at the next round

of scheduling.

CHAPTER 6. SCHEDULING 127

6.3. 7 Check_and_lnsert_Spill Heuristic

This heuristic is responsible for inserting spill codes. It first determines whether

there is any need to do that. If the number of available registers is enough for the

current partial schedule, this heuristic does nothing and scheduling continues

with the next node of the Priority _List. Zalamea et al. [Zalamea et al. 2001a]

inserts spill code whenever RR > SG x AR, where RR is the required number

of registers in the current schedule, AR is the number of registers available and

SG, SG ~ 1, is a parameter, named spilLgauge.

To illustrate how spilling is done, let us assume a variable v has a single definition

and five uses at five different program points as shown in Figure 6.9. The

definition of a variable is called the producer of a value, while the uses of that

value are its consumers. The life time (LT) of v is from the beginning of the

definition of v (producer FU) to the beginning of the last use of v (last consumer

FU) as shown in the figure. Variables are spilled by inserting a store operation

after the definition of the variable and a load operation before every use, as in

Figure 6.10. For a particular variable, the lifetime from the time the variable is

available (the variable definition time cycle + the latency of the variable) to the

first use of that variable is termed as usel. For other use points, the lifetime

from one use of the variable to the next use of the same variable is termed as

use for the second use. For example, the lifetime from the first use to the second

use is termed as use2. Uses are spilled by inserting a store operation after the

definition of the variable and a single load operation before the corresponding

use as shown in Figure 6.11. Variable spilling and uses spilling are the same

CHAPTER 6. SCHEDULING 128

Lateaoy (Prod)]

~ Usel

Use2

LT
Use3

G
Use4

UseS

G
Figure 6.9: A sample DFG illustrating the lifetime and producer-consumer relations

of a variable.

CHAPTER 6. SCHEDULING

8

G
j

Figure 6.10: Examples illustrating the spilling of variables.

129

CHAPTER 6. SCHEDULING 130

G

G

G
G

Figure 6.11: Examples illustrating the spilling of uses.

CHAPTER 6. SCHEDULING 131

when there is only one definition of a variable and only one use of it.

The heuristic first determines the use with the highest ratio of its lifetime and

memory traffic (increased number of load from and store to memory operations

due to spilling) and that use must cross the critical cycle in the partial schedule.

If such a use does not exist or the use does not span a minimum number of

cycles, ejection is done again. A node which is already scheduled in the critical

cycle is ejected from the partial schedule and is inserted into the priority Jist.

This action reduces register requirements in the critical cycle by moving the

non-spillable sections of the lifetime outside this cycle.

The inserted spill code adds some nodes in the DFG. These nodes are also

inserted in the priority Jist. Their priority is set such that they are placed as

close as possible to their producer or consumer node. This is done by setting

Early_Start and Late_Start of the node as follows:

Early_Start = Late_Start - DG

and

Late_Start = Early_Start + DG.

where DG is a parameter named distance gauge.

For the newly added nodes due to spilling, the budget is increased in proportion

to the number of newly added node.

CHAPTER 6. SCHEDULING 132

6.3.8 Restart_Schedule Heuristic

IMIRS abandons the current partial schedule and restarts the whole procedure

with an increased II (I !current + 1) whenever there is not enough resource left

to continue. Increasing II means there are fewer iterations overlapping, so more

time slots are available for scheduling nodes. Among these resources that are

responsible for increase in II are budget (if it is 0 at a particular time) and

available memory (whenever the available memory cannot support the traffic of

the newly inserted spill operations for the current II). If there is no such resource

constraint then the IMIRS continues with the next highest priority node from

the Priority _List.

6.3.9 Improved MIRS for Compilation on CGRA

Figure 6.12 shows the pseudocode of improved MIRS algorithm for adapting

to CGRA for cyclic parts. This algorithm uses the node ordering strategy

introduced by [Llosa et al. 1995] for assigning priority to the nodes of the DFG.

Mapping(), to be discussed in chapter 7, is used for placement of operations and

routing them from producer FU to consumer FU in the available time cycles.

The basic steps of the algorithm are summarized below.

At first the algorithm initializes the II with MIL !I and h are initialized to

empty functions. After the algorithm is completed / 1 will map all the nodes

of the DFG with each node having one or more time cycles and a resource

depending on the latency of the node's operations. Budget is initialized to the

number of nodes of the DFG times the BudgeLRatio, where BudgeLRatio is

CHAPTER 6. SCHEDULING

Procedure IMIRS(DFG, RRG) {

var II := MII(DFG);

}

var h

var h

empty();

empty();

var Priority_List : = Order _HRMS (DFG) ;

var Budget := Budget_Ratiox Number _Nodes (DFG) ;

while (! Priority_List. empty()) {

}

var u := Priority_List. highest_Friori ty () ;

Priority_List. remove (u);

Schedule_Flace_Route (DFG, RRG, h, h, u) ;

Check_and_Insert_Spill (DFG, h, h, Priority_List) ;

if (Restart_Schedule (DFG, Budget))

Re_Ini tialize (1 I+ +, f 1 , f 2 , Priority _List) ;

else

Budget--;

Register_Allocation(DFG, j 1, !2);

Generate_Code Cf1, j 2 • I 1) ;

Figure 6.12: Improved MIRS algorithm for Compilation on CGRA.

133

CHAPTER 6. SCHEDULING 134

the average number of times that each node of the DFG can be attempted to

be scheduled with a fixed value of II.

After these initializations all the nodes of the DFG are ordered according to Hy­

pernode Reduction Modulo Scheduling [Llosa et al. 1995). The ordered nodes

are inserted into Priority_List. Then the algorithm iteratively tries to sched­

ule, place, and route operations from the Priority_List. In each iteration,

the operation with the highest priority is removed from the list and Sched­

ule_Place_Route() tries to find a functional unit (FU) for its execution using a

route of free edges of the RRG that minimizes a cost heuristic. If such a FU

and time cycle is found without violating any intra-iteration or inter-iteration

dependency and resource constraints then those FU and time cycle are reserved

for that operation. However, if no such cycle exists, then the algorithm employs

the Force_A.nd_Eject technique in which the node to be scheduled is forced to a

specific cycle. Force_A.nd_Eject, at the same time, ejects some nodes that were

the reasons for dependency violations or resource conflicts.

Then the algorithm determines whether there is any need to spill values to

memory to reduce the register pressure. The algorithm also detects the lifetime

of a variable or its use which needs spilling. Then Restart_Schedule validates

the current partial schedule with the current II. If the current partial schedule

is valid then the algorithm continues with the next node of the Priority_List,

otherwise II is increased and the whole procedure is restarted with the new II.

After all the nodes of the Priority_List have been scheduled, the algorithm

allocates registers for them. Then the configuration for executing the target

CHAPTER 6. SCHEDULING 135

application on the target coarse-grained reconfigurable architecture is generated

using the II and the mapping function !I and h.

When a node u has got its time cycle(s) and FU(s) to execute the required,

resources are reserved so that they cannot be utilized by any subsequent nodes

until u is finished with utilizing them.

6.4 Scheduling for Acyclic Parts

We will use a simplified version of the IMIRS algorithm for scheduling the acyclic

parts (i.e., the application unless the whole application is a loop itself). The

input of the algorithm will be an executable data flow graph (DFG) representing

the acyclic part and the routing resource graph (RRG) representing the target

architecture replicated across time. The output of the algorithm is a schedule

of the nodes of the DFG. This schedule assigns two values to each node of the

DFG. One is a starting time cycle and another is a functional unit in that time

cycle. This schedule will enable each node of the DFG to execute at its time

cycle(s) (more than one consecutive time cycles if latency of the node's operation

is greater than 1) in its functional unit. The algorithm is shown in Figure 6.13.

Like IMIRS(), the nodes are first ordered using the HRMS method. Then the

nodes are placed, routed and scheduled one by one starting with the highest

priority nodes. While scheduling the acyclic part, cyclic parts embedded in it

will be treated as individual nodes. Their priority will be calculated using all

the nodes in a particular cyclic part, and the resource requirements of that node

CHAPTER 6. SCHEDULING

Procedure IMIRSA(DFG, RRG) {

}

j 1 empty();

h empty();

Priority _List : = Order _HRMS (DFG) ;

while (! Priority_List. empty()) {

}

u : = Priority_List. highest_priori ty () ;

Schedule_place_Route (DFG, RRG, h, h, u) ;

Generate_Code(fi, h);

Figure 6.13: Scheduling algorithm for acyclic Parts of an application.

will be the combined resource requirements of all the nodes of that part.

136

Chapter 7

Placement and Routing

7.1 Introduction

This chapter introduces our strategy for mapping from DFG to RRG used in the

IMIRS algorithm discussed in chapter 6. We have proposed a new placement

method to be adapted to CGRA. This method uses the neighborhood relations

among the functional units (FUs) and registers. We will denote both FUs and

registers as processing elements (PEs).

This phase is the final step before code generation and uses the details of the

given target architecture. During HRMS ordering, the relative scheduling or­

der of the nodes of the DFG is determined. During placement the objective is

to place the nodes so that the routing of edges among the PEs is minimized

following a valid route and also the scheduling can be done so that the over­

all execution time of the target application can be optimized. So mapping of

137

CHAPTER 7. PLACEMENT AND ROUTING 138

nodes and edges of the D FG to the resources in RRG should be such that the

producer-consumer relations among the nodes are utilized properly to obtain a

near optimal schedule length. For example, if two nodes' operations produce

results that are used by another node's operation, the first two nodes should be

placed close to one another so that the routing cost is minimized. Also nodes

should be placed such that there is a route from the producer PE to the con­

sumer PE. If this criteria is not maintained, one or more extra clock cycle might

be needed to ensure routing.

7.2 Idea

Mei et al. [Mei et al. 2002] use a simulated annealing approach for deciding

placement of operations to processing elements. To do that for a particular

operation, their method places that operation randomly into a position and

evaluates its cost. If a particular position cannot be accepted as the location

for that operation, another position is randomly tried, and this process continues

for a certain number of times until a valid position is found. In our approach,

instead of trying random positions for a random number of times, we start

with the unoccupied nearest neighbors of the already scheduled predecessor (or

successor) nodes' PEs in an incremental fashion within the range defined by

allowable time cycles as shown in chapter 6.

CHAPTER 7. PLACEMENT AND ROUTING

7.3 Placement

The properties of placement are given below:

139

- The placement is routable. That means all the shortest path edges between

the start PE and the end PE should be unoccupied.

- Every processing element deals with at most one operations at a time, i.e.,

no two operations of the DFG are mapped to the same processing element

at the same time.

- The objective function of placement is optimized.

The objective function that has to be minimized is generally the length of the

interconnection. This length, in turn, is dependent on the routability and the

performance of placement. Since the exact value of the objective function can

not be determined before routing is done, the objective function, in most of the

cases, is estimated. Another approach which does not adopt approximation of

the objective function, is to do routing during the placement. This simultaneous

placement and routing approach tends to provide better solutions than the

separate steps at the expense of compilation time (in a sequential manner). We

will adapt this simultaneous placement and routing to CGRAs.

CHAPTER 7. PLACEMENT AND ROUTING 140

7.4 Necessity of considering routing during place-

ment

Routing is an essential component of compiling applications to CGRA. It affects

the performance of compilation in the form of execution time directly. If it is not

considered during scheduling, it might be possible that no PE will be available

for placing the operations in a particular clock cycle. We will now illustrate

how placement of operations impacts routing by using an example. Figure 7.1

shows a part of a DFG with 7 operations, Op1 to Op7. Op7 is dependent on

Op5 and Op6, which in turn are dependent on Op1 and Op2, and Op3 and Op4

respectively. Figure 7.2 shows that after placing Op1 to Op4 in the first row

Figure 7.1: Example of a part of a DFG and the sample target architecture.

CHAPTER 7. PLACEMENT AND ROUTING 141

of the PE array in the first cycle, we need to place Op5 and Op6 in PEs such

that there is no routing needed. Now if we place Op5 and Op6 as in Figure 7.3

Op6

Figure 7.2: Placing the operations at cycle 0.

in clock cycle 2, we cannot place Op7 in clock cycle 3 (as in Figure 7.6). The

reason is: the operands of Op7 will not be available at clock cycle 3 to the PE

where Op7 will be placed. Op7, in that case, can be executed in clock cycle 4

if either Op5 or Op6 is routed to a PE such that Op5 and Op6 are neighbors

of each other as shown in Figure 7.4. If, however, we place Op5 and Op6 as in

Figure 7.5, then Op7 can be scheduled in the third cycle as in Figure 7.6. So,

routing plays a crucial role in the performance of scheduling (compilation).

CHAPTER 7. PLACEMENT AND ROUTING 142

Figure 7.3: Placing the operations at cycle 2 that will induce a delay later.

Figure 7.4: Routing needed for executing Op7.

CHAPTER 7. PLACEMENT AND ROUTING 143

Figure 7.5: Placing the operations at cycle 2 that will induce no delay later.

Figure 7.6: Placing the operations at cycle 3.

CHAPTER 7. PLACEMENT AND ROUTING

7.5 Routing

144

Routing moves data from producer PE to consumer PE using the interconnect

structure of the target architecture. For proper routing some extra clock cycles

might be added due to the limitations of resources (such as interconnecting bus

restrictions, reading or writing port limitations of a memory). Our objective is

to decrease the extra clock cycle for the routing.

The routing problem can be formulated as obtaining a set of interconnected

paths between the producer processing elements and the consumer processing

elements using the interconnection structure of the target architecture. These

paths may consist of both the functional units and register files. Like the

placement problem, routing should also consider some constraints and minimize

an objective function. Typically the length of the routing path is considered as

the objective function.

7.6 Placement and Routing Method

We can view the routing resource graph as the given target architecture (com­

posed of processing elements) replicated across time. The interconnections

among the PEs in a particular time and across time boundaries define regions

with incrementing distances. All the unoccupied PEs in time cycle Start can

be viewed as the PEs of first choice. The reason for this highest priority is

that those PEs can be reached from the producer/consumer PEs in the fewest

possible clock cycle. Our idea is to look for a potential PE for a particular node

CHAPTER 7. PLACEMENT AND ROUTING 145

from these PEs first, provided all the shortest route edges from producers or

consumers of a node u to u are also unoccupied. All the possible PEs consider­

ing all the predecessors/successors of the node to be placed are tried and a cost

function is evaluated for each of them. The PE with the lowest cost is selected

for placing the node in question. The cost function evaluated for each path will

be discussed in a later section. If such a PE cannot be found, we will explore

the PEs at time cycle (Start + 1) and so on. That is, we choose the shortest

paths connecting the producer PEs and the consumer PEs.

The algorithm is outlined in Figure 7.8. The first for loop of the algorithm

iterates for the number of times equal to the time span the node can be scheduled

indicated by Start and End. This loop determines the possible candidates for

mapping the current node. In each iteration unoccupied PEs at time cycle d,

such that for aPE all the edges along the shortest path from PSP(u) or PSS(u)

to u in the RRG are unoccupied, are elements in the neighbor set. Then the

while loop selects the best PE from the candidates. Each neighbor candidate

is considered for mapping and a cost function is evaluated for each of them

considering all the elements in its PSP(u) or PSS(u). The PE that contributes

the lowest cost is selected for placing the operation in question. Then the

selected PE is marked occupied at Selected from time cycled to d+Au-1. Using

the available interconnections, necessary routing is done that causes optimal

routing. In this case, we follow Dijkstra's shortest path algorithm for finding

the optimal route. All the edges in RRG along the path P that corresponds to

the edges between the selected PE at d and the PE occupied by each node in

CHAPTER 7. PLACEMENT AND ROUTING

PSP(u) or PSS(u) is marked occupied.

7.7 Cost Evaluation

146

We use a greedy approach for evaluating the cost function of a particular place­

ment. Some related work uses simulated annealing for placement [Mei et al. 2002].

Their cost function is a function of overused resources. Our cost function is com­

posed of two components. They are the delay cost, and the interconnect cost.

The delay cost of a node u is contributed by the time cycle in which the nodes

E Pred(u) are scheduled. It is equal to the maximum of such delays. The

interconnect cost comes from the interconnections that must be dedicated in

order to route the node from the producer PE to the consumer PE. The longer

the interconnections are occupied, the larger the Early_Start of the successor

nodes will be. In other words, there will be delays in scheduling successor nodes.

The PE with the lowest total of these costs will be selected for executing the

current node.

CHAPTER 7. PLACEMENT AND ROUTING

Procedure Mapping (DFG, RRG, fi, h, u, Start, End) {

var selected, j ;

var time := -1;

var Old_Cost := Max_Num;

bool found := false;

for d Start to End do {

if found break;

147

var Neighbors := Unoccupied PEs at time cycle d such that

for a PE all the edges along the shortest path

}

from PSP(u) or PSS(u) to u in the RRG are unoccupied

found := !Neighbors.empty();

if not found return false;

while (!Neighbors. empty()) do{

J :=Select a neighbor from Neighbors();

Neighbors.remove(j);

var New_Cost := 0;

for each v E PSP(u) or PSS(u) do

N ew_Cost += Evaluate_Cost (DFG, RRG, fi, h, u, v, j);

Figure 7.7: Algorithm for Mapping from DFG to RRG.

CHAPTER 7. PLACEMENT AND ROUTING 148

}

}

if (New_cost < Old_Cost) {

Old_cost := New_Cost;

time := d;

Selected : = j;

}

!I :=!I U { u r-+ {(Selected, d), (Selected, d + 1),

... , (Selected, d +Au- 1)}};

for each v E PSP(u) or PSS(u) do{

}

Let P be the shortest path from the last (first) node in JI(v)

to the first (last) node in f 1(u)

h := h U { (v, u) r-+ P}

return true;

Figure 7.8: Algorithm for Mapping from DFG to RRG (Contd.).

Chapter 8

Conclusion and Future Work

This chapter first summarizes this thesis. Then some possible future work is

outlined. Last we compare our work with some related work.

8.1 Summary

The objective of coarse-grained reconfigurable architectures is to achieve close to

the performance of customized hardware such as ASICs while capturing most of

the fiexibilities of general purpose processors. In this thesis a novel compilation

approach for parallel applications to coarse-grained reconfigurable architectures

has been proposed. The target architecture is specified by the user as shown

in chapter 5. The intended application is written in HARPO /1 [Norvell 2006],

a parallel, object-oriented, multithreaded programming language, as shown in

chapter 4. The input of the compilation is the intermediate representation of the

target application in the form of Data Flow Graphs (DFG) using static token

149

CHAPTER 8. CONCLUSION AND FUTURE WORK 150

(shown in chapter 4) and a description of the target architecture; the output

is executable code. HARPO/L is first compiled to a Data Flow Graph (DFG)

representation [Zhang 2007]. The remaining compilation steps are a combina­

tion of three tasks: scheduling, placement and routing, which are described in

chapters 6 and 7. For compiling cyclic portions of the application, we have

used a modulo scheduling algorithm: modulo scheduling with integrated regis­

ter spilling (MIRS) [Zalamea et al. 2001a], which incorporates register spilling

with instruction scheduling. We have also simplified the MIRS method for

acyclic portions of the given application. For scheduling, the nodes of the

DFG are ordered using the hypernode reduction modulo scheduling (HRMS)

[Llosa et al. 1995] method. The placement and routing is done using the neigh­

borhood relations of the processing elements (PEs).

8.2 Future Work

We want to extend the work of this thesis as follows:

- Implementing the proposed compilation method for some benchmark parallel

applications in the area of multimedia and embedded systems. Initially we

had plan of implementation. But due to lack of time we could not implement

the proposed compilation method.

- Comparing the compilation result with some of the related works. In this case

we can use some available benchmark applications. We can compare various

attributes of the compilation method among some related work. Among those

CHAPTER 8. CONCLUSION AND FUTURE WORK 151

attributes may be II, schedule length. We can also compare our work with

related work by using different target architecture descriptions.

- Making the compiler retargetable across a wide range of target architectures.

8.3 Comparison with Related Work

Our goal was to compile parallel applications to coarse-grained reconfigurable

architectures (CGRAs) with near optimal schedule length. Some of the related

works [Mei et al. 2002] [Park et al. 2006] [Guo et al. 2005b]

[Hatanaka and Bagherzadeh 2007] compiled applications to CGRAs. We have

tried to improve on their work in several aspects.

- We have targeted parallel applications. For expressing the target applica­

tions we have used HARPO /L, a parallel object oriented language suitable

for hardware. HARPO /L is also suitable for software implementation. More­

over, it can express explicit parallelism present in the applications. Another

important characteristic of HARPO /L is the use of generic parameters. We

believe by using HARPO /L we can present the target applications to the tar­

get architecture in a more suitable way that will make compilation on CGRAs

efficient.

- One of the inputs of our compilation process is the intermediate representation

in the form of a data flow graph (DFG) expressed using static token form for

parallel programs. Although most of the related work has used DFG as the

input (except [Guo et al. 2005b], which used CDFG), we think that using

CHAPTER 8. CONCLUSION AND FUTURE WORK 152

static token for parallel programs to express the DFG facilitates mapping to

CGRAs easily.

- Most of the related work has used some variations of modulo scheduling algo­

rithms for scheduling purposes. But none of the works has dealt with register

usage during the compilation process. [Hatanaka and Bagherzadeh 2007) as­

sumes there are sufficient number of registers in the target architecture. This

may not always be the case. We have adapted a modulo scheduling algorithm

that considers register usage during scheduling (Chapter 6).

- Compilation approaches on CGRAs mainly focus on cyclic portions of the

target application. The reason is: CGRAs are intended for accelerating the

time consuming portion of the applications (generally loops). But most of

the related works have not mentioned how to deal with the whole application.

We have given an approach in this regard (Chapter 5).

- We have used an ordering (HRMS [Llosa et al. 1995]) which orders the op­

erations of the DFGs in such a way that after scheduling them in this order

we will have a schedule with near optimal schedule length (i.e., execution

time). The reason is: nodes are ordered such that a node is scheduled to its

predecessors/successors as close an possible. As a result, the life time of all

the variables are optimized. This, in turn, reduces the register usage. Other

related works have used other ordering techniques. But HRMS is better than

those [Llosa et al. 1995).

- [Mei et al. 2002) uses a simulated annealing approach for scheduling, map-

CHAPTER 8. CONCLUSION AND FUTURE WORK 153

ping, and routing. But the process is very time-consuming. We have used a

systematic search range for the whole process determined by the Early_Start

(and/or Late_Start), II, and the predecessors/successors in the partial sched­

ule. This approach is less time-consuming than simulated annealing.

Appendix A

HARPO /L Syntax

In Chapter 4 we use HARPO /L for writing the target application. Here we will

briefly describe the syntax of HARPO/L from [Norvell 2006].

Meta notation

N---+E N onterminal N can be an E

i_El Grouping

E* Zero or more

E*F Zero or more separated by Fs

E+ One or more

E+F One or more separated by Fs

E? Zero or one

IEl Zero or one

ElF Choice

154

APPENDIX A. HARPO/L SYNTAX 155

A.l Classes and Objects

A.l.l Programs

A program is a set of classes, interfaces, and objects.

Program ----+ i_ ClassDecl I I ntDecl I ObjectDecll*

A.1.2 Types

Types come in several categories.

- Primitive types: Primitive types represent sets of value. As such they have no

mutators. However objects of primitive types may be assigned to, to change

their values. Primitive types represent such things as numbers. They include

* int8, int16, int32, int64, int

* real16, real32, real64, real

* bool

- Classes: Classes represent sets of objects. As such they support methods that

may change the object's state.

- Interfaces. Interfaces are like classes, but without the implementation.

- Arrays: Arrays may be arrays of primitives or arrays of objects.

APPENDIX A. HARPO/L SYNTAX 156

- Generic types. Generic types are not really types at all, but rather functions

from some domain to types. In order to be used, generic types must be

instantiated.

Types are either names of classes, array types or specializations of generic types

Type --t Name I Type(Bounds) I Type [GArgs]

Arrays are 1 dimensional and indexed from 0 so the bounds are simply one

number

Bounds --t ConstlntExp

A.1.3 Objects

Objects are named instances of types.

ObjectDecl --t obj Namel: Typel := InitExp

The Type may not be generic. The type and preceeding colon may be omitted

when the type can be inferred from the initialization expression, for example

obj f := new A is the same as obj f : A := new A

Initialization of an object can be an expression or an array initialization

I nitExp --t Exp I Array! nit I new Type

(if Exp InitExp else InitExp lifl)

Array/nit --t (ror Name: Bounds InitExp lforl)

APPENDIX A. HARPO/L SYNTAX 157

- If the object to be initialized is of a primitive type (such as int32 or real64),

the initExp should be a compile-time constant expression of a type assignable

to the type of the object.

- If the object to be initialized is an array, then the initExt should be an

ArraylnitExp.

- If the object to be initialized is an object of non-primitive type, then the

InitExp should be of the form new Type where the Type is a non-generic

class type.

- In any case, the InitExp can be an if-else structure in which the expression is

a compile-time constant assignable to bool.

A.1.4 Classes

A class defines a type. Classes may be generic or nongeneric. A generic class

has one or more generic parameters

ClassDecl ---+ (class Name G Params7 _(implements Type*l i_ ClassM ember 2* lclassl)

- The Name is the name of the class.

- The G Params is only present for generic classes, which will be presented in

a later section.

- The Types are the interfaces that the class implements.

APPENDIX A. HARPO/L SYNTAX

A.1.5 Class Members

158

Class members can be fields, methods, and threads. [Nested classes and inter­

faces are a possibility for the future.]

ClassM ember ---+ Field I Method I Thread I ;

Fields are objects that are within objects. Field declarations therefore define

the part/whole hierarchy.

Field ---+ Access obj Namel: Typel := InitExp

Access ---+ private I public

Method declarations declare the method, but not its implementation. The

implementation of each must be embedded within a thread.

Method ---+ Access proc Name({Direction lName: l Typef')l

Direction ---+ in I out

The types of parameters must be primitive.

Recommended order of declarations is

- public methods and fields, followed by

- private methods and fields, followed by

- threads.

There is no 'declaration before use rule'. Name lookup works from inside out.

APPENDIX A. HARPO/L SYNTAX 159

A.2 Threads

Threads are blocks executed in response to object creation.

Thread~ (thread Block lthreadl)

Each object contains within it zero or more threads. Coordination between the

threads within the same object are the responsibility of the programmer. All

concurrency within an object arises from the existence of multiple threads in

its class. Thus you can write a monitor (essentially) by having only one thread

in a class.

A.2.1 Statements and Blocks

A block is simply a sequence of statements

Block ~ (Statement I ;) * - -

Statements as follow

- Assignment statements

Statement ~ Object! d := value

Objectld ~ Name I Objectld(Expression)

The type of the Objectld must admit assignment, which means it should be

a primitive type, like int32 or real64.

APPENDIX A. HARPO/L SYNTAX 160

- Local variable declaration

Statement---+ obj Namel: Typel := InitExp

Same restrictions as fields.

- Method call statements

Statement ---+ Object! d.N ame(Args)

Name(Args)

- Sequential control flow

Statement ---+ (if Expression Block i_elseif Expression Blockl*i_else Block27 lifl)

(wh Expression Block lwhl)

(ror Name: Bounds Block lforl)

- Parallelism

Statement ---+ (co Block i_ll Blockl* Icol)

(co Name: Bounds Block Icol)

In the second case, the Bounds must be compile-time constant.

- Method implementation.

Statement ---+ (accept Methodlmp i_l Methodlmpl* Iacceptl)

Method!mp ---+ Name(i_Direction Name: Type2*') IGuardl Block0 lthen Block1l

Guard ---+ when Expression

APPENDIX A. HARPO/L SYNTAX 161

* Restrictions

The directions and types must match the declaration.

The guard expression must be boolean.

· Each method may only be implemented once per class

* Possible restrictions:

The guard may not refer to any parameters.

· The guard may refer only to the in parameters.

* Semantics: A thread that reaches an accept statement must wait until there

is a call to one of the methods it implements and the corresponding guard

is true. Once there is at least one method the accept can execute, one is

selected. Input parameters are passed in, Block0 is executed and finally

the output parameters are copied back to the calling thread. If there is a

Block1 it is executed next.

- Sequential consistancy

Statement---+ (atomic Block Iatomicl)

The block is executed as-if atomically. That is, any two atomic statements

within the same object can not execute at the same time unless they can not

interfere with each other.

APPENDIX A. HARPO/L SYNTAX

A.3 Genericity

162

Classes and interfaces can be parameterized by "generic parameters" . The effect

is a little like that of Java's generic classes or C++'s template classes. Classes

and interfaces may be parameterized, in general, by other classes and interfaces,

values of primitive types, for example integers, and objects.

Programs using generics can be expanded to programs that do not use generics

at all. For example a program

(class K . . . class)

obj k: K

(class G[x: K] ... x ... class)

obj g : G[k]

Expands to

(class K . . . class)

obj k: K

(class GO ... k... class)

obj g: GO

Generic parameters may be one of the following

- N ongeneric Types

APPENDIX A. HARPO/L SYNTAX

- N ongeneric Classes

- Objects

- Values

GParams -+ GParam+,

GParam -+ in Name: Type

obj Name: Type

type Name lextends Type+'l

GArgs -+i_Type I Expressiont'

163

Bibliography

[Aho et al. 1986] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

principles, techniques, and tools. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1986.

[Aiken et al. 1995] Alexander Aiken, Alexandru Nicolau, and Steven Novack.

Resource-constrained software pipelining. IEEE Trans. Parallel Distrib.

Syst., 6(12):1248-1270, 1995.

[Allen et al. 1983] J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe War­

ren. Conversion of control dependence to data dependence. In POPL '83:

Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles

of programming languages, pages 177-189, New York, NY, USA, 1983. ACM

Press.

[Alsolaim et al. 2000] Ahmad Alsolaim, Janusz Starzyk, Jurgen Becker, and

Manfred Glesner. Architecture and application of a dynamically recon­

figurable hardware array for future mobile communication systems. fccm,

00:205, 2000.

164

BIBLIOGRAPHY 165

[Ananian 1999] C. S. Ananian. The static single information form. Master's

thesis, MIT, 1999.

[Beck et al. 1991] M. Beck, R. Johnson, and K. Pingali. From control flow to

data flow. Journal of Parallel and Distributed Computing, 12(2):118-129,

1991.

[Cha] http:/ /www.chameleonsystems.com.

[Codina et al. 2002] Josep M. Codina, Josep Llosa, and Antonio Gonzalez. A

comparative study of modulo scheduling techniques. In ICS '02: Proceedings

of the 16th international conference on Supercomputing, pages 97-106, New

York, NY, USA, 2002. ACM Press.

[Cytron et al. 1989] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and

F. K. Zadeck. An efficient method of computing static single assignment form.

In POPL '89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 25-35, New York, NY, USA,

1989. ACM Press.

[Cytron et al. 1991] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.

Wegman, and F. Kenneth Zadeck. Efficiently computing static single as­

signment form and the control dependence graph. A CM Transactions on

Programming Languages and Systems, 13(4):451-490, October 1991.

[Dani 1998] A. Dani. Register-sensitive software pipelining. In IPPS '98: Pro­

ceedings of the 12th. International Parallel Processing Symposium on Inter-

BIBLIOGRAPHY 166

national Parallel Processing Symposium, page 194, Washington, DC, USA,

1998. IEEE Computer Society.

[Ebeling et al. 1997] Carl Ebeling, Darren C. Cronquist, Paul Franklin, Jason

Secosky, and Stefan G. Berg. Mapping Applications to the RaPiD Config­

urable Architecture. In Kenneth L. Pocek and Jeffrey Arnold, editors, IEEE

Symposium on FPGAs for Custom Computing Machines, pages 106-115, Los

Alamitos, CA, 1997. IEEE Computer Society Press.

[Ferrante et al. 1987] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren.

The program dependence graph and its use in optimization. ACM Trans.

Program. Lang. Syst., 9(3):319-349, 1987.

[Goldstein et al. 2000] Seth Copen Goldstein, Herman Schmit, Mihai Budiu,

Srihari Cadambi, Matt Moe, and R. Reed Taylor. PipeRench: A Reconfig­

urable Architecture and Compiler. Computer, 33(4):70-77, 2000.

[Green and Franklin 1996] C. Ebeling D. C. Green and P. Franklin. RaPiD­

reconfigurable pipelined datapath. In R. W. Hartenstein and M. Glesner, ed­

itors, Field-Programmable Logic: Smart Applications, New Paradigms, and

Compilers. 6th International Workshop on Field-Programmable Logic and

Applications, pages 126-135, Darmstadt, Germany, 1996. Springer-Verlag.

[Guo et al. 2003] Yuanqing Guo, Gerard J.M. Smit, Hajo Broersma, and

Paul M. Heysters. A graph covering algorithm for a coarse grain recon­

figurable system. SIGPLAN Not., 38(7):199--208, 2003.

BIBLIOGRAPHY 167

[Guo et al. 2005a] Y. Guo, C. Hoede, and G. J. M. Smit. A multi-pattern

scheduling algorithm. InT. P. Plaks, R. DeMara, M. Gokhale, S. Guccione,

M. Platzner, G. J. M. Smit, and M. Wirthlin, editors, Proceedings of the

International Conference on Engineering of Reconfigurable Systems and Al­

gorithms (ERSA '05), Las Vegas, Nevada, USA, pages 276-279, USA, June

2005. CSREA Press.

[Guo et al. 2005b] Y. Guo, G. J. M. Smit, H. J. Broersma, M. A. J. Rosien,

P. M. Heysters, and T. Krol. Mapping applications to a coarse grain re­

configurable system. In New Algorithms, Architectures and Applications for

Reconfigurable Computing, pages 93-104, Dordrecht, 2005. Springer.

[Guo et al. 2006a] Y. Guo, C. Hoede, and G. J. M. Smit. A column arrange­

ment algorithm for a coarse-grained reconfigurable architecture. In T. P.

Plaks, R. DeMara, M. Gokhale, S. Guccione, M. Platzner, G. J. M. Smit,

and M. Wirthlin, editors, Proceedings of the International Conference on En­

gineering of Reconfigurable Systems and Algorithms (ERSA '06), Las Vegas,

Nevada, USA, pages 117-122, USA, June 2006. CSREA Press.

[Guo et al. 2006b] Y. Guo, C. Hoede, and G. J. M. Smit. A pattern selection

algorithm for multi-pattern scheduling. In Proceedings of the 20th IEEE Inter­

national Parallel and Distributed Processing Symposium (IPDPS'05) - 12th

Reconfigurable Architecture Workshop (RAW 2006), Rhodes Island, Greece,

pages 198-205, Los Alamitos, CA, USA, April2006. IEEE Computer Society.

BIBLIOGRAPHY 168

[Guo 2006] Y. Guo. Mapping Applications to a Coarse-Grained Reconfigurable

Architecture. PhD thesis, Univ. of Twente, Zutphen, September 2006.

[Hartenstein and Kress 1995] Reiner W. Hartenstein and Rainer Kress. A dat­

apath synthesis system for the reconfigurable datapath architecture. In ASP­

DA C '95: Proceedings of the 1995 conference on Asia Pacific design automa­

tion (CD-ROM), page 77, New York, NY, USA, 1995. ACM Press.

[Hartenstein 2001] R. Hartenstein. A Decade of Reconfigurable Computing: A

Visionary Retrospective. In Design, Automation and Test in Europe, pages

642-649, Munich, Germany, Mar 2001. IEEE Computer Society.

[Hatanaka and Bagherzadeh 2007] Akira Hatanaka and Nader Bagherzadeh. A

modulo scheduling algorithm for a coarse-grain reconfigurable array template.

In IPDPS 2007: Proceedings of the IEEE symposium on Parallel and Dis­

tributed Processing, pages 1-8, 2007.

[Hoare 1978] C. A. R. Hoare. Communicating sequential processes. Commun.

ACM, 21(8):666-677, 1978.

[Jain 1991] Suneel Jain. Circular scheduling: a new technique to perform soft­

ware pipelining. In PLDI '91: Proceedings of the ACM SIGPLAN 1991 con­

ference on Programming language design and implementation, pages 219-228,

New York, NY, USA, 1991. ACM Press.

[Lam 1988] M. Lam. Software pipelining: an effective scheduling technique

for vliw machines. In PLDI '88: Proceedings of the ACM SIGPLAN 1988

BIBLIOGRAPHY 169

conference on programming language design and implementation, pages 318-

328, New York, NY, USA, 1988. ACM Press.

[Lamport 1979] Leslie Lamport. How to make a multiprocessor computer

that correctly executes multiprocess programs. IEEE Trans. Computers,

28(9):690-691, 1979.

[LaPaugh and Rivest 1978] Andrea S. LaPaugh and Ronald L. Rivest. The

subgraph homeomorphism problem. In STOC '78: Proceedings of the tenth

annual ACM symposium on Theory of computing, pages 40-50, New York,

NY, USA, 1978. ACM Press.

[Lee et al. 1997] Jaejin Lee, Samuel P. Midkiff, and David A. Padua. Con­

current static single assignment form and constant propagation for explicitly

parallel programs. In Languages and Compilers for Parallel Computing, pages

114-130, 1997.

[Lee et al. 1999] Jaejin Lee, David A. Padua, and Samuel P. Midkiff. Basic

compiler algorithms for parallel programs. In Principles Practice of Parallel

Programming, pages 1-12, 1999.

[Llosa et al. 1995] Josep Llosa, Mateo Valero, Eduard Ayguade, and Antonio

Gonzalez. Hypernode reduction modulo scheduling. In MICRO 28: Proceed­

ings of the 28th annual international symposium on Microarchitecture, pages

350-360, Los Alamitos, CA, USA, 1995. IEEE Computer Society Press.

BIBLIOGRAPHY 170

[Llosa et al. 2001] Josep Llosa, Eduard Ayguade, Antonio Gonzalez, Mateo

Valero, and Jason Eckhardt. Lifetime-sensitive modulo scheduling in a pro­

duction environment. IEEE Trans. Comput., 50(3):234-249, 2001.

[Llosa 1996] Josep Llosa. Swing modulo scheduling: A lifetime-sensitive ap­

proach. pact, 00:0080, 1996.

[Marshall et al. 1999] Alan Marshall, Tony Stansfield, Igor Kostarnov, Jean

Vuillemin, and Brad Hutchings. A reconfigurable arithmetic array for mul­

timedia applications. In FPGA '99: Proceedings of the 1999 ACM/SIGDA

seventh international symposium on Field programmable gate arrays, pages

135-143, New York, NY, USA, 1999. ACM Press.

[Mat] http:/ jwww.mathstar.com/.

[Mei et al. 2002] B. Mei, S. Vernalde, D. Verkest, H. Man, and R. Lauwereins.

Dresc: A retargetable compiler for coarse-grained reconfigurable architec­

tures, 2002. In International Conference on Field Programmable Technology.

[Mei et al. 2003a] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De

Man, and Rudy Lauwereins. Adres: An architecture with tightly coupled

vliw processor and coarse-grained reconfigurable matrix. In FPL, pages 61-

70, 2003.

[Mei et al. 2003b] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De

Man, and Rudy Lauwereins. Exploiting loop-level parallelism on coarse­

grained reconfigurable architectures using modulo scheduling. In DATE '03:

BIBLIOGRAPHY 171

Proceedings of the conference on Design, Automation and Test in Europe,

page 10296, Washington, DC, USA, 2003. IEEE Computer Society.

[Mei et al. 2005] Bingfeng Mei, Andy Lambrechts, Diederik Verkest, Jean-Yves

Mignolet, and Rudy Lauwereins. Architecture exploration for a reconfigurable

architecture template. IEEE Des. Test, 22(2):90-101, 2005.

[Mirsky and DeHon 1996] E. Mirsky and A. DeHon. MATRIX: A reconfig­

urable computing architecture with configurable instruction distribution and

deployable resources. In Kenneth L. Pocek and Jeffrey Arnold, editors, IEEE

Symposium on FPGAs for Custom Computing Machines, pages 157-166, Los

Alamitos, CA, 1996. IEEE Computer Society Press.

(Miyamori and Olukotun 1998] Takashi Miyamori and Kunle Olukotun. RE­

MARC: Reconfigurable multimedia array coprocessor (abstract). In FPGA,

page 261, 1998.

(Moon and Ebcioglu 1992] Soo-Mook Moon and Kemal Ebcioglu. An efficient

resource-constrained global scheduling technique for superscalar and vliw pro­

cessors. In MICRO 25: Proceedings of the 25th annual international sympo­

sium on Microarchitecture, pages 55-71, Los Alamitos, CA, USA, 1992. IEEE

Computer Society Press.

[Norvell 2005] Theodore S. Norvell. CGRA Project Proposal.

www.engr.mun.ca/ theo, 2005.

(Norvell 2006] Theodore S. Norvell. HARPO/L: Language Design for CGRA

project. www.engr.mun.ca/ theo, 2006.

BIBLIOGRAPHY 172

[Pangrle and Gajski 1987] B.M. Pangrle and D.D. Gajski. Design tools for in­

telligent compilation. IEEE Transactions Computer-Aided Design, 6(6):1098-

1112, 1987.

[Park and Schlansker 1991] J. C. H. Park and M. S. Schlansker. On predicated

execution. Hewlett Packard Laboratories, 1991. Technical Report HPL-91-58.

[Park et al. 2006] Hyunchul Park, Kevin Fan, Manjunath Kudlur, and Scott

Mahlke. Modulo graph embedding: mapping applications onto coarse-grained

reconfigurable architectures. In CASES '06: Proceedings of the 2006 inter­

national conference on Compilers, architecture and synthesis for embedded

systems, pages 136-146, New York, NY, USA, 2006. ACM Press.

[Paulin and Knight 1989a] Pierre G. Paulin and John P. Knight. Algorithms

for high-level synthesis. IEEE Design and Test of Computers, 6(6):18-31,

1989.

[Paulin and Knight 1989b] Pierre G. Paulin and John P. Knight. Force-directed

scheduling for the behavioral synthesis of asics. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 8(6):661-679,

1989.

[Pingali et al. 1991] K. Pingali, M. Beck, R. Johnson, M. Moudgill, and

P. Stodghill. Dependence Flow Graphs: an Algebraic Approach to Program

Dependencies. In A. Nicolau, D. Gelernter, T. Gross, and D. Padua, editors,

Advances in Languages and Compilers for Parallel Processing, pages 445-467.

MIT Press, Cambridge, MA, 1991.

BIBLIOGRAPHY 173

[Rau and Glaeser 1981) B. R. Rau and C. D. Glaeser. Some scheduling tech­

niques and an easily schedulable horizontal architecture for high performance

scientific computing. In MICRO 14: Proceedings of the 14th annual workshop

on Microprogramming, pages 183-198, Piscataway, NJ, USA, 1981. IEEE

Press.

[Rau 1994) B. Ramakrishna Rau. Iterative modulo scheduling: an algorithm

for software pipelining loops. In MICRO 27: Proceedings of the 27th annual

international symposium on Microarchitecture, pages 63-74, New York, NY,

USA, 1994. ACM Press.

[Singh et al. 2000) Hartej Singh, Ming-Hau Lee, Guangming Lu, Nader

Bagherzadeh, Fadi J. Kurdahi, and Eliseu M. Chaves Filho. Morphosys: An

integrated reconfigurable system for data-parallel and computation-intensive

applications. IEEE Trans. Comput., 49(5):465-481, 2000.

[Teifel and Manohar 2004) John Teifel and Rajit Manohar. Static tokens: Us­

ing dataflow to automate concurrent pipeline synthesis. In ASYNC '04: Pro­

ceedings of the 1Oth International Symposium on Asynchronus Circuits and

Systems, pages 17-27, 2004.

[Venkataramani et al. 2001) Girish Venkataramani, Walid Najjar, Fadi Kur­

dahi, Nader Bagherzadeh, and Wim Bohm. A compiler framework for map­

ping applications to a coarse-grained reconfigurable computer architecture.

In CASES '01: Proceedings of the 2001 international conference on Compil-

BIBLIOGRAPHY 174

ers, architecture, and synthesis for embedded systems, pages 116-125, New

York, NY, USA, 2001. ACM Press.

[Waingold et al. 1997] Elliot Waingold, Michael Taylor, Devabhaktuni Srikr­

ishna, Vivek Sarkar, Walter Lee, Victor Lee, Jang Kim, Matthew Frank, Pe­

ter Finch, Rajeev Barua, Jonathan Babb, Saman Amarasinghe, and Anant

Agarwal. Baring It All to Software: Raw Machines. Computer, 30(9):86-93,

1997.

[Walker and Chaudhuri 1995] Robert A. Walker and Samit Chaudhuri. Intro­

duction to the scheduling problem. IEEE Des. Test, 12(2):60-69, 1995.

[Warter et al. 1992] Nancy J. Warter, Grant E. Haab, Krishna Subramanian,

and John W. Backhaus. Enhanced modulo scheduling for loops with condi­

tional branches. In MICRO 25: Proceedings of the 25th Annual International

symposium on Microarchitecture, pages 170-179, Los Alamitos, CA, USA,

1992. IEEE Computer Society Press.

[Wik 2007] July 2007. http:/ jwww.wikipedia.org.

[Zalamea et al. 2001a] J. Zalamea, J. Llosa, E. Ayguade, and M. Valero. MIRS:

Modulo scheduling with integrated register spilling. In Proc. of 14th An­

nual Workshop on Languages and Compilers for Parallel Computing (LCPC),

pages 239-253. Springer-Verlag, August 2001.

[Zalamea et al. 2001b] Javier Zalamea, Josep Llosa, Eduard Ayguade, and Ma­

teo Valero. Modulo scheduling with integrated register spilling for clus­

tered VLIW architectures. In MICRO 34: Proceedings of the 34th annual

BIBLIOGRAPHY 175

A CM/IEEE international symposium on Microarchitecture, pages 160-169,

Washington, DC, USA, 2001. IEEE Computer Society.

[Zhang 2007] Dianyong Zhang. An Intermediate Representation for CGRA Im­

plementation. Master's thesis, Memorial University of Newfoundland, 2007.

