DECISION MODEL FOR A CONSTRUCTION CONTRACTOR TO DEVELOP OR BUY COST CONTROL SOFTWARE

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

ZAINUL ABEDIN

THIS THESIS WAS NEVER FILMED BY THE NATIONAL LIBRARY BECAUSE MANY CHARTS AND GRAPHS ARE VERY POOR COPY. Decision Model for a Construction Contractor to Develop or Buy a Cost Control Software

PROJECT

Presented in partial fulfilment of the requirement for the degree of Master of Engineering

Zainul Abedin, B. Tech.

Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John's, Newfoundland, November 1978

by

C

ABSTRACT

Construction contractors are increasingly using computer data processing on their projects. The practice of purchasing or leasing software and the alternative of in-house development of suitable software exists concurrently among construction contractors. Adequate attention is not given to the selection of the most beneficial mode for acquiring software. This project develops a systematic decision approach to select the mode of software acquisition.

This systematic decision approach delineates the controllable variables and the states of nature. Relative weightage is assigned to the variables, and importance rating is assigned to the states of nature. From the outcomes of the interactions between controllable variables and the states of nature, the expected value of each alternative is determined, and the one with maximum expected value is selected. This gives the most economical acquisition mode of software required by a construction contractor.

The decision process can be used either as a rigorous methodology or to improve the quality of intuitive decisions by ensuring that all the variables are given due consideration.

ACKNOWLEDGEMENTS

I take this privilege to express my gratitude to Professor H.N. Ahuja, whose careful criticism, helpful guidance and many unscheduled instructions made this project possible.

I am grateful to the School of Graduate Studies, Memorial University of Newfoundland for financial assistance to pursue graduate studies at this University.

My thanks are to Mr. Bob Adolph, Mr. Kennet Henn, Mr. Steve Andrews, and Mr. George Campbell of Newfoundland and Labrador Computer Services (NLCS), and Mr. Ross Martin of International Business Machines (IBM), St. John's, Newfoundland for providing important technical information.

My special thanks are to my wife Amparo Miranda who would have loved to see this project completed but passed away before its completion.

TABLE OF CONTENTS

	Page
Acknowledgements	iii
List of Tables	vii
List of Figures	viii
CHAPTER I PROBLEM DEFINITION	1
1.1 Contractor's Objectives	s 3
1.2 Diversity of Software I	Needs 3
1.3 Cost Control Software Construction	in 13
1.4 Cost of Acquiring Softw	ware 17
1.5 State of Art	21
1.6 The Need for a Decision	Model 24
1.7 Statement of the Proble	em 25
CHAPTER II VARIABLES	26
2.1 States of Nature	26
2.2 Controllable Variables	31
2.3 Input-Output	38
CHAPTER III METHOD OF SOLUTION	40
3.1 Explanation of Summary	Flowchart 40
3.2 Detail Flowchart	43
3.3 Relative Weightage Matr	rices 61
3.4 Interaction Matrix	. 62
3.5 Importance Rating Matri	ix 64

	3.6 Expected Value Matrix	65	
CHAPTER IV	EXAMPLE	68	
	4.1 The Contractor's Organization	68	
	4.2 The Decision Process	70	
	4.3 An Estimate of Numerical Values of Variables	70	
	4.4 Relative Weightage Matrices	78	
	4.5 Interaction Matrix	85	
	4.6 Importance Rating Matrix	87	
	4.7 Expected Value Matrix	88	
	4.8 Selection of Software Acquisition Mode	90	
CHAPTER V CONCLUSIONS			
REFERENCES		94	
APPENDICES			
А	Information Requirements for Cost Control Objectives	96	
В	General Programs	99	
С	Special Programs	103	
D	Uncertainty Curves	106	
(Part I)	Questions and Reports for Contractual Needs	108	
(Part II)	Sample Reports	114	
(Part III)	Project Cost Progress Reports for Project Executives	141	

Page

Pa	g	е
----	---	---

APPENDICES

F	User Ratings of Proprietary Software	142
G	Evaluation of System Features	146
Н	Cost Estimates of Package Programs	149

LIST OF TABLES

Table		Page	
1.1	Cost of Programs	18	
1.2	Development Costs for Single and Multi- Step Programs	20	
3.2.1	Measuring Components for Substep A	45	
3.2.2	Measuring Components for Node 1	48	
3.2.3	Measuring Components for Node 2	52	
3.2.4	Measuring Components for Node 3	55	
3.2.5	Measuring Components for Node 4	57	
3.2.6	Measuring Components for Substep Q	60	
4.1	Time and Cost Estimate of Software Development	76	
4.2	Purchase v/s Development Cost of Proprietary Software	76	
4.3	RWT Matrix for Substep A	80	
4.4	Relative Weightage Matrices		
4.5	Interaction Matrix	86	
4.6	Importance Rating Matrix	88	
4.7	Expected Value Matrix	89	
4.8	Summation of Expected Values	90	

LIST OF FIGURES

Figure		Page	
2.1	Input-Output for the Decision Model	39	
3.1	Summary Flowchart	41	
3.2.1	Detail Flowchart for Node 1	46	
3.2.2	Detail Flowchart for Node 2	50	
3.2.3	Detail Flowchart for Node 3	54	
3.2.4	Detail Flowchart for Node 4	56	
3.2.5	Detail Flowchart for Node 5 and Decision Matrices	58	
3.3	Relative Weightage Matrix for Substep A	61	
3.4	Interaction Matrix	63	
3.5	Importance Rating Matrix	65	
3.6	Expected Value Matrix		
4.1	Company Organization Structure	69	

CHAPTER I

PROBLEM DEFINITION

Construction projects are increasing in size, intricacy and monetary value. The requirement of integrated, unified and comprehensive planning, monitoring and transmitting of information to management has become crucial. The rise in capital cost has made month-to-month cashflow forecast mandatory to prevent a block of money being committed for an unwarranted length of time, and thereby utilizing that resource to its ultimate. This applies equally to all other resources. The need to optimize the use of resources has made planning and monitoring aids so important that they mean the difference between the survival and non-survival of virtually any construction contractor.

CPM¹ based networking technique is a basic planning tool in modern construction projects and the majority of construction firms use the computer for CPM network analysis. The computer has greatly simplified planning and scheduling, resource allocation, cost control, cashflow forecast, monitoring and communication of pertinent information to management. Besides speeding up normal problem solving, problems that are virtually unsolvable can be tackled. The computer also provides early warnings of faults or potential problems in control procedures, leading to indeterminable but important savings.

¹H.N. Ahuja, <u>Construction Performance Control by Networks</u>, St. John's, Newfoundland, <u>Canada</u>, January 1976.

The command to the computer is the program. It makes data supplied to the computer meaningful. With effort, almost any problem can be solved by a custom-made computer program. The development of diversified software has enlarged computer use and capacity.

Software development is a continuous and never ending process which is very expensive in terms of money, time and labor. At present, although so many different types of computer programs exist in every field, many organizations and construction contractors are writing their own specialized programs. Independent development of specialized software ignores the use of existing programs and increases their obsolescence. Then why not use existing programs? Whether a contractor should buy or develop a program is still an unsettled issue. The aim of this project report is to answer the question whether it is justifiable to buy a ready-made software package or develop in-house an entirely new program. Cost analysis of ready-made software versus an in-house development is necessary. A better appreciation of the problem can be achieved as the various aspects of the problem are described. These are:

- 1.1 Contractor's Objectives
- 1.2 Diversity of Software Needs
- 1.3 Cost Control Softwares in Construction
- 1.4 Cost of Acquiring Software
- 1.5 State of Art
- 1.6 Lack in the Environment
- 1.7 Statement of the Problem

1.1 CONTRACTOR'S OBJECTIVES

The main concern of a construction contractor is to meet the challenges of increasing costs, declining profits and increasing competition. The significance of profit maximization and cost minimization is so much for the contractor to be operative and progressive, that even his survival in the business is constantly challenged by the increasing expenditure and declining mark-up. Therefore, speed and economy in every operation become the inevitable objectives of a construction contractor. A computer-based cost control system ensures both speed and economy and therefore becomes important in any project.

A computer program that is economical to run, easy to modify, is fast, accurate, easily manageable and which is obtainable at a reasonable cost can serve a contractor's cost control objectives best. The cost control objectives of a construction contractor are perceived by the set of questions summarized in Appendix A.

1.2 DIVERSITY OF SOFTWARE NEEDS

Data processing systems are being used for planning and scheduling of projects, resource allocation and leveling, estimating, cost control and cashflow forecast, payroll, accounting and auditing, material expediting and inventory control, and for various other operations within the context of management aids. Nor does it end there. Various computer programs aid in structural analysis, surveying calculations, specification writing and other specialized areas. Unfortunately, these applications are mainly isolated tools and are useful at only one stage of a project. As a result, many contractors cannot afford the equipment or specialized manpower needed for computer processing of these special functions. With many construction contractors geared to operate within a conventional manual framework, they find that the benefits derived from mechanization of merely one function are not sufficient to warrant the hiring of trained personnel or education of existing staff. In order to be economical, the data processing applications within the company must be large enough to provide cost savings larger than the expenses incurred.

Furthermore, no two construction projects are alike. Because they differ greatly in size, location, costs and constraints, each project may require a different set of computer applications than the previous projects.

Any uniform system that could meet such a broad range of needs would be so general as to be practically impossible in most cases and would still be insufficient to handle many situations. Another drawback in developing such a system is that construction organizations differ. To be useful a system must be compatible with the methods presently in use in a particular company. Developing a uniform computer system capable of fulfilling the needs of each construction contractor would be almost an impossible task. Finally, such a system would have to be capable of being integrated with present management functions within the various departments of the organization. Again, construction projects are obtained under different types of contracts and the needs under each contract are not the same, which further enhances the

diversity of need for software. This is discussed under different types of contracts in the following section.

<u>1.2.1. Stipulated-Price Contract</u>: Under stipulated-price contract, the contractor agrees to construct a project for a stipulated amount, no matter what difficulty or expense he encounters. The remuneration may be made in a series of partial payments as the work progresses rather than in one final payment after acceptance of the contractor's work. The contractor essentially receives detail drawings and specifications. The immediate need for the contractor is estimating and bid preparation.

i. Estimating and Bid Preparation: Functions of estimating and bid preparation can be broken down into four data processing applications: quantity take-off, pricing, printing and evaluation of changes and alternatives.

Quantity take-off: From the drawings and specifications, the estimator prepares the input to the data processing system in accordance with the format and coding structure specified by software.

Pricing: Pricing or costing is the application of rates to previously determined items of work. The pricing function is often the first estimating function to be automated by a construction contractor. The input generally includes the project number, cost code, estimated quantity, efficiency factor and so on.

printing: Printing includes the classification, summarization, and preparation of all printed reports for use in estimating.

Evaluation of changes and alternatives: This data processing application relates to any major or minor changes in estimates and creation of new estimates after changes. It can include a facility to evaluate quickly the effects of alternative proposals.

The computer generated estimate is used as the basis for bidding. Once the contractor is awarded the project, the immediate task is its planning and scheduling, a discussion of which follows.

ii. Planning and Scheduling: Planning and scheduling cover the allocation of time and dollars to produce acceptable budgets and schedules for construction of projects. The planning phase involves budgeting time and money. The scheduling phase converts decisions made during planning into a schedule to be implemented by the field force. The construction industry has been a leader in the use of data processing systems to assist planning and scheduling functions. There are at least four different ways in which data processing systems are now being used in the industry to facilitate project planning and scheduling. These are budgeting, scheduling, reports and simulation of alternatives.

Budgeting: The basic function of financial planning is to develop and provide an acceptable budget. An estimate of cost related to time, on approval, becomes a budget. This budget is represented in a data processing system by a file of records containing cost codes, estimated total quantity, unit of measure and estimated unit cost. Information

from the budget is used to compare actual cost and quantity with data reported from the project site to determine how the job is progressing costwise.

Scheduling: For scheduling, the necessary operations are: development of work breakdown structure, network construction, coding of activities, and finally, an analysis to prepare a schedule. The analysis of a network is preferably a computer-based operation which requires the use of a specialized computer program.

Reports: For scheduling and budgeting, it is necessary to obtain the following typical output reports with the information listed against each.

- Schedule report: Activity, its description, duration, start and finish dates and floats. Project network is drawn by using a plotting program.

- Milestone report: Milestone number, description, start and finish dates, and floats.

- Bargraph: Activity schedule plotted against calendar time.

- Resource report: Activity, required resources, start and finish dates and available resources.

- Work status and progress report: Once the project is underway, the schedule must be constantly reviewed and analysed in view of accomplishment and modification. Project management must remain informed of job status throughout the life of the project. Therefore, periodical progress reporting and updating of the project are necessary and any computer program should have this capability. Data reported on a work and progress report include activity description, remaining duration, percent completion and start and finish dates.

- Exception report: The principle is that exceptional situations are specifically pointed out to management and normal situations are passed over. One method is to point out only items in progress or which are likely to commence within a specified period. Another method is to point out only the specific items for management action. Information can be critical items that should have been started but were not started, and critical items that should have been completed but were not completed.

Simulation of alternatives: Project scheduling using CPM on a data processing system, provides construction management with a tool to evaluate readily the effectiveness of proposed alternatives. A construction contractor can in effect simulate suggested changes in network sequence and, in short order, be aware of the results of such changes.

iii. Project Cost Control: The objectives of cost control are:
to provide management with timely information concerning the relationship of actual cost to budgeted cost;

- through the accumulation of cost information, to provide current performance information to be used in future estimates.

These objectives are fulfilled by the following reports:

Labor cost performance report: These are manhour schedule, payroll and labor productivity reports. These reports help in improving and maintaining labor productivity and assist in monitoring labor cost.

Equipment cost report: Cost keeping of construction equipment, particularly in heavy construction, constitutes an important application area for a data processing system. Because of the large investment in equipment, contractors emphasize record keeping on data processing machines. A sound equipment management system requires a record of depreciation, maintenance charges and fuel consumption, scheduling of preventive maintenance, comparative analysis of productive and repair time, and evaluation of operating and repair rates.

Material cost report: A data processing system combines the related functions of paying for material and controlling its use. Maintenance of project inventories can be performed and tied directly into the material requirement aspect of the planning and scheduling system. Comparative analysis of actual material cost to budgeted cost is performed and deviations are noted. An extension of material costing activity and accounts payable application provide information to management for progress billing of on-site material.

Sub-contractor cost report: A significant part of the total cost for a project may be represented by charges for work which is subcontracted. When the progress claim of a sub-contractor is received and approved by the project manager, the documents enter into an accounts payable system. The dollar amounts are coded to cost classification set up in the job budget. Subcontractor cost distribution records are processed against the job cost file to update the actual cost and to be reflected in the monthly financial statement for the project. Management is provided information that shows the remaining balance of subcontract cost. Tied into the project schedule this information is used for cashflow projections.

Overhead cost report: Because of day to day operations including office expenses, management and engineering expenses, taxes, insurance, and so on, the overhead or direct cost is unavoidable. Depending upon the volume of the construction business, these expenses are quite significant and proper cost control is essential. Computerized payroll, accounting and auditing can reduce the contractor's overhead considerably.

Scope changes: The contractor uses data processing to estimate and monitor his costs due to owner imposed alterations.

Progress claim: The contractor prepares progress claims, the engineer certifies them and the owner makes the payment. The contractor uses a data processing system for his progress claim preparation.

Apart from these, a contractor has to exercise control over his contingency funds, escalation, interest on his bank loans, and so on, and he needs a computer program for these. However, the data processing needs are not similar under all types of contract, for example, cost-plus or management contracts which are discussed next, do have certain other needs.

1.2.2. Cost-plus Contract: On a cost-plus contract, the contractor agrees to construct a project for the actual cost of material, labor, and equipment plus a fee. Under this contract, the contractor is often involved prior to completion of contract documents to coordinate the overlap between design and construction.

Sometimes the contractor estimates and submits a guaranteed maximum price. He is also responsible for planning and scheduling of the project and resource allocation in a manner similar to a stipulated price contract. The contractor submits the actual expenditure on manpower, equipment, material, and overhead cost by periodical statements. These periodical statements on labor, materials, and equipment should comply with owner imposed auditing system. Therefore, computer software is needed for estimating, scheduling, resource allocation and job-site reporting of actual labor, material and equipment expenses.

<u>1.2.3. Management Contract</u>: Sometimes a construction contractor is successful in obtaining a project under a management contract. Management contracts are of two types—project management contract and construction management contract.

i. Project management contract: The project manager who is hired by an owner is the sole project administrator. In turn he hires the services of architects, engineers and other consultants. The initiation of policy, programming and planning, budgeting, and design to completion of project are controlled by a team of professionals under the direction of the project manager. Tender and construction documents are produced by the project manager's staff who ensures that the intent of these documents is followed by the contractor. His staff prepares an estimate, calls tenders, prepares network and project schedule, performs resource allocation, cost control and auditing. Computer programs help perform these functions for which the project manager is responsible.

ii. Construction management contract: Sometimes the contractor obtains a project under a construction management contract. This type of contract allows the owner to exercise control over the project through a construction manager, design being separately entrusted to a design engineer. The construction manager is experienced in construction, supervises activities relating to scheduling, estimating, value analysis, cost control, cashflow forecasting, contract interfacing, quality control and similar construction related matters. He provides construction related input to designers, general directions to contractors on the projects, as well as progress reporting to the owner during construction. Construction equipment and material contracts are between the contractor and the owner. Computer programs are helpful in estimating, scheduling, resource allocation and cost control of the

project.

In view of the diverse software needs of a contractor, there is obviously no one single program that meets all requirements. Since the scope of the project discussed in this report is confined to consideration of cost control software needed by a contractor, further discussion relates to this topic only; computer programs needed for other functions such as surveying, dredging and so on are excluded.

1.3 COST CONTROL SOFTWARE IN CONSTRUCTION

Cost control software being used in construction can be classified into general programs and special programs.

General programs can perform all types of cost control operations from planning to completion of project. One such program is Project Management System (PMS) IV which for cost control purposes is used in project scheduling, resource allocation, cost processing and output reporting. Some other similar programs are listed in Appendix B. Any of these programs serves as a useful tool for planning, monitoring, and communicating relevant information to management as a feedback system for possible control measures. These programs are fast, simple, large and multi-purpose, capable of addition, subtraction, simplification and modification. Simple coding and data manipulation, quick error detection and elimination are some other characteristics of these programs. Most of the programs are available for lease, rent or purchase at a reasonable price. Specific programs are good for cost control purposes only at one stage of the project, for example an estimating program. Some of these specific programs are listed in Appendix C. These specific programs are good for only one particular function and require a limited storage capacity. Such programs are comparatively inflexible and present difficulty to add to, delete from, modify and simplify. Thus they are unadaptable for broader usage. Each of these programs is developed for the solution of a specific problem. Some of them are not proprietary and are not leasable. Because of the large and complex nature of modern projects, it sometimes is necessary in a single project to use a series of specific programs.

The other matters of concern relating to cost control software are the sources of software and hardware, a discussion of which follows.

1.3.1. Software Sources: Computer programs can be created by or obtained from five possible sources: firms specializing in program development; developers of package programs; moonlighters; manufacturers of construction equipment; and the contractor's own staff.

i. Firms specializing in program development: These are firms who specialize in creating programs. Some of them are part of a computer manufacturing company. Most of them are consulting firms who provide these services. They develop software but most of them are not knowledgeable in construction, particularly in the heavy construction field. Therefore, much of the work has to be done by the contractor's staff. ii. Developers of package programs: These programs are developed by universities, professional societies, or by computer manufacturers who have established programming libraries over a period of time and make them available to their customers with or without charge. Another source of these programs is the various groups of computer users that have banded together to establish a library for joint use. Manufacturers naturally develop these package programs for obvious market reasons.

iii. Moonlighters: They generally are engineers working for colleges or highway departments who have become interested in programming and do it as an avocation. This could be a good way to start developing programs but it is not satisfactory for either party on a permanent basis. The programmer is at a disadvantage because as he develops programs, the contractor might change the system requirement or may decide to employ full time staff. The programmer is not sure just what is really required by the contractor and what can be counted upon.

iv. Manufacturers of construction equipment: Many manufacturers of heavy, automated type equipment have developed programs to evaluate the performance of different types of equipment.

v. Programs developed by contractor's own staff: The ultimate alternative for a contractor is to develop programs by his own programmers, engineers and estimators. This seems to be the best alternative if it is economical. Again, a significant portion of

software development is the cost of computer hardware. The option to select ready-made software from the market or to develop in-house is appreciably influenced by hardware selection as discussed here.

1.3.2. Hardware Sources: Obviously there is an economic limitation as to what can be spent on a computer. At the present time there are two alternatives for making use of what is presently available within practical economic limits. These are, the contractor's own computer facility, and the facility of a service bureau.

i. The contractor's own computer facility: A contractor can own or lease three types of computers. The first is the relatively high cost and high speed computer. The second type is low cost, and low speed principally oriented for engineering purposes. Both of these are punch-card oriented, and will therefore usually require raw input data to be transcribed in a punch-card entry format which is set by the software. The third kind is the micro-computer, which can be high or low speed but with less storage capacity.

ii. The facilities of a service bureau: The facilities of a service bureau can offer almost anything. It can make available the largest computers as well as provide a portion of a large computer. The contractor can share the use of these computers with others, and communications with it can be achieved through a terminal similar to a typewriter and located in the contractor's

office. For high speed and high cost computers, the speed is about 1000 lines per minute and lease cost would be between \$1000-\$5000 a month.² Use of the facility can become more economical if the contractor has besides project cost control a computerized payroll, accounting, auditing and inventory system, as well as use for it in other engineering applications.

The service bureau can provide an engineering type of computer which is slower - about 10-30 percent of the speed of a commercial computer. The service bureau can even provide the software necessary but such programs are written for commercial purposes. The contractor can use either of these facilities or both on an hourly rental basis. The computer can be located in a different town or in a separate building. The remote teletype terminal even eliminates the use of a data deck. Once the sources of software and hardware are known, the next requirement is to analyse the cost of acquiring software. This is now discussed.

1.4 COST OF ACQUIRING SOFTWARE

Table 1.1 describes the cost of leasing, renting and purchasing package programs. It is observed that the present worth of buying a software package is much less than that of leasing or renting. Further investigation in this research is limited to buying a software

²W. Myers, <u>Software Productivity</u>, <u>Quality and Cost: All Up</u>. Computer, Dec., 1977.

TABLE 1.1.

COST OF PROGRAMS* (YEAR 1975)

COST (U.S. DOLLAR)

NO.	NAME OF PROGRAM	PURCHASE	RENT/LEASE	
1.	CAS/CPA/FMR	17000	-	
2.	CONTROL/IMS		5000/year	
3.	CPM/RPSM-Critical Path Method/Resource Planning and Scheduling Method	22000	625/month	
4.	CPMIS-CPM based Management Information System	15000	300/month	
5.	EMS-Equipment Management System	10000	400/month	
6.	EZPERT-Easy Pert	32000	1280/month	
7.	FASTNET-Fast Network	0.05/activity	0/03/activity	
8.	GASP IV-General Activity Simulation	-	7500 + 200/m	
9.	JARS	6000	÷	
10.	NPSCP-Network Project Scheduling Program	24000	1500/year	
11.	PAC II	17800		
12.	PERT 6	12400	500/month	
13.	PRIDE-Profitable Information by Design	75000	-	
14.	PROCON	12500	1.50/report	
15.	PROJECT/2	-	250/month	
16.	PROMIS/RAM	5000	150/month	
17.	PROMIS/TIME	5000	150/month	
18.	PMS-Project Management System	90000	496/month	
19.	SPACE-BANK	3000	10 + 0.50/	
		20000 includes computer also	-	
20.	T/A Series CPM Program	18000	7000/year	

PMI, Computer Software Survey, Drexel Hill, Pa., 1975.

package. Another fact is that the cost of leasing or renting a special program varies and in some cases is higher than leasing a general program. On the other hand, program writing and debugging cost time and money. The cost of programming expertise is extremely high as compared to mechanical computing. The cost of programming for large projects now appears to be averaging about \$120 per instruction as compared to fully debugged and documented instruction averaged at \$15-\$20 previously, both within International Business Machines (IBM) and elsewhere.

Table 1.2 provides the actual development cost for single and multi-step special programs. The table indicates that the cost of a single step special program is higher in terms of manhour and computer time per card than that of a multi-step iterative program.

Besides financial restraints,³ there are other factors deserving consideration in this context, such as:

i. To develop a program in-house, it takes generally from a few months to several years and is often subject to serious delays, whereas package programs can usually be installed and made operational within a week or a few days.

ii. The cost of in-house development is almost impossible to predict accurately and is often seriously underestimated, whereas package programs are offered at a fixed or negotiated price.

³Datapro Research Corporation, <u>Datapro 70, Buyer's Bible</u>, Delran, New Jersey, 1977.

TABLE 1.2

DEVELOPMENT COSTS FOR SINGLE AND MULTI-STEP PROGRAMS⁴ (YEAR 1976)

ITEMS	PROGRAM NAME	NO. OF CARDS	PROGRAM TYPE	MAN-TIME SPENT (DAYS)		COMPUTER COST (\$)	
				TOTAL	/CARD	TOTAL	/CARD
1	Space Frame	1020	Multi	49	0.048		-
2	Section Property	380	Single	20	0.053		-
3	Concrete Est.	2520	Multi	30	0.012	1300	0.52
4	Concrete Slab	8080	Multi	45	0.006	2700	0.33
5	CISC - 1	2970	Multi	54	0.018	480	0.16
6	CISC - 2	2810	Multi	28	0.010	1130	0.40
7	Geometry Gen.	3500	Multi	63	0.018	5000	1.43
8	Load Cases	1800	Multi	24	0.013	1500	0.83
9	Dome Geometry	100	· Single	5	0.050	100	1.00
10	Mesh-Plotter	1800	Multi	14	0.008	500	0.28
11	Moment Plotter	200	Single	5	0.025	60	0.30
12	Finite Element Analysis	9000	Multi	500	0.055	5500	0.59
13	Column Stack Design	7600	Multi	93	0.012	5800	0.76

⁴Chris M. Szalwinski, <u>Specialized Computer Program Development-Expectation and Costs</u>. Ontario, Canada, presented at the Annual Conference of Engineering Institute of Canada held at Halifax, <u>1976</u>.

iii. Some in-house development efforts never reach completion, for a variety of reasons, whereas package programs are usually a known quantity.

iv. Comprehensive documentation, often sadly neglected on in-house projects, can be demanded as a prerequisite when purchasing most packages. There may be considerable resistance in both management and technical circles to the idea of purchasing applicable software from outside sources. However, this can easily be overcome by stressing the clear-cut economic advantages and the fact that the in-house staff will be relieved of the need to program mundane, commonplace applications and be free to work on more unconventional and challenging aspects of projects.

In spite of the difficulties associated with in-house development, some contractors are still found developing programs because of circumstances discussed in the following section.

1.5 STATE OF ART

Presently, as related to the use of computer data processing, construction contractors can be divided into three groups. The first is contractors who deal in large projects and are regular users of computer data processing systems. They depend considerably on data processing as an efficient tool to aid management in planning and control. These contractors become quite efficient in computer applications and usually have in-house programming personnel. As they grow and encounter new problems, they engage in developing computer programs pertinent to their specific needs. The development process is continuous and as a result they constantly develop numerous small programs, and gradually link them together into a mammoth general program.

The second group on the other hand, contractors dealing in small projects, depend mostly on manual data processing. But as they expand they find manual data processing tedious, slow and prone to errors. They realize the usefulness of an electronic assistant, the computer. Naturally they get interested in it and start using some proprietary software, but because of inherent human instinct they start believing that their problems are special, and that existing ready-made programs are complex. Consequently they get involved in developing in-house new computer programs.

Initially each small contractor starts with a specific program for minor application. However, in due course the manifold demands of his organization, the diversity of projects and the variety of contractual needs, forces him to commit his resources at an increasing rate. He also keeps adding and expanding. Gradually the specific program becomes larger, more complex, and comparatively general. Finally, he ends up with a general program which he could have obtained in the first instance as a canned package. This is how new programs are being continuously added to the list of existing programs.

The third group of contractors deal in very small projects and their business being very small does not warrant the use of computer data processing. They depend mostly on manual data handling. At the most they use a ready-made package program and never develop any sort of in-house computer program for their use.

Proliferation of new program development exists in all industries, perhaps in a similar manner as described here for the construction industry. The estimate⁵ of the overall cost of software development and maintenance in the United States ranges from 15 to 25 billion dollars.

The following developments in software technology are some of the other reasons that attract contractors to develop their own programs.

-Software productivity is improving at a rate of 3-7% (20% at IBM).⁵

-The software/hardware ratio is 7:1 costwise.⁵

-Programming quality once in the area of 34-35 errors per 1000 lines of code has dropped to about 0.6 errors per 1000 lines of code.⁶

-The maintenance ratio for existing programs is 75-80%.5

-Modern programming practices are very efficient.⁵

Further, some contractors are specialty contractors and deal in only one particular field, for example fabricating prestressed beams. Such contractors believe that their needs are special, existing programs

⁵W. Myers, <u>The Need for Software Engineering</u>, Computer, February, 1978.

⁶W. Myers, <u>Software Productivity</u>, <u>Quality and Cost: All Up</u>. Computer, Dec., 1977. are too general, complex and difficult to use. They like to develop programs that are simple, easy, fast, appropriate, accurate, time and cost saving. The other areas of interest to them are payroll, accounting, bookkeeping, auditing and inventory control. Some of them aim at prestige associated with being progressive in computer applications.

However, the decision to buy ready-made software or to develop a specific program is not based on sound economic criteria. It is characterized by a gradual drift toward specific software development. There is a lack in the construction industry environment of a suitable methodology to aid in making any strategic decision on the software make-or-buy issue.

1.6 THE NEED FOR A DECISION MODEL

There exists a need for a methodology that can assist a contractor in selecting a software buy or develop mode. There is a need for a decision model that will result in economy for the contractor.

There are many factors that will have direct bearing on a contractor's decision to buy or develop a computer program. The system should be comprehensive and easy to use, and harness computer power to the task of helping the contractor do a better job economically. Questions of economy, budget, and system flexibility are priorities. So there is a need to optimize every factor, for efficiency of the decision model. Therefore, if there exists an optimized model for decision simulation, taking into account causes and constraints, the decision making body, management, can easily handle the issue; management can confidently buy
software or engage in in-house development.

1.7 STATEMENT OF THE PROBLEM

The needs of construction contractors for diversified projects and different types of contracts vary. In spite of profuseness of ready-made software for the construction industry, high developing and debugging cost as well as many other constraints, both small and large firms have become involved in in-house software development. There is no evidence of a sound economic decision strategy. Therefore, there is need for a methodology to improve the quality of a contractor's decision to develop or buy computer software. The problem is to help the construction contractor's decision making process in selecting software acquisition mode. The variables that influence this decision need to be delineated so they can be incorporated in a decision methodology or considered to improve the quality of contractor's intuitive decision.

CHAPTER II

VARIABLES

This chapter lists and describes the variables which affect the decision for software acquisition mode. Some of these variables which are uncontrollable are called states of nature; other variables are listed as controllable variables. The inputs and outputs of the decision model are described in the chapter.

The states of nature and controllable variables that are described in the following pages are assigned alphabetic symbols which are used later in Chapter III.

2.1 STATES OF NATURE

The following variables being for a major part uncontrollable by the contractor are classified as the states of nature for the decision model.

2.1.1. Financial Capability and Volume of Business (A)

- 2.1.2. Company Clientele (B)
- 2.1.3. Contractual Needs (C)
- 2.1.4. Additional Projects (D)
- 2.1.5. Uncertainties (E)
- 2.1.6. Hardware Availability (F)
- 2.1.7. Life Span of Software (G)

2.1.1. Financial Capability and Volume of Business (A): Financial capability denotes the availability of capital to a construction contractor, and volume of business indicates the number and size of projects the contractor can build simultaneously.

Construction contractors can be classified into three classes small, medium and large. The contractors with capital of one hundred thousand, one million and more than one million dollars are considered to be small, medium and large contractors respectively. Then again, there are general contractors and specialty contractors. The general contractors are those who are responsible for and coordinate all aspects of a project. The specialty contractors only deal in one aspect of a project and are usually subcontractors.

A decision on software 'develop or buy' is neatly tied with the contractor's financial capability and volume of business. If the contractor is financially capable and has a large volume of growing business, once he is convinced of the need for a computer program he will be much inclined to develop it in-house rather than buy it from others. On the other hand, if the contractor's financial capability and volume of business are small, he would rather buy ready-made software if needed.

2.1.2. Company Clientele (B): Company clientele refer to the owners of company projects. If the owner of a project is a government department, a bank, or a trust company, it will prefer a contractor who is running his business efficiently, which includes efficiency in data processing by computers. This is because these

public bodies are convinced of the benefits of computer data processing and use it for their own business. Such clientele would like the contractor to submit schedule reports, progress claims and expediting reports generated by the computer. If the client is an individual who is not used to computer reports, he may not insist on computer usage. Thus the type of clientele exerts some influence on the contractor's decision to use a computer in his business.

2.1.3. Contractual Needs (C): A contractor does not always obtain projects under a signular type of contract; he accepts any contract that looks promising. Under different types of contracts, the contractor needs to process his data in different ways and present reports to satisfy a client's needs as per his contract. Many proprietary software can process data and generate reports suitable for certain contract types but not for all of them. Therefore, the contractor's decision on software acquisition should correspond with his contractual needs.

2.1.4. Additional Projects (D): This pertains to his expectation of obtaining additional projects providing there is an opportunity for use of software and is based on market trend, political and other influences. To a large degree, the nature, size, and complexity of a project determine the extent to which computer programs are used. The versatility of software, so that it can be used on projects of varying size and complexity that a contractor expects to perform in the future, is a desirable feature which must be considered in deciding the mode of software acquisition. 2.1.5. Uncertainties (E): In-house software development projects generally take from a few months to several years to complete, and are often subject to serious delays.

The cost of in-house softward development is almost impossible to predict accurately and is often seriously underestimated. Similar uncertainties exist over expertise requirements and some in-house development efforts never reach completion. Further, there is no guarantee of quality. Not being in the software development business, the contractor does not have much control over these uncertainties. Their consideration is necessary in software acquisition decision.

2.1.6. Hardware Availability (F): This includes the computer size, type, its memory and its peripheral devices such as printer, plotter and so on. The selection of software acquisition mode also depends on the ownership and location of the computer facilities. Does the contractor have his own computer or does he have access to a terminal? Must he use the computer in time sharing mode via a teletype or use cards in batch processing? The software which is compatible with the hardware facilities available to him must suit his needs unless he can afford to buy computer hardware to match computer software, which does not seem to be a prudent policy. He does not have any influence over the computer hardware market, he is only a user of the facilities.

2.1.7. Life Span of Software (G): The advancement of computer technology renders many computer programs uneconomical to run. The life span of software indicates the length of time that a certain program will continue to be useful for the contractor's purposes from an economic point of view, and therefore the length of time allowed to amortise the capital cost of the program. The economic life is predicted considering the influence of technical obsolescence of computer hardware. If a contractor has developed his own computer program which he runs in time sharing mode on a computer, his program may become useless if the computer data processing centre decides to change its hardware. Also, if he is using an old computer program which is not modified to take advantage of the new hardware capabilities, his computer processing becomes uneconomical. It is therefore necessary to consider the life span of a program in selecting the software acquisition mode.

2.2 CONTROLLABLE VARIABLES

The following factors are considered to be the controllable variables:

6.6.1.	company investment Strategy (H)
2.2.2.	Company Prestige Factor (I)
2.2.3.	Company Organization Structure (J)
2.2.4.	Project Needs (K)
2.2.5.	Other Needs (L)
2.2.6.	Software Operational Characteristics (M)
2.2.7.	Software Facility and Capacity (N)
2.2.8.	Software Legal Aspects (V)
2.2.9.	Software Purchase Cost (P)
2.2.10.	Software Development Cost (Q)
2.2.11.	Software Maintenance Cost (R)
2.2.12.	Overhead Expenses (S)
2.2.13.	Time Factor (T)
2.2.14.	Expertise Requirements (U)

2.2.1. Company Investment Strategy (H): This is the policy adopted by the contractor to optimize the use of his company resources. Each contractor has a 'line of credit' and consequently, a maximum of available investment capital. The maximum investment is distributed over all projects of the company and therefore only the surplus capital if any, after meeting the capital and operating needs of the projects, is available to meet other needs. If funds are available, the contractor develops policy for their investment. A contractor with large unutilized funds may like to develop his own programs. Others with cashflow problems may like to purchase or rent the services required.

2.2.2. Company Prestige Factor (I): It is recognized that a contractor may wish to own a sophisticated computer or a specialized construction equipment unit, employ a reputed project manager or even complete a project before its stipulated completion date for reasons of prestige, political obligations or continued good business relationship. If this should be the case, his selection of mode of acquisition of a computer program will certainly be affected by his desire for prestige, even to a disregard for cost.

2.2.3. Company Organization Structure (J): The construction organization is a system in which men, machines and money are deliberately combined for the accomplishment of the contractor's objectives. Initially the contractor starts with a very small organization which may be run on an owner-operator or partnership basis. At some point a partnership company becomes a corporation. With further growth, the company organization structure changes from a simple line and staff to a very complex matrix organization. But because of complexity, huge size, and the distance of projects from the company headquarters, the original communication channels become very inefficient and the contractor has to consider the introduction of a computer aided information flow system. If it is decided to develop software internally, a question arises - whether there should be a separate programming department or should the programming functions

be absorbed in any of the existing departments as a new section? How should this additional department or section function in the whole organization of the contractor? In this way the contractor's organization is first responsible for the decision to acquire a computerized information flow system and then its own structure is influenced by the decision to buy or develop the software.

2.2.4. Project Needs (K): The contractor usually starts with one type of project but the market situation, government regulations and company strategy for diversification make it necessary for him at some stage to do other types of projects also. There may be many types of projects but the most common ones are:

- i. Dams, canals and hydro-electric work
- ii. Highways and railroads
- iii. Tunnels
- iv. Bridges
- v. Piers, jetties, and breakwaters
- vi. Airports
- vii. Pipelines and pumping stations
- viii. Water and sewer lines, sewerage plants, and other more sophisticated antipollution installations
 - ix. Atomic plants, missile launching pads, tracking stations and other military installation.

Some projects have special data processing needs. For instance a simulation program can be very beneficial for a tunneling project, or a program to calculate cut and fill volumes of earthwork can be very useful for road construction contractors. In general, proprietary programs are written for specific construction environment and are therefore not suitable for meeting all the needs of a contractor. This fact doubtlessly has an influence on a contractor's decision to buy or develop his own software.

2.2.5. Other Needs (L): Computerization of payroll, accounting and bookkeeping, auditing and inventory control enable a contractor to get the routine work in his business performed more efficiently. Sooner or later every contractor has to computerize these routine functions. Whatever programs he decides to use for construction cost control, they must have the capability to be interfaced with these general business programs for efficiency in data handling. The interface capability is therefore an important factor that influences his decision to buy or develop a program.

2.2.6. Software Operational Characteristics (M): The operational characteristics are important factors to be considered in deciding whether or not to buy a proprietary program package. These are:

i. Simplicity: The system must be relatively easy to install and operate. The input data should be easy to operate and output reports must be understandable.

ii. Flexibility: The system must provide allowance for the retrieval of non-standard reports, either through a defined report generator or by additional programming. It must have the ability to interface different projects. It should be flexible for modification. It is desirable, as well, to allow for variable combinations of input parameters for flexibility in output reporting format.

iii. Reliability: The system should have been fully tested and made free from bugs. It must have a proven record.

iv. Controls: The system must have extensive editing capability for the detection of errors in the input data, and must contain controls which ensure that all input data is accounted for. Sufficient audit trails must be provided as well as restart or recovery procedures.

v. Documentation: Adequate documentation must be supplied with the package for computer operations personnel as well as the user. It must be complete in all respects and readily comprehensible by those who will use it.

vi. Maintainability: The user must have access to programming personnel familiar with the system for the purpose of correcting latent program bugs, as well as for the implementation of any modifications and/or extensions which are deemed necessary.

vii. Capacity: The software must be capable of handling both large and small networks as well as all types of reports necessary.

viii. Efficiency: The program must be written in such a manner as to take advantage of current programming technologies and must make efficient use of computer resources. The operating and file handling procedures must be such as to avoid complications in the computer room and allow for adequate turnaround.

ix. Compatability: The system must allow for interfacing with other financial accounting systems, whether this be done automatically or by manual procedure. In terms of running the system on two or more

separate computers, the programs and files must be compatible from hardware to hardware.

x. Data Base: The data base must contain all the elements necessary to provide management with the desired information reports, but retain historical information relative to cost.

xi. Data Sequencing: The System must provide extensive sorting capabilities which permit the user to produce management reports in any desired sequence.

xii. Cost: The system must be economical in terms of installation and operation.

2.2.7. Software Facility and Capacity (N): This includes the program facilities such as network processing, resource allocation, estimating or cost processing and program capacity pertaining to the number of activities, events, subnets, networks, interfaces and so on, that it can process. A match between his needs and the program facilities and capacity is required which guides his decision in acquiring a program.

2.2.8. Software Legal Aspects (V): When a computer program is acquired from an outside agency, the agency guarantees the successful operation of the program but takes no responsibility when a difficulty arises due to unauthorized changes made by the user. On the other hand, there is no restriction on the changes to a program developed by the contractor's own organization. The in-house developed program is therefore more responsive to his needs without any fear of losing a guarantee. 2.2.9. Software Purchase Cost (P): The capital cost of purchasing at market value a proprietary software package including taxes is one of the most important considerations in making his choice of a program. If the cost is high, he is deterred from buying.

2.2.10. Software Development Cost (Q): This is the capital cost of developing a completely new software in-house. It includes the cost of men, machines and mechanism to develop the program. If the cost is high, he prefers to buy.

2.2.11. Software Maintenance Cost (R): This is the cost of effort including the wages of program operator and analyst during the trial runs, additional runs, error elimination, obtaining successful runs and computer time to make a proprietary program package completely operational. This is essential because a newly developed program is not free from bugs and needs several trial runs to make it operational for the purpose it has been developed.

2.2.12. Overhead Expenses (S): This implies a daily, weekly or monthly fixed cost of non-productive operations. It comprises a prorated cost of management and office facilities chargeable to the direct cost of in-house program development.

2.2.13. Time Factor (T): This is the time required to develop the program in-house or alternatively the time required to make a proprietary software package operational and free from bugs. This time should not be later than the time the contractor requires a computer program for a project. Thus a time factor enters the decision process

both from the point of view of the time available and the time required.

2.2.14. Manpower Requirements (U): This refers to the skilled manpower requirement to develop a program in-house or to make a proprietary program package operational. While the manpower required to make a program operational is not very much, manpower requirement in the in-house development of a program is directly related to the program size and complexity. The decision on the mode of software acquisition will certainly be biased toward in-house development, if the required expertise is available within the organization.

2.3. INPUT - OUTPUT

While the system which is the decision model is described in the next chapter, the controllable variables which form the system input and the states of nature with which the input interacts, have been described in this chapter and are illustrated in Figure 2.1. The outcome of the interactions is processed via the decision model to generate the output which is the selection of the most economic mode of software acquisition.

INPUTS

Company Investment Strategy

Company Prestige Factor

Company Organization Structure

Project Needs

Other Needs

Software Operational Characteristics

Software Features and Capacity

Software Legal Aspects

Software Purchase Cost

Software Development Cost

Software Maintenance Cost

Overhead Expenses

Time Factor

Manpower Requirement

Company Clientele*

Contractual Needs*

Additional Needs*

DECISION MODEL

MOST ECONOMIC DECISION TO BUY OR DEVELOP SOFTWARE

Hardware Availability*

Life Span of Software*

Uncertainties*

Figure 2.1 Input-Output for the Decision Model

* States of Nature

CHAPTER III

METHOD OF SOLUTION

The problem and variables affecting the software acquisition decision having been presented in Chapters I and II, this chapter describes the solution. First, an overview of the methodology for solving the problem is presented through a Summary Flowchart, then a description of the Detail Flowchart and Decision Matrices follows as a comprehensive methodology for a software acquisition model.

3.1 EXPLANATION OF SUMMARY FLOWCHART

The Summary Flowchart is presented in Figure 3.1 which gives an overview of the methodology used for the decision model. This chart comprises six steps. The first five steps are information gathering operations which form the basis of subsequent decision action. The sixth step is the comparative analysis of costs and physical limitations and selection of software acquisition mode through a decision process for which the methodology is developed. This methodology is a systematic decision approach in which payoff matrices are developed to select the software acquisition mode which is the outcome. The matrices are described by decision rules. A brief explanation of the Summary Flowchart follows.

Figure 3.1 Summary Flowchart

i. Establish Software Requirements: These requirements are the basic information to consider before computer application is justified for the contractor's operation. They are established through the consideration of volume of business, types of construction contracts, company clientele, the volume of work related to financial accounting such as payroll, inventory, bookkeeping, auditing and so on, that should be computerized, and company policy such as investment strategy, and prestige factor.

ii. Evaluate the Suitability of Proprietary Software: Having established his software requirements and knowing the various kinds of data processing and reporting, the contractor should look into the functional characteristics of the available programs. Analysing program characteristics in the light of his needs, the contractor can determine their comparative suitability.

iii. Total Cost to Buy: This is the cumulative cost for purchase of proprietary software, sales tax, maintenance and overhead associated with it.

iv. Physical Constraints of In-house Development: Apart from the monetary considerations certain physical considerations are necessary for developing a program in-house. It is very difficult to predict when the program development will actually be complete and how much expertise will be required. Neither can it be stated with certainty whether the program development will complete at all.

v. Development Cost: This is the cumulative cost of all types of expertise for production and maintenance of a program, computer time, and overhead chargeable to in-house program development.

vi. Compare Costs and Constraints: Knowing the total costs and constraints affecting purchase and development, a comparison of Expected Values (EV) is made to select the mode of acquisition at minimum cost. In the unlikely case of two values being equal, priority is given to the method of acquisition involving the least capital outlay. If the two choices have equal costs, purchase has the highest priority. The selection is made through a decision matrix which is the heart of the methodology presented here. The outcome is the most economic mode that ensures the suitability of the software acquired.

3.2 DETAIL FLOWCHART

The Detail Flowchart presented by Figures 3.2.1 to 3.2.5 illustrate the comprehensive procedure used to solve the software acquisition problem. The completion of each step of the Summary Flowchart is denoted by a corresponding node number in the Detail Flowchart. Every step of the Summary Flowchart is broken down into substeps in the Detail Flowchart. The Detail Flowchart enumerates each substep which in most cases is dependent upon a number of measuring components. These measuring components influence to varying degrees the value of variables determined in a substep and consequently require comparative weightage. In applying this methodology to a problem, comparative weightages are to be provided by the user in view of his own situation. The substeps in the Detail Flowchart up to node 5 depict information collection, organization and analysis for the seven states of nature and 14 controllable variables as described in the preceding chapter. Following node 5, development of the matrices and their analysis, until the final decision block for Expected Value (EV) is reached, is discussed and a systematic decision approach is described. The following four types of matrices are developed in connection with the Detail Flowchart. These are:

- i. Relative Weightage Matrices
- ii. Interaction Matrix
- iii. Importance Rating Matrix
 - iv. Expected Value Matrix

However, before developing matrices it is necessary to determine numerical values for each controllable variable and states of nature represented by various substeps of the Detail Flowchart. This is done by enumerating its measuring components, assigning to each a symbol for later reference, and assigning comparative weightage. The weightages are assigned to measuring components using a scale of one to ten, the total weightage for each substep being 10. This is illustrated in Table 3.2.1 taking as an example substep A. The weightage will subsequently help determine the relative weightages of variables in terms of 'buy' or 'develop' options.

TABLE 3.2.1

MEASURING COMPONENTS FOR SUBSTEP A

Symbol	Weightage
A	1
A ₂	1
A ₃	5
A ₄	1
A ₅	2
	Symbol A ₁ A ₂ A ₃ A ₄ A ₅

Relative weightage matrices will be developed for each substep in Chapter IV where an example is presented. However, the measuring components for each substep are presented in this chapter.

The Detail Flowchart for node 1 - ESTABLISH SOFTWARE REQUIREMENTS - comprises 9 substeps: A, B, C, D, H, I, J, K, and L. The measuring components of A being presented in Table 3.2.1 above, the remaining measuring components are being presented in Table 3.2.2.

FINANCIAL CAPABILITY & VOLUME OF BUSINESS (A) (Table 3.2.1)

COMPANY CLIENTELE (B) (Table 3.2.2 Substep B)

CONTRACTUAL NEEDS (C) (Table 3.2.2 Substep C)

ADDITIONAL PROJECTS (D) (Table 3.2.2 Substep D)

COMPANY INVESTMENT STRATEGY (H) (Table 3.2.2 Substep H)

COMPANY PRESTIGE FACTOR (I) (Table 3.2.2 Substep I)

Figure 3.2.1 Detail Flowchart for node 1

COMPANY ORGANIZATION STRUCTURE (J) (Table 3.2.2 Substep J)

PROJECT NEEDS (K) (Table 3.2.2 Substep K)

OTHER NEEDS (L) (Table 3.2.2 Substep L)

ESTABLISH SOFTWARE REQUIREMENTS

TABLE 3.2.2

MEASURING COMPONENTS FOR NODE 1

Substep B		
Measuring Component (MC)	Symbol (SY)	Weightage (WT)
The owner of project	B ₁	5
The designer of project	B ₂	3
Business profession of owner	B ₃	2
Substep C		
MC	SY	WT
Type of contracts	C ₁	1
Processing for each contract	C ₂	4
Reports for each contract	C ₃	5
Substep D		
MC	SY	WT
Market trend	D	3
Political obligation & influence	D2	4
Government regulation	D ₃	3
Substep H		
MC	SY	WT
Company priority criteria	Н	4
Company objectives	H ₂	4
Company's line of credit	H ₃	2

TABLE 3.2.2 (Continued)

·	and the second	
Substep I		
Measuring component (MC)	Symbol (SY)	Weightage (WT
Performance	I	4
Labor relationship	I ₂	2
Clientele	I ₃	4
Substep J		
MC	SY	WT
Type of organization	J	2
Number of communication channels	J ₂	2
Length of communication channel	J ₃	2
Nature of reporting system	J4	2
Extent of reporting system	J ₅	2
Substep.K.		
MC	SY	WT
Types of projects at hand	K	1
Types of processing for each project	K ₂	4
Types of reports for each project	K ₃	5
Substep L		
MC	SY	WT
Payroll	L	2
Inventory	L ₂	2
General ledger	L ₃	2
Accounts receivable	L ₄	1.5
Accounts payable		1.5
Purchase order module	L ₅	1

The Detail Flowchart for node 2 - EVALUATE SUITABILITY OF PROPRIETARY SOFTWARE - comprises six substeps as illustrated in Figure 3.2.2. The first substep does not need any measuring component and the measuring components of the remaining substeps are presented in Table 3.2.3.

Figure 3.2.2 Detail Flowchart for node 2

The measuring components of F_p , G_p , M_p , N_p , and V_p are presented here following the completion of the Detail Flowchart for node 2.

TABLE 3.2.3

MEASURING COMPONENTS FOR NODE 2

Substep (F _p & F _I)*		
Measuring component (MC)	Symbol (SY)	Weightage (WT)
Printer	F ₁	2
Plotter	F ₂	2
Memory type and core	F ₃	3
Software/hardware ratio	F ₄	3
Substep (G _p & G _I)*		
MC	SY	WT
Software growth	Gl	2 /
Maintenance ratio	G ₂	2
Productivity	G ₃	2
Program quality	G4	2
Program reliability	G ₅	2
Substep (M _p & M _I)*		
MC	SY	WT
Number of characteristics	MJ	4
Quality of each characteristic	M2	3
Reliability of each characteristic	M3	3

* The substep has two subscripts to denote the alternative with which it is associated. The subscript P stands for proprietary software and subscript I stands for in-house developed software.

TABLE 3.2.3 (Continued)

Substep (N _p & N _I)*		
Measuring component (MC)	Symbol (SY)	Weightage (WT)
Network processing	NJ	1
Resource allocation		1
Cost control		2
Report processing		2
Number of networks	N2	1.5
Number of subnets		1.5
Number of activities and cards	N ₃	1
Substep (V _p & V _I)*		
МС	SY	WT
Modification flexibility of features	٧ _٦	5
Modification flexibility of operational characteristics	v ₂	5

* The substep has two subscripts to denote the alternative with which it is associated. The subscript P stands for proprietary software and the subscript I stands for in-house developed software. The Detail Flowchart for node 3 - DETERMINE TOTAL COST TO BUY - comprises three substeps as illustrated in Figure 3.2.3. The measuring components of these substeps are illustrated in Table 3.2.4 following the Detail Flowchart for node 3.

OFTWARE	PURCHAS	SE COST (I	P)
(Table	3.2.4	Substep	P)

MAINTENANCE COST OF PROPRIETARY SOFTWARE (R_p), (Table 3.2.4 Substep R_p)

OVERHEAD WITH PROPRIETARY SOFTWARE (S_p) (Table 3.2.4 Substep S_p)

DETERMINE TOTAL COST TO BUY

Figure 3.2.3 Detail Flowchart for node 3

TABLE 3.2.4

MEASURING COMPONENTS FOR NODE 3

Substep P		
Measuring component (MC)	Symbol (SY)	Weightage (WT)
Purchase cost	Р	8
Sales tax	P ₂	1
Brokerage commission	P ₃	1
Substep (R _p & R _I)* MC	SY	WT
Program operator and wage	R ₁	5
Computer time and cost	R ₂	5
Substep (S _p & S _I)*		
MC	SY	WT
Office staff and costs	Sl	7
Support services	S ₂	3

* The substep has two subscripts to denote the alternative with which it is associated. The subscript P stands for proprietary software and the subscript I stands for in-house developed software.

The Detail Flowchart for node 4 - STUDY PHYSICAL CONSTRAINTS OF IN-HOUSE DEVELOPMENT - comprises three substeps as illustrated in Figure 3.2.4. The measuring components of these substeps are presented in Table 3.2.5 following the Detail Flowchart for node 4.

Figure 3.2.4 Detail Flowchart for node 4

TABLE 3.2.5

MEASURING COMPONENTS FOR NODE 4

Substep E		
Measuring component (MC)	Symbol (SY)	Weightage (WT)
Uncertainty over cost	E1	4
Uncertainty over time	E ₂	4
Uncertainty over manpower need	E ₃	2
Substep T		
MC	SY	WT
Initiation and analysis	T ₁	2
Planning	T ₂	2
Analysis and design	T ₃	2
Development	T ₄	2
Implementation	T ₅	2
Substep U		
MC	SY	WT
Number of senior system analysts	Ul	2
Number of system analysts	U ₂	2
Number of programmers	U ₃	2
Number of program analysts	U ₄	2
Number of program operators	U ₅	2

The Detail Flowchart for node 5 - DETERMINE TOTAL COST FOR IN-HOUSE SOFTWARE DEVELOPMENT - comprises eight substeps as illustrated in Figure 3.2.5. The measuring components of substeps F_I , G_I , M_I , N_I , R_I , S_I , and V_I being presented previously, the measuring component of remaining substep Q is presented in Table 3.2.6.

Figure 3.2.5 Detail Flowchart for node 5 and Decision Matrices

MAINTENANCE COST OF IN-HOUSE SOFTWARE (R_I) (Table 3.2.4 Substep R_I)

OVERHEAD WITH IN-HOUSE SOFTWARE (S_I) (Table 3.2.4 Substep S_I)

LEGAL ASPECTS OF IN-HOUSE SOFTWARE (V_I) (Table 3.2.3 Substep V_I)

DETERMINE TOTAL COST FOR IN-HOUSE SOFTWARE DEVELOPMENT

RELATIVE WEIGHTAGE MATRIX (RWT) (Figure 3.3)

INTERACTION MATRIX (IT) (Figure 3.4)

Figure 3.2.5 (Continued)

Table 3.2.6 Measuring Components for Substep Q			
Measuring component (MC)	Symbol (SY)	Weightage (WT)	
Development cost	Q1	8	
Property tax	Q ₂	1	
Brokerage commission	Q3	1	
3.3 RELATIVE WEIGHTAGE MATRICES

In matrix Table 3.2.1, each measuring component favours either a strategy to buy (SB), a strategy to develop (SD) or both strategies by parts. For instance, if the number of employees in a company is large, it may be desirable to reduce costs of personnel and at the same time increase the efficiency of data processing. A contractor may therefore opt to buy a program without losing any time. The weightage associated with number of employees is thus assigned entirely to SB. The alternative strategy is assigned zero weightage. Following this procedure both strategies are considered with respect to each measuring component successively, and weightage assigned to one or both of them in each case. By summing up these weights the relative weightage of each option is determined. The result is illustrated in a Relative Weightage Matrix, Figure 3.3, for Substep A (weightages used are from Table 3.2.1).

Strategy		Measu	ring (Compone	Relative Weightage (RWT		
	A	A ₂	A ₃	A ₄	A ₅		
SB	1.0	1.0	3.0	0.0	1.5	6.5	
SD	0.0	0.0	2.0	1.0	0.5	3.5	

Figure 3.3. Relative Weightage Matrix for Substep A

Similarly, Relative Weightage Matrices can be developed for all of the substeps of the Detail Flowchart. This will be done in the example presented in Chapter IV.

3.4 INTERACTION MATRIX

The controllable variables (CV) interact with states of nature (SN) to form the outcome. These interactions of variables with the states of nature are tabulated in an Interaction Matrix which is developed from the relative weightages as determined in the Relative Weightage Matrix.

There are 14 Relative Weightage Matrices for controllable variables and 7 for states of nature, corresponding to the 21 substeps of the Detail Flowchart. The relative weightage of each controllable variable reacts separately with the relative weightage of each state of nature. The interaction between a state of nature and a controllable variable is determined by taking the arithmetic mean of the relative weightages of state of nature and controllable variable. For example, if the relative weightage of a variable is SB = 8, SD = 2, and that of a state of nature is SB = 5, SD = 5, then the interactions of the two are $OB^* = (8 + 5) / 2 = 6.5$ and $OD^* = (2 + 5) / 2 = 3.5$ or simply their arithmetic average. This procedure is followed to determine all interactions. A specimen Interaction Matrix is shown in Figure 3.4. In the given matrix, combining the interaction of relative weightage (RWT) favouring strategy to buy under state of nature SN1 with relative weightage favouring SB for controllable variable CV1, OB1 is obtained which corresponds to 6.5 in the numerical example. Similarly the interaction between RWTs of SD under SN_1 and SD for CV_1 is OD_1 which corresponds to 3.5 in the numerical example.

OB* - outcome for SB, OD* - outcome for SD

\square	SN		SN	1	SN	2	 SN	n
	/		SB	SD	SB	SD	 SB	SD
	v	/	RWT	RWT	RWT	RWT	 RWT	RWT
CV,	SB	RWT	0B11		0B12		 OBIn	
	SD	RWT				OD12		OD _{1n}
cv2	SB	RWT	08 ₂₁		0B22		 OB2	
	SD	RWT		0021		0022		OD _{2n}
				• • • •	•••••		 	• • •
CV_m	SB	RWT	OB		OB _{m2}		OB _{mn}	
	SD	RWT		OD m1		OP 2		0D mn

Where n = intergerm = interger (m \neq n)

Figure 3.4 Interaction Matrix

3.5 IMPORTANCE RATING MATRIX

The states of nature such as financial capability and volume of business, company clientele and so on are not under the contractor's control. They have varying impact on the company objectives. These objectives are:

- Economy
- Profit
- Growth
- Goodwill
- Performance

The importance of the states of nature in relation to the company objectives is not reflected in the interactions illustrated in the Interaction Matrix. It is therefore necessary to assign importance rating to the states of nature which will be used in determining the Expected Values in the Expected Value Matrix, so that the final decision is weighed by their relative importance to the company objectives.

To determine the relative importance of states of nature to the company objectives, an importance rating matrix is formed by listing the states of nature horizontally and the company objectives vertically. This is presented in Figure 3.5. The effect of a state of nature (IF) on a company objective is rated as excellent (4), good (3), fair (2), and poor (1). The rating under each state of nature is summed up vertically to arrive at a number (Sum) for each state of nature. These sums are prorated from a total weightage of 100 to assign an importance rating (IR) to individual states of nature.

Company Objectives	States of Nature							
	SN ₁	SN2		SNn				
Objective _l	IF٦	IF ₂		IFn				
Objective ₂	IF3	IF ₄		IFn				
Sum	Sum	Sum ₂		Sumn				
Prorated Importance	IR ₁	IR ₂		IRn				

Note: where n = interger

Figure 3.5 Importance Rating Matrix

3.6 EXPECTED VALUE MATRIX

The Expected Value Matrix is the final step of the systematic decision approach. It comprises five elements which are: the controllable variables, states of nature, their importance ratings, outcomes which are the interactions between states of nature and controllable variables, and the expected value (EV) for each (SB and SD) alternative. These elements are combined and illustrated in the Expected Value Matrix, Figure 3.6.

IF	2	IR	IR ₂	IR ₃	 IR _n	EV
cv	SN	SN1	SN ₂	SN3	 SNn	
cvl	SB SD	OB ₁₁ OD ₁₁	0B ₁₂ 0D ₁₂	OB ₁₃ OD ₁₃	 OB _{ln} OD _{ln}	EV1 EV2
cv2	SB SD	^{OB} 21 ^{OD} 21	08 ₂₂ 00 ₂₂	^{OB} 23 OD ₂₃	 OB _{2n} OD _{2n}	EV3 EV4
cv ₃	SB SD	^{OB} 31 OD ₃₁	08 ₃₂ 00 ₃₂	OB ₃₃ OD ₃₃	OB _{3n} OD _{3n}	EV5 EV6
•••	• • • • • • • •				 	
cvm	SB SD	OB _{m1} OD _{m1}	OB _{m2} OD _{m2}	OD _{m3} OD _{m3}	 OB _{mn} OD _{mn}	EV _{2m-1} EV _m

where m = interger, n = interger ($m \neq n$)

Figure 3.6 Expected Value Matrix

OB_{1...n} and OD_{1...n} which are the numerical values brought from the Interaction Matrix are multiplied by the importance rating of states of nature from the Importance Rating Matrix to obtain EV in the following manner:

$$EV_{1} = OB_{11} \cdot IR_{1} + OB_{12} \cdot IR_{2} + \cdots + OB_{1n} \cdot IR_{n}$$

$$EV_{2m1} = OB_{m1} \cdot IR_{1} + OB_{m2} \cdot IR_{2} \cdots OB_{mn} \cdot IR_{n}$$

$$EV_{2} = OD_{11} \cdot IR_{n} + OD_{12} \cdot IR_{2} + \cdots + OD_{1n} \cdot IR_{n}$$

$$EV_{2m} = OD_{m1} \cdot IR_{n} + OD_{m2} \cdot IR_{2} \cdots OD_{mn} \cdot IR_{n}$$

The sums of expected values for SB and SD are obtained separately and compared. The strategy which has the highest expected value is the viable alternative and the desired software acquisition mode.

CHAPTER IV

EXAMPLE

In order to demonstrate the model developed in Chapter III, a hypothetical situation involving a construction contractor's organization is described, with assumptions made regarding the cost of i) buying, and ii) developing a computer program, data coming from a survey of proprietary software in construction (Appendices B & C).

Estimated numerical values are assigned to each controllable variable and states of nature. Relative weightage matrices are developed for each controllable variable and state of nature separately. Following this an interaction matrix is developed using the relative weights of controllable variables and states of nature. After determining the importance rating of states of nature, the final decision matrix, the Expected Value Matrix is developed. The strategy with highest Expected Value (EV) is selected.

4.1 THE CONTRACTOR'S ORGANIZATION

The construction contractor assumed for this example is doing an annual business of \$5-6 million. His organization has 19 permanent and 11 temporary staff. An organization chart showing only the permanent staff is illustrated in Figure 4.1.

69

4.2 THE DECISION PROCESS

The contractor has already justified computer application to meet his data processing needs. The immediate question to him is whether it is economical to buy the required proprietary software or develop it in-house. Therefore, he has to make a strategic decision to select a buy or develop alternative, based on the decision methodology developed in Chapter III, which involves the following operations:

- An Estimate of Numerical Values of Variables
- Development of Relative Weightage Matrix
- Development of Interaction Matrix
- Development of Importance Rating Matrix
- Development of Expected Value Matrix

4.3 AN ESTIMATE OF NUMERICAL VALUES OF VARIABLES

The model described in Chapter III outlines a comprehensive procedure to estimate all states of nature and controllable variables for the ultimate software acquisition mode. Following the Detail Flowchart and its explanation in Article 3.2, the states of nature and controllable variables pertaining to the contractor's organization are assigned values. A_1 , A_2 , A_3 , A_4 , and A_5 are the measuring components of Substep A, financial capability and volume of business, as listed in Table 3.2.1 are assigned necessary values in the following manner. A. Financial Capability and Volume of Business:

- A₁ 6 projects of about \$1 million each
- $A_2 30$ employees
- A₃ \$5 million per annum
- A₁ Year round
- A₅ 12% per annum

Similarly, the measuring components of other variables as listed in Tables 3.2.2 to 3.2.6 in Chapter III are also assigned values. Where necessary, suitable explanation is also provided. The values assigned to the measuring components are subsequently used in the various matrices later in the chapter.

B. Company Clientele:

B₁ - Department of Public Works (DPW), and Private Developers

- B₂ Consultant
- B_3 Construction

C. Contractual Needs:

C1 - Stipulated price contract

- C₂ Estimating, network processing, resource allocation, cost control, and report processing
- C₃ To monitor the costs, the contractor has a series of questions and to answer these questions, certain computer reports must be provided by project cost control software.
 These questions and necessary reports are illustrated in Appendix E.

D. Additional Projects:

D1 - Very potential for construction
 D2 - Very satisfactory

D₃ - Anti-inflationary

E. Uncertainties:

 $E_1 - \frac{+}{15} \frac{15}{8} \times E_2 - \frac{50}{8} \times E_3 - \frac{73}{8} \times \frac{15}{8}$

F. Hardware Parameter: The contractor rents the services of a remote terminal operated hardware system from IBM Company (IBM/360, 370, 05, DOS)

 F_1 - High speed F_2 - High speed F_3 - 500k F_4 - 6 : 1¹

G. Life Span of Software:

 $G_1 - 15 \%$ per annum¹ $G_2 - 70-80 \%$ of manhour need* $G_3 - 3-7 \% (20\% \text{ at IBM})^1$ $G_4 - \text{Improving*}$ $G_5 - \text{Slow improvement}^1$

* Appendix D

¹W. Myers, <u>The Need for Software Engineering</u>, Computer, February, 1978.

H. Company Investment Stretegy:

H	-	lst : Economy
		2nd : Cost-saving
		3rd : Profit
		4th : Expansion
		5th : Growth
		6th : Goodwill
H ₂	-	Long term : expansion, growth and goodwill

Short term : economy, cost-saving and profit

 $H_3 -$ \$ 0.5 million

I. Company Prestige Factor:

[₁ -	Sa	ti	sfa	cto	ry
------------------	----	----	-----	-----	----

- I₂ Satisfactory
- I₃ Excellent

J. Company Organization Structure:

J1 -	Matrix	type	of	organization	(Figure	4.1)
------	--------	------	----	--------------	---------	-----	---

- $J_2 6$
- J₃ One step
- J₄ Bottom up
- $J_5 Explained in K_3$

L. Other Needs: The contractor wants to computerize the functions of payroll, accounting, auditing and inventory system.

M. Software Operational Characteristics:*

Characteristics	PMS IV
Simplicity **	(X)
Flexibility	Х
Controls	Х
Reliability	Х
Documentation	-
Maintainability	-
Efficiency	X
Capacity	Х
Compatability	Х
Data Base	Х
Data sequencing	X
Cost	-

where 'X' stands for the existence of a particular feature in the program, '(X)' indicates that the program does not presently possess a particular feature but that it can be added with suitable modifications, and '-' stands for non-existence of the desirable feature and a lack of ability to modify or add the feature to the program.

- * Users' ratings of additional proprietary software for suitability analysis is illustrated in Appendix F.
- ** It must be realized that PMS IV is a very generalized package and would require extensive tailoring to fit the specific requirements of a construction company's various projects.

K. Project Needs:

- K₁ 2 highways, 2 residential buildings, 2 office buildings, and 1 airport construction project
- K₂ Same as above
- K₃ To control the cost of the projects and to monitor their progress, the contractor wants cost/progress information distributed to the project executives in the form of regular reports based on field data. Distribution of the project cost/progress reports as required by the project executive and supervisory staff is shown in Appendix E (Part III). The company executive staff receive exception reports at summary level.
- K₄ Network processing, resource allocation, report processing and cost control.

N. Program Facility and Capacity: Five general programs from Appendix B have been analysed for evaluation of system features and the result of this analysis is illustrated in Appendix G. Among these five general programs PMS IV, which has a wide application in the construction industry is found to best match the needs and therefore is selected for this example. PMS IV can perform network, resource, report and cost processing. It can process up to 254 networks, 255 subnetworks, and 2200 activities for each subnet at one time.

<u>P/Q Costs</u>: The cost estimates are illustrated in Tables 4.1 and 4.2. Table 4.1 illustrates the time and cost estimate of software development by percentage. Table 4.2 illustrates purchase v/s development cost of

Project phase	Cost (%)	Time (%)
Initiation and preliminary analysis	5	2
Planning	10	5
Analysis and design	25	18
Development	40	45
Implementation	20	30

Table 4.1 Time and Cost Estimate of Software Development* (Year 1976)

Table 4.2 Purchase v/s Development Cost of Proprietary Software** (Year 1978

System	Purchase Cost \$	Development Cost \$	Maintenance Cost of Pro- prietary Software*	Maintenance Cost In-House Developed Software _{\$}
Estimating	35000	75-10000ò	4000	10000
Payroll	35000	75-100000	4000	10000
General Ledger	35000	75-100000	3000	1500
Accounts Payable	25000	75-100000	2500	2500
Accounts Receivable	25000	75-100000	2500	2500
Fixed Assets	20000	50-250000	2000	5000
Inventory	35000	75-150000	4000	10000

* Evans, R.W., <u>The EDP Guide, Volume 3-1</u>, R.W. Evans Associates Ltd., Dec. 1976.

Appendix H.

**

proprietary software.

<u>R. Maintenance Cost</u>: Maintenance cost is slightly higher for proprietary software compared with in-house developed software. This is because the software development, being a slow process, helps company personnel acquire experience. As a result of their experience and familiarity with their own product, in-house software becomes comparatively easy for them. Maintenance cost varies with the vendor of proprietary software but averages at $R_p - 12\%$ and $R_I - 10\%$ of the purchase cost.²

<u>S. Overhead Expenses</u>: These are assumed to average at 30% of the total cost.

<u>T. Time Factor</u>: Time to acquire a proprietary software is negligible as compared to the time required to develop a program in-house. Table 4.1 shows the time required for different stages of program development by percentage completion. A proprietary software is available for immediate application which is not so for an in-house developed program. Before it is applied, an in-house developed software must be thoroughly debugged. Time required to develop a program in terms of computer cards is 0.054³ day per card.

²Datapro Research Corporation, <u>Datapro 70, Buyer's Bible</u>. Delran, New Jersey, 1977.

³Chris M. Szalwinski, <u>Specialized Computer Program Development-</u> <u>Expectation and Costs</u>. Ontario, Canada. <u>U. Manpower Requirement</u>: Personnel required to run a proprietary software package such as PMS IV is one program operator and one program analyst, but to develop a program like PMS IV the personnel required will be

2 senior system analysts - U1

3 system analysts - U₂ 8 programmers - U₃ 4 program analysts - U₄ 8 program operators - U₅

V. Legal Aspects of Software:

 V_1 - Report processor of PMS, V_2 - All characteristics can be modified.

4.4 RELATIVE WEIGHTAGE MATRICES

The first step of the decision process is to develop the Relative Weightage Matrices according to Article 3.3 of the preceding chapter and using the estimates of variables made in Article 4.3. Individual matrices are developed for each state of nature and controllable variables.

The measuring components of each substep favour either SB or SD, or both partially. For instance, substep A has five measuring components. A_1 is the number of employees and the contractor assumed for this example has 30 employees. The contractor feels it necessary to reduce the expenses incurred for hiring personnel and at the same time to increase efficiency of data processing. Thus the estimate of A₁ favours SB entirely and correspondingly its weightage is assigned to SB while zero weightage is assigned to SD.

Then A_2 is the number of projects - the contractor has four projects at hand at present. To furnish the required data handling for these projects, the contractor need not develop in-house software and can economically furnish required data processing by acquiring suitable proprietary software. Thus the estimate of A_2 also favours the strategy to buy proprietary software and consequently its weightage is assigned to SB, and zero weightage assigned to SD.

 A_3 is the total worth of business. The contractor is doing a business of \$5 million per annum. The contractor rationalizes that the present size of business favours SB by 60% and SD by 40% and accordingly assigns 3 to SB and 2 to SD out of its assigned relative weightage of 5.0. A_4 is the period of operation and the contractor operates year round, so he needs software year round and foresees that his in-house developed software is more economical and therefore assigns its assigned weightage to SD alone.

 A_5 is growth rate and the contractor has 12% growth at present and considers that he can best maintain it by not incurring further capital investment. He fears that an in-house software development project can cause further capital involvement. Thus he rationalizes that the estimate of A_5 affects SB by 75% and SD by 25% and correspondingly assigns 1.5 to SB and 0.5 to SD. If we summarise all these results in a table, we get the Relative Weightage Matrix for substep A (see Table 4.3).

79

To.	6	7	0	Λ	2	
a	D	1	E	-	5	

RWT Matrix for Substep A

Strategy (ST)	A	A ₂	A ₃	A ₄	A ₅	RWT
SB	1.0	1.0	3.0	0	1.5	6.5
SD	0	0.0	2.0	1.0	0.5	3.5

RWT is obtained by summing up the assigned weightages in each row.

Similarly, following this rigorous analysis, the Relative Weightage Matrices are developed for the remaining substeps in Table 4.4.

Table 4.4 Substep B Relative Weightage Matrices

JUDSU			the second s	and the second
ST	B ₁	B ₂	B ₃	RWT
SB	2.5	2.0	1.0	5.5
SD	2.5	1.0	1.0	4.5
Subste	ep C			
ST	C ₁	C ₂	C ₃	RWT
SB	1.0	3.0	3.0	7.0
SD	0.0	1.0	2.0	3.0
Subste	ap D			
ST	D	D ₂	D ₃	RWT
SB	2.0	2.0	1.0	5.0
SD	1.0	2.0	2.0	5.0

Table 4.4. (continued)

Substep	E			•		
ST	El	E2	E ₃	RWT		
SB	4.0	4.0	2.0	10		
SD	0.0	0.0	0.0	0.0		
Substep	F					
ST	Fl	F ₂	F ₃	F ₄	RWT	5
SB	0.5	0.5	1.0	0.0	2.0	
SD	1.5	1.5	2.0	3.0	8.0	
Substep	G					
ST	Gl	G ₂	G ₃	G ₄	G ₅	RWT
SB	0.0	0.0	0.5	0.5	1.0	2.0
SD	2.0	2.0	1.5	1.5	1.0	8.0
Substep	Н					
ST	H	H ₂	H ₃	RWT		
SB	3.0	2.0	1.5	6.5		
SD	1.0	2.0	0.5	3.5		
Substep	I					
ST	Il	I ₂	I ₃	RWT		
SB	2.0	0.0	1.0	3.0		
SD	2.0	2.0	3.0	7.0		

Table 4.4 (continued)

Subste	p J					
ST	J	J2	J ₃	J ₄	J ₅	RWT
SB	0.5	0.5	0.5	0.5	0.5	2.5
SD	1.5	1.5	1.5	1.5	1.5	7.5
Subste	рК					
ST -	K1	K ₂	K ₃	RWT		
SB	1.0	3.0	3.0	70		
SD	0.0	1.0	2.0	3.0		
Subste	p L					1
ST	L	L ₂	L ₃	L ₄	L ₅	RWT
SB	2.0	2.0	2.0	3.0	1.0	10.0
SD	0.0	0.0	0.0	0.0	0.0	0.0
Subste	p M			T		
ST	MJ	M2	M ₃	RWT		
SB	3.0	1.5	2.0	6.5		
SD	1.0	1.5	1.0	3.5		
Subste	p N					
ST	N	N ₂	N ₃	RWT		
SB	6.0	3.0	1.0	10.0		
SD	0.0	0.0	0.0	0.0		

Table 4.4 (continued)

Substep P

Jus 2 00			Contraction of the second s	
ST	P1	P ₂	P3	RWT
SB	6.0	0.0	0.0	6.0
SD	2.0	1.0	1.0	4.0
Subste	ep Q			
ST	Q1	Q2	Q3	RWT
SB	6.0	1.0	0.0	7.0
SD	2.0	0.0	1.0	3.0
Subste	p R			-1
ST	R ₁	R ₂	RWT	
SB	3.5	3.5	7.0	T
SD	1.5	1.5	3.0	
Subsțe	pS,			_
ST	SI	S ₂	RWT	
SB	6.5	1.0	7.5	
SD	1.5	1.0	2.5	
Substa	n T			-
ST	DWT	t		
	LM.I	-		
SB	9.0	-		
SD	1.0			

Subste	ep U	Table 4.4	(continued)			
ST	U ₁	U ₂	U ₃	U ₄	U ₅	RWT
SB	2.0	2.0	2.0	1.0	1.0	8.0
SD	0.0	0.0	0.0	1.0	1.0	2.0
Subste	ep V					
ST	٧ _٦	V ₂	RWT			100
SB	1.5	1.5	3.0			
SD	3.5	3.5	7.0			

4.5. INTERACTION MATRIX

The second operation of the decision process is to develop an Interaction Matrix for the present example. It is developed here using the data generated from Relative Weightage Matrices and following the procedure described in Article 3.4 of the preceding chapter.

RWTs of a state of nature (forming the column headings in the matrix) interact with the RWTs of all controllable variables (forming the new headings in the matrix) separately under each alternative. For instance, RWT of state of nature A will interact with the RWTs of controllable variables H - V separately under each alternative. RWT of A under SB is 6.5 and under SD 3.5 and that of H is 6.5 and 3.5 respectively. So the interaction of A with H under SB is (6.5 + 6.5) / 2 = 6.5 and under SD is (3.5 + 3.5) / 2 = 3.5. Similarly, interaction (IT) of A with I whose RWT for SB and SD are respectively 3.0 and 7.0, under SB is (6.5 + 3.0) / 2 = 4.75 and under SD is (3.5 + 7.0) / 2 = 5.25. In the same way the interactions of A with the other controllable variables are determined and tabulated in the first column of the Interaction Matrix. The procedure is continued to determine these interactions under all of the states of nature and the result is tabulated in Table 4.5 which is the Interaction Matrix.

Table 4.5 Interaction Matrix

	-	SN	A		В		С		D		E		F		G	
	ST		SB	SD												
CV		RWT	6.5	3.5	5.5	4.5	7.0	3.0	5.0	5.0	10	0.0	2.0	8.0	2.0	8.0
	SB	6.5	6.5		6.0		6.75		5.75		8.25		4.25		4.25	
H	SD	3.5		3.5		4.0		3.25		4.25		1.75		5.75		5.75
	SB	3.0	4.75		4.25		5.0		4.0		6.5		2.5		2.5	
1	SD	7.0		5.25		5.75		5.0		6.0		3.5		7.5		7.5
	SB	2.5	4.5		4.0		4.75		3.75		6.25		2.25		2.25	
	SD	7.5		5.5		6.0		5.25		6.25		3.75		7.75		7.75
	SB	7.0	6.75		6.25		7.0		6.0		8.5		4.5		4.5	
. K	SD	3.0		3.25		3.75		3.0		4.0		1.5		5.5		5.5
	SB	10	8.25		7.75		8.5		7.5		10		6.0		6.0	
L	SD	0.0		1.75		2.25		1.5		2.5		0.0		4.0		4.0
	SB	6.5	6.5		6.0		6.75		5.75		8.25		4.25		4.25	
PI	SD	3.5		3.5		4.0		3.25		4.25		2.75		5.75		5.75
	SB	10	8.25		7.75		8.5		7.5		10		6.0		6.0	
N	SD	0.0		1.75		2.25		1.5		2.5		0.0		4.0		4.0
	SB	6.0	6.25		5.75		6.5		5.5		8.0		4.0		4.0	
P	SD	4.0		3.75		4.25		3.5		4.5		2.0		6.0		6.0
0	SB	7.0	6.75		6.25		7.0		6.0		8.5		4.5		4.5	
. 4	SD	3.0		3.25		4.75		3.0		4.0		1.5		5.5		5.5
D	SB	7.0	6.75		6.25		7.0		6.0		8.5		4.5		4.5	
K	SD	3.0		3.25		4.75		3.0		4.0		1.5		5.5		5.5
	SB	7.5	7.0		6.50		7.25		6.25		8.75		4.75		4.75	
2	SD	2.5		3.0		3.5		2.75		3.75		1.25		5.25		5.25
T	SB	9.0	7.75		7.25		8.0		7.0		9.5		5.5		5.5	
	SD	1.0		2.25		2.75		2.0		3.0		0.5		4.5		4.5
11	SB	8.0	7.25		6.75		7.5		6.5		9.0		5.0		5.0	
.0	SD	2.0		2.75		3.25		2.5		3.5		1.0		5.0		5.0
M	SB	3.0	4.75		4.25		5.0		4.0		6.5		2.5		2.5	
V.	SD	7.0		5.25		5.75		5.0		6.0		3.5		7.5		7.5

.

4.6. IMPORTANCE RATING MATRIX

The importance rating is assigned to states of nature according to the procedure described in Article 3.5 of the preceding chapter. Assignment of the importance rating to the states of nature is the third step in the decision process.

The importance rating of each state of nature is furnished by determining the effect of each state of nature on each of the company objectives separately. For example, the effect of A on the economy objective is excellent, on profit is good, on growth is excellent, on goodwill is good, and on performance is fair. Then numerically substituting excellent by 4, good by 3, fair by 2 and so on, and adding all these numerical values, we get the numerical sum of 16 under state of nature A. This procedure is continued to determine the numerical sums under all of the states of nature. These numerical sums are then prorated from a total weightage of 100 and correspondingly an importance rating is assigned to each of the states of nature. The result is summarized in Table 4.6.

87

Table 4.6

	and the second sec						
A	В	С	D	E	F	G	Total
4	3	1	2	4	2	2	
3	3	1	3	3	3	3 .	
4	3	2	3	4	2	2	
3	4	2	2	3	2	2	
2	3	2	1	4	2	2	
16	16	8	11	18	11	11	91
17.58	17.58	8.79	12.09	19.78	12.09	12.09	100
17.58	17.58	8.79	12.09	19.78	12.09	12.09	100
	A 4 3 4 3 2 16 17.58 17.58	AB4333433423161617.5817.5817.5817.58	ABC4313314323422321616817.5817.588.7917.5817.588.79	ABCD43123313432334222321161681117.5817.588.7912.0917.5817.588.7912.09	ABCDE431243313343234342232321416168111817.5817.588.7912.0919.7817.5817.588.7912.0919.78	ABCDEF4312423313334323423422323421422321421616811181117.5817.588.7912.0919.7812.0917.5817.588.7912.0919.7812.09	ABCDEFG43124223313333432342234223222321422161681118111117.5817.588.7912.0919.7812.0912.0917.5817.588.7912.0919.7812.0912.09

4.7 EXPECTED VALUE MATRIX

The fourth step of the decision process is to develop an Expected Value Matrix which is presented in Table 4.7. The Expected Value Matrix is developed following the procedure described in Article 3.6 and brings together the states of nature, controllable variables, their interactions as tabulated in the Interaction Matrix, and the importance ratings of the states of nature as tabulated in the Importance Rating Matrix.

The expected values are calculated according to the formulae given in Article 3.6 of the preceding chapter. For instance, expected values of H are:

Expected Value (EV) for SB = $6.5 \times 17.58 + 6.0 \times 17.58 + 6.75 \times 8.79$ + $5.75 \times 12.09 + 8.25 \times 19.78 + 4.25 \times 12.09 = 614.55$

Table 4.7 Expected Value Matrix

I	R	17.58	17.58	8.79	12.09	19.78	12.09	12.09	EV
cv	SN	A	В	С	D	E	F	G	
	SB	6.5	6.0	6.75	5.75	8.25	4.25	4.25	614.55
Н	SD	3.5	4.0	3.25	4.25	1.75	5.75	5.75	385.45
	SB	4.75	4.25	5.0	4.0	6.5	2.5	2.5	439.205
I	SD	5.25	5.75	5.0	6.0	3.5	7.5	7.5	560.795
.1	SB	4.5	4.0	4.75	3.75	6.25	2.25	2.25	360.145
	SD	5.5	6.0	5.25	6.25	3.75	7.75	7.75	639.855
ĸ	SB	6.75	6.25	7.0	6.0	8.5	4.5	4.5	639.556
	SD	3.25	3.75	3.0	4.0	1.5	5.5	5.5	360.444
	SB	8.25	7.75	8.5	7.5	10	6.0	6.0	789.550
	SD	1.75	2.25	1.5	2.5	0.0	4.0	4.0	210.450
M	SB	6.5	6.0	6.75	5.75	8.25	4.25	4.25	614.55
	SD	3.5	4.0	3.25	4.25	1.75	5.75	5.75	385.45
N	SB	8.25	7.75	8.5	7.5	10	6.0	6.0	789.550
IN	SD	1.75	2.25	1.5	2.5	0.0	4.0	4.0	210.450
	SB	6.25	5.75	6.5	5.5	8.0	4.0	4.0	589.550
P	SD	3.75	4.25	3.5	4.5	2.0	6.0	6.0	410.450
	SB	6.75	6.25	7.0	6.0	8.5	4.5	4.5	639.556
Q	SD	3.25	3.75	3.0	4.0	1.5	5.5	5.5	360.444
D	SB	6.75	6.25	7.0	6.0	8.5	4.5	4.5	639.556
R	SD	3.25	3.75	3.0	4.0	1.5	5.5	5.5	360.444
C	SB	7.0	6.5	7.25	6.25	8.75	4.75	4.75	664.550
2	SD	3.0	3.5	2.75	3.75	1.25	5.25	5.25	335.450
Т	SB	7.75	7.25	8.0	7.0	9.5	5.5	5.5	739.550
	SD	2.25	2.75	2.0	3.0	0.5	4.5	4.5	260.450
U	SB	7.25	6.75	7.5	6.5	9.0	5.0	5.0	689.550
	SD	2.75	3.25	2.5	3.5	1.0	5.0	5.0	310.450
V	SB	4.75	4.25	5.0	4.0	6.5	2.5	2.5	439.205
	SD	5.25	5.75	5.0	6.0	3.5	7.5	7.5	560.795

89

Expected Value (EV) for SD =
$$3.5 \times 17.58 + 4.0 \times 17.58 + 3.25 \times 8.79$$

+ $4.25 \times 12.09 + 1.75 \times 19.78 + 5.75 \times 12.09 = 385.45$

Similarly, the expected values for all of the controllable variables are computed and presented in the last column of the Expected Value Matrix.

4.8. SELECTION OF SOFTWARE ACQUISITION MODE

EVs for SB and SD are added separately in Table 4.8:

Table 4.8

Summation of Expected Values

EV for SB	EV FOR SD
614.550	385.450
439.205	560.795
360.145	639.855
639.556	360.444
789.550	210.450
614.550	385.450
789.550	210.450
589.550	410.450
639.556	360.444
639.556	360.444
664.550	335.450
739.550	260.450
689.550	310.450
439.205	560.795
8648.623	5351.377

The Expected Value for 'Buy' strategy being higher, the mode of software acquisition selected as a result of the decision methodology is 'BUY PROPRIETARY SOFTWARE'.

CHAPTER V

CONCLUSIONS

The project report has presented a methodology to aid a construction contractor in deciding whether to buy or develop cost control software. Its use can help the contractor systematically investigate all the factors that influence cost / benefits associated with the decision.

The methodology is intended for use in virtually any type and size of construction organization, or on any size and type of construction project where high volume of data processing is involved.

Combination of methods of maximum application of software and minimum cost of its acquisition and application reduces data processing costs which, it is hoped, will increase profits of a construction organization.

The project has introduced the problem area, defined the variables, developed a model and worked out an example using the model. Essentially the model involves substitution of each variable by a numerical value and combining the numerical values following a rigorous methodology to obtain meaningful results. Although decision rules generally described in texts on decision making are used, there is no proof that the user will get the best possible decision. However, a user even when he does not follow the methodology rigorously as presented, can also benefit from it by considering the effect of the various controllable variables and states of nature, and taking them into consideration in making an intuitive decision. The quality of his intuitive decision will improve depending on the extent to which he considers the influence of the controllable variables on the 'buy' or 'develop' decision under the changes in the states of nature.

Further research could deal with other variables by investigating the production / down time ratio which is a function of statistical records and life expectancy of software. The methodology presented here helps make a one-shot decision to buy or develop software. Further research could develop a methodology whereby a program of gradual acquisition of software modules is compared against a software development program.

This methodology has assumed that once the contractor acquires software, its use is solely intended for the contractor's organization. Further research could investigate the benefits should the contractor's organization offer its software to others. 93

REFERENCES

- Ahuja, H.N., Construction Performance Control by Networks. St. John's, Nfld., Canada, January 1976.
- 2. -----, <u>Building Construction Organization</u>, St. John's, Nfld., Canada.
- <u>Management Control System Evaluation</u>, Volume I, St. John's, Nfld., Canada, June 1975.
- 4. Bonny, J.B. and Frein, J.P., <u>Handbook of Construction Management</u> and Organization, Idaho, USA, 1973.
- 5. Borch, K., Risk and Uncertainty, St. Martin's Press, New York, 1968.
- 6. Butler, R.S., <u>A Heuristic Method of Equipment Acquisitioning for</u> <u>Maximum Profit</u>.
- Clarke, T.E., <u>Decision-Making in Technologically Based</u> <u>Organizations</u>, Ministry of State, Ottawa, Canada, January 1974.
- Datapro Research Corporation, <u>Datapro 70, Buyer's Bible</u>, Delran, New Jersey, 1977.
- 9. Department of Public Works, <u>Handbook for Computing Network-Draft</u> Two, Canada, 1974.
- Eden, Collin and Harris, J., <u>Management Decision and Decision</u> <u>Analysis</u>, The Macmillan Press Ltd., London, 1975.
- Evans, R.W., <u>The EDP Guide</u>, Volume 3-I, R.W. Evans Associates Ltd., Dec. 1976.
- 12. Fabricky, W.J. and Theusen, G.J., <u>Economic Decision Analysis</u>, Prentice Hall Inc., Englewood Cliffs, New Jersey, 1974.
- Glueck, William F., <u>Business Policy-Strategy Formation and</u> Management Action, 1976.
- Handa, V.K., Roe, P.H. and Soulis, G.N., <u>The Discipline of Design</u>, University of Waterloo, 1969.
- 15. Hedges, Bob. A. and Mehr, Robert J., <u>Risk Management Concepts and</u> Application, Irwin-Dorsey Ltd., Georgetown, Ont. 1974.

- 16. IBM, PMS/IV Manual.
- 17. Kaufman, A., <u>The Science of Decision Making</u>, McGraw-Hill Book Company, New York, 1968.
- 18. Keeney, R.L. and Raiffa, R., <u>Decision with Multiple Objectives</u>, John Wiley and Sons Inc., New York, 1976.
- 19. May, Francis B., <u>Introduction to Games of Strategy</u>, Allyn and Bacon Inc., Boston, 1970.
- 20. Mc'Donnel Douglas Automation Company, MSCS Manual.
- 21. Menger, Gunter, <u>Economic Decision Making Basic Concepts and</u> <u>Model</u>, University of Heidelberg.
- 22. Moore, Peter G., <u>Risk in Business Decision</u>, Longman Group Ltd., London, 1972.
- 23. Myers, W., <u>The Need for Software Engineering</u>, Computer, February, 1978.
- 24. -----, <u>Software Productivity</u>, <u>Quality and Cost: All Up</u>, Computer, Dec., 1977.
- 25. Peterman, G.G., <u>Construction Cost Accounting</u>, Tampa, Arizona, USA, 1974.
- 26. PMI, Computer Software Survey, Drexel Hill, Pa., 1975.
- 27. Raiffa, Howard, <u>Decision Analysis-Introductory Lecture on Choices</u> <u>Under Uncertainty</u>, Addison-Wesley, USA, 1968.
- Roe, P.H., Soulis, G.N. and Handa, V.K., <u>The Discipline of Design</u>, University of Waterloo, 1969.
- 29. Szalwinski, Chris. M., <u>Specialized Computer Program Development-</u> Expectation and Costs, Ontario, Canada.
- 30. Teshmont Consultants Ltd., <u>Typical Projects Control Reports</u>, Gull Island Transmission Facilities.
- 31. Tummala, Rao V.M., <u>Decision Analysis with Business Applications</u>, Intext Educational Publishers, N.Y., 1973.
- 32. Whitehouse, Gary E., <u>Systems Analysis and Design Using Network</u> <u>Techniques</u>, Prentice-Hall, Inc., Englewood Cliffs, N.J., USA, 1973.

APPENDIX A

Information requirements for

Cost Control Objectives

QUESTIONS	INFORMATION REQUIREMENT
SCHEDULE	SCHEDULE
Will the project be finished on target?	Project Schedule Deadline
Is each contractor/subcontractor meeting his schedule target?	
Is each subcontractor meeting the interface dates?	Contractors Schedule Targets
Is material procurement being expected according to plan?	Coordination of Contractors Work
Is each phase of project - preconstruction, construction and commissioning meeting the project target?	Control Over Expediting Monitoring of Project Phases
Are contract packages being worked on according to plan?	Control Over Tender Packages
RESOURCES	RESOURCES
Are manhours expended within the estimate?	Control Manhour Resources
Is the change in manhour require- ment gradual?	Manpower Leveling
Is the project so planned that work will not stop due to shortage of resources?	Physical Feasibility of Schedule
APPENDIX A (continued)

QUESTIONS	INFORMATION REQUIREMENT
BUDGET AND COST CONTROL	BUDGET AND COST CONTROL
Does the bid price include provision for contingencies, escalation, overhead and mark-up?	Control Over Revisions To Estimates Control Over Escalation and Contingency
Do the change orders include provision for contingencies, escalation, overhead and mark- up?	Control over design engineering and engineering management costs. Control Over Appropriations
What is the deviation of actual cost from estimated cost?	Control Over Progress Payments
Is the project cost after periodical revisions of estimates as per original estimate?	Control Over Change Orders
Are the appropriations out of contingencies and excalation allowances as per estimate?	Control Over Capital Disbursements
Are design engineering and engineering management costs as per estimate?	Control over owner furnished material
Are the total appropriations within the project estimated cost?	Project completion within authorized budget
Do progress claim certifications represent the closest approximation of the cost for work done to date?	Contract completion within cost targets
Is the cost of all change orders included in the revised estimate?	Analysis of Unit Prices
Is the quantity of materials re- quisitioned as per bill of materials?	Obtainable by User Modification
Are material losses and wastage within reasonable limits?	
Is the cost of owner-furnished materials as per estimate?	

APPENDIX A (continued)

OUESTIONS	INFORMATION REQUIREMENT
Is equipment cost per unit of work	Forecasting Cost Trend
as per plan?	
Is equipment being fully utilized?	
Is each piece of equipment economical?	
Is each section of the organization executing the project within budget?	
Will each contract be completed within its cost target?	
Is productivity for various work classifications as per estimate?	
What is the production cost in each shop/plant?	
Have all reimbursable costs been claimed?	
Is the overhead cost as per plan?	Costing by Facility
In case of work not covered by contract, is documentation complete?	
Is the forecast for final cost as per estimate?	
Does the trend show overrun or underrun?	
What is the capital cost for each facility?	
CASH FLOW	CASH FLOW
What is the cash flow forecast?	Cash Flow Forecasting
Do the budgets conform with the cash flow forecast?	
Are the financing costs kept to the minimum?	

APPENDIX B. GENERAL PROGRAMS

PRO	GRAM NAME	APPLICATION	VENDOR	COMPUTER	REMARKS
1.	PMS/IV Project Management				A large scale project scheduling and control package designed for the IBM/370 Computer System. The user selects the type of processing required from the first
a.	PMS Network Processor	CPM/Precedence/PERT (without probability)	IBM -	IBM/360,370,0S	three processors and produces the relevant reports using the fourth processor. Modi- fication is possible.
b.	PMS Resource Allocation Processor	Resource Allocation			
c.	PMS Cost Processor	Cost Analysis	~		
d.	PMS Report Processor	Report Generation			
2.	PROJACSProject Analysis and Control System	CPM, Precedence resource allocation, cost control	IBM	IBM/360,370,0S/ VSIBM DOS/VS	It has a main processor which calls upon three other processors, Network pre- paration, Resource Allocation and Cost evaluation. It can store standard networks which can be used for preparing a project network. It also prints precedence diagrams.
3.	PCSProject Control System	Network Processing, Resource Allocation,	IBM	IBM/1130 IBM/360,370,05,D05	Similar to PMS; however, somewhat simple in concept.

APPENDIX B (CONTINUED)

PRC	GRAM NAME	APPLICATION	VENDOR	COMPUTER .	REMARKS
4.	CMCSConstruction Management Control System	CPM, Cost Analysis, Material expediting financial analysis	U.S. Public Building Service	IBM/1130	An integrated system for schedule reports, cost reports, financial reports, purchase order control and progress billing.
5.	PMCSProject Management and Control Systems	Planning, Scheduling, and controlling large complex projects	Multiple Access General Computer Corporation	CDC/6600	Processes and reports both time and cost information; it handles up to 1500 activities and 1800 events.
6.	Project/Costing System	Time/Cost Analysis and employee Per- formance Reporting	Multiple Access General Computer Corporation	CDC/6600	Produces up-to-date information on the progress and cost of a project, manpower efficiency can be monitored.
7.	MSCSManagement Scheduling and Control System	CPM/precedence Scheduling and Resource Leveling	McDonnel Douglas Automation Co, 500 Jefferson Bldg. Houston, Texas 77002	IBM/360/0S	A multiproject system for scheduling and resource leveling, especially tailored report formats possible, costing and estimating probabilities.
8.	PERT/TIME	Planning, monitoring, and evaluating the status of a project	Cybervet Services	CDC/6000 and Cyber 70	It utilizes a time oriented network structure. Handles up to 8000 activities and 6000 events.
9.	PROMIS	Network processing and analysis	(BBM) Burroughs Business Machines	Burroughs Computers	Programmed in COBOL. Consists of three modules - time, cost and resources.
10. a. b.	PACIFIC/370 Estimating Module Work Measurement and Billing Module	Estimating Work Measurement and Billing Cost Control	IBM	IBM/370, DOS	An integrated system for estimating and billing for progress payments on unit price contracts and cost control.

APPENDIX B (CONTINUED)

PROG	RAM NAME	APPLICATION	VENDOR	COMPUTER	REMARKS
11.	Project-II	CPM/Precedence, resource allocation, cash flow, time and cost control	Project Software and Development Inc.	IBM/370,0S	Problem oriented language for project managers. Scheduling control cost and resource management problems.
12.	CPM/PROMOCOM	Network processing, cost analysis	General Electric	GE/200	Both "Normal" and "Crash" activities, times and costs can be input, to obtain a time-cost tradeoff.
13.	(CPMIS) CPM Based Management Infor- mation System	CPM based multi project time and cost management system	Glenn L. White	370/125,0S,DOS	It provides multiple reporting, time and cost scheduling, trouble shooting, resource analysis, material and equipment acquisition scheduling, requisition and payment adminis- tration, budget analysis. It can produce in excess of 200 different reports.
14.	CPM/RPSM (CPM/ Resource Planning and Scheduling Method	For project manage- ment	K & H Computer System Inc.	IBM 360/370,0S,DOS CDC 3300/3500 CDC 6600 ICL 1900 Univac 1108	Compute critical path. Resource allocati To assist the project manager in planning, directing, staffing, scheduling, analysing and controlling the project advantages.
15.	(MPM) Multi-Project Management System	CPM based program to manage schedule dependent resources and costs for many projects	General Electric	Honeywell 6080	For top management; to control large projects and to meet company goal.
16.	PROCON 3	In project planning and control	Craig & Nichols	IBM 360/370,0S,DOS	For data processing design engineering, plant maintenance, product development, sales campaign, financial audits, consulting assign ments, contract proposals
17.	PERT 6	Planning & monitoring single or multiple projects	Dynamic Solutions Inc.	. DEC System 10	To provide project managers report on scheduling, resources, costs and responsibili multilevel reporting system. Can handle up a 100 projects with maximum of 2000 activities/ project.

.

-

PROG	RAM NAME	APPLICATION	VENDOR	COMPUTER	REMARKS
18.	PRIDE	For design, development	M. Bryce & Associates		It has: 1. Planning features which include planning simple and complex projects; planning check list; estimating guidelines; optional planning hierarchy; automatic schedule generation; resource availability analysis; network analysis with graphic plotter or printer out; project task dependencies and priorities
					 Control features: Employee assignment report by week; easy turn around time sheet forward impact scheduling; completion date and cost forecasting; resource forecasts; trend graph, bar charts at all levels
19.	PCM (Project Cost Model)	For financial control in the capital in- vestment and con- struction industry	Project Software Ltd.	IBM 360/370	It uses a simple model of a project in term of tasks, resources, money and time. Estimating, planning, cost control, decisio making. Forecasting, cash-flow control, resource planning, work schedule.
20.	(SPREDX) Project Scheduling/Resource Analysis	For project scheduling and resource allo- cation CPM based	Computer Science Corp.	Univac 1108 65K Computer System	It can process network, resource allocation It can do precedence diagramming and can process cost of activities.
21.	Space-Bank	Text & file manipu- lation for the varied purposes of personnel/ student records and inventory accounting files	Spectrum Inc.	8.4 K Storage computer	It can be customised for specific purposes. It has limitless report styles, multiple invento system, financial planning, comprehensive personnel system, safety records, payroll system data modification.

.

.

APPENDIX C. SPECIAL PROGRAMS

PROGRAM NAME	APPLICATION	VENDOR	COMPUTER	REMARKS
 (COPES) Cost planning and Evaluation System 	Cost control and reporting to manage- ment on both project and functional basis	McDonnel Douglas Automation Company	IEM 370/135,0S	COBOL-BAC,160K It can handle budgets, estimates, commitments forecasts, and actual costs incurred, time orientation to the cost types. Cost subdivisions are Labor, Material, Equipment, Subcontract, Indirect.
2. Remote Terminal Cost Estimating	Payroll, Accounting and estimating	Civil Engineering Sys. Lab., Univ. of Illinois, Urbana Champaign	Burrough B55000 computer high speed printer	For lump-sum, unit price and resource enumerating and costing. ALGOL programming language.
3. Construction Estimating	Cost estimate of construction projects for general and subcontractors	IBM	IBM 1130 Disk Monitor sys. Version 2, 1132 printer	Estimates are made in accordance with uniform system of 16 divisions. Programmed in Fortran- under (PLAN) problem language analyzer. It can accommodate 176 cost categories. Over 800 cost codes, 8K,1442 Card Read Punch. Take off, specification, cost data.
4. Inventory Control	Inventory Control	General Electric	G.E. Mark II	Serves as generalized order processing and finished inventory control system.
5. CPM/Project Monitor and Control System	CPM Analysis	General Electric	G.E. 400	Creates network schedules and allows updating as the project progresses.
6. PERT/Cost	Cost Analysis	General Electric	G.E. 600	Produces cóst control reports based on PERT time data.
7. Capital Equipment Investment Analysis	Analysis of alterna- tives to purchasing new equipment	General Electric	G.E. Mark II	Using Monte Carlo simulation, this program simulates the cash flow resulting from different production alternatives.

APPENDIX C (CONTINUED)

PR	OGRAM NAME	APPLICATION	VENDOR	COMPUTER	REMARKS
8.	General Purpose Simulation System GASP IV	Simulation	IBM	IBM 370,0S CDC 3200,6500,6600, Burrough 5500,6700 PDP10,Xerox Sigma 9, GE635, XDS Sigma 7, Honeywell 600,635, 3200,6000	Problem-oriented language, based on queing theory, generates statistics for queues and facilities. GASP IV Subprogram provides System state and event control, statistical data collection; graphical plotting, histograph; random variate generation; information storage and retrieval.
9.	Linear .Programming System/370	Linear programming (Optimization)	IBM	IBM/370,0S	Use the simplex method of linear programming.
10.	FASNET (Fast Network)	For fast network processing	University Computing Company		It can handle network with up to 2500 activities and 1000 events and based on CPM.Apath trace feature, multiple loop detector.
11.	Equipment management System	For equipment manage- ment and control system	Construction information system	IBM 360/370.05,DOS	It provides equipment inventory and cost accounting; equipment billing; equipment budgetary control system (rental and actual) productivity.
12.	EZPERT (easy PERT)	For plotting Ganlt charts, time-scaled networks. Cost/ Resource graphs from PMS, MSCS Project II	Systonetics Inc.	IBM 360/370, Medium to large digital computers	It produces automatically graphical display of Ganlt barcharts, cost manpower resource graphs, task charts (an aid to developing the logic of a project network).
13.	(SPREDP) Precedence Network Diagram Plotting	Precedence network Plotter	Computer Science Corp. (CSC)	Univac 1180, 65K Computer System and calcomp drum plotter	To prepare CPM precedence network diagrams fo scheduling, lays out and produces a finished netwo diagram showing sequential relationship between activities with description, duration and label.
14.	(PROMIS/RAM) Project Oriented Management Informa- tion System/Resource Allocation Module	To aid in project man- agement of resources by profiling and or scheduling	Burroughs Corpor- ation	B2500/2700/3700 3500/6700/7700	Resource allocation, resource profile, resour utilization reports. Functionally related to PROMIS/TIME & COST modules. Time module is the on prerequisite for it.

.

PPENDIX C (CONTINUED) ROGRAM NAME	APPLICATION	VENDOR	COMPUTER ~	REMARKS
5. (Q-GERT) QUEUEING- Graphical Evaluatic and review techniqu	A network simulation on language for queueing ue problem and logistics	Pritsker & Ass. Inc.		It models and analyses networks of queues. It draws probability, statistics and histograms of Q-nodes
 T/A Series CPM Programs 	Network based manage- ment information system	Time/Audit Ltd.	IBM 155/370	Network scheduling by I-J oriented activity. Resources are handled by pacemaker.
7. CAS/CPA/FMR	Accounting	Boole & Babbage, Inc.	IBM 360/370, OS,VSI SVS,MVS	Billing, accounting, performance and management reporting.
8. CONTROL/IMS	Accounting	Boole & Babbage, Inc.	н	Transaction accounting, performance reporting, terminal accounting record, program accounting records
9. JASPER	Accounting	Datachron Corporation	11	Job accounting, billing, computer performance analysis reports, graphic displays.
O. GRASP	Accounting	SDI		Accounting, billing, and performance measurement

APPENDIX D: UNCERTAINTY CURVES

Improvement of actual man months over forecast man months on three Boeing software projects as a result of adopting modern programming practices.

¹W. Myers, <u>The Need for Software Engineering</u>, Computer, February, 1978.

Forecast cost distribution shifts to earlier phases when modem programming practices are employed (average of three projects).

The correlationships between the modern programming practices and the summation of the twelve software problems is stronger in the theoretical case than in the actual case by about two to one.

. APPENDIX E (PART I): Questions and Reports for Contractual Needs

QUESTION	ESSENTIAL	BREAKDOWN	REPORTS*
SCHEDULING			
Are all milestone targets being accomplished?	Milestone Schedule Completion/ Milestone Actual Completion	Milestones	ASJ
Are all activities performed on schedule?	Activity Schedule Completion/	Activity	AS ₂
If not, which activity is causing slippage?	Activity Actual Completion/ Slippage		٢
MANHOURS			
Are manhours utilized within the budget?	Revised Budget/Actual to Date/ Forecast to Complete/Manhours	Charge number	MH
Is productivity for various work classifi- cations as per budget?	 Estimated/This Period/To Date/ Manhour Unit Cost 	Work classi- fication	MH2
	2. Qunatity of Work/Manhours	Cost code	
MATERIALS			
Is the quantity of materials requisitioned as per bill of materials?	Estimated, Required Quantity/ Description/Unit Cost/Amount	Individual material	МТ

QUESTION	ESSENTIAL	BREAKDOWN	REPORTS*
Is material wastage within reasonable limits?	Actual/Budget/Forecast to Complete/Wastage	Individual Material	MT2
Are materials being procured on time?	Description/Quantity/Expedite date/Delivery date	Individual Material	MT3
EQUIPMENT			
Is equipment cost per unit of work as per plan?	Estimated/This Period/To date/ Equipment Unit Cost	Work classi- faction cost code	EQ
Is equipment being fully utilized?	Last Day of Use on the Present Project/Time Required to Repair/ Time Required to Deliver/Date When Required on the Project	Individual equipment	EQ2
Is each piece of equipment economical?	 Information for EQ₁ and EQ₂ Total Cost per Changes Repairs/Maintenance/Insurance & Taxes/License/Rental Rate/ This month/To Date 	Individual equipment	EQ3

QUESTION	ESSENTIAL	BREAKDOWN	REPORTS*
SUBCONTRACTOR			
Will each subcontract be finished within its cost target?	Revised Budget/Actual Cost to Date/ Forecast to Complete Cost	Charge number	scl
What will total cost of subcontract be with expected changes & alteration?	Budget/Change Orders/Revised Budget	Charge number/ Work classifi- cation cost code	sc ₂
Do subcontract payments closely approximate actual progress on the subcontract?	Actual cost to date/Progress claim to date	Charge number	SC3
INDIRECT COST			
What is the production cost in each shop/ plant?	 Estimated/This period/To date manhour unit cost 	Charge number/ Work classifi- cation cost code	ICJ
	2. Estimated/This Date/To Date Equipment Unit Cost		
	 Actual/Budget/Forecast to Complete Cost/Quantity 		
Are field overhead costs within budget?	Actual/Budget/Forecast to Complete Cost	Charge number/ Work classifi- cation cost code	

QUESTION	ESSENTIAL	BREAKDOWN	REPORTS*
TOTAL COST			
Will the contract be completed within budget?	Revised Budget/Forecast to Complete Cost	Charge number	тс
What is the budget including all change orders?	Budget/Change Orders/Revised Budget	Charge number/ Work Classifi- cation cost code	TC ₂
What and where are deviations of actual cost from budgeted cost?	Revised Budget/Forecast to Complete Cost/Overrun and Underrun	Same as above	TC3
What is the deviation of present budget from the original budget?	Budget/Revised Budget	Charge number	TC4
Are commitments included in the forecast to complete cost?	Commitment to Date/Forecast to Complete Cost	Charge number	TC ₅
PROGRESS PAYMENT			
Do progress payments correspond to the value of work done?	1. Value of Work Complete to Date/ Total Amount Claimed to Date	Charge number/ Work	PPJ

QUESTION	ESSENTIAL	BREAKDOWN	REPORTS*
	 Revised Budget/Progress Claimed to Date 	classification cost code	
CASHFLOW			
Does the availability of funds match the pace of progress?	Revenue/Expenditure	Charge number	CF1
Are financing costs kept to a minimum?	Estimated/Actual Outflow/Interest Cost	Charge number	CF ₂
CHANGE ORDER			
Do the change orders cover the direct costs and include provisions for contingencies, escalation, overhead and mark-up?	Change Order Cost Estimate	Charge number/ Work classifi- cation cost code	col

QUESTION	ESSENTIAL	BREAKDOWN	REPORTS*
OVERHEAD COST Is the cost of office overhead as per plan?	 Standard Rates/Carrying Accounts Actual/Budget/Forecast to Complete Cost 	Charge number/ Work classifi- cation cost code	0C1

Activity Status Report (AS1)

OPROSPA-		1001 1001	3F1A 0551	64 A4D	DM3 363 MANUTA	NETWIN	K Stin ie	T						51101 51101					еUч	DATE	26144
LEVEL	TALL	3															11662	7 04	*******	היימ)
PREM	. 6 SUC	.r.0	CYCLE C006	0	1C 2553C	11VITY(10		1	TIME	(1)	ATES	t d	12 SLA(F	n [x) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	r c c (1	14 55 45 7. DATE	1:)) ''.
11 12 13 14 23001 23021 24030 23020 22013 20002 20002 5TAP1 100002 10001 15	11 12 14 14 15 142 16 16 16 16 20 16 20 16 20 10 20	(B)	I I I F F T A A A A A A A A A A A A A C C	INTER INTER	AC = \$ 3() AC = \$ 2() AC = \$ 4() AC = \$ 7() A	a chal cont a be cont a be con		, , , , , , , , , , , , , , , , , , ,						45.5 . 12.5 . .0 . .12.5 .	C C C C C C C C C C C C C C C C C C C	1 CEDA A JIN A A JI	7 14400 7 12Ja 7 24550 7 2190 9 9757 9 1914 9 1914 7 1440 9 1914 7 7455 7 1440 9 1914 7 7455 7 1440 9 1914 7 7455 7 1915 9 9755 7 9775 7 9755 7 9775 7 97				
PROGHAN(PPCJECT(1)	PR AC	ELIMIN TUAL (AFY CON ONSTRUC	ISTRUCTI TICN NE	CN NETWO	ACTIVIT	Y SCI	HE DUL CHAN	E I IS	TING UNNEL	(AS CH BU			SOR	TED B	RUN Y DEPT,	DATE	PAGE O&FEB START (1 70 (3)	
PRED. EVENT	I' SUCC. EVENT	CYCL	£	AC DFSC	TIVITY RIPTION		PRI	SLAC	K (5) CHE D	041	DURAT I	LONS		START EARLY	DATES	D	COMPLE EARLY	TION	CHE D	DEPT	
	51020	S	STAR T	(2) DES	SIG"		24	. 2	26.9	(0.00	0.	00	01JA:17C	ACIJA	170	01 JANIO	ACI	JA 170		-
	51010	5	STAFT	III SUR	VE Y		16	. 9	16.6	(0.00	0.	00	OIJAN7C	ACIJA	N70	OIJAN70	401	J4N70		-
	FACEL	1	ECUIP	START	INTERF	468	16	.9	16.8		0.00	э.	.00	26FER71	26FE	871	26FE871	26	FE#71		-
	EACE?	1	FOUIP	END IT	TERFACE		16	.9	16.8		0.00	0.	.00	21 MAY 75	21 44	¥75	2144 975	21	MAY 75		•
1 320	FACE1	DH 10 AT 00 0	PRELI	MINARY 1 1	DESIGN	START START START START	26	END END END	26.8 ALT	CCDE	00.00 С N О С N О С N О	O. ALT H ALT A ALT H	00 FS FS ES	01JAN7C SPEC1F1ED SPEC1F1ED SPEC1F1ED		RD PR RD PR RD PR	I TOEC TO	USED USED USED	DEC 7 0	DN	-
\$1010	FACEL PRIM RES	CW SV AT	SURVE	100 50	FROM	START. 12.00	le TO	END	16.8 ALT	6 C 0 D F	0. CO 0 NO 0 NO	ALT F	.00 RES RES	OIJAN7C SPECIFIED SPECIFIED		NTO	26FEB71 1M PES 14 PES	26 USED USED	FE871	DN	-
FACEL	PUNEO PRIM RES	DW 1C AT LK	DETAI	L DE ST	GN ETUNA	START 52.60	7: TO	E	73.0 ALT	7 CODE	0.00 0 ND 0 ND	O. ALT F	.00 RES RES	26FEB71 SPECIFIED SPECIFIED	26FE	E71 RD PR	BOJLN72	USED USED	JUN72	DN	-

APPENDIX E (part II): Sample Reports

1			AL I	IVITY BAR C	HART (BC.)			PAGE 1
PHJJILI	76147 76145	NK DESCH. DESCH-SUBNETUT		·		BRIDGEPR SUBNETOI		3	N DATE 19JUNT
PREU	(4) SULC	1 A - 42	IVITY LUMPLET		**********	· · · · · · · · · · · · · · · · · · ·		*********	. 6 0
Eveni	LVENI	1 * - A.	IVITY DUALTIU		5	F - AC	TIVITY FLOAT		I FLOAT DEPT
A A	V2	1 .							1
AL	AL	1		-			•		1 .0 OC
AL	i.	1 .							1 2.0 UW
A2	52	1 .							I 22.0 HX
AZ	32		•	•			•		1 22.0 HX
C.	52	1	•				•	٠	1 22.0 HK
Ce	UZ	1 .							1 72.0 00
32	U2	1 .							1 22.0 HX
42	02		•		۰	•			1 22.0 HA
12	12	I				٠			1 22.0 DC
12	32	1 .						•	1 22.0 00
32	U2	1 .							1 .0 .0
75	V2		•	•					1 28.0 HE
02	AA	1	•			•	•		1 .0 HE
V é	24	ILLECTICCCCCCCCC		receeeee		•			1 22.0 HE
#2	32	1		.200		0000000000000		0	1 .0 HE
# 2 H	A2	1 .			*********	********	FFFFFFFF		1 10.0 00
22	12	1 .					FFFFFFFFFFFFFFFF		I 10.0 FW
		6)	ZIMARUY	0875824	ZUAPR59	0244459	1048464 Se	4A Y69	
DROGRAM	NETH 2) SUBRET	JAK DESCR. DESCR.SUBNETOL	ALI	IALLA SCHEDU	JLE BAR CHAR	BRIDGE SUPPLET	P2	3	PUN DATE 19JU
-	g 300	ac 30 1 0 300 / 1 0 3				and the second			
PRED	SUCC (4) EVENT	i A:				<i>[-]</i>			
*******			TIVITY SPAN	**********	5	- AC	TIVITY SCHEDUL	ED PERIOD	T SCHED.6 (
		1	TIVITY SPAN		5	6-, 34 - 6	TIVITY SCHEROLI	ED PERIOD	T SCHED. () T TINISH DEPT
AA	V2		TIVITY SPAN		٦.	6-, 24 - 0	TIVITY SCHERULI	ED PERIOD	1 SCHED. 1 FINISH DEPT 1 24FE969 DC
A A A 1 A 2	V2 A2		TIVITY SPAN		3	ε. 34 - 4	TIVITY SCHEBUL	ED PERIOD	1 SCHED. 1 FINISH DEPI 1 24FE869 DC 1 06SEP68 DW 1 155EP68 DW
AA A1 A2 A2	V 2 A 2 C 2 U 2		. TI VI TY SPAN		چ	ε. 34 - 4	TIVITY SCHEDUL	ED PERIOD	I SCHED. I FINISH DEPI I 24FE869 OC I 06SEP68 DW I 17SEP68 HE I 125EP68 HE
AA A1 A2 A2 A2	V2 A2 C2 U2 U2		. TI VI TY SPAN		چ	δ	TIVITY SCHEDULT	ED PERIOD	I SCHED. I FINISH DEPI I 24FE969 OC I 06SEP68 DW I 17SFP68 HE I 12SEP68 HX I 26FEP69 HX
AA A1 A2 A2 A2 A2 A2	V2 A2 C2 U2 U2 U2 U2		. TI VI TY SPAN 		٦	δ	TIVITY SCHEDULT	ED PERIOD	1 SCHED-6 (1 TINISH DEPI 1 24F1969 DC 1 06SEP68 DW 1 17SFP68 HE 1 12SEP68 HX 1 24F168 HX 1 24F168 HX
AA A1 A2 A2 A2 A2 A2 A2 A2 A2 L2	V 2 A 2 C 2 U 2 U 2 U 2 U 2 U 2 C 2		. TI VI TY SPAN		5	δ- δ - δ	TIVITY SCHEDULT	ED PERIOD	1 SCHED. 1 TINISH DEPI 1 24F1969 OC 1 06SEP68 DW 1 17SFP68 HE 1 12SEP68 HX 1 24F1969 HX 1 24F1969 HX 1 24F1768 HX 1 24F1768 HX 1 24F1768 HX
A A A 1 A 2 A 2 A 2 A 2 L 2 C 2	V2 A2 U2 U2 U2 U2 U2 U2 U2		. TI VI TY SPAN		5	δ δ δ δ 	TIVITY SCHEDUL	ED PERIOD	1 SCHED. 1 TINISH DEPI 1 24F1869 OC 1 06SEP68 DW 1 17SFP68 HE 1 12SEP68 HX 1 24EP68 HX 1 24EP68 HX 1 24EF68 HX 1 24EF68 HX 1 24FE768 HX 1 25FE768 HX 1 24FE768 HX 1 24FE768 HX 1 25FE768 HX 1 24FE768 HX 1 25FE768 HX 1 24FE768 HX 1 25FE768 HX 1 24FE768 HX 1 25FE768 HX 1 25FF768 HX 1 25FF7778 HX 1 25F7778 HX
AA A1 A2 A2 A2 A2 C2 C2 D2	V2 A2 U2 U2 U2 U2 U2 U2 U2 U2		. TI VI TY SPAN		3	δ δ δ 	TIVITY SCHEDUL	ED PERIOD	I SCHED. I TINISH DEPI I 24F1869 OC I 06SEP68 DW I 17SFP68 HE I 12SEP68 HX I 24F168 HX I 24F168 HX I 24F168 HX I 24F168 HX I 24F168 HX I 24F168 HX I 27GCT68 HE I 27GCT65 DC I 06JAN69 HX
AA A1 A2 A2 A2 A2 A2 L2 C2 D2 D2 C2	V2 A2 C2 D2 D2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2		. TI VI TY SPAN		٣	δ- , δ - ,	TIVITY SCHEDULI	ED PERIOD	I SCHED. I TINISH DEPI I 24F1869 ПС I 065EP68 DW I 175FP68 HE I 225P68 HX I 24F1668 HX I 24F1668 HX I 24F1668 HX I 24F1668 HX I 24F1668 HX I 24F1668 HX I 27GCT65 DC I 06JAA69 HX I 27JAA69 HX I 27JAA69 HX
AA AI A2 A2 A2 A2 C2 C2 D2 C2 D2 C2 L2	V2 A2 C2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2		. TI VI TY SPAN		3	δ- Α - Δ 	TIVITY SCHEPUL	ED PERIOD	I SCHED. I TINISH DEPI I 26F1869 ПС I 065EP68 DW I 175FP68 HE I 226F1869 HX I 275C769 HX I 24ПСТ69 HX I 27ПСТ69 HX I 27ПСТ69 HX I 27ПСТ69 HX I 06JAN69 HX I 7JJAN69 HX I 06JAN69 HX
AA AI A2 A2 A2 A2 C2 C2 D2 C2 C2 D2 C2 L2 I2 I2	V2 A2 G2 D2 D2 D2 G2 U2 U2 U2 U2 U2 J2 J2 J2 J2		. TI VI TY SPAN		٢	δ- δ - δ - δ - δ - δ - δ - δ - δ - δ - δ	TIVITY SCHEDUL	ED PERIOD	I SCHED. I TINISH DEPI I TINISH DEPI I 26F1869 DC I 065EP68 DW I 175FP68 HE I 275FP68 HX I 26F1P68 HX I 26F1P68 HX I 26F1P68 HX I 270CT68 HE I 270CT68 HE I 270CT65 DC I 06JAN69 HX I 27JAN69 HX I 06CV68 DC I 06DEC69 CC
AA AI A2 A2 A2 A2 C2 C2 D2 C2 D2 C2 L2 I2 I2 J2	V2 A2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2		. TI VI TY SPAN		٢	δ	TIVITY SCHEDUL	ED PERIOD	I SCHED. I TINISH DEPT I TINISH DEPT I 24FIBA9 OC I 06SEP68 DW I 17SFP68 HE I 225EP68 HX I 240CT68 HX I 240CT68 HX I 27JAN69 HX I 27JAN69 HX I 06JA69 HX I 06JA69 HX I 06JA69 CC I 060FI668 OC I 060FI668 CC
AA AI A2 A2 A2 A2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 C2 D2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	V2 A2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2		. TI VI TY SPAN		3	ν - ΑC	TIVITY SCHEDUL	EO PERIOD	I SCHED. I FINISH DEPI I FINISH DEPI I 24F1969 DC I 06SEP68 DW I 17SEP68 HE I 27SEP68 HX I 24DCT68 HX I 24DCT68 HX I 24DCT68 HX I 09CCT69 HE I 27DAN69 HX I 07ACV98 DC I 06DF68 CC I 06DF68 CC I 14FFR69 HE
AA AI A2 A2 A2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 D2 C2 C2 D2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	V2 A2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2		. TI VI TY SPAN		3	δ- ΑC	TIVITY SCHEDUL	ED PERIOD	I SCHED. I TINISH DEPI I TINISH DEPI I 24FI969 OC I 06SEP68 DW I 17SFP68 HE I 27SFP68 HX I 24FI969 HX I 24GCT69 HX I 24GCT69 HX I 09CCT69 HX I 09CCT69 HX I 09CCT69 HX I 09CCT69 HX I 09CCT69 HX I 09CCT69 CC I 06DFC68 CC I 06DFC69 CC I 14FFR69 HE I 17FF869 HE I 17FF869 HE
AA AI A2 A2 A2 C2 C2 C2 C2 C2 C2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2	V2 A2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2		. TI VI TY SPAN		3	δ - ΔC	TIVITY SCHEDUL	ED PERIOD	I SCHED. I TINISH DEPI I TINISH DEPI I 24F1969 OC I 06SEP68 DW I 17SFP68 HE I 25EP68 HX I 24F168 HX I 26F69 HX I 24F168 HX I 09CCT69 HX I 09AC69 HX I 06JA69 HX I 06JA69 HX I 06JA69 HX I 06JA69 CC I 06F168 CC I 06F168 CC I 14FF869 HE I 17FF869 HE I 17FF869 HE I 17FF869 HE
AA AI A2 A2 A2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	V2 A2 C2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2		. TI VI TY SPAN		٢	δ	TIVITY SCHEDUL	ED PERIOD	I SCHED. I TINISH DEPI I TINISH DEPI I 26F1869 OC I 06SEP68 DW I 17SFP68 HE I 25EP68 HX I 26EP68 HX I 26EP68 HX I 26EP68 HX I 26EP68 HX I 26EP68 HX I 27GCT68 HX I 27GCT68 HX I 27GCT68 HX I 27GCT68 HX I 27GCT68 HX I 27GCT68 HX I 06JA69 HX I 06JA69 HX I 06DE68 CC I 46F869 CC I 46F869 HE I 17FF869 HE
AA AI A2 A2 A2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	V2 A2 C2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2		. TI VI TY SPAN		3		TIVITY SCHEDUL	ED PERIOD	1 SCHED. () 1 TINISH DEPI 1 ZAFIB69 0C 1 CAFIB69 0C 1 TSFP68 HE 1 ZSFP68 HX 1 ZAFICT63 HX 1 CAFIC63 HX 1 CAFIC64 HX 1 CAFIC64 CC 1 CAFIC649 HE 1 CAFIC649 HE 1 CAFIC649 HE 1 CAFIC649 HE 1 CAFIC649<
AA AI A2 A2 A2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	V2 A2 C2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2		. TI VI TY SPAN	· · · · · · · · · · · · · · · · · · ·	3	δ ΔC	TIVITY SCHEDUL	ED PERIOD	I SCHED. I TINISH DEPI I 71NISH DEPI I 24F1869 OC I 065EP68 DW I 175FP68 HE I 125EP68 HX I 24F168 HX I 24F168 HX I 24F168 HX I 24F168 HX I 270CT68 HX I 270CT6

Original plan Actual progress

Bar Chart (BC.)

CHANGE ORDER AUTHORIZATION

Newfoundland & Labrador Construction Co. Ltd. Labrador City

-		
LIA	TP	
-u	cc.	

Change Order No.

Contractor's Change Estimate No.

Project:

To:

In accordance with the terms of our contract agreement covering the abovementioned project you are authorized to

> Add the sum of \$. Deduct the sum of \$. The new completion date will be

> > Newfoundland Development Corporation

1

By:

Chauge Order Authorization (CO1 - part 1)

Newfoundland Construction Company Ltd. Labrador City

Request for Change Order

TO:

NO	
DATE	

AL ...

Project No:

Description:

Below listed are changes in our contract price. Until formal change order has been issued this request for change will be held in suspense status.

Applications of increases (or decreases) in time and price of contract are as follows:

COST CODE	DESCRI	PTION OF WORK	INCREASE	DECREASE
				a age
	7074			
	101A	L THIS CHANGE REQ NET CHANGE	IUEST	
1		CONTRACTOR'S FE	E	
u		TOTAL CHAN	IGE ,	3
		REQUEST CONTRAC DECREASE)OF ABOVE ACCEPTED.	T TIME EXTENSI CALENDER DA	ON (OR YS IF
		CONTRACTOR:		
pproved	Da te	By	Date	

Request for Change Order (CO1 - part 2)

Change Order Summary (CO2)

P & O J <u>.E.C.T.P.H.A.S.E</u>	ORIGINAL AWARD OR ESTIMATE	APPROVED CHANGE GROERS	REVISED CUMMULATIVE COST ESTIMATE	FACE VALLE PENDING C/CS AND CLAIMS	MAXINUM EXPOSURE AT COMPLETION S	TATUS
	Α	8	C = 4 + 8	D	E=C+0	F
LAND_COST_TO_ACQUIRE_LAND	1,900,000		1,900,000		1,900,000	CK
MISC INSPECTEST LABS.METHANE & MISC COST	436,240		436,240		436,240	CK
PROJ_MBM-BBC_PPCJECT_ADMINISTRATION	4,794,660	133	4,794,527		s,794,521	UCR
SITE DIKE, UTILITIES, ROAD IMPROVEMENT	14,255,159	144,911	14,400,070	243,241	14,643,311	UCR
SCIL_TEST_PILE_C_SOIL_ENGINEERING_WORK_	752,013	11,414	740,599		740,590	000
STUD VARIOUS STUDIES & INVESTIGATIONS	221.016	2,686-	218,330		218,330	5 UCA
OLOCOLLEGE_BUILDING_OLO	20,927,094	43,230	20,853,864	8,019	20.891.85	3 004
020 COLLEGE BUILDING 020	20,118,234	232,221	20,350,455	18,103	20.368.61	8 UCR
080SCIENCE_BUILDING_080	24,635,183	303,759	24,988,942	164.249	- 25,153,19	0 05=
070 LIBRARY BUILDING 090, PLAZAGRAMPS	22.201.629	395,928	22,597,557	127,594	22,725.15	1 60:
_110ADMINISTRATION BUILDING 110	5,245,600	43+264-		5.658	5,207,99	4 د:
150 SERVICE & SUPPLY BUILDING 150	4.409,115	27,876	4,435,032	3,711	4,435,70	2 007
140 UTILITY BUILDING 160 C PUMP HOUSE	2,553,350		_ 2,517,798	1,101	2,518,59	9 LC;
UNALLOCATED						

••• TOTALS ••• 122,498,293 968,416 123,466,709 571,735 124,036,444

Equipment Equipment Korking Cost Classification Hourly Accurate 791 Equipment 11 1 1 1 1 2500 313.0 791 D5 Dozer H 1 1 1 1 2 2500 313.0 791 D5 Dozer H 1 1 1 1 2 25.00 313.0 791 D5 Dozer H 5 1 1 1 1 2 25.00 313.0 80.1 3/4 cu.yd. Backhee H 5 1 1 1 2 5<	Job Mo. 3.	Vanguard								Weathe Preger	r Overcast ed by D. Coll	1.5-
Equipment Morking Cost Classification Equipment idle An Idle An 791 D6 Docer W 5 23.00 \$125.0 791 D6 Docer W 5 1 1 1 2 25.00 \$125.0 791 D6 Docer W 5 1 1 1 1 2 25.00 \$125.0 791 D6 Docer W 5 1 1 1 1 2 25.00 \$125.0 804 3/4 Cutudu Backhoe T 2 1 2 23.00 \$12.5 804 3/4 Cutudu Backhoe T 2 2 23.00 \$12.5 51.5 804 M 5 1 1 1 2 51.5 51.5 51.5 804 M 5 1 1 1 51.5 51.5 51.5 51.5 8 1												
Equipment Idle At Idle At Heurly Heurly Atom 791 D6 bozer W 5 1 1 1 1 23.00 516.0 516.0 791 D6 bozer W 5 1 1 1 1 1 25.00 516.0 791 D6 bozer W 5 1 1 1 1 1 25.00 516.0 804 3/4 cu.yd. Backhoa W 5 1 1 1 2 50.0 512.2 804 3/4 cu.yd. Backhoa W 5 1 1 1 2 50.0 512.2 804 3/4 cu.yd. Backhoa W 5 1 2 2 50.0 512.2 804 3/4 cu.yd. Backhoa W 5 1 1 2 2 50.0 8 M 5 1 2 1 2 2 50.0 516.2 8 M 5 1 1 1 2 2 516.2 517.2 8 M 1 1 1 1 2 2 516.2 8 M 1			working		Cost Cla	ssification	-	-a.g. eb.tas				
791 D6 Dozer H 5 1 1 1 1 2 791 D6 Dozer H 5 1 1 1 2 3/3 791 D6 Dozer H 5 1 1 1 2 3/3 804 3/4 Cu.yd. Backhoe H 5 1 2 5/3 23.00 5/3 804 3/4 Cu.yd. Backhoe H 5 1 2 5/3 2/3 5/3 804 3/4 Cu.yd. Backhoe H 5/4 2 1 1 2/4 804 1 2 ⁴ 2 ⁴ 2 ⁴ 2 5/3 5/3 804 1 2 ⁴ 2 ⁴ 2 ⁴ 2 ⁴ 5/3 804 1 2 ⁴ 2 ⁴ 2 ⁴ 5/3 804 1 1 1 2 ⁴ 2 ⁴ 8 1 2 ⁴ 1 1 1 8 1 1 1 1 1 5 ⁴ 8 1 1 1 1 1 1 8 1 1 1 1 1 1 8	Equipment No.	Equipment	idle	· ۲. «Ľ			au ad Ladonad 10 1	0		Hourly	Arourt	
731 D5 Dozer W 5 1 1 1 1 25.00 \$125.0 80.4 3/4 cu.yd. Backhoe K 2 1 1 1 1 1 1 25.00 80.4 3/4 cu.yd. Backhoe K 2 1 1 1 1 1 1 25.00 80.4 3/4 cu.yd. Backhoe K 2 1 1 1 1 1 25.00 57.5 80.4 3/4 cu.yd. Backhoe K 2 1 1 1 1 25.5 80.4 K K K K K K K 1 27.5 107.4L K K K K K K K 25.5			repair	02200	ar a ar a - 140			2	S	0) 73 72		
791 D5 Dozer I I I I I I I I I 2 0 25.0 50.0<			M	2					5	. 25.00	i \$125.00	
R 2 1 1 2 5 80.4 3/4 cu.yd. Backhoe 1 2% 23.00 5%2.5 80.4 3/4 cu.yd. Backhoe 1 2% 23.00 5%2.5 80.4 3/4 cu.yd. Backhoe 1 2% 2% 5%2.5 80.4 1 2% 1 1 1 5%2.5 80.4 1 1 1 1 1 5%2.5 107.4 1 1 1 1 1 107.4 1 1 1 1 1	791	Do Dozer	1		- 010				-		1 25.00	
804 3/4 Cu.yd. Backhoe W 51 23.00 512 512 804 3/4 Cu.yd. Backhoe 1 24 1 1 57.3 804 1 24 1 24 1 1 57.3 804 1 24 1 24 1 1 57.3 804 1 24 1 24 1 1 57.3 804 1 24 1 1 1 57.3 57.3 804 1 1 1 1 1 57.3 804 1 1 1 1 1 1 1 81 1 1 1 1 1 1 1 1 1 81 1 1 1 1 1 1 1 1 81 1 1 1 1 1 1 1 1 <t< td=""><td></td><td></td><td>D:</td><td>2</td><td>-</td><td></td><td></td><td></td><td>2</td><td>-</td><td>50.00</td><td></td></t<>			D:	2	-				2	-	50.00	
804 3/4 cu.yd. Backhole 1 21, 1 1 22, 1 1 21, 5 1 22, 1 5 1 21, 1 1 1 21, 1 1 21, 1 1 22, 1 5 1 21, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			F	in		-			515	23.90		-
	804	3/4 cu.vd. Backhoe	L. L.	1 21.					212		10 10 10	1
			R								D. 0	
I I R I I I <t< td=""><td></td><td></td><td>to apple of</td><td></td><td></td><td></td><td>4</td><td>1000 g</td><td></td><td>E.</td><td></td><td></td></t<>			to apple of				4	1000 g		E.		
TOTAL IS IN THE PART OF THE PA			I			-	-		-		-	
T07AL			C.	5 W								AP
TOTAL IG			h.	1.pr				· ••• ••				FEIII
TOTAL IS NOT TOTAL IN THE REAL OF TOTAL INTOTAL INT			1			+		• •	-			JIX
I DTAL			х	. 16								E
TUTAL			-									par
TOTAL IS IN TOTAL IS IN TOTAL SEA STATE				1	1							L-1
TOTAL 16 TOTAL 16 TOT			CZ .	÷.								1)
TOTAL 16 16 70.0 20.0										34	22.20	
		TOTAL		. 16						INTUT.		120

•••

Equipment	Use	Schedule	(EQ_)
-----------	-----	----------	-------

Particulars of Equipment (number, manf., model, year, and description)	PROJECT on which current- ly in use.	PROJECT on which requisit- ioned.	LAST DAY of use on the present project.	TIME required to repair/ deliver equip- ment.	DATE when re- quired on other project.	REMARKS
Equip. #798 Caterpiller D6C Dozer (1976) 140 H?	Job #34	Job #32	Mar 18/80	3 days	Mar 25/80	Repair & move to next job
Equip. #804 International 3/4 cyd. Backhoe (1977)	Job. #34	Job #34	Mar 25/80	1 day		Return to Equip Pool
Equip. #786 P.& H Model T-1S0 15 Ton Hydraulic Truck Crane (1973)	Job #33	Job #28				Still required Job #33

				EQUIPMEN	T COST REP	PORT			
		OPERA	TING COSTS				OWNERSH	HIP COSTS	
EQUIPMENT	HRS. USED	MAIN. & REPAIR COSTS	FUEL COSTS	TOTAL OPERAT. COSTS	AVERAGE COST PER HR.	DEPR. COSTS	TAXES INSURANCE INTEREST		AVERAGE COST PER HR.
MOTOR GRADER = 1	200	1,250.00	1,000.00	2,250.00	11.25	4,000.00	500.00	4,500.00	22.50
MOTOR GRADER =2 MOTOR	500	1,300.00	1,450.00	2,750.00	9.16	4,000.00	500.00	4,500.00	15.00
GRADER = 3	100	1,600.00	600.00	2,200.00	22.00		500.00	300.00	3.00
TOTALS/ AVERAGES	600	4,150.00	3,050.00	7,200.00	12.00	8,000.00	1,300.00	9,300.00	15.50

APPENDIX E (part-II)

122

.

APPENDIX E (part-II) 123

DEPRECIATION RECORD (EQ.4)

DESCRIPTION _____ D7 Caterpillar tractor with pipelayer

		[Deprecio	noite	To date Book Total cost	Cinto		E	eprecio	tion			Filme	1	Total						
Dote	Potese	mo	Amour	19	To do	e	value		cost		Dore	Rote per	mo	Amou	nt	To d	late	volu	0	cost	
7/:/68	409	43		,			19,552	8.1	19,552	64	7/31/63	409	13	403	13	5,32	2 50	14,230	25	19,552	84
7/31/68.			409	43	409	13	19,143	41			8/31/69			109	123	5.7	12102	13,820	22		
8/3:168			409	43	818	86	18.733	98			9/30/69			409	43	6.14	11,35	3,411	19		
9/30.68			409	43	1,228	29	18.324	55													1
10/31/68			409	43	1,637	72	17,915	12									1		1		1
11/30/68			409	43	2,047	15	17.505	69													
12/31/68			409	43	2,456	58	17.096	26										-	1		
1/31/69			409	43	2,866	01	16.686	83			A Designation of the second se								1		
2/28/69			409	43	3,275	44	16,277	40													1
3/31/69		1	409	43	3,684	87	15,867	97													
4/30/69			409	43	4,094	30	15,458	54													
5/30/69			409	43	4,503	73	15.049	11											T		
6/30/69			409	43	4.913	116	14,639	68													1
							Deprei	ciati	on rote	_2	5 percent	per year									

RENTAL RECORD (EQ5).

DESCRIPTION D7 Caterpillar trector with pipelayer

	Rentals nonth Month To date		D	ote	Dete		-	De	ate				
Rote per mi	onth	Month		To dote		In	Out	Dore	Rote per month	Month	To date	In	Out
1.850	00	1,850	00	1,850	100	11/1	11/30						
		1.850	00	3,700	00	12/1	12/31						
18 doys		1,386	00	5.086	00	1/3	1/24						
16 doys		1.206	00	6,292	00	215	2/23						
		1,850	00	8,142	00	3/1							
		1.850	00	9,992	00								
14 doys		1,050	00	11,042	00		5/17						
15 doys		1,142	00	12,184	00	7/2	7/20						
	Rote per m 1, 850 18 doys 16 doys 14 doys 15 doys	Rcte per month 1,850 00 18 days	Rentals Rate per month Month 1,850 00 1,850 1,850 00 1,850 18 days 1,386 1,206 16 days 1,850 1,850 16 days 1,850 1,850 14 days 1,050 1,050 15 days 1,142 1,142	Rete per month Month Rote per month Month	Rentals Rate per month Month To date 1,850 00 1,850 00 1,850 1,850 00 1,850 00 1,850 18 days 1,386 00 5,086 16 days 1,206 00 6,292 1 1,850 00 8,142 1 1,850 00 9,992 14 days 1,050 00 11,042 15 days 1,142 00 12,184	Rentals Rcte per month Month To date 1,850 00 1,850 00 1,850 00 1,850 00 1,850 00 1,850 00 18 days 1,386 00 5,086 00 16 days 1,205 00 6,292 00 16 days 1,850 00 8,142 00 14 days 1,050 00 11,042 00 15 days 1,142 00 12,184 00	Rentals Dr Rcte per month Month To date In 1,850 00 1,850 00 1,850 00 11/1 1,850 00 1,850 00 3,700 00 12/1 18 days 1,386 00 5,086 00 1/3 16 days 1,206 00 6,292 00 2/5 14 days 1,850 00 11,042 00 3/1 14 days 1,0142 00 11,042 00 7/2 15 days 1,142 00 12,184 00 7/2	Date Rate per month Month To date In Out 1,850 00 1,850 00 11/1 11/30 1,850 00 1,850 00 1,850 00 11/1 11/30 18 days 1 1,386 00 5,086 00 1/24 1 16 days 1,206 00 6,292 00 2/5 2/23 16 days 1,850 00 8,142 00 3/1 1 14 days 1,050 00 11,042 00 5/17 1 15 days 1,142 00 12,184 00 7/2 7/20	Rentals Date Date Rate per month Month To date In Out 1,850 00 1,850 00 11/1 11/30 1,850 00 1,850 00 11/1 11/30 18 days 1,386 00 5,086 00 1/24 12/31 18 days 1,205 00 6,292 00 2/5 2/23 16 days 1,850 00 8,142 00 3/1 1 14 days 1,050 00 11,042 00 5/17 1 14 days 1,042 00 12,184 00 7/20 1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Rentals Date Rentals Rate per month Month To date In Out Rate per month Month To date 1,850 00 1,850 00 11/1 11/30 $Rote per month$ Month To date 1,850 00 1,850 00 11/1 11/30 $Rote per month$ Month To date 1,850 00 1,850 00 11/1 11/30 $Rote per month$ Month To date 18 days 1,850 00 12/1 12/31 $Rote per month$ Month Inc. Inc. </td <td>Rentals Date Rentals D Rate per month Month To date In Out Rate per month Month To date In Out 1,850 00 1,850 00 11/1 11/30 <math>acc acc accc <math>acc $acc<$</math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></td>	Rentals Date Rentals D Rate per month Month To date In Out Rate per month Month To date In Out 1,850 00 1,850 00 11/1 11/30 $acc acc accc acc acc<$

DESCRIP	TION D7 C	REPAIR Caterpillar tractor with pipelayer	S AND OP	ERA	TING EXPEN	SE (EQ6)	EQU	JIPMENT NO)14-82	2
Date	Ref	Description	Repoir	s	Maintenance	Insurar	ce	Licent and taxe	s	Total	Total to date	
3/4/68	8480	Misc lator & material	33	96						1	38	196
10/9/68	8524	Inst rockquards & Intor	86	45							125	41
11/12/58	1624	Tune & adjust engine	6	25							131	65
1/8/63	A 648	Labor repairing sideboom	16	80							148	146
4/16/69	A716	Labor repairing tracks	24	40							172	86
4124169	C 562	Insurance - 1 yr.				92	60				265	136
4/26/69	0236	License & toxes - 1 yr.						1.9	50		394	06

EQUIPMENT NO. 14-82

EQUIPMENT NO. 14-82

1 1, 1950 ones	PERCENTAGE VASIANCE	(Col. 9111)	12	: * {-} 1	
April		TO DATE		0.21	
EPORT:		THIS PERICO	10	0.21	
DATE OF F	UNIT COST	ESTIMATED	σι	C. 10	(^L ù
		TO DATE	Ø	20	Report (E
R	COST	THIS	7	20	Cnit Cost
r COST REPOR		ESTIMATED	Q	16	Equipment (
IIPMENT UNIT		TO DATE	2	10	
EU	ΥTTY	THIS PERIOD	マ	25	
Se	0.73	ESTIMATED	c	20	
Marehou 2-7		32-1-1	2	C C C C C C C C C C C C C C C C C C C	
J03: J05 ≑:	NORK CLASSI-	FICATION		AA.02300	

APPENDIX E (part-II) 125

Equipment Time Distribution Sheet (EQ8)

• •

4 *

LTD.	PuENT N 804 142: 1980 1984: 3964 1984: International :A. · ·	Invoice Record	Purchase Weight Freight Tax Total Price	72,000 37,200 - 7,200 79.200	Sales Record	To:		· · ·	1
AND-LABRADOR CONSTRUCTIO	SECTION NOT 25791 EVENT NOT 00176438		0. Invoice Invoice Aber Mumber Date	013 3155 May 2/8		it of Tita. Date Sunge Cost Stler	500 81,200 Book V	Remark Remark	Munachin Fand (ED)
NEWFCUNDLAND	ionai 3/4 CYD Excavator	ase Record	nder's liame	nn Coe Equipment Ltd. 10	Hures Recent	Invoice Invoice Cos	5 6021 July 528		
		Purcha	e New/ Ver	· 2/30 New Joi		Description of Change	y 1 cycl. bucke		

UNIT: m ²		1	NEWFOUN PRO	IDL AND	CONSTRU	CTION SIS REP	CO. LTD. PORT	COS	T CODE BB	0420
	Quant	ity	Cumu	lative M	an-hours by	Trade	Man-h	ours pe	er unit by Tr	ade
Period	This Period	To Date	e Mason Labor- Carp- er enter		Mason	Labor- er	Carp- enter			
Mar. 1-31	-			-	_					
Apr. 1-30	178.4	178.4	84	24	8		0.414	0.134	0.442	

Productivity Analysis Report (IC1)

CONTRA	ACT DES Motel	CRIPTION: Vanguard hary Item —	RE Wo Electrical V	PORTING C alsh Electri Work	RGANIZATION	N: CONTRACT E 453	NO.	PERIOD: (Cutaff Da Release D	01 Feb. 79-28 Feb. 79 ate: 02 Mar. 79 Date: 05 Mar. 79
	IDENT	FICATION			٢	MANHOURS			
Month	Craft	Foreman	Cost Code	Actual	Budget	Forecast at Completion	(Ovi Unc	errun) Jerrun	REMARKS
78-01	EL	E4L3	LB16515 LB16550 TOTAL	420 200 620	600 800 1400	500 1000 1500	(100 200) (100)	
78-02	EL	E4L3 E4L6	LC16720 LC16740 LC16750 TOTAL	278 45 124 447	500 200 100 800	650 200 200 1050		(150) 0 (100) (250)	

MANHOUR STATUS REPORT ("H1)

-

NEWFOUNDLAND CONSTRUCTION CO. LTD. MANHOUR UNIT COST REPORT

JOB: Motel Vanguard

JOB #: 134

DATE OF REPORT : 80-03-01

PREPARED BY : A.K. Rielly

Work	11	QUA	NTITY			COST		UN	IT COST		PROFIT	or (LOSS)
ation Code	s	Esti- mated	This Period	Forecast at Com- pletion	Esti- mated	This Period	Forecast at Com- pletion	Esti- mated	This Period	Forecast at Com- pletion	To Date	Projected
1	2	3	4	5	6	7	8	9	10	11	12	13
BB 03100	m²	353	83	354	^{\$} 8550	\$1795	\$7011	\$24 22	\$21.52	\$20.99	\$224	\$1539
BB 03200	tons	6.35	1.58	7.85	\$4165	\$1046	\$2198	\$656	\$662	\$655	(\$10)	(\$997)
BB 03300	m ³	191	46	201	\$ 5776	\$1534	\$3239	\$30.24	\$33.35	\$34.44	(\$143)	(^{\$} 1156)

Manhour Unit Cost Report ('112)

APPENDIX E (part-II)

MANPOWER LOADING REPORT (MH₄) BY RES.,PERIOD,PERF.DEPT., CHARGE NO.

(CONTRACT DESC	CRIPTION	1	REPORTIN	G ORGN.	CONTRACT	NO.] . [REPORT DATES		
CONTRA	ACT DESCRIPT	ION 1111111111	1111111		1 CC	NTRACT NU	MBER 11	1 TERM (SPAN	N) -		
LEVEL/	SUMMARY ITE	4- 1/CHARGE NU	MBER DESCRI	PTION OF	LICI LI	CI		1 RELEASE DA	ATE -12DEC66		
		IDENTIFI	CATION			MANHOURS		1 TIME 1	·		
ACCOUN PERI	1 NTING 1 RI IOD 1 C(1 ES. 1 PERF DDE 1 DEPT	1 1 CHARGE 1	NUMBER	1 1 ACTUAL 1	1 1 BUDG 1	ET] 1	LATEST REVISED ESTIMATE	1 (OVER) 1 UNDER 1 PLAN	1 MOST 1 1 CRIT. 1 1 SLACK 1	REMARKS
1/66	AA	L4D3	L1C1 L4C1		29 2 31	2,2	00 0 00	0 0 0	(29) (2) (31)		
2/66	TOTAL	L4D3 L6D3	L1C1 L4C2 L5C3		88 * 8 200 296	2,0	00 0 • 0 00	• 0 0 0 0	(88) (8) (200) (296)		Ŀ
3/66	TOTAL	L4D3	L1C1 L5C3		103 160 273	1,6 1,6	00 0 00	0 0 0	(103) (160) (273)		PPENDIX
4/66	TOTAL	L4D3 L6D3	L1C1 L5C3		103 160 263	1,6 1,6	00 0 00	0 0 0	(103) (160) (163)		E (part
5/66	TOTAL	L4D3 L6D3	L1C1 L5C3		77 200 277	2,0	00 0 00	0 0 0	(77) (200) (277)		t L
6/66	TOTAL	L6D3	L5C3		200 200		0 0	0 0	(200) (200)		
7/66	TOTAL	L6D3	15C3		240 240		0	0 0	(240)		

SUBNET IDENTIFICATION DIA' SUBNET DESCRIPTION-

MILESTONE REPORT (MR,)

CUNIKALI DESCRIPTION	I REP	UKTING U	KGN.	CUNIKACI NU.			REPURI	DATE	2					
	· · ·]				1	TERM (SPAN)-	0744466							
LEVEL/SUMMARY ITEM- 1/9SO-G E	XPERIMENTS	5		E XP-	1	RESEASE DATE	31MAY66 15MAY68							
]]		11			SCHEDULE								
MILESTONE DESCRIPTION	ISLACKI	DATE	1P 1	1966			1967			168	1691	701	701	
]]		1YR1	JFMAM.JJA	S 0	NDIJFMA	MJJA	SON	D	1	1 1	1	1YR	
	1 1		1 1			1				1	1 1	1	1	
	1 1	04JAN65	15 1			1				1	1 1	1	1	
60568	1 6.41	10JAN68	11			1				18	ר ו	1	1	
C PHOTO STRUCTURAL ASSY	1 1	22N0V67	1 1			1		L		1	1 1	1	1	M
	1 1		1 1			1				1	1 1	1	1	P EIN
	1 1	04JAN65	15 1			1	•			1	ו ו	1	1	NTO
60600	1 5.91	26JAN68	1 1			.]				18	1 1	1	1	
PROTO ORAT SYS NO 1 ASSY	1 1	27N0V67	1 1			1		L		1	1	1	1	1pa
	1 1		1 1			1				1	1 1	1	1	T.C
	1 1	22DEC67	1 1			1			A	1	1 1	1	1	111
60638	1 3.71	22DEC67	1 1			• 1		•	E	1	1 1	1	1	
PROTO UNIT TEST SLIT SYS	1 1	27N0V67	1 1			1		· L	- 1	1	·]	1	1	-
	1 1		1 1			1				1	1 1	1	.1	20

TIME NOW
NEWFOUNDLAND CONSTRUCTION CO. LTD. WAREHOUSE REQUISITION SLIP														
			REQ	NO. 143	32									
Storekeeper: Please furnish <u>Mooney Const.</u> with the following: Date: <u>Feb. 21, 1980</u> Charge Number <u>15332</u> Dept: <u>Construction</u> Work Classification <u>BA 03100</u>														
Quantity	Articles		Stock No.	Unit Cost	Amount									
200	Timber 2" x 4" x 10'		201	\$300.00										
300	Timber 1" x 6" x 20'		468	\$ 2.00	\$600.00									
Entered on Ledger 293	Entered on Stock Ledger 154	Storek Robert (Gorman	Recip Leona	ient: rd Vivian									

Warehouse Requisition Slip (MT1)

		N	EWFOUN MA BY MA	DLAND (TERIAL S TERIAL, I	CONSTRU STATUS MONTH,	JCTION CO. LTE REPORT CHARGE NO.).						
CONTRACT DESCRIPTION: REPORTING ORGN: CONTRACT NO: REPORT DATES:													
Mote	I Vanguard	PERIOD Feb	. 1, 79 - Feb. 28, 79										
LEVEL /	SUMMARY	ITEM	0	wner Fur	nished N	laterial	RELEASE DA	TE - Mar. 5, 79					
IDE	ENTIFICAT	ION			MAT	ERIALS		REMARKS					
Month	Charge No.	Material	Wastage	Remarks									
1/79	500												

Material Status Report (1172)

		APPENDIX E (part-	II) 135
IDLAND CONSTRUCT	TION CO. LTD.	Invoice All inv packing	e in triplicate voices and slips must
		٦	00-457
		show th	is number
	DATE: Feb. 28	197 <u>9</u> JOB NO:	1.34
lor or subcontra	actor: <u>R. and J. Company Lto</u>	J <u>.</u>	
ress: <u>Water St</u>	treet	City: Harbour Grac	c
to Location of	F Job: Motel Vanguard		
e Required:Ma	ir. 14, 1979	Your estimate:	
ase supply the f	following materials or perform	n the services described b	elow:
ntity	Description	Unit Price	Amount
00 SF. Viny	1 Asbestos Tile, 12"x12"	\$0.34	\$2,550.00
conditions of t	his order are that:		
The vendor must to in full: ot terms.	advise within two days if th herwise this order is to be u	e terms of this order are nderstood as accepted in	not agreed all of its
If the vendor f order will stan	ails to fill this order withi d cancelled.	n <u>30</u> days from the date of	f issue the
Vendor is to se lading with eac	nd shipping list with each de h shipment, and show purchase	livery and shipping list a order number in each case	and bill of ?.
or's Signature:	B.A. 01dford	Accepted by: WShea	
	Purchase Order (1	11,)	

SUMMARY EXPEDITING REPORT					
NFLD GENERATING STATION UTILITY CORPORATION EXPEDITE -A10	SU	CINCOM MMARY EXPEDITIN	IG REPORT	HIGHL	REPORT DATE 1FEB71 RUN NO. 14D PAGE 17 IGHT DATE 1APR71
ITEM CODE ITEM DESCRIPTION	MFG TIMING START DUR COMPL'N	P.O. FLOAT COMPL'N	DELIVERY TERMS, & DESTINAT'N	SITE TRANSIT DUR DATE	REMARKS - STATUS AS AT
REO13 TYPE LP CALANDRIA R 21 CALANDRIA VESSEL SPRAY NOZZLES (S) R 22 SHIELDS BORING (S)	REO 012-01 17JAN71 65 16APR71 25MAR71 30 5MAY71	P.O.017-01-1 -10 3APR71 5 11MAY71	ORDER DATE 19JUN F.O.D. MTL F.A.S. PORT	NTO DOMINION 16 25APR7 29 20JUN7	BRIDGE QUE.
REO14 TYPE ZIRCALLOY TUBES R 23 CALANDRIA ZIRCALLOY TUBES (S)	REO 012-02 10JUL71 32 20SEP71	P.0.312-02-1 53 1DEC71	ORDER DATE 14JUL F.A.S. NYH	_70 CARPENTER 27 4JAN7	TECH. CORP. USA 2 ¦

.

<

BILL OF MATERIALS (MT $_5$)

Work package no.	Material code no,	Material description	Quantity	Unit of measure	Start date of first activity requiring this material
4 4 1	0421 0410 0410	Modular face brick Masonry cement	20,000 200	Ea. C.Y.	54 54 54
5	0720 1526	<pre>l¹₂" roofmate insul. 4" Cast iron tyton joint pipe</pre>	5,000	S.F. L.F.	67 11

PROGRESS PAYMENT SUMMARY REPORT (PP1)

DPW-	CANADA	+	D+C	=	P.C.S
					-

Page Number 1

SORTED BY SUBCONTRACT		REPORT DATE 30 Apr 7				
DESCRIPTION	CONTRACT AMOUNT	VALUE TO DATE	HOLDBACK	TO DATE	PAID TO DATE	AMOUNT PAYABLE
8100 Poole Construction	755,192.00	555,945.53	83,391.82	472,543.71	.00	472,553.71
8102 Poole Construction	601,212.00	461,002.00	69,150.30	391,851.70	.00	391,851.70
8103 Poole Construction	138,380.00	110,010.00	16,501.50	93,508.50	• .00	93,508.50
8104 Summit Masonry Ltd.	140,490.00	71,673.00	10,750.95	60,922.05	.00	60,922.05
8108 Alpine Dryall Co. Ltd.	112,300.00	59,300.00	8,895.00	50,405,00	.00	50,405.00
8111 Robertson - Irwin Ltd.	414,361.00	292,160.91	43,824.12	248,336.79	.00	247,336.79
8113 Bridge & Tank Ltd.	719,000.00	. 570,790.95	85,618.63	485,172.32	.00	485,172.32
8121 Advance Roofing Ltd.	368,712.00	224,096.00	33,614.40	190,481.60	.00	190,481.60
8122 Flint Electric Ltd.	397,969.00	163,651.00	24,547.65	139,103.35	.00	139,103.35
8133 Botting & Associates	375,280.99	365,652.00	54,847.80	310,804.20	.00	310,804.20

PROJECT TOTALS 4,022,876.99 2,874,281.39 431,142.17 2,443,139.22 .00 2,443,439.22

APPENDIX E (part-II) ilewfoundland & Labrador Construction Co. Ltd.

PROGRESS PAYMENT CLAIM NO. 4

DATE 17th March, 1980

(SC1)

138

JUB NAME Substation Const.

FOR PERIOD FROM Jan. 1st 1900 TO March 15th 1930

SUBCONTRACTOR Mooney Const.

DESCRIPTION OF MORK Foundation

ORIGINAL CONTRACT PRICE	CHANGE ORDERS FO DATE	HET CONTRACT PRICE	VALUE OF WORK COMPLETED TO DATE	
\$ <u>69,000</u>	\$7,000	\$76,000	\$59,000	(sc ₂)
	C	HANGE ORDER RECORD		
C.O. No.	DATE	INCREASE	DECREASE	NET CHARGE TO CONTRACT PRICE
419	Jan. 22	4,500		73,500
420	Feb. 2	11,000		24,500
421	Mar. 1	and and a state and a state with a state of	8,500	76,000
TOTAL		15,500	8,500	76,000
	PROG	RESS PAYMENT RECORD) (sc ₃)	
		PREVIOUS	HIIS PERIOD	TO DATL
TOTAL AMOUNT CL	AIMED.	50,000	10,000	60,600
HOLD BACK (104)		5,000	1,000	6,000
NET PAYMENT DUE		45,000	9,000	54,(1.11)
SUBCONTRACTOR		Frank Campbe	11	
	VERIFILD AND AF	PPROVED BY Graham N	osesorthy	

Progress Payment Claim (SC1-SC3)

	-	9.9 m p (p) (p) & (b) Mayorif containing (p)	+-					
			COS				0.0	
			INTEREST ESTIMATED				t	
			(OUTFLOW)	(1,560)	4,000	(0000)	(6,500)	-
	X		INFLOW (ESTIMATED	5,000	4,000	(1,000)	5,000	
	ON COMPAI		ACTUAL	26,500	12,000	49,000	87,500	
	CONSTRUCTIN		ESTIMATED	25,000	10,000	65,000	100,000	1
-	LASRADOR Y CASH FI		ACTUAL	25,000	16,000	40,000	31,000	
	OUNDLAND AND MONTHL	312.27/1930	ESTIMATED	30,000	11,000	53,000	102,000	
	NEWF	ויכוי 15 - היזביש	DESCRIPTICA	Karehouse	Boiler Plant	Access Road	TUTALS	
		Period: "3	ROJECT NUMBER	NLC - 80 - 05	NLC - 80 - 16	NLC - 80 - 14		

Nonthly Cash Flow Recort (TC1)

APPENDIX E (part-II) 139

Newfoundland & Labrador Construction Co. Ltd.

Job:	Motel V	anguard							
Charge II	0: 15332			Project Co	ost Report		For the	Period: Apr	il 1-30,80
Cost Cod	e Description	Budget	Change Orders	Revised Budget	Actual Cost To Date	Committment To-Date	Percentage Complete	Forecast at Completion	(<u>overrun</u>) underrun (9-5)
1		3	4	5	6	7	8	9	10
AA 02200	Earthquake	1020		1107	1107		100	1107	(87)
BB 03100) Formwork	7790		7200	7416		951	7828	(38)
B6 03300	Cast-in-								
	crete	15525		15525	7491	1750	49	15525	0
B8 04200) Masonry	29564		33000	7507		28	32218	(2554)
6D 07150	Damp-proof- ing	594		527	527		1001	527	67

Project Cost Report (TC2 - TC5)

APPENDIX E (part-II) 140

Appendix E (Part III): Project Cost Progress Reports* for Project Executives

*Reports are in Appendix E (Part II)

APPENDIX F: User Ratings of Croprietary Software

		w	nighti	nd Av	www.	Usur	Ratu	ายร	Advantages Cited by Users				Disadvantages Cited by Users							14 45 1	Art	5 1-7	р 1/ 1 -	11 12	
Vondor and Package Name	No of Usar Ratings Re- cinved	Overall satisfaction	Throughput efficiency	Ease of installation	Ease of use	Documentation	Vandor technical support	โหนกกฎ	Flexible	Inerpansive	Saves system resources	Saves human resources	Inflexible	(Sustry	Campier	Siow	Ums excessive resources	Lacks key capabilities	Compatibility problems	Immediately	Eventually	Never	25	Yes by vendor	Yes by user
Management Science Anyerion																									
Acrowns Receivable ALLTAX Fixed Assets FICS General Ledger Payroll Personnel	5 28 7 11 29 59 3	30 37 24 30 29 29 29 33	2 8 3 5 2 5 2 0 2 1 2 6 3 0	28 34 22 25 22 24 30	28 35 27 25 24 26 30	16 36 25 28 28 32 37	26 34 18 17 25 28 37	28 35 20 28 25 27 37	2 14 3 8 20 37 2	0 14 1 2 3 3 1	1 7 1 0 2 5 1	1 24 4 3 14 28 3	1 0 1 2 5 0	1 0 1 0 3 0 0	2 1 3 4 1 8 2 4 0	0 1 2 5 13 18 0	1 2 4 10 15 1	1 0 2 1 1 3 0	1 7 2 3 11 0	1 26 1 3 8 28 2	4 1 2 8 12 20 1	0 3 0 4 3 0	0 17 9 11 0	4 3 2 2 3 14 0	3 9 2 5 12 38 2
Mathematica Products Group, Inc. RAMIS II	9	30	28	31	33	30	31	28	7	1	4	8	0	2	0	0	ų	0	0	5	45	0	6	2	1
McCormack & Dorlye Corp Accounts Payable Fixed Assets	9 18	3 O 2 9	28	27	29 28	3 O 2 B	26 25	26 25	57	2 2	2	5 9	0 2	0 4	03	0	1	0	0	17	7	0	0 4	3	7
Medical Information Technology, Inc. MIIS	6	35	33	38	3.7	25	34	28	3	1	2	3	0	2	1	1	0	1	3	5	1	0	2	3	0
Mini Computer Business Applications, Inc Accounts Payable	5	40	36	36	32	32	33	40	5	4	2	4	0	0	0	0	0	1	1	4	1	0	2	1	2
MRI Systems Corp SYSTEM 2000	20	32	2 5	30	31	24	28	28	15	1	0	14	1	7	3	6	6	0	0	8	10	0	11	R	0
NCI Inc SLICK	36	35	35	35	33	29	31	28	13	[3	13	12	0	0	2	0	1	0	1	30	5	1	35	1	e
NCR Corp Accounts Payable Accounts Receivable CIF General Ledger Inventory Control IPR (In Patient Records) ORBIT Payroll SCHOLARS	16 11 9 22 5 8 5 48 6	2 B 2 9 3 4 3 3 3 2 3 0 3 0 3 0 3 0 3 3 3 3	2 6 2 6 2 8 3 0 3 2 2 3 2 0 3 0 2 8	25 25 26 32 28 29 22 32 32 32	2 9 2 8 3 1 3 1 3 4 2 9 2 8 3 1 2 5	2 7 2 3 2 9 2 9 3 4 2 1 2 4 2 8 3 2	24 18 29 28 34 20 18 25 20	2 4 2 () 2 8 2 7 3 2 2 6 1 8 2 5 2 3	4 6 7 8 0 3 1 27 2	11 6 4 17 3 7 3 25 3	2 3 2 4 0 4 0 13 0	11 7 6 14 3 6 2 30 30 3	7 2 0 4 1 2 3 6 0	0 1 0 0 0 0 0 0 0 0	6 4 6 2 3 3 12 2	4 3 1 3 1 3 2 11 2	() 1 1 0 1 0 1 2	3 2 1 1 1 1 4 1	1 1 3 1 1 0 10	8 6 3 14 3 2 28 2 8 2	7 4 5 7 1 4 3 17 4	1 0 1 1 1 1 0	0 1 0 5 2 1 0 14 1	s, 6 5 1 7 10 1	12 0 9 12 2 7 5 15 5
Nichols & Co N5500 (PROCON)	6	25	23	23	25	24	25	27	1	1	1	a	3	0	3	2	1	3	0	2	3	0	5	1	1
Northwestern Univ SPSS	5	34	30	30	28	32	28	25	.1	2	1	r.	0	0	0	1	0	0	2	.1	1	10	Ō	1	3
Optigeo Inc EXTRACTO	5	32	3.0	36	38	24	26	30	4	1	1	-5	1	0		1	0	1	2	3	0	1	-	ž	0
Outord Software Corp DEAST SAVE RESTORE TEAST	19 6 12	31 33 33	34 23 35	30 35 33	33 35 33	24 28 25	2 2 2 8 2 8	21 10 10	13 5 2	R 4 3	18 5 4	13 4 9	2000	200	1 1 1	000	1 0 0	3	1	7 4 7	10 2 4	1 0 0	1) 3 8	1	3 1 3

¹ Datapro Research Corporation, <u>Datapro 70, Buyer's Bible</u>, Delran, New Jersey, 1977.

User Ratings of Proprietary Software

		Weighted Average User Ratings			A	dvar Cite Us	ntage d by ers	15		DC	isac ited	lvan by	tage Use	05 175		Pe as t	Adv ised	m 9r- 7	RNC	re i- i7					
Vendor and Package Name	No. of User Ratings Re- ceived	Overall satisfaction	Throughput/efficiency	Ease of installation	Ease of use	Documentation	Vendor technical support	Training	Flexible	Inexpensive	Saves system resources	Saves human resources	Inflexible	Costly	Comptex	Slow	Uses excessive resources	Lacks key capabilities	Compatibility problems	Immediately	Eventually	Never	No	Yes, by vendor	Yes, by user
Digital Research CP/M	6	3.3	3.2	3.2	3.0	2.7	2.8	NA	5	6	1	2	0	0	0	1	0	0	0	6	0	0	2	1	3
DNA Systems, Inc.																									
TSO	10	3.5	37	3.2	3.3	2.6	3.1	2.3	8	0	5	4	0	3	0	0	0	1	2	8	2	0	2	5	6
1130/FORTRAN	17	3.8	36	3.3	3.7	3.1	3.3	3.0	9	10	4	7	0	0	0	0	0	11	3	16	1	0	9	6	2
1130/SORT	10	3.6	3.9	3.7	3.7	3.3	3.0	2.6	8	1	6	3	0	0	1	0	0	0	0	8	1	1	8	2	0
Dylakor Software Systems, Inc. DYL-250 DYL-260	9 46	32 36	3 1 3.4	3.6 3.7	3 1 3.4	2.8 2.9	3.3 3.2	3 0 3.0	3 32-	8 32	3 12	6 40	0	0	02	03	03	2 2	0	7 39	2	0	9 :44	0	0
Constant Tenter danis las																				1					
General Ledger	5	24	2.6	22	2.8	1.8	2:0	2.0	2	2	1	2	0	1	0	1	0	0	0	3	2	0	1	2	3
Florida Software Services, Inc.														1											
Certificate of Deposit	6	25	2.8	2.5	2.8	2.7	2.8	NA	3	2	0	2	1	0	1	1	0	0	1	2	3	1	2	2	5
Commercial Loan	6	30	2.8	2.8	2.4	3.7	32	2.8	1	3	1	4	0	0	2	0	0	2	2	3	3	0	0	1	5.
Demand Deposit Accounting	5	3.2	2.8	2.8	3.6	3.8	32	NA	5	2	0	1	0	0	0	1	1	1	0	3	2	0	0	1	4
Installment Loan	11	3.1	25	2.5	2.9	2.6	2.2	1.5	7	6	1	2	2	1	2	3	3	3	0	6	5	0	4	0	7
Mortgage Loan	12	2.8	2.6	2.8	28	2.6	24	2.5	8	3	2	6	1	3	5	1	5	1	0	7	5	0	6	3	4
Payroll	5	3.0	2.8	2.8	3.0	3.4	2.6	3.0	4	3	1	3	0	0	0	1	1	0	1	4	1	0	1	1	4
Foresight Systems, Inc. FORESIGHT	11	3.2	2.6	3.1	3.0	2.7	2.6	2.9	6	0	0	8	2	2	2	1	4	1	1	'8	3	0	8	2	2
GBA International GBASWIFT	10	3.2	3.0	3.5	3.5	3.3	3.4	2.6	5	5	6	5	0	1	1	0	0	0	1	7	3	0	6	4	1
GCS Computer Services				10000																					
Раугон	5	2.4	2.4	2.4	2.8	3.2	2.6	2.8	4	2	1	2	0	1	3	2	1	0	0	1	4	0	1	3	4
Goal Systems						-																			
FAQS	11	39	3.9	3.8	3.8	39	4.0	40	6	7	8	7	0	0	0	0	0	0	0	8	3	0	10	1	0
FLEE/FLIM	35	4.0	3.9	3.8	3.8	3.7	3.1	3.8	25	25	31	15	0	0	0	0	0	0	0	35	0	0	33	1	1
Gulf Computer Sciences, Inc TLMS	12	2.9	2.8	2.4	3.2	2.5	2.3	2.0	5	0	5	10	1	3	2	1	2	0	1	5	7	0	4	2	7
HBO & Co. MEDPRO	8	39	39	3.6	40	2.9	36	3.0	5	3	2	4	0	2	2	0	0	1	0	4	4	0	. 0	7	0
Hewlett-Packard Co						0.5	0.7		-	-					1								~		-
IMAGE/1000	9	30	29	34	30	25	21	33	10	5	0	4		10	4	1		4	2	8			27		2
IMAGE/3000	30	35	33	3/	3.0	32	3.0	21	19	5	8	22	0			3	4	4	2	28	1		21	2	-
	5	34	30	3_0		24	2.0	2.0	4			3	0	0				0	0	4		0		2	0
Honeywell Information Systems, Inc	7	20	2.2	2.2	20	1.7	2.2	20	1	E		2	2	0		2		1		2	4		2	0	
Accounts Payable	10	30	23	23	20	2.	22	20	-	0	1	2	-	0	0	2	2	2		3	4	0	4	0	4
Constitution	13	32	30	3.4	32	31	2.5	2.0	3	3	1	5	0	0		E	2	4			2	0	3	4	0
General Leager	10	25	22	2.0	24	18	27	1.4	0	0	-	10	2	0	4	2	2			3	6	2	2	4	12
	10	32	29	20	20	20	2.1	2.8	8	8	2	10	2	0	0	3	2	2	0	-	0	4	2	2	12
Payroll	14	26	24	22	23	2.3	28	23	0	11	3	-	3	0	5	4	3	3	4	2	8	0	2	4	9
SCRIBE	6	2.3	2.0	2.2	2.2	2.5	2.0	2.0	2	2	2	4	1		1	4	3	0	1	2	2	2	1	3	5
IBM Corp.	27	27	25	27	27	20	24	22	10	12	2	14	1	1	A	7	0	2	2	0	17	2	1	2	25
Accounts Payable (5/3)	9	21	20	30	20	27	22	20	1	2	0	7	1	1	1	2	2	0	0	A	5	0	G	1	23
Accounts Receivable (5/32)	12	20	31	27	32	20	30	20	4	5	4	8	1	1		2	2	1.	2	1	6	1	2	3	10
recounts necessable (5/ 5)	1 12	2 3	51	4.1	52	.20	0.0	2.0	-4	5		0				0	~		-		0		-	.,	10

-1. 1

143

APPENDIX F

User Ratings el Proprietary Software

			Weighted Average User Ratings						Advantages Cited Ev Users				Disadvinitinguis Cited by Users							Pe as t	Adve	n 147	Bequien Modifi Cature?		
Vandor and Packaya Namo	No. of User Ratings Re cnived	Overail setisfaction	Throughput efficiency	Ease of installation	Ease of use	Occumentation	Vendor technical support	Training	Fleribie	Inexpansive	Saves system resources	Saves human resources	Interibie	Custy	Compre	Słow	Uses arcossive resources	Lacks key capabilities	Compatibility problems	Immodiately	Evuntually	Navur	No	YHS DY VARION	Yes by user
IBM (continued) PL 1 POWER RFG (360/370) RFG II (S-3) RFG II (S-32) Sort (S-3) Sort Merge (360-370) SFF SPM (Source Program Maint) Utilities (S/3)	14 6 51 51 8 4.4 71 5 22 17	34 23 34 35 34 35 32 40 33 33	3 1 2 5 3 3 3 3 3 1 3 2 3 0 3 2 3 1 2 9	3 () 2 7 3 () 3 5 3 5 3 5 3 6 3 3 2 8 2 6 3 5	3 2 2 5 3 4 3 5 3 5 3 4 3 5 4 0 3 4 3 3	3 0 2 5 3 2 3 1 3 3 3 3 3 3 3 3 3 3 3 0 2 7 3 3	31 28 29 34 29 32 34 36 26 35	30 24 31 33 37 30 32 33 26 34	3 9 19 18 3 17 23 4 13 4	0 1 21 17 4 13 14 2 4 7	5 1 10 3 - 3 5 15 2 6 2	3 27 37) 21 5 18 12 5 21 4	0 1 4 0 3 2 0 1 1	1 1 1 0 7 2 1 0	2 1 5 1 0 2 1 0 1 0	1 4 1 7 11 0 3	2 0 2 5 0 1 8 0 5 0	0 1 5 4 1 4 1 4 1 0 3 2	0 1 5 7 1 0 1 0 1 0	17 4 4 7 4 7 4 7 5 5 5 5 12 16	2 1 7 2 1 1 1 1 8 0	0110000000	11 4 45 41 6 41 60 3 16 11	7 0 2 8 2 5 0 1 5	1 2 1 0 1 7 2 5 0
IMSL, Inc IMSL	23	34	31	31	32	3 4	33	23	13	10	5	20	0	3	3	0	1	0	0	20	3	0	16	1	3
Infonational Accounts Payable General Ledger	8 7	31 33	2 B 2 4	3 3 2 9	35 31	31 31	2 G 2 B	29 30	3 4	3	3	8 6	3 2	0	0	1	0	1	0 0	53	4	0	1	23	7 5
Informatics Inc Accounting IV Intercomm MARK IV Minicorpo Scille	11 6 47 7 5	31 30 33 40 26	26 28 27 39 28	23 22 34 37 30	26 25 33 40 30	28 23 23 29 24	25 23 29 31 22	26 23 29 34 26	6 4 30 4 4	0 1 3 4 0	2 0 1 5 1	7 39 4 4	2 1 1 0 0	2 3 10 0	5 1 4 0 1	4 0 6 0 2	3 3 16 0	0 0 3 0 1	1 6 1 ()	3 1 3.3 6 2	5 5 10 1 2	0 0 0 0 0	1 21 34 4	8	6 ' 3 3 0
XREF	5	35	28	36	36	28	28	20	3	5	27	5	0	0	0	2	2	0	0	32	1	0	4	2	1
Insurance Systems of America Inc.	34	29	3.0	24	20	2.5	21	28	4	0	2	4	0	0	1	1	0	0	2	3	1	0	2	1	5
Insute Datacom Corp Datacom DB Datacom DC	11 13	3333	3235	3 O 2 8	34 34	24	3732	3.29	5 6	32	5 8	1	2	0	2 2	1	1	1	2. 7	6	4	00	5 6	4 7	2 2
Interdata Ind - FORTRAN OS32 MT	6 7	23 23	2 2 2 0	3 O 2 G	2 2 2 2 0	2 2 2 1	12 19	2 0 2 0	1) 2	3	1	0	0	00	: 2	1	2 5	1	1	1	2	2	1	3	1
Jason Data Services SPRINT	7	36	37	37	34	31	31	2 5	3	6	6	4	0	0	·0	0	0	1	1	6	1	0	7	0	0
Johnson Systems Inc Joh Accounting (DOS) Joh Accounting (DS)	21 10	33	3027	3 1 3 6	29	30	2 R 2 7	рт, 2 В	17 6	5	3	• 1	1	2	5 0	1	1	3	2 ()	12	8	1	14	r 1	1
Management & Computer Services Inc DATAMACS	5	26	28	30	30	22	22	26	3	0	2	5	0	0	2	1	0	20	0	3	2	0	3	2	0

144

APPENDIX F

User Ratings of Proprietary Software

145

	Weighted Average User Ratings							Advantages Cited by Users			Disadvantages Cited by Users						pe as t	Adv	111 117 1	Roquer Modifi Lation		209 11 117			
Vendor and Package Name	No of Usiir Ratings Re coivod	Overali satisfaction	Throughput efficiency	Ease of installation	Ease of use	Documentation	Vandor technical support	Training	finanble	Inexpensive	Saves svetem resources	Saves human resources	Inflexible	Custity	Сотрінк	Sow	Uses Arcessive resources	Lucks key capabilities	Cumpatibility problems	Immediately	Eventually	Naver	No	Yes, by vendor	Yes by user
Pansophic Systems Inc EASYTRIEVE PAN*DA Panvalet	62 6 139	37 35 36	34 32 35	37 35 34	35 33 35	32 28 33	31 28 31	28 27 29	43 1 77	18 (1 30	23 2 611	51 3 107	1 0 5	8 1 5	2 (1)	7	4	105	2	53 5 122	n 0 14	1 1 6	60 6 97	2 0 12	0 (11
Pregram Products, Inc. Data Analyzer	7	31	27	21	21	28	28	2.8	4	1-	2	1	2	0	1	0	Ĩ	2	0	5	2	c	5		U
SAB. Inc Software 1040	19	35	3 2	36	36	33	37	2 0	4	5	2	15	2	1	0	-3	1	2	0	13	5	•	3	10	0
SAS Institute, Inc. SAS	14	36	33	35	36	31	32	27	12	11	5	11	0	1	0	1	1	1	1	13	0	0	10	0	2
SDI EPAT FLEET FMAINT GRASP	41 7 48	35 36 35	33 34 35	32 34 35	32 33 34	31 30 31	31 30 31	30 32 30	8 3 23	5 1 8	21 6 44	31 2 23	4 0 2	9 3 20	20	3 0 1	1 9 2	2 0 3	103	34 6 4()	6 1 5	003	35 5 40	5	1 () 1
Sultaare AG of North America, Inc. ADABAS	12	35	3 5	3 6	37	29	3 5	31	10	1	3	В	0	з	ĩ	0	1	0	(10	3	0	0	0	2
Suftware International Corp Accounts Payable Accounts Beceivable General Lodger Q PAC (Payroll)	8 8 25 6	2 4 2 5 3 2 2 5	2 1 2 6 2 6 2 6	2 G 2 B 2 G 2 3	26 2 n 2 9 2 5	23 25 25 15	2 8 2 9 2 9 2 8	23 26 28 27	4 3 19 19 5	1 1 3 0	1 2 2 0	4 1 18 3	1 2 () 0	0 1 5 1	3 1 5 5	3	2 2 4 1	0 0 0	1.0	4 3 12 2	3 4 12 1	0 () () () () () () () () () () () () ()	3 2 12 6	3 5 12 0	2 2 5 0
SESS Inc SESS	48	3 5	29	31	34	34	2 9	28	39	18	τ,	39	2	6	6	7	ອ	6	1	38	11	0	26	10	10
Stockholder Systems Inc PEP	15	3 3	2.3	2.6	27	31	3.2	2.5	8	-	2	10	0	1	5	12	4	0	2	fi	9	1	1	d	F2
Systems Management Inc. (SMI) Business Control Programs	7	33	2.7	3 3	3 3	2 4	29	25	5	3	1	2	0	0	1	1	0	0	1	5	2	0	1	3	3
System Support Software, Inc QUIKJOB II: III	29	36	3 5	37	36	3 2	32	30	23	19	8	26	0	0	0	3	i)	.1	1	25	4	¢	22	3	2
Systematics Inc EZPERT	5	32	28	3 ()	28	2.6	28	28	2	0	1	Ą	0	1	0	0	1	0	C	1	4	0	3	2	1
TCC Inc FIFE 70	6	21	24	2.3	22	2.5	2 5	23	?	0	-	13	1	1	5	-	0	0	1	1	+6	0	0	3	1,
Tektrome Inc. Advanced Graphics Terminal Control System	6 6	311	3 () 3 ()	27 26	33	21	25	1 0	1 3	2	t f	2 4	1	1	1		2	1 0	1,	2.4	42 E	1	[* [*		44 •1
Teplex Systems Inc Ter Liter	ť	33	3 2	33	3.3	23	3.3	30	2	3	ć.,	3	0	13	0	0	P	0	1	Ð		e	61	I.	e

APPENDIX G

Evaluation of System Features

DESCRIPTION	PMS	MSCS	CMCS	CINCOM	PROJACS
CPM Arrow Netowrk	Х	x	X	X	X
Precedence Network	х	X	X	-	Х
Network Drawing	-	-	-	-	Х
Estimating	-	-	**	-	-
Scheduling of Project Activities	Х	X	Χ.	X	Х
- Activity Time Status Report	Х	X	Х	Х	Х
- Milestone Report	Х	X	Х	X	Х
- Activity Bar Chart	Х	X	Х	-	-
- Updating and Revision	Х	X	-	-	
- Exception Reporting	X	(X)	Х	-	-/
- Job Site Reporting	х	-	-	-	-
Work Status & Progress Report					
- By Activity	Х	X	Х	Х	Х
- By Contract	X	-	-	x	Х
- By Facility	X	-	Х	-	-
- By Department	X	-	Х	-	-
Interfacing of Subnets	Х	-	-	Х	X
Procurement Scheduling	(X)	-	-	X	(X)
Tender Scheduling and Control	(X)	-	-	X	(X)
Resource Allocation	Х	Х	-	Х	Х
Resource Scheduling	X	X	-	X	Х
Resource Levelling	X	X	-	Х	Х
Manhour Projection & Control	X	X	-	X	Х

APPENDIX G (Continued)

DESCRIPTION	PMS	MSCS	CMCS	CINCOM	PROJACS
Cost Reporting By					
- Activity	x	Х	Х	X	Х
- Charge Numbers	X	Х	X	-	-
- Contracts	X	Х	Х	X	X
- Facility	Х	Х	Х	X	Х
- Responsibility	X	-	600 · ·	X	Х
- Account Number	Х	(X)	X	-	-
- Milestone	X	Х	Х	-	-
Subcontractor Accounting	(X)	-	(X)	-	-
Project Overhead	(X)	-	(X)	-	-
Capital Appropriation Status	(X)	-	Х	(X)	(X)
Escalation & Contingency	(X)	-	Х	(X)	-
Forecast Final Cost	X	Х	Х	X	(X)
Financial Plan and Status					
Report	Х	-	Х	-	-
Trends (Cost & Financial)	Х	Х	Х	X	-
Progress Payment	(X)	-	**	X	-
Cost Estimate Revision	(X)	Х	Х	X	-
Change Orders	Х	-	**	X	-
Owner Furnished Material	(X)	-	-	(X)	-
Historical Cost Information	X	X	Х	X	-
Management Summary Report	X	X	Х	(X)	-
Organization Analysis Table	X	X	**	X	-
Work Breakdown Structure	X	-	X	-	-

APPENDIX G (Continued)

DESCRIPTION	PMS	MSCS	CMCS	CINCOM	PROJACS
Accounts Payable	-	-	-	X	X
Contractor's Holdback	-	-	-	x	-
Accounts Receivable	-	-	x	-	-
Inventory	-	-	-	-	-
Cashflow	(X)	-	χ.	x	-
Payroll and Auditing		-	-	-	
Cash Advance Report	-	-	х	-	-
Capital Expenditure Report	Х	-	-	-	-
Purchase Order Register	-	-	Х	-	-
Cost Comparison Report	Х	X	-	-	7

Where 'X' stands for the existence of a particular feature in the program, '(X)' depicts that the program does not presently possess a particular feature but can be added to it with suitable modifications, and '-' stands for non-existence of the desirable feature and a lack of ability to modifications to add the feature to the program.

PMS - Project Management System IV MSCS - Management Scheduling and Control System CMCS - Construction Management Control System CINCOM - Computerized Project Management System PROJACS - Project Analysis and Control System

NEWFOUNDLAND AND LABRADOR COMPUTER SERVICES LIMITED

40 HIGGINS LINE, . ST. JOHN'S, NFLD. . P.O. BOX 9308 A1A 2Y3 . TELEPHONE 709 737-6100 1978 07 24

Mr. Zainnl Abedin Graduate Student Faculty of Engineering Memorial University of Newfoundland Elizabeth Avenue St. John's, Newfoundland AlB 3X5

Dear Mr. Abedin:

Subject: Package Purchase Costs vs. Package Development Costs

Confirming our conversation of a few weeks ago, the following estimates are based on my experience in this field:

	Packag	re Costs	Annual Maintenance Cost						
System	Purchase	Development	Purchase	Development					
	\$	\$	\$	\$					
Payroll	35,000	75-100,000	4,000	10,000					
General Ledger	35,000	75-100,000	3,000	1,500					
Accounts Payable	25,000	75-100,000	2,500	2,500					
Accounts Receivable	25,000	75-100,000	2,500	2,500					
Fixed Assets	20,000	50-250,000	2,000	5,000					
Inventory	35,000	75-150,000	4,000	10,000					

It should be noted that the Annual Maintenance Cost usually required for in-house developed systems is not done and within a few years the system is obsolete and the users are demanding a new system. In reference to Purchased Systems, the Annual Maintenance is almost always done giving the users a system that is always current and accurate.

- 2 -

Note! The In-House Development Costs are based on writing a system to suit one client only and they are not meant to put a worth on the package systems. The package system development would be a much higher cost.

Yours truly,

George A. Campbell Co-ordinator, Application Software

GAC/emcn

