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Abstract

The effect of vibrations on bit wear and the rate of penetration in rotary drilling was

investigated. A laboratory scale drilling rig was used for experiments with capability of

controlling important drilling factors such as WOB (Weight On Bit), flow rate, RPM, and

vibration. Vibration under different amplitudes was studied using impregnated diamond

coring bits. The main goal of this study is to find the optimum drilling conditions

considering both ROP (Rate Of Penetration) and wear including the effect of vibration.

Bit profile shape was found to be another important factor affecting ROP and bit wear. In

all experiments, three main profile shapes appeared after some drilling in the sequence of:

V-grooved, flat end, and rounded edge. The highest ROP results were obtained with V

grooved, decreasing in the order: unused, flat end, and rounded edge. Vibration had more

effect on bit wear than profile shape. Profile shapes with sharper edges wore away

rapidly.

Wear and bit profile changes should be taken into account in a study to relate ROP to

WOE. Otherwise, the relationship observed between these variables may not be correct.
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Chapter 1

Introduction

1.1. Background

Drilling productivity, efficiency, and cost effectiveness are important words nowadays

for every oil and gas company. Different factors affect drilling time and cost; it is critical

to improve the drilling conditions to have lowest elapsed time with less drilling cost. The

current research by the advanced drilling group (ADG) at Memorial University of

Newfoundland aims to optimize drilling conditions using vibration assisted rotary drilling

(VARD). In addition, the main focus of this research was on bit wear, which significantly

affects drilling optimization. Experimental investigation was done to find the effect of

drilling parameters such as weight on bit, vibration, and RPM on both rate of penetration

and bit wear. The analyzed data from experiments will show possible ways to optimize

drilling conditions.

1.2. Objectives

• Comprehensive study of bit wear and rate of penetration on impregnated diamond

bits

• Analyzing the effect of vibration, specially on wear

• Study of the effect of flow, pressure, and RPM on both ROP and bit wear

• Study of the effect of different matrix profile shapes



1.3. Thesis organization

Chapter 2 is a review of literature of work on conventional rotary drilling systems and

vibration drilling systems. The main purpose of using vibration drilling systems is to

increase the drilling speed; however, this could affect bit wear. A full review of literature

on impregnated diamond coring bits and some analysis on tribological aspect of bit wear

was done. The science of surfaces in contact (tribology) could help to better analyze the

real bit contact conditions. A study on impregnated diamond bits tribological behavior

was done and is presented in this chapter. Diamond impregnated bits were used for all of

the experiments.

Chapter 3 is an explanation of the ADG investigation and study on wear measurement

techniques and methods. New techniques such as replication and indentation were

investigated and improved. Different measurement methods such as weight and length

measurements are explained and specifically introduced for each type of bit.

In Chapter 4, experiment runs and tests are explained and discussed. Tables, figures, and

plots are used to show completely all of drilling conditions and results for both ROP and

wear rate. Comparisons are done to show the effect of vibration drilling on ROP and bit

wear. This chapter consists of two main sections on full face impregnated diamond bits

and impregnated diamond coring bits. The main focus of experiments is on the

impregnated diamond coring bits. Three major groups of experiments were done on

coring bits: vibration and non-vibration experiments, experiments on the role of RPM,

and pressure and flow experiments. Each one individually focused on rate of penetration

and bit wear. Bit wear study can be both qualitative and quantitative. Pictures from real

bit teeth and bit weight measurements were used to achieve the best results.



The final chapter, Chapter 5, contains conclusions and recommendations for future work.

Optimization of drilling productivity is one the main subjects to be discussed in this

chapter. This optimization method uses both ROP and bit wear plots to conclude the best

possible drilling conditions for vibration drilling. Not only the drilling conditions, but

also some physical features of impregnated drill bits like matrix abrasiveness or matrix

profile shape, for better efficiency are discussed. During the experiments some new

factors showed an important effect on the results like bit profile shape. In this chapter,

conclusions are drawn on the best drilling conditions and bit profile shape.



Chapter 2

Literature Review

2.1. Drilling systems

Drilling systems or drilling rigs are used in different applications such as mining, oil and

gas and geosciences research. Different mechanisms are used in different types of drilling

systems from a large drill rig to a portable one on the back of a truck. A drill rig is

designed to drill bore holes or wells in the Earth's crust. Drill rigs are categorized in

different ways: by platform type, by power used, by pipe used, and penetration

mechanisms they have. Two main types drill rigs are rotary and rotary percussive. Rotary

drill rigs are used predominantly for oil and gas drilling. However, rotary percussive drill

rigs have mostly been used in the mining industry. New drilling mechanisms are under

development to improve ROP like vibration assisted rotary drilling (VARD).

2.1.1. Rotary drilling systems

A rotary drilling system consists of different subsystems including a rotary system,

hoisting system, drill string, bottom hole assembly, power system, circulation and well

control system. Figure I shows a schematic picture of a rotary drill rig and its standard

components.



Figure 1. Rotary drill rig (from www.wikipedia.org, 2011)

1. Mud tank

2. Shale shakers
3. Suction line (mud pump)

head 4. Mud pump

5. Motor or power source

6. Vibrating hose

7. Draw-works (winch)

8. Standpipe

9. Kelly hose

10. Goose-neck
11. Traveling block

12. Drill line

13. Crown block

14. Derrick

15. Monkey board

16. Stand (of drill pipe)

17. Pipe rack (floor)

18. Swivel
19. Kelly drive

20. Rotary table

21. Drill floor (201 I)
22. Bell nipple
23. Blowoutpreventer-Annular

24. Blowoutpreventers-rams

25. Drill string

26. Drill bit
27.Casing
28. Flowline

Figure 2 shows a schematic drawing of a rotary drilling system in which torque from the

rotary system at the top of the well is transmitted through the drill string to the bit. The

drill bit is pushed on the rock contact surface by a force called the weight on bit (WOB).

WOB is a balance of different forces on the bit such as the weight of drill string, the



buoyancy force generated from drilling fluid in the annulus, the driJIing fluid pump off

pressure, and the hook load from the hoisting system. The WOB can be easily controlled

by varying the hook load.

Drill stringl'leight- Hool<load - Force due 10 buoyancy

--E--- drill string

Torque

Figure 2. Schematic drawing of rotary drilling system Forces

2.1.2 Vibration assisted rotary drilling (VARD)

It is well known that vibration, as in percussive drilling, increases ROP. The aim in the

ADG is to find conditions in which VARD increases ROP without so much increased

wear of bits; significant increase of bit wear could make VARD uneconomic due to cost

of bit replacement. An investigation has been done in Memorial University to prove the

efficiency of that. Li Heng et al. (2010) showed the improvement of using vibration on

rotary drilling. Figure 3 from his experimental work shows the higher ROP with vibration

drilling.



"
WeighlonBil(\)

Figure 3. Experimental results of vibration rotary drilling at 300 and 600 RPM, 2-3 levels

of amplitude (Heng, et al. 2010)

These experiments were done at 60 Hz vibration but with different vibration amplitudes.

The result shows: "a significant increase in ROP at low levels of WOB and also increase

of ROP in relation to increase of vibration amplitude" (Heng et al. 20 I0). He

recommended further experiments to investigate to show the efficiency of higher ROP

considering bit wear rate.

2.1.3. Rotary, Percussive Rotary, and Vibration Rotary forces

Static WOB is used for Rotary drilling, but dynamic WOB is used for both percussion

and vibration rotary drilling. In percussive rotary drilling, high velocity force applies to

the bit, causing elastic waves to be generated. This high velocity force usually results

from dynamic impact or hammering which is normally produced by pneumatic or

hydraulic mechanisms.



2.2. Tribology and Wear

Tribology is the branch of science and technology that concerns about surfaces in relative

motion, as in bearings. For this, tribologists suggest the tribosystem for considering the

volume including two bodies and the environment around the two bodies with their

interaction. Tribology can help to understand and analyze better the parameters affecting

wear rate.

In order to develop a convenient framework for the description of systems, it needs some

simplification; it could be applying the methods of "black-box cutting" or "systems

tearing". In black-box cutting a model is cut down to smaller boxes until first principles

can be applied. Systems tearing can be achieved by locating the hypothetical systems

envelope in a convenient way. Next, the envelope should be as narrow as possible to be

around the central parts of the mechanical system as "interacting surfaces in relative

motion". With this information in mind, a detailed system description should involve the

following steps: (Czichos, 1978).

"A detailed system description must involve the following steps:

1- System's function

1-1- Separate the system from its environment,

1-2- Compile all inputs and outputs,

1-3- Describe the functional input-output relations,

2- System'sstructure

2-1- Identify the elements of the system,

2-2- Characterize the interrelations and interactions between the elements,

2-3- Specify the relevant properties of the elements" (Czichos, 1978).



Based on this system (Czichos's framework) analytical procedure, it is necessary to

consider the influencing factors and mechanisms relevant to the function and structure of

mechanical systems in which friction and wear processes occur.

2.2.1. Tribo-system

For describing tribological processes we need to define tribo-system. The purpose or

function of technological systems is the transformation and/or transmission of "inputs"

into "outputs" which are used technologically. Figure 4 shows a functional description of

tribological systems in general:

Figure 4. Tribo-system (Zum Gahr, 1987)

The relationship between a useful input and a useful output may be considered as the

technical function of a tribo-system. Friction and wear results in undesirable outputs such

as wear debris, heat, vibration and noise. Useful inputs and outputs may be classified in



motion, work, materials or mass, and information. In general, we have four categories, 2

inputs and 2 outputs as we can see from Figure 4. The first major input is the motion,

mass, and work which are the consumption of energy for doing some work. The other

major section of system is output as work, mass, or motion which is the desirable results

of our first input energy; while on the other hand, we have two other parts which are

related to these sections as some disturbances as vibration, material, heat, etc. that cause

some loss during the work of system as wear debris, heat, vibration and/or noise (Zum

Gahr, 1987).

The Structure of the system is determined by the elements, their properties and the

interactions between them. Figure 5 shows a basic tribo-system:

r1bosys em
-...___ -~"",,'{c:rnpr·

Figure 5. Typical tribo-system environment (Zum Gahr, 1987)

Usually the system consists offour elements:

1- Solid body

2- Counter body

3-Interfacialelement

4- Environment

10



The tribo-mechanical systems are usually considered under two major categories as

functional and structural.

2.2.1.1. Function of Tribo-mechanical systems

The tribo-mechanical system is defined as an entity whose functional behavior is

connected with interacting surfaces in relative motion. The functional cause-and-effect

relations between inputs and outputs are accompanied by loss-outputs of mechanical

energy and of materials, denoted summarily by the tenns friction and wear losses. In

relating a system to its function, we are concerned with operational variables which can

be controlled by a designer or an operator (Czichos, 1978).

2.2.1.2. Structure of Tribo-Mechanical systems

The structure of a system is characterized by the elements or components of the system,

their relevant properties and their interrelations. For a simple case we can consider the

motion of two solids, for example elements in a machine in contact with each other. In

this case we have 3 elements as (Czichos, 1978):

Element I: first machine element

Element 2: second machine element

Element 3: the interfacial volume

Figure 6 shows the tribo-process diagram. In general, in any tribo-system we can analyze

the system in different ways, as on different planes, in which each one considers a

different aspect of system such as work plane, thennal plane, material, and functional

II



plane. These planes will be discussed more in the following chapter for a drilling kind of

tribo-system.

FUNCTIONAL
PLANE {V}

WORK
PLANE

THERMAL
PLANE

MATERIAL

MATERIAL 1
(solid)

MATERIAL n
(fluid)

MATERIAL ill
(Reaction
products)

Figure 6. Tribo process diagram (Czichos, 1978)

In this diagram, {X} and {V} are the inputs and outputs and {Z} is output loss.

12



2.2.2. Classification of wear

There are some different ways for classification of wear; the first one is classification of

wear processes by wear modes as below:

ollirq Oscllolr'!

I

Mo Ion

Figure 7. Classification of wear processes by wear modes (Zum Gahr, 1987)

Wear processes here are classified as different type of motion and physical state of

counter body or second element of tribo-system. Related to the interfacial element, wear

processes are called dry or lubricated, for example lubricated rolling wear, or 2-body and

3-body wear as W(f can see below:

Figure 8. 2-body and 3-body wear (Zum Gahr, 1987)

13



There are different ways of classification by different institutes and people, the list below

shows some of the important ones (Zum Gahr, 1987):

Burwell and Strang (1952): abrasive wear, adhesive wear, corrosive wear, surface fatigue

wear, fretting, erosion and cavitation.

Jahanmir (1980): adhesion, delamination, fretting, abrasion, erosion, impact wear, surface

fatigue, corrosive wear, diffusive wear and electrical contact wear.

Godfrey (1980): mild adhesive, severe adhesive, fretting, abrasion, erosion, fatigue,

delamination, corrosive, electro-corrosive, fretting corrosion, cavitation damage,

electrical discharge and polishing.

Rice (1978): adhesion, abrasion, fatigue, corrosion or oxidation, and electrical.

DIN 50320 (1979): adhesion, abrasion, surface fatigue, and tribo-chemical reaction.

The DIN classification is the most widely used classification system and it has been used

by other researchers. The schematic description of the four main wear mechanisms is

shown in Figure 9.

Figure 9. Four main wear mechanisms (Zum Gahr, (987)

14



DIN 50320 used the four basic wear mechanisms were defined by ZumGahr (1987):

Adhesion: formation and breaking of interfacial adhesive bonds

Abrasion: removal of material due to scratching

Surface fatigue: fatigue and formation of cracks in surface regions due to tribological

stress cycles that result in the separation of material

Tribo-chemical reaction: formation of chemical reaction products as a result of

chemical interactions between the elements of a tribo-system initiated by tribological

action.

2.2.3. Tribo-System analysis

A tribo-system defines the portion of the equipment and work in which we want to check

the surface interactions and the results of that as wear. A systems analysis starts with the

construction of a model of the system which is essentially a check list of all significant

components or elements, their significant properties, relationships and interactions with

each other. The various forms and tools for systems analysis provide a structure for

studying processes occurring within equipment, which may be mechanical, thermal,

electrical, and chemical, or focused on the generation, storage, and transmission of

"information", or any combination of these.

In systems analysis a methodical and open-minded construction of the model of the

technical equipment of interest, the components and processes within it, and between it

and what is outside the system, helps to ensure that we consider all that may be relevant

to our purpose. We are likely to embark on a systems analysis because we are interested

in the function of the system, its inputs and outputs, how they relate to each other, and

how the system may change during its operation.
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2.2.3.1. The drilling system, Differences between bearing and cutting tools as
systems

Most tribo-systems, e.g. bearings, are auxiliary to the main function of the equipment of

which they are a part, and wear is an undesirable but often inevitable phenomenon in

them.

So unlike a bearing, where as little as possible wear is desirable, and the function of the

bearing is to transmit torque and/or work, while the function of a drill bit, however, is to

produce wear, of the material being drilled, i.e. to one or more materials in the system.

The same is, of course, also true of any cutting tool. It is only the wear of the tool, also

constituting one or more materials in the system that is undesirable.

In coring drill bits, which often consist of two components, the cutting elements, such as

diamonds embedded in a matrix, the wear of the diamonds is undesirable, but inevitable.

The wear of the matrix surrounding the diamonds is to some extent desirable. It is

desirable that the wear of the matrix should proceed at a rate that ensures a continuing

optimum function of the diamonds, as the latter wear down and eventually each diamond

is destroyed or removed. When diamonds are removed the wear of the matrix allows

diamonds previously covered by the matrix to emerge and take over the cutting proce s.

(In the forgoing "cutting" is assumed to be the process by which the rock or other

material being drilling is removed. Cutting is not necessarily the only process by which

the drill functions, e.g. fracture may be also be important.)

In describing the tribo-system, consisting of a drill string and rock (or other material

being drilled) we can, notwithstanding the differences outlined above between bearings
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and a cutting tool, examine the system and the processes in it in much the same way as

for bearings.

2.2.3.2. The elements of the drilling tool system

A drilling tool system can be defined in various ways, depending on our purpose. The

whole drill rig from the drill frame, motor drive, gearing, drilling fluid pump, drill string,

down to the drill bit can be considered a system, of course. Indeed what happens at the

drill bit depends on all the other components of this system, as well as on the rock being

drilled.

We can also consider the portion of the total drill rig system that consists of the drill bit,

the portion of the rock that is being drilled, along with the fluid and rock (and drill bit)

debris in the interfaces between the rock and drill bit, as a system. So for the purpose of

this wear study we can select a system which is a small portion of the total drill rig-rock

system and distinguish between the drill rig system, and a cutting and wear system or,

simply, the tribo-system. where the latter is selected to be as small as feasible for an

analysis of the cutting and wear process (es).

The tribo system is by no means an isolated system, indeed it is an open system,

connected to and exchanging inputs and outputs with its environment, with the

environment defined as simply as possible, with components that have particular

properties, and provide input to and accept output from the tribo-system.

The drill bit or at least the cutting head of the drill bit is clearly one key component of the

tribo-system, and in embedded diamond bits this component actually consists of two

elements: diamonds and bit matrix.
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The size of diamonds is less than I mm and they are randomly placed in the whole of the

matrix, then after some wearing of matrix, new diamonds will appear. Diamonds have

different shape as observed in the laboratory, the predominant ones are octahedral, macle,

and cubic. See figure 10 below for different kind of industrial diamonds:

Figure 10. Industrial diamonds (www.allaboutgemstones.com. 2011)

Rough industrial diamonds are quality-graded in five categories based on shape, surface

quality and internal cracks, fissures or other flaws. The highest quality rating is "select"

followed by AA, A, 0, TA, B, and C. Diamond is the hardest known material not

considering the artificially formed cubic modification of boron nitride

(www.allaboutgemstones.com. 2011).

The drill bit is mounted on a drill string. In this experimental setup; the drill string and

bit are in one body together and the material of the drill string part is steel. The drill

string may have to be considered as a separate element in the tribo-system, or as one

element in the environment of the tribo-system, connected to the tribo-system, which

transmits force, torque, and work to the drill bit, and we may have to consider drill string

properties that may influence the process. These properties would include mechanical

inertia, stiffness, and impedance, and also thermal resistance or conductance. Mechanical

stiffness is the ratio of force-to-displacement; mechanical impedances are the ratio of
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force over linear velocity and the ratio of torque over angular velocity. Thermal

conductance is the ratio of heat flow rate over temperature difference and thermal

resistance is the inverse. It is possible that transient thermal properties are relevant (which

relate to thermal diffusivity, i.e. heat capacity plays a role along with heat conduction as

is certainly important when considering transient temperatures at points of contact on the

tool surface).

Another key component is the Rock. For the first phase of experiments, two types of

concrete were used instead of regular rocks; one type of concrete is made with a long

setting of concrete and another one was fast-setting cement.

Where would we draw the boundary between rock that is within and outside the tribo

system? A final answer to this question need not be made at the outset, but it may well be

convenient to include within the tribo-system that part of the rock that is subject to

transient events related to the drilling process. That is all portions of the rock that

experience significant (however, we define that) transient heat flow, and any significant

transient forces, are within the system.

A third key component would be a Fluid, Which in the simplest case is water in our

experiments, but may include other components, such as drilling mud. For the first phase

of this work, there was no information about the input volume of water and speed of that

as a flow rate, which may have an important effect on tribo-system. The fluid has at least

two intended purposes: to carry away the debris and pieces of rock and also controlling

the temperature of bit for preventing the dramatic bit wear due to increase of temperature

in both matrix and diamonds.
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To summarize, there are,

Within the tribo-system;

I) Two solid stationary elements: rock grains and rock matrix (which we are likely to

consider separately)

2) Two solid elements moving together: diamonds and drill matrix

3) Onefluid moving element: water or other drill fluid, and many debris particles

Outside the tribo-system, connected to it and interacting with it, and determining much,

indeed all, that happens within the tribo-system;

1. Solid rock

2. The drill string

3. The fluid supply column

4. The fluid return column

The solid rock is stationary can be considered as uniform, in respect to properties, and

supports the rock being cut, which is that portion of the rock at the cutting surface for

which we probably should consider what happens to individual grains in the rock, and

any matrix between grains.

The drill string which can be considered to include the steel portion of the drill bit on

which the important properties of the fluid supply column are, of course, flow rate and

pressure, and also temperature. The same is true of the fluid return column. However, For

the fluid within the tribo-system, these properties may differ, and vary, according to

location, and the debris particles within the fluid are separate elements.
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Figure II, below, shows the general figure of drill bit during work and also the

macroscopic view with elements.

, Tribo-system
Boundar'y

output water+debris Input water

Interfacial
element

Figure II. Tribo-system for coring bits

Our system boundary size depends on the conditions we need to consider, for example, if

we need to check the effect of temperature in our system on thermal plane, we should use

a larger boundary.
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2.2.3.3. Relationships between elements

The main elements of the system are the teeth of the bit, the interfacial element, and rock.

For solving this problem we have to define the relationship between these parameters. As

mentioned above, the interfacial elements include water in this experiment which has a

great effect on the wear processes.

In a great deal of tribological systems, the transactions of the relevant inputs and outputs

occur at the contact interface between tribo-element I and 2. In these interfacial contact

processes, the forces and displacements of the interacting bodies, the 'contact mechanics',

as well as the materials interactions i.e., the contact 'physics and chemistry' should be

taken into account.

For defining the relationship between the elements first we need to know about the

contact mechanics in as much detail as possible as we can. For this, a great variety of

situations must be considered depending on:

I. The number of bodies taking part in the contact process; 2 main bodies for our

experiments,

2. The macro-geometry of the bodies; in this case we have 3-dimensional problem,

3. The surface topography; there are two rough surfaces,

4. The mechanical properties of the bodies; in our case one is concrete material and

the other the tooth of the bit as a mixture of diamonds and matrix (cobalt alloy),

5. The deformation modes; concrete is almost quite brittle so it happens mostly by

fracture deformation, concerning the matrix and diamonds in bit teeth, the former

is quite hard metal and likely to have plastic deformation, and the latter one
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should have more elastic than plastic deformation, but we can consider it as

elasto-plasticmaterial,

6. The contact forces (normal forces and tangential forces); we may consider the

normal forces as WOB, but it should be solved for the exact value of that which is

acting on the 2 surfaces, the tangential force can easily calculated from the torque,

7. The type of relative motion; which in our case is sliding,

8. The velocity of relative motion; in the general2-body abrasion case it is the linear

lateral velocity of the teeth, but in 3-body abrasion it also depends on the water

flow rate and the linear velocity of teeth.

Each of the above should be considered individually for reaching optimum results, but in

some cases we can omit some of these factors. Considering all of them is a very difficult

analysis for the initial work on the system, and we can add the non-important factors later

to the main model for modification.

The next step is to produce and consider the different planes in the two categories of

functional and structural as we talked about it in the section 2.2.1. The emphasis on the

functional plane must be on a representation of the proposed technical system and the

evaluation and representation of the parameters which have most immediate relevance to

this technical purpose.
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Figure 12. Functional plane (Czichos, 1978)

In this plane the main parameters are:

(I) Bit teeth

(2) Rock

(3) Interface element, mostly water

The main function of the system is to cut the rock. The next question is about the arrows

in the above figure, which is drawn below with explanation:

input energy interactions
as torque and RPM between interfacial

water +debris and
main bodies

FU~CTlONAL

PLANE

;;='~ii:I!~~~:=:=:;-;+~ main use of
energy to
make rock to
failure

output energy as
rock particles
and fragments

Figure 13. Functional plane with additional explanation (Czichos, 1978)
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For the next step, we have to continue with structural planes and the first one is the work

(energy) plane which is quoted here from the book by Czichos (1978).

Figure 14. Functional plane with specified input/output arrows (Czichos, 1978)

{X W }; input work as torque and RPM to storage (1) in the drill bit teeth,

{yW }; use-output work, which is here not directly relevant in drilling, however, energy

is transformed to the rock (storage 2), where it contributes to fracture and produces

fragment in the interface (3),

{ZW}; loss-outputs as noise, vibration, and energy

- The dash arrows show us the power loss converted to heat due to friction converted on

the thermal plane.
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The next step is considering the thermal plane, and it is drawn below with the definition

of the parameters:

Thermal energy
from work plane

IxT) I I
ITHERMAL INPUTI

I I
Thermal energy produced by
processes on the malerials
planes

Figure IS. Thermal plane (Czic~os, 1978)

- We have two types of dash lined arrows. The first one comes from the upper layer and it

shows the thermal energy which is produced during the work, the second one is from the

material plane, and it is produced from the internal friction of the material due to the

shear of the rock,

{Zr }; Loss-output, in our project, with two mechanisms for heat flow, the first one is

using the circulated water via the convention method and the second one is conduction, in

which the heat flows depending on the conductivity of rock,

{X r }; input, that could be the heat transferred with the water, or mud,

similar as in previous layers, storage (1) in this case of thermal energy in the drill bit teeth,

storage (3) is thermal energy in the drilling fluid or water, and storage (2) is thermal
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energy in the rock, generally in the thermal layer, they are thermal energy and not

material. The next plane is the material plane as below:

Reaction energy to tnermal plane

Reaction
products

L:::::.=~====':'::::':'=':=:"::~=J

Figure 16. Material plane (Czichos, 1978)

- The dash lined arrows shows the thermal dissipation to the thermal layer from the

materials,

- In this case our loss-output is the bit wear and the use-output is the rock fragments and

particles from the rock,

- Input material is just the water which is circulated into the system and at last flushes the

rock fragments as use-outputs,

- there are no significant reaction between materials to be considered.
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2.3. Bit Wear

Bit wear is usually classified in different ways: by different bit type and different drilling

conditions such as conventional rotary drilling or rotary percussion drilling. Three major

industrial bit are PDC bits, Impregnated, and WC/Co (Tungsten carbide/Cobalt) bits,

which have different wear behavior. In the following section, only impregnated diamond

bit wear will be discussed because this type of bit was used in the experiments.

2.3.1. Impregnated Diamond Bits

Impregnated diamond tools are widely used for drilling, sawing, and grinding rocks and

concretes in mining and civil engineering (Xuefeng and Shifeng, 1994; Madson, 1966).

An impregnated diamond bit is usually made in two major shapes of full face bit and

coring bit (Figures 17 & 18). The most common shape of this kind of bit is the coring bit.

Figure 17. Impregnated diamond coring bit
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Figure 18. Impregnated diamond full face bit

Impregnated diamond cutting tools are processed by powder metallurgy techniques

(Przyklenk, 1993). They usually consist of a steel body mounted with impregnated

diamonds as its cutting face. During cutting processes, matrix material is gradually worn

away, and new unused sharp diamonds appear at surface. Matrix material should be

designed especially to hold and support the diamonds up to time they are almost worn

away. Thus, the performance of impregnated bit depends on the wear of both diamonds

and matrix material during cutting processes (Xuefeng and Shifeng, 1994). In this case,

the selection of matrix metal which is acting as bonding material is critical. The

properties of this material depend on the abrasiveness and hardness of the rock to be cut.

Normally tungsten (W) is used as a bonding matrix material for cutting concrete and

some granite. W-cobalt (Co) and Co alloys are used mostly for granites and for cutting

marbles Co, Co-bronze, iron (Fe)-Co, and Fe-bronze are bonding materials (De Oliveira

et aI., 2007).

Different composition of the alloy of the matrix can affect tool properties; for example,

Co is efficient as a bonding metal in the diamond cutting tools. Silicon (Si), in small
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amounts (less than 2%) can increase adhesion of matrix to the diamonds and furthermore

it avoids premature diamond pull-out. Tungsten carbide (WC) with mean particle size of

5~m and 0.5 to 2% in weight increases matrix wear resistance (Del Villar, 2001;

Meszarosetal.,1996).

Majority of diamond cutting tools employ Co in matrix material. Because Co has

different varations and is a strategic metal just some countries produce that, and it's not

the best choice in some tool applications. Oliveira, LJ et al (De Oliveira et aI., 2007)

used Fe-Cu system as matrix material without any Co in it. The new matrix material (Fe

Cu) shows same wear as cobalt ones, but it cannot compete with high cobalt content

based matrix yet.

Wear of impregnated diamond bit is a continuous process; the most exposed diamonds

are pulled out from the matrix when these diamonds do not cut (flattened surface), and at

this time new cutting diamonds raise up from matrix because of continuous wear of

matrix during cutting action (Wright et aI., 1986; Davis, 1996; Rosa, 2004).

For wear analysis of impregnated diamond bits, we should first look back to previous

work. Miller and Ball (1991) categorized the wear of impregnated bits into five main

sections: recently exposed - unworn diamond, grooved wear flat (flat wear),

microfracture, macrofracture, and pull out (Figure 19).
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Figure 19. Different diamond wear, a: unworn, b: flat wear, c: microfracture, d: pull out,

e: macrofracture (Miller and Ball, 1991)

Previous studies found that during rock machining with impregnated diamond tools both

abrasive wear and microfracturing existed (Miller and Ball, 1991; Bullen, 1984;

Ertingshauscn, 1985). With lower WOB, mostly wear flats were generated on exposed

diamond particles; at higher WOB, microfracture was found to be predominant (Miller

and Ball, 1991). Figure 20 shows type of wear and contact pressure on diamonds from

Miller and Ball studies.
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Figure 20. Specific energy vs. thrust (Xuefeng and Shifeng , 1994)

Studies by Miller and Ball mostly show concerns about diamond wear, but Xuefeng and

Shifeng (1994) have worked more on both diamond and matrix wear. They found that the

wear characteristic of diamond impregnated bit also depends on drilling parameters, and

penetration per revolution was found to be most important factor affecting wear behavior

of impregnated diamond bits. Xuefeng and Shifeng (1994) for their experiments used

single-diamond cutter which is a kind of indenter, but it is incorrect to use static

indentation process for the dynamic cutting processes (Abdel Moneim et aI., 1997).

Miller and Ball (1991) did their experiments with different types of rocks and found that

"for stable drilling in any given rock type a characteristic threshold pressure existed

above which desirable microfracture of the exposed diamonds was promoted over

undesirable wear flat generation. At lower load, flats are produced by sliding wear, with

the silicate minerals ploughing plastic grooves in the heated surfaces of the diamonds".

D.N. Wright et al (1990) reported some results for drilling on two different rock types. In

drilling sandstone erosion of the matrix predominated, in particular around diamond
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particles. In both sandstone and granite were eventually pulled out of the diamond

particles. In the case of granite, there were particles pulled out after they fractured; with

sandstone pull out occurring before fracture. With both rocks breakdown occurred when

the supporting matrix had been eroded. They also found that "the rate of diamond

protrusion can be directly related to its position on the end face of bit and the rate of

exposure of diamonds related to the abrasion of the matrix".

In conclusion, different drilling systems with and without vibration were explained. A

review of wear as a process in a system and different classification of wear was presented.

In drilling, the relevant system consists of the bit, the rock, and the fluid and rock debris

between them was introduced. Previous work with impregnated diamond bits is reviewed.

A common challenge is a useful way to measure and describe the wear of which there are

several types.
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Chapter 3

Wear Study and Measurement Techniques

3.1. Introduction to the study of wear and wear measurements

There are different ways to measure wear for any kind of bit. What will be discussed in

this chapter is mostly organized and optimized ways for the study of diamond

impregnated bits. Two different types of diamond impregnated bits were used. They are

full face and coring bits. For each one, some combination of measurement techniques

was used. This section explains all measuring ways in details. In this case, all of these

measuring ways are categorized by bit type as: full face bit measurement ways and coring

bit measurements ways. First, we look at the ways; second, in more details for each bits.

3.2. Measurement methods

Different tools were used for measurement. Some for marking to have a reference point

for comparing before and after each experiment, and the others for measurements. In the

case of marking, center punch and electro discharge machining (EDM) were used for

making indentations on bit teeth faces. In the case of measuring, optical microscopy,

micrometer, precise analogue weight balance were used. Each one will be explained

separately.

3.2.1. Length measurements

This method is used mostly for full face bit because of restriction on measuring the

weight. Simply using micrometer in a proper range could give the length of bit, but there
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are some difficulties with that. For example, protruded diamonds on top of bit teeth can

easily damage the micrometer. The best way found is to use a glass plate on top of the bit

(Figure 21) to avoid any direct contact between micrometer and diamonds on bit matrix.

Figure 21. Glass plate on top of full face bit

Another problem for this measurement is how we could get the minimum value. Just a

little deviation can affect the length (increase it). For this, the easiest possible way is to

rotate the slipping clutch and jerk the micrometer very little to reach the minimum value

possible (Figure 22). This method was checked and the results were reproducible. The

micrometer resolution is O.OOlmm.
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H
10mm

Figure 22. Full face bit - length measurement

Another way for finding changes in length - L - is using indentations as references and

measuring the length before and after experiment on bit teeth using optical microscope

(Figure 23).

Figure 23. Using indentation for length change measurement

36



3.2.2. Weight measurement

An analogue GRAM-ATIC balance was used for the experiments. This weight balance

resolution is 0.000 I g, and it is accurate enough for mass measurements. Before and after

each experiment the cleaned bit was measured in order to record the weight loss (change)

after each experiment.

3.2.3. Optical microscopy

Optical microscopes were used for several measurements. One of the most important uses

was to study and compare wear of diamonds individually and in a group. It can be used

for both real bit and on replicas (replication will be described in 3.3.1). It is possible to

use a camera and take photographs from the microscope to record the data permanently.

Two different types of optical microscope were used: high power (Reichert) and low

magnification (Wild - M420) (Figure 24). Mostly, the Wild microscope was used for

taking photographs because of the ability to use the real bit directly instead of replica.

The problem with higher magnification microscope is for very much closer gap between

the bit surface and the microscope lens that could damage" the lens by accident contact

between optic lens and the diamonds on the bit surface.

One issue with Wild microscope is illumination. The direction and intensity of the

lighting has a big effect on the appearance of surface. With the low power microscope

low intensity blue light from the one side was used to fill the shadows produced by higher

intensity white/yellowish lighting from the other side.
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Figure 24. Top left: High power optical microscope; Top right: Low magnification

microscope; Bottom: Illumination

3.3. Measurement techniques

Some techniques could easily improve the measurements and record the data well. These

techniques were developed through lots of experience and optimized to be best for each

type of bit. In the following sections, both techniques (replication and indentation) will be

discussed and explained in detail.

3.3.1. Replication

Replication was used to exactly reproduce the bit teeth with resins. The main goal of any

replication is to make a permanent record of the physical shape of the subject. For

making another copy of any body, two replicas should be produced; negative and positive

replica. The negative replica is made from the real bit teeth (bit head), and the positive
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replica is made from the negative replica. The positive replica would be exactly same

shape as real bit.

Figure 25. Picture 1: Real bit, Picture 2: Negative replica, Picture 3: Positive replica,

Picture 4: Gold coated positive replica

For the final step the positive replica should be gold coated to be visible under

microscope, as the material used is transparent. The gold coating procedure involves

physical vapor deposition from a tungsten basket in a Varian VEIO belljar operating at

below atmospheric pressure (i.e. typically 10-210-5 torr).

Purposes of making replica:

- Permanent record of bit condition after each test,

- No concern of missing of data during tests,
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- It makes easier to compare the bit profiles at the same time beside each other (for

different experiments),

- It is easier to place it under microscope due to size restriction,

- No problem with high power microscope touching the lens and damage it (plastics

or resins are less likely than diamond and metal to scratch optic glasses),

- However, replicas do not reproduce color, such as the different colors of diamond

and matrix,

- Also, some defects, in particular due to small air bubbles, do appear on some

replicas, which must be ignored. In most cases enough useful information is

gained from the rest of the replica.

3.3.2. Indentation

Another beneficial technique is indentation on the teeth of the bit to have a reference

mark for future study and measurements. It depends on which side of bit face it is located:

side, end, or water way. Next few images show the place of indentations on different

sides:

Figure 26. Indentation on water ways of coring bit
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Figure 27. Indentation placed on End face

In the above pictures, some of the different places for indentation are shown, the most

important one is water ways which can help in finding profile change and also length

change.

There are two possible ways to make an indentation on bit: using center punch and

hammer or using electro discharge machining (EDM). Above pictures all the indentations

were produced by center punch easily. In the case of narrow and very precise

indentations, EDM is better and more accurate.

3.4. Full face bit measurement types

Two possible ways for measuring wear of full face bit are length measurement which is

described in section 3.2.1 and optical microscopy for study on diamonds shape and length

measurements.
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It was not possible to use lab's weight balance because the weight of the bit exceeded the

range and continued study on individual and groups of diamond.

Figure 28. Pictures from full face bit; top: end face, bottom: side view

Figure 28 shows pictures were taken from different views of the full face bit. Protruded

diamonds cut the rock and produce cuttings. Cuttings wear away the matrix. Ridges

behind the diamonds on the bit surface are often referred to as "comet tails" caused by

flowing media which contains cuttings.
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3.5. Coring bit measurement types

The weight of the coring bit was low enough for it to be weighed on our most sensitive

balance. For coring bit, two methods of pictures using optical microscope and weight

measurement were used. Before and after each experiment the weight of cleaned bits was

measured (Figure 29) and some pictures from real bit face (Figure 30) were taken.

Experience showed that pictures from real bit show better image of diamond than

pictures from replicas.

Figure 29. Bit weight measuring Figure 30. Surface analysis, taking pictures using

microscope
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Chapter 4

Experimental Investigation

4.1. Experimental setup (Drilling Machine)

For an accurate wear study, all the drilling conditions and materials (samples) used

should be recorded completely. The experimental drilling system (rig) was used for the

experiments (Figure 31).

Figure 31. Experimental drilling system (Heng et al. 2010)
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Experimental drilling facility of the VARD project is built up from a Milwaukee 4079

electrical powered coring drill rig. The rig has two rotary speeds: 300 and 600 RPM. The

drill and motor assembly travels along a guide rail. A weight is suspended on a wheel at

the side instead of the original handle bar, as the source of constant weight on bit (WOB).

Different sensors and transducers were attached to drill rig to measure all drilling

parameters. Digital flow meter is attached to record flow rate during experiment. Both a

digital and an analogue pressure gauge are attached on drilling device to measure the

pressure on top of bit. Other devices were available to measure the vibration amplitude,

Rap, and WOB.

The impregnated diamond bits are driven by the motor. An electromechanical axial

shaker (magnetic) is mounted at the bottom of the drill stand as the vibration source. The

test specimen was placed and held on a steel plate fixed on the shaker. The shaker is

operated under different values of frequency and amplitudes. For all of the experiments

the frequency of 60 Hz was used. The shaker controller has power levels marked from 0

to 60 by increments of 10 (arbitrary units). Levels from 10 to 30 were used. Due to

limitations of the drill rig frame, the maximum possible hung weight is around 10 kg for

non-vibration drilling, but for vibration drilling it is around 5 kg.

Two different types of diamond impregnated bit were used: full face bit and coring bit

(Figure 17 and 18). Full face bit has 116 mm length and 48mm diameter at head with

1078 g weight. The coring bit has the length of 41 Omrn with 25mm diameter (I inch) and

540 gweight.
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Equations convert hung weight to WOB. Different hung weights were used and WOB

was measured by load-cell with the following equation obtained from that data (Heng et

al. 2010):

WOB(kg) = 27.26 + 16.82*Hung weight(kg) (Equation I. WOB-Hung weight

conversion for coring bit)

WOB(kg) = 28.83 + 16.82*Hung weight(kg) (Equation 2. WOB-Hung weight

conversion for full face bit (Heng et al. 2010)

4.2. Sample preparation

Three different types of concrete samples were used, as analog for rock, in all of the

experiments. One was made with quick setting concrete and the other two are made from

aggregate and type 10 Portland cement. The aggregate was sieved to include only sizes

less than 2mm.

Type 0 of samples were made for full face bit experiments. The drill specimens were

made from mixture of following combination of cement, aggregate, and water: the ratio

was 36.5%, 38.7% and 24.8% respectively. The sample has reached to 50.7 MPa at the

day 28th after curing. The samples were prepared 2 months before the drilling

experiments. At the day of the full face bit drilling test, the samples reached 57 MPa UCS

value on average (Heng et al. 2010).

Other samples were made from Quikrete Portland cement type 10. The samples were

cured in 100% relative humidity for a month to achieve the highest possible strength

value. To ensure 100% relative humidity, all of the samples were submerged in water,

after initially setting for 20 hours, according to the ASTM standard ASTM C873. Table I
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shows the ingredients and UCS (unconfined compressive strength) values at the standard

time test of 7 and 28 days. Two more tests after two months for type A concrete were

done. The results are 46 and 48 MPa.

Type 0

ate Mass
Cement Mass

Water mass
ClAgg 36.5
W 38.7
UCS7days 24.8
UCS28d SO.7

Table I. Concrete sample specification

4.3. Full face bit experiments

4.3.1. Introduction

Some preliminary tests were done on full face diamond impregnated bit (Figure 32) with

and without vibration to get some guidance for designing more efficient main experiment

runs. Five experiments were done with concrete samples with total drilling length of 1.5

meter, some with and some without vibration. The results just show only a little wear on

matrix at some edges and some wear on diamonds.

This is the first time we used a bit for a laboratory drilling range depth as large as 25 em.

Full description of the experiments is in the next section (4.3.2).

47



Figure 32. Full face bit (www.boartlongyear.com. 2011)

For this study, we chose different places of bit to be photographed and examined during

experiments. Figure 33 shows the location and names given to these areas.

area between center and edge

Figure 33. Bit areas (locations and names)
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4.3.2. Experiment runs

Five experiments were done. Full experiments conditions are in the table below:

Table 2. Full face bit runs

Vibration Length of Flow
Exp. # WOB(kg) RPM Level run(cm) rate(galfmin) ROP(mm/min)

1 197 600 a 25 3 5.3

2 113 600 20 25 1 7.12

3 113 600 20 25 3 ---

4 113 600 20 25 3 7.13

5 113 600 a 25 3 1.91

In the next section, pictures from different selected places will be compared to show the

change in matrix and diamonds after each experiment.

4.3.3. Results and Discussion

For the wear study, some different parts of the bit face are analyzed in this section. Six

photos were taken from different parts of bit for comparison. Figure 34 is a surface before

experiment I. All the subsequent pictures are after the experiment mentioned. All the

pictures show no significant change after several experiments. In all of these pictures, the

surface as matrix and diamonds on it didn't change. No more diamonds appeared due to

matrix wear, and also not much in the way of significant comet tails appeared.
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Figure 34. Before Exp. 1 Full face bit

Figure 36. Exp.2 Full face bit

Figure 38. Exp. 4 Full face bit

Figure 35. Exp. 1 Full face bit

Figure 37. Exp. 3 Full face bit

Figure 39. Exp. 5 Full face bit

Pictures from leading edge are attached below with 50 times magnification for

comparison in this area of the end face of the bit. ln these pictures, it is possible to look at

diamonds in more detail because of higher magnification. No significant wear was from

experiment I to the last experiment 5.
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Figure 40. Before Exp.!

Figure 42. Exp. 3

Figure 44. Exp. 4
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Figure 4!. Exp. I

Figure 43. Exp. 3

Figure 45. Exp. 5



Pictures were taken from edge of the bit (with 50 times magnification):

Figure 46. Before Exp. 1

Figure 48. Exp. 2

Figure 50. Exp. 4
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Figure 47. Exp. 1

Figure 49. Exp. 3

Figure 5.1. Exp. 5



Pictures were taken from the area between edge and center of bit (36 times

magnification);

Figure 52. Before Exp.l

Figure 54. Exp.2

Figure 56. Exp. 4
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Figure 53. Exp. 1

Figure 55. ExpA

Figure5? Exp. 5



Pictures from the center of bit (36 times magnification):

Figure 58. Before Exp. I

Figure 60. Exp. 2

Figure 62. ExpA
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Figure 59. Exp. I

Figure 61. Exp.3

Figure 63. Exp. 5



Over most of the matrix surfaces and for most of the diamonds in pictures 34 to 64 it is

difficult to see any wear. The main reason is low WOB because of drill rig load

restrictions. Looking in more detail a little wear on diamonds individually can be seen

somewhere in the center of the bit (Figure 64). The type of wear is mostly pull out. Main

reason for this wear is higher work for individual diamonds than the ones at more

distance from center.

Figure 64. Center of full face bit, diamond pull out

Replication was tested in this study; the result is acceptable. Figure 65 and 66 compare

the images which were taken from real bit at left and replica at right for the same portion.

1'1. 1' f :~ \.tl.:\A '\' , . \\
II • ' 'l\. ~:;ftj,~,. ',ti

1mm
1-----1

Figure 65. Leading edge, left: real bit; right: replica (50X magnification)
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Figure 66. Center of bit, left: replica; right: real bit (36X magnification)

In both of the pictures, the replica shows an accurate copy of real bit. However, it's better

to use the pictures from real bit, if we want to study individual diamonds because of

better light reflection from the real bit than replica made material.

The experiments described with the full-faced bit resulted in very little wear and change

in the surface structure. Limitations in time and available samples prevented the use of

longer runs. The accuracy and value of taking replicas of the bit surface was, however,

confirmed. The low wear rates are due to tlie low bit pressures possible; higher bit

pressures were possible with coring bits.
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4.4. Coring bit experiments

4.4.1. Introduction

Different kinds of experiments were done on coring bits. The reason we moved from full

face bit to coring bits was the lower contact area of one inch coring bit in comparison to

full face bit. Apparent contact area of coring bit is around 170 mm2 in comparison to

850mm2 for full face bit. Moving from full face bit to coring bit could increase

significantly the bit pressure up to 5 times. This should make it possible to reach the

founder point on WOB/ROP diagram. The founder point is simply defined as the highest

ROP which after that point increasing WOB could results in declining of ROP. This

phenomenon happens due to insufficient flushing processes.

Li Heng's experiment showed for the full face bit, that we couldn't reach maximum ROP

using this drill rig (Figure 67).

'"0.014+------------------'~--

!0012+-------------~----
8
iii 0.01 +-----------+--7£--------

jO.OO8+---------~---------

~0.008+------~f-----------

if O.OO4 +------r-=---------------

O+----+----+--------jf--------+----+------+--~

o
WB(kg)

Figure 67. Plot ofROP vs. WOB (Heng et al. 2010)
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Experiments with I inch coring bits were divided into 3 main sections: vibration/non

vibration drilling, RPM tests, and pressure and flow rate tests. For all of these categories,

each time 104 pictures from different places of bits were taken; more than 1700 pictures

were taken with the optical microscope for wear study. Replication method was also used

to ensure recording all information after each drilling run.

4.4.2. Vibration and non-vibration experiments

Three main sequences of experiments were done: Series l(initial tests), Series 2, Series 3

(main experiments). Series I consists of some initial experiments on two new bits to find

out the effect of vibration on new unused bits. In Series 2, some similar experiments as

first run were done to confirm the results; the third Series was done with guidance from

results from Series I and 2 with modified set of experiments on four bits instead of 2 as

Series I and 2.

4.4.2.1. Series 1 (Initial Tests)

4.4.2.1.1. Series 1. Tests without vibration

This set of experiments was done with a new bit. The goal of this set of experiments was

to find the founder point and the effect of drilling depth on ROP. The ues of concrete

samples used for these experiments was 46 MPa. All the tests were done with the flow

rate of II litre/min. The following tables (3-5) show all the experiment details. Three sets

of experiments were done. First set of experiments (Test I) were done to find the founder

point, second set of experiments (Test 2) to find the effect of depth on ROP, and third or

last set (test 3) to confirm the results of Test I. Test I and 3 were plotted together for

better comparison.
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Table 3, Test I shows tests involved in an increasing was over each 40 mm of run to

find the founder point.

Table 3. Series I Test 1 (without vibration)

Length of Depth(mm) RPM WOB(kg) ROP(mm/sec)
run(mm)

40 -40 600 60.9 1.08
40 -80 600 77.72 1.67

40 -120 600 94.54 2.00
40 -160 600 111.36 1.79

40 ·200 600 102.95 1.54
40 -240 600 102.95 1.95

Table 4, Test 2 shows the experiments with constant was to find the effect of depth

(possibly due to fluid pressure change at bottom) on Rap. Table 5 shows repeats of

experiments of Table 3 of Series1 to see the effect of profile change after some drilling.

Table 4. Series I Test 2, Constant was (without vibration)

Length of WOB(kg) WOB(kg) ROP(mm/sec) Depth(mm)
run(mm)

40 102.95 600 102.95 2.22 -40
40 102.95 600 102.95 2.27 -80

40 102.95 600 102.95 2.63 ·120
40 102.95 600 102.95 2.33 -160
40 102.95 600 102.95 2.33 ·200
40 102.95 600 102.95 2.29 -240

The results of Test I and 3 are plotted in Figure 68. This plot shows the effect of profile

change through experiments under same conditions other than different profiles. SetI was

with an unused bit, but Test 3 was performed with V-grooved profile shape. Higher Rap

was obtained from V-Grooved shape of profile rather than an unused bit of Test I.
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Table 5. Series I Test 3 (without vibration)

Length of Depth(mm) WOB(kg) ROP(mm/sec)
run(mm)

40 -40 600 60.9 2.48

40 -80 600 77.72 2.53

40 ·120 600 94.54 2.61
40 -160 600 111.36 2.33

40 -200 600 98.745 2.56
40 -240 600 102.95 2.56

Table 5 and Figure 69 show the experiments of Test 2 done to find the effect of depth on

ROP. Except the third measured data for the depth of 120mm, which seems to be odd, the

rest of points show an optimum point of drilling at the depth between 160 to 200 mm.

Series 1, Test 1 &3

...

. •
•
•

80 90

WOB(kg)

0.00 L.......- _

50

Figure 68. Run 1, Tests 1&3 (without vibration)
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Series 1, Test 2, Constant WOB
o r-------------

_502.1-':~~ _

•
•

•.
ROP(mm/sec)

Figure 69. Series1, Test 2, Constant WOB - (without vibration)

4.4.2.1.2. Series 1. Tests with vibration

Experiments were repeated as previous ones in Series I, Tests 1 and 3, which were

without vibration, but this time with a vibration to consider the effect of vibration on

Rap. The following tables (6-8) show the details of the experiment for vibration drilling:

Table 6. Series I, Test 1 (with vibration)

RPM WOB(kg) ROP(mm/sec) Depth(mm) Vibration
level

1.80 -40
2.30 -80

2.50 -120
2.86 -160

2.86 -200
2.76 -240
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Table 7. Series 1, test 3 (with vibration)

RPM WOB(kg) ROP(mm/sec) Vibration Depth(mm)
level

2.63
3.28

2.82
1.94

2.09
2.02

Series 1, Test 1 & 3

20
20

20
20

20
20

-80

·120
-160

·200
-240

]' 3.00 f-------~-~,.__

j 2.00 I------~~-------
~
~ 1.00 f------------

60

WOB(Kg)

Figure 70. Series 1, Test 1 &3 (with vibration)

The difference here for vibration driHing is faster speed of change in profile shape of

teeth of the bit. This causes change in ROP during test 3, the third run of experiment

(Figure70). Test 3 shows a higher ROP in initial runs, up to 100 kg, but in the foHowing

experiments the ROP decreased significantly because of profile change to flat end. A

general tentative conclusion from these experiments shows more wear on the bit with

vibration. Other experiments with vibration, conducted in the same way as previous ones

without vibration shows more scattered data in comparison with non-vibration drilling,

but except for one odd data point at 150 rom depth the trend is almost the same and the

maximum ROP occurs at the depth between 150 to 200 mm (Figure 71).
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Table 8. Series I , Test 2 (with vibration)

Length of RPM WOB(kg) ROP(mm/sec) Vibration Depth
run(mm) level (mm)

40 600 102.95 2.76 20 -40
40 600 102.95 2.92 20 -80

40 600 102.95 3.08 20 ·120
40 600 102.95 2.61 20 -160

40 600 102.95 2.82 20 ·200
40 600 102.95 2.76 20 -240

Depth with constant WOB
0.-------------

_502. 0 2.60 2.70.2.80

•I -100 1-----------.-

~ -150 1-------..,----------

Q -200 1------...-------.
ROP(mm/sec)

Figure 71. Series I, Test 2, Constant WOB (with vibration)

4.4.2.1.3. Comparison of vibration and non-vibration drilling

For better comparison, pictures were taken during each set of experiments (test I, 2, and

3). In left hand side, pictures from non-vibration drilling are collected and on the right

side, vibration drilling pictures were collected. Pictures below show end face view of the

bit.
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Non-vibration drilling Vibration drilling

Figure 72. New bit

~. ~~

'.' . .. .~ '''.. . < ... - '.~,"-~
". . .~.,

Figure 73. After Test 1 and 2

Figure 74. After Test 3
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Comparison of wear in the side face of the bits between two modes of drilling:

Non-vibration drilling Vibration drilling

Figure 75. New bit

Figure 76. After Test 1 & 2

Figure 77. After Test 3
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End face pictures show more wear in vibration drilling, but side face pictures show no

significant wear on bit teeth.

4.4.2.1.4. Discussion-of Series 1 experiments

The profile of the coring bits changed quite quickly as a bit wears, particularly initially,

and the experiments showed that profile shape affects Rap. This means that as drilling

proceeds there is no steady state, i.e. a constant profile. There is no unique value of Rap

at a given was or a constant relationship between Rap and was, at a given RPM and

hole depth. This is true for drilling without vibration as well as drilling with vibration

(Figures 68 and 70). This was true even for the short drill runs conducted in this study,

particularly with vibration, as profiles changed rapidly when drilling was done with

vibration. Figures 72 to 77 show this profile shape change due to considerable matrix

Figure 72 shows the V-grooved shape of the surface of the unused bits; diamonds are

only evident and in focus along the sharp inner and outer edges. As the edges wore, more

of each surface is in focus; most of all in Figure 74 for the bit used in with vibration.

Little change, i.e. little wear, was observed on the side faces, Figures 75 - 77. Note the

clear comet tails in all the photographs, these resulted evidently from a polishing process

at the manufacturer.
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4.4.2.2. Series 2 (Repeating Experiments)

The second series of experiments were done to confirm the results of first series (Series

1). In order to achieve this, the experiments started with minimum WOB and finished at

maximum WOB in test 4 and vice versa for test 5. One bit was just used for non-vibration

and another one for vibration drilling. All experiments were done with 600 RPM and

40mm length of drilling with initial water pressure at the entry to the drill rig of 5 psi. In

test 4, at every 40 mm intervals, the WOB increased to the one after founder point which

was found in previous experiments. Test 5 started from surface of same concrete sample,

but in reverse order of WOB (from high to low). The results show overall lower ROP in

test 5 compared to test 4 which could be due to bit wear and the effect of profile change

(Figure 78).

Table 7. Series 2, Test 4, without vibration Table 8. Series 2, Test 4, vibration drilling
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Table 9. Series 2, Test 5, without Vibration Table 10. Series 2, Test 5, Vibration drilling

Test 5 Without Vibration TestS Vibration
ROp(mm/sec) Depth(mm) ROp(mm/sec) Vibration

level
2.42 -40 2.67 20
2.67 ·80 2.48 20
2.68 -120 2.25 20
2.47 -160 2.35 20
2.12 -200 2.86 20
2.20 -240 2.47 20

80 90

WOB(kg)

Plots (Figures 78 and 79) show previous information better for the experiments.

Series 2, Test 4&5, without Vibration

•
•

•
•

1.50 L..- _

50

Figure 78. Series 2, Test 4&5, without vibration
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80 90

WOB(kg)

Series 2, Test 4&5, Vibration drilling

• •
• Test 5

•
1.50 '---------------

50

Figure 79. Series 2, Test 4&5, vibration drilling

The plots above (Figure 79) show scattered data and not very well organized; the possible

reason for that could be change in profile shape and it follows change in Rap values

significantly.

Clearly, in each case: the two sets of runs with no vibration, Figure 80 to 83, and the two

sets with vibration, Figure 82 to 83, the data do not match well. It would appear that the

best conclusion in the case of no vibration is a trend towards higher Rap with increasing

WaH and a founder point had not be reached, while with vibration a founder point was

reached above which there is a trend towards lower Rap with increasing WaH, with

much scatter in the data. However, an alternative explanation is that change in profile or

other effect of wear does affect the dependence of Rap on WOB, and possibly that effect

differs when there is vibration compared with no vibration.
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Photos before and after these experiments of bit profile and end face could easily how

this wear. Photos for Tests 4 and 5 for non-vibration drilling, for different segments on

the bits follow:

Figure 80. Series 2, Test 4&5, before experiments, Npn-vibration

Figures 80 to 81 for non-vibration drilling show not very much wear on bit. The bit after

test 4 was going to flat end situation from V-grooved shape. The results show better ROP

for the V-grooved than an unused bit with very sharp edges. In the Test 5, bit again starts

transition from V-grooved to flat end; this changes the ROP for test 5 for the final

experiments (Figure 78). Note that the inner edge (towards the bottom of the picture) is

higher than the outer edge.
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Photos for vibration drilling for the tests 4 and 5:

Figure 82. Series 2, Tests 4&5, vibration drilling

Figure 83. Series 2, Tests 4&5, vibration drilling

The above pictures (Figures 82 to 83) show the latest step in transition from V grooved to

flat end face. It is interesting that the latest step is wear on inside edge to reach a

complete flat end face. This changes the plot of ROP vs. WOB significantly. Note that it

takes more drilling length to reach a flat end shape in non-vibration drilling than in

vibration drilling.
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4.4.2.3. Series 3 (Main Experiments)

4.4.2.3.1. Introduction

The possibly significant effect of bit profile and profile change was realized after the

experiments of Series 1 and 2. Series 3, the main experiment, was designed using the

experience of the previous series. Four bits were used to perfonn all of the experiments.

Main goal of this series of experiments is to find accurately the effect of profile change

and vibration both on ROP and wear rate. At this point it was realized that the profile

shape of the impregnated diamond coring bit can be categorized in four major shapes of:

Unused (new), V-grooved, flat end, and rounded edge illustrated in Figures 84 to 87.

Figure 84. Unused bit

Figure 86. Rounded edge

Figure 85. Flat end

Figure 87. V- Grooved

Experiments were designed to show the effect ofthese profiles shapes completely. Three

sets of test in this run were perfonned. Next sections show the tables and results of all of

the experiments and the last section is a discussion of the results.
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4.4.2.3.2. Series 3, Test 1

In this test the focus is mainly on ROP for different bit profile and vibration/non

vibration drilling. The four bits were used in different conditions as below:

Bit 1 and 2: Flat end profile

Bit 3 and 4: V-grooved profile

Figure 88. Bit 1 - Flat end

Figure 90. Bit 3 - V-grooved

Figure 89. Bit 2 - Flat end

Figure 91. Bit 4 - V-grooved

Tables II - 14 show the the Test 1 conditions on all four bits separately. Figure 92 shows

the results in plot of ROP versus WOB. Bit I and 2 are in same initial condition of flat

end profile. One of them (Bit 1) was used for non vibration drilling and the other one

(bit2) was used for vibration drilling to check the effect of vibration on same profile. Bit

3 and 4 had similar profile conditions of V-grooved. Bit 3 was used for non-vibration
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drilling and bit 4 was used for vibration drilling. A new (shallow) hole was drilled in each

Table II. Series 3, Test 1- Bit I

ROP(mm/sec) Depth WOB(kg)

2.25 0-10 60.9
2.33 0-10 111.36
2.70 0-10 77.72
2.33 0-10 102.95
2.63 0-10 94.54

Seq.

Table 12. Series 3, Test I - Bit 2

length Vibration ROP(mm/sec) Depth WOB(kg) Seq.
of level
run(mm)

100 20 2.16
100 600 20 2.00
1 20 2.63
100 600 20 2.44
100 600 20 2.02

Table 13. Series 3, Test I - Bit 3

length of RPM Vibration ROP(mm/sec) Depth WOB(kg) Seq.
run(mm) level

100 600 1.30 0-10
100 600 2.13 0-10

100 2.13 0-10
100 600 2.38 0-10

100 600 2.62 0-10

Table 14. Series 3, Test I - Bit 4
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Length RPM Vibration ROP(mm/sec) Depth WOB(kg) Seq.
of level
run(mm)

100 600 20 1.61 0-10 60.9
100 600 20 2.44 0-10 111.36

1 2.45 0-10 77.72
100 600 20 2.55 0-10 102.95

100 600 20 2.76 0-10 94.54

For the test I, the water inside the coring bit caused incorrect reading of weight of the bit.

This was a good experience to dry out completely the bits after experiments to have

accurate weight measurements.

Series 3, Test 1

.Bit2.Flat,Vib

ABit3.V

XBit4. V, Vib

Figure 92. Plot ROP vs. WOB, Series 3 - Test I

Above plot shows the results of ROP for all the bits. If we just want to consider the effect

of vibration, we should compare bits I and 2 (Flat end), to 3 and 4 (V-grooved) together.

Bits 1 and 2 show almost same ROP; it means that for flat end profile, vibration and non-

vibration drilling give almost same ROP results. Considering bits 3 and 4 for V-grooved
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profile shows a higher ROP for bit 4; it means that for this profile vibration drilling is

faster than non-vibration drilling. Bits 3 and 4 ( V-grooved profile) had better ROP at

higher WOB than flat end (bits 1 and 2).

At low WOB the flat profile produced the higher ROP, The maximum ROP was about

the same for all four bits, but the WOB for the maximum ROP was higher for the V

profile than for the flat profile. At high WOB, above the maximum, the ROP was about

the same for both profiles. Taking the foregoing into account there was little consistent

difference between ROP with and without vibration for bits with the same profile.

It should be noted that all these runs were done at very little hole depth. These

conclusions may not hold for drilling at some depth. In normal practice any drill bit will

be worn once some depth is reached, and the type of coring drill used for this work would

in any event not have a V profile, but either a flat or round profile.
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4.4.2.3.3. Series 3, Test 2

Test 2 was designed to see the effect of another profile shape, the rounded edge. In this

study, the weight loss of the bit was also considered to also compare different drilling and

bit conditions for wear rate. Pictures in Figures 98-101 show bit profiles.

Bit I: Rounded edge profile

Bit 2: Flat end profile

Bit 3 and 4: V-grooved shape

Figure 93. Series 3, Test 2 - Bit I

Figure 95. Series 3, Test 2 - Bit 3

Figure 94. Series 3, Test 2 - Bit 2

Figure 96. Series 3, Test 2 - Bit 4
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Tables 16-19 show the full details and results of each drilling experiments for all the four

bits separately. Bits 2 and 3 were used with vibration, bits I and 4 with no vibration. Note

the sequence of the hung weightslWOB values used.

Table 15. Series 3, Test 2 - Bit I

Length of ROP(mm/sec) Depth Vibration weight Seq. WOB(kg)

run(mm) Level change

100 600 2.23 0-10 0 0.059 69.31
100 600 1.92 0-10 0 0.058 102.95

100 600 2.12 0-10 0 0.064 77.72
100 600 1.85 0-10 0 0.029 94.54

100 600 2.17 0-10 0 0.022 86.13
Table 16. Series 3, Test 2 - Bit 2

RPM ROP(mm/sec) Depth Vibration weight Seq. WOB(kg)

Level change

2.2a 0-10 20 0.105 69.31
2.40 0-10 20 0.076 102.95

2.48 0-10 20 0.071 77.72
2.38 0-10 20 0.053 94.54

2.44 0-10 20 0.088 86.13

Table 17. Series 3, Test 2 - Bit 3

Length RPM ROP(mm/sec) Depth Vibration Weight Seq. WOB(kg)

of Level change
run(mm)

100 600 2.50 0-10 20 0.257 60.9
100 600 3.12 0-10 20 0.138 102.95

100 600 2.90 0-10 20 0.15 77.72
100 600 2.08 0-10 20 0.078 111.36
100 600 3.28 0-10 20 0.09 94.54

Table 18. Series 3, Test 2 - Bit 4

RPM ROP(mm/sec) Depth Vibration weight Seq. WOB(kg)

Level change

0-10 0.093 60.
0-10 0.071 102.95
0-10 0.05 77.72
0-10 0.039 111.36
0-10 0.038 94.54
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Series 3, Test 2
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Figure 97. ROP VS. WOB, Series 3 - Test 2

Series 3, Test 2 (weight loss)
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Figure 98. Weight loss vs. WOB, Series 3 - Test 2

+Bitl.rounded

.Bit2,Flal

ABit3.Vloflal, Vib

XBit4,VloFlat.Vit

+Bitl.rounded

.Bit2,Flal

ABit3,Vloftat,Vib

XBit4,Vloftat,Vib

The upper plots of results, Figure 97, show the: effect of different conditions on ROP and

the lower plots, Figure 98, the effect of different conditions on weight loss. From Figure

97, it is easy to see the effect of profile on ROP. The highest ROP was with the bit with
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v- grooved shape, in the middle is flat end, and the lowest ROP was with a rounded edge.

Of course, the vibration should be considered, but the V-grooved shape for non-vibration

drilling shows better ROP than the flat end bit at some WOBs. The difference between

the V-grooved bit in these experiments and that in Test 1 is more contact area at the two

flat surfaces around the V area (Figures 99 and 100). This difference could be a possible

reason for more ROP in Test 2 than in Test I.

Figure 99. V-grooved at Test 2

Figure 100. V-grooved at Test I
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The WOB for the optimum (highest) ROP was higher for the V profiles than for the

rounded ones with Bit 3 producing, with vibration, the highest ROP of all the bits at the

optimum. That was also the last run in the set for that bit. This bit also showed the

steepest rise in ROP with increasing WOB up to the maximum and then the steepest drop

in ROP above that. Bit I, with a round profile and no vibration had the lowest ROP

values, with a trend towards lower ROP, by a small amount, with increasing WOB.

Figure 98 shows data from the same experiment as figure 97 but for weight loss instead

of ROP. In this plot, bit 3, the one with highest ROP, has the most weight loss; after that

come from bits 2, 4 and I in order of decreasing weight loss. The bit with lowest ROP

makes lowest wear or weight loss. In general, vibration made around 2 times more wear

rate than non-vibration drilling for V-grooved profile. An interesting point is the trend of

the data of this plot, which is for all of them declining at higher WOB values.

4.4.2.3.4. Series 3, Test 3

The main goal of Test 3 is to check the effect of different vibration amplitudes on ROP

and weight loss. In the previous experiments vibration level 20 were used. In this set of

experiments vibration levels of 10 and 30 were performed. The amplitude of vibration is

also by Wos. In this study, the average value of that is considered for each vibration

level. Vibration level at level 10 power produced a 0.38mm average amplitude, and

vibration power level 20 and 30, respectively, produced average amplitudes of 0.48 and

0.58mm.
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Pictures in Figures 101 to 104 show the initial bit profile condition:

Bit I and 2: rounded edge

Bit 3 and 4: transition from V-grooved to flat end

Figure 101. Series 3, Test 3 - Bit 1

Figure 103. Series 3, Test 3 - Bit 3

Figure 102. Series 3, Test 3 - Bit 2

Figure 104. Series 3, Test 3 - Bit 4

Bit I and 2 started with the same profile, rounded edge. In order to achieve the best

results, bits 1 and 2 were used with same drilling conditions with just a difference in

vibration level (10 and 30). The same was true for bits 3 and 4 because they had the same

profile, in this case transition from V-grooved to flat end.

Following tables (19-22) show the detail and results of experiments.
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Table 19. Series 3, Test 3 - Bit 1

RPM ROP(mm/sec) Depth(mm) Vibration Seq. WOB(kg)

level

0-10 10

0-10 10 0.05

0-10 10 0.062

0-10 10 0.071

0-10 10 0.081

Table 20. Series 3, Test 3 - Bit 2

Length of RPM ROP(mm/sec) Depth(mm) Vibration Seq. WOB(kg)
run(mm) level

100 600 3.13 0-10 30

100 600 2.58 0-10 30

100 600 2.90 0-10 30

100 600 2.66 0-10 30

100 600 2.86 0-10 30

Table 21. Series 3, Test 3 - Bit 3

ROP(mm/sec) Depth(mm) Vibration Weight Seq. WOB(kg)

level change(g)

2.92 0-10 10 0.086

2.82 0-10 10 0.051

2,74 0-10 10 0.136

2.50 0-10 10 0.11

2.70 0-10 10 0.102

Table 22. Series 3, Test 3 - Bit 4

Length RPM ROP(mm/sec) Depth(mm) Vibration Weight Seq. WOB(kg)
of level change(g)
run(mm)

100 600 2.47 0-10 30 0.149 60.9
100 600 2.65 0-10 30 0.122 111.36

100 600 3.25 0-10 30 0.196 77.72
100 600 2.86 0-10 30 0.082 102.95

100 600 3.45 0-10 30 0.113 94.54
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Figures 105 and 106 show plots of ROP and weight loss versus WOB for above

experiments. The highest ROP was from bit 4; the reason is simple: higher vibration

amplitude and better profile shape (transition from V-grooved to flat). The next highest

ROP is for bit 2 with the same vibration amplitude but not very good profile shape

(rounded edge). In general, higher vibration amplitude show better ROP result and

profiles with shape closer to V-grooved show better ROP result (Figure 105).

Series 3, Test 3

-----1--

~
~ 2.50

Q:"
li1 2.00

1.00 I-- f-
50 80 90

WOB(kg)

---1-----1

-I-----l
-I

Figure 105. Series 3, Test 3 - ROP vs. WOB

Figure 106 shows weight loss for the test 3. Bit 4 the highest weight loss and bit 2, the

second highest. Bit 1 and bit 3 shows lower weight loss; of course, the reason is lower

vibration power. At higher WOB the data were scattered more; the reason could be

higher load on shaker table and ensuing lower vibration amplitudes.
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Figure 106. Series 3, Test 3 - Weight loss vs. WOB
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All the bits except bit 4 show almost same Rap vs. WOB, and Rap reducing with

increasing WOB. Bit 4, with vibration level 30, showed a peak Rap at about 90 -95 kg of

WaR The higher vibration level (level 30) results in the higher weight loss. Figure 106

shows above 77 kg of WOB, increasing of WOB results a trend in of declining weight

loss.

85



4.4.3. Experiments on the role of RPM

4.4.3.1. Introduction

Some experiments were done to analyze the effect of different RPM as well as vibration

on the wear rate of impregnated diamond coring bits. Previous tests were done at 600

RPM, but in this set of experiments two rotary speed of 300 and 600 were used. The

other conditions such as hung weight and water flow rate were same as previous runs. For

better understanding of wear rate on the bit with and without vibration drilling, designed

tables of experiments were used to also consider the effect of profile change. Experiments

were designed to have minimum profile change effect to avoid any further problems.

Length of run was changed from 100 mm to 70 mm to reduce the effect of profile change

on RPM and also wear rate. Two new bits were used, and both were first run-in to a depth

of 70 mm, to achieve a stable profile. Runs were also shortened from 100 mm to 70 mm

to reduce the profile change during runs. A WOB of 1205 kg was used in all the runs.

With each bit the rpm alternated in the sequence of runs, the first run at 300 rpm with bit

A, and starting with 600 RPM with bit B. With both bits all the runs were without

vibration, except runs 3 and 4 which were at vibration level 20.

4.4.3.2. Table of Experiments

For these runs, two new unused bits (bits A and B) were used. They were conditioned

first by drilling to a depth of 70mm without vibration with 4.5kg hung weight (103 kg

WOB) and 10 psi water pressure at the inlet to the bit before start of experiment

(pressures changed during drilling in relation to different depths).
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Table 23 and 24 shows detail and results of the RPM experiments.

Table 23. RPM tests - Bit A

Run Length of RPM ROP(mm/sec) Depth(g) Vibration Weight WOB
sequence run(mm) level change(g) (kg)

1 70 300 1.08 0-70 0 0.095 102.95
2 70 600 2.80 0-70 0 0.074 102.95

3 70 300 1.73 0-70 20 0.25 102.95
4 70 600 3.14 0-70 20 0.188 102.95

5 70 300 1.44 0-70 0 0.061 102.95
6 70 600 2.78 0-70 0 0.065 102.95

Table 24. RPM tests - Bit B

Run Length of RPM ROP(mm/sec) Depth(g) Vibration WOB(kg)
sequence run(mm) level

70 600 2.59 0-70 0
70 300 1.46 0-70 0

70 600 3.15 0-70 20
70 300 1.94 0-70 20

70 600 3.03 0-70 0
70 300 1.65 0-70 0

The experiments were designed in the way to understand the effect of both vibration and

RPM on bit wear, as well as on Rap, with runs at 300 RPM and 600 RPM, as well as

with and without vibration with the least possible effect of profile differences and change.

The RPM alternated in the sequence of tests. The order for bit B was the reverse of the

order for bit A. It is possible that RPM affects the profile change. For each bit the first

two runs without vibration should achieve the same profile change. There runs for each

bit was followed by two runs with vibration (run 3 and 4), and then by two more runs

without vibration (run 5 and 6). This makes it possible to compare the results for runs I

and 2. After vibration runs (3, 4), we again switched to non-vibration drilling. To

compare the effect of vibration the averages was taken of Rap and weight changes in run
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1 with bit A and run 2 with bit B and similarly for run 2 with bit A, run 1 with bit B. The

same procedure was followed for run 3 and 4 with vibration with the two bits.

Assuming that there is continuous change in profile on drilling progress, the profile

change should be same after runs I and 2; likewise, after runs 3 and 4, and runs 5 and 6.

Furthermore, it appears appropriate to compare the average of runs 1, 2, 5, and 6 with the

average of runs 3 and 4 to establish the effect of vibration compared to non-vibration.

Each run was to have the same depth on the same sample. The duration of each run

depends on the ROP.

Table 25 shows the different values of drilling time for each drilling conditions. The

numbers show the time elapsed for same drilling depth of 70mrn for each run. The values

are close to each other for different bit and sequences and it shows not very much profile

effect. In most of the set of data, e.g. with vibration at 600 rpm, the values are similar.

4.4.3.3. Results and Discussion

Table 25 lists the duration at each RPM and for both with and without vibration. The

values are close in each group. Table 26 lists the average values of ROP with each

condition.

Table 25. RPM data

300(RPM)

Vibration 40.5,36 (sec)
drilling time
(sec)

Non- 42.53,55,48.65,48
vibration
drilling time
(sec)
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Table 26. Average value ofROP for RPM tests

300(RPM)

Vibration 1.83 (mm/sec)
drilling-ROP
(mm/sec)
Non- 1.44
vibration
drilling-ROP
(mm/sec)

600(RPM)

3.14

2.79

Table 27 shows the values for wear in average weight loss for each drilling condition.

Table 27. Weight loss vs. RPM

300(RPM)

Vibration drilling- 0.185(g)
weight loss (g)

Non-vibration-weight 0.0885
loss (g)

600(RPM)

0.2065

0.0838

Figure 112 shows that ROP increases with increasing RPM, and it is almost the same

increase for both with and without vibration. Another plot (Figure 113) shows the weight

loss for both with and without vibration; more wear for higher RPM achieved in

comparison to 300 RPM. For non-vibration drilling, the trend is reverse; just a little lower

wear at 600 RPM than at 300 rpm.
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RPM vs ROP

Figure 107. ROP Ys. ROP

Weight loss vs RPM
(Constant drilling depth)

-------_.__•.._-----
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Figure 108. Weight loss YS. RPM
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4.4.3.4. RPM tests image analysis

Pictures from water ways show clearly the change in profile shape. For comparing

different RPMs and with/without vibration, pictures were placed beside each other.

For this, experiment one and three show good relative images of profile change for

non-vibration and vibration drilling with different RPM.

4.4.3.4.1. Non-vibration drilling photos

The result in the below picture is interesting, because it shows more wear on the outer

edge of the bit for 300 RPM. It proves the low flushing speed of water, which causes

debris to remain more in the contact area there and consequently more matrix wear.

Figure 109. Non-vibration drilling, 300 RPM, Left: before exp., Right: after expo

\!~~ ';\ ~ -
"t.. if..!":"· J.~ . .

. 
,"''''''''''

Figure 110. Non-vibration drilling, 600RPM, Left: before exp., Right: after expo
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4.4.3.4.2. Vibration drilling photos

The same thing happened with vibration drilling; more wear on the outer edge of bit in

comparison to inner edge because ofless flushing in 300 RPM than 600RPM.

Figure 111.Vibration drilling, 300RPM, Left: before exp., Right: after expo

Figure 112. Vibration drilling, 600RPM, Left: before exp., Right: after expo

4.4.4. Pressure and Flow experiments

4.4.4.1. Introduction

It was decided to do some experiments with coring bits to find the effect of different flow

rate and bottom hole pressure on bit wear. For this a cylindrical concrete sample was

specially designed to achieve the best possible measurements (Figure 113). Every time,

the pressure on top of the bit was measured via pressure transducers, but this design could

help to find the pressure at the bottom hole (pressure in contact area of bit end face and

rock). For this matter, another pressure transducer was attached to a plastic tube, and

92



when the bit drills through the plastic, the filled tube with water could transfer the

pressure to the pressure transducer.

Figure 113. Concrete Sample with special design

Figure 114 shows this design more clearly. A pressure transducer was attached to the

plastic tube which was placed inside the concrete sample. Before the start of experiments,

this tube was filled with water completely to prevent any possible mistake in reading

pressure data. This setup could show pressure at bottom hole during drilling.
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Drilling action

water supply

Rotating coring bit

I Pressure transducer

Figure 114. Bottom hole Pressure measurement

4.4.4.2. Experiments and results

Experiments were done to find the relationship between top, bottom pressure, and the

relationship to water flow rate. Water was the flushing media for all of drilling tests. The

flow rate and initial pressure on top of the bit was set by regulating the laboratory tap

water flow rate oflaboratory.

In total, 5 flow experiments were done. All of these experiments were done without

vibration and the same initial flow and pressure conditions. The initial flow rate was set

at 15 liter/min. When the experiment was started, the flow rate decreased and pressure on

top of bit increased. The key point is the pressure after a couple of centimeters reached
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the maximum available tap water pressure (50-60 psi) and the flow rate decreased to

around 3.8 liter/min. This shows the pressure drop is very high, and this causes

insufficient water supply power to maintain constant water flow rate to perform the

experiment.

Another set of experiments were done by using special concrete samples to compare

vibration and non-vibration drilling for bottom-hole pressure. The experiments were done

with initial flow rate of 11 liter/min, with 120 kg of weight on bit and 600 RPM. The first

2.5 s was performed without vibration, and the last seconds with vibration (Figure 114).

The pressure fluctuated but the average supply pressure did not change when vibration

was used.

Pressure vs. Time

i
~ 15

l

lime (..,c)

Figure 115. Bottom pressure vs. time (left side: non-vibration, right side: vibration)
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Chapter 5

Conclusions and Recommendations

5.1. Conclusions

It is well known that rate of penetration is a function of WOS and ROP. The work

reported here with embedded diamond coring bits focused also on vibration and included

a study of wear using both weighing and microscopy of the bit surfaces. Microscopy was

used on both replicas and directly on the bit surfaces. Replicas were found to be very

useful; providing the opportunity to show the bit surface at various stages of time.

For the vibration level used, vibration had a significant effect on bit wear, and wear

changed the bit profile. There was no steady- state profile shape in all experiments.

Profile change affects ROP and wear, and it must be taken into account in this kind of

study.

In all experiments, three main profile shapes appeared after some drilling in the sequence

of: V-grooved, flat end, and rounded edge. The highest ROP results were obtained with

V-grooved, decreasing in the order: unused, flat end, and rounded edge. Profile shapes

with sharper edges wore away more rapidly than flat or rounded profiles.

For choosing the best drilling condition, generally the V-grooved with non-vibration

drilling had a good drilling result; otherwise, in the case of drilling productivity

optimization for vibration drilling, it is best to look at both plots of ROP vs. WOS and
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Wear vs. WOB to find optimum WOB, considering both factors, and this depends on

vibration level.

Increasing RPM showed the same effect on the rate of penetration, but it caused higher

wear rate in vibration drilling and lower bit wear in non-vibration drilling. Weight loss

per drilling depth is less affected by RPM and not at all for non vibration.

As the vibration power is used, the factor by which vibration increases ROP is much less

than the factor by which the vibration increases weight loss per unit drilling depth.

In the limited range of depth and drilling times, the following observation were made that

drilling depth affects ROP.

There can be different WOB values for the optimum ROP depending on vibration. It is

possible to observe a decreasing ROP with increasing WOB, a situation which to be due

to a change ofprofile.

This work was also a test of techniques for studying wear, in particular in short drilling

runs usual in our laboratory studies ofROP and WOB relationships. A limited number of

runs were performed at each set of variables, and resulting in some scatter in the data.

5.2. Future Recommendations

Some tests were performed to find the effect of drilling flow rate and pressure. These

tests were incomplete because of restrictions with this drilling rig setup. The water supply

power was not enough to run the tests with sufficient flow rate to flush the cuttings very

well. Fluctuations on tap water supply also could play an important role on drilling

conditions; for example, changing the flow rate changes the pressure drops in the system,

97



including the bottom hole pressure which can affect the actual WaR In this case, the

recommendation is to use a separate water supply to have constant flow or pressure.

Profile shape can change Rap drastically. It is recommended for future studies to use a

bit with less effect of profile change in it. This might help to investigate in more detail

important factors like vibration.

For wear measurements, mostly weight loss and matrix shape were considered.

Diamonds play an important role in matrix wear and generally in total bit wear. Looking

more closely at diamonds individually could help to find the reason behind excessive

matrix wear in vibration. There was more pull out of diamonds in vibration drilling than

in conventional drilling. More consideration should be given to force per diamond or

average force on each diamond that could be useful in future investigation.

Future work should be designed with longer runs, more WOB, higher flow rates with

better control, and a wider range of RPM.
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