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Abstract

We study methods to estimate regression and variance parameters for over-dispersed
and correlated count data from highly stratified surveys. A challenge with such data
is the large number of nuisance parameters which leads to computational issues and
biased statistical inferences. We develop a profile generalized estimating equation
(GEE) method that is more computationally efficient and compare it to marginal
maximum likelihood (MLE) and restricted MLE (REML) methods. We use REML
to address bias and inaccurate confidence intervals because of many nuisance param-
eters. The marginal MLE and REML approaches involve intractable integrals and we
used a new R package that is designed for estimating complex nonlinear models that
may include random effects. We conduct simulation analyses and conclude that the
REML method is the better approach among the three methods we investigate.

Our applications involve counts of fish catches from highly-stratified research sur-
veys. In the first application, we estimate the day and night (diel) effect for three
species from bottom trawl research surveys. In the second application, we estimate

the diel and vessel effects of two different snow crab surveys.
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Chapter 1

Introduction

The Negative Binomial (NB) distribution is commonly used for analyzing biological
count data with Poisson over-dispersion (e.g. Ross and Preece, 1985 [36]). The NB
distribution can be generated from a gamma mixture of Poisson random variables,
and this often motivates its use when there is between-individual heterogeneity in
the Poisson means. The variance is equal to the mean for the Poisson distribution,
but this is not necessarily so for the NB distribution. If ¥ ~ NB with mean p then
Var(Y) = pu+ k='p?, where k is called the dispersion parameter. The condition
Var(Y) > p is referred to as over-dispersion. In this thesis we use a Poisson-double-
Gamma (PdG) mixture model for count data, where the mixing component is based

on two gamma random variables to account for different sources of over-dispersion and



INTRODUCTION 2

correlation in the data. The resulting marginal distribution of a single observation
is not NB in form but the mean and variance are the same as those of NB random
variables.

Our objective is statistical inference about regression-type parameters based on
highly stratified count data; in particular, counts of fish caught in bottom-trawl sur-
veys. These research surveys provide important information for the assessment and
management of many fish stocks worldwide. The sampling unit is defined as the area
over the bottom covered by a trawl of specified width towed at a targeted fixed speed
and distance. The NB distribution is often suggested to be appropriate for modelling
catches from this type of survey (e.g. Gunderson, 1993 [19]; Kimura and Somerton,
2006 [22]), other types of survey fishing gear (e.g. Power and Moser, 1999 [32] ), and
commercial fisheries (e.g. Baum and Myers, 2004 [3]), although so-called delta dis-
tributions (e.g. Stefansson, 1996 [42]), where zero values are treated separately and
positive values are assumed to follow a lognormal distribution, are sometimes used.
Other approaches have been proposed, such as the Log Gaussian Cox Process (LGCP)
(e.g. Lewy and Kristensen, 2009 [25]), which is a mixture of Poisson-distributed ob-
servations with mean densities following a multivariate lognormal distribution.

Most trawl surveys in the Northwest Atlantic use a stratified survey design (e.g.

Doubleday, 1981 [17]), where strata are based on contiguous spatial areas with similar
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Figure 1.1: Stratified survey design for the southern Gulf of St. Lawrence off the
coasts of New Brunswick, Nova Scotia, and Prince Edward Island.

bottom depths (e.g. Figure 1.1). Strata are constructed so that in many cases it is
reasonable to assume that fish densities are homogeneous (i.e. identically distributed)
within strata. Strata are usually relatively small to account for complex patterns of
species occurrence related to bottom topography and sediment type (i.e. mud, sand,
rocks), ocean currents and water temperatures. Hence, most surveys have many

strata (25-200) and not many (< 10) samples per stratum.
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We assume data are sampled from H strata with n; sites per stratum. At a
particular site more than one observation (i.e. np; ¢ = 1,...,n;) can occur with
possibly different covariates. For example, in a fisheries survey there may be two
vessels with somewhat different gears used for sampling and these vessels may fish at
the same site to compare catch rates of fish. This is often referred to as comparative
fishing. If the vessels always fish in different strata then potential differences in the
fishing efficiency (i.e. p) of the vessels/gears will be confounded with differences in
fish density between strata. Sometimes both vessels are used in the same strata which
gives some information about differences in p between the two vessels/gears, given
the assumption of within stratum homogeneity. If both vessels fish at the same site
(i.e. paired tows) then this gives even better information on differences in p.

The model we propose for this type of data accommodates these sampling features.
Let Y},;; be a random variable for the j’'th observation in stratum h (h = 1,..., H)
and site i. We assume there is a stratum effect (py,), a site effect (,;) and a replicate
effect (vyii;) at site i. Yj;; is assumed to be conditionally Poisson distributed with
mean E(Y5ij|[Yhi, Yhij) = 10 YhiYhijThij, and variance Var (Yo |Yhi, Yhij) = 1o YhiYhijMhis»
where n;; is a function of a small number of regression parameters, denoted as Sy
and covariates xpijk, k = 1,...,p. For example, np;; = exp(d_p_; Be%nije) and Tpg

could be an indicator variable for vessel in which case p = 2. The pu;,’s are treated as
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fixed parameters to estimate. The 7;;’s are assumed to be independent and identically
distributed (iid) gamma RV’s with mean 1 and variance 1/ks, and the replicate effects
are assumed to be iid gamma RV’s with mean 1 and variance 1/k.. We expect
Var(yn) > Var(yn;) = ks < k. since we expect the between-site variability to be
greater than the within-site variability during repeated tows.

When the focus is on 3 then the uy’s can be considered as nuisance parameters.
However, k. and k, are not really nuisance parameters because they are important
for statistical inferences (i.e. confidence intervals) for 3. It is well known that when
H is large the resulting large number of nuisance parameters can cause bias when
estimating 3, k. and ks (e.g. Barndorff-Nielsen and Cox, 1994 [2]). We use an
example of the normal linear regression model to illustrate this. Let y be an x 1
vector of sample responses, 3 be a p x 1 parameter vector and X be a n X p covariance

matrix. We assume a linear regression model
y=XB+e€ where e~ N(0,0°1).
The ML estimators for 3 and o? are
BML = (X,X)_lX/.%

‘31%/1L =(y— XéMLY(?J - XBML)/”'
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/\2 . . .
oy, 1s biased since

and when p is large (i.e. p = n/2) the bias can be substantial. In Chapter 4 we study
a procedure for producing an unbiased estimator of o2.

For the stratified model setting, Sartori (2003) [37] and Bellio and Sartori (2006) [5]
showed that standard likelihood inferences may not be accurate unless n; > H on
average. Bellio and Sartori (2006) [5] found that the Maximum Likelihood Estimation
(MLE) relative bias for k. was over 50% for a highly parameterized NB model. They
suggested the MLE adjustment proposed by Severini (1998) [40] based on the modified
profile likelihood is convenient to use for stratified count data, and demonstrated
that this estimator had substantially lower bias than the MLE itself. Cadigan and
Tobin (2010) [12] examined bias and mean squared error for several estimators of k..
They proposed an adjusted double extended quasi-likelihood estimator of k. that gave
much improved performance compared to the MLE. In this thesis we use restricted
maximum likelihood estimation (REML) to deal with this bias problem, and we show
how this can be easily implemented with the software we use.

The marginal (with respect to replicate effects) distribution of Y};; is NB, condi-
tional on site effects. This is shown in Appendix A, and more information is available

in Cameron and Trivedi (2013), who give a detailed description of Poisson random
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effects models. The conditional mean is E(Yi;|Vhi) = frij = nYrifnij (see Appendix
A) and the variance is Var(Yaij|vmi) = tnij + ,LL}QM-]- /kc, where k. is the NB dispersion
parameter. The marginal distribution of Y};; with respect to the random site effects
(i) is not NB. For sites with no replicates (i.e. np; = 1), the marginal distribution

of Yhil is
_ k?s kfcu‘%ﬂr(y + k) tyths—lehet

JfYhin =y) = (k)T (k)T (y + 1) /0 ot ) dt,

with E(Yhi) = pinin = nnni and Var(Yai) = pnia + (i, ke, where ky = kg - ke /(1 +
ks + k.) (see Appendix A). If there are multiple observations at a site then there
will be marginal correlations in these Y41, ..., Yyin,, because there is a common 73, in
their distribution. For example, if there are two replicates at a site then the marginal

distribution of Y};; and Y}, is

kfs kgkcﬂzhﬂiﬁgr(yl + kc)r<y2 + kc)

Fhin =y Y = 02) = =5 ST i+ DT + 1)

00 pyityzths—1 kst
- /0 (hint + ke)vithe (ppiot + k)2 the a,
(See Appendix A for the derivation). The mean of Yy;; is E(Yaij) = fthij = Hr0hij,
the marginal variance is Var(Yyi;) = pnij + (nij)?/ki, and the Cov(Yiir, Yiie) =
Unit - fniz/ks. The distribution for more than two replicates can be derived similarly,
and the forms of marginal variance and covariance are the same.

The model involves regression parameters 3, variance parameters k, and k;, and
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a large number of nuisance parameters p. There are two main challenges for es-
timation and statistical inferences about @. The first challenge is the difficulty in
calculating the marginal likelihood function which involves intractable integration.
The second challenge is the large number of nuisance parameters which cause bias in
the estimation of variance parameters kg and k., regression parameters 3 and their
confidence intervals. A biased confidence interval for 3 means the probability that 3
falls in its (1 — «)% confidence interval is not equal to (1 — a)%. Such bias is often
caused by the biased estimation of the regression and variance parameters.

In the Chapter 2 we use generalized estimating equations (GEEs) to estimate
the model parameters. This approach is commonly used for correlated count data
(e.g. Paul and Zhang, 2014 [31]). Moreover, we propose a profile GEE approach
that is more computationally efficient than the usual approach, especially when there
are a large number of nuisance parameters. When we first started this research,
GEE seemed like the most promising approach. However, we then learned of new
software that made MLE more practical. In Chapter 3, we show how the model can
be estimated by marginal MLE. This involves integrating the 7,;’s out of the joint
likelihood using a state-of-the-art software package called TMB (e.g. Kristensen,
2013 [21]) that used the Laplace approximation for the marginal likelihood. Compared

with the GEE approach, MLE using TMB is easy to implement and the computational
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speed is much faster. These approaches are two ways that approximations are used
to deal with the intractable integration involved in the marginal likelihood function.
Neither approach addresses the bias problem caused by many nuisance parameters.

In Chapter 4, we use the REML approach to address the bias in variance parameter
estimators and inaccurate confidence intervals for regression parameters because of a
large number of nuisance parameters. REML is often considered to be an impractical
method for complex non-linear and non-normal estimation problems; however, we can
implement it easily with TMB. In Chapter 5 we use a simulation study to compare
these three methods: GEE, MLE and REML. We also investigate the impact of
different data characteristics (i.e. sample size, number of strata, etc) on the estimation
of B, k. and k;. We use ANOVA to help summarize the simulation results.

Chapter 6 involves two applications. In the first application, we estimate the
day and night (diel) effect of trawling on three species using GEE, MLE and REML
methods. The data were obtained from bottom trawl research surveys. We also
compare our results with those obtained in a previously published study. In the
second application we estimate the diel (day and night) and vessel effects of two
different snow crab surveys conducted in the southern Gulf of St. Lawrence during

2003-2014.




Chapter 2

Generalized estimating equation

method

2.1 Introduction

The generalized estimating equation (GEE) method is an extension of generalized
linear model (GLM) to correlated (e.g. longitudinal) data (e.g. Liang and Zeger, 1986
[26]), and has origins from the quasi-likelihood methods introduced by Wedderburn
(1974) [48] and Nelder and Wedderburn (1972) [29]. In this section we review the
GEE method and apply it to our stratified model in the next section.

In the general model framework, we assume there are N clusters observed in a
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cluster sampling design. For a specific cluster i, we use y; = (vi1, Yi2, " -, Yin;) tO
denote the vector of responses, and x;, a p X n; matrix to denote the corresponding
covariates. The marginal expectation of y;; is p;;, and is assumed to be a function
of the covariates, which can be expressed as h(x;;, ®), where h is a known function
and © is a p x 1 vector of regression parameter. Observations between clusters are
assumed to be independent, but within clusters they are assumed to be correlated
with each other.

The GEE functions proposed in Liang and Zeger (1986) [26] for regression param-

eter © can be written in vector form

op'i(©)

U(®) = Z az—(_)vi_l<yi — (), (2.1)

where U(©) is a p x 1 vector, pu;(©) = (11;1(0), p1i2(0), - - - 1, (O))" is the marginal
mean vector for the response of cluster ¢ with p;;(®) = h(z;;,®), and V; is the
covariance matrix of cluster i. The GEE estimators of © is derived by solving Eq.(2.1)
equals to 0. This solution can be obtained via the Newton-Raphson method. We start

with initial value ©®). The updating algorithm we use to estimate © is

oU(©)
96’

—1
U+ — @) _ { } U@,

e=00)

There are two advantages with using the GEE method. Firstly, the GEE method
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doesn’t involve the marginal likelihood, which is often impossible to obtain analyt-
ically because of intractable integrals. These integrals can be difficult to compute
numerically and this may also lead to estimation problems when using nonlinear op-
timization methods because some numerical integration methods can introduce sharp
irregularities in the likelihood surface. The second advantage is that GEE estimators
of regression parameters are consistent when the mean structure (p;, 7 =1,2,--- | N)
is correctly specified even if the covariance matrix (V;, i = 1,2, --- | N) is mis-specified
(Wang and Carey, 2004 [45]). However, a disadvantage of GEE is that it does require
calculation of the marginal mean and covariance which may be difficult in some cases.

In this chapter, we develop a GEE method to estimate model parameters due
to the challenge of deriving the marginal likelihood function for the Poisson-double-
Gamma (PdG) mixture model. We develop a profile GEE method that is computa-

tionally more efficient than the standard GEE method.

2.2 Profile Generalized Estimating Equation

We develop a GEE method to estimate 3 and u for the stratified count data model.
Recall from Chapter 1 that we use Yni = (Yni1, Yni2, - - * Ynin,,,)’ to denote the vector of

responses at site 7 in stratum h, and @x5; to denote the corresponding covariates, which
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is a p X nj,; matrix. The marginal expectation of yp; is pni; = exp(on + Y r_y BrThijn)

where a;, = log(ps). Let B = (B1,-+,06,), @ = (a1, ,ag), © = (B',a’)" and

Bri = (Whits fhios -+ s fhing;)'- The GEE functions for © can be written in vector
form,
a[_L .,;/ @ _
v©) =3 Oy s - u(©)) 22)
hyi

where U(©) is a (H + p) x 1 vector. V,; is the covariance matrix of y,, in which the
m’th diagonal element V,;(m,m) is the variance of Yj;,, and the m,n’th element is

the covariance between Yj;,, and Y,,.

K
Viwi(m,m) = fipim + l%m
t

p
= exp(z BrThimk + o) +
k=1

exp(2> 0 BeZnimk + 20u,)

: o (2.3)

Vhi(m,n) _ Mhin]g/vbhin

eXP(Zzzl BT himk + Zi:l BrZhink + 2ah)
ks

(2.4)

Y

where l%s and kAt are estimates of the variance and correlation parameters k; and k;
(see Section 2.3). We solve Eq.(2.2) equals to 0 via the Newton-Raphson method to
estimate B3 and . Starting with initial value ©(), the updating algorithm that can

be used to find this solution is

QU+ — gl) _ {
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The GEE function in Eq.(2.2) is inefficient when © is large. Since e is not of
immediate interest, we treat them as nuisance parameters. In likelihood-based esti-
mation we often use the profile likelihood approach to get an approximate likelihood
function just for the parameter of interest, in which we replace the nuisance parame-
ters with their maximum likelihood estimators when the main parameters of interest
are temporally assumed to be known. Let 6 denote the parameter of interest, A de-
note the nuisance parameter and S denote the data. The the profile likelihood for 6
1s

L(9)S) = sup L(0,)|S).
We use the same idea with the GEE method to deal with the nuisance parameters.
We replace « in the estimating function by its estimator conditional on 3, which we

denote as @ = &(B). This leads to the profile generalized estimating equation for 3,

v = 3 eSOy iy i 5 0B

This is a p x 1 estimating equation whereas Equation (2.2) is (H + p) x 1 and when
H is large the difference in the number of estimating equations to solve is large.

Let B9 be the initial value of 8. The algorithm for estimating the regression
parameters is to iterate between the following steps until convergence is achieved:

Step 1. Treating %) as fixed and known, estimate a(8™*) by solving U(a; %) = 0
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for e, where U(a; B%)) = [U(ar; B%)), U(ag; BM), - - Ua; B*))) and

ou, . (BF)-
U(an; BY) = Z : hlgih ’ah)vf:il{yhi — i (BY; o)} (2.5)

7

Step 2. Estimate B8 by solving

v = 3 BBy oy, Bl =0 (20

Note that op'y;(an; B)/0ay, = p'p,;(an; B) for all h and B so that Eq.(2.5) is
U(an; ,3(k)) = Z B ni(n; ﬁ(k))V;il{yhi — Hpi(an; 5(k))}- (2.7)

We use Eq.(2.7) and U{B; a,(B)} = 0 to derive day(3)/08. Differentiating both

sides with respect to 3 and using the chain rule, we obtain

OU{B; an(B)} _ , _ 9U(Bon) n oU(B; an) an(B)
B 9B ap=an(B) oy ap=an(8) o
dan(B) _ {am; o) } OU(B; an)
oB L T ) OB lar=ane

Hence, the term op',;{3; an(B)}/03 of the estimating equation of 8 in Eq.(2.6) is

{uhn{ﬁ; an(B)} - {3045[(3@

o i B AR (B)} - {a@ahéﬂ) +a:hm,”.}].

ou' 1B an(B)}
0B N

+ whil}vﬂhiZ{IB; an(B)} - {8@5;),3) + mhiQ}a

The algorithm for 3 in Step 2 (Eq. 2.6) we use is

G+ _ g6 _ JOUB) }_1. ()
R N R
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(See Appendix B.4 for the initial value 8?.) The algorithm for o in Step 1 (Eq.

2.5) is

o) — o) _ {aU(O‘)

—1
. ©)
da aa(j)} Ule).

A more detailed description of the profile GEE is given in the Appendix B.1.

The profile GEE approach is more efficient to compute than the general GEE
approach. Step 2 in the profile GEE procedure often took more than 10 iterations
to solve for B, while Step 1 took at most 4 iterations to solve for a with the same
convergence accuracy. Compared to the GEE in Eq.(2.2), the profile GEE was much
more efficient because solving the H + p dimensional GEE takes (10 x H + 10 X p)
steps or more, whereas for profile GEE it takes (4 x H + 10 x p). When H is really

large this makes a big difference.

2.3 Covariance parameters estimation

In the PAG mixture model we have two covariance parameters k. and ks (see Eq.(2.3)
and Eq.(2.4)). Reliable estimation of the variance parameter k. and the correlation
parameter k; is fairly important since the efficiency of the GEE estimator depends
on how closely the estimated covariance structure approximates the true covariance

structure (e.g. Crowder, 1995 [16]). We estimate k; = ks - k./(1 + ks + k.) instead of
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k. for simplicity, since k; is the leading variance parameter and is a combination of
ks and k.. Direct estimation of k. is more complicated.

Some GEE methods have been proposed to estimate the covariance parameters.
Given the regression parameter estimates B, the GEE method proposed by Prentice

(1988) [33] is

aTh i/
-1
U(O) = 80’ CcCov (wh,i)('wh,i — Th,i), (28)
h.i
’ 2 .2 2 !
where 8 = (K, ks)', Whi = (71, i -+ s Thing,; > ThilThi2, " ThilThing, > Thi2Thi3, * 'Thi(nhi—l)rhinhi) )

~

Thik = Ynik — tnie(B) and Th; = E(wp;). The GEE estimator of 6 is derived by solving
U(@) = 0. This solution can be obtained via the Newton-Raphson Method. Exten-
sions are the GEE1 (Liang el al., 1992 [27]) and GEE2 (Zhao and Prentice, 1990 [50])
methods. Both GEE1 and GEE2 estimate regression and covariance parameters si-

multaneously. The GEEL1 is

-1

9ni cov(Yni) 0 i — Mhi
0B Yhi Yhi Hhi

Ui(B;0) = Z
h,i 0 ag—é” 0 cov('whi) Whi — Thi

where (3 is the regression parameter and p,; is the marginal expectation of y,,, 6,

wp; and Ty; are the same as defined in Eq.(2.8). The GEE2 is

-1

i cov(yni) s s
3 Yni cov(Yhis Whi) Yni — Hhi
Us(B:6) =)
h,i 8‘)’,'” aTl{n

o8 96" cov(Whis Yni) cov(wpy;) Whi — Thi
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GEE1 and GEE2 estimators can be obtained via the Newton-Raphson method. If
the mean and covariance structures are correctly specified, then GEE2 estimators are
more efficient than GEE1 estimators and are nearly as efficient as MLE’s (Liang, Zeger
and Quash, 1992 [27]). However, both GEE1 and GEE2 are difficult to solve for the
PdG model, due to the difficulty in constructing the covariance matrix (Sutradhar,
2003 [43]) and the computational difficulties when there are many replicates in one
site. For example, if there are 6 replicates at one site, cov(wp;) would be a 15 x 15
matrix which involves mixed moments of order four (e.g. E(7pi17hia"hisThia))-

Many other methods have been proposed to estimate the covariance parameters.
Chaganty (1997) [14] proposed a quasi-least squares (QLS) method to estimate the
correlation parameter k,. However, these correlation parameter estimators of this
method are always biased (e.g. Wang and Carey, 2004 [45]). Wang and Carey
(2004) [45] proposed a pseudo-likelihood method to estimate ks and this method
corrects the bias of QLS estimator. Moreover, Wang and Zhao (2007) [47] proposed
a modified pseudo-likelihood approach to estimate the variance parameter k;. The
pseudo-likelihood approaches are preferable to us than the GEE1 and GEE2 meth-
ods since they don’t involve the third and fourth order moments of response and the

mixed moments of response.
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Zhang and Paul (2013) [49] studied a GEE method for variance parameter estima-
tion based on the squared residual regression method (i.e. Crowder, 1995 [16]). They
showed that this estimator is at least as efficient as the modified pseudo-likelihood
estimator. Hence, we use this method to estimate the variance parameter 7 = 1/k;.
Given the regression parameter estimates ,3, the GEE function for the variance pa-

rameter of our model is

A T
Ui = 3 PN g B @9)
hyi

where Thi = Yni — ine(B), V(i (B)} = ma(B) + T2, (B) and Via(r) is a diag-
onal matrix which equals to var(r;;?). Third and fourth order moments of ys; are
required to calculate var(r;;?). We approximate these moments using NB moments
(See Appendix B.2). Hence, the consistency of the estimate of 7 should not be affected
(e.g. Zhang and Paul, 2013 [49]). The estimator of 7 is derived by solving Eq.(2.9)
equals to 0 via Newton-Raphson method (See Appendix B.2). This GEE approach
is preferable to us than the GEE1 and GEE2 methods since it doesn’t involve the

mixed moments.
This GEE method (e.g. Zhang and Paul, 2013 [49]) can’t be used to estimate the
correlation parameter k. However, we can still use pseudo-likelihood to estimate k.

We could have used the pseudo-likelihood approach for k;; however, in preliminary

investigation we found that this approach was not as good as the GEE proposed
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by Zhang and Paul (2013) [49]. This is why we use the 2 different approaches for
k; and ks. Wang and Carey (2004) [45] demonstrated good accuracy of pseudo-
likelihood estimators of variance and correlation parameters for incomplete Gaussian
measurements, clustered lognomal, and clustered Poisson data. We use this method
to estimate the correlation parameter. The covariance matrix V', in Eq.(2.2) can be

decomposed as

1 1
Vi = Ap; (k) Ryi(ky, k) Ay (ki) (2.10)

(See Appendix B.2 for the decomposition). Let £ = 1/k,. Given estimates of regres-

sion parameters B and variance parameter 7, the pseudo-likelihood function for £ is

U(€) = trace[Py;(7, ){€ni(7)eni'(7) — Rni(7,6)}] (2.11)
h,i
where €5,i(7) = An;/*(F){yni — pri(B)} and
Pi(7,6) = Ry (7,6 {ORRi(7,€)/0€} Ry ' (7,€) (See Appendix B.3). The esti-
mator of ¢ is derived by solving Eq.(2.11) equals to 0 via Newton-Raphson method.
The algorithm to estimate 3, 7 and £ is:
1. Start with the initial value 8, 70 and £©.
2. Given 8, 70) and €U, obtain an estimate 70 using Eq.(2.9);
3. Use BY), €@ and the updated 7U+Y to obtain an estimate U using Eq.(2.11);

4. Use the updated 701 and £U+1 to obtain an estimate Y™V using Eq.(2.5) and
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(2.6);

5. Repeat the process until convergence is achieved.

2.4 Variance estimate

Under mild conditions, the GEE regression estimators are consistent and asymp-
totically normally distributed, that is B ~ N(B, VB) asymptotically. The variance
of B can be estimated via the 'sandwich estimator’ proposed by Liang and Zeger

(1986) [26]. The sandwich estimator has the following form

Vg = My ' My My, (2.12)
where

Z D}i(B)Vii(B) ™" Dni(B),

Z Dj, th (ym' - “hi(B))(yhi - Nhi(B))/Vhi(B)ithi(@)v

and Dy;(8) = Opni(8)/08, py,; and Vj,; are the marginal mean and variance of y,,;.
Unfortunately the profile GEE estimators for 3, k;, and k, are fairly complicated
to implement and not simple to modify. In the next chapter we will decribe an

approach that is much easier to implement and modify.




Chapter 3

Marginal maximum likelihood

using TMB

In Chapter 2 we used a GEE approach to estimate the regression and variance pa-
rameters of the PdG mixture model. The main benefit of the GEE approach is that it
doesn’t involve the marginal likelihood, which may involve some intractable integra-

tion. However, the GEE method is difficult for the PdAG model due to the following

issues:
1. The profile GEE involves difficult calculations and tedious programming.

2. The simulation speed is too slow (See Table 5.9 in Chapter 5).
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In this chapter we review the penalized quasi-likelihood approach and the marginal
maximum likelihood approach using TMB to estimate the PdG model. We do not im-
plement penalized quasi-likelihood estimators but we do use the approach to motivate

our marginal maximum likelihood approach.

3.1 Penalized Quasi-likelihood

Breslow and Clayton (1993) [9] proposed the penalized quasi-likelihood (PQL) method
to estimate generalized linear mixed models (GLMM) with normal random effects.
They used the Laplace approximation (see Section 3.2.2) to derive the marginal quasi-
likelihood.

Assume there are N clusters observed in a cluster sampling design. We use
y = (y1,y2,- -+ ,yn) to denote the responses, X = (x1,xs, - ,xy) to denote the
corresponding covariates, and 3 to denote the regression parameters. We assume a
vector b of normal random effects b ~ N (0, D(6)), where 6 is the variance parame-

ters. The conditional expectation of y given b is assumed to be
E(ylb) = p® = h(XB + Zb),

where Z = (21, 29, - , zy)’ is the corresponding covariates. The conditional variance
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of y given b is assumed to be

Var(ylb) = ¢ - v(p?).

where ¢ is a dispersion parameter which could be known or not known and v(.) is a
known variance function.

The integrated quasi-likelihood function for (3, 0) is defined by

(150) o | D|-V/? / exp{(b) }db, (3.1)
where
1 < 1
b)=—— di(ys; ) — Sb*D b
K’( ) 2¢; Z(ylaﬂ’z) 2 ’
and

i
Yi — 1
di(yi; i) = —2/ dp
y V(W)

denotes the deviance measure of fit. In Eq.(3.1), ¢l(3,60) denotes the log quasi-
likelihood for the data. The main difficulty lies in the integration of the random
effects in the deviance function.

Breslow and Clayton (1993) [9] used Laplace approximation for the integral in

Eq.(3.1) which yields

1 1 ~ -
4l(B.6) ~ 3 log |D| - log k" (B)] — k(B). (32)




3.1 PENALIZED QUASI-LIKELIHOOD 25

where b = b(83, 6) is the solution to

N

PN e ¢ e L2 Ty
w(b) = 2¢v(u?)g’(u?)+D b=0

that minimize x(b), where g = h™'.
k"(b) = ZZWZ+D'+R
~ ZWZ+ D, (3.3)

where W is a N x N diagonal matrix with diagonal terms w; = {¢v(1?) [aha—“() PRI

The remainder term

Ny O
R = 2@1 i) ’ab{gbv(u?)g’(u?)}

has expectation 0 and is of lower order than the two leading terms in Eq.(3.3). Com-

bining (3.1)-(3.3) and ignoring R leads to
~ _1 t _ _ Trtp-—1p
al(8.6) ~ — log|I + Z'W ZD) Zd vis; 12) b Db, (3.4)

In the estimation procedure, we first estimate ([3 0) for fixed 6 and 3 by
solving k’(b) = 0, then we obtain 3(8) for fixed 6 by maximizing the last two terms
of Eq.(3.4)

1 15
Zd Vi ,uz — -b'D7'b.
2
We obtain 8 by maximizing ¢l(3(8),0) or ¢l,(3(6),8) (see Eq.(4.1) in Chapter 4).

The PQL estimator of 3 is B(6).
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The PQL method is not directly applicable to the PAG model because the random
effects of PQL are assumed to be normally distributed while the random effects of PAG
model are gamma distributed. We could define a normal random effect b ~ N(0,1), a
gamma random effect 7 ~ I'(a1, a3) and use F; and Fy, the corresponding CDFs, to
model v as a function of b. We can then modify the PQL for gamma random effects

by replacing b with v in the model, and use the random effect link function
Fy [Fy(b)] ~ T(on, o).

(e.g. Robert and Casella, 2013 [35]):

If X is a continuous random variable with CDF F', then the random variable U =
F(X) follows a uniform distribution on [0,1]. In converse, if U has a uniform dis-
tribution on [0,1], F~ is the generalized inverse of F', then F~(U) has distribution
F.

However, in our case the PQL involves difficult calculations (such as I;) and is
difficult to implement. In the next Section, we will investigate a marginal maximum
likelihood approach to estimate the PAG model. This approach involves integrating
the gamma random effects out of the joint likelihood function using the Laplace
approximation similar to PQL; however, we use TMB, a new software package, that

is developed for such situations.
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3.2 TMB: Automatic differentiation and Laplace

approximation

Template Model Builder (TMB; e.g. Thorson et al., 2014 [44]) is a free and open
source R package (e.g. R Core Team, 2014 [34]) that is designed for estimating
complex nonlinear models that may include random effects. The user only has to
define the joint log-likelihood function of the data and (i.e. conditional on) the ran-
dom effects as a C++ template function. Other operations such as integration and

calculation of the marginal score function are done in R.

3.2.1 Automatic differentiation

Automatic Differentiation (AD; e.g. Fournier et al., 2012 [18]), also known as Com-
putational Differentiation or Algorithmic Differentiation, is a set of techniques that
numerically differentiates a function, which frees us from calculating and incorporat-
ing the derivatives. Two methods, ”source transformation” and ”operator overload-
ing” are commonly used to implement automatic differentiation. CppAD (e.g. Bell,
2012 [4]) implements the operator overloading approach which is easier to implemente
and use compared with ”source transformation”. The TMB R package uses CppAD

to provide up to third order derivatives of the joint log-likelihood function that the
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user writes in the C++ template (see Appendix C). These derivatives are required

for the Laplace approximation of the marginal likelihood.

3.2.2 Laplace Approximation

The Laplace approximation (e.g. Skaug and Fournier, 2006 [41]) is used to ap-
proximate the intractable integral in the marginal likelihood (Eq. (3.5)). Let y =
(y1,Y2, -+ ,yn)" be the vector of response variables, A = (A1, Ay, -+, \;)’ be the vec-
tor of latent random effects, and let @ = (6, 0s,--- ,0,,) be the vector of parameters
(fixed effects). Let fg(y|A) denote the conditional probability density function of y
given A, and let go(\) denote the marginal probability density function of the random
effects A. The marginal likelihood function for € is defined by integrating out the

random effects A from fg(y|\)ga(N),

L(6) = / Jo(yN)go(A)dA = / exp{h(X, 0)}dA, (3.5)

where
h(X,0) = log{fe(y|A)} +log{ge(A)}

is the joint penalized log-likelihood of @ and A. The main computational challenge
is in computing the integral in Eq.(3.5) when there is no analytical solution. TMB

uses the Laplace approximation in Eq.(3.5), which yields the marginal likelihood
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approximation

L*(0) = det{H(0)}'/? exp[h{\(8), 8}], (3.6)

where

~

A(B) = argmax h{X(9),6},

82
H(0) = = 5h(X0) x50

and det{H ()} denotes the determinant of H(6). The term exp[h{\(8),0}] in
Eq.(3.6) is a profile likelihood, which treats the random effects A as nuisance param-
eters and 0 as the parameters of interest. The hessian, H, is evaluated by CppAD.
Using the AD and Laplace approximation greatly simplifies the parameter estimation
of hierarchical models. The TMB user just needs to specify the joint log-likelihood
function h(A,0). TMB uses the Cholesky decomposition of H(8); therefore, the
Laplace approximation is well defined only if H(8) is positive definite.

In an R session, we read the data, dynamically link the C++ function template,
set up the initial values for 8, specify the random effects, and optimize the objective
function. TMB automatically provides a standard error report for é, and also any

differentiable function of 8, ¢(0) that the user specifies, by using the d-method

06(6) {82{logL*(9)}} () } (3.7)

Var(¢(6)) = _{ 06’ 0006’ B

0=06




3.2 TMB: AUTOMATIC DIFFERENTIATION AND LAPLACE APPROXIMATION 30

3.2.3 Model implementation

In this section we describe the PAG model implementation in TMB. Recall from
Chapter 1 that the conditional distribution of the response variable Y},;; given random

effects vy, is Negative Binomial distributed

Ty + k) < Fhig * Vi )y( e )k
Yiii = i) =
f(Ys J Y| Vhi) [(k)T(y + 1) hij * Yhi + ke Hhij * Vi + ke

where pu,;; = exp(ay, + wﬁnj -3). The random effects ~y,; are Gamma distributed with

density function
Floms =) = ot eh
Z D(ks)

kls

For convenience we estimate the logarithm of kg and k., which are (—oo, 00) whereas k;
and k. are (0,00). The fixed effects model parameters are 8 = (3, o, log(ks), log(k.)),
and the vector of latent random effects are A = log(7y).

We first specify the joint likelihood function in the C++ template (see Appendix
C). TMB then calculates the marginal likelihood function using the Laplace approx-
imation. The final step is to optimize this objective function in R.

Below is the operations we use in an R session:

[1] library (TMB)
[2] compile("ML.cpp")

(3] dyn.load("ML")
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(5] parameters <- list(log_kc=1,

(6] log_k=0,

(7] log_eta=rep(0,tmb.data$nstratum),
(8] beta=rep(0,5),

9] log_site=rep(0,tmb.data$nsitep))

[11] parameters.U <- list(

[12] beta=rep(Inf,5),

[13] log_k=2.3,

[14] log_kc=3.4,

[15] log_eta=rep(5,tmb.data$nstratum))

[17] parameters.L <- list(

[18] beta=rep(-Inf,5),
[19] log_k=-1,
[20] log_kc=-1,

[21] log_eta=rep(-10,tmb.data$nstratum))
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[23] 1lower = unlist(parameters.L)

[24] wupper = unlist(parameters.U)

[26] obj <-MakeADFun(tmb.data,parameters, random="log_site",DLL="ML")

[28] system.time(opt<-nlminb(obj$par,obj$fn,obj$gr,lower=lower,upper=upper))
[29] rep<-sdreport(obj)
[30] summary(rep,"fixed")

[31] summary(rep,"report")

The first line loads the TMB package. The second line compiles the C++ template
and the third line links to that. The fifth to ninth line includes the initial values
for the parameters, both fixed effects and random effects. Notice that the names of
parameters should correspond to those in the C+4 template. Next we set up the
upper and lower bounds for the regression and variance parameter estimates, as well
as for the nuisance parameters. Line 26 defines 'obj’ containing the data, parameters,
also specified the random effects. The last four lines optimize the objective function

and generate a standard report.




Chapter 4

Restricted Maximum Likelihood

Method

The maximum likelihood (ML) method does not take the degrees of freedom of fixed
effects into account when estimating variance parameters. Hence, the estimators of
the variance parameters ks and k; may be very biased and inefficient, when there are
a large number of nuisance parameters. Cadigan and Tobin (2010) [12] demonstrated
this for k; in a fixed-effects model (i.e. no replicates or random effects) for highly-
stratified NB data. In this chapter we use restricted maximum likelihood (REML)
estimation, also known as residual maximum likelihood estimation, to address this

issue.
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The REML method was first proposed by Anderson and Bancroft (1952) [1] for
balanced data and was extended by Patterson and Thompson (1971) [30] to the
estimation of variance components in normal linear mixed models (see Section 4.1).
The basic idea of REML is to maximize the part of the likelihood which is invariant
to the fixed effects. The REML method was extended by Schall (1991) [38] and
Breslow and Clayton (1993) [9] to generalized linear mixed models (GLMM) when
normal random effects were introduced. Breslow and Clayton (1993) [9] use a term
—Llog | Xt*V1X]| in ql(B(8), ) (see Eq.(3.4) in Chapter 3) to make the degrees of

freedom adjustment. This REML function is

- 1 1 1 - _ -
0(B(6),6) ~ —3 log V| = S log | X'VTIX| = (Y — XB)'VI(Y - XB), (4.)

Lee and Nelder (2001) [24] proposed a new REML method for generalized linear mixed
models (GLMM) with non-normal random effects based on the double extended quasi-

likelihood (DEQL).

4.1 REML for normal linear mixed models

In this section we describe the REML method for linear mixed effects model with nor-

mal random effects. We do this to illustrate the technique and motivate the approach
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for complex survey count data. For normal linear mixed models, REML estima-
tors are based on choosing a linear transformation of the response variable so that
the distribution of the transformed response only involves the variance parameters.
REML is based on residuals calculated after fitting the fixed effects (e.g. Searle et
al., 2009 [39]).

We assume a normal linear mixed effects model

y=XB+ Z Ziu; +€, where €~ N(0,0°1,),

i=1
where y is a n x 1 vector of sample responses; 3 is a p x 1 vector of fixed effects; X is a
n X p covariance matrix; u; is a ¢; X 1 vector of random effects, with u; ~ N(0,021,,),

Cov(u;, uj) = 0; Z; is a n X ¢; matrix.
y~ N(XB,V),

where V. =31 07Z,Z! + 01,.
The REML function is derived from a linear transformation of y, denoted as k’y,

so that k’y contains no fixed effects; that is, for any 3
EKXB=0=kKX=0.

The form of k must be k' = ¢/(I — XX ) or k' = /(I — X(X’'X)” X"’) for any

¢’ (See Searle et al., 1998 [39] for the derivation), where X~ denotes the generalized
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inverse of X.

k'y ~ N(0,K'VE).

The REML equation is

1

Gy Py )V ) (42)

L(Vl]y) =
The REML estimator is derived by maximizing L(V'|y) in Eq.(4.2). We use an
example to show that the REML method can correct the bias in ML estimator of
variance parameter.

Example: Recall from chapter 1 that the ML estimator of o2 of the linear regression

model
y=XB+e where e~ N(0,0°1), (4.3)

is o3y, = (Y — X/BML)/<y - XBML)/”» where BML = (X'X)"'X"y. 63y, is biased

because

The REML function is

1 1 / / / — 4
f(0®y) = o2 K] 12 exp{—T‘z(k y) (K'k)"'(K'y)},

and the REML estimator of o2 is

.2 (Ky) (K'k) " (K'y)

g =
EML
R n
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/\2 . . . 2 .
Ofpuy, 18 an unbiased estimator of o since
~2 _ 2
E(rpmL) = 07, (4.4)

(See Appendix D for the derivation).

4.2 Integrated REML

From a Bayesian perspective, REML can be viewed as maximizing a marginal likeli-
hood for a hierarchical model (e.g. Searle et al., 1998 [39]). Let 6, = (3, u) denote
the regression model fixed effects and let 8, = (ks, k.) denote the variance parameters.
REML estimates of 8, can be derived by integrating Eq. (3.5) over 6, using a non-
informative prior. This means that the ”density” f(60,) = 1. The REML likelihood

function for 8, is

L(0,ly) = / / F(5,0,16,.7)f(+)06,07.

We will use an example to show the efficacy of this integrated REML.
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4.2.1 Integrated REML to estimate o of a linear regression
model

In this example we use the integrated REML to estimate o2 of Eq.(4.3). Recall that

the ML estimators of 3 and o? are
B = (X' X)' X'y,
omn, = (y — XBML),(y - XBML)/n
The likelihood function of 3 and o2 is

UBo) = g v ]~ gy~ XB) (- XB) |

We integrate the likelihood function over 3 and obtain the REML function

L(o®y) / L(B,0%y)d0

_ /ﬁxp{ - 5y~ Xy - XB) ap

XX\ { 1 }
- 22 xpl - —y(I-H)y,
(Vara?yr P 5,29 ( )Y
where H = X (X’X)7'X’. The REML estimator of o2 is
o _ YU -H)y
OREML — )

n—p
which is unbiased since

E(&IQ{EML) =0’
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(See Appendix D for the derivation).

4.2.2 Integrated REML in TMB

The integrated REML is often considered to be impractical for a mixture model with
non-Gaussian random effects due to the intractable integration over the fixed effects.
However, the Laplace approximation of the integral over the fixed effects can be easily
implemented in TMB since we only need to specify both 6, and « as "random effects”
in the R session, whereas other operations are the same as the ML method. Hence,
the C4++ template function of REML is the same as that of the ML method and the

only difference is we treat both 3, p and ~ as random effects in R session as follows:

obj <- MakeADFun(tmb.data,parameters,random=c("log_eta","beta","log_site"),

DLL="ML")

The estimation procedure of REML method is to:
1. Estimate the variance parameters ks and k. by using the REML method;
2. Using these variance parameter estimates ks and l%c, use the marginal ML method

to estimate the fixed effects 3 and p.




Chapter 5

Simulation Study on PdG Mixture

Model

5.1 Introduction

5.1.1 Simulation factors

In this chapter we present a simulation study to compare the three methods we
have studied: GEE, ML using TMB, and REML. We investigate the effects that
different study design factors (i.e. sample size, number of strata, etc.) may have on

the reliability of estimates and confidence intervals. Our preliminary investigation
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showed that the important factors are: the total number of strata H; the number of
sites per stratum ny, h = 1,2, --- H; the nuisance parameters p; and the covariance
parameters k, and k..

Therefore, we choose these simulation factors:

1. three "levels” of nuisance parameters, u, = 1,5,10, each the same for all H

strata;

2. low and median between-site over-dispersion, ks = 1 and 3, and within-site

over-dispersion k. = 5 - kg;

3. small and large number of strata, H = 25, 100;

4. number of sites per stratum, n, = 5,15,30 when H = 25, and n; = 5,15 when

H = 100;

5. p = b regression parameters, 3 = (—1,—0.25,0,0.25, 1), whereby the values for

B3 cover a range of effects, from small to large.

In fishery surveys, most of the sites only contain one observation, while some may
have replicates. Hence, we generate observations consistent with the fishery surveys
by generating only one observation at most of the sites and replicates at a smaller

number of sites. For example, when n;, = 5, three of the sites had one observation
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and the other two sites had 2 or 3 observations. The replicates we generate in each
site for different levels of n;, are listed in Table 5.1. Note that we did not use n;, = 30
for H = 100 since it is not a realistic scenario and the GEE estimator was slow for
this case. The three estimation methods can also be treated as three different factors,
therefore, we have a total of 90 factors (3u, X 2k x (2ny, + 3ny,) X 3method = 90).

Table 5.1: Number of replicate sites in the simulation study for each level of n,.

Replicates per site
n, 1 2 3 5 8

5 3 1 1 - -
15 11 2 1 1 -
30 20 6 2 1 1

5.1.2 Simulation Setup

We used R software to generate the random numbers. Recall from Chapter 1 that site
effects vy, ~ Gamma(ks, ki), replicates effects 7p;; ~ Gammaf(k,, kic), and response
variables Yy,i;|vhiYhij ~ Poisson(nYnivaiinnij), where nni; = exp(3_h_; BrThijr)-

The steps we use to generate random simulated data are

1. generate normal random numbers @, ~ N(0,1.5%), and compute Nhij =

exp(34_y Butnije);

2. generate gamma random numbers y,; ~ Gamma(ks, ki) and y;; ~ Gammal(k,, ki),
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3. generate response yp;; ~ Poisson(Ay;;), where Anij = 1nYhiVhijMhij-
In R we can’t generate a PdG random number directly.

In the model estimation, we set upper and lower estimation bounds for k,, k., and
M

e the upper bound for log(uy) is 5 and lower bound is —10;
e the upper bound for log(ks) is 2.3 and lower bound is —2.3;

e the upper bound for log(k.) is 2.3 when the true value of ks = 1, and is 3.4

when £k, = 3, the lower bound is always —2.3.

Initial values are an important issue since all optimization methods we use are
derivative based. The R procedure ’glm’ was first used to obtain initial values of 3
(see Appendix B.4) for the GEE method, and we used the upper bound of ks and the
lower bound of k; (k; = ks * k./(1 + ks + k.)) to be the corresponding initial values.
The initial values of 8, log(u), log(ks) and log(k.) were all set at zero for the ML and

REML methods.

5.1.3 Analysis Methods

We conducted N = 2000 simulations for each of the 90 factor combinations. We

choose 2000 simulations because we will examine the accuracy of confidence intervals
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(see below). Hence, there are in total 180,000 simulations. We focused on the bias,
standard bias (sbias) and root mean square error (RMSE) for 3, the bias for k
and k., and the coverage of standard linear-approximation confidence intervals for 3.
The bias of B, k; and k; is defined as the simulation average minus true value. The

A

standardized bias (sbias) of 3 is
N s
NP > (8, — B)
Sbl&S(ﬁ) = N : f,

where sd(Bj) is the standard deviation of Bj, which is a vector and depend on the

method being used to estimate. The root mean square error (RMSE) of B is defined

as
R 1L .
RMSE(B) = |+ >_(8, - B)*
j=1
We focused on three aspects of coverage. The 95% confidence intervals of 3 were
defined as

(3 —1.96 - sd(B), 3 + 1.96 - sd(3)],

~

where sd(3) is a vector and depend on the method being used to estimated, ”sandwich
estimator” is used for GEE method and for MLL and REML, sd(B) are provided by a

standard error report.

We computed the percent of simulations where:

CI. B were outside their 95% confidence intervals,
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LC. B were less than their lower intervals,
UC. B were greater than their upper intervals.

If « is the nominal probability of the upper confidence limit then the standard de-
viation of the simulation estimate of this probability is \/m where N is
the number of simulations. If o = 0.025 and N = 2000 then the simulation stan-
dard deviation is 0.0035 and the width of the simulation confidence interval for « is
2 x 2 x 0.0035 = 1.4% which is adequate for our purposes.

Convergence of the parameter estimates for REML and ML was very good; usually
100% and never less than 99%. For the GEE method convergence was usually greater
than 98%, sometimes between 95% and 98%, and worse in three cases: 1) k = 1,
H =25 n,=5,2) u,=>5,10 and k = 3, H = 25, and 3) n;, = 5 and pj, = 10. In the
worst case convergence was 89%. Note that our analyses are based on the converged

simulations.

5.2 Simulation Analysis

Simulation results of bias, standard bias (sbias) and root mean square error (RMSE)
for 3, the bias for ks and k., 95% confidence interval (C.1.) coverage for 3 and coverage

for the lower (C.L.) and upper limits (U.L.) for the three estimation procedures
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we investigated are presented in Table (E.1)-Table (E.18) in Appendix E. However,
results for each performance measure (e.g. bias) are based on three large tables and it
is very difficult to summarize the estimation results directly from these tables. Hence,
we use ANOVA to help summarize the simulation results. We treat the estimation
results as responses (e.g. bias, shias), the simulation factors (e.g. uy, H) as covariates,
and use R procedures 'glm’ and ’anova’ to summarize the results. For example, for

standardized bias, the R code we used is

>sum.sbias.beta<-glm(sbias method+beta+mu+k+H+nh, family=gaussian,
data=sim.beta.sbias)
>summary (sum.sbias.beta)

>anova(sum.sbias.beta)

We only present results for the factors (and 2nd order interactions) that explained
most of the variation in bias, standard bias, etc. The values in Table 5.2 is the percent
of total deviance explained by the factors and their interactions; larger values mean
the factor or the interaction is more important in determining the simulation results
(bias, sbias, RMSE, CI, LC, UC). Hence, we used ANOVA to determine the most

important factors impacting the simulation results.
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Table 5.2: ANOVA results for bias, standard bias (sbias), root mean square error
(RMSE), 95% confidence interval coverage (CI) and the upper (UC) and lower CI
coverage (LC) for 3. Values are the percent of total deviance explained by the factors
and their interactions.

factor&

interaction df bias sbias RMSE CI LC ucC
method 2 024 0.37 0.02 56.70 56.25 55.52
J¢; 4 7.69 9.58 0.01 0.13 040 0.62
Lbh 2 1.98 1.34  19.73  0.08 0.08 0.08
k 1 3.49 5.94 7.91 1.19 1.04 1.30
H 1 0.04 0.02 16.56 0.37 0.27 048
ny, 2 0.11 0.09 46.36 19.63 19.15 19.52
methodx3 8 42.01 36.17 0.00 0.16 0.37 0.32
methodxpu, 4  5.98 7.76 0.05 025 029 042
method x k 2 0.15 0.11 0.01 2.05 1.81 2.24
methodxH 2 0.01 0.03 0.00 0.26 0.33 0.19
methodxn; 4  0.46 0.80 0.00 17.64 1764 17.17
B X pp 8 3.31 6.10 0.00 0.07 0.31 0.21
B x k 4 245 4.76 0.00 0.07 0.13 0.13
B x H 4 4.90 7.39 0.00 0.05 0.08 0.17
B X ny & 19.06 11.22 0.01 0.18 0.29 0.28
pp X k 2 1.79 2.62 0.00 0.11 0.17 0.20
X H 2 231 2.79 1.14 0.01 0.08 0.11
[y, X Ty, 4 2.89 2.08 3.53 0.14 0.15 0.18
kx H 1 0.00 0.66 0.47 0.14 043 0.01
k x ny, 2 1.13 0.11 1.35 055 044 0.67
H x ny 1 0.00 0.05 283 024 0.29 0.18

5.2.1 Bias of 3

The ANOVA indicates that the most important factors affecting bias were the true
values of 3, the estimation methodx 3, and B x n; (see Table 5.2). Table 5.3 shows

the simulated biases after combining over the factors that are insignificant (i.e. H,
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tn, and k).

Table 5.3: biasx1000 of B for factors method, n; and 3

Method  ny, B B2 B3 B4 Bs
GEE 5 2630 -2.059 0.901 -0.107 -1.359
ML 5 -0.277 -0.582 2.766 -0.875 -1.859
REML 5 -8916 -2477 2706 1.296 6.616
GEE 15 -0.112 0.612 0.333 -0.044 -0.374
ML 15 1.149 -0.679 -0.426 0.532 -1.836
REML 15 -0.848 -1.205 -0.457 1.140 0.307
GEE 30 -0.793 0.222 0405 -0.173 -0.101
ML 30 0.803 1.262 -0.009 1.148 -2.082
REML 30 0.029 1.060 -0.008 1.324 -1.262

For these factors the worst bias is for the REML-based estimator of 3; when n;, =5

(Table 5.3). The true value is -1 and the average simulation estimate is -1.009. All

three estimators of 3 are basically unbiased. Patterns in average simulation bias are

unclear and may simply be caused by simulation error.

5.2.2 Standardized bias of 3

The ANOVA indicates that the most important factors affecting standardized bias

are the true values of 3, the estimation methodx 3, and 3 x n;, (see Table 5.2). Table

5.4 shows the simulated standardized biases after combining over the factors that are

insignificant (i.e. H, uy, and k).
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Table 5.4: standardized bias (sbias)*1000 of 3 for factors method, n, and 3

Method ny, B Ba B3 B Bs
GEE 5 26.463 -6.679 10.245 -2.503 -17.322

ML 5 6.182  -5.085 12.612 -4.990 -15.432
REML 5 -40.880 -16.147 11.552 7.080 31.991
GEE 15 3.195 2138 7.206 -0.778 -6.693
ML 15 18482 -4.602 -4.056 5.494 -21.901
REML 15 -1.638 -9.714 -4.450 11.381 -0.660
GEE 30 -5.898 0.966  3.908 0.260 -2.474
ML 30 6.939 16.382 -1.486 11.565 -23.234
REML 30 -1.502 14.247 -1.435 13.490 -14.378

For these factors the worst standardized bias is for the REMIL-based estimator of /;

when ny, = 5 (Table 5.4). For this case the standardized bias was -0.041.

5.2.3 Root mean square error of 3

The most important factors that impact RMSE are ny, p, and H (see Table 5.2). We
combine and average over the insignificant factors (see Table 5.5). RMSE decreases
when pp,, H and n, increases. This makes sense for n, and H, as increasing these
factors leads to an increase in the total sample size. It also makes sense that uy,
has a similar effect. If the data were Poisson distributed then a good approach for
inferences about 3 would be to condition on the total catch in all strata. This total
catch would usually be larger when uy, is larger and this gives some intuition why

this parameter acts like a sample size effect. The three estimators of 3 have similar
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RMSE because the method factor explains very little of the variation in RMSE (see
Table 5.2).

Table 5.5: Root mean square error of 3 for factors uy, ny, and H.
H =25 H =100

Hh nh:5 nh:15 nh:30 nh:5 nh:15
1 0.341 0.187 0.120  0.164 0.092
5) 0.217 0.121 0.077  0.105 0.060
10 0.188 0.107 0.069  0.092 0.053

5.2.4 Confidence Interval of 3

The most important factors that impact the accuracy of confidence intervals are the
estimation method and nj, with a large interaction between these two factors (see
Table 5.2). Table 5.6 gives the simulation results after combining and averaging over

the insignificant factors, which indicates that among the three methods we investigate:

e REML confidence intervals are the most accurate with total and one-sided cov-

erage probabilities close to the 0.05 or 0.025 nominal values;

e GEE intervals are too narrow particularly when n, = 5, since both the total and

one-sided coverage probabilities are more different than their nominal values.

The REML confidence intervals are more accurate because the estimates of k; and k,

are more accurate (see below).
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Table 5.6: 95% confidence interval (C.1.) coverage for 3 and coverage for the lower
(C.L) and upper limits (U.L).

Np

method 5 15 30

GEE 1125 7.38 6.43

C.I ML 6.29 520 4.92
REML 5.05 5.00 4.95

GEE 5.9 3.72 3.21

C.L ML 3.19 2.63 248
REML 252 252 2.50

GEE 5.66 3.66 3.23

C.U ML 3.10 2.57 244
REML 252 248 245

5.2.5 ANOVA for variance parameters

The ANOVA (Table 5.7) indicates that

e the most important factors affecting the bias of kg are up, ks and ny,, with an

interaction between method and pp;

e the most important factors affecting the bias of k; are method, u; and n;, and
k.

Table 5.7: ANOVA results for bias in estimates of k, and ;.

Factor df  k, k; Interaction df ks k;
method 2 3.65 11.52 ks xmnp, 2 0.09 5.75
iy 2 5218 17.86 methodxmn, 4 241 8.28
kg 1 717 14.22 pp Xny, 4 6.78 6.15
H 1 0.62 0.55 methodxk 2 0.29 4.04
n, 2 1456 21.64 methodxpu, 4 7.35 2.81
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5.2.6 Bias of k; and k;

Table 5.8 gives the bias of k; and ks after combining and averaging over insignificant

factors. The bias of ks estimates (Table 5.8) indicate that:

e the bias of ks decreases when p, or ny increases. The bias is large when py, = 1;

e REML has the lowest bias for k, except when p;, = 1 in which case the GEE

bias is lower.

We also calculated the percent of times in simulations that the k, estimates hit the
bounds for the three different methods: 15.8%, 1.07% and 0.28% of the GEE k,
estimates hit the upper bound when p;, = 1,5 and 10 respectively; 46.6%, 0.81% and
0.07% of the ML k, estimates hit the upper bound when p;, = 1,5 and 10 respectively;
29.1%, 0.06% and 0% of the REML k, estimates hit the upper bound; very few k,
estimates hit the lower bound.

The bias of k; estimates (Table 5.8) indicates that:

e when puy;, or ny are larger, the bias of k; tends to be lower;

e the REML estimates of k; has the lowest bias.

It is well-known that MLE’s of the NB dispersion parameter are less precise when

w1y, is small and this is what our simulation results also demonstrated.
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Table 5.8: Mean bias in estimates of ks and k; for factors u, ny, ks and method.
pr=1 Pn=5 pr=10

ny, method k=1 k=3 k=1 k=3 k;=1 k,=3
bias of kg estimates

GEE 2.81 5.65 1.17 2.70 0.96 1.84

5 ML 6.38 6.84 0.56 2.22 0.41 1.40
REML  3.68 5.03 0.10 0.29 0.06 0.11
GEE 0.45 1.81 0.24 0.62 0.12 0.36

15 ML 1.91 5.96 0.24 0.65 0.17 0.42
REML  1.59 4.52 0.09 0.17 0.05 0.06
GEE 0.20 0.70 -0.00 0.31 -0.18 0.21

30 ML 0.85 3.44 0.16 0.36 0.10 0.22
REML  0.67 2.56 0.08 0.14 0.04 0.05

bias of k; estimates

GEE 0.98 3.29 0.60 1.50 0.51 1.02

5 ML 0.89 3.64 0.30 1.22 0.23 0.88
REML 0.24 0.75 0.06 0.13 0.04 0.07
GEE 0.25 0.82 0.14 0.40 0.07 0.23

15 ML 0.27 1.16 0.09 0.35 0.07 0.25
REML  0.16 0.42 0.04 0.08 0.03 0.04
GEE 0.12 0.34 -0.00 0.21 -0.12 0.14

30 ML 0.18 0.69 0.06 0.19 0.04 0.13
REML  0.15 0.39 0.04 0.07 0.02 0.03

5.2.7 Simulation time

We also investigated the computing time for each simulation. Method, H and n,, are
the most important factors affecting the computing time. Table 5.9 indicates that:
the computing speed of REML is the fastest, especially when the sample size is large;

the GEE method is much slower than ML and REML.
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Table 5.9: Time for one simulation (second) for method, H and ny,

H =25 H =100
n,=5 ny=15 np=30 n,=5 n, =15 total
ML 0.78 1.34 2.43 3.59 9.56 17.7
REML 0.93 1.36 2.31 2.95 6.87 14.42
GEE 2.88 5.46 13.96  13.49 30.89 66.68

5.3 Summary

Our simulation results show that:
1. The regression parameter estimates were almost unbiased for all three methods.

2. The REML estimates of variance parameters had the lowest bias and were
almost unbiased when the strata sample sizes were large except when the Poisson

mean was low (i.e. p, =1).

3. The GEE method tended to underestimate the variance of regression estimates

which led to a less accurate confidence interval.
4. The simulation speed for MLL and REML is much faster than the GEE method.

In summary, the REML is the most preferable method for this mixture model among

the three methods we discussed.




Chapter 6

Applications

6.1 Application 1: Diel effects for three species
from a bottom trawl survey of the southern

Gulf of St. Lawrence

6.1.1 Background

Fisheries and Oceans Canada has conducted bottom trawl surveys of the southern
Gulf of St. Lawrence annually since 1971. The main objective of these surveys is
to estimate the abundance of multiple species and how this changes from year to

year. However, changes in fish abundance may not be reflected directly by changes
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in the average catch of fish species in the survey. Changes in vessel and gear may
also have an impact on the fish catches. In addition, fish catches in trawl surveys can
differ between day and night due to diel behaviour, such as vertical migrations and
burrowing in sediments (e.g. Benoit and Swain (2003) [7]). Accounting for these diel
differences can improve the precision of abundance indices estimated from the data
and can help to eliminate biases if data collected only during the day are combined
with those collected under 24 hr sampling. Prior to 1984, surveys in this area occurred
only during the day and it is therefore necessary to adjust for diel variations in more
recent data sets to allow for large scale temporal comparisons across years using
day-only surveys and 24 hour surveys.

Benoit and Swain (2003) [7] estimated the relative catchability during day and
night for a large number of marine fish species off the east coast of Canada using
count data collected in the bottom-trawl research survey. The data included trawl
hauls conducted at day and night at 67 sites (pairs) in 1988, as well as day and night
hauls that were not paired at the same sites but occurred in common strata over
the course of seven years of surveys (1985-1991). These authors analyzed the paired
and unpaired data in separate analyses (see Benoit and Swan, 2003 [7]). We will use
some of these data jointly which should provide more reliable statistical inferences

(see Table 6.1).
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Here we focus on the data for three species, white hake (Urophycis tenuis), thorny
skate (Amblyraja radiata) and yellowtail flounder (Limanda ferruginea) from the 67
paired hauls and 19 unpaired hauls that were made in 1988 in 26 strata. We excluded
sets or pairs of sets when there was no catch of a species for all sets within a stratum
(see Figure 6.1 and Table 6.1).

Table 6.1: Frequency of tows at sites.

Number of tows 1 2
white hake 13 56
yellowtail flounder 6 38
thorny skate 19 64

The fishing vessel was unchanged so there is no vessel effect. However, there may
exist a diel effect since the survey was conducted for 24 hours per day (see Table
6.2). We define a night tow as occurring within the interval of [19:00 hrs, 07:00 hrs],
and a day tow otherwise. Figure 6.2 and Figure 6.3 indicate diel effects may exist,
especially for yellowtail flounder.

Table 6.2: Frequency of day tows and night tows.

Day tow Night tow

white hake 67 o8
yellowtail flounder 43 39
thorny skate 79 68

We analyze these data using the three methods discussed in this thesis that jointly
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Figure 6.1: Frequency of strata in which the total catch from all sets was zero or
non-zero, for the three species.

treat the paired and unpaired data to determine if the catch rates differed between

day and night. We define a day/night indicator covariate x that is

1 if it is a night tow,
0 if it is a day tow.
We use the PdG mixture model outlined in the thesis with p = 1 and [ is the

logarithm of the night effect.
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Figure 6.2: Average catch per day/night tow for the three species

6.1.2 Data Analysis

The MLE and REML estimates of S were more similar than the GEE estimates
(Table 6.3). The ML and GEE standard errors for 3 were smaller than the REML-
based ones, and the estimates of k, and k; were larger. However, all three methods
lead to the same conclusion that there is no diurnal effect for white hake (Urophycis
tenuis) but that there is for thorny skate (Amblyraja radiata) and yellowtail flounder
(Limanda ferruginea). The parameter estimates and conclusions are comparable to
those obtained by Benoit and Swain (2003) [7] using the paired data only (Table
6.3), though our estimate for yellowtail flounder is higher, likely as a result of the

added unpaired hauls in our analysis. A notable difference between our data analysis
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results and those of Benoit and Swan (2003) [7] was that despite including more
data, the standard errors on  were larger in our analysis. However, the higher
variance estimates may be appropriate since Benoit and Swan (2003) [7], and Casey
and Myers (1998) [15] concluded that standard errors for estimates of the 5 parameter
from linear models with extra-Poisson and extra-Binomial variability were too small.
This led to a higher frequency across species of nominally statistically significant
results compared to what was obtained using randomization tests. This is consistent
with Cadigan and Dowden (2010) [11] and Cadigan and Bataineh (2012) [10] who
found that simulated confidence intervals about [ from an over-dispersed binomial
model based on paired-catches with within-site Poisson over-dispersion were much
too narrow. Better results were found using GLMMs with random effects that more
closely matched those in their simulated populations, and more closely resembled

what may occur in real surveys.
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Table 6.3: Data analysis for three fish species: white hake, thorny skate, and yellowtail
flounder. (*B&S denote the parameter estimates obtained by [7])

white hake thorny skate
REML ML GEE B&S* REML ML GEE B&S®
g 0136 0.146 0.275 0.135 0.715 0.729 0.765 0.850
se(f)  0.223 0.219 0.201 0.160 0.160 0.155 0.120 0.142
ks 0.850 1.350 2.451 - 2,742 5.889 10.000 -
k. 0.438 0.614 0.991 - 1119 1.634 1911 -

yellowtail flounder
REML ML GEE B&S®
g 1.326 1.291 1.184 0.818
se(f)  0.274 0.269 0.173 0.148
ks 0.228 0.368 0.629 -
k. 0.133 0.212 0.467 -
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Figure 6.3: Average catch per day vs night tow for each stratum for the three species.
44.4%, 92.3% and 79.2% of the points are below the reference line for white hake,
yellowtail flounder and thorny skate respectively.
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6.2 Application 2: Diel and vessel effects for snow

crab surveys of the southern Gulf of St. Lawrence.

6.2.1 Background

In this application, we investigate the abundance of snow crab in the southern Gulf of
St. Lawrence (sGSL; see Figure 1.1). Two different surveys provide insights into snow
crab abundance. The multi-species research vessel survey (RVS) has been conducted
annually since 1971 and has provided information about snow crab in the catches
since 1980. The other source of information is called the crab survey (CS), which
has been conducted annually since 1988 and is focused purely on snow crab. Here we
focus on the data from 2003-2014 collected during the RVS and CS (see Table 6.4).
Inconsistencies among surveys due to different vessels are present. The vessels
used in the RVS were: CCGS Wilfred Templeman in 2003; CCGS Alfred Needler
from 2004-2005; CCGS Teleost from 2004-present. Before changing the vessel from
CCGS Alfred Needler to CCGS Teleost, paired tows were used to estimate the rela-
tive catchability (see Table 6.4). The vessels used in the CS were: Marco-Michel from
2003-2012 (SCS1); Jean-Mathieu from 2013-2014 (SCS2). No comparative fishing was

conducted for these two vessels.
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Table 6.4: Frequency of strata and sites sampled for the RVS and the CS. Numbers
of parentheses indicate sites with paired-tows.
RVS CS
strata sites strata sites
2003 22 78 20 317
2004 24 176 (36) 20 347
2005 24 145 (86) 20 355

2006 24 165 20 354
2007 24 163 20 355
2008 24 177 20 355
2009 24 148 20 355
2010 24 137 20 354
2011 24 126 20 353
2012 24 142 22 321
2013 24 122 21 351
2014 24 156 21 351

There may exist a diel effect in the RVS since the fishing time is conducted for 24
hours per day (see Table 6.5). We define a night tow as occurring within the interval
of [19:00 hrs, 07:00 hrs], and a day tow otherwise. Figure 6.4- Figure 6.6 show that
the diel assumption for the RVS is reasonable. There is no diel effect in the CS since

it is only conducted during the day.

6.2.2 Model Setup

The model contains a number of parameters that account for the catchability of crab.

First, we define a parameter that accounts for the diel effect (J;) in catchability in
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Table 6.5: Frequency of tows for the RVS (day/night).

RVS

RVS

day tow night tow

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
Total

39
108
107

83

86

85

74

73
68

72
65
78
938

39
104
124
82
77
92
74
64
o8
70
o7
78
919

5; =

1 7 is a day tow,

0  jis a night tow.

Second, we define a set of parameters, the vessel effects (g, ), to account for catchability

differences between vessels.

Qv =

qwT—T,

JAN—T,

4scs1—T,

4scs2—T,

v = Teleost ,

2004-2014,

v=Wilfred Templeman , 2003,

v = Alfred Needler , 2004-2005,

vin SCS1

vin SCS2 ,

2003-2012,

2013-2014.
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Table 6.6: Average catch of snow crab (number) per tow the CS.

Year Average catch

2003 8.46
2004 9.57
2005 6.84
2006 6.50
2007 5.38
2008 4.03
2009 2.54
2010 2.99
2011 2.58
2012 6.52
2013 5.37
2014 5.37

The notation ¢,_,, indicates the catchability of vessel a relative to vessel b. The
catchability of the CC'GS Teleost is the reference vessel and is fixed at one. Note that
by combining information from both surveys in one model it is possible to estimate
the catchability of both vessels in the CS and the relative catchability of these vessels
is the ratio of their ¢,’s, whereas it is not possible to estimate this using only data
from the CS survey because there was no comparative fishing between these vessels
and they were not used in surveys for the same year.

We use the PAG model outlined in this thesis. The model is based on the counts

of commercial sized crabs (males > 95mm). We define:

® Yiuij as the catch from the j'th tow in stratum h and year y for survey vessel
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B day tow
O night tow

Average catch per day/ight tow

2003-2014

RVS

Figure 6.4: Average catch of snow crab (units) per day/night tow for the RVS in
2003-2014

v at site i;
e random site effects, v, ~ Gamma(k,, k% );
e random repeat tow effects at site 7, yp,;; ~ Gamma(k,, k%%

® /iy as the density of crab for stratum i and year y; in the RVS and CS, for
any stratum that produced zero catch for all sets, we assigned exp(—10) to the
density jp, because the density must be greater than zero to calculate the log-
likelihood, otherwise the MLE of ji4, in this case is zero which is an infeasible

value;
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Figure 6.5: Annual average catch of snow crab (units) per day/night tow for the RVS
in 2003-2014

® Zhyij 1s an offset to make adjustments to account for subsampling of catches
(ratio), to standardize for variations in tow distance and standardize i, to

number per K'm?,

Zhywij = 108(dpywij/do) + log(ration,,;) + log(0.0405028),

where dpy,i; is the actual tow distance for the j'th tow and dj is the nominal
tow distance, 0.0405028 Km? refers to the swept area of a standard CCGS

Teleost tow (e.g. Benoit and Cadigan, 2014 [6]);
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e the marginal expectation of Yj,,i; as ftayei; and
log(pthyvij) = log(qu) + 1og(d;) + log(tiny) + Znyuis- (6.1)

As stated previously in Chapter 1, if Yiyuij|Vhyivhyi; ~ Poisson(pinyei;) then the
marginal distribution is difficult to specify but the marginal mean and variance are
the same as those of NB random variables, E(Yhyvij) = taywij and Var(Yaywi;) =
Hhyvij + Hiyoi;/ ke, Where 1/ky = 1/kg 4 1/ke + 1/kske. For survey sites with paired
tows, the marginal covariance is Cov(Yyvi1, Yayviz) = Hhyvitfhyviz/ks. We use the
three methods discussed in this thesis to estimate this model.

In the estimation procedure, the stratum effects were treated as nuisance param-
eters for the purposes of estimating 6 and ¢,. However, an important goal of these
snow crab surveys is to estimate the stratum size-weighted average density of snow
crab (number per Km?). Let W), be the size of stratum h, and u, be the average

density of snow crab in year y:

1, = ZheH Whtiny
Y zheH Wi

We estimate fi, via

A = 2 nerr Wity
! ZheH Wh

The standard deviations of log(/i,) for the ML and REML methods are automatically

provided by the standard error report of TMB. The standard deviations of log(ji,)
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for the GEE method are estimated via the 'sandwich estimator’ (e.g. Eq.(2.12)) and

d-method (e.g. Eq.(3.7)). The 95% confidence interval of p, is

exp{log(ji,) — 1.96 - sd[log(j1,)]}, exp{log(f,) + 1.96 - sdllog (i, )]}

6.2.3 Model Approximation

For sites with only one observation, the marginal density function of Y1 is

dt (6.2)

kR gy Uy + Ke) /°° gk —lg—hit
0 (:uhyvilt + kc)y+kc 7

fVhgoin = y) = T (kD (k)T (y + 1)

where fipypi1 1s defined as Eq.(6.1). In Figure (F.1)- Figure (F.4) in Appendix F we
compare the probability mass function in Eq.(6.2) with the Negative Binomial mass

function

F(y + kt) ( Mhyfuij )y ( kt )kt
Yiwis = ) = , 6.3
fh( i y) F(kt)r<y + 1) Hhyvij + kt Hhyvij + kt ( )

where k; = ks - k./(ks + k. + 1). Figure (F.5)- Figure (F.8) in Appendix F are the
ratio of cumulative mass function for Eq.(6.2) and Eq.(6.3). Figure (F.1)- Figure
(F.8) indicate that the NB distribution with a probability mass function Eq.(6.3) is
a good approximation to the distribution with probability mass function Eq.(6.2).
Considering that most sites just contain one observation (see Table 6.4), we use

Eq.(6.3) to approximate the marginal likelihood function of the PdG model with only
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one observation in a site. Using this approximation reduced the number of random
effects to integrate out, from 5903 to 122. This greatly improves the computational

speed of our estimators.

6.2.4 Estimation Results

Table (6.7) and Figures (6.7)-Figure (6.9) show the estimates and corresponding 95%
confidence intervals of some snow crab model parameters using the GEE, the ML and

the REML methods. Results indicate that

e The estimates of § and ¢, for the three methods are similar, but the GEE
confidence intervals are more narrow than those of the ML and REML methods.
The estimates of k, and k. for the ML and REML are more similar than those

of the GEE method.

e The three estimates of ¢ all indicate that for the RVS, adult snow crabs are

more catchable at night.

e The three estimates of ¢, all indicate that the estimated relative catchability of
Marco-Michel (SCS1) compared to the CCGS Teleost is the largest among the
4 vessels used for sampling since 2003, while the estimated relative catchability

of WT is the smallest. The new vessel Jean-Mathieu (SCS2), used from 2013,
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has a lower relative catchability than Marco-Michel (SCS1).

Table 6.7: Estimates (mean, 95% confidence intervals) of some snow crab model
parameters for data from 2003-2014

ML REML GEE

Estimate Lower upper Estimate Lower upper Estimate Lower upper

qANST 0.925 0.781 1.094 0.924 0.779 1.096 0.976 0.819 1.163
AW T—T 0.620 0.435 0.884 0.619 0.430  0.890 0.618 0.466  0.820
gscsior  20.308 18.126 22.753  20.283 18.068 22.770  19.814 19.117 20.537
gscsasr  14.969 12.257 18.282  14.969 12.185 18.390  14.592 13.265 16.052
5 1.728 1515 1.971 1726 1.509 1.975 1.655 1.500 1.825
ky 1.166  0.986  1.381 1.098  0.931  1.293 1.250 - -
k. 4797 3104 7.412 4716 3.065 7.256 5.300 = -

Figure (6.10) shows the 4T snow crab abundance estimates (p,) and 95% confi-
dence intervals from 2003-2014 using the three methods discussed above. The snow
crab abundance decreased during 2003-2009 but has increased since 2010 and was

unchanged in 2013-14.
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Figure 6.6: Average catch of snow crab per day vs night tow for each stratum for the
RVS in 2003-2014, 67% of the points are off the reference line.
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Figure 6.7: ML estimates (middle points) of survey vessel/gear catchabilities, log(gq,)
with 95% confidence intervals. WT is CCGS Wilfred Templeman—CCGS Teleost,
AN is CCGS Alfred Needler—CCGS Teleost. The entries SCS are for the catchability
of the snow crab survey vessel/gear, relative to the Teleost: Marco-Michel (SCS1) for
2003-2012, Jean-Mathieu (SCS2) for 2013-2014
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Figure 6.8: REML estimates (middle points) of survey vessel/gear catchabilities,
log(q,) with 95% confidence intervals. WT is CCGS Wilfred Templeman—CCGS
Teleost, AN is CCGS Alfred Needler—CCGS Teleost. The entries SCS are for the
catchability of the snow crab survey vessel /gear, relative to the Teleost: Marco-Michel
(SCS1) for 2003-2012, Jean-Mathieu (SCS2) for 2013-2014
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Figure 6.9: GEE estimates (middle points) of survey vessel /gear catchabilities, log(gq,)
with 95% confidence intervals. WT is CCGS Wilfred Templeman—CCGS Teleost,
AN is CCGS Alfred Needler—CCGS Teleost. The entries SCS are for the catchability
of the snow crab survey vessel/gear, relative to the Teleost: Marco-Michel (SCS1) for
2003-2012, Jean-Mathieu (SCS2) for 2013-2014
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Figure 6.10: Estimates of 4T snow crab abundance from 2003-2014 using three meth-
ods. The shaded region indicates 95% confidence intervals. The horizontal line indi-
cates the series average.




Chapter 7

Discussion

In this thesis we developed a profile GEE method to estimate the regression and
variance parameters for a Poisson-double-Gamma mixture model where the mixing
components are two gamma random variables. The context for this was over-dispersed
and correlated count data from highly stratified surveys. The challenges we addressed
were 1) computational issues and 2) bias in variance parameter estimates and inac-
curate confidence intervals for regression parameters because of a large number of
nuisance parameters. We compared the GEE method to MLE and REML methods.
In simulations the regression parameter estimates were almost unbiased for all three
methods. The REML estimator of variance parameters had the lowest bias and was

almost unbiased when the strata sample sizes were large except when the Poisson
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mean was low (i.e. p =1). The GEE method, as expected, tended to over-estimate
the NB variance parameters which led to an underestimation of the variance of re-
gression estimates and less accurate confidence intervals. In summary, among the
three methods we investigated, REML is the most preferred for statistical inference
with this mixture model.

Parameter estimation for our over-dispersed and correlated count data model is
fairly simple using TMB. The user just needs to specify the joint log-likelihood func-
tion h(X,0); TMB then provides the marginal likelihood and its gradient function
automatically. The analytical gradient greatly improves the speed and accuracy of
marginal MLE’s using a gradient-based optimization method. Our investigation also
shows that TMB would be very appropriate for a model with non-linear random
effects.

We treated the stratum effects as nuisance parameters for the purposes of es-
timating 8. However, an important goal of most fisheries surveys is to estimate
the stratum size-weighted average effect (e.g. snow crab survey). If N, is the to-
tal possible number of sampling sites in stratum h then the size-weighted average is
= Zthl Nppn/ Zthl Nj,. Usually a time-series of surveys is available and estimates

of annual trends in i are used to indicate trends in fish stock size. It is important
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to adjust for confounding variables such as changes in vessels or other sampling pro-
tocols. In future research we will extend results to this objective and establish some
theoretical properties of i estimators. Particularly for the longitudinal survey case it
may be desirable to also treat the stratum effects as random with a spatial distribution

that evolves smoothly from year to year.
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Appendix A

PdG Mixture Model

In Chapter 1, we introduced the a Poisson-Gamma mixture model, where the mixing
components are two different gamma random variables to account for different sources
of correlation and overdispersion. We use the same notation as Chapter 1. Let Yj;;
be a random variable (RV) for the j'th observation in stratum h (h = 1,---, H)
and site ¢. Conditional on the stratum effect (1), a random site effect (7,;) and a
replicate effect 7;; at site 4, Y;; is assumed to be Poisson distributed with mean
E(Yhij|Vhivhis) = B VriYhijNnij, and variance Var(Yiij|vaivhi) = BhYhiVhijNhij- We
define pini; = pnnnij, the Probability mass function of Y3;; conditional on the random
effects v, and 7,5 is

Pohij Vhi Yhig)?"
S Vil vnivmis) = (i ] i) exp{ —fthij YniVhij }- (A1)
1]
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The random effects ~,; is assume to be gamma distributed with mean 1 and variance

1/k,, with the probability density function

ks ks—1 —ksyni

The random effects 7, is assume to be gamma distributed with mean 1 and variance

1/k., the probability density function is

Flomg) = ol
Yhig) = F(k:c)%”‘j

e Rernis | (A.3)

The marginal (with respect to 7p;;) probability density function of Yj,;; conditional

on yp; 18

fYVnijlmi) = /0 S Vniglvmivmis) - f(vnig)dmi

0 (Lohij YniYnig )i L S gy
eXP— Hhij Yhi Vhij Vi; €M dyni;
\/0 th' { /“Lh]/Yh h]}r(kc) hij J
U(ynij + ke) ke (g )"0
(k)T (Ynis + 1) (fnigyni + ke)vnithe
/Oo (:uhijfyhi + kc>yhij+kc . ’yf(Ly’?”"—kC_l)e_(ﬂizij’Yhi+kc)’Yhij dVnij
0 L((Ynij + ke) Y
F(@/hw + kc) kc ke :uhl]f}/hl )yhij. (A4)
C(ke)T(Ynijg + 1) pnijyvne +ke” pnigYni + ke

However, the marginal distribution of Y};; with respect to the random sites effects

(i) is not NB. For sites with no replicates (i.e. np; = 1), the marginal distribution
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of Yhil is

f(Yhil = 3/) = / f(Yhn”Yhi) : f(’Yhi)d’Yhi
0
/Oo I'(y + k) ke koo HhilYhi G kb N
o D(E)T(y+ 1) pninyn + ke UnitYhi + ke’ T'(k) hi

_ kfskaNZﬂny‘i‘kc) /Oo gyths—lgmhst dt
C TkJU(R)T(y+1) Jo o (it + ke)vthe ™

The marginal mean and variance of Yj,;; are

E(Yhij) = E(E(Yhijvmi)) = E(thitYni) = fai,

Var(Yian) = Var(ENulvm)) + EVar(Yaalvn))

Fir Vi
= Var(pnavyn) + E(pninvn + hlkl hiy
2
Hpit 2 1.1
— My (14 —)—
ks +Mh1+ﬂh11( _'_ks)kc

ks ke
1+ks+ke”

where k; =

— kv
e Yhi d")/hz

(A.5)

(A.6)
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If there are two replicates in one site, the marginal likelihood function is

f(Yhil = Y1, Yhio = 3/2)

= /OOO f(Yhn”Yhi) : f(Yhi2|’Yhi)f(’Yhi)d”Yhi

/Oo F(yl + kc) k. ke Mni1Vhi )y1 kfs ks =1,k Tni |
o Th)T (1 + 1) niiyn + ke’ pninyn + ke’ T(kg) ™
I'(y2 + ke) ke ke (__ Hhi2Vhi )22y
Lk (y2 + 1) pniovni + ko™ finioVni + ke Thi
kR gt D+ k)T (o + k) / ~ geth TeTh o
— T(k)T2(k)T (1 + Dl (y2 + 1) o (pnant + ko) the (ppigt + ke)vethe ™

(A.8)

The marginal mean and variance can be derived similiarly to single observation case.
There will be marginal correlation in the two observation at a site because there is a

common random site effect. The covariance of Y3;; and Yy, is

Cov(Ynit, Yniz) = EYniiYnio) — E(Yri1) E(Yhi2)
= E(EYniYnia| i) — E(EYhit|y0i)) E(E (Y| i)

= fnitfrin (V) — Hnit fniz

Hhi1l Lhi2
ke
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The correlation of Y3;; and Yo is

COT?“(Yhﬂ, Yhi2)

Cov(Yhi1, Yhia)

\/V&T(Yhﬂ) . \/V@T(Yhil)
Hhillhi2

ks
2 2
My, My
\/Mhz'1+ ,ﬁtl'\/ﬂhnﬂL%
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Appendix B

Some details for the Generalized

estimating equation approach

B.1 GEE with nuisance parameter

B.1.1 Derivation of da,(83)/083 and 9*a,(8)/0803'

The GEE function for the nuisance parameter o, is

yhll — eah(ﬁ)+zhi1 (/8)

Yhiz — e (B)+Zni2(B)
U(Oéh) — Z[ezhu(ﬁ)’ ezhiQ(B)’ o ezhij(ﬁ)] . Vh_‘l

i

Ynij — eh (B)+2ni;(8)




B.1 GEE WITH NUISANCE PARAMETER 89

where Z(8) = .8, the ¢’'th diagonal element of V}; is

e2%niq(B)+an(B)

Zhiq (B) + ~
ke

?

Vii(g,q) = e

the ¢, p’th element is

eZh'Lp(B) . eZhlq(ﬁ) . eah(:@)

th(Q7p) = ]% )

where l%s and l;:t are the estimates of covariance parameters. The GEE estimator &,

follows
yh’Ll I eah(ﬁ)'i'zhll(/a)
Ynio — e (B)+Zni2(B)
U(dh) _ Z[ezhu(ﬁ)’ ezhiz(,@)7 .. ezhij(,@)] . thl = 0. (B.l)
Ynij — e (B)+2n:;(8)

Take derivatives to 3 on both sides of equation (B.1)
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Ynil — e (B)+2Zri1(B)

Ynio — e (B)+2ni2(8)

U (an) Zhir (B) Zi2(8) Z1i5(8) 1
8/3 :Z[e hil .whil’e hi2 .whiz,...e hij whz]]vm

yhl_] — eah(ﬁ)+zhij (ﬁ)

Ypi1 — e*rB)+2nia(B)
Yhio — e (B)+Zni2(B)
_ Z[ezhil(ﬁ)’ eZma(ﬁ)’ e eZhiJ'('G)] ) thl derV,; - Vh;1

i

— e (B)+2ni;(B)

Yhij

eail(ﬁ)+2hi1(ﬁ)(&iah—[§‘® + @)

eTlsvo (B)+Zni2(8) (980B) 4 o4 -
_ 2[62,1“(,6)’ ezhi2(ﬂ)7 . 6Zhij(ﬂ)] . thl ( 9B h 2) =0,

i

e (B)+Zni;(B) (‘%_‘ah_éﬁ) + whij)

where the m’th diagonal element in der.V},; is

2ZnimB+an8) 9
der.Vyi(m, m) = eZnimB) gy, + ‘ ~ - ( an(B)

+2$ im )
i Bk him)

the m, n’th element is

eZnim B+ Zun(B)+3n(B) ey (3)

der Viyi(m,n) = y 98

+ Lhim + whin)a
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After some simplification, we can obtain
dan(B) _ An
B By’
where
Ynil — e (B)+Zri1(8)
Yhia — e@h(ﬁ)-"zhiz(ﬂ)
Ah — Z[ezhil(ﬁ) - Thit, ezhﬂ(ﬁ) C Lo, ezhi]’(ﬁ) . mhz]} . thl
Ynij — e (B)+Zhi;(B)
Ynil — e (B)+Zni1(B)
Yniz — e@h(ﬁ)+Zhi2(ﬁ)
_ Z[eZhil(B)7 ezhm(ﬂ)’ ... eZMj([-})] ) thl cder Vi, - thl
Ynij — eh(B)+Zhi; (B)
edh(ﬁ)+zsyvi1(ﬂ)mhil
e@h(fg)+zhi2(5)mhi2

— Z[ezh“(ﬁ), eZhi2(5)’ . GZh,ij(ﬂ)] . thl

)

e (B)+Zni; ('B)whij




B.1 GEE WITH NUISANCE PARAMETER 92

e (B)+Zri1 (B)
e0n(B)+Zni2(B)
B, = Z[ezhil(ﬂ)7 eZhiQ(B)’ L eZhij(B)] . Vh_'l

i

e (B)+2ni;(B)

Ynil — e (B)+Zni1 (B)

Yhio — edh(ﬂ)-i'zhm(ﬂ)
+ Z[€Zh“(ﬁ)’ eth'Q(B)7 L. ezhij(g)] ) Vh_il Cder Vi - Vh_il

i

Ynij — e (B)+2ni;(8)
the m’th diagonal element of der.Vj,;s is
2Znim (B)+51(8)
der Vio(m,m) = - ,

ki

the m, n’th element of der.V},;s is
eZhim (B)+Znin(B)+an(B)
der Viy(m,n) = - ,

ks
the m’th diagonal element of der.Vj,;; is

2Zhi'm(ﬁ)+ah(ﬁ)

der. Vi (m,m) = e?im By, + - . 2% e

ke
the m, n’th element of der.V};; is

ezhinL (IB)+Z}LZTL (ﬂ)+ah (ﬁ)

der Vin(m,n) = P (T hmk + Thnk)-
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Furthermore, we can obtain

*U(an)  Aly

0808 Bl
where
- eh(B)+Znir(B) ]
& (B)+Zni2(B)
Bly= Y [efal®) Bald) . By
e (B)+Znij (B)

+ Z[ezhn(ﬁ)’ ezmz(ﬁ)7 e 6Zm'j(5)] ) Vh_z‘l - derr. Vi - Vh_l

)

)

Ynil — e (B)+Zri1 (B)

Yniz — e (B)+Zhi2(B)

yh’ij _ eah(ﬁ)+zhij (B)
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Alh -

7

_ Z[ezhﬂ(ﬁ) S Tpi,

_ Z[ezhﬂ(ﬁ) S Tpit,

_ Z[ezhﬂ(ﬁ) . w/hila ..

eZmiB) . gy ) Vit der Vi - Vit

6Zhij(ﬂ) . whij] . Vhi

eZhij(ﬁ) . m/hz]] . V};l . deT.V}Zi . thl

i

Zi ’ Zhij ! 1
E e nir(B) gy " Lpps € hj(ﬁ)'whil'whil]'vh

1

Yhi1 — e (B)+2nri1(B)

Yniz — eOh(B)+Zni2(B)

i

Ynij — e (B)+Zni;(B)

Yrij — €

eh(B)+Zni2(B) (‘%‘h_(ﬂ)

a3 T Tio)

en B+ 20 (B) (22P) 4 gt )

Yhi

Yhij —

Ynil — en(B)+2Zrin(8)

Yniz — e (B)+Zni2(B)

an(B)+Zni; (B)

eah(B)JFZh“(ﬁ)(a%hﬁ(,ﬁ) + w;m)

L= e (B)+Znir (B)

Ynia — ch(B)+Zni2(B)

e (B)+2Zni; (B)
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+ Z[ezhil(ﬁ)7 .

_ Z[ezhil(ﬂ)7 ..

+ Z[ezhil(ﬁ)’ .

+ Z[ezhil(ﬂ)’ ..

%

eZnij (:3)] . V}:l

i

eZnij (5)] . Vh; 1

eZhij (ﬁ)] . thl

~der. Vi, - Vit der Vi - Vit

Ynil — e0n(B)+Znin (B)
Yhiz — e (B)+2Zni2(B)
~derr. Vi - thl

~der.Vy; - Vit - der V), - Vi

~der. Vi, - thl

e (B)+Zri (8) (

e (B)+2Znhi2(B) (

edh(ﬁ)+Zhij (8) (

Ynil — e (B)+Zri1 (B)

Ynio — e (B)+Zni2(B)

Ynij — eh(B)+Z1i;(B)

Ynil — e (B)+Znir (B)

Yniz — e (B)+Zni2(B)

Ynij — e (B)+2ni;(B)

dan(B)

o8’
dan(B)

B’

+ xh)

+ T)i0)

dan (B
%ﬁf ) + w,hz])
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Zhi / Zyii ! —1
_Z[e hi1(B) | X, e nij (B) | whz’j] . Vh‘

12

. eZhij(/G)] . thl . deT’.V;ZZ' . thl

+ Z[ezhi1(ﬁ)7 ..

i

e&h(ﬁ)-i-Zhil (B) ((Wiah_ﬁ(ﬂ) —+ a’:hﬂ)

eo’zh(ﬁ)Jrth(ﬂ)(‘%_g_ép) + mhi?)

I (B)

e (B)+Zni;(B) ( 55

+ :c;w»j)

eOn(B)+Zni1 (B) (

oa
é}gﬂ) + xpi)

eOh (B)+Zni2(B) ( &iah—éﬁ) + whi2)

i eah(ﬁ)JrZhij(,@)(‘%‘ah_éﬁ) + whij) |
6&h(ﬁ)+zhil(ﬁ)(&iah—ﬁ(ﬁ) + mhil)(ao"gb(/,@) + w;”l)
an(B)+2Zni2(B) (92n(B) _\(9an(B) r
] edh(ﬁ)+zhij(ﬁ)(—8&§éﬁ) + :cmj)(ai*;,(f’) + @};) |
where the m’th diagonal element of der.V}, is
2Zhim(B)+an(B)  Hy
der.Vy;(m,m) = e“nim® gy, 4 ° > - ( CYh(/ﬁ) + 2%)5,),
k, B

the m,n’th element of der.V}, is

eZhim(ﬂ)'f'Zhin(ﬁ)'i'&h(ﬁ)

der.Vy.,(m,n) =

~

ks

(8dh(ﬁ)

/ /
+ L him + whin)’

B
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the m’th diagonal element of derr.Vy;; is

02Znim (B)+an(8) ‘ Oay(B)

dan(B)

derr Viin(m,m) = eZnim(B) . ThimThim + ~ + 2% him) - +2x),,.),
1( ) h kt ( 6,6 ) ( 816/ h )
the m, n’th element of derr.Vy;; is

eZhi7rL(ﬁ)+Zhin(B)+ah(B) ad /3 d ﬁ/
derr Vi (m,n) = ]%S ( g,é )+whmk+whnk>'(%_Fw;zmk—i_m;mk%

the m’th diagonal element of derr.Vy,;s is

e2Znim (B)+an(B)

derr.Viie(m, m) = -
Ky

Y

the m, n’th element of derr.Vy;, is

derr.Viyia(m,n) = -

ks

B.1.2 Updating algorithm for 3

The estimating equation of 3 is

Ynil — e (B)+2ni1(B)

B)+Znhi2(B8)

_ _ Yhiz — eh(
L e IR/t I

hi

Ynij — €O Znis B

where the m’th diagonal element of V},; is

2Zhim (B)+an(B)
Vhi(m; m) = eZhim(B) + € ]% ’
t
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the m, n’th element of V},; is

ezhim (/6)+Zh1n(ﬁ)+ah(ﬁ)

Viwi(m,n) = P
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Then
oa o
aU_@ — Z[ezhil(ﬂ) . ((M + whil) . w;yvil CYh(,BI))’ . ..
BJE; — 0J6; opBos
Ynil — e (B)+Zni1 (B)
_ _ o — o0n(B)+Zri2(B)
ezhij(ﬁ) . ((606}1(6) a';h. ) . w/ B aah(ﬁ) )] ) V_l ) yhl2 €
08 VT T ggog
Ynij — e (B)+2Zni;(B)
& Oa(B) o 0B
_[ethl(B) . ( al@ + whi1)7 . ezhu(ﬂ) . ( @ﬂ —+ whz’j)]
Yni1 — e&h(ﬁ)-l-zhﬂ(ﬁ)
Ynio — e (B)+Znhi2(B)
Viteder Vi -V
Ynij — eﬁh,(ﬁ)-i'zhij(ﬂ)
@ 0B o 0an(B) .
—[eZra(B) . ( %6 + Xpiy), - PP 93 + xpij)] - Vi
o (B)+Znir (8) (8%’1—[,@ +a)
e (B)+Zni2(B) (6?_‘;@ + )
eh (B)+Zni; (/@)(_aééhﬁ(f}) + ;)
where the m’th diagonal element of der.V}, is
d , - Z’”m(ﬁ) , eZZhi'm(ﬁ)+ah(ﬁ) ,
er.Vy(m,m) =e "Ly T Ty

ke
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the m,n’th element of der.V}, is

eZhim(ﬁ)'i'Zhin(/@)""a‘h(ﬂ)
der.V,{i(m, TL) = ]; ) (zc;”m + w%zn)?

The algorithm (2.5) for 3 in Step 1 can be written in form
) ) AU ( -1 :
I@(]-‘rl) — B9 — {Z ni( ’ﬁ gm} ) {Z Uhi(ﬂ(j)>}-
hi

B.1.3 Updating algorithm for «

Recall that the h’th row in the estimating equation of U(a) is

Yni1 — e (B)+Znin (B)

Yniz — eh(B)+2Znri2(8)
U(Ozh) _ Z[ezhil(ﬁ)’ eZh,iQ(B)7 .. eZh,ij(ﬁ)] . Vhfl =0

7

Ynij — 6@h(ﬁ)+zhij(/@)
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The h’th diagonal element in OU () /0 is

Ypi1 — e*nB)+2nin(B)
R (ﬁ)“rzhig(ﬁ)
8U(ah) Zni1(B) Zni2(B) Znii(B) 1 . Yhio e%h
dan _zi:[ehl e @BV der Vi - Vi

Yhij — e (B)+Znij (B)

e (B)+Zri1(8)

e (B)+Zni2(8B)

_ Z[ezhi1(5)7 €Zhi2('8), . ezhij(ﬂ)] ) Vh_-l |
eh(B)+2Zni; (B)

where the m’th diagonal element and the off-diagonal element in m’th row, n’th

column of der.V},; are

2nim(B)+31,(8)
der. Vi (m,m) = - ,
Ky
eZhim (/3)+th77, (ﬂ)'i'ah(ﬁ)
der Viyi(m,n) = P

The off-diagonal elements in OU(ax)/da’ are all equal to zero. The algorithm (2.5)

for v in Step 1 is

; ; U () ! :
G+1) — 40) _ ; i G,
o a { o | aa) } {U(a”)}
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B.2 Variance parameter estimation
The covariance matrix V'p,; in Eq.(2.2) can be decomposed as
1 1
Vi = A (k) Rii(ke, k) A (ki)

where Ay, (ki) = diag(\/v(ki, pni)), v is the variance function and

H’hz
ke

U(kb lJ'hz) Hhi +

Ry,;(ky, k) is the correlation matrix, the diagonal elements of Ry;(k;, k) are all equal
to 1, the m,n’th element of Ry;(k:, k) is equal to the correlation between Y}, and
Yhin

Mhzl,ufhv,Q

\/,uhzl + uhd \/,uth + uhﬂ

Given the regression parameter estimates B , the GEE function proposed by Zhang

Ry, (m,n) =

and Paul (2013) [49] for the variance parameter of our model has the following form

7‘}2”‘1 — (T, Mhﬂ(B))
Ty — V(T ,UhiQ(B))

Iy
|

0y = QAT B) Otk

h.i

7“}2@' — (T, Mhz‘j(B)) |

~

where v(7, fini;(8)) = Hnij (B) + TM;%U(B), Thij = Yhij — Mhij (B)a and
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Vi = yJvar(r?,)corr(ri,)/var(ri,). Consider the difficulty in modeling the struc-

ture of corr(r,), we use the identity matrix for corr(r?,) since it doesn’t affect the
consistency of the estimate of 7 (Zhang and Paul, 2013 [49]). Furthermore, we use

NB moments to approximate var(r,),
Uar("”}%ij) = E<T;1n'j) - [E(T%zij)F?
where [E(ry;;)]*> = pnij + tij,;; - 7, and the fourth central moment is
E(ﬁ'iij) = E(%%z‘j) - 4E(yf{ij)E(ymj) + 6E<yi2nj)[E(yhij)]2 - 3[E(yhij)]47

where the sample moments is

E(y?zij> T (1 — prij) . re(r+1)-(1 _phij)z

DPhij p}%ij 7
re(L—ppi)  3-r-(r+1)-(1—pp;)®> r-(r+1)-(r+2) (1 —pp,)?
Pty = 0 m) B ) (g ) (=
Phij Phi; Dhij
E(yiij):r-(l—phij)+7-r-(r+lg-(1—phij)2+6-r-(r+1)-(7‘3+2)-(1—ph2~j)3’
Phij Phi; Dhij
+T-(T+1)-(T+2)'(T‘+3)'(1—phij>4
p;ln'j 7

where r = 1/7 and ppi;; = 1/(1 + ppij - 7).

The estimating equation of 7 is

J 2 2 2
_ Z Eik * Thiee — (Wi + Hggge - T)]
ulr) = Z var ’

=1 G




B.3 CORRELATION PARAMETER ESTIMATION 104

further we obtain

aU(T) _ J /L;Ln]
or — L var(r,?n.j)’

0)

We start with initial value 7(9, use algorithm

-1
LU+ — 2G) {3U_(T)|TT(J_)} . U(T(j)),
or

to estimate 7.

B.3 Correlation parameter estimation

We use pseudo-likelihood approach to estimate the correlation parameter kg, we es-
timate £ = 1/ks for convenience. Given estimates of regression parameters B and

variance parameter 7, the pseudo-likelihood function for £ is
U(€) =) trace[Pu(7, &) {eni(7)eni'(7) — Rui(7,€)}], (B.2)
h,i

where €ni(7) = Ani /*(7){yni — ri(B)} and

A ~ ~

;o Yni1 — fni1(B) Yniz — Mni2(B) Ynij — Hhij(B)

€ni = ( ~ > ~ — T — N — )7
\/Mhﬂ(ﬂ) +9 - 117, (8) \/Mhza(ﬁ) + 7 fij2(B) \/Mhij (B) + 7 1y (B)

Pp(7,8) = Rhi_l(%af) {ORwi(7,6)/08} Rhi_l(%af)) Api(7) = dmg(“;%@j), Ufzn-j =

fnij + 155 Ty Ru(7,6) = A (F)Vai(7,€) A2 (7), where Vi,(7,€) is the co-

variance matrix of y,,;. Ry, is a symmetric matrix with

Ry (m,m) =1,
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f Hhim (B ,thn )
\/,uhzm _'_ - :uhzm ) ,thn B + T - :uizn(/é)

Ry (m,n) =

agg“ is a symmetric matrix with
Ry
aa—;(m, m) =0,
aha Mhzm(B) Mhm(lé)

\/,uhzm + 7 - Mhlm IB \//Lhzn + T Mh'm(lé)

Furthermore,
ORy,;
ag—? = Z( 2€thththhz€hz +traC€{th agh })
h,i

We start with initial value €, use update function

oU(¢)
9¢

€U = 60 — (5 |ecgn) ™ - UED),

to estimate &.

B.4 Initial value of 3 and o for GEE approach

Initial value is an important issue in Newton-Raphson method. In this section, we
introduce the method of obtaining initial value for 8 and a. Consider the linear fixed

effects model

/
Ynij = O+ Thij - B+ Enij
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where y3,; is the response variable, o, is a measure of the effect of the h'th treatment,
B is the regression coefficients, €;; is the random variable and @p;; is the covariates.

We can rewrite this model in the form
Y =270+¢
!
where 6 = <04170527 te OéHaﬂlaﬂZa o ﬁp) )
Y = )
= (Y111, Y112, Yiingy» Y121, Yi2ngns - “Yininin, > Y2115 7 Yononon,» *  YHnpgnpny,

/
€ = (5111, €112 * " " €11n115, €121, " " " €12n125 * " Elninin, » €211, 7 " E2nongny s T T 5HanHnH)
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and

T1111

T1121

T11nq11

Z1211

T1221

$1n1n1n1 1

TH111

TH121

$H1anH11

TH211

T H221

anHanHl

T1112

L1122

T11nq12

21212

X1222

$1n1n1n1 2

TH112

TH122

$H1anH12

TH212

L H222

anHanH2

T111p

T112p

T1lny1p

T121p

T122p

Lininin, p

THilp

TH12p

leanHlp

TH21p

T H22p

LHnpnpn,p
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Then, R command ’glm’ could be used to solve this linear model, treating a as
‘factor’. The obtained estimates of 3 is the initial value of regression parameters for
GEE method.

For sites with no replicates, we can use R command 'nlminb’ to check the profile
GEE method, since in this case the GEE estimating equation has same form as the

score function of NB model.




Appendix C

TMB: C++ template function

The C++ template for this model is

#include <TMB.hpp>
template<class Type>
Type objective_function<Type>::operator() ()
{
DATA_INTEGER(nstratum);
DATA_INTEGER(nsite) ;
DATA_INTEGER (nobs) ;
DATA_IVECTOR(istratum) ;

DATA_IVECTOR(isite);
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DATA_MATRIX (Xmatrix) ;
DATA_VECTOR(y) ;
DATA_SCALAR(log_k);

DATA_SCALAR(log_kc) ;

PARAMETER_VECTOR (beta) ;
PARAMETER_VECTOR (log_eta) ;

PARAMETER_VECTOR(log_site);

vector<Type> eta(nstratum);
eta=exp(log_eta);
vector<Type> log_mu(nobs);

log_mu=log_eta(istratum-1)+Xmatrix*beta;

vector<Type> log_mui(nobs);

log_mui=log_mu+log_site(isite-1);

vector<Type> mui=exp(log_mui);

vector<Type> site=exp(log_site);
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Type kc=exp(log_kc);
Type k=exp(log_k);

Type nl1=0.0;

for(int i=0;i<nobs;i++){
nll-= lgamma(y(i)+kc)-lgamma (kc)-1gamma(y(i)+Type(1.0))+y(i)*log_mui(i)-y(i)=*
log(mui(i)+kc)+kc*(log_kc-log(mui(i)+kc));

b

vector<Type> 11i;

11li=k*log_k-1lgamma(k)+k*log_site-k*site;

nll-=sum(11i);

ADREPORT (k)

ADREPORT (kc)

ADREPORT (eta)




TMB: C4++4+ TEMPLATE FUNCTION 112

return nll;




Appendix D

Derivation for ML and REML

estimator of o2

Let y be a n x 1 vector of sample response, 3 be a p x 1 parameter vector and X be

a n X p covariance matrix, we assume a linear regression model
y=XB+e€ where e~ N(0,0°1).
The likelihood function is

LB - e { - L - X0 (- X8)

(V2mo?)

We could obtain the ML estimators for 3

BML = (X'X)"' X"y,
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D.1 REML for normal linear mixed model

To start REML method, we choose k/ = (I — X X ™) so that K’ X3 = 0 and
k'y ~ N(0,0%Kk'k).

The REML function is

f(O'Q‘y) = (2702)n/12|k,k|1/2 exp{—%(k’y)/(k'k)l(kﬁl?})}

and the REML estimator of o2 is

2 (K'y) (K'k)"'(K'y)

OREML —

Since

El(k'y) (k'k) " (k'y)]
t?”[(k”ﬂ)‘lzj (k'yy'k)]
tr[(k’k)‘lz’Var(y)k]
a%r[(k/k)nlk'k]

n

/\2 . . . 2
Ofpur, 18 an unbiased estimator of o
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D.2 Integrated REML

We use integrated REML to estimate o?. The REML function can be obtained by

integrating the likelihood function over 8 using a non-informative density function
L) = [ LB oly)as

-/ ﬁem{ - sy XB)(y ~ X) b

Note that
(y—XB)(y—XB) =y (I—-H)y+(B—Bu)X'X(B- B,

where H = X(X'X)71X".

X'X —1/2 1
Uetly) = o] - (T -
1 1 - B
|X/X’_1/2

- T exp{ - %‘zy’(I - H)y}.

Then the REML estimator of o2 is

2 YU -H)y
OREML — —
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Ely'(I — H)y]

E[tT?(I_ ! H)yy'}]

tr((I —nI; )%(yy’)]

trl(I —nf; )%ar(yy’)]
n—p

E(&I%{EML) =

The integrated REML estimator of o2 is unbiased.




Appendix E

simulation table
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Table E.1: Mean bias of regression and variance parameters for the GEE method.

T : B B 3 B Bs ks Ky
1 1 25 5 0.005 -0.002 0.004 -0.003 0.000 3.323 1.053
1 1 25 15 -0.006 0.003 -0.008 -0.001 -0.001 0479 0.257
1 1 25 30 -0.003 0.003 -0.000 -0.007 -0.001 0.198 0.123
1 1 100 5 0.007 0.002 -0.001 0.004 -0.014 2318 0.916
1 1 100 15 0.002 -0.002 0.002 0.001 -0.002 0418 0.241
1 3 25 5 -0.003 -0.005 -0.001 -0.002 -0.001 5.157 3.071
1 3 25 15 0.002 0.002 0.001 0.002 0.002 2.088 0.852
1 3 25 30 0.001 0.002 0.002 0.003 -0.000 0.696 0.344
1 3 100 5 0.005 -0.001 0.002 0.002 -0.002 6.132 3.514
1 3 100 15 -0.000 -0.003 0.003 -0.004 0.000 1.535 0.780
5 1 25 5 0.010 0.002 0.011 0.002 0.007 1.237 0.613
5 1 25 15 0.006 0.008 0.004 -0.001 -0.000 0.237 0.135
5 1 25 30 -0.001 -0.002 0.002 -0.001 0.001 -0.005 -0.004
5 1 100 5 0.008 -0.006 0.002 -0.002 -0.003 1.110 0.589
5 1 100 15 -0.001 0.001 0.000 0.003 0.001 0.251 0.149
5 3 25 5 0.009 -0.004 -0.002 0.001 0.010 2.968 1.607
5 3 25 15 0.000 -0.001 0.001 -0.001 0.000 0.651 0.419
5 3 25 30 0.001 0.001 -0.001 0.002 -0.000 0.307 0.215
5 3 100 5 0.002 0.002 0.002 -0.001 -0.004 2.439 1.403
5 3 100 15 0.002 -0.000 0.000 0.000 0.001 0.580 0.380

10 1 25 5 -0.004 -0.014 -0.006 -0.001 -0.007 0.951 0.491

10 1 25 15 0.000 0.003 -0.003 -0.000 -0.000 0.115 0.062

10 1 25 30 -0.002 -0.003 0.000 0.002 -0.001 -0.183 -0.116

10 1 100 5 0.002 0.002 -0.000 -0.001 -0.004 0.974 0.528

10 1 100 15 -0.002 -0.001 -0.001 0.000 -0.003 0.123 0.080

10 3 25 5 0.002 0.001 0.005 -0.002 -0.003 1.956 1.029

10 3 25 15 0.000 -0.001 0.002 -0.001 -0.005 0.296 0.173

10 3 25 30 -0.001 0.000 -0.000 -0.001 0.002 0.205 0.144

10 3 100 5 0.001 0.002 0.002 -0.001 0.000 1.731 1.020

10 3 100 15 -0.001 0.000 0.000 -0.000 0.000 0.419 0.279
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Table E.2: Mean bias of regression and variance parameters for the ML. method

pn ke H my B 2 B3 By Bs ks ke
1 1 25 5 0.011 0.013 0.003 -0.010 -0.009 6.062 1.015
1 1 25 15 0.001 -0.004 0.000 0.002 -0.000 2.289 0.296
1 1 25 30 0.007 -0.002 -0.001 0.003 -0.005 0.854 0.177
1 1 100 5 0.004 -0.004 0.003 -0.003 -0.004 6.706 0.767
1 1 100 15 0.004 -0.001 0.001 -0.001 -0.007 1.537 0.240
1 3 25 5 -0.012 -0.001 0.008 0.009 0.001 6.719 3.670
1 3 25 15 -0.001 0.001 -0.001 0.002 -0.002 b5.654 1.321
1 3 25 30 -0.002 0.003 0.002 0.001 -0.002 3.441 0.694
1 3 100 5 0.004 -0.005 0.003 0.003 0.003 6.957 3.615
1 3 100 15 0.004 -0.004 0.001 -0.001 -0.002 6.273 1.004
5 1 25 5 -0.006 -0.004 0.004 -0.001 -0.007 0.607 0.327
5 1 25 15 0.003 -0.003 -0.003 0.003 -0.002 0.251 0.103
5 1 25 30 -0.001 0.004 0.001 0.001 -0.003 0.156 0.060
5 1 100 5 -0.000 -0.001 0.001 -0.007 0.004 0.521 0.275
5 1 100 15 0.001 -0.001 -0.001 -0.001 -0.001 0.237 0.086
5 3 25 5 -0.003 0.001 0.010 0.001 0.002 2.535 1.349
5 3 25 15 -0.002 0.003 -0.002 -0.002 -0.003 0.684 0.369
5 3 25 30 -0.001 -0.001 0.002 -0.000 0.002 0.358 0.193
5 3 100 5 -0.003 0.000 -0.003 -0.000 -0.002 1.913 1.094
5 3 100 15 0.002 0.000 -0.001 0.002 0.000 0.612 0.322
10 1 25 5 -0.004 -0.005 0.002 -0.003 -0.007 0.427 0.252
10 1 25 15 -0.001 -0.000 -0.000 0.001 -0.001 0.171 0.079
10 1 25 30 0.001 0.002 -0.002 0.001 -0.003 0.102 0.044
10 1 100 5 0.000 -0.003 0.001 0.004 -0.003 0.385 0.214
10 1 100 15 -0.000 -0.000 -0.001 0.002 -0.004 0.163 0.069
10 3 25 5 0.004 0.000 0.001 -0.003 0.001 1.527 0.958
10 3 25 15 0.003 0.001 0.000 -0.000 -0.002 0.437 0.271
10 3 25 30 0.000 0.002 -0.002 0.001 -0.001 0.223 0.130
10 3 100 5 0.002 0.001 0.001 0.000 -0.001 1.275 0.798
10 3 100 15 0.001 -0.000 0.001 0.001 0.001 0.399 0.230




SIMULATION TABLE

120

Table E.3: Mean bias of regression and variance parameters for the REML method

pn ke H my B 2 B3 By Bs ks ke
1 1 25 5 -0.012 0.011 0.003 -0.004 0.012 4.275 0.256
1 1 25 15 -0.004 -0.005 0.000 0.003 0.005 2.095 0.168
1 1 25 30 0.006 -0.002 -0.001 0.003 -0.004 0.670 0.150
1 1 100 5 -0.013 -0.007 0.003 0.000 0.014 3.080 0.232
1 1 100 15 -0.000 -0.002 0.001 -0.000 -0.003 1.086 0.149
1 3 25 5 -0.023 -0.003 0.008 0.011 0.010 4.790 0.866
1 3 25 15 -0.003 -0.000 -0.001 0.002 0.001 4.496 0.478
1 3 25 30 -0.003 0.003 0.002 0.002 -0.001 2.565 0.389
1 3 100 5 -0.003 -0.007 0.004 0.0056 0.011 5.270 0.641
1 3 100 15 0.002 -0.004 0.001 -0.001 0.000 4.551 0.369
5 1 25 5 -0.015 -0.006 0.004 0.002 0.001 0.122 0.064
5 1 25 15 0.002 -0.003 -0.003 0.004 0.001 0.094 0.045
5 1 25 30 -0.002 0.004 0.001 0.001 -0.003 0.079 0.037
5 1 100 5 -0.007 -0.003 0.001 -0.005 0.012 0.085 0.052
5 1 100 15 -0.001 -0.002 -0.001 -0.001 0.001 0.082 0.038
5 3 25 5 -0.009 -0.000 0.011 0.002 0.007 0.417 0.161
5 3 25 15 -0.003 0.003 -0.002 -0.002 -0.001 0.200 0.083
5 3 25 30 -0.001 -0.001 0.002 -0.000 0.002 0.142 0.072
5 3 100 5 -0.008 -0.001 -0.004 0.001 0.003 0.155 0.089
5 3 100 15 0.001 0.000 -0.001 0.002 0.001 0.148 0.070
10 1 25 5 -0.011 -0.007 0.002 -0.001 -0.000 0.068 0.041
10 1 25 15 -0.003 -0.001 -0.001 0.001 0.000 0.051 0.027
10 1 25 30 0.001 0.002 -0.002 0.001 -0.002 0.042 0.021
10 1 100 5 -0.005 -0.005 0.001 0.006 0.002 0.048 0.032
10 1 100 15 -0.001 -0.001 -0.001 0.003 -0.003 0.045 0.024
10 3 25 5 -0.000 -0.001 0.001 -0.003 0.005 0.163 0.093
10 3 25 15 0.002 0.001 0.000 0.000 -0.000 0.080 0.045
10 3 25 30 -0.000 0.002 -0.002 0.001 -0.001 0.054 0.030
10 3 100 5 -0.001 -0.000 0.001 0.001 0.002 0.009 0.043
10 3 100 15 0.000 -0.000 0.001 0.001 0.002 0.050 0.027




SIMULATION TABLE

121

Table E.4: Standard bias (sbias) of 8 for the GEE method.

pn ke H ny b1 B2 B3 B4 Bs
1 1 25 5 0.026 -0.006 0.013 -0.003 -0.002
1 1 25 15 -0.025 0.016 -0.038 -0.008 -0.010
1 1 25 30 -0.013 0.025 -0.002 -0.052 -0.012
1 1 100 5 0.046 0.012 -0.005 0.030 -0.101
1 1 100 15 0.024 -0.019 0.018 0.005 -0.025
1 3 25 5 -0.025 -0.022 0.002 -0.014 0.012
1 3 25 15 0.006 0.011 0.0056 0.014 0.015
1 3 25 30 0.011 0.014 0.015 0.030 -0.006
1 3 100 5 0.036 -0.006 0.012 0.016 -0.013
1 3 100 15 -0.006 -0.035 0.041 -0.047 0.005
5 1 25 5 0.053 0.026 0.054 0.010 0.022
5 1 25 15 0.053 0.062 0.034 -0.004 -0.005
5 1 25 30 -0.010 -0.016 0.022 -0.016 0.007
5 1 100 5 0.076 -0.057 0.019 -0.017 -0.033
5 1 100 15 -0.005 0.011 0.000 0.038 0.015
5 3 25 5 0.073 -0.030 -0.009 0.006 0.056
5 3 25 15 0.008 -0.006 0.015 -0.009 -0.004
5 3 25 30 0.010 0.009 -0.014 0.037 -0.013
5 3 100 5 0.036 0.036 0.023 -0.010 -0.054
5 3 100 15 0.046 -0.001 0.008 0.008 0.018
10 1 25 5 -0.012 -0.076 -0.026 -0.013 -0.053
10 1 25 15 0.012 0.021 -0.029 -0.002 -0.005
10 1 25 30 -0.018 -0.038 0.005 0.022 -0.021
10 1 100 5 0.029 0.015 0.000 -0.008 -0.048
10 1 100 15 -0.035 -0.012 -0.015 0.007 -0.045
10 3 25 5 0.013 0.0056 0.049 -0.021 -0.029
10 3 25 15 0.008 -0.009 0.027 -0.013 -0.066
10 3 25 30 -0.016 0.002 -0.006 -0.027 0.029
10 3 100 5 0.026 0.026 0.035 -0.019 0.004
10 3 100 15 -0.015 0.006 0.006 -0.003 0.003
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Table E.5: Standard bias (sbias) of 3 for the ML method.

H np

B

B

Bs

Ba

Bs

pn ks
1 1 25 5 0.040 0.041 0.008 -0.035 -0.040
1 1 25 15 0.010 -0.018 -0.001 0.007 -0.010
1 1 25 30 0.057 -0.016 -0.011 0.021 -0.044
1 1 100 5 0.033 -0.019 0.016 -0.018 -0.034
1 1 100 15 0.045 -0.008 0.012 -0.011 -0.074
1 3 25 5 -0.030 0.005 0.030 0.028 -0.007
1 3 25 15 -0.002 0.006 -0.006 0.010 -0.016
1 3 25 30 -0.014 0.034 0.017 0.013 -0.021
1 3 100 5 0.037 -0.037 0.020 0.017 0.021
1 3 100 15 0.047 -0.048 0.016 -0.017 -0.027
5 1 25 5 -0.022 -0.013 0.018 -0.004 -0.036
5 1 25 15 0.022 -0.018 -0.018 0.022 -0.015
5 1 25 30 -0.012 0.042 0.011 0.014 -0.043
5 1 100 5 0.006 -0.012 0.010 -0.059 0.027
5 1 100 15 0.016 -0.015 -0.018 -0.018 -0.021
5 3 25 5 -0.011 0.009 0.060 0.008 0.001
5 3 25 15 -0.014 0.033 -0.014 -0.027 -0.028
5 3 25 30 -0.012 -0.022 0.036 -0.004 0.025
5 3 100 5 -0.040 0.003 -0.040 -0.003 -0.027
5 3 100 15 0.044 0.011 -0.024 0.038 0.003
10 1 25 5 -0.015 -0.024 0.010 -0.016 -0.037
10 1 25 15 -0.012 -0.002 -0.004 0.004 -0.011
10 1 25 30 0.017 0.025 -0.020 0.014 -0.036
10 1 100 5 0.006 -0.031 0.007 0.040 -0.033
10 1 100 15 -0.000 -0.005 -0.015 0.036 -0.062
10 3 25 5 0.032 0.007 0.002 -0.021 0.001
10 3 25 15 0.039 0.012 0.003 -0.004 -0.023
10 3 25 30 0.006 0.034 -0.041 0.011 -0.021
10 3 100 5 0.037 0.011 0.011 0.002 -0.022
10 3 100 15 0.027 -0.000 0.020 0.027 0.024
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Table E.6: Standard bias (sbias) of 8 for the REML method.

pn ke H ny b1 B2 B3 B4 Bs
1 1 25 5 -0.020 0.031 0.005 -0.020 0.017
1 1 25 15 -0.013 -0.022 -0.001 0.013 0.014
1 1 25 30 0.047 -0.019 -0.011 0.024 -0.033
1 1 100 5 -0.057 -0.034 0.014 0.004 0.064
1 1 100 15 0.001 -0.019 0.011 -0.001 -0.032
1 3 25 5 -0.061 -0.002 0.028 0.034 0.021
1 3 25 15 -0.015 0.001 -0.006 0.014 -0.000
1 3 25 30 -0.023 0.032 0.016 0.015 -0.012
1 3 100 5 -0.011 -0.043 0.023 0.028 0.066
1 3 100 15 0.022 -0.054 0.014 -0.010 -0.003
5 1 25 5 -0.057 -0.024 0.017 0.008 0.001
5 1 25 15 0.012 -0.024 -0.019 0.025 0.002
5 1 25 30 -0.020 0.040 0.011 0.016 -0.033
5 1 100 5 -0.052 -0.028 0.008 -0.040 0.093
5 1 100 15 -0.010 -0.024 -0.018 -0.011 0.007
5 3 25 5 -0.044 0.001 0.059 0.014 0.034
5 3 25 15 -0.028 0.030 -0.015 -0.022 -0.013
5 3 25 30 -0.020 -0.024 0.036 -0.003 0.033
5 3 100 5 -0.092 -0.012 -0.043 0.016 0.027
5 3 100 15 0.019 0.006 -0.023 0.045 0.025
10 1 25 5 -0.043 -0.034 0.010 -0.005 -0.006
10 1 25 15 -0.023 -0.005 -0.004 0.008 0.002
10 1 25 30 0.009 0.023 -0.020 0.015 -0.029
10 1 100 5 -0.043 -0.045 0.006 0.051 0.015
10 1 100 15 -0.018 -0.010 -0.015 0.042 -0.044
10 3 25 5 0.001 -0.000 0.003 -0.016 0.029
10 3 25 15 0.026 0.010 0.003 -0.001 -0.010
10 3 25 30 -0.002 0.034 -0.041 0.013 -0.013
10 3 100 5 -0.011 -0.001 0.010 0.012 0.023
10 3 100 15 0.007 -0.005 0.019 0.034 0.044
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Table E.7: Root mean square error (RMSE) of 3 for the GEE method.
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0.300
0.163
0.105
0.144
0.083
0.269
0.151
0.098
0.129
0.075
0.179
0.098
0.064
0.086
0.049
0.234
0.137
0.089
0.118
0.069
0.152
0.086
0.054
0.075
0.043

0.367
0.213
0.132
0.181
0.102
0.292
0.163
0.106
0.144
0.082
0.258
0.148
0.094
0.127
0.072
0.176
0.096
0.064
0.086
0.048
0.244
0.139
0.091
0.118
0.066
0.147
0.083
0.054
0.074
0.043

0.376
0.203
0.135
0.178
0.102
0.292
0.162
0.107
0.143
0.083
0.262
0.148
0.094
0.123
0.075
0.175
0.097
0.063
0.086
0.049
0.238
0.138
0.090
0.118
0.068
0.148
0.086
0.055
0.071
0.043

0.378
0.200
0.137
0.182
0.101
0.297
0.166
0.108
0.147
0.081
0.261
0.151
0.094
0.126
0.074
0.172
0.100
0.063
0.085
0.048
0.245
0.139
0.088
0.117
0.067
0.153
0.084
0.053
0.073
0.042

0.367
0.207
0.133
0.181
0.103
0.306
0.165
0.110
0.149
0.083
0.265
0.151
0.095
0.128
0.075
0.178
0.101
0.064
0.084
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0.244
0.138
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0.118
0.069
0.153
0.086
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0.041
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Table E.8: Root mean square error (RMSE) of 3 for the ML method.
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0.253
0.142
0.089
0.124
0.070
0.180
0.098
0.065
0.085
0.050
0.226
0.127
0.083
0.108
0.063
0.145
0.084
0.052
0.073
0.041

0.380
0.205
0.133
0.182
0.100
0.295
0.166
0.110
0.148
0.082
0.258
0.142
0.091
0.122
0.070
0.169
0.097
0.064
0.085
0.049
0.220
0.125
0.081
0.111
0.060
0.143
0.082
0.054
0.070
0.041

0.377
0.210
0.130
0.181
0.102
0.298
0.165
0.108
0.144
0.080
0.252
0.141
0.090
0.121
0.069
0.176
0.098
0.062
0.084
0.047
0.225
0.124
0.082
0.108
0.063
0.143
0.083
0.053
0.070
0.041

0.384
0.212
0.134
0.185
0.102
0.308
0.162
0.108
0.142
0.083
0.261
0.143
0.090
0.127
0.069
0.174
0.099
0.061
0.084
0.049
0.223
0.129
0.081
0.110
0.061
0.146
0.083
0.053
0.072
0.041

0.388
0.213
0.129
0.188
0.105
0.302
0.167
0.107
0.145
0.081
0.255
0.140
0.091
0.123
0.070
0.174
0.099
0.063
0.086
0.048
0.225
0.130
0.082
0.110
0.062
0.149
0.085
0.053
0.070
0.041
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Table E.9: Root mean square error (RMSE) of 3 for the REML method.
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0.070
0.180
0.098
0.064
0.085
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0.226
0.127
0.083
0.108
0.063
0.145
0.084
0.052
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0.389
0.206
0.133
0.181
0.099
0.299
0.166
0.110
0.149
0.082
0.257
0.141
0.091
0.122
0.070
0.170
0.097
0.064
0.085
0.049
0.220
0.125
0.081
0.111
0.060
0.143
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0.054
0.070
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0.385
0.211
0.130
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0.083
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0.143
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0.084
0.049
0.223
0.129
0.081
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0.397
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0.128
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0.105
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0.107
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0.081
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0.091
0.124
0.070
0.174
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0.130
0.082
0.110
0.062
0.149
0.084
0.053
0.070
0.041
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Table E.10: Coverage for the lower limits of 95% confidence interval (C.L) of 3 for

the GEE method.
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Table E.11: Coverage for the lower limits of 95% confidence interval (C.L) of 3 for

the ML method.
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0.027
0.029
0.037
0.033
0.029
0.029
0.025
0.031
0.035
0.031
0.026
0.024
0.025
0.022
0.033
0.025
0.024
0.025
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0.030
0.029
0.025
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0.037
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0.025
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0.035
0.025
0.021
0.029
0.023
0.035
0.028
0.034
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0.021
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0.028
0.025
0.029
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0.025
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0.029
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0.035
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0.026
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0.035
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0.023
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0.029
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0.029
0.028
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0.029
0.028
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0.041
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0.035
0.022
0.025
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0.025
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0.030
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0.029
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0.025
0.041
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0.035
0.029
0.038
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0.028
0.022
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0.024
0.016
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0.025
0.028
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0.034
0.027
0.024
0.032
0.029

0.032
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0.018
0.031
0.025
0.035
0.029
0.021
0.028
0.024
0.035
0.019
0.023
0.031
0.022
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0.023
0.024
0.025
0.025
0.028
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0.025
0.032
0.019
0.029
0.021
0.023
0.033
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Table E.12: Coverage for the lower limits of 95% confidence interval (C.L) of 3 for

the REML method.
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0.022
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0.022
0.018
0.029
0.024
0.025
0.024
0.019
0.022
0.023
0.024
0.024
0.017
0.029
0.026
0.030
0.029
0.021
0.025
0.025
0.027
0.024
0.030
0.029

0.024
0.021
0.022
0.020
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0.024
0.024
0.033
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0.028
0.025
0.025
0.020
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0.027
0.025
0.022
0.029
0.022
0.025
0.024
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0.025
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0.025

0.022
0.028
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0.026
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0.020
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0.028
0.029
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0.027
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0.030
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0.024
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0.029
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0.022
0.028
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0.025
0.028

0.024
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0.023
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0.024
0.031
0.029
0.030
0.025
0.022
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0.024
0.017
0.025
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0.025
0.029
0.037
0.026
0.030
0.026
0.024
0.029
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0.024
0.031
0.017
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0.025
0.025
0.026
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0.022
0.022
0.032
0.021
0.025
0.032
0.024
0.022
0.021
0.024
0.025
0.025
0.025
0.028
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0.021
0.023
0.021
0.022
0.028
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Table E.13: Coverage for the upper limits of 95% confidence interval (C.U) of 3 for

the GEE method.
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0.033
0.028
0.051
0.040
0.073
0.038
0.037
0.049
0.038
0.053
0.032
0.028
0.043
0.028
0.066
0.039
0.033
0.051
0.039
0.050
0.038
0.029
0.045
0.032

0.065
0.044
0.039
0.052
0.035
0.062
0.035
0.025
0.049
0.034
0.058
0.042
0.035
0.060
0.033
0.050
0.038
0.027
0.034
0.030
0.085
0.040
0.040
0.051
0.031
0.051
0.036
0.031
0.042
0.033

0.070
0.035
0.031
0.052
0.037
0.058
0.040
0.034
0.052
0.035
0.065
0.036
0.033
0.042
0.036
0.057
0.038
0.030
0.046
0.032
0.073
0.042
0.039
0.058
0.033
0.044
0.041
0.032
0.036
0.031

0.068
0.039
0.037
0.052
0.032
0.061
0.034
0.029
0.050
0.032
0.066
0.044
0.034
0.055
0.032
0.056
0.038
0.027
0.040
0.034
0.081
0.051
0.036
0.061
0.035
0.057
0.032
0.030
0.048
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0.063
0.045
0.038
0.072
0.038
0.061
0.038
0.029
0.061
0.034
0.073
0.047
0.033
0.059
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0.053
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0.042
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0.060
0.039
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0.029
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Table E.14: Coverage for the upper limits of 95% confidence interval (C.U) of 3 for
the ML method.

1

T
[

H ny o5 S B3 B4 Bs
25 5 0.035 0.031 0.037 0.046 0.039
25 15 0.028 0.030 0.032 0.028 0.029
25 30 0.021 0.021 0.018 0.023 0.021
100 5 0.028 0.036 0.027 0.036 0.036
100 15 0.022 0.025 0.021 0.020 0.034
25 5 0.027 0.030 0.028 0.033 0.035
25 15 0.022 0.031 0.031 0.025 0.034
25 30 0.025 0.027 0.024 0.028 0.028
100 5 0.026 0.037 0.030 0.027 0.029
100 15 0.022 0.033 0.023 0.033 0.021
25 5 0.032 0.038 0.030 0.032 0.035
25 15 0.022 0.025 0.022 0.025 0.028
25 30 0.021 0.024 0.021 0.021 0.025
100 5 0.028 0.025 0.032 0.033 0.026
100 15 0.020 0.029 0.025 0.025 0.032
25 5 0.037 0.027 0.029 0.034 0.029
25 15 0.025 0.022 0.029 0.035 0.028
25 30 0.028 0.025 0.021 0.025 0.025
100 5 0.037 0.029 0.033 0.029 0.035
100 15 0.022 0.025 0.021 0.025 0.023
25 5 0.025 0.029 0.032 0.030 0.033
25 15 0.023 0.021 0.026 0.029 0.026
25 30 0.025 0.025 0.025 0.021 0.032
100 5 0.028 0.029 0.029 0.024 0.030
100 15 0.025 0.017 0.028 0.021 0.025
25 5 0.025 0.028 0.034 0.033 0.035
25 15 0.021 0.025 0.022 0.032 0.033
25 30 0.027 0.024 0.029 0.027 0.026
100 5 0.024 0.036 0.025 0.033 0.022
100 15 0.021 0.025 0.022 0.024 0.026
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Table E.15: Coverage for the upper limits of 95% confidence interval (C.U) of 3 for
the REML method.

Hn

T
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H ny b Ba Bs P Bs
25 5 0.025 0.023 0.026 0.032 0.022
25 15 0.027 0.029 0.030 0.026 0.029
25 30 0.023 0.021 0.018 0.023 0.020
100 5 0.023 0.025 0.021 0.027 0.019
100 15 0.022 0.022 0.020 0.018 0.028
25 5 0.022 0.024 0.022 0.025 0.025
25 15 0.019 0.028 0.028 0.022 0.028
25 30 0.025 0.025 0.024 0.027 0.025
100 5 0.023 0.029 0.025 0.019 0.017
100 15 0.021 0.032 0.021 0.029 0.018
25 5 0.030 0.031 0.028 0.028 0.031
25 15 0.024 0.024 0.024 0.025 0.026
25 30 0.022 0.025 0.021 0.023 0.025
100 5 0.030 0.021 0.027 0.029 0.021
100 15 0.021 0.032 0.027 0.026 0.029
25 5 0.031 0.019 0.024 0.025 0.022
25 15 0.023 0.022 0.026 0.032 0.026
25 30 0.027 0.026 0.020 0.025 0.025
100 5 0.034 0.026 0.028 0.021 0.026
100 15 0.021 0.024 0.019 0.024 0.021
25 5 0.024 0.025 0.025 0.028 0.027
25 15 0.025 0.022 0.025 0.029 0.028
25 30 0.026 0.026 0.026 0.022 0.032
100 5 0.027 0.028 0.025 0.022 0.028
100 15 0.029 0.020 0.028 0.021 0.028
25 5 0.025 0.021 0.030 0.025 0.028
25 15 0.021 0.025 0.021 0.031 0.029
25 30 0.026 0.024 0.028 0.027 0.025
100 5 0.024 0.029 0.023 0.026 0.017
100 15 0.021 0.025 0.022 0.021 0.024
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Table E.16: Coverage for 95% confidence interval (C.I) of 3 for the GEE method.

I

T
[

H np

A

B2

Bs

fa

Bs

U O O OT U1 U1 U1 U1 UL = = = = e e e e e [

= b b b
O O DD DD OO OO O Ut

W WWWWHFEFHFFFPFRFPFEFWWWWWHERFRFHERFRFWWWWWHERERFERF&&

25
25
25
100
100
25
25
25
100
100
25
25
25
100
100
25
25
25
100
100
25
25
25
100
100
25
25
25
100
100

5
15
30

5
15

5
15
30

5
15

5
15
30

5
15

5
15
30

5
15

5
15
30

5
15

5
15
30

5
15

0.142
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0.062
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0.074
0.125
0.066
0.057
0.107
0.076
0.153
0.090
0.071
0.110
0.074
0.115
0.065
0.058
0.094
0.059
0.127
0.084
0.068
0.101
0.071
0.106
0.078
0.056
0.101
0.065

0.127
0.088
0.070
0.104
0.074
0.111
0.070
0.054
0.099
0.071
0.124
0.094
0.062
0.108
0.071
0.105
0.070
0.060
0.078
0.060
0.150
0.089
0.077
0.105
0.060
0.103
0.069
0.061
0.094
0.067

0.137
0.075
0.066
0.098
0.075
0.112
0.069
0.066
0.093
0.072
0.138
0.087
0.064
0.094
0.073
0.108
0.071
0.058
0.094
0.068
0.142
0.083
0.077
0.106
0.063
0.105
0.079
0.067
0.077
0.066

0.143
0.081
0.075
0.109
0.066
0.115
0.075
0.057
0.104
0.060
0.128
0.085
0.066
0.107
0.067
0.106
0.078
0.057
0.079
0.066
0.156
0.092
0.073
0.116
0.067
0.113
0.063
0.056
0.094
0.069

0.137
0.082
0.071
0.110
0.071
0.134
0.080
0.065
0.119
0.068
0.141
0.098
0.070
0.111
0.075
0.110
0.077
0.063
0.076
0.071
0.137
0.089
0.067
0.114
0.073
0.114
0.081
0.060
0.084
0.056
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Table E.17: Coverage for 95% confidence interval (C.I) for 8 for the ML method.
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0.055
0.051
0.065
0.055
0.056
0.052
0.050
0.057
0.057
0.063
0.049
0.044
0.053
0.042
0.070
0.050
0.052
0.063
0.054
0.057
0.053
0.054
0.053
0.051
0.062
0.051
0.051
0.064
0.051

0.065
0.055
0.043
0.065
0.047
0.066
0.058
0.061
0.071
0.053
0.072
0.052
0.049
0.054
0.049
0.055
0.052
0.051
0.060
0.055
0.058
0.046
0.048
0.064
0.038
0.058
0.053
0.055
0.062
0.052

0.072
0.060
0.041
0.064
0.050
0.061
0.059
0.052
0.061
0.050
0.064
0.051
0.049
0.061
0.048
0.070
0.057
0.044
0.062
0.045
0.068
0.049
0.050
0.062
0.053
0.060
0.052
0.050
0.054
0.051

0.077
0.061
0.051
0.067
0.045
0.074
0.051
0.054
0.061
0.062
0.069
0.054
0.051
0.060
0.046
0.062
0.058
0.041
0.060
0.055
0.059
0.054
0.050
0.060
0.047
0.067
0.059
0.051
0.065
0.052

0.071
0.059
0.039
0.067
0.058
0.069
0.062
0.048
0.057
0.044
0.070
0.047
0.048
0.057
0.054
0.058
0.051
0.049
0.061
0.048
0.060
0.053
0.057
0.062
0.044
0.064
0.054
0.048
0.054
0.048
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Table E.18: Coverage for 95% confidence interval (C.I) for 8 for the REML method.
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0.052
0.049
0.053
0.043
0.052
0.045
0.046
0.048
0.041
0.050
0.053
0.048
0.046
0.050
0.043
0.054
0.047
0.051
0.051
0.050
0.050
0.055
0.056
0.049
0.054
0.050
0.048
0.050
0.054
0.050

0.047
0.050
0.043
0.045
0.044
0.048
0.051
0.058
0.049
0.051
0.058
0.050
0.050
0.041
0.053
0.040
0.049
0.051
0.049
0.053
0.047
0.047
0.051
0.056
0.042
0.045
0.050
0.054
0.051
0.050

0.049
0.057
0.041
0.043
0.046
0.051
0.053
0.051
0.044
0.046
0.056
0.053
0.051
0.054
0.050
0.054
0.054
0.043
0.053
0.040
0.056
0.048
0.052
0.054
0.054
0.052
0.049
0.048
0.048
0.050

0.056
0.058
0.051
0.050
0.042
0.057
0.046
0.052
0.046
0.053
0.059
0.054
0.053
0.054
0.048
0.049
0.056
0.042
0.045
0.053
0.054
0.054
0.051
0.059
0.048
0.055
0.057
0.051
0.056
0.051

0.046
0.059
0.037
0.051
0.053
0.051
0.054
0.045
0.039
0.040
0.062
0.047
0.050
0.053
0.053
0.044
0.047
0.048
0.051
0.046
0.052
0.055
0.058
0.059
0.048
0.051
0.050
0.048
0.045
0.045
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Comparison of NB distribution and

PdG model with single observation
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Figure F.1: Comparison of probability mass function in equation (6.2) with the Neg-
ative binomial mass function
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Figure F.2: Comparison of probability mass function in equation (6.2) with the Neg-
ative binomial mass function
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Figure F.3: Comparison of probability mass function in equation (6.2) with the Neg-

ative binomial mass function
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Figure F.4: Comparison of probability mass function in equation (6.2) with the Neg-
ative binomial mass function
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Figure F.5: Ratio of cumulative mass function for equation (6.2) and NB distribution
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Figure F.6: Ratio of cumulative mass function for equation (6.2) and NB distribution
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Figure F.7: Ratio of cumulative mass function for equation (6.2) and NB distribution
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Figure F.8: Ratio of cumulative mass function for equation (6.2) and NB distribution
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