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Abstract 

In this research, the phase behavior of a lattice-based model for a classical two­

dimensional dipolar antiferromagnet on a square lattice is determined using Monte 

Carlo simulations. Four different systems are investigated, with the magnetic phase 

diagram for each system being established for both zero and finite temperature. 

The results are compared to earlier theoretical and experimental results on low­

dimensional magnetic systems. 

The first model is the Heisenberg system in which the three-dimensional clas­

sical spins interact through both nearest-neighbor antiferromagnetic exchange and 

long-range dipolar interactions. The magnetic phase diagram for this system was 

determined as a function of both Tlg and IJIIg, where Tis the temperature in units 

of 11 kB such that kB is the Boltzmann constant, J is the strength of the antifer­

romagnetic exchange interaction, and g is the strength of the dipolar interaction. 

At low temperatures, this phase diagram shows a dipolar planar antiferromagnetic 

phase for low values of I J I I g, and a simple perpendicular antiferromagnetic phase for 

large values of IJIIg. The reorientation transition value of the exchange interaction, 

J R (T), on the phase boundary separating these two ordered phases, shows only a 

weak dependence on temperature. The data also indicate that the dipolar planar 

antiferromagnetic phase separates into two distinct phases in which the orientation 

of the spins depends on the value of the I J I I g. 

The second model is the plane rotator system in which the two-dimensional 

classical spin rotors are confined to the plane of the system and interact through 

both nearest-neighbor antiferromagnetic exchange and long-range dipolar interac­

tions. The phase diagram of this system was constructed as a function of both T I g 

and IJIIg. The results for the plane rotator system are compared to the results ob­

tained for the Heisenberg system. This comparison clarifies the role played by the 



out-of-plane degree of freedom of spins in determining the structure of the dipolar 

planar antiferromagnetic phase. 

The third model is the anisotropic Heisenberg system with fixed K, (where K, is 

the strength of the planar magnetic surface anisotropy). In this system, the three­

dimensional classical spins interact through nearest-neighbor antiferromagnetic ex­

change and long-range dipolar interactions, as well as by a weak planar magnetic 

surface anisotropy (i.e., K, = -l.Og). Again, the magnetic phase diagram for this 

system was determined as a function of both Tlg and Illig. This phase diagram 

shows similar behavior to that of the Heisenberg system, except that there exists a 

range of IJII gin which the system exhibits a reorientation transition from the dipolar 

planar antiferromagnetic phase to the simple perpendicular antiferromagnetic phase 

with increasing temperature. 

Finally, the fourth model is the anisotropic Heisenberg system with fixed J. In 

this system, the three-dimensional classical spins interact through a short-range an­

tiferromagnetic exchange interaction, a planar magnetic surface anisotropy and a 

long-range dipolar interaction. The simulations focus on the exchange-dominated 

regime in which the strength of the exchange interaction is significantly greater than 

both the dipolar interaction and the magnetic surface anisotropy. The magnetic phase 

diagram for this system was then established as a function of both T I g and I K, I I g, for 

a fixed value of the exchange constant (i.e., J = -lO.Og). This phase diagram shows 

that there exists a range of the 1,.,;11 g in which the system exhibits a reorientation 

transition from the simple planar antiferromagnetic phase to the simple perpendicu­

lar antiferromagnetic phase with increasing temperature. Finally, some implications 

of these findings are presented. 
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Chapter 1 

Introduction 

Magnetism results from the effects of both the spin and orbital degrees of freedom of 

the electron, and is influenced by the structure, composition and dimensionality of 

the system. Magnetism has been investigated in both bulk and reduced-dimensional 

materials. While extensive research has been carried out on bulk magnetic materi­

als, in recent decades reduced-dimensional spin systems have received much greater 

attention among researchers due to their magnetic properties, which are distinctively 

different from those of their bulk counterparts. This has recently led to significant ad­

vances in technological applications such as magnetic sensors, recording, and storage 

media [1, 2]. 

One important class of the reduced-dimensional magnetic systems is quasi-two­

dimensional materials. These materials show a wide range of ordering effects and 

related pattern-formation phenomena which potentially have a number of interest­

ing technological applications. A number of experimental and theoretical studies 

have reported on the interesting and unusual magnetic properties of these quasi-two­

dimensional systems [3]. These studies have been motivated both by the technological 
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importance of these systems and by the insight that they can provide into the funda­

mental role of interactions at the atomic level in determining macroscopic properties. 

Three important magnetic systems can be considered to be quasi-two-dimensional. 

The first are ultra thin magnetic films. The field of ultra thin magnetic films contin­

ues to be an exciting and rapidly expanding one, from both technical and fundamen­

tal viewpoints. Ultra thin magnetic films consist of several mono-layers (i.e., a few 

atomic layers) of magnetic atoms deposited on a non-magnetic substrate [4, 5]. In 

many cases the magnetic spins of such films are observed to be magnetically ordered 

at low temperatures, and show a variety of interesting ordered phases. One important 

phenomenon found to occur in the ferromagnetic thin films is a reorientation transi­

tion (switching transition) in which the magnetization switches from out-of-plane to 

in-plane or vice versa. Using both spin scanning electron microscopy with polariza­

tion analysis and the surface magneto-optic Kerr effect, experimental studies conclude 

that these films exhibit a reorientation transition either above a critical temperature, 

TR, at constant film thickness [6, 7, 8, 9], or above critical film thickness, dR, at con­

stant temperature [6, 7, 8, 10, 11, 12]. Moreover, it was found that the TR decreases 

with the increasing film thickness. These experimental results indicate that the region 

between the two ordered states consists of domains where the magnetic moments are 

arranged such that the net magnetization of the system is essentially zero. While 

the transition from out-of-plane to in-plane is typical of most ferromagnetic films, 

the opposite sequence has also been observed, as in Ni on Cu(001) substrate and Gd 

on W(llO) substrate [13, 14, 15]. Experimentally, it is believed that the ferromag­

netic ultrathin films have a dominant ferromagnetic exchange interaction, a strong 

magnetic surface anisotropy, and a weak dipolar interaction. 
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In recent years, ultra thin ferromagnetic films have become an interesting area of 

research for several reasons. First, advances in film growth techniques such as atomic 

or molecular beam epitaxy have made ultra thin ferromagnetic films easier to fabri­

cate [10, 16]. Second, enhancements in characterization methods, such as the surface 

magneto-optic Kerr effect, have made it easier to investigate the magnetic properties 

of ultra thin ferromagnetic films [8, 9, 17]. Third, researchers are able to construct 

high quality ultra thin ferromagnetic films for study and are able to characterize 

their magnetic properties [6, 18]. Fourth, ferromagnetic thin films have considerable 

technological interest because of their wide range of applications in electronics, data 

storage, processing, recording media, catalysis, and in biotechnology and pharmacol­

ogy [19, 20, 21]. Moreover, the rich variety of spatially modulated phases which can 

be found in the thin magnetic films also makes them ideal systems for the study of 

pattern formation [22, 23, 24] and self-organized behavior [25]. 

A particularly important and scientifically challenging area of research in the 

context of the current work involve antiferromagnetic thin films, which are used in 

exchange bias (spin valve) applications [1, 2, 26, 27, 28, 29, 30]. Exchange bias is used 

to magnetically pin a ferromagnetic layer to an adjacent antiferromagnet, thereby 

acting as a reference layer in a magnetic device that is important in the magnetic 

storage industry. In addition, applications for spin-valve structures are expanding. 

Important applications include magnetic field sensors [31], read heads for hard drives, 

galvanic isolators, and magnetoresistive random access memory [1]. 

Despite the technological importance of the spin valve, the study of antiferromag­

netic surfaces and interfaces has posed a significant challenge due to the inability of 
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conventional methods such as optical, x-ray, and neutron techniques to spatially de­

termine the microscopic magnetic structure of the antiferromagnetic thin films [32]. 

Although the antiferromagnetic domain structure in bulk single crystals has been 

studied since the late 1950s [33, 34], little is known about the domain structure in 

thin films. Recently, this limitation has been partially overcome by the use of x-ray 

magnetic linear dichroism (XMLD) spectroscopy [35, 36, 37, 38]. In view of this, 

antiferromagnetic thin films remain an experimental and theoretical challenge. 

The second important class of quasi-two-dimensional system consists of layered 

magnetic compounds such as the rare earth (RE) ions in the family of compounds, 

REBa2Cu30 7_ 8 (0 ;S 6 ;S 1). Following the discovery of high-temperature su­

perconductivity (i.e., with critical temperature 80 K < Tc < 90 K) in the per­

ovskite structure, YBa2Cu30 7_ 0 [39], it was found that the y3+ ions could be 

fully replaced by most of the RE ions (typically from the lanthanide series) with­

out significantly affecting Tc or the superconducting behavior of the parent com­

pound ~0, 41, 42, 43, 44, 45, 46, 47, 4~. 

The interest in these rare earth compounds arises because nearly all rare earth ions 

in such compounds show antiferromagnetic ordering at low temperatures (typically ;S 

2 K), and this ordered state coexists with the superconducting state. This observation 

indicates that these rare earth compounds are strong candidates for investigating the 

interplay between magnetism and superconductivity. For this reason the detailed 

studies of magnetic effects in these materials are of considerable importance. 

For rare earth compounds, the perovskite structure consists of the ab planes of RE 

ions each of which lie between two double copper oxide layers. In these compounds 

there is one rare earth ion per chemical unit cell, and the c-axis is approximately three 
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times as long as the a and b-axes. This suggests that these rare earth compounds 

are quasi-two-dimensional magnetic systems [49, 50]. For example, the observation 

of two-dimensional antiferromagnetic ordering on ErBa2Cu30 7 with Neel tempera­

ture, TN ~ 0.5 K, has been confirmed experimentally using the neutron-scattering 

technique [51, 52, 53, 54, 55, 56]. In this case the magnetic spins are observed to 

be ordered within the ab-plane, in which they are aligned ferromagnetically in the b 

direction and antiferromagnetically in the a direction (denoted as the dipolar planar 

antiferromagnetic phase). Neutron-scattering experiments also show clear evidence 

of two-dimensional antiferromagnetic ordering on DyBa2Cu3 0 7 at TN ~ 0.95 K [57], 

and on GdBa2Cu3 0 7 at TN ~ 2.2 K [58, 59, 60, 61]. Unlike the Er compounds, 

the spins of these two compounds are aligned along the c-axis, in which they are 

ordered antiferromagnetically in both the a and b directions (denoted as the simple 

perpendicular antiferromagnetic phase). 

The third important class of quasi-two-dimensional system consists of arrays of 

magnetic wires with diameters of only a few micro [62, 63] or nanometers [64, 65, 

66, 67]. While the arrays of nanowires are of particular value in the design and 

optimization of magnetoresistive heads for ultra high-density data storage applica­

tions [62], arrays of glass-coated microwires are potential candidates for many sensor 

applications [68, 69, 70]. 

The magnetostatic interactions among these micro or nanowires can play a fun­

damental role in the magnetization reversal process and domain structures of the 

individual elements, which consequently influence the macroscopic magnetic response 

of the system. In particular, it was found that the dipolar interaction between such 

wires has a similar effect on its magnetic properties as do classical spins interacting 
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through long-range interactions [71]. Therefore, the interactions among these wires 

can be best described by a two-dimensional model. This makes it possible to test mi­

cromagnetic predictions and verify the best conditions for optimizing the macroscopic 

magnetic behavior of specific applications. 

As in thin magnetic films, a reorientation transition has been predicted and ob­

served in micro or nanomagnetic dot array systems [72]. For example, in arrays of 

small (micro or nanometers) magnetic dots, a reorientation transition from perpendic­

ular to in-plane has been shown to occur for dots with perpendicular anisotropy [73] 

as temperature is decreased using a self-consistent mean-field calculation of the field 

and a temperature-dependent magnetization process. 

The development of the quasi-two-dimensional systems for specific applications, 

requires a detailed understanding of their microscopic interactions and of the influ­

ences of such factors as composition and preparation of these interactions. These, in 

turn, determine the macroscopic properties of the material. For example, variations 

in the non-magnetic overlayers of the magnetic film can be used for developing sen­

sitive magnetic-field sensors such as the ones employed in magnetic storage devices, 

as well as for magnetic recording [74]. The operating parameters for such devices 

are often predetermined or constrained, and hence the ability to design a material to 

meet these constraints and optimize performance can be of significant technological 

benefit. Furthermore, most of the recent explosive growth in electro magnetic media 

has been due to new discoveries and better understanding of the magnetic and elec­

tronic properties of complex thin magnetic films. Therefore, this research serves as 

an important study to develop both the micro and macroscopic understanding of the 

magnetic phenomena for these reduced-dimensional spin systems. In this research, 
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classical two-dimensional dipolar antiferromagnetic spin systems on a square lattice 

have been investigated using Monte Carlo simulations. 

In addition to the dimensionality of the lattice, the spin dimensionality is an im­

portant parameter in determining the phase behavior of such magnetic spin systems. 

Theoretical studies have identified models that effectively divide such magnetic sys­

tems into three main types based on the classical dimensionality of the spins. These 

are the Ising (uniaxial) model, the plane rotator (XY) model, and the anisotropic 

Heisenberg model. In the case of the two-dimensional Ising model, the classical spins 

are constrained to be aligned along the axis perpendicular to the plane of the system 

due to the strong perpendicular (uniaxial) magnetic surface anisotropy, while in the 

case of the two-dimensional XY-model the classical spins are confined to the plane 

of the system due to the strong planar magnetic surface anisotropy. However, in the 

case of the two-dimensional anisotropic Heisenberg model, the classical spins are three 

dimensional due to a finite value of magnetic surface anisotropy. This means that the 

uniaxial and the plane rotator models can be considered as two important limiting 

cases of the anisotropic Heisenberg model. It is worth noting that in the limit where 

the magnetic surface anisotropy is zero the spins are fully three dimensional and the 

model is the so-called isotropic Heisenberg model (or simply the Heisenberg model). 

The inherently anisotropic long-range dipolar interaction, which is often ignored 

in theoretical studies of magnetic systems, can play a significant role in the structural 

properties of low-dimensional magnetic systems. It can stabilize long-range magnetic 

order at finite temperature and give rise to magnetization switching between in­

plane and out-of-plane ordered phases. This means that the nature and morphology 

of the ordered phases arising in low-dimensional magnetic systems result from the 
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subtle combination of the dipolar interaction with competing interactions like the 

magnetocrystalline interaction (due to the structure of the crystal or the presence 

of a low-dimensional surface), exchange interaction, or external magnetic field [50, 

75]. Therefore, any theoretical description of low-dimensional magnetic systems must 

include a consideration of all these fundamental interactions- the isotropic short-range 

exchange interaction, the anisotropic long-range dipolar interaction and the localized 

(on-site) magnetocrystalline interaction. 

Perhaps the earliest model of a two-dimensional spin system was the Ising model. 

In this model, the magnetic system is considered to be an array of N fixed points 

called lattice sites which form a periodic lattice in two dimensions. Associated with 

each lattice site is an ion which has a spin variable, CJ. Each spin variable is a number 

that is either ±1 (due to the very strong uniaxial magnetic surface anisotropy) and 

interacts with other spins via short-range exchange interactions. 

The literature on the Ising model has increased immensely [76] since the original 

contribution of Ising in 1925 [77]. In three-dimensional lattices, the Ising model 

is so complicated that no exact solution has ever been found, while in one- and 

two-dimensional lattices exact solutions have been derived. These exact solutions 

can be distingushed insofar as the one-dimensional Ising model does not undergo a 

phase transition, whereas the two-dimensional model has a sharp order-disorder phase 

transition and also has many unique physical properties as calculated by Onsager [78]. 

In addition to any short-range exchange interaction, a dipolar interaction exists 

between the moments of real magnetic ions, as mentioned above. Consequently, the 

ground state of a two-dimensional uniaxial system, as determined by the exchange 

interaction alone, differs from the ground state of a system as determined by the 
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dipolar interaction alone. It is found that in the absence of the dipolar interaction, 

the ground state of a two-dimensional Ising system is either ferromagnetic, where all 

the spins are aligned in parallel, or simple antiferromagnetic as in open lattices (e.g., 

the square lattice) where all the nearest-neighbor pairs of spins are antiparallel [79, 

80, 81, 82]. With respect to the pure dipolar case, however, the ground state of the 

system on a square lattice depends on the type of the magnetic surface anisotropy. 

For large uniaxial anisotropy, the ground state is an out-of-plane antiferromagnet 

where each spin is oriented antiparallel to its four nearest neighbours. For large 

planar anisotropy, the ground state is an in-plane antiferromagnet where the spins 

form ferromagnetic rows along either of the two axes of the lattice and are ordered 

antiferromagnetically along the other one [83]. 

When both the exchange and dipolar interactions are present the system is in­

herently frustrated. Ground state energy calculations [84, 85, 86, 87, 88, 89, 90], 

renormalization-group-based arguments [91], and Monte Carlo simulations [25, 83, 

92, 93] all predict the existence of a striped phase at low temperatures in the fer­

romagnetic systems. It is believed that the stability of these stripe domains can be 

understood, qualitatively, as a compromise between the increase in the exchange en­

ergy due to the formation of domain walls, and the decrease in the dipolar energy due 

to the interaction between magnetization currents generated at the domain walls. 

Also, Whitehead and his co-workers [83, 90, 92] have shown that, in the case 

of large stripe widths, the equilibrium width of a stripe in the ground state grows 

exponentially as a function of the ratio of the strength of the exchange interaction 

to the strength of the dipolar interaction. Therefore, the stripe width of the ground 

state for a system with large ferromagnetic exchange interactions is predicted to be 
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much larger than found in any particular laboratory sample size [90, 94], and hence 

the system is characterized by a single domain phase in which the system has a net 

spontaneous magnetization. As the temperature is increased, the system loses its net 

magnetization due to the onset of multiple domains in the striped phase, domains 

that are oriented along a common crystallographic axis. With further increases in 

temperature, the number of domains increases exponentially [25, 83, 91, 92]. As the 

temperature is increased further, the striped phase is replaced by a phase in which the 

magnetic domains are no longer oriented along a common axis but, instead, manifest 

the symmetry of the underlying lattice. As the temperature is further increased, the 

intermediate phase decays into a true paramagnetic phase where the typical sharp 

order-disorder phase transition commonly associated with an Ising model having only 

a short-range exchange interaction is absent. Instead, a broad peak is found in which 

the specific heat and the detailed nature of the transition to the fully disordered phase 

remains unclear. These stages in the evolution of the domain structures are generally 

consistent with what is observed in the experimental studies of systems that remain 

uniaxial, using either direct images [7, 10, 95] or magnetic measurements [6, 9, 96]. 

In addition, both neutron scattering experiments and low-temperature specific 

heat moments provide strong evidence that the sublattice magnetization of the 

ErBa2Cu307, DyBa2Cu307, and GdBa2Cu30 7 rare earth compounds is well fitted 

by using the Onsager solution for the two-dimensional Ising model [58, 59, 60, 97, 98, 

99, 100]. 

In contrast to the Ising Model, the spins of the plane rotator model are constrained 

to rotating in the plane of the lattice. This model is peculiar because it has no quan­

tum counterpart. It was first pointed out by Bloch [101] and later proved rigorously by 
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Mermin and Wagner [102] that the short-range isotropic exchange interaction was in­

sufficient for establishing a spontaneous or sublattice spontaneous magnetization (i.e., 

of long-range magnetic order) at any finite temperature within a two-dimensional 

system whose spin dynamics were invariant under a continuous global rotation of 

the spins, as in the plane rotator model. However, based on renormalization group 

analysis [103, 104], high temperature series expansions [105], and Monte Carlo sim­

ulations [106, 107] it is now known that this model exhibits a topological Kosterlitz­

Thouless transition from a low-temperature phase to a high-temperature phase at a 

finite transition temperature, TKT· Below TKr, a metastable phase corresponding to 

bound vortex-antivertex pairs in this system, having a two-point correlation function 

which exhibits a power-law decay. Above TKr, these vortices unbind and the two­

point correlation function decays exponentially. When the long-range ferromagnetic 

exchange interaction is considered, it is found that different magnetic behaviors are 

expected. As shown using renormalization-group analysis [108] and Monte Carlo sim­

ulations (S. Romano, Nuovo Cimento B 100B, 447, 1987 cited in [109]), a model with 

only long-range ferromagnetic exchange interactions exhibits spontaneous long-range 

order. In contrast, a model with only the long-range antiferromagnetic exchange 

interactions does not exhibit any long-range order based on research using Monte 

Carlo simulations [110], linearized spin-wave approximations [110], and renormalized 

spin-wave approximations [111]. 

Different and interesting scenarios appear in the plane rotator model when the 

dipolar interaction is included. The ground state of the pure dipolar system of mag­

netic moments located at the sites of a square lattice was investigated by Belobrove et 

al. [112] using the Luttinger and Tisza method [113]. Belobrov et al. found that the 
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ground state of this system is continuously degenerate and consists of four sublattices 

where the magnetic moment of these sublattices make angles ¢, -¢, 1r + ¢, and 1r- ¢ 

with the x-axis, ¢ being arbitrary. Because the Hamiltonian of the dipolar model is 

not invariant during a global rotation of the spins, the ground-state degeneracy does 

not arise as a consequence of an exact symmetry of the Hamiltonian, but instead is a 

peculiarity of the dipolar interaction. Using the mean-field approach as well as Monte 

Carlo simulations, Zimmerman et al. [114] confirmed the existence of such continuous 

degeneracy in a classical dipolar planar model on the honeycomb lattice, and also 

predicted the existence of an ordered phase at low temperature. 

The work of Zimmerman et al. was expanded upon by Henley [115, 116], who 

introduced the concept of 'order from disorder' in which fluctuations (e.g., thermal, 

quantum, or dilution) lift the degeneracy of the ground state. Furthermore, Prakash 

and Henley [117] investigated both square and honeycomb plane rotator models hav­

ing only nearest neighbour portion of the dipolar interaction. In their study, the free 

energy of both models was calculated within the context of linearized spin-wave ap­

proximations. In both cases, Prakash and Henley found that thermal fluctuations and 

dilution give rise to terms in the free energy that favor particular states, reducing the 

continuous degeneracy to a discrete symmetry. Whereas in the square system both 

perturbations were found to reduce the continuous degeneracy of the ground state 

to a discrete fourfold symmetry, in the honeycomb system both perturbations reduce 

the continuous degeneracy of the ground state to a discrete sixfold symmetry. In the 

case of a square lattice, they also showed that while the thermal fluctuations favor a 

dipolar phase wherein spins are aligned in parallel ferromagnetically along one of the 

two axes of the lattice and antiferromagnetically along the other axis, the dilution 
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favors a dipolar phase wherein the spins are oriented at 1r /4 to the x and y-axes. 

The square plane rotator model having pure long-range dipolar interactions was 

investigated by both Monte Carlo simulations [118, 119] and linearized spin-wave ap­

proximations [118, 119]. Both Monte Carlo simulations and the evaluation of the free 

energy using the linearized spin-wave approximations provide evidence of the exis­

tence of long-range magnetic order in such systems, even though the order parameter 

evaluated within the linearized spin-wave approximation is actually zero at any finite 

temperature [118, 119]. To overcome this apparent contradiction, it is necessary to 

consider higher order approximations in the calculations. Indeed, based on renor­

malized spin-wave approximations, some authors [120, 109] have shown that higher 

order corrections to the Hamiltonian will induce a gap in the spin-wave spectra. The 

appearance of such a temperature-dependent gap renders the ensemble average of the 

spin-wave amplitude finite, and leads to the appearance of long-range magnetic order 

at lower temperature. However, the order parameters and the heat capacity exhibit 

nonanalytic behaviour at low temperature. 

The generalization of plane rotator model to include both the long-range dipolar 

and the short-range antiferromagnetic exchange intercations is presented in chapter 

4 [121]. Using both Monte Carlo simulations and spin-wave approximations, inde­

pendent results on the same system but which treat a long-range antiferromagnetic 

exchange intercation have been presented by Rastelli et al. [121]. These two indepen­

dent studies showed that the continuous degeneracy is lifted at any non-zero temper­

ature, and that long-range order is supported by thermal fluctuations. Indeed, the 

characteristics of the low temperature ordered phase depend on the relative strength 

of the exchange antiferromagnetic and dipole parameters. At low temperatures and 
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for large values of exchange interactions, the system has a simple parallel antiferro­

magnetic phase, while for low values of the exchange interaction, the system has a 

dipolar planar antiferromagnetic phase in which the orientation of the spins depends 

on the value of the exchange interaction. This will be shown in chapter 5 where the 

Monte Carlo results for the dipolar plane antiferromagnetic system are presented and 

discussed. 

While the studies of these two previous models (i.e., uniaxial and planar mod­

els) provide some understanding of the magnetic properties of quasi-two-dimensional 

magnetic systems, a detailed description requires a detailed treatment of the mag­

netic surface anisotropy. This can be done through study of the third model (i.e., the 

anisotropic Heisenberg model). In this model, the spins are considered to be three­

dimensional classical vectors that interact via exchange and dipolar interactions as 

well as via a magnetic surface anisotropy. 

As in the planar model, the long-range magnetic order which breaks a continuous 

symmetry cannot be sustained in the two-dimensional Heisenberg model having only 

short-range exchange interactions [102]. Previous studies have shown that, when only 

a ferromagnetic exchange interaction and a magnetic surface anisotropy are included, 

the system will order in accord with a transition temperature that is determined 

by the ratio of the exchange interaction and the magnetic surface anisotropy. For 

uniaxial magnetic surface anisotropy, there is a second-order phase transition to the 

ferromagnetic state, which is in the Ising universality class [122, 123]. Meanwhile, 

for planar magnetic surface anisotropy, the system behaves similarly to the classical 

XY-model and exhibits a Kosterlitz-Thouless transition [122]. 

The effect of the long-range dipolar interaction on a system with short-range 
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exchange interactions was investigated using spin-wave approximations by both 

Maleev [124] and Pich and Schwabl [125]. While Maleev considered the case of the 

long-range dipolar interaction along with a dominant ferromagnetic exchange inter­

action, Pich and Schwabl considered the case of the long-range dipolar interaction 

along with a dominant antiferromagnetic exchange interaction. Both studies showed 

that the dipolar interaction modifies the spin-wave spectra by breaking the rota­

tional invariance of the exchange interaction and removing the degeneracy within the 

magnetic ground state. In the antiferromagnetic case this introduces a gap in the 

spin-wave spectrum, which renders the magnetic fluctuations finite and stabilizes the 

long-range magnetic order at finite temperature. In the ferromagnetic case Maleev 

shows that the long range character of the dipolar interaction modifies the spin-wave 

spectra in the long wavelength limit such that limq--+O w(q) ~ vq. This also renders 

the magnetic fluctuations finite and stabilizes the long-range magnetic order at finite 

temperature. It is worth noting in these two studies that, while in the first case 

the ground state is planar ferromagnetic, the ground state in the second case is a 

perpendicular antiferromagnet. 

Heisenberg ferromagnetic systems that include all three interactions - the ferro­

magnetic exchange interaction, the dipolar interaction, and the uniaxial magnetic 

surface anisotropy - have been studied extensively using methods such as renormal­

ization group calculations [126, 127, 128, 129], mean-field calculations [130, 131, 132, 

133, 134], Monte Carlo simulations [135, 136, 137, 138, 139], and spin-wave analy­

sis [140, 141, 142, 143]. In general, these studies predict the existence of a reorien­

tation transition from an out-of-plane ferromagnetic state at low temperatures to an 
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in-plane ferromagnetic state as the temperature increases for some ratios of the mag­

netic surface anisotropy parameter to the dipolar interaction parameter. This agrees 

well with the experimental findings from most of the research with ferromagnetic 

ultrathin films. 

Using Monte Carlo simulations, Macisaac and his co-workers also studied the 

structures and phase diagrams of the dipolar Riesenberg model having zero [144] 

and intermediate [144] ferromagnetic exchange interactions. In these two studies, 

the authors showed that there exists a range of values for the ratio of the magnetic 

surface anisotropy parameter to the dipolar interaction parameter in which the system 

exhibits a reorientation transition from in-plane at low temperatures to out-of-plane as 

the temperature increases. However, it is worth noting that, in carrying out the work 

of this thesis, the nonuniform sampling technique used by Macisaac et al. in these 

two studies resulted in an additional temperature-dependent effective anisotropy. 

For the case of the dominant ferromagnetic exchange interaction, the origin of the 

reorientation transition is believed to result from competition between the magnetic 

surface anisotropy, which favors an out-of-plane orientation for the magnetic spins, 

and the dipolar interaction which favors an in-plane orientation for the moments. 

Pescia and Pokrovsky [126] argued that the reorientation transition occurs in such 

systems because the magnitude of the dipolar anisotropy decreases more slowly than 

the uniaxial anisotropy with increasing temperature. Jensen and Bennemann [145, 

146] also claimed that the increased entropy in the planar orientation plays a key 

role in such a reorientation transition. Furthermore, the effective anisotropy term 

that arises from the combination of these two interactions may depend on both the 

temperature [13, 14, 15] and the thickness of the film [12, 13, 15, 133, 147, 148, 140, 
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149, 150, 151]. 

While extensive work has been done on the behaviour of low-dimensional ferro­

magnetic systems [3, 18, 17], little systematic work has been carried out on low­

dimensional antiferromagnetic systems [125, 152, 153, 154]. In particular, little is 

known about the effects that arise from the interplay of the exchange, dipolar, and 

magnetic surface anisotropy in the antiferromagnetic case. In this thesis, to obtain 

a better understanding of both the low temperature properties and the nature of 

the phase transitions within the low-dimensional antiferromagnetic systems, several 

Monte Carlo simulations are carried out on the classical two-dimensional dipolar an­

tiferromagnetic systems, each on a square lattice. Results are presented for different 

values of the short-range antiferromagnetic exchange constant and magnetic surface 

anisotropy in the presence of the long-range dipolar interaction over a range of tem­

peratures for three different lattice sizes (N = L x L = 322 ,642
, 1042 ). The code 

used in the study of these systems has been modified from that originally written 

by Macisaac and his co-workers [155, 156]. From the results of these simulations the 

phase diagram for each investigated system is constructed both at T = 0 and at finite 

temperature. 

The outline of this thesis, thus, is as follows: Chapter 2 provides a general in­

troduction to the model of interest. It also gives a brief description of the Ewald 

summation technique. Chapter 3 then gives a brief introduction to Monte Carlo 

simulations and how Macisaac and his co-workers [155, 156] included the long-range 

dipolar energy in finite temperature Monte Carlo simulations based on the Ewald 

summation technique. The chapter concludes by providing the computational as­

pects and benchmarks needed for applying the code. 
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Given the complexity of the general model on a square lattice, chapters 4, 5, 6, 

and 7 present the more specific results obtained from this research. In chapter 4, re­

sults are presented for the case of the Heisenberg system (previously published [157]) 

in which the three-dimensional classical spin vectors interact through both the long­

range dipolar and the short-range antiferromagnetic exchange interactions. In chapter 

5, results are presented for the plane rotator system (previously published [158]) in 

which the classical spin vectors are restricted to lying within the plane of the lattice 

and interact through long-range dipolar and short-range antiferromagnetic exchange 

interactions. In chapter 6, results are presented for the anisotropic Heisenberg system 

in which the three-dimensional classical spin vectors interact through long-range dipo­

lar and short-range antiferromagnetic exchange interactions as well as by a fixed value 

of the planar magnetic surface anisotropy. Finally, results are presented in chapter 7 

(previously published [159]) for the anisotropic Heisenberg system in which the three­

dimensional classical spin vectors interact through the long-range dipolar interaction 

and through the planar magnetic surface anisotropy along with a fixed value of the 

antiferromagnetic exchange contant. Chapter 8 provides a summary of the main find­

ings and explores some of the interesting implications for conducting further research 

in the field of low-dimensional magnetic systems. 
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Chapter 2 

The Model in General Terms 

2.1 The Energy of the General Model 

Even though magnetism is an intrinsically quantum mechanical phenomenon, the sys­

tems considered in this study are all based on two-dimensional classical spin systems 

on a square lattice. This is because classical spin systems can often provide insight 

into the phase behavior of the equivalent quantum mechanical systems and, as well, 

the difficulties associated with the analysis of quantum spin systems can be overcome 

by the simulation of the equivalent classical spin systems [160]. 

In the model of interest, the two in-plane directions of the square lattice are 

denoted by x and y respectively, and the direction perpendicular to the plane is 

denoted by i. Each lattice site, i, is associated with an ion which has a total magnetic 

moment, jl, and a total spin, S. In this model, the magnetic ions interact through the 

exchange interaction (Eex), the dipolar interaction (Edd), and the magnetic surface 

anisotropy (E,} Thus, the general energy of the considered model can be written in 

simple terms as 

(2.1.1) 
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The first term in Equation 2.1.1, Eex' is the exchange interaction. The exchange 

interaction is typically subdivided into one of three energies: direct exchange, indi­

rect exchange, and superexchange. The direct exchange interaction arises from the 

direct Coulomb interaction among the electrons of two adjacent ions, as shown in Fig-

ure 2.1a. The indirect exchange interaction arises where the electrons of the partially 

filled !-shells, as present in the rare earth metals, are coupled due to their interaction 

with the conduction electrons, as shown in Figure 2.lb. The superexchange interac­

tion occurs when the electrons of a nonmagnetic ion interact with the electrons of the 

first magnetic ion, and also with the electrons of the second magnetic ion, as shown 

in Figure 2.lc. 

The exchange interaction has two important properties. First, it decays exponen-

tially with increasing distance between the magnetic ions of the lattice and, as such, 

it is a short-range interaction extending over a few atomic radii. Given this char-

acteristic, only the nearest-neighbor exchange interactions, and no superexchange 

interactions, are considered in this research. Second, the interaction depends only on 

the relative angle between the spins. Because of this property, the exchange coupling 

is said to be isotropic. With these two properties, the exchange energy term may be 

written as 

Eex = -:J'LS(Ri) · S(Rj), (2.1.2) 
(i,j) 

where the sum is the overall nearest-neighbor pairs of sites (i,j), S(Ri) is the classical 

spin vector at site i, and :1 is the strength of the exchange interaction (i.e., the 

exchange coupling constant or parameter). A positive :1 gives a ferromagnetic ground 

state so that the spins are all aligned in parallel, while a negative :1 gives an anti­

ferromagnetic ground state on open lattices (such as the square lattice) in which all 
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(a) 

(b) 

(c) 

Figure 2.1: Schematic diagram of a direct exchange (a), an indirect exchange (b), and 
a superexchange interaction (c). In this Figure, M=magnetic ion, N=non-magnetic 
ion, and CE=conduction electrons. 
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nearest-neighbor pairs of spins are anti-parallel [102, 161, 162]. 

The second term in Equation 2.1.1, Edd, is the dipole-dipole interaction. The dipo-

lar energy for neighboring moments is typically smaller than the exchange interaction 

often by many orders of magnitude [163]. Also, the dipolar interaction between any 

two moments on the lattice decays as the inverse cube of the distance between them. 

For this reason, the dipole-dipole interaction decays slowly with distance between any 

two magnetic ions, and therefore it is a long-range interaction where each moment 

interacts with all the other moments in the lattice. Unlike the exchange interaction, 

the dipolar interaction between any two moments not only depends on the relative 

orientation of the two moments but also depends on their orientation relative to the 

vector joining the two corresponding sites. In this sense, the dipolar coupling is said 

to be anisotropic. Schematically, Figure 2.2 shows the magnetic field produced by an 

isolated magnetic dipole. 

The contribution of the dipolar energy to the general energy given by Equa­

tion 2.1.1 can then be written as 

Edd = ~ L (fl(Ri)_: fl(Rj)- 3([1(Ri). ~j~(fl(Rj). Rij))' 
2 i=/=j IRij 13 l~j 15 

(2.1.3) 

where the sum is over all possible pairs of sites in the lattice except i = j, IR~jl is the 

distance between site i and site j, and [1(~) is the classical moment vector at site 

i [161]. 

Finally, the third term of Equation 2.1.1, E,, is the magnetic surface anisotropy 

which arises due to the spin interaction with the crystal environment [164, 165]. This 

coupling can result in a preferred axis or axes (i.e., easy axis or axes) about which the 

system may be favorably ordered energetically. The existence of such an easy axis or 

axes can have any one of a number of causes. For example, the spin-orbit coupling 
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Figure 2.2: The magnetic field for an isolated magnetic dipole moment located at the 
origin. 
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which arises from the lack of spherical symmetry in the charge overlap between ions 

can lead to a preferred orientation for the magnetic ion as in the case of cobalt 

crystals [162, 166]. Another possible cause is the effect of the crystalline electric field 

such as found in heavy rare earth and transition metals [167, 168]. The effects of 

the crystalline electric field, however, will be much stronger in magnetic systems that 

consist of transition metals than in those systems that include rare earth ions. In the 

transition ions it is the outer shell, the 3d-shell, which is responsible for the magnetic 

moment, while in the rare earth ions it is the inner 4f shell. 

Because the EK, term is a surface effect, it may best be observed experimentally 

in systems with a high surface-to-volume ratio such as magnetic ultrathin films or 

multilayer compounds. Theoretically, it is convenient to include this term when a two-

dimensional (monolayer) system is examined. For the magnetic systems investigated 

in this research, it is sufficient to consider only the case where the anisotropic term 

couples exclusively to the component of the magnetic moment that is perpendicular 

to the surface, due to the symmetry between the two in-plane directions [147, 164, 16]. 

With the z-axis perpendicular to the surface of the system, as chosen above, the 

magnetic surface anisotropy may be written as 

(2.1.4) 

where the sum is over all sites in the lattice, fJ} (Ri) is the z component of the moment 

vector at site i, and A is the strength of the magnetic surface anisotropy. A positive 

value of A yields an easy axis along z, while a negative value gives an easy plane 

within the system. 

To use Equation 2.1.1 in the Monte Carlo simulations, Equations 2.1.2, 2.1.3, 

and 2.1.4 may be written in terms of the dimensionless quantities such that J1 and S 
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at site i can be rewritten as 

(2.1.5) 

and 

(2.1.6) 

such that 

(2.1. 7) 

Also, all distances are scaled by the lattice constant, a, and thus ~ -+ Rd a. Substi­

tuting these new definitions into Equations 2.1.2, 2.1.3, and 2.1.4 then gives 

and 

Moreover, the new coupling parameters 

2 
f-Leff 

g = 2a3 ' 

and 
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(2.1.10) 
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(2.1.12) 
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are defined so that Equations 2.1.8, 2.1.9, and 2.1.10 can be rewritten as 

and 

Eex = -f'L B(Ri) · B(Rj), 
(i,j) 

(2.1.14) 

(2.1.15) 

(2.1.16) 

Finally, substituting Equations 2.1.14, 2.1.15, and 2.1.16 into Equation 2.1.1 yields 

E = g L (8(Ri)_; B(Rj)- 3(8(Ri). Rij2(8(Rj). Rij)) 
ih IRij 1

3 IRij 15 

'""" -+ -+ '""" -+ 2 - J L...t B(Ri) · B(Rj)- r;; L...t az(Ri) . (2.1.17) 
(i,j) 

In the present research, the two coupling parameters, J and r;;, appearing in Equa-

tion 2.1.17, are measured in units such that g = f.L;ff/2a = 1. 

As summarized in chapter 1, there are three important and much-studied limiting 

cases of the general model given by Equation 2.1.17: 

1. At the limit of strong perpendicular magnetic surface anisotropy (i.e., r;;-+ oo), 

the spins are constrained to be aligned along the axis perpendicular to the 

plane of the system. This may be described by the two-dimensional classical 

Ising Model. 

2. At the limit of strong planar magnetic surface anisotropy (i.e., r;;-+ -oo), the 

spins are confined to the plane and thus they become two dimensional. This 

may be described in terms of the two-dimensional classical XY-model. 
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3. In the case of zero magnetic surface anisotropy, the spins are fully three dimen­

sional, and the system is described by the two-dimensional classical Heisenberg 

model. 

2.2 The Dipole-dipole Interaction and Ewald Sum­

mation Technique 

The dipolar interaction is always present between the magnetic moments in all real 

magnetic materials. Despite its small value, it may lead to critical behavior signifi­

cantly different from that found in materials that have only short-range interactions. 

Indeed, in the case of quasi-two-dimensional magnetic systems, the dipolar interac­

tion has been found to play an essential role in determining the magnetic proper­

ties [169, 170]. Thus, the dipolar interaction should be included in any considered 

model that attempts to represent the magnetic properties of two-dimensional spin 

systems. 

The evaluation of the contribution of the dipole-dipole interaction to the magnetic 

energy is complicated by its slow convergence, and an efficient method is needed for 

calculating this sum for particular spin configurations. Such a sum is best treated 

using one of the variants of the Ewald summation technique described in earlier 

work [155, 171]. The basic idea behind this method is to employ the properties of theta 

functions under Jacobi imaginary transformations to convert the slowly converging 

lattice sum to a rapidly convergent form. 

In the case of the dipolar interaction, the appropriate way to apply the Ewald 

summation technique is to separate the dipolar energy into two parts. The first part 
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represents a localized part of the dipolar interaction and this part converges rapidly 

in real space. The second part is a long-range component of the dipolar interaction 

which converges rapidly in momentum (ij) space. For this reason it is better to start 

from a differential form of the dipolar interaction. This can be done by rewriting the 

dipolar energy given by Equation 2.1.15 as 

g"""" a .... /3 .... . a a ( 1 ) Edd = --~ ~ (J (Ri)O" (R·) hm -- .... , 
2 . . J r-+o ora or/3 1 R- . + rl 

z~J a~ ~ 

(2.2.1) 

where o: and f3 denote components of the spin vectors. 

The Ewald summation technique used to perform the previous sum is based on 

the integral representation 

(2.2.2) 

where 7J is an arbitrary constant typically chosen to be of order 1. Comparing Equa-

tion 2.2.2 with the expression for the dipolar sum given by Equation 2.2.1 we obtain 

(2.2.3) 

where the E 1 term denotes the integration over the interval 0 < p < TJ, and the E 2 

term represents the integration over the interval TJ < p < oo. 

The E2 term can be readily evaluated as 

(2.2.4) 

where ~~/3 (Rij) is given by 

a/3(R··) _lim _i__i_ (erfc(TJIRij + f1)) 
12 

IJ - r-+0 ora or/3 I Rij + f1 ' (2.2.5) 
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where erfc(x) is the complimentary error function. Since erfc(x) damps exponentially 

for large values of x as 

. exp( -x2
) 

hm erfc(x) ::::::; , 
x-+oo ftx 

(2.2.6) 

the E2 term can be readily evaluated numerically for different spin configurations. 

In contrast, the E1 term is evaluated in if space using the Fourier transformation 

of the spin configuration, 

1 ~ ~ ~ 
O"a(i/) = 17\i L...t(Ja(Ri) exp(iif· Ri)· 

vN i 
(2.2.7) 

By transforming the sum over lattice vectors { R} to one over reciprocal lattice vectors 

{ Q}, the resultant expression for the E1 term may then be written as 

E1 = ~ LLO"a(ifJrf13 (ifJ0"13 (-~q). 
if a,!) 

(2.2.8) 

In the case of the rectangular lattice, 1f13 (if) has the form 

-yf~(ifJ =- 21r Jt (z"zPJq- QJ- (q"- ~:~(~~- QP)) erfc( Jq ;~ QJ) 

- 3~ (J0 p- z"zP~: Jtexp(-Jq- QJ 2/4~2)), (2.2.9) 

where za denotes the a component of the unit vector perpendicular to the surface. 

Again, the existence of erfc(x) in the previous sum ensures rapid convergence for 

large values of if. Careful analysis for the long wavelength limit has to be taken into 

account since the term corresponding to Q = 0 in the series contains a non-analytic 

contribution denoted by qaqi3 /11]1. 

One important application of this Ewald summation technique is in the deter-

mination of the dipolar contribution to the ground state energy for some important 
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spin configurations. Generalizations of the above technique for a simple antiferro-

magnet on a two-dimensional square lattice [49], yield the dipolar contribution to 

several important spin configurations as shown in Table 2.1 [50]. In both the AA11 

and the AF111 phases, the spins are aligned within the plane of the lattice. While 

in the AA11 phase each spin is ordered anti-parallel to each of its nearest neighbors, 

in the AF]11 phase the spins are ordered ferromagnetically along one of the two axes 

of the lattice and antiferromagnetically along the other axis. In contrast to the AA11 

and AF]11 phases, the spins in the AA1_ are ordered perpendicular to the plane of the 

lattice with each spin aligned anti-parallel to each of its nearest neighbors. The Ewald 

summation technique is also used in treating the dipolar interaction when there are 

periodic boundary conditions as will be presented in the following chapter. 

System Spin configuration Energy per spin 
Planar antiferromagnetic O"x = ( -1) n, +ny 

(AA11) phase (}"y = 0 E = 1.3229g 
O"z=O 

Planar antiferromagnetic O"x = ( -1) ny 

(AF111) phase (}"y = 0 
O"z = 0 

or E = -5.0989g 
(}"X = 0 

O"y = ( -1) n, 

O"z = 0 
Uniaxial antiferromagnetic (}"X = 0 

(AA1_) phase (}"y = 0 E = -2.6459g 
(}"z = ( -1)nx+ny 

Table 2.1: The dipolar energy calculated for a number of important antiferromagnetic 
spin configurations on a two-dimensional square lattice. The subscripts x and y 
denote the square lattice axes, z denotes the axis perpendicular to lattice, and (nx, ny) 
denotes the coordinates of the spin variable on the lattice. 
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2.3 Systems of Interest 

This thesis presents the results from several series of Monte Carlo simulations on 

models of antiferromagnetic spin systems. The purpose of these simulation studies is 

to better understand both the low temperature magnetic properties of these systems 

and their phase behavior. The simulations are performed on a two-dimensional square 

lattice of length L with the spin represented by N vectors of fixed magnitude (N = 

L x L = 322,642 , 1042). Depending on the choice of parameters, the ground state for 

each system is one of those listed in Table 2.1. 

The first system to be analyzed is the dipolar Heisenberg system without mag­

netic surface anisotropy (i.e., r;, = 0). In this system, the spin variables are fully 

three-dimensional classical vectors, and interact through both the long-range dipolar 

and the short-range antiferromagnetic exchange interactions. The phase behavior is 

determined by the competition between dipolar and exchange interactions. Based on 

the Monte Carlo data, the magnetic phase diagram, constructed as a function of both 

IJI/ g and T / g, will be presented in chapter 4. 

The second is the plane rotator system. This system has infinite planar anisotropy 

(i.e., r;, -+ -oo) and its classical spin vectors are restricted to lying within the plane 

of the lattice and have full rotational freedom in that plane. Again the spin vectors 

interact via long-range dipolar and short-range antiferromagnetic exchange interac­

tions. From Monte Carlo simulations, the phase diagram of this system is determined 

as a function of both IJI/9 and Tjg as will be shown in chapter 5. 

The third is the anisotropic Heisenberg system with a fixed value of the planar 

anisotropy. This system is similar to the first system except that the spin vectors of 

this system are subject to a weak planar magnetic surface anisotropy (i.e., r;, = -l.Og). 
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Using the Monte Carlo results, the phase diagram is established as a function of both 

I Ill g and T I g as will be presented in chapter 6. 

Finally, the fourth system is the anisotropic Heisenberg system in which the spin 

vectors are subject to a range of planar magnetic surface anisotropy (i.e., r1, < 0) and 

have long-range dipolar interactions, as well as a dominant short-range antiferromag­

netic exchange interaction (J = -lO.Og). Based on the Monte Carlo calculations, the 

phase diagram of this system is constructed as a function of both IK,II g and T I g as 

will be presented in chapter 7. 
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Chapter 3 

Monte Carlo Methods 

In recent years the method of computer simulation has become a bridge that connects 

the theoretical and experimental branches of science. In simulations, the model that is 

used to describe the system can be studied without recourse to further approximation 

techniques. This can allow us to discover and investigate new phenomena as revealed 

through simulation. Computer simulation, therefore, complements both theoretical 

and experimental research, and provides a third branch of scientific investigation. 

The three branches would be analogous to the vertices of a triangle where each vertex 

seems distinct but at the same time is strongly connected to the other two [172]. 

One of the most important simulation techniques is the Monte Carlo technique, 

which is widely used for solving problems in statistical physics. The basic idea is 

to evaluate thermal equilibrium averages of materials by statistically sampling the 

significance region of the phase space of a model using a computer. This implies that 

the use of probability and statistics is essential in Monte Carlo physics [173]. 

The fast growth of computational resources and the development of new algo­

rithms allow Monte Carlo simulations to look deeper and deeper into subjects of 

statistical physics by offering great improvements in the accuracy of results [172]. 
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However, the limitations of computer speed and computer memory can still make 

computational simulations difficult and challenging. In the case of magnetic systems 

for example, much less simulation work has been carried out on spin systems that 

include long-range interactions [93, 135, 136, 156, 174] as compared to those systems 

that include only short-range interactions [123, 172, 173, 175, 176, 177]. 

Because most of the results in the present research are based on Monte Carlo 

simulations, this chapter looks briefly at the general ideas behind equilibrium ther­

mal Monte Carlo methods. Four important ideas about Monte Carlo techniques are 

introduced in this chapter: importance sampling, transition probability, detailed bal­

ance, and the Metropolis algorithm. This chapter also contains a brief description of 

how Macisaac and his co-workers [155, 156] treated the long-range nature of dipolar 

interactions in Monte Carlo simulations. This approach forms the basis of the Monte 

Carlo Code written by Macisaac et al., used with some modifications in this study. 

Moreover, this chapter presents a typical simulation and the important benchmarks 

used in this research. 

3.1 Importance Sampling and the Metropolis Al­

gorithm 

The goal of equilibrium statistical mechanics is to calculate observable thermal quan­

tities of a material, such as a magnetization in a magnetic model. In the canonical 

ensemble this requires that we average an observable quantity, Q, over all of the states 

of the system, weighting each by the Boltzmann probability 

P(v) ex exp( -Ev/T), 
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where Ev is the energy of the system in state v, T is the temperature measured in 

units of 1/kB, where kB is the Boltzmann constant. Therefore, the average value of 

Q is given by 

(3.1.2) 

such that Qv is the value of Q at some state v. 

Except for a few systems, the exact evaluation of such quantities is impossible and 

approximations are required to obtain estimates of important thermodynamical vari-

ables. One approach is to evaluate the quantity given in Equation 3.1.2 by summing 

over a large but finite number of states, an approach made feasible with the advent 

of modern computers. The question we would like to answer now is how should we 

choose a finite number of states in order to obtain an accurate estimate of (Q)? While 

the simplest choice is to pick all of these states at random with equal probability from 

the phase space of the system, averaging over them is unlikely to yield any reasonable 

estimate of the average value of Q, since most of these randomly chosen states will 

not make a statistically significant contribution to the sums given by Equation 3.1.2. 

This means that a few terms of the sums given by Equation 3.1.2 will be dominant. 

For example, at low temperatures, the system spends almost all of its time in the 

ground state, or at one of the lowest excited states, because there is not enough ther­

mal agitation to excite the system to the higher states. Consequently, it cannot be 

assumed that. the system passes through every state during the measurement, even 

though every state appears in the sums of Equation 3.1.2. However, if instead of 

choosing the states at random with equal probability, they are selected according to 

some probability distribution, P(v), which we specify, then it is possible to signifi­

cantly improve the reliability of the estimate provided by averaging over these states. 
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The significance of this approach lies in the ability to choose the probability P(v) 

such that the selected states used in the evaluation of ( Q) are statistically significant. 

This approach is referred to as importance sampling. 

Suppose we choose a subset {v1, v2 , .... , vM} at random, each with probability 

{P(v1), P(v2), .... , P(vM)}, then the best estimate of Q will be given by 

(Q)M = 2:~~ Qv1 ~~~ 1 
exp( -Ev1/T) 

l:vz=l PV[ exp( -Evz/T) 
(3.1.3) 

Equation 3.1.3 tells us that the (Q)M becomes a more and more accurate estimate 

of (Q) as the number of the selected states M increases. In addition, when M goes 

to infinity, (Q)M goes to (Q). A simple and effective choice for Pv in Equation 3.1.3 

would be the Boltzmann distribution given by Equation 3.1.1. Then, (Q)M becomes 

just a simple arithmetic average 

(3.1.4) 

The choice of the Boltzmann distribution also ensures that the average of Q is calcu-

lated using the most statistically significant states. 

The question which arises is how to find a procedure that selects states according 

to the Boltzmann probability. The idea is to use a Markov process. In this process, 

successive states, v1+1 , are generated from previous states, v1, through a transition 

probability, W(v1 --+ v1+1), such that in the limit, M--+ oo, the distribution function 

of the states generated by this Markov is given by the Boltzmann distribution. 

Such a process should satisfy the following four conditions: 

1. The state, v1+1 , is generated every time it is determined by the state, v1• 
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2. The transition probabilities must satisfy the constraint 

L W(vl -+ Vt+l) = 1. 
l 

(3.1.5) 

3. Reaching any state of the system from any other state is possible if the program 

is run for a long enough time (i.e., the condition of ergodicity). 

4. In equilibrium, the rate at which the system makes transitions into and out 

of any state, v, must be equal (i.e., the condition of the detailed balance). 

Mathematically, this condition can be written as 

(3.1.6) 

Using the Boltzmann probability distribution given by Equation 3.1.1, Equa­

tion 3.1.6 thus gives 

W(vl -+ Vt+l) = P(vt+l) = (-(E _ E )/T) 
W( ____\.. ) P( ) exp vz+l vz · Vt+l -r V[ V[ 

(3.1.7) 

Equation 3.1. 7 indicates that the transition probability ratio for a move from 

state Vt to vl+1 depends only on the energy change, Ev1+1 - Ev1• 

One simple and efficient choice for the transition probability which satisfies Equa-

tion 3.1. 7 is the Metropolis algorithm. This algorithm was proposed by Metropolis 

and his co-workers in 1953 in the simulation of hard-sphere gases [178]. In this optimal 

algorithm the transition probability is given by 

W( ) 
_ { exp( -(Ev1+1 - Ev1)/T), 

Vt -+ Vt+l -
1, 

(3.1.8) 

This means that if we select a new state, v1+1, which has an energy lower than or 

equal to the present state, v1, then we accept the transition to that state. If the 
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new state has a higher energy then we may accept it with the probability given in 

Equation 3.1.8. 

To accept or reject a new state which has a higher energy than the previous one, 

we choose a uniform random number, Z, between zero and one. If the transition 

probability is greater than Z, then we accept the new state and the system moves to 

the vl+1 state. Other than this we reject the new state and the system stays in the v1 

state. 

Actually, there is much freedom of choice in moving from states v1 to v1+1, which 

are only restricted by the condition that the W D.E=O is symmetric (i.e., W D.E=o(vl -+ 

vl+1 ) = WD.E=o(vl+ 1 -+ vl)). Changing many degrees of freedom simultaneously, 

however, leads to an extremely small value for the transition probability, and hence, 

most of the desired moves would not be selected at all such that the system may 

largely remain in its previous state. Therefore, one efficient and common strategy is 

to change only one degree of freedom, such as rotating a single spin in the case of 

the plane rotator system; or change only two degrees of freedom, such as rotating a 

single spin in the case of the Heisenberg system. 

Thus, the optimal Metropolis algorithm used in this work proceeds according to 

the following nine steps: 

1. Choose the initial state, v1, of the system. 

2. Randomly select the target spin, iJ(fi), where i E (1, 2, 3, 4, .... , N = L x L). 

3. Generate a new state, vl+1 , randomly by changing the orientation of the selected 

spin iJ(fi) to iJ'(fi) such that 

iJ'(fi) = iJ(fi) + 6-iJ(fi). 
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4. Compute the difference in the energy, D..E, between the new state and the old 

one (i.e., D..E = Ev1+1 - Ev1). 

5. Calculate the transition probability according to Equation 3.1.8. 

6. Generate a uniform distribution random number, Z, between zero and one. 

7. Compare Z with the calculated W(v1 -+ v1+1). If W(v1 -+ vl+1) is greater than 

Z accept the move, otherwise leave the spin as it is and retain the old spin 

configuration. 

8. Repeat steps 2 - 7 as necessary. 

9. Store the required observable quantities of the system every nth Monte Carlo 

step per lattice site (MCS/site) to calculate the averages. 

For more details about the Monte Carlo procedure, however, the reader is referred 

to some excellent texts on this subject [172, 173, 179]. 

3.2 Boundary Conditions and Long-range Dipolar 

Interactions 

Since simulations are applied to finite systems, one important question which arises 

is how to treat the boundaries of the lattice. 

When only the short-range exchange interactions are involved in the simulations, 

problems of finite size may be treated easily by applying periodic boundary conditions. 

Then, by using finite-size scaling analysis, these finite size systems can be extrapolated 

to infinite systems [180, 181]. With these periodic boundary conditions, the spins 
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along one edge of the lattice are neighbours of corresponding spins along the other 

edge. This ensures that each spin has the same number of neighbours and local 

geometry such that all the spins are equivalent. 

However, including the dipolar interactions in Monte Carlo simulations makes 

such techniques less straightforward since the dipole-dipole interaction is not a simple 

nearest neighbour interaction, but instead is a long-range interaction in which each 

spin interacts with every other spin. Despite these difficulties, earlier studies with 

long-range dipolar interactions on three-dimensional systems [182] and on square two­

dimensional systems [155, 156] showed that the finite size effect can best be treated 

by constructing an infinite plane from replicas of a finite system. Such a replication is 

shown in Figure 3.1, where the finite system is denoted by dark lines and is assumed 

to be a two-dimensional square with lattice constant, a. By scaling all distances with 

the lattice constant, a, one can define L as an integer number characterizing the 

periodicity of the allowed configurations. Based on this definition, the finite system 

(i.e., unit cell) contains L x L magnetic spins, where the x and y axes are the two 

axes of the square lattice and the z axis is perpendicular to it. 

Knowing the state of each spin in a finite L x L system means that one knows the 

state of every spin in the infinite system. This suggests that the spin configurations 

of the infinite system can be specified in terms of the L 2 spins of the L x L unit cell. 

The dipolar part of the general energy, therefore, can be rewritten such that the spins 

outside the finite system can be replaced with the equivalent spins from inside the 

unit cell. To achieve this for the case of a two-dimensional square lattice, the only 

spin configurations included in the calculation are those which satisfy the condition 

(3.2.1) 
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Figure 3.1: An infinite plane from replicas of a finite system (indicated by dark lines). 
All interactions between spins outside the finite system are included in an effective 
interaction between spins within the dark unit cell. In this Figure, x andy denote the 
the two in-plane directions of the square lattice, r is to the position of the ith lattice 
site within the finite system, G is the translation lattice distance, and R is the to the 
position of the equivalent ith lattice site in one of the replicas of a finite system. 
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with 

(3.2.2) 

where fi refers to the position of the ith lattice site within the finite system and G is 

the translation lattice vector given by 

(3.2.3) 

such that 

(3.2.4) 

as shown in Figure 3.1. This assumed periodicity presents no problems for treating 

the short-range exchange interactions, the magnetic surface anisotropy, or even the 

externally applied magnetic fields because it is equivalent to the application of periodic 

boundary conditions. 

Imposing the periodic boundary conditions given by Equation 3.2.1, the dipolar 

energy given by Equation 2.1.15 can be rewritten as [155, 156] 

(3.2.5) 

Here, C is a constant which arises from the interaction between spins at equiva-

lent lattice sites. Because of the assumed periodicity, C is independent of the spin 

configuration of the system and is given by 

(3.2.6) 
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while Wet,6 (Pij) is the effective interaction matrix. Using the Ewald summation tech-

nique, this interaction matrix is defined as 

wet,6 ( r· . ) - lim _Q_ _Q_ """" 1 
2
J - r-+o oret ar.e 7' lfij + c- rl' 

=~lim~~ ("""" Erfc(7JI(fij- f}/ L ~ Gl) 
L r-+O [)ret 8r.6 7 I ( fij - f)/ L + G I 

+ L exp((27rzG · ~j- f}/L))Erfc(7riGI)) . 

0:;60 IGI 7] 

(3.2.7) 

This expression can be use to evaluate Wet,6 (fij) very efficently, which is then 

stored as an array for use during the simulations. The details of the calculation 

based on a generalization of the Ewald summation technique can be found in the 

references [155, 156, 171]. 

Finally, Equation 3.2.5 can be expressed in terms of an effective field, Hdd(fi), at 

a lattice site, i, as 

(3.2.8) 

such that Hdd(fi) is given by 

£2 

Hdd(fi) = L L wet,6(fij)a,6(fj). (3.2.9) 
#i ,6 

By including the long-range dipolar energy of the system given by Equation 3.2.8 

into the Monte Carlo simulations, the Metropolis algorithm described in the previous 

section needs to be modified as follows: 

1. Start with an initial spin configuration, v1• 

2. Calculate the effective field given by Equation 3.2.9 at each site of the lattice. 
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3. Go through the lattice in a random way and pick a target spin, iJ(fi). 

4. Generate a new state, v1+1, by randomly changing the orientation of the target 

spin, iJ(fi), to 

iJ'(fi) = iJ(fi) + 6.iJ(fi). (3.2.10) 

5. Compute 6.E such that 

6.E = L 6.CJa(fi)H~d(fi) + 6.Eex + 6.E~, (3.2.11) 
a 

where 6.Eex and 6.E~ denote the change in the exchange interaction and the 

change in the magnetic surface anisotropy, respectively. 

6. Calculate W(vl --+ Vt+l) according to Equation 3.1.8. 

7. Generate Z. 

8. Compare Z with W(vl --+ Vt+l)· If W(vl --+ v1+1) is greater than Z accept the 

move, otherwise leave the spin as it is and retain the old spin configuration. 

9. If the new spin configuration is accepted, then the effective field at each site is 

updated to 

£2 

H~d(fi) = H~d(fi) + L L wa;3(fij)6.CJ;3(fj). 
j=j:.i ;3 

10. Repeat steps 3 to 9 as required. 

(3.2.12) 

11. Store the necessary observable quantities of the system every nth Monte Carlo 

step per lattice site to calculate the averages. 
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This algorithm has some important features. One of these features is that most 

of the simulation time is spent in updating the effective field at L2 sites after each 

accepted change of a spin. For this reason, the time required to complete one Monte 

Carlo step per site by accepting a new v1+1 state scales as L4 in 2-dimensional systems 

or as L6 in 3-dimensional systems. Of particular importance is the way in which a new 

state, v1+1, is generated from state, v1, by randomly changing the orientation of the 

target spin from CJ(fi) to cT''(fi) as mentioned in Step 4 above. In this study, simulations 

are conducted on both plane rotator and Heisenberg systems. For simulations of the 

plane rotator system, the change in orientation of the target spin is made by randomly 

selecting the angle ¢, which the target spin makes with the x-axis. Thus, the selected 

orientations of all target spins are uniformly distributed along the arc of a ring with 

radius 1 as shown in Figure 3.2. In the case of the Heisenberg system, however, two 

parameters must be used to change the orientation of the target spin, o=i. These two 

parameters are e and cp as shown in Figure 3.3. To obtain a uniform sampling, e and 

cp are selected randomly through two uniform distribution random numbers, Z1 and 

z2' such that 

(3.2.13) 

where each of these two random numbers is between 0 and 1. During simulations of 

this system, the orientations of all the target spins are changed randomly, such that 

they are uniformally distributed over the surface of a sphere with radius 1 as shown 

in Figure 3.4. 

Also worth mentioning is that the two-dimensional arrays are stored as one­

dimensional arrays, because this process provides more efficient access to the arrays. 
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Figure 3.2: A uniform distribution of the randomly selected orientations of the target 
spins along the arc of a ring with radius 1. 
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Figure 3.3: The spherical coordinates (lc.Til, (), and¢) for the target spin, cJi. 
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Figure 3.4: A uniform distribution of the randomly selected orientations of the target 
spins over the surface of a sphere with radius 1. 
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These computational details are comprehensively reviewed in a number of publica­

tions [155, 156]. 

3.3 Computational Aspects 

As mentioned in chapter 2, in this study four systems of the basic model are examined 

that describe two-dimensional magnetic systems on a square lattice. In these systems 

the spins are treated classically and are represented by vectors of fixed magnitude. In 

the case of the plane rotator system the spins are constrained to lie in the plane, while 

in the Heisenberg system the spins are allowed to orient in any direction. The systems 

include the nearest neighbor antiferromagnetic exchange interaction, the long-range 

dipolar interaction, and the magnetic surface anisotropy, characterized respectively 

by the three coefficients J, g, and 1'£. Throughout this research, the two coupling 

parameters, J and ""' are measured in units of the parameter g. In addition, the 

temperature, T, is measured in units of 1/kB such that kB is the Boltzmann constant. 

The calculations are performed on three different sizes of the square lattice (N = 

LX L = 322 ,642
, 1042

). 

In determining the properties of these systems, equilibrium variables (e.g., energy 

and magnetization) that vary as a function of the model parameters (Tjg, Jjg, I'£/ g) 

need to be considered. This permits the identification and study of the phase behavior 

of the system as a function of model parameters. In performing a temperature scan 

for example, the final state of the system at temperature, T / g, can be selected as 

the initial state for the next nearest temperature, Tjg ± 6(Tjg). In performing the 

simulations over a range of increasing temperatures such as between T = 0.05g and 

T = 5.0g in steps of 0.05, the simulation would be initially performed at T = 0.05 
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using the proper ground state. The final state of that simulation would then be used 

as the initial state for the simulation at T = O.lg, and so on. The same technique 

is used in the process of cooling the system. In performing the simulations over a 

range of temperatures between T = 5.0g and T = 0.05g in steps of 0.05 for instance, 

the final state of that simulation at T = 5.0g would then be used as the initial state 

for the simulation at T = 4.95g, and so on. Using this technique for both heating 

and cooling reduces the time of the simulation because the equilibrium state (i.e., 

the state that contributes significantly to the thermal average) at T / g will be more 

similar to that at Tjg ± 6(T/g). A similar technique can also be used to scan with 

respect to other variables. 

However, the question still remains as to how to determine the proper ground state 

spin configuration to be used as an initial state of the system at the beginning of the 

simulation. In the present study, this is done in the following manner. Before applying 

the simulation over a range of temperatures, all parameters of the energy involving a 

very low temperature (e.g., T = 0.05g) are specified. After that, a disordered state 

(i.e., random directions of the spins) is chosen as an initial state of the system. Then, 

the simulations are performed for a sufficient time allowing the system to relax using 

this low temperature. At the end of this simulation, the final spin configuration is 

obtained. From this spin configuration, the proper ground state of the system is 

determined. To ensure that the system relaxes to the proper ground state, other 

arbitrary initial states are used and the same procedure is repeated. Indeed, heating 

and then cooling the system gives additional evidence that the system relaxes to the 

same ground state spin configuration. 

Before collecting the data, the system must be allowed to come to equilibrium. 
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Equilibrium means that the average probability of finding the system in any partic­

ular state, v, is proportional to the Boltzmann weight, exp (- f3 Ev), of that state. 

Therefore, at equilibrium the system spends the majority of its time in a small subset 

of states in which its internal energy and other properties take on a narrow range of 

values. In order to get a good estimate of the equilibrium value of any property of 

the system, it is necessary to generate a sufficient number of configurations until the 

system has found its way to one of the states that fall within this narrow range (i.e., 

until the image of the initial state is lost). The number of configurations required to 

bring the system to equilibrium is called the equilibration time, 7eq· 

The normal practice in order to check whether or not the system has reached equi­

librium is to plot a graph of some quantity of interest for the investigated system as a 

function of time (i.e., MCSisite) from the start of the simulation. From this graph, 

7eq is estimated. As done in this research, the internal energy per spin is one of the 

interesting quantities plotted as a function of time. Samples of such curves are shown 

in Figure 3.5 for four different values of temperature, T = 0.05g, O.lg, 0.15g, 0.2g, for 

the anisotropic Heisenberg model with J = -lO.Og, and ""= -1.5g. At any of these 

fixed values ofT I g, Figure 3.5 suggests that the system relaxes from an initial state 

to an equilibrium state in no more than 104 MC S I site. Therefore, this is the value 

of 7eq used in this research. 

Once the system has reached equilibrium, the observable quantities of interest 

need to be measured over a suitably long period of time, 7, and averaged to obtain 

the best estimate of these observable quantities. In this research, the value of 7 

used to calculate the averages, however, depends on both the size of the system 

and the temperature. For the results presented in this research, the simulations are 
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Figure 3.5: Average internal energy, (E /g), per spin as a function of time, MCS/ site, 
for the Heisenberg model with J = -lO.Og, K, = -1.5g, and L = 64 at four different 
values of temperature, T = 0.05g, O.lg, 0.15g, 0.2g, from the start of the simulation. 
The final spin configuration at any of these fixed temperatures is considered as an 
initial state or the next nearest temperature. 
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applied over a range from 10 x 104 MCSisite at high temperatures for the 104 x 

104 system, to 29 x 104 MCSisite at low temperatures for the 32 x 32 system. 

Physical properties after one M C S I site are very strongly correlated, particularly 

at all second-order phase transitions where the critical divergence of the correlation 

length is strongly distributed by the finite size and the periodicity of the system 

[155, 156, 172, 173, 176, 183, 175, 184]. Therefore, it may be better not to collect 

the desired observable quantities immediately after every MC S I site, but once every 

nth MC S I site where n is some typical correlation time required to allow correlations 

to efficiently decay to zero. In this study, it is adequate to collect the interesting 

observable quantities of the system when calculating thermodynamic averages every 

10 MCSisite. 

Finally, the observable quantities of interest for the investigated systems need 

to be determined. In this research, the most likely candidates for these observable 

quantities are the internal energy and magnetization (order parameters). Given the 

internal energy, E, and the magnetization, M, every nth MCSisite, these quantities 

can be averaged over the the whole time period of the simulation. Then, dividing 

these quantities by the number of spins, N, results in the average internal energy, (E), 

and average magnetization, (M), per spin. Also, the squares of the internal energy 

and magnetization per spin are averaged to find quantities like the specific heat, Cv, 

and the magnetic susceptibility, x, per spin 

1 2 2 
Cv = NT2 ((E)- (E)), (3.3.1) 

(3.3.2) 
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While it is possible to estimate thermal averages for model systems such as mag­

netization or internal energy using Monte Carlo techniques, it is less obvious how 

these techniques may be used to calculate the free energy, F, because it cannot be 

expressed as an ensemble average. However, it is easy to express the free energy dif­

ference, 6.F, between the system of interest (with internal energy E at temperature 

T) and a suitably chosen reference system (with internal energy Eo at temperature 

T0 ) as an ensemble average 

6.F = -T ln ( (exp- (E /T- E0 /To))o), (3.3.3) 

where <>o denotes an average over a canonical ensemble of a reference system. The 

exact details of the derivation, however, are presented in Appendix A. This means that 

it is possible to estimate 6.F with respect to some reference system by a conventional 

Monte Carlo technique using the Metropolis algorithm. This can be done by using 

non-equilibrium sampling technique [185, 186, 187]. From 6.F, the free energy for 

the system of interest can be calculated over a particular range of a system parameter 

like T, J or 11., using the fact that the free energy is a continuous function. 

In particular, some care must be given to the choice of reference system. In prac­

tice, Equation 3.3.3 is very useful for estimating the free energy differences between 

any two systems that are not too dissimilar as will be shown in chapter 5, where 

the simulation results of the dipolar plane rotator antiferromagnetic system will be 

presented and discussed. 
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3.4 Benchmarks 

Monte Carlo simulations with long-range interactions require very high-performance 

computational resources which were generally not available before ten years ago. 

Since the present code included such interactions (dipolar interactions), the simu­

lations presented in this thesis were run on a number of different computers using 

resources provided by many sources. At Memorial University of Newfoundland the 

code was run on an Alpha Server 4100, a set of Digital Alpha systems (Alcor, Alioth, 

Alphaid, and Mizar). Some of this research was done using a Silicon Graphics Onyx 

3400 provided by Memorial University's Advanced Computation and Visualization 

Centre. A few jobs were run on a Silicon Graphics Origin 2000 provided by the 

High Performance Computing Center at the University of Alberta. However, the 

majority of the simulations presented in this thesis was done on the MACI Alpha 

Cluster (DS10, DS20E, XP1000, ES40, and ES45) which was provided by the High 

Performance Computing Center in Calgary. 

To ensure that the code was functioning properly, in this research some indepen­

dent results by Rastelli et al. [121] were replicated using the present code. The results 

taken from this reference are shown in Figure 3.6, where the heat capacity of the pure 

dipolar plane rotator system on a two-dimensional square lattice with L = 32 as 

a function of temperature is plotted. Comparing the obtained results ( o) with the 

results (*) obtained by Rastelli et al., shows an evidence of agreement between them 

(see Figure 3.6). 

Other earlier results found by Gouvea et al. [188] are shown in Figure 3. 7, 

where the perpendicular order parameters, M1., of the Heisenberg system on a two­

dimensional square lattice with L = 64, g = 0, and where Jx = JY = 1.15 JZ as a 
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Figure 3.6: A comparison between the obtained (o) heat capacity, Cv, per spin as a 
function of temperature, Tjg, and the results(*) obtained by Rastelli el al. for the 
pure dipolar plane rotator system on a two-dimensional square lattice with L = 32. 
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function of temperature is plotted. The results obtained in the present analysis ( o) 

compare well with these obtained by Gouvea et al. (*) except in the vicinity of the 

transition temperature (see Figure 3.7). This difference may be attributed to the dif­

ferences in the implementation of the Monte Carlo algorithm in these two simulations. 

The code used in this research is based on the Metropolis single-spin moves, while 

Gouvea et al. applied a combination of Metropolis single-spin moves, over-relaxation 

moves, and Wolff single-cluster operations in their code. This difference aside, the 

comparison shows generally good agreement between the present results and those of 

Gouvea et al. 
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Chapter 4 

The Heisenberg System 

4.1 Introduction 

In this chapter the phase behavior that can arise as a consequence of the competi­

tion between the dipolar and the exchange interaction in low-dimensional antiferro­

magnetic systems is examined for both zero and finite temperature. This chapter, 

therefore, does not include the effect of the magnetic surface anisotropy, although the 

system can be extended to incorporate it into the analysis as will be shown in chap­

ters 6 and 7. This study is based on Monte Carlo simulations of a simple model of a 

two-dimensional antiferromagnetic system. The system consists of N classical spins of 

fixed magnitude arranged on a square lattice of length L (N = L x L = 322
, 642

, 1042
) 

which interact through a nearest neighbor antiferromagnetic exchange interaction and 

a long-range dipolar interaction. The two in-plane directions of the square lattice of 

the system are assumed to be x and f), and the direction perpendicular to the plane 

is z. 
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In this system the energy of a particular spin configuration { ili} is given by 

E({ai}) = g L (ai '/j- 3(ai. rij)~aj. rtj))- JL:ai. aj. 
r.. r .. i-:j:j ZJ ZJ (ij) 

( 4.1.1) 

Here, (Ji is a three-dimensional classical spin vector with liJil 2 = 1, and the exchange 

interaction is assumed to be antiferromagnetic (i.e., J < 0). 

In the following three sections both the zero and the finite temperature properties 

of the model are discussed and the results of the simulations including the phase 

diagram are presented. A brief discussion of the low temperature order parameter 

follows in section 4.5. A discussion of some potential applications of the results is 

presented in section 4.6, and the chapter finishes with a summary. 

4.2 Ground State Properties 

In the absence of an exchange interaction ( J = 0) the ground state spin configuration 

has the spins aligned in the plane of the system (the AF11 phase). However, it has 

been noted by several authors that the planar ground state of the pure dipolar system 

is continuously degenerate [112, 114, 118]. Two examples of the dipolar ground state 

spin configurations are shown in Figure 4.1a and Figure 4.1 b. Other ground state 

spin configurations can be generated by a transformation which continuously maps 

the spin configuration shown in Figure 4.1a into the spin configuration in Figure 4.1 b 

by varying the angle ¢ shown in Figure 4.2 [118]. The fact that the ground state is 

continuously degenerate is somewhat surprising since the dipolar interaction is not 

invariant under rotation. It can readily be shown that the energy of these states (AF11 

states) is not affected by the addition of the exchange interaction and is given by [50] 

EAFII = -5.0989g. (4.2.1) 
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Figure 4.1: Two planar ground state spin configurations. In one (a) the spins are 
aligned along the x-axis in the other (b) they are oriented at ±7r /4 to the x-axis. 
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Figure 4.2: A schematic of the magnetic unit cell used to describe the magnetic order 
showing the four magnetic sub-lattices and labels attached to them. In this Figure, 
x and y denote the two in-plane directions of the square lattice. The energy of the 
spin configuration is independent of the angle ¢ shown in the Figure. 
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For low values of IJI this manifold of degenerate states constitutes the ground 

state. However, if the strength of the antiferromagnetic exchange parameter is suffi­

ciently large, the ground state spin configuration switches to one in which the spins 

are perpendicular to the plane of the system with each spin aligned anti-parallel to 

each of its nearest neighbors (the AA1_ phase) as shown in Figure 4.3. The energy of 

this state is given by [50] 

EAAj_ = -2.6459g + 2J. (4.2.2) 

Comparing the energies of the planar (Equation 4.2.1) and the perpendicular 

(Equation 4.2.2) spin configurations, it is seen that, at zero temperature, a transition 

from the degenerate parallel antiferromagnetic phase to the non-degenerate perpen­

dicular antiferromagnetic phase occurs when IJI = J0 , with 

Jo/ g (5.0989- 2.6459) /2 

1.2265. (4.2.3) 

Thus, the competition between the dipolar and the antiferromagnetic exchange inter­

actions can give rise to a reorientation transition at zero temperature. 

To construct order parameters for both of these states the lattice is divided into 

four sub-lattices [118], each of which is square with a lattice spacing twice that of the 

original lattice. The magnetic lattice, therefore, contains four sites per unit cell, each 

site corresponding to one of the sub-lattices. Denoting the four sites by a E {1 ... 4}, 

as shown in Figure 4.2, the sub-lattice magnetizations, MA:p
11 

and MA:Aj_, may be 
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X 

Figure 4.3: The perpendicular ground state spin configuration in the case of the large 
value of [J[jg, where x andy denote the two in-plane directions of the square lattice. 
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defined as 

M~x+M~y 

~ ( ~>x(r;;)) X+ ~ ( ~ ""(r;;)) Y (4.2.4) 

and 

(4.2.5) 

from which the order parameters, MAF
11 

and MAA1_, may be defined as 

(4.2.6) 

and 

(4.2.7) 

For the planar ground state, Ill < lo, 

and 

while for the perpendicular ground state, Ill > lo, 

and 
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4.3 Finite Temperature Properties 

In the case of the pure dipolar system (J = 0) Monte Carlo simulations clearly show 

the existence of long-range magnetic order for both the planar [118, 109] and the 

Heisenberg model [144] at low temperature. In both cases, the equilibrium spin con­

figuration is antiferromagnetic, with the spins aligned along either the x or they-axis, 

similar to the configuration shown in Figure 4.1a. Since the dipolar ground state is 

continuously degenerate, the existence of long-range magnetic order poses two inter­

esting and subtle questions, both of which are relevant to the current work. Firstly, 

since the degeneracy of the ground state implies the existence of a gapless mode in the 

spin wave spectra, a result confirmed by spin wave calculations for both the Heisen­

berg [189] and the planar model [118], why does the amplitude of spin fluctuations 

not diverge and the magnetic order disappear at finite temperature as in the simple 

nearest neighbour Heisenberg model [102]? Secondly, if the long-range magnetic order 

does persist at finite temperature, how is the easy axis of magnetization determined 

if the ground state is continuously degenerate? 

The answer to both of these questions lies in the fact that the degeneracy of the 

dipolar ground state does not arise as a result of a global symmetry. As a consequence, 

while the ground state energy is independent of the magnetization axis, the spectrum 

of energy excitations is not. This means that the thermal spin fluctuations break 

the degeneracy of the ground state and generate an effective potential that has the 

four fold symmetry of the underlying lattice [116, 117, 118]. This effective potential 

will manifest itself as a gap in the spin wave spectra [120, 109] that renders the 

amplitude finite [109] at finite temperature, and can serve to define an easy axis of 

magnetization. 
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A similar situation pertains in the case of the present system for I Jl < J0 (J0 = 

1.2265g). The order parameters MAF11 and MAA.1. for IJI = 0.4g and IJI = l.Og 

defined by Equations 4.2.6 and 4.2. 7 are shown in Figure 4.4 in terms of the thermally 

averaged sub-lattice magnetization given by 

(4.3.1) 

and 

(4.3.2) 

In both cases the data show a planar phase at low temperature MAF
11 

=I= 0 and 

MAA.1. ~ 0. As the temperature is increased the order parameter decreases, dropping 

rapidly at around T = (1.4±0.05)g for both IJI = 0.4g and IJI = l.Og, to indicate the 

transition from the ordered planar antiferromagnetic phase to the disordered para­

magnetic phase. In both cases the transition sharpens as the system size increases, 

consistent with a second-order transition. The existence of a second-order phase tran­

sition is also reflected in the susceptibility (Figure 4.5), in the average internal energy 

(Figure 4.6), and in the heat capacity (Figure 4. 7) data. It is interesting to note that, 

while the equilibrium phase at low temperature clearly shows long-range magnetic 

order, the heat capacity for the planar phase shows a transition that is relatively 

insensitive to system size. Qualitatively, the peak in the heat capacity resembles the 

peak in the heat capacity at the Kosterlitz Thouless transition temperature in the 

two-dimensional XY-model (g = 0). 

While the order parameter and other thermodynamic observations appear qualita­

tively similar for different values of J (Figures 4.4 - 4. 7), the nature of the equilibrium 

spin configuration is nevertheless quite different. A sample spin configuration for each 
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Figure 4.4: A plot of the parallel and perpendicular order parameters, MAF
11 

and 
MAA1., per spin as a function of temperature, T / g, for (a) IJI = 0.4g and (b) IJI = l.Og 
with L = 32 and 104. 
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Figure 4.5: A plot of the parallel and perpendicular susceptibilities, XAFtt and XAA..L, 

per spin as a function of temperature, Tjg, for (a) IJI = 0.4g and (b) IJI = l.Og with 
L = 32 and 104. 
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Figure 4.6: A plot of the average internal energy, (E/g), per spin as a function of 
temperature, Tjg, for (a) IJI = 0.4g and (b) IJI = l.Og with L = 32 and 104. 
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Figure 4.7: A plot of the heat capacity, Cv, per spin as a function of temperature, 
Tjg, for (a) IJI = 0.4g and (b) IJI = l.Og with L = 32 and 104. 
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value of J is shown in Figure 4.8 forT= 0.15g. The spin configuration in Figure 4.8a 

shows quite clearly that the sub-lattice magnetization for J = 0.4g is similar to that 

for the pure dipolar system, J = 0, with the spins aligned along either the x- or 

y-axis. In contrast, the spin configuration in Figure 4.8b shows that, for Ill = l.Og, 

the sub-lattice magnetization is oriented at ±7r I 4 to the x-axis. This implies that 

two distinctly ordered planar phases exist. 

The difference in the orientation of the equilibrium spin configuration is also ap-

parent in Figure 4.9, which shows the angle cPa as a function of the temperature, T I g, 

for two values of J, where cPa is defined for each of the sub-lattices as 

(4.3.3) 

The data are presented for cooling and show, at high temperature, that the spins 

on each of the four sub-lattices do not appear to exhibit any preferred orientation 

within the plane for both III = 0.4g and l.Og. As the temperature is lowered and the 

antiferromagnetic order is established, the spins in each of the magnetic sub-lattices 

begin to order along one of the symmetry axes. However, it is apparent from the 

data that the symmetry axis is different for the different values of 111. For III = 0.4g 

the symmetry axis is along the x-axis, with ¢1 = ¢2 = 0 and ¢3 = ¢4 = 7!', while 

for I Jl = l.Og the symmetry axis is oriented at 7l' I 4 to the x-axis, with cP1 = 7l' I 4, 

cP2 = 37!'14, ¢3 = 57!'14 and ¢4 = 771'14. 

For I Jl > 10 the ground state spin configuration has the spins aligned perpendic­

ular to the plane of the system. The two order parameters MAF11 and MAA1., earlier 

defined by Equations 4.2.6 and 4.2.7, are shown in Figure 4.10 for Ill = 2.0g, calcu-

lated using the thermally averaged sub-lattice magnetization given by Equations 4.3.1 

and 4.3.2. The data show a perpendicular antiferromagnetic phase with each spin 
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Figure 4.8: Snapshots of two typical spin configurations at T = 0.15g for (a) IJI = 0.4g 
and (b) IJI = l.Og with L = 104. 
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aligned anti-parallel to its nearest neighbour. As the temperature is increased the or­

der parameter decreases, dropping rapidly at around T = (2.5±0.05)g for Ill= 2.0g, 

indicating the transition from the ordered perpendicular antiferromagnetic phase to 

the disordered paramagnetic phase. As with the parallel phase discussed above, the 

order parameter data show the transition sharpening as the system size increases, con­

sistent with a second-order transition. Comparing the heat capacity of Figure 4.11 

for the perpendicular phase with that shown in Figure 4. 7 for the parallel phase, it is 

worth noting that the peak in the heat capacity for the perpendicular phase shows a 

more pronounced size effect. This agrees with corresponding susceptibilities and av­

erage internal energy shown, respectively, in Figures 4.12, 4.13. The existence of the 

simple perpendicular antiferromagnetic phase in such systems was also confirmed by 

Deng et al. [153] using spin dynamics calculations with fast Fourier transformations. 

The transition from the planar antiferromagnetic to the perpendicular antiferro­

magnetic phase is clearly seen in Figures 4.14, 4.15 and 4.16, which show how the order 

parameters MAF
11 

and MAA1. (Figure 4.14), the total internal energy (Figure 4.15), 

and the dipolar and exchange energies (Figure 4.16) per spin change with increasing 

Ill/ g forT= 0.4g. It is worth noting that while the data indicate that the transition 

from the planar to the perpendicular antiferromagnetic phase is first order, the latent 

heat at the transition is very small. Instead, the transition is characterized by a sharp 

change in the slope of the energy with respect to 111. The discontinuous nature of 

the transition is clearly seen in Figure 4.16, in which the exchange and the dipolar 

energy are plotted with increasing Ill/ g. The curves show that in the planar phase 
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Figure 4.11: A plot of the heat capacity, Cv, per spin as a function of temperature, 
T / g, for IJI = 2.0g with L = 32 and 104. 
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([J[ < J0), the energy of the system is almost entirely dipolar, Eex::::::: 0. At the transi­

tion, [J[ = (1.2265±0.02)g, the system switches from the planar to the perpendicular 

phase and the exchange energy is seen to decrease abruptly and the dipolar energy 

increase. The data also indicate a small amount of hysteresis, consistent with the dis­

continuous nature of the transition. Further evidence for the transition between the 

two planar phases is also seen in the susceptibilities of the sub-lattice magnetization, 

shown in Figure 4.17, which shows not one but two distinct peaks. The first peak 

occurs at [J[ = (0.69 ± 0.02)g and corresponds to the reorientation transition from 

one planar phase to the other, and the second peak occurs at [J[ = (1.23 ± 0.02)g 

which represents the transition from the planar to the perpendicular phase. 

4.4 The Phase Diagram 

The phase diagram constructed from the Monte Carlo data is shown in Figure 4.18. 

The graph shows the three phase boundaries separating the dipolar planar antifer­

romagnetic phase (Region I), the perpendicular antiferromagnetic phase (Region II) 

and the paramagnetic phase (Region III). The dotted line in Region I, indicates the 

phase boundary separating the two planar phases. Within the accuracy of the simu­

lations, the precise nature of this boundary and its location are difficult to determine 

precisely in the region where T > l.Og. 

The phase boundary separating the planar and the perpendicular antiferromag­

netic phases appears, from the Monte Carlo data, to be first order. The order param­

eters MAA1. and MAF
11 

change abruptly with increasing and decreasing [J[ and the 

data show a small amount of hysteresis as shown in Figure 4.14. While the transition 

between the perpendicular and the parallel antiferromagnetic phases appears to be 
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Figure 4.17: A plot of the perpendicular (a) and the parallel (b) susceptibilities, XAA..~. 
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first order, the latent heat of the transition is relatively small along the length of the 

phase boundary. This is consistent with the observation that the phase boundary 

separating Regions I and II is almost horizontal. Letting J R (T) define the phase 

boundary, it can be readily shown that the slope of the coexistence line, dJ R (T) I dT, 

is proportional to the latent heat, b..E, and is given by 

dJR(T) Jb..E 
dT TRb..Eex' 

(4.4.1) 

where b..Eex denotes the difference in the exchange energy between the equilibrium 

phases on the coexistence line. Preliminary estimates of the slope and the latent heat 

are consistent with this calculation, although the range of uncertainty is relatively 

large making a precise confirmation of this result difficult. 

The phase boundary separating the perpendicular antiferromagnetic phase from 

the paramagnetic phase is determined by the peak position in the heat capacity of 

the system. Size effects, the continuous decrease in the order parameter, and the 

lack of any hysteresis suggest that this phase boundary defines a line of second-order 

transitions. This is consistent with the theoretical results of Pich and Schwabl [125]. 

Based on a generalized spin-wave theory, Pich and Schwabl obtained the following 

relationship for the Neel temperature, TN, for IJI » g [125] 

(4.4.2) 

To compare this relationship with the results of the Monte Carlo calculation, ln(IJII g) 

is plotted as a function of IJIITN in Figure 4.19. From this Figure it can be seen that 

the Monte Carlo data do indeed fall on a straight line for large values of I J I I g, as 

predicted by Pich and Schwabl. The solid line shown in the figure is the line of best 

fitting for the points IJI > 2.0g. The equation for the best fit line gives a = 0.1963 
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and b = 0.6599. 

The phase boundary separating the planar AF11 phase from the paramagnetic 

phase is also shown and, again, appears to describe a line of second-order phase 

transitions. At present, there do not appear to be any theoretical results for the Neel 

temperature for the planar AF11 phase with which to compare our results. 

The dotted line on the phase diagram represents the boundary between the two 

in-plane phases. For this study, the boundary was determined from the corresponding 

peak in the parallel susceptibility and, based on the results from the simulations, the 

transition is tentatively identified a discontinuous first-order transition. 

4.5 Low Temperature Order Parameter 

While the simulations are consistent with a first-order transition from the AAJ. phase 

to the AF11 phase with decreasing IJI, the low temperature order parameter data 

indicate a significant softening of the spin-wave spectra (i.e., decreasing in the spin­

wave stiffness) as the transition is approached. In Figure 4.20, the perpendicular 

order parameter is plotted as a function of T for several values of I J I > J0 . The 

graphs show that the perpendicular order parameter decreases linearly with increasing 

temperature in the low temperature region (i.e., T -t 0). The linear decrease of the 

order parameter with temperature may be readily understood on the basis of classical 

linear spin-wave theory. The magnitude of the sublattice magnetisation, Ma, may be 

written as 

Ma- I~ L B(f'a)l = 1- ~ L (b*(f'a)b(f'a)) 
fa fo 

(4.5.1) 

where bra denotes the complex amplitude associated with the spin fluctuations at the 
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Figure 4.20: A plot of the perpendicular order parameter, MAA.u per spin as a 
function of the the temperature, T / g, for several values of IJI > J0 with L = 104. 
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site, fa:, in the a sublattice. At low temperature the thermal average (b*(fa:)b(fa:)) 

may be calculated from linear spin-wave theory, provided the spin-wave spectra is 

not gapless. It can be readily shown that (b*(fa:)b(fa:)) o:: T. However, due to the 

presence of the dipolar interaction, the proportionality constant is quite difficult to 

calculate in general. It is clear from the graphs shown in Figure 4.20 that the slope 

of the perpendicular order parameter in the limit T --+ 0 decreases with decreasing 

Ill/ g, reflecting a softening of the spin-wave stiffness. 

A plot of limr_,0 ldMAA.L/dTI, as a function of Ill/ g is shown in Figure 4.21. Since 

limr_,0 ldMAA.L/dTI is dependent on the exchange parameter, it shows a rapid increase 

in magnitude as the transition is approached. This compares with a phenomenological 

relationship 

lim ldMAA.1 I = a 
T->O ldTI ((111/g)b- c)d 

(4.5.2) 

where a regression analysis yields the following estimates: a = 0.1660, b = 2.3835, 

c = 1.4900 and d = 0.3165. This relationship predicts that the slope of the order 

parameter diverges at lll/g = 1.1805, which lies just below the phase boundary 

separating the perpendicular and the in-plane phases. 

A similar analysis of the order parameter in the parallel phase is complicated by 

the fact that the temperature dependence of the sublattice magnetization appears 

to deviate systematically from linear behavior at low temperature. This is due to a 

gapless branch in the spin-wave spectra that arises as a consequence of the degeneracy 

of the ground state. In Figure 4.22, g(1- MAF
11

) /Tis plotted as a function ofT/ g for 

Ill = 0.2g. It can be seen that the points do not tend to a constant in the limit T--+ 0 

as might be expected on the basis of simple linear spin-wave theory but, instead, show 

a steady increase as the temperature is reduced. This is consistent with the results 
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of Carbognani et al. [109] for the planar model. In their studay, Carbognani et al. 

go beyond the simple spin-wave approximation and they predict a low temperature 

order parameter of the form 

lim MAF
11

::::::: 1- AT+ BTlnT, 
T-+0 

(4.5.3) 

where A and B are two constants. From Equation 4.5.3, one can see that at low 

temperature MAF
11 

diverges logarithmically. This prediction arises as consequence of 

the result that the spin spectra becomes gapless in the limit T --+ 0. The present 

results suggest that the degeneracy of the planar ground state of the Heisenberg 

model also gives rise to a similar non analytic temperature dependence of the order 

parameter, MAF
11

, in the limit T--+ 0. 

4.6 Discussion 

Low-dimensional antiferromagnetic systems are interesting for a variety of reasons, 

not the least of which is that the competition between the antiferromagnetic exchange 

and the dipolar interaction is sufficient to induce a reorientation transition from a 

dipolar planar phase to a perpendicular phase. 

The results from the simulations show that the function, JR(T), that describes the 

phase boundary between the dipolar planar and the perpendicular antiferromagnetic 

phases is only weakly dependent on the temperature, suggesting that the effective 

anisotropy that arises as a consequence of the exchange and the dipolar interaction 

is largely independent of temperature. Since it is not obvious how this result can be 

modified by the addition of an explicit magnetic surface anisotropy, this is the subject 

of chapter 6. 
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A subtle aspect of the phase behavior arises from the degeneracy of the dipolar 

planar ground state energy. The existence of long-range magnetic order and the 

orientation of the easy axis of magnetization is determined by the disorder produced 

by the thermal fluctuations. This provides an explicit example of the concept of "order 

from disorder" discussed by Henley [116]. However, Henley and Prakash [116, 117] 

have shown that the orientation of the magnetization axis generated by disorder is 

critically dependent on the precise nature of the disorder. In particular, in the case of 

the antiferromagnetic XY-model, the effective potential that arises as a consequence 

of the thermal fluctuations has a minimum on the x - y axis, while the disorder 

arising from the effects of dilution has a minima at ±7r /4 to the x - y axis. It seems 

reasonable on the basis of the work by Henley to assume that it is the change in the 

nature of the disorder as the exchange interaction, Ill/ g, is increased that gives rise 

to the reorientation transition within the dipolar planar phase which is observed in 

these simulations. 

Further motivation to determine how thermal fluctuations can give rise to an 

in-plane reorientation transition is provided by a recent experimental observation of 

such an in-plane transition in a ferromagnetic system [190]. While it is by no means 

obvious how the results obtained in this study are relevant to the ferromagnetic case, 

it is possible that both arise as a consequence of the same underlying physical process. 

The simulations also lend support to some of the predictions of non-linear spin­

wave theory. In particular, the Neel temperature for the perpendicular phase appears 

to be consistent with the results of Pich and Schwabl [125], while an analysis of 

the low-temperature magnetization in the planar phase shows a non analytic depen­

dance on T that is qualitatively similar to that predicted by Carbognani et al. [109] 
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for the planar model in the absence of an exchange interaction. Obviously a more 

quantitative comparison between spin-wave theory and the results obtained from the 

simulations would be useful and could include an analysis of the low-temperature 

magnetization in the perpendicular phase to examine the spin-wave spectra close to 

the phase boundary and the effect of the excitations on the magnetization. 

As mentioned in chapter 1, one important class of quasi-two dimensional antiferro­

magnetic materials in which the dipolar energy is comparable to the exchange energy 

is the so-called high Tc superconductors, REBa2Cu30 7_J, (RE = Rare Earth). The 

structure of these compounds is such that the rare earth ions reside on well-separated 

planes, replacing the yttrium (Y) ions of the parent compound YBa2Cu307-8· The 

compounds in which dysprosium (Dy), gadolinium (Gd) or erbium (Er) are substi­

tuted for the yttrium have been most extensively studied [50]. At low temperature, 

the spins are aligned perpendicular to the plane in the case of Dy [57] and Gd [61] 

compounds, and parallel to the plane in the case of Er compounds [48]. 

The compound GdBa2Cu30 7_8 is of particular interest in the context of the 

present discussion since, as an S-wave ion, the crystalline electric field (CEF) 

anisotropy will disappear to leading order and, based on a simple scaling argu­

ment [50], it will have the strongest exchange interaction of the three compounds. 

Therefore, application of the present system to this compound would locate the low 

temperature phase of GdBa2Cu30 7_8 in Region II of the phase diagram shown in 

Figure 4.18. This is consistent with the experimental observations of the order pa­

rameter and, while the observed low temperature heat capacity is complicated by the 

quantum nature of the spins at low temperature, measurements nevertheless show a 

sharp peak at the transition similar to that presented in Figure 4.12 [60]. 
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More intriguing is the case of ErBa2Cu30 7_0. According to the simple scaling 

argument referred to above, the Er compound will have the weakest exchange inter­

action of the three compounds (J(Er):=:::: J(Gd)/9). This is consistent with the fact 

that the moments are aligned in plane at low temperature. In the case of the or­

thorhombic superconducting phase of ErBa2Cu30 7_0 ( 6 > 1/2), the Er ions clearly 

order at low temperature along the a-axis, with the spins ordering as shown in Fig­

ure 4.1a [48], while the specific heat shows a sharp cusp at the Neel temperature [191]. 

In the tetragonal insulating phase (6 < 1/2), the specific heat is much more rounded 

and there does not appear to be any long-range magnetic order at low tempera­

ture [55]. Calculations of the CEF and the ground state of the Er ions show that, 

while the small orthorhombic distortion defines an easy axis of magnetization in the 

superconducting phase, in the tetragonal phase the magnetic moment of the Er ions 

is free to rotate in the plane [167]. While it is possible to argue that the rounded heat 

capacity observed experimentally is qualitatively similar to the heat capacity shown 

in Figure 4.7, it is difficult to reconcile the absence of long-range magnetic order with 

the results presented here. A possible explanation for the absence of an observed 

ordered state is that the highly degenerate nature of the planar equilibrium phases 

and the critical dependence of their stability on the nature of the disorder created 

by both the thermal fluctuations and any structural disorder (e.g., oxygen vacancies) 

results in frustration effects. These effects would prevent the system from realizing 

long-range magnetic order. Indeed it is possible that such effects would produce a 

glass-like phase of micro-domains that would be difficult to identify experimentally. 

While the properties of the GdBa2Cu30 7_0 and ErBa2Cu307-o compounds are 

consistent with certain aspects of the phase diagram shown in Figure 4.18, a more 
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complete picture of the magnetic properties of these compounds, and the others in this 

class, should include the magnetic anisotropy arising from the CEF and the effects of 

impurities. 

4.7 Summary 

In this chapter, the two-dimensional dipolar antiferromagnetic Heisenberg system on 

a square lattice with "' = 0 has been studied for both zero and the finite tempera­

tures. At low temperatures, the Monte Carlo results show that the system exhibits a 

reorientation transition from the dipolar planar (A.f1!) phase to the perpendicular an­

tiferromagnetic (AA_L) phase as the antiferromagnetic exchange parameter increases. 

Indeed, the results show that the phase boundary separating these two order phases 

is weakly dependent on temperature, and intercepts the [J[jg axis at J0 = 1.2265g. 

While this phase boundary appears to be a first-order transition with a small amount 

of hysteresis, the results show that the phase boundary separating the two ordered 

states ( A.f11, AA_l) from the paramagnetic state appears to be a second-order transi­

tion. 

A subtle aspect of the phase behavior for this system arises from the characteristics 

of the dipolar planar phase. In this phase, the Monte Carlo data indicates that there 

are two distinct phases. The first is labelled the A.f11l phase (known also as the 

collinear or columnar phase) which occurs at low values of [J[jg ([J[,:S 0.7g). In this 

phase the spins are aligned along either the x or they-axis of the square lattice of the 

system. The second is the A.f1!2 phase (known as the anticollinear or vortical phase) 

which occurs at the higher values of [J[jg (0.7g ,:S [J[ ,:S 1.23g). In this phase, the 

spins are aligned along the axis which oriented at ±n /4 to the x-axis of the square 
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lattice of the system. This provides an explicit example of the concept of "order 

from disorder" first pointed out by Henley [116]. In addition, the Monte Carlo results 

indicate that the phase boundary separating the AF11l from the AF112 phase appears 

to be a first-order transition. 

Finally, two interesting and important issues arise in this chapter. The first is to 

identify the way in which the z-components of the spins can effect the characteristics 

of the dipolar planar phase of the system. The second is to determine the way in 

which the magnetic surface anisotropy affects the phase behaviour of the system. 

While the first issue will be addressed in chapter 5, where the Monte Carlo results 

of the dipolar antiferromagnetic plane rotator model is presented, the second issue 

will be explored in chapters 6 and 7 where the Monte Carlo results for the two­

dimensional dipolar antiferromagnetic Heisenberg model on a square lattice with a 

planar anisotropy (K., < 0) will be presented. 
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Chapter 5 

The Plane Rotator System 

5.1 Introduction 

In the previous chapter, results from a series of Monte Carlo simulations were pre­

sented for the case of a two-dimensional Heisenberg system of magnetic ions ar­

ranged on a square lattice interacting only through an antiferromagnetic short-range 

exchange interaction and a long-range dipolar interaction. It was found that the 

two-dimensional dipolar antiferromagnetic Heisenberg system with zero K, exhibits 

a reorientation transition from an in-plane dipolar antiferromagnetic phase to an 

out-of-plane antiferromagnetic phase as the magnitude of the exchange coupling is 

increased. In addition, the in-plane dipolar antiferromagnetic ordering exhibits two 

phases: In one, the spins are aligned parallel to the square lattice axes; in the other, 

the staggered magnetization is rotated by 7r /4 relative to the square lattice axes. 

The appearance of in-plane magnetic ordering in these systems is a subtle effect 

since the planar ground state is continuously degenerate despite the anisotropic na­

ture of the dipolar interaction [118]. The magnetic order arises as a consequence of 

the disorder created by the thermal fluctuations [158, 118], and provides an explicit 

99 



example of the "order from disorder" [192, 115, 116] phenomena which is known to 

give rise to magnetic ordering in a number of frustrated magnetic systems [193, 194]. 

Earlier theoretical studies on a truncated dipole-like interaction have shown that 

both thermal fluctuations and dilution can stabilise the antiferromagnetic state, with 

thermal fluctuations favouring ordering along the lattice axis and dilution favouring 

ordering aligned at 7r/4 to the lattice axis [116, 117]. In chapter 4 it was conjectured 

that thermally activated, isolated out-of-plane spin flips would create a disorder simi-

lar to the effects of dilution, with a density controlled by the strength of the exchange 

interaction, J, and the temperature, T. It was therefore conjectured that these spin 

flips were the cause the reorientation transition from AF]11 to AF]12 with increasing 

I II/ g. The present chapter examines this conjecture since out-of-plane spin flips are 

absent in the plane rotator model. This chapter is also of interest as it may be consid­

ered to be another limiting case of the more general model that includes the on-site 

surface anisotropy. In this limiting case, the magnitude of the on-site anisotropy is 

effectively infinite (A; = -oo) and restricts the spins to being in-plane so that they 

may be treated as strictly planar rotors. 

This chapter hence identifies differences and similarities between the results for 

this plane rotator system and the system studied in chapter 4. The results reported 

are based on Monte Carlo simulations of the square lattice model having the energy 

(5.1.1) 

where { Bi} denotes the set of two-dimensional unit vectors that describe the orienta­

tion of the spins at the lattice sites {fi} within the plane of the lattice. In this system 

the exchange interaction is also assumed to be antiferromagnetic (i.e., J < 0). 
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5.2 Ground state properties 

For low values of III/ g, the ground state of the plane rotator system is the dipolar 

planar antiferromagnet (AF11 phase) as described in chapter 4. The energy of this 

ground state is given by [50] 

EAFII = -5.0989g. (5.2.1) 

In contrast, for large values of III/ g, the ground state of the system is a simple 

planar antiferromagnet in which each nearest neighbour pair is aligned antiparallel 

(AA11 phase) as shown in Figure 5.1. The energy of this state is given by [50] 

EAAII = 1.3229g + 2I. (5.2.2) 

By comparing Equation 5.2.1 with Equation 5.2.2, a transition from the degenerate 

AF11 phase to the non-degenerate AA11 phase occurs when III = I 0 , with 

Io/ g (5.0989 + 1.3229) /2 

3.2109. (5.2.3) 

To construct order parameters for both of these two states the square lattice is 

decomposed into four sub-lattices as was done in chapter 4. Each sublattice is labeled 

by an index a: = 1, 2, 3, 4, defining for each sub-lattice a corresponding sub-lattice 

magnetization 

M~x+M~y 

~ (~>x(r;;)) X+~ (~>Y(r;;)) fj. (5.2.4) 
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Figure 5.1: The planar antiferromagnetic (AA11) ground state spin configuration, 
where x and y denote the two in-plane directions of the square lattice. 
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From these sub-lattice magnetizations two order parameters are constructed 

(5.2.5) 

and 

(5.2.6) 

The first of these order parameters, MAF
11

, is the same as Equation 4.2.6 characterizes 

ordering in the ground state corresponding to the AF]r phase [118]. It can be shown 

that the second-order parameter, MAA
11

, is zero in this state. The second-order pa­

rameter, MAA
11

, characterizes ordering in the ground state corresponding to the AArr 

phase. It can be shown that the first-order parameter, MAF
11

, is zero in this state. 

5.3 The phase diagram 

At zero temperature, for IJI < J0 (J0 = 3.2109g), the AF]r phase is energetically 

favoured, while for IJI > J0 , the AArr phase is energetically favoured. This critical 

value of Ill/ g may be compared to the value of the exchange constant, I loll g = 1.2265, 

at which the spins switch from the AF]r ordering to the AA.l ordering in the case of 

the Heisenberg model studied in the previous chapter. 

At finite temperature, the equilibrium phases of the system obtained from Monte 

Carlo simulations are summarised in the phase diagram shown in Figure 5.2. The 

phase diagram exhibits a phase in which the ordering corresponds to the AFrr states 

(Region I), a phase in which the ordering corresponds to the AA 11 states (Region II), 

and a disordered phase (Region III). The transition from the AF]r phase to the AArr 

phase appears to be first order with clear discontinuities in MAF
11 

and MAA
11 

(Fig. 5.3) 
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Figure 5.2: The magnetic phase diagram, based on the Monte Carlo simulations, for 
the dipolar antiferromagnetic plane rotator system as a function of increasing and 
decreasing both IJI/g and Tjg for N = L x L = 322 ,642 ,1042

. Region I is the dipolar 
planar antiferromagnetic phase (AF11 phase), Region II is the simple parallel antifer­
romagnetic phase (AA11 phase), and Region III is the paramagnetic phase (disordered 
phase). The two solid lines highlight the two lines of second-ordered transitions from 
the paramagnetic phase to the two ordered phases. The dashed line highlight the line 
of first-ordered reorientation transition from one order state to the other (AF11, AA11 ). 
The two dotted lines separate the two planar phases (AF111, A.F1J2). 
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Figure 5.3: The two order parameters, MAF
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defined in terms of the thermally averaged sub-lattice magnetisation. Within the ac­

curacy of the simulations, the value of J at which the transition between these two 

states occurs appears to be independent of temperature. The phase boundary separat­

ing the ordered phases, AF11 (Region I) and AA11 (Region II), from the paramagnetic 

phase (Region III) is obtained from the points at which the order parameters drop to 

zero (Fig. 5.4) as well as from the corresponding peak in the magnetic heat capacity 

(Fig. 5.5). These simulations indicate that the transition is second order. 

In addition, there is evidence of two distinct AF11 phases: In one ( AF11l) the order 

parameter is parallel to one of the axes of the square lattice. In the other (AF112), the 

order parameter is at an angle of 1r /4 to the lattice axes. The existence of these two 

distinct phases is readily discerned by monitoring the angle (¢a) associated with the 

sub-lattice magnetisation for each of the four sub-lattices as defined by Equation 4.3.3. 

Figure 5.6 shows the behaviour of the sub-lattice magnetisation angle as a function 

of decreasing temperature for three typical simulations. A sample spin configuration 

for each value of J is shown in Figure 5.7 forT= 0.15g. 

The two dotted lines in the phase diagram (Figure 5.2) indicate where transitions 

between the two AF11 phases are clearly observed to occur in the simulations. In 

Region I forT ::::; 1.5g, within the accuracy of the simulations, the value of J for each 

of these transitions is independent of temperature. ForT ~ 1.5g, the phase behaviour 

in Region I becomes more difficult to determine and the phase boundary separating 

the two AF11 phases is more difficult to discern. While it seems reasonable to suppose 

that the phase boundaries separating the two AF11 phases in Region I remain distinct 

and terminate at the paramagnetic phase boundary, at this point other possibilities 

cannot be eliminated. Despite these details regarding the precise determination of 
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Figure 5.6: A plot of the angle ¢a, for each of the four sub-lattice magnetisations as 
a function of temperature, Tjg, for (a) Ill= 0.2g, (b) Ill= 1.5g, and (c) Ill= 2.7g 
with L = 104. 
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the phase boundaries separating the AF1J1 and AF112 phases, the reentrant behaviour 

of the AF11 phases in which the system is in the AF1J1 phase for small values of Ill/ g, 

switches to the AF112 phase as III/g is increased and then back to the AF111 phase, 

before making a transition back to the AA11 phase, is perhaps the most remarkable 

feature of this phase diagram. The two AF11 phases can also be distinguished by noting 

that the magnetic order in the AF11 phase arises as a consequence of an effective four­

fold anisotropy induced by the thermal fluctuations which break the symmetry of the 

dipolar ground state manifold [116, 117, 118]. The effect of this thermally induced 

effective anisotropy on the magnetic order can be determined by calculating the mean 

value of the conjugate field to which it couples [118], i.e. 

P(T) = ~ (I)cr! + cr;)). (5.3.1) 
ii 

At zero temperature, P = 1 for the AF111 phase and P = 0.5 for the A.F1J2 phase, 

while in a paramagnetic phase P = 0.75. Figure 5.8 shows the variation of P with 

temperature for three values of III/ g in the AF11 phases, as presented for decreasing 

temperature. The three graphs in Figure 5.8 show evidence of two distinct behaviours. 

For Ill = 0.2g and 2.7g the curve starts at high temperature in the paramagnetic 

phase with P = 0. 75. As the temperature is reduced, P evolves towards a value of 1 

in the limit T--+ 0. For Ill = 1.5g the behaviour is quite different. Starting at high 

temperature in the paramagnetic phase, P decreases with decreasing temperature, 

reaching a value of 0.5 in the limit T --+ 0. This is consistent with the phase diagram 

shown in Figure 5.2. 

A noticeable feature of the curves for I Jl = 0.2g and 2. 7 g is that P reaches a value 

of 0.75, the expected value of P for a paramagnetic system, at T ~ 1.4g, just below 

the Neel temperature. A similar feature was noted in the analysis of the pure dipolar 
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system [118]. The significance of this result and its implications for the magnetic 

order are not fully understood. 

5.4 Free energy 

The existence of the AF11l and the AF112 phases in Region I of the phase diagram 

suggests that the free energy in the AF11 phase has two branches, one branch cor­

responding to the AF]1l phase and the other to the AF112 phase. The reentrant 

behaviour in which the antiferromagnetic AF11 phase changes not once but twice with 

increasing IJI/g places constraints on the nature of the free energy surfaces describing 

the AF11 phases and how they intersect. It is therefore instructive to evaluate the free 

energy of the AF11 phase as a function of the exchange constant, Ill/ g, for a fixed 

temperature, T /g. 

While the absolute free energy of a system cannot be calculated directly from 

Monte Carlo simulations as mentioned in chapter 3, it is possible, using non-

equilibrium sampling technique, to calculate the difference in free energy with respect 

to some reference state. It can be shown that the difference in free energy, !J.F, be-

tween two systems with different exchange constants, !J.J = ]0 - J, can be expressed 

as 

!J.F = -T ln (/ exp( -LlJ ~a;· rTj/T)) ) , 
\ (2,J) Jo 

(5.4.1) 

where the ensemble average, < > J
0

, is calculated using the exchange constant, ]0 , in 

the thermal average. The exact details of the derivation, however, are presented in 

Appendix A. 

In practice, reasonable results can be obtained from Monte Carlo simulations 
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provided !:::.J is not too large. However, by calculating !:::.F as a function of J for 

several values of ] 0 , the free energy can be calculated over a particular range of J 

using the fact that the free energy is a continuous function of J (more details are 

presented in Appendix A). Results are shown for T = 0.2g in Figure 5.9. The data 

show that the free energy curves for both the AF]1l and the AF]I2 phases are concave, 

with a maximum of IJI ~ 1.5g, and consistent with the reentrant behaviour obtained 

from the current simulations implicit shown in the phase diagram in Figure 5.2. Note, 

however, that the solid lines shown in Figure 5.9 are simply a guide to the eye. 

5.5 Summary 

In this chapter the dipolar antiferromagnetic rotator model on a square lattice has 

been studied for both zero and finite temperature. At low temperatures, the Monte 

Carlo results show that the competition between the long-range dipolar and the short­

range antiferromagnetic interactions in this system can lead to a reorientation tran­

sition from the dipolar planar antiferromagnetic (AF]1) phase to the simple planar 

antiferromagnetic (AA11) phase as the antiferromagnetic exchange constant increases. 

The results also show that the phase boundary separating these two ordered phases is 

weakly dependent on temperature and intercepts the IJI/g axis at J0 = 3.2109g. This 

phase boundary also appears to be a first-order transition involving a small amount 

of hysteresis. Moreover, the Monte Carlo results show that the phase boundary sep­

arating the two ordered states ( AF11, AA11) from the paramagnetic state appear to be 

a second-order transitions. 

The present results also demonstrate that a purely planar model can exhibit both 

the AF]1l and AF]12 phases, with a transition between them, as the relative strength 
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of the exchange interaction is varied. While the AF[11 phase occurs in the two regions 

where Ill ;S 0.7g and 2.1g ;S III ;S 3.21g, AF[12 occurs in the region where 0.7g ;S 

III ;S 2.1g. This means that the out-of-plane degree of freedom of the magnetic 

moments, present in the study described in chapter 4 but absent here, does not 

play a critical role in determining the easy axis of the magnetisation in the AF11 

phase. The presence of the AF[11 and AF[12 phases in the square plane rotator model 

having a long-range isotropic antiferromagnetic and long-range dipolar interactions 

is also confirmed by Rastelli et al. using renormalized spin-wave theory as well as 

Monte Carlo simulations [121]. The question of how the presence of the exchange 

interaction modifies the thermal randomness so that this effect is observed remains 

to be answered. 

Furthermore, the present study indicates that reentrant phenomena between the 

AF11 phases occurs as the relative strength of the exchange interaction is increased. 

This was not observed in the study reported in chapter 4, presumably because the in­

plane to out-of-plane reorientation transition occurs before the system can reenter the 

AF[11 phase. The low temperature properties of the dipolar planar antiferromagnetic 

system, therefore, provide a particularly intriguing example of the phenomena of 

"order from disorder" . It would be interesting to examine how the antiferromagnetic 

order for the planar antiferromagnet would be affected by other types of disorder, 

such as dilution. As the present work clearly demonstrates, the form of the ordered 

state is extremely sensitive to the precise nature of the disorder that gives rise to it. 
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Chapter 6 

The Anisotropic Heisenberg 
System: Fixed r\; 

6.1 Introduction 

In chapter 4, it was concluded from the Monte Carlo results that, at low tempera-

tures, the competition between the short-range antiferromagnetic exchange and the 

long-range dipolar interactions for the two-dimensional Heisenberg system on a square 

lattice with zero magnetic surface anisotropy could lead to a reorientation transition 

between the dipolar planar antiferromagnetic and the perpendicular antiferromag­

netic phases. It was also found that the coexistence line between these two order 

phases appears to be weakly dependent on the temperature. Moreover, the results 

suggested that the phase boundary between the low temperature ordered phase and 

the high temperature paramagnetic phase appears to be a second-order transition. 

Interestingly, the results demonstrated that the dipolar planar phase consists of two 

distinct phases, AF11l and AF112. While in the AF11l phase the spins are ordered along 

either the x or y-axis of the lattice, in the AF112 phase they are aligned at ±7r /4 to 

the x-axis. 
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In chapter 5, the Monte Carlo results for the magnetic properties of the dipolar 

antiferromagnetic plane rotator system were presented. It can be concluded from 

these results that the out-of-plane degree of freedom of the magnetic spins does not 

seem to play a critical role in determining the easy axis of the magnetisation in the 

AF11 phase. 

Typically, low-dimensional magnetic systems include the on-site magnetic 

anisotropy in addition to the exchange and the dipolar interactions. Thus, the 

magnetic properties of such systems depend on the subtle interplay between these 

three interactions. Hence, the question which arises as to how the magnetic sur-

face anisotropy can affect the phase behavior of the system presented in chapter 4. 

To answer this question, in this chapter the two-dimensional dipolar antiferromag-

netic Heisenberg system on a square lattice having a weak planar magnetic surface 

anisotropy is investigated. The chapter examines the phase behaviour that arises as 

a consequence of the competition between the long-range dipolar, and the nearest-

neighbour antiferromagnetic exchange interactions in the presence of a weak planar 

anisotropy for the two-dimensional Heisenberg system on this lattice. Differences and 

similarities between the results for this system and the system studied in chapter 4 

are presented and discussed in the following sections. 

Again, the results reported are primarily based on Monte Carlo simulations. The 

system consists of N classical spins arranged on a square lattice of length L with an 

energy given by 

E( {Bi}) = g L (air·?Bj - 3 (Bi. fij~~aj. fij)) - J L ai. aj 
i=pj tJ 2J (i,j) 

- ~ L(at)2, (6.1.1) 
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where { Bi} denotes the set of three-dimensional unit vectors that describe the orienta­

tion of the magnetic moments at the lattice sites {fi}. In this system, a specific value 

of the in-plane surface anisotropy, 11., = -l.Og, and an antiferromagnetic exchange 

constant (i.e., l < 0) are considered. 

6.2 The Ground State 

The ground state of the system is dependent on the value of IJI/ g. For low values 

of Ill/ g, the ground state is the dipolar planar antiferromagnet (A.Fit) described in 

chapter 4, and its energy is given by [50] 

EAFII = -5.0989g. (6.2.1) 

For large values of Ill/ g, the ground state is the simple perpendicular antiferromagnet 

(AA_t), and its energy is given by [50] 

EAAj_ = -2.6459g + 21- 11.,, (6.2.2) 

Comparing Equation 6.2.1 with Equation 6.2.2, at T = 0, the system switches from 

the degenerate AF11 phase to the non-degenerate AA.t phase at l = -10 , with 

10 / g = (5.0989g- 2.6459g- 11.,)j2. (6.2.3) 

For 11., = -l.Og, Equation 6.2.3 then gives 

10 / g = 1. 7265. (6.2.4) 

Comparing this value with the value of the exchange constant, Ill/ g = 1.2265, at 

which the spins switch from the AF11 phase to the AA.t phase for 11., = 0, one can see 
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that the presence of a weak planar magnetic surface anisotropy stabilizes the planar 

phase and causes the switching value of the exchange constant to shift toward a higher 

value. 

6.3 Finite Temperature Properties 

Similar to the system discussed in chapter 4, the equilibrium phases of interest are 

the AF11 and the AA..l phases. These can be characterised by the order parameters, 

MAF11 and MAAj_, given by Equations 4.2.6 and 4.2.7, respectively. In Figure 6.1, both 

MAF
11 

and MAAj_, defined in terms of the thermally averaged sublattice magnetisation 

given by Equations 4.3.1 and 4.3.2, are plotted as a function of both increasing and 

decreasing temperature for different values of I Jl/ g in an N = 1042 system. In 

Figure 6.1a, IJI = 0.2g and the data show that there is a continuous transition 

between the AF11 phase and the paramagnetic phase at TN = (1.38 ± 0.05)g. In 

Figure 6.1 b, I Jl = 1.2g and the data show qualitatively similar behaviour, except 

that the continuous transition between the AF11 phase and the paramagnetic phase 

occurs at TN = (1.58 ± 0.05)g. For low values of Ill/ g the order parameters for this 

system behave similarly to that found for the Heisenberg system in chapter 4 (see 

Figures 4.4a and 4.4b) and to that found for the plane rotator system in chapter 5 (see 

Figures 5.4a, 5.4b, and 5.4c). As in the previous two systems, this suggests that the 

phase boundary between the AF11 ordered phase and the disordered phase defines a 

line of second-order transitions. In Figure 6.1d, IJI = 2.5g, and the data show similar 

behaviour to that shown in Figures 6.1a and 6.1b, except that now the transition that 

occurs at TN= (2.7 ± 0.05)g is between the AA..l phase and the paramagnetic phase. 

For large values of IJI/g, the order parameters in Figure 6.1d behave similarly to that 
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shown in chapter 4 for the Heisenberg system (see Figure 4.10). This also suggests 

that the phase boundary between the AA..l ordered phase and the paramagnetic phase 

defines another line of second-order transitions. 

However, in Figure 6.1c, IJI = 1.7g and the data indicate that the two or­

der parameters, MAp
11 

and MAAj_, now behave differently from that shown in Fig­

ures 6.1a, 6.1b, and 6.1d. At T = 0 and for this value of Ill/ g, the system is 

completely in the dipolar (AF 11 ) phase. As the temperature is increased, the system 

switches such that the AF11 order parameter effectively drops to zero while the AA..l 

order parameter becomes non-zero at TR = (0.47 ± 0.02)g. As the temperature is 

increased further, the system exhibits a continuous transition from the AA..l to the 

paramagnetic phase at TN = (1.68 ± 0.05)g. Similar behaviour is observed on cool­

ing except that the discontinuity in the order parameter occurs at a slightly lower 

temperature, TR = (0.37 ± 0.02)g. This hysteresis, together with the discontinuous 

change in the order parameters for both heating and cooling, indicates that the re­

orientation transition is first order. The hysteresis at the transition is shown in more 

detail in Figure 6.2, which shows the order parameters and the internal energy as a 

function of both increasing and decreasing temperature in the region near the tran­

sition temperature. This is evidence that the reorientation transition is first-order. 

Further evidence for the first-order reorientation transition between the two or­

dered states is also seen in the susceptibilities of the sub-lattice magnetization data, 

shown in Figure 6.3. While the perpendicular susceptibility (Figure 6.3a) shows two 

narrow peaks corresponding to the reorientation transition on heating and cooling, 

the parallel susceptibility (Figure 6.3b) shows three distinct peaks. The two narrow 

peaks correspond to the reorientation transition on heating and cooling, while the 
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broad peak in the perpendicular susceptibility data corresponds to the continuous 

transition between the perpendicular phase and the paramagnetic phase. 

The temperature dependence of the two order parameters shown in Figure 6.1, is 

consistent with the heat capacity data shown in Figure 6.4 for the same values of III/ g 

mentioned earlier (i.e., IJI/g = 0.2, 1.2, 1.7, 2.5). For IJI/g = 0.2, 1.2, 2.5 shown in 

Figures 6.4a, 6.4b, and 6.4d, respectively, the heat capacity data show only one peak 

which corresponds to the continuous transition between the two order states and the 

paramagnetic state. The heat capacity data for Ill = 1.7g in Figure 6.4c shows three 

distinct peaks. The two narrow peaks correspond to the reorientation between the 

two ordered states on heating and cooling, while the broad peak corresponds to the 

continuous transition between the perpendicular phase and the paramagnetic phase. 

Similar to what was found in the previous two systems, the nature of the equilib­

rium spin configurations for the Afll phase depends on the value of Ill/ g. A sample 

spin configuration for each value of III/g (i.e., Ill= 0.2g, 1.2g) is shown in Figure 6.5 

forT= 0.15g. The spin configuration in Figure 6.5a shows that for Ill = 0.2g, the 

sub-lattice magnetisation is aligned along either the x or y-axis (the Afll1 phase) 

similar to that found for both the Heisenberg and plane rotator systems in the region 

where Ill ;S 0.7g (see Figure 4.8a, Figures 5.7a). In contrast, the spin configuration 

in Figure 6.5b shows that for III = 1.2g, the sub-lattice magnetisation is oriented at 

7f /4 to the x-axis (the Afll2 phase) similar to that found in the Heisenberg system 

in the region where 0.7g ;S Ill ;S 1.23g (see Figure 4.8b), and to that found in the 

plane rotator system in the region where 0.7g ;S Ill ;S 2.1g (see Figure 5.7b). 

The difference in the orientation of the equilibrium spin configuration is also ap­

parent in Figure 6.6, which shows the angle cPa for each of the sub-lattices, defined 
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by Equation 4.3.3, as a function of decreasing temperature, T I g, for the two values 

of I Jll g. It is apparent from the data that the symmetry axis is different for the 

different values of IJIIg, similar to what was found in the Heisenberg (see Figure 4.9) 

and plane rotator (see Figure 5.6) syatems. For IJI = 0.2g the symmetry axis is along 

the x-axis, with (/h = ¢2 = 0 and ¢3 = ¢4 = 7T, while for I Jl = 1.2g the symmetry 

axis is oriented at 7T I 4 to the x-axis, with ¢1 = 7T I 4, ¢2 = 37r I 4, ¢3 = 57T I 4 and 

¢4=77TI4. 

6.4 The Phase Diagram 

In Figure 6. 7, the results of Monte Carlo simulations have been collected to form a 

phase diagram. It includes the results presented earlier as well as a large number of 

other simulations done at various values of both IJIIg and Tlg, and on a number of 

different size systems (N = L x L = 322,642, 1042). This phase diagram shows three 

distinct magnetic regions. Region I is the dipolar planar antiferromagnetic (AFj1) 

phase, Region II is the perpendicular antiferromagnetic (AA..L) phase, and Region III 

is the paramagnetic phase. While the two solid lines indicate phase boundaries of 

second-order transitions between the two ordered states (Region I and Region II) and 

the paramagnetic state (Region III), the dashed line indicates the phase boundary of 

first-order transitions between the two ordered phases (AF11 and AA..L)· The dotted 

line in the AF11 region indicates the phase boundary separating the two planar phases, 

AF111 and AF]I2. 

To compare the results presented in this chapter with those presented for the 

system with zero magnetic surface anisotropy in chapter 4, the two phase diagrams 

shown in Figures 4.18 and 6.7 are redrawn schematically in Figures 6.8a and 6.8b, 
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respectively. At low temperatures, the two diagrams show the AF11 phase for low val­

ues of Ill/ g, and the AA1_ phase for large values of Ill/ g. In both systems, the AF11 

phase consists of the two distinct phases, AF11l and AF112. Moreover, the transition 

from the AF11l phase to the AF112 phase with increasing lll/g occurs at Ill~ 0.7g 

in both cases. While the two phase diagrams show certain similarities, there are 

two important differences. The first is that the weak planar anisotropy causes the 

reorientation transition from the AF11 phase to the AA1_ phase, at zero temperature, 

to be at higher values of Ill/g. The second is that the phase boundary separating 

the two ordered states (AF11, AA1_) of the system includes the weak planar magnetic 

surface anisotropy which is temperature dependent with a negative slope. Therefore, 

the system with the weak planar magnetic surface anisotropy exhibits a reorienta­

tion transition from the dipolar planar antiferromagnetic phase to the perpendicular 

antiferromagnetic phase with increasing temperature. This means that the weak pla­

nar anisotropy plays a critical role in determining the characteristic properties of the 

phase boundary separating the two ordered states, AF11 and AA1_. In addition, the 

presence of the reentrant phenomena between the AF11 phases presented in chapter 5 

for the plane rotator system and its absence in this system occurs presumably because 

the in-plane to out-of-plane reorientation transition takes place before the system can 

reenter the AF11l phase. 

6.5 The Low Temperature Order Parameter 

In Figure 6.9 the perpendicular order parameter is plotted as a function ofT/ g for 

several values of I 11 > 10 • The graphs show that the perpendicular order parameter 

decreases linearly with increasing temperature at low T with a slope that decreases 
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with decreasing Ill/ g, reflecting a decreasing of the spin-wave stiffness, similar to 

what was found in chapter 4 for the Heisenberg system. 

A plot of the limr-+o ldMAA.L/dTI, as a function of IJI/g is shown in Figure 6.10. 

This Figure shows a comparison with the phenomenological relationship 

lim ldMAA.L I = a 
T-+O ldTI ((IJI/g)b- c)d' 

(6.5.1) 

where a regression analysis yields the following estimates a = 0.1991, b = 2.3746, 

c = 3.1045 and d = 0.3329. This relationship predicts that the slope of the order 

parameter diverges at I Jl/ g = 1.6114, which lies just below the phase boundary 

separating the perpendicular and the in-plane phases. 

As presented in chapter 4, a similar analysis of the parallel order parameter is 

performed. In Figure 6.11, g(1- MAF
11
)/T is plotted as a function of Tjg for IJI = 

0.2g. This is also evidence that the points do not tend toward a constant in the limit 

T --+ 0, as predected by linear spin-wave theory, but instead, show a steady increase 

as the temperature is reduced. 

6.6 Summary 

The magnetic properties for the two-dimensional dipolar antiferromagnetic Heisen­

berg model on a square lattice with a weak planar magnetic surface anisotropy 

("' = -l.Og) have been determined for both zero and finite temperatures. As in 

chapter 4, the present magnetic phase diagram demonstrates that the system with 

"' = -l.Og has three distinct magnetic phases: the dipolar planar antiferromag-

netic phase, the perpendicular antiferromagnetic phase, and the paramagnetic phase. 

While the phase boundaries between the two ordered phases and the paramagnetic 
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phase appear to be second-order transitions, the phase boundary between the two 

ordered phases appears to be a first-order transition. As with the previous examples, 

the planar ordered phase consists of two distinct phases: The AF11l phase which oc­

curs at low values of [J[jg, in which the spins are aligned along the axes of the lattice, 

and the AF112 phase which occurs at higher values of [J[/ g, in which the spins are 

aligned at ±n /4 to the x-axis. 

In contrast to the results presented in chapter 4, the present study shows that 

the phase boundary separating the two ordered states appears to be temperature de­

pendent with a negative slope. Therefore, these results demonstrate that the system 

can exhibit a reorientation transition from the dipolar planar antiferromagnetic phase 

to the perpendicular antiferromagnetic phase with increasing temperature. Indeed, 

the magnitude of the exchange interaction where the system exhibits a reorientation 

transition between the AF11 and AAj_ phases at zero temperature (i.e., J0 ), is higher 

compared to that for a system with zero magnetic surface anisotropy. From Equa­

tion 6.2.3, one can also expect that the value of J0 will be higher as the value of [h:[/ g 

increases. However, the h: dependence of the coexistence line between the AF11 and 

AAj_ phases can be determined using the Monte Carlo simulation results or other 

suitable method. 

Again, the reentrant phenomena between the two AF11 phases, as shown in chapter 

5, was not observed in the study reported in this chapter. It may be that the in-plane 

to out-of-plane reorientation transition occurs before the system can reenter the AF11l 

phase. 
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Chapter 7 

The Anisotropic Heisenberg 
System: Fixed J 

7.1 Introduction 

This chapter extends the study of the anisotropic Heisenberg model studied in the 

previous chapter. In the previous chapter the phase behaviour for different J val­

ues and for fixed 11, was studied. In this chapter, the phase behaviour for different 

values of 11, but for a fixed value of J is studied. As before only the case where 

11, < 0 is considered (i.e., planar magnetic surface anisotropy). In the present system, 

the antiferromagnetic exchange constant is chosen such that J = -10.0g. Choos­

ing the exchange interaction to be the dominant interaction provides a potentially 

useful comparison with experimental systems [7]. Therefore, this chapter presents 

results from simulations which examine the interplay of the planar magnetic surface 

anisotropy and the dipolar anisotropy in the exchange-dominated antiferromagnetic 

phase (IJI > 1.23g) for the two-dimensional Heisenberg system on a square lattice 

with several lattice sizes in the range N = 32 x 32 to 104 x 104. In particular, the 

11, - T phase diagram for 11, :::; 0 and J = -10.0g is presented. Especially noteworthy 
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is the prediction of a reorientation transition from the planar antiferromagnetic phase 

to the perpendicular antiferromagnetic phase with increasing temperature. 

The layout of this chapter is as follows. In the following section, the order param­

eters for the perpendicular and planar phases of interest are defined and the results 

obtained from simulations are presented. These results include the temperature de­

pendence of the order parameters, the heat capacity and the energy for J = -10.0g 

and three values of"'· The data for "' = -4.1g are shown to exhibit a reorientation 

transition from the planar antiferromagnetic phase to the perpendicular antiferromag­

netic phase with increasing temperature. The "'- T phase diagram for J = -10.0g, 

constructed from the results of the Monte Carlo simulations, is presented, and shows 

that the coexistence line separating the planar and the perpendicular phases satis­

fies an important thermodynamic relationship analogous to the Clausius-Clapeyron 

relationship in fluids. An analysis of the low temperature magnetisation is then pre­

sented, which suggests a softening of the spin-wave spectra in the long wavelength 

limit close to the reorientation transition. The chapter closes by summarising the 

results and discussing their significance. 

7. 2 Magnetic Properties 

As shown in chapter 4 (see Figure 4.18), in the absence of the magnetic surface 

anisotropy, and with J = -10.0g, the ground state is the simple perpendicular an­

tiferromagnetic state in which each spin is aligned perpendicular to the surface and 

antiparallel to each of its four nearest neighbours. This is referred to as the per­

pendicular antiferromagnetic, AAj_, phase (see Figure 4.3). When a finite magnetic 

surface anisotropy is included, then the energy of this ground state spin configuration 
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is given by[50] 

EAAj_ = -2.6459g + 2J- K,, (7.2.1) 

If the magnetic surface anisotropy is such that it favours an in-plane orientation of the 

spins (K, < 0), then the ground state energy of the perpendicular antiferromagnetic 

phase increases as the strength of the magnetic surface anisotropy increases. At some 

critical value, denoted by -1),0 , the perpendicular antiferromagnetic ground state will 

become unstable with respect to the planar antiferromagnetic, AA11, phase in which 

each spin is aligned parallel to the surface and antiparallel to each of its four nearest 

neighbours (see Figure 5.1). The ground state energy of the planar antiferromagnetic 

phase is given by[50] 

EAAII = 1.3229g + 2J. (7.2.2) 

Since the transition from the perpendicular to the planar antiferromagnetic phase 

occurs at T = 0 when 

then a value of K,o is given by 

K,o (2.646 + 1.323)g 

3.9688g. 

(7.2.3) 

(7.2.4) 

To construct order parameters for these two states, the lattice is divided into four 

magnetic sub-lattices as described in the previous three chapters. Each magnetic 

sublattice is a square with a lattice spacing twice that of the original lattice. The 

unit cell of the magnetic sublattice, therefore, contains four sites per unit cell, each 
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site corresponding to one of the sub-lattices, which is denoted by a E {1 ... 4}, as 

shown in Figure 4.2. The sub-lattice magnetisations, MAA1. and M.4A
11

, are then 

defined as 

4""""' z(--+)A N 6a ra z (7.2.5) 
fa 

and 

(7.2.6) 

from which the order parameters, MAA1., are defined and MAA
11 

as 

(7.2. 7) 

and 

(7.2.8) 

For the ground state of the perpendicular antiferromagnetic phase (11'\;1 < f);o), 

and 

while for the ground state of the planar antiferromagnetic phase (11'\;1 > 1'\;0 ), 
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and 

At finite temperature the order parameters are defined by the thermal averages 

of MAA1. and MAArt determined from Equations 7.2. 7 and 7.2.8, respectively. The 

temperature dependence of each of the two order parameters is shown in Figures 7.1a 

and 7.1b as a function of both increasing and decreasing temperature for lt,;l = 1.5g 

and lt,;l = 7.0g. 

These two graphs show an antiferromagnetic ordered state at low temperature, a 

disordered state at higher temperature, and a continuous transition between them. 

For lt,;l = 1.5g, the ground state is the perpendicular antiferromagnetic state. 

As shown in Figure 7.1a, as the temperature is increased the perpendicular or­

der parameter, MAA1., decreases continuously, dropping rapidly to zero at around 

TN = (8.40 ± 0.05)g, while the planar order parameter, MAArr, remains effectively 

zero. In contrast, for lt,;l = 7.0g, the ground state is the planar antiferromagnetic 

state. Figure 7.lb shows that as the temperature is increased, the planar order pa­

rameter, MAAtt, decreases continuously with increasing temperature, dropping rapidly 

to zero at around TN = (6.80 ± 0.05)g, while the perpendicular order parameter, 

MAA1., remains effectively zero. 

The existence of a continuous transition between the antiferromagnetically ordered 

state and the disordered state, for both lt,;l = 1.5g and lt,;l = 7.0g, is consistent 

with the absence of the hysteresis in the two order parameters shown in Figure 7.1. 

This also agrees with data in which the heat capacity of the system is plotted as a 

function of both increasing and decreasing temperature for lt,;l = 1.5g (Figure 7.2a) 

and for lt,;l = 7.0g (Figure 7.2b) where both of which show a peak at the transition 
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temperature. The behaviour of the two order parameters along with the heat capacity 

as a function of temperature for [11:[ = l.5g and [11:[ = 7.0g suggests that the system 

exhibits a second-order transition between the perpendicular antiferromagnetically 

ordered state and the disordered state for low values of [11:[/g ([11:[ < 11:0), and a 

second-order transition between the planar antiferromagnetically ordered state and 

the disordered state for large values of [11:[/g ([11:[ > 11:0 ). 

The temperature dependence for the two order parameters, MAA
11 

and MAA.1.., are 

plotted as a function of temperature for 11: = -4.1g as shown in Figure 7.3. At 

T = 0, the system is in the planar phase with MAA
11 

= 1 and MAA.1.. = 0. As the 

temperature initially increases MAA
11 

decreases while MAA.1.. remains effectively zero 

until TR = (1.42±0.02)g, at which point the order parameters change discontinuously 

with MAA
11 

dropping effectively to zero and MAA.1.. increasing to approximately 0.9. As 

the temperature increases further, the system exhibits a continuous transition to the 

paramagnetic phase at TN = (7.05 ± 0.05)g. Similar behaviour is observed on cooling 

except that the discontinuity in the order parameter occurs at the slightly lower 

temperature, TR = (1.16 ± 0.02)g. This hysteresis, together with the discontinuous 

change in the order parameters, indicates that the reorientation transition is first 

order. This discontinuity observed during both heating and cooling corresponds to a 

reorientation transition. 

The hysteresis at the transition is shown in more detail in Figure 7.4, which shows 

the changes in the order parameter and the internal energy as a function of both 

increasing and decreasing temperature, in the vicinity of the reorientation transition. 

This sequence of transitions is also reflected in the heat capacity data shown in 

Figure 7.5, which shows three distinct peaks. The two narrow peaks correspond 
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to the reorientation transition on heating and cooling, while the broad peak corre­

sponds to the continuous transition between the perpendicular phase and the para-

magnetic phase. This is also consistent with the the susceptibility data shown in 

Figure 7.6, in which the parallel susceptibility (Figure 7.6a) shows two narrow peaks 

again corresponding to the reorientation transition on heating and cooling while the 

perpendicular susceptibility (Figure 7.6b) shows three distinct peaks. The two nar-

row peaks correspond to the reorientation on heating and cooling, while the broad 

peak corresponds to the continuous transition between the perpendicular phase and 

the paramagnetic phase. 

Further evidence for the discontinuous nature of the reorientation transition is 

obtained from the xy-conjugate field, Pxy, and the z-conjugate field, Pz, defined 

respectively as [157] 

P(T)xy = ~(L)a~ +a~)) (7.2.9) 

.R 

and 

P(T)z = ~(La;). 
.R 

(7.2.10) 

It can be readily shown that at zero temperature, Pxy = 1 and Pz = 0 for the 

planar phase, and Pxy = 0 and Pz = 1 for the perpendicular phase. If the system is 

completely disordered then Pxy = 2/5 and Pz = 1/3. The temperature dependence of 

the two conjugate fields, Pxy and Pz, is shown in Figure 7.7 for both increasing and 

decreasing temperature. Both exhibit a discontinuity at the reorientation transition. 

At higher temperatures, Pxy extrapolates to 2/5 and Pz extrapolates to 1/3, indicating 

that the system is in the disordered phase at high temperature. 
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It is interesting to contrast the reorientation transition reported in this work for 

antiferromagnetic systems and that reported in the ferromagnetic case. The most 

obvious difference is the homogeneous nature of the equilibrium phases in the case of 

the antiferromagnetic exchange interaction, in contrast to the inhomogeneous stripe 

phases observed in the case of the ferromagnetic exchange interaction. Another im­

portant difference lies in the fact that the sequence of transitions for the ferromagnetic 

reorientation transitions is from a perpendicular phase at low temperature to a pla­

nar phase at high temperature [135, 136]. This contrasts with the results reported 

in this chapter in which the sequence of transitions is from the planar phase at low 

temperature to the perpendicular phase at high temperature. This means that in 

the ferromagnetic case the dipolar interaction favours the in-plane antiferromagnetic 

phase while in the antiferromagnetic case the dipolar interaction favours the out-of­

plane antiferromagnetic phase. However, the fact that the low temperature phases 

in both the ferromagnetic and the antiferromagnetic systems are stabilised by the 

magnetic surface anisotropy suggests that there are similarities between the two re­

orientation transitions that are not immediately apparent. At the most basic level, 

both reorientation transitions may be understood qualitatively as a weakening of the 

strength of the magnetic surface anisotropy relative to the dipolar interaction as a 

result of thermal fluctuations. 

7.3 The Phase Diagram 

In Figure 7.8, the results of the Monte Carlo simulations at finite temperature have 

been collected to form a phase diagram for both heating and cooling. This phase di­

agram shows three phase boundaries separating the perpendicular antiferromagnetic 
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phase (Region I), the planar antiferromagnetic phase (Region II) and the param­

agnetic phase (Region III). The two solid lines indicate second order transitions be­

tween the two antiferromagnetically ordered states and the disordered state, while the 

dashed line is the phase boundary separating the two antiferromagnetically ordered 

phases. 

If the coexistence line separating the perpendicular and the planar phases is de­

scribed by the function, ,.,R(T), the existence of the reorientation and the observed 

sequence of transitions are determined by the fact that d,.,R/ dT > 0. The slope of 

the coexistence line can be expressed as 

d,.,R(T) ,., !::,E 
dT - TR!::,E"' 

(7.3.1) 

where !::,E denotes the latent heat of the transition and !::,E" denotes the difference in 

the average anisotropic energy between the two equilibrium phases on the coexistence 

line. The total average internal energy (Figure 7.9a) and the average anisotropic 

energy (Figure 7.9b) are shown to change with increasing and decreasing temperature 

for 1,.,1 = 4.2g. From these data it is possible to estimate that TR = (2.25 ± 0.02)g, 

!::,E = (0.142 ± 0.003)g, and !::,E" = (2.28 ± 0.04)g, which yields d,.,R/dT = 0.116 ± 

0.013 according to Equation 7.3.1. By comparison, for 1,.,1 = 4.2g estimates of ,.,R 

from the coexistence line yield a slope of d,.,R/dT = 0.128 ± 0.006. The slope of the 

coexistence line provides a useful consistency check on the results obtained from the 

simulations on the nature of the reorientation transition. 
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Figure 7.9: A plot of (a) the average internal energy, (E/g), and (b) the average 
magnetic surface anisotropy energy, (E"-;9 ), per spin for 11'1:1 = 4.2g as a function of 
temperature, T / g, with L = 104. 
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7.4 The Temperature Dependence of the Order 

Parameters in the Limit T ---t 0 

The temperature dependence of the order parameters, MAA1. and MAA
11

, are shown 

in Figures 7.10a and 7.10b, for the range 0 < T / g < 1.5 for several values of K,. 

The data show two interesting features. Firstly, the order parameter appears to 

decrease linearly with temperature, as would be expected on the basis of linearised 

spin-wave theory. Secondly, the magnitude of the slope, JdMAAJ./dTJ, increases as 

the reorientation transition is approached, for both the perpendicular and the planar 

phases, suggesting a softening of the spin-wave spectra close to the transition as 

discussed earlier. 

Figure 7.11 shows a comparison between the slope limr-+o JdMAAJ./dTJ, as a func­

tion of K, for JK,J < K, 0 , as obtained from the data shown in Figure 7.10a and the 

phenomenological relationship, 

1. I dMAA1.1 a lm ------
T-+0 dT - [b- (JK,J/ g)c]d 

(7.4.1) 

where a regression analysis yields the following estimates: a = 0.0417, b = 3.2553, 

c = 0. 7975, and d = 0.2762. This relationship predicts that the slope of the MAA1. 

order parameter diverges at JK,J = 4.3930g, which lies just above K,0 . Also shown in 

Figure 7.11 for JK,J > K,o, is a comparison between the slope, limr-+o JdMAA
11
/dTJ, as a 

function of K, for JK,J > K, 0 , as obtained from the data shown in Figure 7.10b and the 

phenomenological relationship, 

(7.4.2) 

where a regression analysis yields the following estimates: a = 0.0498, b = 1. 7385, 
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Figure 7.10: A plot of (a) the perpendicular order parameter, MAA1.., per spin for 
several values of lt;;l < t;;o and (b) the planar order parameter, MAA 11 , per spin for 
several values of lt;;l > t;;o as a function of temperature, T / g, with L = 104. 
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c = 0.4385, and d = 0.1293. This relation predicts that the slope of the MAA
11 

order 

parameter diverges at 1/'\;1 = 3.5296g, which lies just below /'\;0 . 

7.5 Summary 

The results from a series of Monte Carlo simulations of the classical Heisenberg 

model for a square lattice were presented. The spins were assumed to interact 

through an antiferromagnetic exchange, dipolar interaction, and the magnetic sur­

face anisotropy. Choosing J = -10.0g, the relevant states are antiferromagnetic in 

which every spin is aligned in the opposite direction to its neighbours. The orientation 

of the antiferromagnetic state is determined by the strength of the dipolar interaction, 

which favours the perpendicular antiferromagnetic phase, and the magnetic surface 

anisotropy, which, for /'\; < 0, favours the planar antiferromagnetic state. 

Simulations for small values of If\; I/ g show a finite perpendicular antiferromag­

netic order parameter which decreases with increasing temperature until the system 

undergoes a second-order phase transition to the paramagnetic phase at the N eel tem­

perature, at which point the order parameter is effectively zero. A similar behaviour 

is observed for large values of 1/'\;1, with the difference that the ordered phase is the 

planar phase. 

For intermediate values of 1/'\;1/ g there exists a narrow range around lti;l ,::::: ti;o for 

which the system undergoes a first-order reorientation transition from the planar to 

the perpendicular phase with increasing temperature. As the temperature is further 

increased the system undergoes a second-order transition to the paramagnetic phase. 

These results are summarised in the phase diagram presented in Figure 7.8. 
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While the sequence of phases observed in the reorientation transition in the anti­

ferromagnetic case is the opposite to that observed for the ferromagnetic case, both 

may be qualitatively understood as a reduction in the strength of the magnetic surface 

anisotropy relative to the dipolar interaction, due to the thermal fluctuations. 

It was also noted that, despite the first-order nature of the reorientation transition, 

the low temperature magnetisation reveals a softening of the spin-wave spectra close to 

the transition. The prediction of the reorientation transition in antiferromagnetically 

thin films is perhaps the most interesting result to emerge from these studies. 
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Chapter 8 

Conclusions and Future Research 
Directions 

As mentioned in chapter 1, interest in low-dimensional magnetic systems has grown 

considerably in recent years. One important class of reduced dimensional systems 

is ultra-thin magnetic films, which consist of several mono-layers of magnetic atoms 

deposited on a non-magnetic substrate. The increased scientific interest in these mate­

rials is a consequence of advances in film fabrication and characterization techniques. 

In addition to the scientific interest, these materials are also of potential technologi­

cal importance in data storage and processing [20]. Of particular importance in the 

context of the current work is the use of antiferromagnetic films, which are used in 

the construction of spin valves [1]. 

Another class of reduced dimensional magnetic system that is of increasing scien­

tific and technological interest is micro-magnetic arrays which consist of high density 

arrays of nano-magnetic dots deposited on a non-magnetic substrate. Such systems 

can be fabricated to have a wide variety of structures [64, 66] and properties [65] that 

can be tuned in a continuous manner to give a variety of phase behavior. 

The results obtained from studies on low-dimensional magnetic systems are also 
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relevant to certain layered compounds that contain weakly interacting planes of mag-

netic ions. One important recent example of such compounds is the class of rare 

earth superconductors, such as REBa2Cu30 7_6 (RE = rare earth). Several of these 

compounds exhibit an antiferromagnetic ordering of the rare earth ions at low temper-

ature [58]. While experimental determination of the effective dimensionality of these 

compounds is difficult, they nevertheless exhibit certain behaviors characteristic of 

two-dimensional magnetic systems close to the Neel temperature [195, 57, 191, 60]. 

The wide range of phenomena that have been observed or predicted in these 

low-dimensional magnetic materials arise from the complex interplay between three 

fundamental interactions: the exchange interaction, the dipolar interaction, and the 

magnetic surface anisotropy. A model that includes these three interactions in a 

particular spin configuration, { ai}, was described in terms of an energy, E( { ai}), 

given by 

E ( { 8i}) = 9 L ( ai ~ aj _ 3 ( ai · fij) ~ aj · fij) ) 

i::J:j rij rij 

- 11; L(ai)2, 

- Jl::ai. aj 
(i,j) 

(8.0.1) 

where ai is the three-dimensional classical spin vector at the lattice site, i. In Equa­

tion 8.0.1, the first term denotes the dipolar interaction, the second the exchange 

interaction, and the third the magnetic surface anisotropy. 

The magnetic properties of the low-dimensional magnetic systems differ signifi-

cantly from those of bulk materials, in part because the isotropic exchange interaction 

cannot of itself sustain long-range magnetic order in these low-dimensional materials. 

Of particular importance is the anisotropic and long-range dipolar interactions, which 

play critical roles in determining the magnetic properties of these materials. In the 
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case of the two-dimensional dipolar planar ferromagnetic system on a square lattice, 

the long-range character of the dipolar interaction gives rise to a non-analytic contri­

bution in the magnetic propagator. This modifies the spin-wave spectra in the dipolar 

planar ferromagnet in the long wavelength limit such that limq-+O w(q) ::::::: vg. This 

modification of the spin-wave spectra is sufficient to render the thermal spin-wave 

fluctuations finite and, hence, allow for the appearance of long-range magnetic order 

at finite temperature [124]. The dipolar interaction also plays an important role in the 

case of the uniaxial ferromagnetic Ising model, in which the spins are aligned perpen­

dicularly to the surface. In this case, the interplay between the short-range ferromag­

netic exchange interaction and the long-range antiferromagnetic dipolar interactions, 

destabilizes the ferromagnetic ground state in favor of a striped phase [87, 88, 89], an 

effect that has been confirmed experimentally [10, 6]. The region separating the planar 

ferromagnetic phase and the uniaxial striped phase is determined by the asymmetry 

between the in-plane and out-of-plane spin alignment that arises from the combined 

effect of the magnetic surface anisotropy and the dipolar interaction. The analysis 

of this region is complicated by the inhomogeneous character of the striped phase 

and the complexities that arise from the dipolar interaction. Analytical and simu­

lation studies do, however, show that the temperature-dependent renormalisation of 

these interactions, due to the thermal spin fluctuations, can give rise to a reorienta­

tion transition whereby the magnetisation axis switches from in-plane to out-of-plane 

with changing temperature [135, 136, 133, 144]. 

While the low-dimensional ferromagnetic ( J > 0) systems have been studied ex­

tensively, less work has been done on the low-dimensional antiferromagnetic systems 

(J < 0). However, the complex interplay between the exchange interaction, magnetic 
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surface anisotropy, and dipolar interaction, appears to provide an equally fascinating 

range of phenomena for the antiferromagnetic case as presented in this research. The 

systems studied in this research are important for gaining a better understanding of 

the magnetic properties of low-dimensional magnetic systems. Of particular interest 

is the magnetic phase diagram for a two-dimensional dipolar antiferromagnetic sys­

tem on a square lattice. For each investigated system, the magnetic phase diagram 

is established for both zero and finite temperatures. 

8.1 Summary of Results 

In the case of the pure dipolar system ( J = 0, 11, = 0) the ground state for the 

square lattice is a dipolar planar antiferromagnetic state, referred to as the AF11 

state. Surprisingly, despite the anisotropic character of the dipolar interaction, the 

ground state of the square lattice is continuously degenerate [118, 109], a fact that 

had been noted earlier for the honeycomb lattice [114]. The spin configurations that 

comprise this ground-state manifold are described in terms of a magnetic sub-lattice 

consisting of four lattice sites, with the spin at each lattice site oriented in terms of 

the angle ¢as was shown in Figure 4.2 [118]. This degeneracy gives rise to a gapless 

mode in the spin-wave spectra at zero temperature. 

While the ground-state energy is continuously degenerate, the excitation spectrum 

depends on the angle, ¢, that characterizes the ground-state spin configuration. This 

implies that the entropy, and hence the free energy, are not continuously degenerate, 

but instead manifest the fourfold symmetry of the underlying lattice. In the case of 

the pure dipolar system the thermal fluctuations are such that the minimum in free 

energy has the spins aligned parallel to one of the axes of the lattice [118]. This state 
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is referred to as the AF]11 state [157] or the columnar state [121]. The mechanism that 

stabilizes the formation of long-range antiferromagnetic order at finite temperature 

is an example of the phenomenon known as establishing "order from disorder" [116]. 

Extending the pure dipolar model to include the isotropic exchange interaction 

does not remove the degeneracy of the dipolar planar ground-state spin configura­

tions. Thus, in the case of an antiferromagnetic exchange interaction ( J < 0), the 

continuously degenerate manifold of dipolar planar ground-state spin configurations 

continues to define the ground-state manifold for I Jl ;S 1.23g [157]. Monte Carlo sim­

ulations, however, show that the antiferromagnetic exchange interaction does modify 

the character of the spin fluctuations such that the angle, ¢, that characterizes the 

equilibrium spin configuration switches from ¢ = 0 (or ¢ = 7r /2) to ¢ = n /4 at 

Ill ~ 0.7g. This state is referred to as the AF]12 state [157] or the microvortex 

state [121]. For IJI ,2: 1.23g, the ground state is given by the non-degenerate anti­

ferromagnetic phase in which the spins are aligned perpendicular to the plane, with 

each spin antiparallel to each of its nearest neighbors. This phase is referred to as 

the AA.1 phase. Simulations reveal that the phase boundary separating the dipolar 

planar AF]J2 phase from the perpendicular AA.1 phase is almost independent of tem­

perature and, therefore, while the transition is first order, the latent heat associated 

with the transition is extremely small [157]. The J- T phase diagram for J < 0 and 

rc = 0 was shown in Figure 4.18. 

Originally, it was postulated that the switching from the dipolar planar AF]11 

phase to the dipolar planar AF112 phase arose as a consequence of isolated spins being 

aligned perpendicular to the plane [157] so that, in this region, the system behaves 

analogously to a diluted dipolar planar system [117]. However, a similar dependence 
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of the equilibrium spin configuration on the strength of the exchange constant has 

also been observed in simulations and linearized spin-wave calculations for the dipolar 

antiferromagnetic plane rotator model in which the spins are constrained to lie in the 

plane [158, 121]. These results demonstrate that a purely plane rotator model can 

exhibit both the AF[11 and AF[12 phases, with a transition between them, as the 

relative strength of the exchange interaction is varied. In the two regions where 

IJI ,:S 0.7g and 2.1g ,:S IJI ,:S 3.21g, the dipolar planar phase is the AF[I1 phase, 

while in the region where 0.7g ,:S IJI ,:S 2.1g, the dipolar planar phase is the AF[12 

phase [158]. Therefore, the out-of-plane degree of freedom of the magnetic spins 

present in the study of the dipolar antiferromagnetic Heisenberg model with zero 

magnetic surface anisotropy does not appear to play a critical role in determining the 

easy axis of the magnetization in the AF11 phase as was originally supposed. 

For I Jl 2: 3.21g the ground state of this purely rotator system is the planar 

antiferromagnetic phase where each spin is aligned antiparallel to its four nearest 

neighbors, a phase referred to as the AA11 phase. The Monte Carlo data indicate 

that the phase boundary separating the dipolar planar AF[12 phase and the planar 

AA11 phase is almost independent of temperature, and hence, while the transition is 

first order, the latent heat associated with the transition is extremely small [158]. 

Further data on the plane rotator model indicate that reentrant phenomena between 

the AF[1 phases may occur as the relative strength of the exchange interaction is 

increased. This was not observed in the study reported on the Heisenberg system 

with zero ""' presumably because the in-plane to out-of-plane reorientation transition 

occurs before the system can reenter the AF[11 phase. Again, this suggests that the 

exchange interaction modifies the nature of the disorder produced by the thermal 
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fluctuations in a further subtle, and as yet unexplained manner. The J- T phase 

diagram for the dipolar antiferromagnetic planar system was shown in Figure 5.2. 

Extending the dipolar antiferromagnetic Heisenberg model to include a weak pla­

nar magnetic surface anisotropy (r;; = -l.Og), the Monte Carlo results indicate that 

the system exhibits similar behavior to that of a system with zero magnetic surface 

anisotropy, except that the coexistence line between the dipolar planar AF[12 and the 

perpendicular AA1_ phases is now temperature dependent and has a negative slope. 

Therefore, turning on the planar magnetic surface anisotropy can lead the system to 

exhibit a reorientation transition from the AF[1 phase to the AA1_ phase with increas­

ing temperature. The value of Ill/ g in which the system switches from the AF[12 

ground state to the AA1_ ground state occurs at J0 ~ 1. 73g. The J- T phase digram 

of this system was given in Figure 6. 7. 

To obtain a better understanding of this reorientation transition, the interplay of 

the planar magnetic surface anisotropy and the long-range dipolar anisotropy in the 

exchange dominated antiferromagnetic phase (J = -10.0g) was examined [159]. In 

particular, the r;;- T phase diagram for r;;:::; 0 and J = -10.0g, constructed from the 

results from the Monte Carlo simulations, was presented in Figure 7.8. This phase 

diagram shows three distinct magnetic phases: The AA1_ phase which occurs at both 

low temperatures and at low values of lr;;l/ g; the AA11 phase which occurs at both the 

low temperatures and at high values of r;;f g, and the paramagnetic phase which occurs 

at high temperatures regardless of the value of lr;;l/ g. Of special note is the prediction 

of a reorientation transition from the planar AA11 antiferromagnetic phase to the 

perpendicular AA1_ antiferromagnetic phase with increasing temperature. Therefore, 

the phase diagram shows that the coexistence line separating the planar and the 

167 



perpendicular phases satisfies an important thermodynamic relationship analogous 

to the Clausius-Clapeyron relationship in fluids. 

8.2 Future Research Directions 

This research has been able to provide answers to a number of questions about two­

dimensional antiferromagnetic systems. Nevertheless, several intriguing and impor­

tant questions remain to be answered. For example, one important challenge will be 

to determine how the presence of the antiferromagnetic exchange interaction mod­

ifies the thermal fluctuations of the system that leads to the presence of the AF111 

and AF112 phases. One approach that may provide further insight into the role of 

the exchange interaction in determining the AF11 equilibrium phases mentioned above 

would be to investigate the free energy of such a system as a function of ¢ using the 

umbrella sampling method. The results obtained then could be compared to those 

results obtained from the linearized spin-wave method that was presented in [121]. 

Another important calculation that might provide some insight into the nature of 

the reorientation transition would be a comparison of the results reported in the low 

temperature magnetisation shown in Figure 7.11, which shows a softening close to 

the transition, with those obtained from spin-wave theory. 

As an extension to the work of this thesis, our research group has started to 

investigate the effects of impurities as well as of polydispersity in the plane rotator 

systems. The preliminary analyses show interesting results which again show the 

subtle effects that arise from disorder. In addition, our group has begun to explore the 

Clausius-Clapeyron relationship that determines the coexistence line that separates 

the planar from the perpendicular phases. Our research group also plans to extend 
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the current work to analyse multilayered systems, and has started to parallelise the 

code used in the present work. This would permit an investigation of a number of 

very interesting systems including models of spin valves. Some preliminary work 

evaluating the critical exponents for both the planar and perpendicular phases has 

already been done. However, more detailed studies are still required in order to 

determine the precise nature of the transition to the paramagnetic phase in these 

systems. It will be interesting, for example, to compare the critical exponents at 

the transition from the paramagnetic phase to the parallel phase with corresponding 

values for the perpendicular phase. The effect of an applied magnetic field has not 

been considered at all in the present research, and needs to be considered if one hopes 

to gain a full understanding of the model and its potential applications. 
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Appendix A 

Free Energy 

The free energy, F, for a system can be written as 

(A.0.1) 

where Tis the temperature in units of 1/kB, such that kB is the Boltzmann constant, 

and Ev is the energy of the system in a state v. The free energy difference, !:lF, 

between the system of interest, with internal energy E at temperature T, and a 

reference system, with internal energy Eo at temperature T0 , is then given by 

!:lF F- F0 , 

-Tln( 'L.vexp(-E/T) ), 
'L.v exp( -E0 /To) 

-T ln( 'L.v exp( -E /T +Eo/To) exp( -E0 jT0 ) ), 

'L.v exp(- Eo/To) 

-ln( (exp( -E /T + Eo/To))o), 
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where <>o denotes an average over a canonical ensemble of reference system. In the 

case where T = T0 , Equation A.0.2 then gives 

6.F -ln((exp(-E/T+Eo/T)) 0 ), 

-ln( (exp( -6.E /T) )0 ), (A.0.3) 

where 6.E = E - E 0 • 

The energy of the dipolar plane rotator system in a particular spin configuration, 

{Bi}, at an exchange constant, J, is given by 

such that 

Edd- <L: ai · aj, 
(ij) 

Edd + JAex, 

Aex = - L ai . aj. 
(ij) 

(A.0.4) 

(A.0.5) 

Substituting Equation A.0.4 into Equation A.0.3, the expression for the free energy 

difference at temperature T between the system of interest, with internal energy E( J), 

and a reference system, with internal energy E(J0 ), is then given by 

6.F F(J)- F(la), 

- -Tln((exp(-(J- la)Aex/T))JJ, 

-T ln( (exp( -6.] Aex/T)JJ· (A.0.6) 

Since the free energy results obtained from Monte Carlo simulations will be reliable 

only for values of J close to ] 0 , the free energy of the system with respect to Fa can 

171 



be calculated by evaluating !':lF for several values of ] 0 over a range of values of J, 

and then combining the results to yield a free energy curve as a continuous function 

of J. The first region to consider is 0 < IJI < 0.7g. Over this region, Monte Carlo 

simulations are applied using Equation A.0.6 to calculate !':lF = F(J)- F(Jo) over 

this range of values of JIg for different values of Jol g, as shown in Figure A.l at 

a particular value of temperature, T = 0.2g. For each value of J0 six points are 

selected in the region around ] 0 , with the exception of ] 0 = 0.0 for which only three 

points are selected. From these points the free energy relative to a common value, 

F0 , is established over the range 0 < I J I < 0. 7 g. These selected points are shown in 

Figure A.2 with suitable labelling of each point. 

Using the fact that the free energy is a continuous function of J, the selected 

points for one curve are combined with the points of the next curve, and so on. The 

following procedure is used to obtain the combination of the selected points over the 

chosen range of JIg. The selected points from the curve where ] 0 = 0.0 are combined 

with those selected from the curve where J0 = -0.2g by adding a constant, f1, to the 

points for J0 = -0.2g. The constant, !1, which is needed to be added to the points 

of the second curve to align them with the points of the first curve is determined 

by minimizing the standard deviation, s, between the points mentioned above. The 

standard deviation between these points can be written as 

(A.0.7) 

To minimize s, the derivative of both sides of Equation A.0.7 is taken first and the 

result gives 

(A.0.8) 
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Then, the left hand side of Equation A.0.8 is taken to be zero and this gives 

(A.0.9) 

Solving for fi, Equation A.0.9 yields 

(A.0.10) 

These results are shown in Figure A.3 where new labels (denoted by B4 , B5 , B6 ) are 

attached to the new set of points produced from the previous step. This new set of 

points is then combined with the six points selected from the curve where Ja = -0.4g, 

by adding a constant, !2, to the points for Ja = -0.4g. The constant, !2, is determined 

using the same method that was used in calculating f 1 , and is given by 

(A.O.ll) 

These results are shown in Figure A.4 where the new labels (denoted by C7 , C8 , C9 ) 

are attached to the new set of points produced from the previous step. The same 

calculations are then performed for each subsequent set of six points over the remain-

ing values of Ja/ g. The final collapsed results are shown in Figure A.5 where the 

corrected free energy with respect to Fa is plotted over the chosen range of IJI/g. 

The same procedures are repeated for the other two regions where 0.7g < IJI < 

2.1g and 2.1g < IJI < 3.2g. While Figure A.6 shows the free energy with respect to 

a common value, Fa, over the region where 0.7g < IJI < 2.1g, Figure A.7 shows the 

free energy over the region where 2.1 < IJI/ g < 3.2. 

By gathering the selected points from the curves shown in Figures A.5, A.6, 

and A. 7, the free energy of the system with respect to Fa is obtained over a range of 

values of J j g, as shown in Figure A.8. From Figure A.8, the increase in free energy 
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from Ill = 0.0 to approximately Ill = 0.7g denotes the first phase (AF]I1 phase). 

The second phase (AF112 phase) is illustrated by the relatively level free energy from 

[1[ = 0.7g to approximately [11/g = 2.1. The system reverts back to the AF111 

phase, as indicated by the decrease in the free energy starting from approximately 

lll/g = 2.1 to approximately lll/g = 3.2. This calculation for the free energy of 

the dipolar plane rotator system was done in cooperation with summer student Paul 

Chafe [196]. 
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Appendix B 

Slope of the Coexistence Line 

B.l Slope of the Coexistence Line: JR(T) 

As described in Appendix A, the free energy, F, for a given value of the exchange 

constant, J, and temperature, T (in units of 1/k8 ), may be written as 

F(J,T) = -Tln (I:exp(-E({Bi})/T)), 
{o .. i} 

(B.1.1) 

where E( { 8i}) is the energy of the system in a particular spin configuration { 8i} 

which is given by 

(B.1.2) 

From the energy given in Equation B.l.2 we obtain the following expression for 

the variation in the ratio F /T induced by a variation in the exchange constant J and 

the temperature T 

(F) ( 1 fJF F) 
d T = T fJT- T 2 

1 fJF 
dT + T fJJ dJ. (B.l.3) 

183 



From equations B.1.1 and B.1.2, ~j is given by 

Because 

~f is then given by 

fJF 
f}J L ...... 

- a··a· z J' 

(ij) 

dF =dE- TdS- SdT, 

fJF 
fJT = -S. 

Substituting Equations B.1.4 and B.1.6, Equation B.1.3 then gives 

(B.1.4) 

(B.1.5) 

(B.1.6) 

(B.1.7) 

Let us consider two states which we label a and b respectively. We have that 

d - =-- -dT--dJ ( 
p(a)) 1 ( E(a) E~~) ) 

T T T J 
(B.1.8) 

and 

d - =-- -dT--dJ (
p(b)) 1 (E(b) E~~ ) 
T T T J . (B.1.9) 

Subtracting we obtain 

d (D..F) = -~ (D..E dT _ D..Eex dJ) 
T T T J . (B.1.10) 

At the phase boundary separating the planar and the perpendicular phase, the two 

phases coexist and have the same free energy. Therefore, along the phase boundary 
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we have f::.F/T = 0 and therefore d(!::.F/T) = 0, from which we obtain the following 

relationship for the difference between the exchange energy and the total energy of 

the two phases 

6,: dT = f::.~ex dJ. (B.l.ll) 

Since the two phases have the same free energy then t:.E is the latent heat, and 

hence we obtain the following expression for the slope quoted in the chapter 4 (Equa-

tion 4.4.1) 

(B.l.12) 

B.2 Slope of the Coexistence Line: K,R(T) 

As described above, the free energy, F, for a given value of the magnetic surface 

anisotropy /'i, and temperature T (in units of 1/k3 ) may be written as 

F = -Tln (L::exp(-E({Bi})/T)), 
{o---;} 

(B.2.1) 

where E( { vecO"i}) is the energy of the system in a particular spin configuration { Bi} 

which is given by 

(B.2.2) 

From the energy given in Equation B.2.2 we obtain the following expression for the 

variation in the ratio F /T induced by a variation in the magnetic surface anisotropy 
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constant K, and the temperature T 

(
F) ( 1 8F F) 

d T = T8T- T 2 

From equations B.2.1 and B.2.2, ~~ is given by 

-K, :l:)o/)2, 

1 
-E"'". 
/'\, 

Substituting Equations B.l.6 and B.2.4 into Equation B.l.3 then gives 

- ~ ( ST - F dT - EK d/'\,) 
T T /'\, ' 

1 (E E"'" ) - T T dT - --;: d/'\, . 

(B.2.3) 

(B.2.4) 

(B.2.5) 

Let us consider two states which we label a and b respectively. We have that 

d - =-- -dT--dK, (
p(a)) 1 (E(a) E~a) ) 
T T T /'\, 

(B.2.6) 

and 

d ( F;l ) = - ~ ( E;l dT - E='l dK) . (B.2.7) 

Subtracting we obtain 

(B.2.8) 

At the phase boundary separating the planar and the perpendicular phase, the two 

phases coexist and have the same free energy. Therefore along the phase boundary 

we have D..F /T = 0 and therefore d(D..F /T) = 0, from which we obtain the following 
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relationship for the difference between the exchange energy and the total energy of 

the two phases 

6.: dT = 6.:" dK,. (B.2.9) 

Since the two phases have the same free energy then !::J.E is the latent heat, and hence 

we obtain the following expression for the slope quoted in chapter 7 (Equation 7.3.1) 

(B.2.10) 
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